Xpert.press

Die Reihe Xpert.press vermittelt Professionals

in den Bereichen Softwareentwicklung,
Internettechnologie und I'T-Management aktuell

und kompetent relevantes Fachwissen iiber
Technologien und Produkte zur Entwicklung

und Anwendung moderner Informationstechnologien.

Golo Roden

Auf der Fiahrte von C#

Einfiihrung und Referenz

@ Springer

Golo Roden
Carl-Kistner-Str. 17
79115 Freiburg im Breisgau

ISBN 978-3-540-27888-7 e-ISBN 978-3-540-27889-4
DOI 10.1007/978-3-540-27889-4
ISSN 1439-5428

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet iiber http://dnb.d-nb.de abrufbar.

© 2008 Springer-Verlag Berlin Heidelberg

Dieses Werk ist urheberrechtlich geschiitzt. Die dadurch begriindeten Rechte, insbesondere die der Uber-
setzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung,
der Mikroverfilmung oder der Vervielfiltigung auf anderen Wegen und der Speicherung in Datenver-
arbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfaltigung
dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen
Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in
der jeweils geltenden Fassung zuldssig. Sie ist grundsitzlich vergiitungspflichtig. Zuwiderhandlungen
unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk be-
rechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der
Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten waren und daher von jedermann
benutzt werden diirften.

Einbandgestaltung: KiinkelLopka, Heidelberg
Satz und Herstellung: le-tex publishing services oHG, Leipzig

Gedruckt auf sdurefreiem Papier
987654321

springer.com

In Liebe
fiir Susanna

Vorwort

Uber dieses Buch

Warum Auf der Fihrte von C#? Warum noch ein Buch zu dieser Programmierspra-
che?

Zunichst — dieses Buch ist grundlegend anders als andere verfiigbare Literatur
zu C#, und die Unterschiede liefern gleichzeitig auch die Begriindung, warum man
gerade dieses Buch lesen sollte. Doch worin bestehen die Unterschiede zwischen
Auf der Fdhrte von C# und anderen Biichern?

Die Antwort auf diese Frage resultiert aus der Tatsache, dass andere verfiigbare
Texte zu C# nicht nur einen, sondern sogar den wesentlichen Aspekt der Anwen-
dungsentwicklung missachten, ndmlich den Aspekt, warum Anwendungen eigent-
lich geschrieben werden - nicht um der Anwendung, sondern um der Verarbeitung
von Daten willen.

Andere Biicher, in denen Anwendungsentwicklung behandelt wird, gehen al-
lerdings nicht datenzentrisch vor, sondern betonen statt dessen den Code, der im
Grunde genommen nur Mittel zum Zweck ist. Der Aufbau von Datenstrukturen und
das Denken in diesen werden — wenn iiberhaupt — lediglich fliichtig vermittelt oder
géinzlich vernachlissigt.

Dieses zunéchst unerwartete Vorgehen kann historisch begriindet werden, denn
den klassischen Programmiersprachen wie unter anderem C fehlen sprachliche Fa-
higkeiten, um damit datenzentrische Anwendungen entwickeln zu kénnen. Erst mo-
derne und durchgingig objektorientierte Sprachen wie beispielsweise Java und vor
allem C# enthalten dieses Potenzial, doch anscheinend hat dieser Paradigmenwech-
sel die Literatur noch nicht erreicht.

Auf der Fihrte von C# hingegen ist datenzentrisch aufgebaut, woraus ein un-
typischer Aufbau resultiert. Das zentrale Element datenzentrischer Anwendungen
sind Typen, die in anderen Biichern in der Regel erst im weiteren Verlauf beschrie-
ben werden. In diesem Buch machen sie nicht nur den Anfang, sondern bilden den
grundlegenden Kern, auf dem alle weiteren Kapitel ful3en.

vii

viii Vorwort

Das Ziel des Ganzen ist, dass von Anfang an eine objekt- und datenorientierte
Denkweise aufgebaut wird, da diese beiden Aspekte die entscheidende Basis fiir
moderne und professionelle Anwendungsentwicklung darstellen.

Einen guten Programmierstil zu lehren und die Fahigkeit zu vermitteln, einen im
mathematischen Sinne eleganten und dabei verstidndlichen, kommentierten und do-
kumentierten Code zu entwickeln, ist ein weiteres Ziel dieses Buches — ein Thema,
das von den meisten anderen Autoren hiufig ebenfalls vernachlissigt wird. So soll
vermieden werden, dass sich bei Anfingern schlechte Angewohnheiten einschlei-
chen, die im weiteren Verlauf mithsam wieder korrigiert werden miissen.

Auf diese Weise dauert es eventuell ein wenig ldnger bis zur ersten eigenen An-
wendung, dafiir verfiigt man dann allerdings auch tiber fundiertes, begriindetes Wis-
sen und beherrscht die Thematik.

Zielgruppe

Ein Aspekt ist bei all dem besonders wichtig. Dieses Buch ist ndmlich derart ge-
schrieben, dass es so wohl von Anfidngern wie auch von Fortgeschrittenen verwen-
det werden kann.

Entwickler, die noch keine oder nur sehr wenig Erfahrung in C# oder einer an-
deren Programmiersprache haben, konnen Auf der Fihrte von C# als Lehrbuch nut-
zen, da groBer Wert auf Verstiandlichkeit und ausfiihrliche, detaillierte Erkldrungen
gelegt wird.

Zugleich kann es gerade wegen seines hohen Detailgrades fortgeschrittenen Ent-
wicklern auf Dauer als verldssliche Referenz dienen, so dass man dieses Buch im
Gegensatz zu vielen anderen nicht nach einer Weile ad acta legt, sondern bestindig
Nutzen aus ihm ziehen kann.

Auf Grund dieser Dualitét ist Auf der Fcihrte von C# abstrakter und anspruchs-
voller als andere Texte, was fiir Anfidnger partiell durchaus eine Herausforderung
darstellen kann — dafiir ist das Resultat allerdings auch ertragreicher.

Struktur

Im ersten Teil des Buches folgen nach einer kurzen Einfiihrung in die Themen
.NET, C# und allgemeine Konzepte der Anwendungsentwicklung als eigentlicher
Anfang — wie bereits erwidhnt — die Typen, auf denen anschlieSend die einzelnen
Datenstrukturen aufbauen.

Danach werden Variablen, Operatoren und Anweisungen beschrieben, womit
dann bereits einfache Anwendungen entwickelt werden konnen. Weitergehende
Themen wie Nebenldufigkeit, Fehlerbehandlung und die Speicherverwaltung von
.NET runden den ersten Teil schlielich ab.

Vorwort ix

Dabei werden zusammen mit den Konzepten und der Sprache C# auch zugleich
der Umgang mit den Werkzeugen von .NET, erprobte Praktiken und guter Program-
mierstil vermittelt.

Den zweiten Teil bildet eine alphabetisch geordnete Referenz aller Schliisselwor-
ter von C#. Fiir jeden einzelnen Eintrag stehen neben allgemeinen und detaillierten
Informationen ein représentatives Codebeispiel und Verweise auf weiterfiihrende
Themen zur Verfiigung.

Die verwendeten Fachbegriffe entsprechen nach Moglichkeit den deutschspra-
chigen Ausdriicken. Fiir den Fall der Fille befindet sich im Anhang eine Liste der
gingigen englischsprachigen Entsprechungen.

Kontakt

Ergidnzt wird dieses Buch durch die Webseite guide to C# (http://www.
guidetocsharp.de), auf der sich das komplette Buch als E-Book sowie Aktualisie-
rungen und Errata finden. Zudem kann diese Version auch iiberall und immer dann
genutzt werden, wenn man das Buch nicht mit sich fiihrt.

Bei Fragen, Anregungen, Lob oder Kritik erreichen Sie den Autor iiber seine
Webseite goloroden.de (http://www.goloroden.de).

Danken mochte ich meiner Frau Susanna und meinen Eltern Magda und Wil-
fried fiir ihre befliigelnde und hilfreiche Unterstiitzung und fiir ihre kreativen Ideen.
AuBerdem mdochte ich den Springer-Verlag, Microsoft und myCSharp.de dankend
erwihnen, ohne die es Auf der Fdhrte von C# in dieser Form nicht gébe.

Zu guter letzt — ich widme dieses Buch meiner Frau Susanna, der einen grof3en
Liebe meines Lebens.

Norddorf auf Amrum, im Mérz 2007

Kapiteliibersicht

Inhalt

In Auf der Fihrte von C# lernen Sie die Entwicklung von Anwendungen in C#. Die
einzelnen Kapitel bauen aufeinander auf, sind aber derart gestaltet, dass sie auch als
Referenz genutzt werden konnen. Nutzen Sie diese Kapiteliibersicht, um sich einen
Uberblick iiber den Aufbau von Auf der Féihrte von C# zu verschaffen.

In Kapitel 1 Einfiithrung in .NET werden die Begriffe .NET und C# detailliert er-
lautert. NET wird zu anderen Plattformen zur Softwareentwicklung abgegrenzt, zu-
dem werden die einzelnen Komponenten und Konzepte von .NET erldutert. Schlief3-
lich wird die speziell fiir NET entwickelte Sprache C# vorgestellt.

In Kapitel 2 Anwendungsarchitektur wird der Aufbau moderner Anwendungen
beschrieben, die so wohl objekt- wie auch komponentenorientiert entwickelt wer-
den. Die in diesem Kapitel vorgestellten Begriffe bilden den Rahmen zur Einord-
nung der weiteren Themen.

In Kapitel 3 Objektorientierung werden die grundlegenden Konzepte der objekt-
orientierten Programmierung beschrieben. Aulerdem werden das prozedurale und
das objektorientierte Paradigma gegeniibergestellt und hinsichtlich ihrer Herkunft
und ihrer Leistungsfahigkeit verglichen.

In Kapitel 4 Typen werden Werte- und Verweistypen gegeniibergestellt und ih-
re jeweiligen Besonderheiten beschrieben. Eine Einfiihrung in nullbare Wertetypen
und eine Ubersicht iiber die vordefinierten Typen runden das Kapitel ab.

In Kapitel 5 Namensrdume werden Namensrdume als Konzept vorgestellt, das
zur Organisation von Typen dient. Neben Aliasnamen fiir Namensrdume wird au-
Berdem beschrieben, wie eigene Namensraume definiert werden konnen.

In Kapitel 6 Klassen und Strukturen wird beschrieben, wie Klassen und Struk-
turen erstellt werden. Insbesondere werden in diesem Kapitel Felder, Eigenschaften
und Methoden eingefiihrt. AuBerdem werden Konstanten und readonly-Variablen
vorgestellt.

In Kapitel 7 Vererbung werden die objektorientierten Konzepte Vererbung und
Polymorphie beschrieben. Auferdem werden Versionierung von Methoden mit Hil-

xi

xii Kapiteliibersicht

fe von Vererbung und die Auswirkungen von Vererbung auf Typmitglieder darge-
stellt.

In Kapitel 8 Schnittstellen werden Schnittstellen als grundlegendes Konzept bei
der Anwendungsentwicklung vorgestellt. Auerdem wird aufgezeigt, auf welche
Arten Schnittstellen implementiert werden konnen.

In Kapitel 9 Delegaten werden Delegaten vorgestellt, um eine oder mehrere Me-
thoden zu kapseln. Neben der Bindung an benannte Methoden werden insbesondere
auch anonyme Methoden beschrieben.

In Kapitel 10 Ereignisse wird beschrieben, wie Ereignisse implementiert werden
und welche Aspekte es dabei zu beachten gilt. Besonderes Augenmerk wird dabei
auf den Zusammenhang zwischen Ereignissen und Delegaten gelegt.

In Kapitel 11 Generika wird die Moglichkeit vorgestellt, Typen generisch zu
implementieren oder generische Typen als Typparameter zu verwenden. Auler-
dem wird beschrieben, welche Typbedingungen bei generischen Typen zum Einsatz
kommen koénnen, um die Ausfiihrung typsicher zu machen.

In Kapitel 12 Nullbare Wertetypen werden nullbare Wertetypen als ein Hybrid
aus Werte- und Verweistyp vorgestellt. Mit nullbaren Wertetypen ist es moglich, die
Vorteile des Literals null auch fiir Wertetypen zu nutzen.

In Kapitel 13 Enumerationen werden Enumerationen als einfache Variante eines
wertebasierten Aufzahlungstyps vorgestellt. Neben der Implementierung wird auch
die interne technische Umsetzung beschrieben.

In Kapitel 14 Variablen wird das Deklarieren und Definieren von Variablen be-
schrieben. Neben der Zuweisung an sich werden auch die Besonderheiten der Zu-
weisung an nullbare Wertetypen und an Verweistypen erldutert. Aulerdem wird die
Instanziierung von Objekten erldutert.

In Kapitel 15 Arrays wird das Konzept der Arrays vorgestellt, um Mengen von
gleich typisierten Daten zu speichern. Dabei werden so wohl ein- und mehrdimen-
sionale wie auch verschachtelte Arrays beschrieben. AuBerdem wird aufgezeigt, wie
mit Arrays Indexer fiir Klassen umgesetzt werden konnen.

In Kapitel 16 Operatoren werden die diversen Operatoren vorgestellt — arithme-
tische, relationale, logische, bitweise und Zeichenkettenoperatoren. Auflerdem wird
auf verkiirzende Schreibweisen und Operatoriiberladung eingegangen.

In Kapitel 17 Ausdriicke werden implizites und explizites Konvertieren sowie die
Implementierung eigener Konvertierungsoperatoren vorgestellt, um Typen ineinan-
der umzuwandeln.

In Kapitel 18 Anweisungen werden die verschiedenen Arten von Anweisungen
wie Bedingungen und Schleifen vorgestellt. Auerdem wird die Schnittstelle IEnu-
merator als Basis fiir samtliche Aufzdhlungstypen beschrieben und deren Umset-
zung mit der foreach-Anweisung.

In Kapitel 19 Ling wird die in C# seit der Version 3.0 enthaltene Abfragespra-
che behandelt, mit der Aufzihlungstypen durchsucht, sortiert und gruppiert werden
konnen.

In Kapitel 20 Ausnahmen werden Ausnahmen und die Moglichkeiten zur Aus-
nahmebehandlung vorgestellt. Aulerdem werden Leistung und Ressourcenbedarf
von Ausnahmen beschrieben.

Kapiteliibersicht xiii

In Kapitel 21 Attribute wird beschrieben, wie Attribute entwickelt werden. Au-
Berdem werden Attributparameter und -ziele vorgestellt.

In Kapitel 22 Speicherverwaltung werden Destruktoren und die Speicherberei-
nigung beschrieben. Auflerdem werden Interning von Zeichenketten und Konzepte
zur verspiteten Initialisierung vorgestellt.

Inhaltsverzeichnis

1 Einfihrungin NET 1
1.1 Wasist NET? ... 1
1.2 Plattformunabhéngigkeit 1
1.3 Sprachunabhingigkeit........... i i 3
1.4 Verwalteter Codeooiiti i e 4
1.5 Erwelterungencoiiuuuniiiiiiii i 4
1.6 Wasist CH? ... 5
2 Anwendungsarchitektur 7
2.1 Losungenund Anwendungen..............oouiiiinneinnennn.. 7
2.2 Komponenten und Assemblies. 8
2.3 DatentyPeIl . . .« e vttt e e 8
3 Objektorientierung.uuuuuiiiiiiiiiiia 11
3.1 Prozedurales Paradigma 11
3.2 Objektorientiertes Paradigma............. oL 12
4 TYPEM. . oo 15
4.1 Werte- und VEerweistypeno.uuueieiiunnneeeennnnnnn 15
4.2 Vordefinierte Typencooonin i 16
4.3 Benutzerdefinierte Typenooiiiiiiinniiiinna. 19
S Namensraumeuuuuunuununiiiiiiiiiiaa. 21
5.1 Wassind Namensrdume?, 21
5.2 Vordefinierte Namensraumeoveinneiunnennnennn . 22
5.3 Benutzerdefinierte Namensraumec.oovveuneen... 24
6 Klassen und Strukturen. i 27
6.1 WassindKlassen?......... ... i 27
6.2 Felder 31
6.3 Eigenschaften............ i 33
6.4 Methoden 40

XV

XVi

10

11

12

13

14

15

Inhaltsverzeichnis
6.5 KonstruKtoreniiiii i 56
6.6 StruKturen. 68
Vererbung 69
7.1 Wasist Vererbung? 69
7.2 Felder und Eigenschaften 72
7.3 Methodeno 73
T4 KonStruKtorenttt 80
Schnittstellen 83
8.1 Was sind Schnittstellen? 83
8.2 Benutzerdefinierte Schnittstellen 84
8.3 Schnittstellen implementierencc.ooieeiinnnn... 88
Delegaten 91
9.1 Wassind Delegaten? ...t 91
9.2 Multicast-Delegaten ... 92
9.3 AnonymeMethoden L 96
9.4 Lambdaausdriicke 99
Ereignisse 101
10.1 Was sind Ereignisse?.t iniiiiiiieiia 101
10.2 Auslosen von Ereignissen.oouiiiiiiiiinnn... 104
10.3 Reagieren auf Ereignisseiiiiii ... 108
GeneriKa 109
11.1 Was sind Generika?.......... ..o i 109
11.2 Typparameterovv ettt et e e e 114
11.3 Lambdaausdriicke 116
Nullbare Wertetypen 117
12.1 Was sind nullbare Wertetypen?ccoooiiiiiinnnn... 117
Enumerationen 121
13.1 Was sind Enumerationen? it 121
Variablen 125
14.1 Was sind Variablen? i 125
14.2 Zuweisungen an Variablen oL, 129
ATTAYS . ..ottt 133
15.1 Was sind Arrays?ot e 133

Inhaltsverzeichnis Xvii

16

17

18

19

20

21

22

Operatoren i i e 143
16.1 Was sind Operatoren?ttt eiennnnnn..n 143
16.2 Arithmetische Operatoren coiiiiaa... 143
16.3 Relationale Operatorenuuueeiiunnnneeennnnnnnn 147
16.4 Logische Operatorenouuuuunn ettt 149
16.5 Bitweise Operatorenoueeuuunneteennnneeeennnnnann 150
16.6 Zeichenkettenoperatorenuuuiiiiiennnnn... 151
16.7 Operatorreihenfolge 153
16.8 Uberladen von OPeratorenoouereenenann... 156
Ausdriicke. 163
17.1 KONVErtieren.o vt ettt et 163
17.2 BOXING .ottt et 164
17.3 Benutzerdefiniertes Konvertieren...................ooouunn.. 165
17.4 Konvertierbarkeit................. ... 167
ANWEISUNZENt e 171
18.1 Bedingungenuuuiiiitninn i 171
18.2 Schleifen. ... 182
18.3 SprunganweiSungenuiiiiiiiiin i 186
18.4 foreach i 188
LiNQ . oo 191
19.1 WasistLing? oo 191
19.2 Abfrageoperatoren............ ...t 191
19.3 Lambdaausdriicke 199
Ausnahmen. 201
20.1 Was sind Ausnahmen?ottt 201
20.2 Ausnahmenbehandeln i 202
20.3 Benutzerdefinierte Ausnahmeno L. 209
20.4 Leistung und Ressourcenbedarf................... 210
Attribute 211
21.1 Wassind Attribute? i 211
21.2 Benutzerdefinierte Attribute i 213
21.3 Ziele von Attributen 215
Speicherverwaltung 219
22.1 Speicherverbrauch....... i 219
22.2 Freigabe von Ressourcen i 219
22.3 Verhalten von Zeichenketten, 228
22.4 Verspitete Initialisierungo i 230

Sachverzeichnis 233

Kapitel 1
Einfiihrung in .NET

1.1 Was ist NET?

NET ist eine Plattform von Microsoft zur Entwicklung und Ausfiihrung von An-
wendungen.

Da sich am Ende des vergangenen Jahrtausends zahlreiche Plattformen mit ihren
jeweiligen Konzepten und Standards verbreitet hatten, wurde die Entwicklung von
Anwendungen fiir Windows zunehmend komplexer und damit anspruchsvoller.

Nur die Windows-eigene Basis namens Win32 zu kennen, war bei weitem nicht
mehr ausreichend, man musste sich zusitzlich mit COM, DCOM, Windows DNA,
DirectX, ASP, ISAPI, VBA, WSH und zahlreichen anderen Technologien beschif-
tigen, um zeitgemédle Anwendungen entwickeln zu kdnnen.

Die Idee hinter .NET war, eine einheitliche und konsistent objektorientierte Platt-
form zu schaffen, die alle bestehenden Konzepte vereint. Insofern beerbt .NET ge-
wissermafen die genannten Plattformen, auch wenn diese — allein schon aus Griin-
den der Abwirtskompatibilitdt — zumindest vorerst weiterhin zur Verfiigung stehen
werden.

Um trotz dieser Revolution einen sanften Ubergang zu ermdglichen, ist es mog-
lich, .NET wie COM anzusprechen, und COM im Gegenzug aus .NET heraus zu
nutzen. Daher kann .NET durchaus als eine Revolution mit evolutiondrem Rahmen-
werk bezeichnet werden.

1.2 Plattformunabhingigkeit

Die Grundlage von .NET bildet die Common Language Infrastructure — im folgen-
den als CLI abgekiirzt —, eine Spezifikation, welche die plattform- und sprachunab-
hingige Entwicklung und Ausfiihrung von Anwendungen beschreibt.

Golo Roden, Auf der Fiihrte von C# 1
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

2 1 Einfiihrung in .NET

Die CLI wurde im August 2000 von Microsoft, Intel und Hewlett Packard bei
der ECMA zur Standardisierung eingereicht und ein Jahr spéter, im Dezember 2001,
unter dem Namen ECMA-335 als Standard verabschiedet. Da es sich bei der CLI um
einen frei verfiigbaren Standard handelt, kann potenziell von jedem Interessierten
eine eigene Implementierung entwickelt werden.

.NET ist dabei die bekannteste und am weitesten verbreitete Implementierung
der CLI, wobei es auller .NET an sich noch weitere Varianten gibt, die ebenfalls
von Microsoft stammen: Das .NET Compact Framework zur Nutzung auf mobilen
Geriten, das .NET Micro Framework fiir eingebettete Gerite und schlieBlich Rotor
unter FreeBSD als Studie einer CLI-Implementierung auf einer anderen Plattform
als Windows.

Die erste Version von .NET erschien am 13. Februar 2002 in Verbindung mit
der dazugehorigen integrierten Entwicklungsumgebung — Visual Studio .NET. Be-
reits ein Jahr spiter folgten .NET 1.1 und Visual Studio .NET 2003, wobei diese
Aktualisierungen neben einigen wenigen technischen Anderungen im wesentlichen
Sicherheitsaktualisierungen enthielten.

Zudem war .NET 1.1 die erste Version von .NET, die nicht nur als zusitzliche
Komponente zu Windows ausgeliefert wurde — diese Version ist standardmiBig in
Windows Server 2003 enthalten.

Version 2.0 erschien weitere zweieinhalb Jahre spiter zusammen mit Visual Stu-
dio 2005 am 7. November 2005. Neben zahlreichen technischen Anderungen und
Verbesserungen ist bemerkenswert, dass der Begriff .NET nicht mehr im Produkt-
namen von Visual Studio enthalten ist.

Am 6. November 2006 schlieBlich wurde .NET 3.0 veroffentlicht, das im Ge-
gensatz zu Version 2.0 keine eigenstindige Version im klassischen Sinne darstellt,
sondern im Kern nach wie vor auf .NET 2.0 basiert und dieses lediglich um vier
Komponenten erweitert: Die Windows Presentation Foundation, die Windows Com-
munication Foundation, die Windows Workflow Foundation und Windows Card
Space.

Wie bereits .NET 1.1 wird auch .NET 3.0 nicht nur als zusétzliche Komponente
zu Windows ausgeliefert, sondern ist bereits in Windows Vista integriert.

Am 27. Februar 2008 wurde .NET 3.5 zusammen mit Visual Studio 2008 verof-
fentlicht. Wie bereits .NET 3.0 setzt auch .NET 3.5 auf der Version 2.0 von .NET
auf und erweitert dieses um weitere Komponenten. Besonders hervorzuheben sind
dabei die neue Version 3.0 von C# und eine in C# enthaltene integrierte Abfrage-
sprache namens Ling.

Neben diesen Implementierungen der CLI durch Microsoft gibt es einige weitere
Implementierungen, von denen vor allem Mono von Novell nennenswert ist. Mono
war urspriinglich von Miguel de Icaza und dessen Firma Ximian entwickelt worden,
die allerdings am 4. August 2003 von Novell iibernommen wurde.

Am 30. Juni 2004 schlieBlich wurde Mono in Version 1.0 verdffentlicht und stellt
seitdem eine interessante Alternative zu .NET dar, da es zum einen nicht nur Win-
dows, sondern auch zahlreiche andere Betriebssysteme wie unter anderem Linux
und Mac OS X unterstiitzt, und zum anderen als Opensource verfiigbar ist.

1.3 Sprachunabhingigkeit 3

1.3 Sprachunabhéngigkeit

Die CLI beschreibt jedoch nicht nur die plattform-, sondern auch die sprachunab-
hiangige Entwicklung und Ausfiihrung von Anwendungen. Sprachunabhéngig be-
deutet dabei, dass es keine Rolle spielt, in welcher Programmiersprache eine An-
wendung geschrieben wurde.

Fiir die Entwicklung unter Win32 gab es essenzielle Unterschiede zwischen den
verschiedenen Programmiersprachen. Konnte beispielsweise COM aus Visual C++
uneingeschriankt genutzt werden, war dies in Visual Basic nur eingeschrinkt mog-
lich. AuBerdem unterschieden sich die verschiedenen Sprachen in ihren jeweiligen
Konventionen, so dass die erzeugten Anwendungen auch diesbeziiglich nicht immer
vollstindig kompatibel zueinander waren.

Zudem war es nicht moglich, in verschiedenen Sprachen geschriebene Kompo-
nenten beliebig miteinander zu kombinieren. Das Resultat dieser Inkompatibilitdten
war, dass Komponenten hédufig in mehreren programmiersprachenspezifischen Va-
rianten zur Verfiigung standen.

In .NET ist die Kombination von Komponenten und Anwendungen hingegen un-
eingeschriankt moglich, was im wesentlichen der Verdienst der beiden wichtigsten
Komponenten von .NET ist: Der Common Language Runtime — im folgenden als
CLR abgekiirzt — und der Framework Class Library — im folgenden als FCL abge-
kiirzt.

Die CLR dient zur Ausfiihrung von Anwendungen, wobei diese Anwendungen
in Sprachen entwickelt worden sein miissen, die .NET als Zielplattform adressieren.
All diesen Sprachen ist gemein, dass sie einen Unterstandard der CLI implementie-
ren, ndmlich das Common Language Subset — im folgenden als CLS abgekiirzt.
Das CLS beschreibt Eigenschaften, die zur CLR, und damit zu .NET, kompatible
Sprachen aufweisen miissen.

AuBerdem werden die erzeugten Anwendungen nicht — wie in klassischen Pro-
grammiersprachen — in Maschinensprache umgewandelt, die direkt vom Prozessor
ausgefiihrt werden kann. Statt dessen wird eine fiir .NET spezifische Zwischenspra-
che eingesetzt, die sogenannte Microsoft Intermediate Language — im folgenden als
MSIL abgekiirzt.

Erst zur Ausfiihrungszeit werden die MSIL-Anweisungen in Maschinensprache
umgesetzt, die dann auf die jeweils ausfiihrende Hardwareplattform optimiert wer-
den kann. Dies geschieht durch einen Compiler, der ,just in time* arbeitet, also
erst auf Anforderung und nur das jeweils Notwendige iibersetzt, und daher auch als
JIT-Compiler bezeichnet wird.

Da die Ubersetzung wihrend der Ausfiihrung stattfindet, dauert der erste Aufruf
einer NET-Anwendung naturgemil ein wenig linger als bei Anwendungen, die in
klassischen Programmiersprachen geschrieben wurden. Die Optimierung des JIT-
Compilers gleicht dies aber aus, so dass JIT-iibersetzte Anwendungen in der Regel
schneller ausgefiihrt werden konnen.

Die FCL — Framework Class Library — schlieBlich stellt eine Klassenbibliothek
zur Verfiigung, die einige tausend Klassen fiir hiufig auftretende Aufgaben enthilt
und aus allen .NET-spezifischen Sprachen heraus genutzt werden kann. Da die FCL

4 1 Einfiihrung in .NET

von der CLR bereitgestellt wird, bleiben Anwendungen fiir .NET trotz einem po-
tenziell hohen Funktionsumfang verhiltnismiBig kompakt, da diese die FCL nicht
enthalten miissen.

1.4 Verwalteter Code

AuBer der Anpassung an die ausfilhrende Hardwareplattform hat die Verwendung
einer Zwischensprache noch einen weiteren Grund. Die CLR kann ndmlich die aus-
zufiihrenden MSIL-Anweisungen vor der Ubersetzung in Maschinensprache analy-
sieren und potenziell eingreifen. Da der Code zur Ausfiihrungszeit kontrolliert wird,
bezeichnet man ihn als verwalteten Code.

Auf diese Weise kann die CLR unter anderem sicherstellen, dass Anwendungen
nur auf Speicher zugreifen, auf den sie an dieser Stelle zugreifen diirfen. Zudem
kann tiberpriift werden, auf welche Ressourcen eine Anwendung versucht zuzugrei-
fen, wobei dies bei fehlender Berechtigung verhindert werden kann.

So kann Anwendungen, die aus nicht vertrauenswiirdigen Quellen wie dem Inter-
net stammen, zwar die prinzipielle Ausfiihrung erlaubt, der Zugriff beispielsweise
auf das Dateisystem aber verweigert werden. Diese Einschriankung des Zugriffs auf
Ressourcen zur Laufzeit wird als Code Access Security — im folgenden als CAS
abgekiirzt — bezeichnet.

SchlieBlich fiihrt die CLR von Zeit zu Zeit eine Speicherbereinigung durch, ent-
fernt Code und Daten, die nicht mehr benétigt werden, und gibt damit wieder Spei-
cher zur weiteren Verwendung frei. Diese Speicherbereinigung wird als Garbage
Collection bezeichnet und im folgenden als GC abgekiirzt.

Zusammengefasst gilt bei .NET also, dass Sicherheit hoher priorisiert wird als
eine moglichst schnelle Ausfiihrung von Anwendungen um jeden Preis.

1.5 Erweiterungen

Zu diesem Grundgeriist von .NET, das aus der Common Language Runtime und der
Framework Class Library besteht, gibt es einige Erweiterungen, die erwidhnenswert
sind. Diese gliedern sich im wesentlichen in vier Kategorien: Windowsanwendun-
gen, Webanwendungen, Kommunikation und Datenverwaltung.

Fiir Windowsanwendungen sind zunédchst GDI+ und Windows Forms zu nennen.
Wihrend GDI+ den objektorientierten und verwalteten Nachfolger der Grafikbiblio-
thek GDI darstellt, lassen sich mit Windows Forms grafische Oberflichen mit den
gingigen Steuerelementen erstellen.

Im Rahmen von .NET 3.0 wurde die Windows Presentation Foundation — im
folgenden als WPF abgekiirzt — eingefiihrt, die statt eines pixelorientierten Ansatzes
einen vektororientierten Ansatz verfolgt und zudem tiiber die auf XML basierende
Sprache XAML genutzt werden kann.

1.6 Was ist C#? 5

Webanwendungen und Web Services werden in .NET mit Hilfe von ASPNET
umgesetzt, das den objektorientierten und verwalteten Nachfolger von klassischem
ASP darstellt. Mit dem in Windows Vista enthaltenen Webserver IIS 7.0 erfahrt
ASP.NET zudem eine direkte Integration in den Webserver.

Zur Kommunikation mit anderen Anwendungen gibt es in .NET zahlreiche Mog-
lichkeiten — von Remoting iiber Web Services bis hin zur Microsoft Message Queue.
Mit .NET 3.0 wurde als weitere Komponente die Windows Communication Foun-
dation — im folgenden als WCF abgekiirzt — eingefiihrt, die alle bisherigen Konzepte
kapselt und mit einer einzigen einheitlichen Schnittstelle versieht.

Zugriff auf Datenbanken und sonstige Ressourcen geschieht in .NET mit Hilfe
von ADO.NET, das wiederum den Nachfolger von DAO und ADO darstellt. Mit der
Version 3.0 der Sprache C# wurden zudem Funktionen zur Datenabfrage unter dem
Namen Linq direkt in die Programmiersprache integriert.

SchlieBlich gibt es noch zwei Komponenten, die sich nicht in die genannten vier
Kategorien eingliedern lassen, sondern eigenstindig fiir sich stehen. Zum einen
ist dies die Windows Workflow Foundation — im folgenden als WF abgekiirzt —,
mit der sich Workflows in .NET gestalten lassen, zum anderen Windows Card
Space — im folgenden als WCS abgekiirzt —, das zur Verwaltung digitaler Identi-
titen dient.

1.6 Was ist C#?

C#, das als ,,Biescharp [si:'fazp]“ ausgesprochen wird, ist eine Programmierspra-
che fiir .NET, die von Microsoft in Zusammenarbeit mit dem Erfinder von Delphi,
Anders Heijlsberg, speziell fiir diese Plattform entwickelt wurde und daher auch
als Lingua Franca fiir .NET bezeichnet wird. Wie die CLI wurde auch C# von der
ECMA standardisiert, wobei die Sprache den Namen ECMA-334 trigt.

Der Name von C# lehnt sich in seiner Schreibweise an den in der Musik um
einen Halbton erhohten Notenwert C namens Cis an, der ebenfalls als C# geschrie-
ben wird, und bezeichnet daher eine hohere Variante der Programmiersprache C.
AuBlerdem kann C# so wohl als symbolische Anspielung an die Sprache C++ wie
auch als Wortspiel ,,see sharp gesehen werden.

Ein Ziel bei der Entwicklung von C# war nicht nur, eine sich perfektin .NET ein-
fiigende Sprache zu schaffen, sondern diese Sprache modern, durchgédngig objekt-
wie auch komponentenorientiert, und vor allem verstdndlich zu gestalten.

Unter Win32 waren Visual C++ und Visual Basic die géingigen Sprachen zur
Entwicklung von Anwendungen fiir Windows, allerdings weisen beide gravierende
Nachteile auf. Mit Visual C++ lassen sich zwar alle Moglichkeiten von Windows
ausreizen, und es kann uneingeschrinkt auf COM zugegriffen werden, insbesondere
fiir Anfinger ist es allerdings auf Grund einiger ausgefallener Eigenheiten deutlich
zu komplex.

Im Gegenzug dazu ermdglicht Visual Basic einen sehr einfachen Einstieg, bie-
tet aber bei weitem nicht die Moglichkeiten von Visual C++, ist zudem bezogen

6 1 Einfiihrung in .NET

auf COM nur eine Sprache zweiter Klasse und zeichnet sich vor allem durch die
niedrige Ausfiihrungsgeschwindigkeit der erzeugten Anwendungen aus.

SchlieBlich sind Visual C++ und Visual Basic auch untereinander nicht ohne
weiteres kompatibel, es gibt weder ein gemeinsames Typsystem noch ein einheitli-
ches System zur Fehlerbehandlung, so dass Komponenten, die in der einen Sprache
entwickelt wurden, nicht notwendigerweise in der anderen weiter genutzt werden
konnen.

Dank dem Common Language Subset verfiigen alle Sprachen unter .NET poten-
ziell iiber die gleichen Fihigkeiten, das heif3it, es gibt unter .NET keine Sprachen
erster und zweiter Klasse, wie dies unter Win32 der Fall war. Die verschiedenen
Sprachen fiir .NET unterscheiden sich daher zum einen syntaktisch — so hat C# mit
Visual Basic .NET nicht viel gemein —, zum anderen legen sie ihre Schwerpunk-
te auf unterschiedliche Aspekte der Entwicklung und sprechen daher verschiedene
Zielgruppen an.

Im Vergleich zu Visual Basic .NET ist C# die abstraktere, kompaktere und ma-
thematisch elegantere Sprache, ldsst einigen syntaktischen Zucker auflen vor, und
ermoglicht daher eher, sich auf die wesentlichen Aspekte der zu entwickelnden An-
wendung — die Datenstrukturen und die Algorithmen — zu konzentrieren.

Kapitel 2
Anwendungsarchitektur

2.1 Losungen und Anwendungen

Warum werden Anwendungen entwickelt? Die Beantwortung dieser Frage setzt vor-
aus, dass eine Definition des Begriffs Anwendung vorliegt, auf die man sich bezie-
hen kann.

In erster Linie werden Anwendungen entwickelt, um Aufgaben einer spezifi-
schen Doméne zu erledigen und die damit einhergehenden Probleme zu 16sen. Da-
her wire es eigentlich angebracht, an Stelle von Anwendungsentwicklung von der
Entwicklung von Losungen zu sprechen. Dennoch wird im alltéiglichen Sprachge-
brauch der Begriff der Anwendung hdufig synonym mit dem der Losung verwendet.

Dabei darf allerdings nicht vergessen werden, dass eine moderne Anwendung —
im Sinne einer Losung — sehr wohl aus mehr als nur einer Anwendung — im Sinne
einer ausfiihrbaren Anwendung — bestehen kann.

Einerseits kann nidmlich bereits die eigentliche Funktionalitit auf mehrere An-
wendungen verteilt werden, wie es beispielsweise in Umgebungen mit einer Server-
und mehreren Client-Anwendungen der Fall ist. Andererseits wird gerade fiir
Webanwendungen hiufig eine zusitzliche Windowsanwendung zur Wartung ent-
wickelt.

AuBlerdem nutzen die meisten modernen Anwendungen eine Reihe unterstiitzen-
der Anwendungen, wie eine Datenbank, einen Webserver und sonstige Services, die
zwar nicht direkt integriert sind, aber dennoch — wie die eigentliche Anwendung —
ihren jeweiligen Teil zur iibergeordneten Losung beitragen.

Insofern sind Anwendungen genau genommen autonome Bestandteile einer Lo-
sung und kommunizieren miteinander iiber definierte Schnittstellen und Kanile.
Dennoch werden im folgenden die Begriffe Anwendung und Losung synonym ver-
wendet, da die in diesem Buch entwickelten Losungen zumeist nur aus einer einzel-
nen Anwendung bestehen.

Golo Roden, Auf der Fiihrte von C# 7
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

8 2 Anwendungsarchitektur

2.2 Komponenten und Assemblies

Die hierarchische Struktur einer Losung mit mehreren untergeordneten Anwendun-
gen besteht vergleichbar auch innerhalb einer einzelnen Anwendung. Waren diese
frither hdufig monolithisch — also aus einem Guss — aufgebaut, werden heutzutage
in der Regel eine Reihe von eigenstindigen Komponenten entwickelt, die anschlie-
end miteinander integriert und zu einer Anwendung verschmolzen werden.

Komponenten zeichnen sich vor allem durch zwei Aspekte aus: Zum einen sind
sie autarke, in sich abgeschlossene Einheiten, die nicht von anderen Einheiten ab-
hingen. Auf Grund dessen kann die Entwicklung einer komponentenorientierten
Anwendung problemlos innerhalb eines Teams aufgeteilt werden. Zum anderen ver-
fiigt jede Komponente iiber eine definierte Schnittstelle, iiber die sie von auflen an-
geprochen werden kann. Um eine Komponente in eine Anwendung einzubinden,
muss nur ihre Schnittstelle, nicht aber ihr innerer Aufbau bekannt sein, so dass eine
Komponente als Blackbox fungiert.

AuBerdem sind verschiedene Komponenten untereinander austauschbar, sofern
sie die gleiche Schnittstelle bereitstellen. Dies erleichtert nicht nur die Wartbarkeit
von Anwendungen, da im Nachhinein problemlos einzelne Komponenten an Stelle
der ganzen Anwendung ausgetauscht werden konnen. Zudem wird auch die Testbar-
keit verbessert, da bei einer Anderung in einer Komponente nur diese erneut getestet
werden muss, nicht aber die vollstindige Anwendung.

Auf Grund dieser Eigenschaften spielen Komponenten eine essenzielle Rolle in
der modernen, teambasierten Anwendungsentwicklung.

Eine Komponente besteht — wie bereits Losungen und Anwendungen — wiederum
aus kleineren Bestandteilen, den Assemblies. Eine Assembly ist dabei ein Konzept,
das von Microsoft in .NET neu eingefiihrt wurde. Diese wird physisch von einer Da-
tei mit der Endung .dll oder .exe reprisentiert, wobei eine Assembly aufler der Da-
teiendung nicht viel mit einer klassischen Datei mit der selben Endung gemein hat.

Eine Assembly enthilt in erster Linie ausfiihrbare Anweisungen in MSIL. Zu-
dem kann sie aber noch Ressourcen enthalten, die zur ihrer Ausfiihrung benotigt
werden, wie beispielsweise Bilder oder Klidnge. Erzeugt wird eine Assembly aus
einer oder mehreren Dateien, die Anweisungen in C# enthalten, und zusétzlich aus
den einzubindenden Ressourcendateien.

Auflerdem verfiigt eine Assembly iiber Metadaten, die ihren Inhalt niher be-
schreiben. So werden nicht nur Angaben zu den enthaltenen Anweisungen und Res-
sourcen gemacht, sondern auch Informationen iiber die Assembly an sich wie bei-
spielsweise ihr Hersteller und ihre Versionsnummer bereitgestellt.

2.3 Datentypen

Die Anweisungen in einer Assembly, die urspriinglich in C# geschrieben wurden,
sind ihrerseits allerdings noch einmal in sogenannten Typen organisiert, und zwar
gemeinsam mit den Datenstrukturen, die sie zu ihrer Ausfiihrung benétigen. Das

2.3 Datentypen 9

Entwerfen und Organisieren dieser Typen ist die wesentliche Arbeit, die bei der
Entwicklung einer Anwendung in C# geleistet wird.

Zusammenfassend heillt das auf der einen Seite, dass alles, was sich oberhalb
einer Assembly befindet, zwar zu der Ausfiihrung einer Anwendung benétigt wird,
aber letztlich auch nur die Ausfiihrung sowie die Verteilung der Anwendung betrifft.
Insbesondere wird all dies nicht in C# umgesetzt, da dort nur noch ausfiihrbare
Dateien gehandhabt werden, und man, wenn iiberhaupt, nur mit MSIL — nicht aber
mit C# — in Beriihrung kommt.

Auf der anderen Seite wird im Gegenzug alles, was sich unterhalb einer Assem-
bly befindet, in C# umgesetzt. Das heifit, Anwendungen zu entwickeln bedeutet im
wesentlichen, Datenstrukturen zu modellieren, sie zu organisieren und darauf basie-
rend die Verfahren aufzubauen, die mit diesen Datenstrukturen arbeiten.

Kapitel 3
Objektorientierung

3.1 Prozedurales Paradigma

In den vergangenen Kapiteln wurde C# als objektorientierte Sprache bezeichnet,
wobei dieser Begriff bislang noch nicht nédher erldutert wurde.

Um das Konzept der Objektorientierung zu verstehen, muss man wissen, wie
Programmiersprachen frither aufgebaut waren. Im vorherigen Kapitel wurde die
Entwicklung von Anwendungen im wesentlichen als Modellierung und Organisa-
tion von Datenstrukturen und als Aufbau der entsprechenden datenverarbeitenden
Verfahren bezeichnet.

Weil Daten ein dermaBen grundlegendes Element fiir die Entwicklung von An-
wendungen darstellen, kann de facto keine Anwendung ohne Daten bestehen. Da-
mit diese aber tiberhaupt verarbeitet werden konnen, miissen sie der Anwendung
zunichst als Eingabe vorliegen. Zudem wird eine Ausgabemdglichkeit benstigt, um
die verarbeiteten Daten an den Benutzer zuriickzugeben.

Diese Aspekte jeder Anwendung — das urspriingliche Einlesen der zu verarbei-
tenden Daten, die eigentliche Verarbeitung und schlieBlich die Ausgabe von Er-
gebnissen — werden in der Informatik als EVA-Prinzip bezeichnet, wobei EVA als
Akronym fiir Eingabe, Verarbeitung und Ausgabe steht.

Allerdings darf dabei nicht vergessen werden, dass verschiedene Arten von Da-
ten bestehen, die dementsprechend auch unterschiedlich modelliert und gehandhabt
werden miissen. Zudem muss dieser Diversitét in Programmiersprachen Rechnung
getragen werden, weshalb es dort sogenannte Typen gibt, die jeweils eine spezielle
Art von Daten représentieren.

In klassischen Programmiersprachen gibt es nur einfache Typen, um elementa-
re Daten aufzunehmen, wie beispielsweise Typen zur Speicherung einer Ganzzahl,
einer Dezimalzahl oder eines Buchstaben. Die Verwendung nur dieser einfachen
Typen reicht bereits aus, um alle moglichen Daten abzubilden, allerdings ist dafiir
teilweise eine aufwindige Umwandlung komplexer Daten in einfache Typen not-
wendig.

Golo Roden, Auf der Fiihrte von C# 11
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

12 3 Objektorientierung

Neben der potenziell aufwindigen Umwandlung birgt dieses Verfahren noch
einen weiteren essenziellen Nachteil: Ein komplexer Typ wird nicht als komple-
xer Typ verarbeitet, sondern als Menge von einfachen Typen. Dass diese einfachen
Typen gemeinsam einen komplexen Typ darstellen, kann nicht explizit abgebildet
werden, statt dessen ist dieses Wissen nur noch implizit vorhanden.

Ein komplexer Typ, wie beispielsweise eine Person, der auf die einfachen Typen
Nachname, Vorname und Alter abgebildet wird, ist demzufolge in der Anwendung
nicht mehr als komplexer Typ vorhanden, sondern er besteht nur noch in den eigen-
standigen einfachen Typen fiir Nachname, Vorname und Alter. Die Entscheidung,
diese einfachen Typen wieder zu einem komplexen Typ zusammenzufiigen, obliegt
dem Entwickler.

AuBerdem werden einzelne Typen in klassischen Programmiersprachen nicht
voneinander abgeschirmt, das heilt, jeder Teil der Anwendung kann auf sdmtli-
che Daten unbeschrinkt zugreifen. Dass dies nicht nur die gezielte, sondern auch
die unbeabsichtigte Verdnderung von Daten ermoglicht und damit potenziell eine
Quelle fiir zahlreiche, aber nicht offensichtliche Fehler darstellt, liegt auf der Hand.

Aus all diesen Griinden liegt der Schwerpunkt bei der Entwicklung von Anwen-
dungen in den klassischen Programmiersprachen auf dem Code, der die Typen und
damit die Daten verarbeitet, und nicht auf den Typen selbst. Da dabei hdufig be-
notigte Codezeilen in Funktionen — sogenannten Prozeduren — zusammengefasst
werden, wird diese Art der Entwicklung als prozedurales Paradigma bezeichnet.

3.2 Objektorientiertes Paradigma

Fiir die Entwicklung komplexer Anwendungen ist das prozedurale Paradigma aller-
dings nicht tragfihig und stoBt schnell an seine Grenzen. Die wesentlichen Proble-
me dabei sind neben den ungeniigenden Typen und den fehlerhaften und ungiiltigen
Zugriffen zumeist das redundante Zurverfiigungstellen von Daten an verschiedenen
Stellen der Anwendung sowie héufig eine nicht iiberschaubare Komplexitit.

Betrachtet man die reale Welt, dann fillt auf, dass man in der Regel mit kom-
plexen Typen in Beriihrung kommt, deren Komplexitit deutlich {iber der einer Zahl
oder eines Buchstaben liegt. Die in den klassischen Programmiersprachen giingigen
einfachen Typen treten hingegen nur selten eigenstindig auf.

Die Objekte der realen Welt haben wie komplexe Typen gewisse Eigenschaften,
verfiigen zudem aber noch iiber Aktionen, die sie ausfiihren konnen. So verfiigt eine
Person als Objekt neben den bereits erwédhnten Daten wie Nachname, Vorname und
Alter auch iiber Aktionen, wie beispielsweise laufen, lesen und schlafen. Auf diese
Art, ndmlich die Zweiteilung in Eigenschaften und Aktionen, kann fast jedes Objekt
hinreichend beschrieben werden.

Der entscheidende Punkt bei dieser Darstellung ist, dass jedes Objekt fiir sich
tiber die Information verfiigt, welche Aktionen es in einem gegebenen Kontext aus-
fiihren kann — es handelt autonom. AuBlerdem sind die Eigenschaften eines Objek-

3.2 Objektorientiertes Paradigma 13

tes von auBen nicht einsehbar, denn um Daten zu erhalten, muss eine entsprechende
Anfrage gestellt werden, die einer Aktion entspricht.

Dieses Prinzip, die internen Daten zu verbergen und nach auflen nur iiber kon-
trollierte Aktionen zur Verfiigung zu stellen, wird als Information Hiding bezeichnet
und ist eine weitere wesentliche Voraussetzung fiir die Autonomie von Objekten.
Diese Autonomie wiederum ist die Basis fiir die Entwicklung komponentenorien-
tierter Anwendungen.

Der komplexe Typ, der einem Objekt zu Grunde liegt, wird dabei als Klasse
bezeichnet. Im Gegensatz zum Objekt, das eine konkrete Ausprigung darstellt, re-
présentiert die Klasse lediglich den Bauplan fiir dieses Objekt. Daher kann es zwar
zahlreiche Objekte geben, die auf der selben Klasse basieren, allerdings hat jedes
Objekt nur genau eine Klasse, die den Aufbau des Objektes beschreibt.

Die Klasse Person definiert also, welche Eigenschaften und Aktionen eine kon-
krete Person auszeichnen — sie stellt aber keine konkrete Person dar, ebenso we-
nig wie ein Bauplan eines Hauses ein konkretes Haus darstellt. Erst ein Objekt der
Klasse Person reprisentiert eine konkrete Person. Da ein Objekt also eine konkrete
Auspragung darstellt, wird es auch als Instanz einer Klasse und seine Erzeugung als
Instanziierung bezeichnet.

Im Unterschied zum prozeduralen Paradigma ist der Code, der die Objekte ver-
arbeitet, in den Objekten selbst enthalten, weshalb auf Klassen und Objekten basie-
rende Anwendungen deutlich weniger codezentrisch aufgebaut sind als klassische
Anwendungen. Statt dessen wird sehr viel mehr Augenmerk auf die Modellierung
und Organisation der notwendigen Klassen und der Verbindungen zwischen ihnen
gelegt.

Auf Grund der Fokussierung auf Objekte wird diese Art, Anwendungen zu
entwickeln, als objektorientiertes Paradigma oder auch als objektorientierte Pro-
grammierung bezeichnet. Dieses Paradigma ist die Basis jeglicher modernen An-
wendungsentwicklung und wird von fast allen modernen Programmiersprachen
unterstiitzt oder — bei konsequent objektorientierten Sprachen wie C# — sogar
gefordert.

Kapitel 4
Typen

4.1 Werte- und Verweistypen

Damit eine Anwendung Daten verarbeiten kann, muss Speicher fiir diese Daten re-
serviert werden. Wie viel Speicher dafiir bendtigt wird, ist jedoch abhéingig von den
Typen der Daten, da nicht jeder Typ gleich viel Speicher belegt. Zudem wird in C#
noch zwischen zwei Arten von Typen unterschieden, nimlich Werte- und Verweis-
typen.

Wertetypen sind — wie ihr Name schon sagt — Typen, die Werte direkt speichern.
Das heif3t, wird von der Anwendung auf einen Wertetyp zugegriffen, dann werden
die Daten direkt aus der entsprechenden Stelle im Speicher gelesen.

Im Gegensatz dazu speichern Verweistypen nur die Adresse der Speicherstelle,
an der die eigentlichen Daten abgelegt sind. Greift die Anwendung also auf einen
Verweistyp zu, wird zunéchst aus der entsprechenden Stelle im Speicher gelesen,
wo sich die eigentlichen Daten befinden, woraufhin diese in einem zweiten Schritt
dann von dort gelesen werden konnen.

Diese zunichst aufwindig erscheinende Trennung in Werte- und Verweistypen
liegt in der GroBe der Daten begriindet, die gespeichert werden sollen. Daten, deren
Umfang im Voraus bekannt ist, werden in der Regel als Wertetyp abgelegt. Da Wer-
tetypen — vereinfacht gesagt — in einer Tabelle im Speicher verwaltet werden, findet
der Zugriff auf diese sehr schnell statt.

Bei Daten, deren Umfang allerdings nicht von vornherein feststeht, oder deren
Umfang sich im Lauf der Zeit indern kann, wiirde diese Tabelle immer wieder frag-
mentiert und miisste von Zeit zu Zeit umsortiert werden. Um das zu vermeiden,
werden die eigentlichen Daten getrennt von dieser Tabelle an einer freien Adresse
im Speicher abgelegt, wihrend in der Tabelle nur ein Verweis auf diese Adresse
abgelegt wird.

Da ein Verweis auf eine Speicherstelle unabhiingig von deren Adresse immer
gleich viel Speicher benétigt, kann die Tabelle problemlos genutzt werden, um diese
Verweise aufzunehmen. Dieses Verfahren 16st aulerdem das Problem, wie umfang-
reiche Daten innerhalb einer Anwendung weitergereicht werden. Statt samtliche Da-

Golo Roden, Auf der Fiihrte von C# 15
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

16 4 Typen

ten zu kopieren, wird lediglich der Verweis weitergegeben, was zum einen deutlich
weniger Speicher verbraucht und zum anderen wesentlich schneller ausgefiihrt wird.

Allerdings ergibt sich aus der Eigenschaft, in erster Linie nur mit einem Verweis
an Stelle der eigentlichen Daten zu arbeiten, ein wesentlicher Unterschied zwischen
Werte- und Verweistypen, der beim Umgang mit diesen beachtet werden muss. Wird
ein Wertetyp kopiert, um ihn an anderer Stelle in der Anwendung zu verwenden,
wird tatsdchlich auf einer Kopie gearbeitet. Verdnderungen an dieser beeinflussen
die urspriinglichen Daten nicht.

Wird statt dessen aber ein Verweistyp kopiert, so wird nur der Verweis kopiert —
die eigentlichen Daten liegen nach wie vor nur ein einziges Mal im Speicher. Wer-
den nun die Daten der vermeintlichen Kopie veridndert, indern sich dadurch auch die
urspriinglichen Daten, denn beide Verweise zeigen auf die selbe Adresse im Spei-
cher. Um versehentliche Anderungen an Daten zu vermeiden, ist es wichtig, diesen
Unterschied zu verinnerlichen.

Aus dieser Unterscheidung in Werte- und Verweistypen ergibt sich die Frage,
welchen Wert ein Typ enthélt, wenn er zwar bereits im Speicher angelegt wurde,
ihm aber noch keine Daten zugewiesen wurden. Die Antwort auf diese Frage héngt
davon ab, ob es sich um einen Werte- oder einen Verweistyp handelt.

Wihrend Wertetypen ein Standardwert zugewiesen wird, werden Verweistypen
als null gekennzeichnet. Das bedeutet, dass sie derzeit nicht auf eine Speicheradres-
se verweisen. Dabei ist zu beachten, dass null ein eigener Wert ist und nicht der
Zahl Null entspricht. Aulerdem muss im spiteren Verlauf beim Zugriff auf einen
Verweistyp stets iiberpriift werden, ob iiberhaupt Daten vorliegen oder ob der Ver-
weistyp null ist.

SchlieBlich gibt es noch einen Hybriden zwischen Werte- und Verweistypen,
niamlich die nullbaren Wertetypen. Ihr Ursprung liegt in der Notwendigkeit, einen
Wertetyp kennzeichnen zu konnen, dessen Wert unbekannt oder undefiniert ist.

Hiufig wird dafiir der Standardwert verwendet, allerdings besteht gelegentlich
Bedarf, zwischen diesem und einem tatsidchlich unbekannten oder undefinierten
Wert zu unterscheiden, wofiir bei nullbaren Wertetypen dann null verwendet werden
kann. Intern werden nullbare Wertetypen allerdings als Verweistypen umgesetzt, da
nur diese die Nutzung von null ermoglichen.

4.2 Vordefinierte Typen

Damit bei der Entwicklung von Anwendungen nicht jeder Typ vom Benutzer entwi-
ckelt werden muss, enthilt C# eine Reihe vordefinierter Typen fiir einfache Daten,
die automatisch in jeder Anwendung zur Verfiigung stehen.

Fiir Ganzzahlen bietet C# acht verschiedene Typen, die sich in erster Linie durch
ihren Wertebereich unterscheiden. Der Wertebereich berechnet sich dabei aus der
Anzahl der verfiigbaren Bits, wobei nochmals zwischen vorzeichenbehafteten und
vorzeichenfreien Typen unterschieden wird. Als Standardwert verwenden diese Ty-
pen die Zahl Null.

4.2 Vordefinierte Typen 17

Theoretisch sollte fiir eine Aufgabe zwar der am besten passende Typ verwendet
werden, in der Praxis werden allerdings fast ausschlieBlich int und long eingesetzt,
da 32- und 64-Bit-Prozessoren mit diesen Typen besser umgehen kénnen. Auf3er-
dem wirkt sich auf Grund der Art, wie .NET Speicher fiir Typen reserviert, auch der
geringere Speicherbedarf der kleineren Typen — wenn iiberhaupt — nur unwesent-
lich aus.

Typ Minimum Maximum GroBle Vorzeichen
sbyte —128 127 8Bit Ja

short —32.768 32.767 16 Bit Ja

int —2.147.483.648 2.147.483.647 32Bit Ja

long —9.223.372.036.854.775.808 9.223.372.036.854.775.807 64 Bit Ja

byte 0 255 8 Bit Nein
ushort 0 65.535 16 Bit Nein

uint 0 4.294.967.295 32 Bit Nein
ulong 0 18.446.744.073.709.551.615 64 Bit Nein

Fiir Dezimalzahlen bietet C# drei verschiedene Typen, die sich nicht nur durch
ihren Wertebereich, sondern auch durch die Anzahl der verfiigbaren Nachkomma-
stellen unterscheiden. Die Typen float und double entsprechen dabei dem IEEE 754-
Standard, der seit 1985 einen weltweit einheitlichen Standard zur Verarbeitung von
Dezimalzahlen definiert.

Der Typ decimal hingegen verfiigt zwar iiber einen kleineren Wertebereich als
float und double, dafiir aber iiber eine deutlich hohere Genauigkeit, was diesen Typ
insbesondere fiir Finanzberechnungen interessant macht.

Als Besonderheit bieten die Typen float und double die Moglichkeit, die Wer-
te +0 und —0, +o0, —eo und NaN zu speichern. Die Werte +0 und —0 sind vor
allem beim Runden interessant. Neben +co und —eo zur Darstellung positiver und
negativer Unendlichkeit konnen float und double auch den Wert NaN — Not a Num-
ber — speichern, um ein mathematisch nicht definiertes Ergebnis abzubilden. Fiir
decimal stehen diese besonderen Werte nicht zur Verfiigung.

Als Standardwert verwenden diese Typen ebenso wie die ganzzahligen Typen die
Zahl Null.

Typ Minimum Maximum Grofle Nachkommastellen
float +1,5%x 1074 +3.4 % 1038 32 Bit 7

double 45,0 x 1073 +1,7 x 10308 64 Bit 15 bis 16

decimal +1,0x 10728 +7,9 x 10?8 128 Bit 28 bis 29

AufBer diesen Typen fiir Ganz- und Dezimalzahlen bietet C# noch den Typ char
zur Aufnahme eines einzelnen Zeichens, wobei Unicode voll unterstiitzt wird. Ein
einzelnes Zeichen wird in C# dabei durch einfache Anfiihrungszeichen eingeschlos-
sen. Als Standardwert wird das Zeichen mit dem Unicode-Wert Null verwendet.

18 4 Typen

Typ Grofe

Char 16 Bit

SchlieBlich unterstiitzt C# noch den Typ bool, der zur Darstellung der logischen
Werte true und false dient. Die Werte true und false werden — ebenso wie null — als
Literale bezeichnet. Der Standardwert fiir diesen Typ ist false.

Obwohl ein Bit in der Theorie geniligen wiirde, um bool abzubilden, wird in der
Praxis ein Byte verwendet, da dies die kleinste Einheit ist, die im Speicher belegt
werden kann.

Typ Grofe

bool 8 Bit

Alle bislang vorgestellten Typen sind Wertetypen, deren Speicherbedarf im Vor-
aus bekannt ist. Aufer diesen Typen enthilt C# noch zwei Verweistypen, ndmlich
string und object.

Der Typ string dient zur Aufnahme von Text, der aus beliebig vielen Zeichen
bestehen kann. Wie char ist auch dieser Typ uneingeschrinkt Unicode-fahig. Ein
Text wird in C# durch doppelte Anfiihrungszeichen eingeschlossen.

Der Speicherbedarf liegt aus Leistungs- und Verwaltungsgriinden bei mindestens
20 Byte, wichst aber linear mit der Ldnge des zu speichernden Textes. Der Verweis
an sich belegt — je nach Speicherarchitektur — 32 oder 64 Bit.

Typ Grofe

string Mindestens 20 Byte

Um in den Typen char und string Sonderzeichen wie beispielsweise einen Zei-
lenumbruch speichern zu kénnen, konnen Zeichen nicht nur in ihrer kanonischen
Form angegeben, sondern auch als Unicode-Zeichen oder Escape-Sequenzen mas-
kiert werden. Ein Unicode-Zeichen wird durch einen umgekehrten Schrégstrich ein-
geleitet, dem ein kleines u und die vierstellige Nummer des Zeichens folgen.

’\u0013°

Die Escape-Sequenzen beginnen ebenfalls mit einem umgekehrten Schrigstrich,
bestehen weiterhin aber nur aus einem einzelnen Zeichen, das die entsprechende
Escape-Sequenz identifiziert.

Um die Interpretation der Escape-Sequenzen durch C# zu unterdriicken, kann
einem Text auBlerhalb der doppelten Anfiihrungszeichen ein @ vorangestellt wer-
den. Insbesondere bei der Verwendung von Pfadangaben, die zahlreiche umgekehrte

4.3 Benutzerdefinierte Typen 19

Sequenz Bedeutung

’ Einfaches Anfiihrungszeichen
Doppeltes Anfiihrungszeichen
Umgekehrter Schrigstrich
Zeichen mit dem Unicode-Wert 0O
Alarmton

Riickschritt

Seitenvorschub

Neue Zeile

Wagenriicklauf

Horizontaler Tabulator
Vertikaler Tabulator

< ¢ R B HUOT P O~

Schrigstriche enthalten, kann dies niitzlich sein — diese miissten ansonsten jeweils
als Escape-Sequenz angegeben werden.

Der Typ object schlieBlich spielt eine Sonderrolle, da alle anderen Typen von
ihm abstammen. Daher kann er fiir jeden anderen Typ eingesetzt werden, das heifit,
object kann einen Verweis auf beliebige Daten speichern. Dennoch findet der Zu-
griff typsicher statt, so dass nach wie vor der urspriingliche Typ der Daten bekannt
ist. Das heif3t, dass beispielsweise auf einen Text nicht wie auf eine Zahl zugegriffen
werden kann, auch wenn der Text als object abgelegt ist.

Zudem kann jeder Typ in object umgewandelt und von object wieder in den ur-
spriinglichen Typ zuriickgewandelt werden, was als Boxing beziehungsweise Un-
boxing bezeichnet wird.

Neben den 32 oder 64 Bit, die fiir den Verweis auf die Daten anfallen, und dem
Speicherplatz fiir die Daten an sich, benétigt dieser Typ weitere 64 Bit fiir interne
Verwaltungsinformationen.

Typ Grofle

object 64 Bit

4.3 Benutzerdefinierte Typen

AuBer diesen vordefinierten Typen konnen Typen in C# auch vom Benutzer defi-
niert werden. Zu diesem Zweck gibt es einige Konzepte, auf denen benutzerdefi-
nierte Typen aufgebaut werden, wobei dafiir wiederum verschiedene Werte- und
Verweistypen zur Auswahl stehen.

An Wertetypen bietet C# Strukturen und Enumerationen, an Verweistypen neben
den im vergangenen Kapitel erwihnten Klassen auch Schnittstellen, Arrays, De-
legaten und die im Ansatz beschriebenen nullbaren Wertetypen an. Die Definition
eigener Typen auf Basis dieser Konzepte wird in den nichsten Kapiteln im Detail
beschrieben.

Kapitel 5
Namensraume

5.1 Was sind Namensriaume?

Die Typen, die wihrend der Entwicklung einer Anwendung entstehen, werden
jeweils mit einem beschreibenden Namen versehen, welche Art von Daten die-
ser Typ verarbeiten soll. Allerdings kann es durch den Einsatz von Komponen-
ten vorkommen, dass zwei verschiedene Typen unabhingig voneinander den glei-
chen Namen tragen, wobei der Name innerhalb der jeweiligen Komponente eindeu-
tig ist.

Um diese Typen dennoch unterscheiden zu kdnnen, werden sie iiblicherweise in
sogenannten Namensrdumen organisiert. Ein Namensraum stellt dabei einen Con-
tainer dar, der die in ihm enthaltenen Typen von den Typen anderer Namensriaume
abschottet. Wird ein Typ in keinen Namensraum eingeordnet, befindet er sich auto-
matisch im globalen Namensraum, der mit global:: bezeichnet wird.

Innerhalb eines Namensraumes reicht der Name eines Typs zu seiner Identifika-
tion aus. Typen, die sich in anderen Namensriumen befinden, miissen jedoch zu-
sdtzlich mit ihrem zugehdrigen Namensraum angesprochen werden. Namensrdume
konnen zudem hierarchisch angeordnet werden, um verschiedene Ebenen zu de-
finieren. Der Name eines Typs einschlielich seines kompletten Namensraumbe-
zeichners wird als vollqualifizierter Name bezeichnet.

Die Verschachtelung von Namensrdumen wird in C# mit Hilfe des Punkt-Opera-
tors durchgefiihrt, wobei der Punkt dann die einzelnen hierarchischen Ebenen von-
einander trennt.

Die FCL enthiilt bereits zahlreiche Namensraume, von denen der wichtigste Sys-
tem heiflt. In ihm befinden sich alle elementaren Typen, die zur Entwicklung von
Anwendungen benétigt werden. Unterhalb von System gibt es spezialisierte Na-
mensriume wie beispielsweise System.Data oder System.Xml zum Zugriff auf Da-
tenbanken und XML-Dokumente.

Generell gilt die Regel, dass der oberste Namensraum einer Komponente dem
Namen der Firma entsprechen sollte, welche die Komponente entwickelt. Darunter
wird iiblicherweise ein Namensraum angeordnet, dessen Name dem der Komponen-

Golo Roden, Auf der Fiihrte von C# 21
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

22 5 Namensrdume

te oder der Anwendung entspricht. Weitere Namensrdume, mit denen die verwen-
deten Typen detaillierter organisiert werden kdnnen, finden sich schlieBlich auf der
untersten Ebene.

Beispiele fiir Namensrdume, die diesem Schema folgen, sind beispielsweise
Microsoft.IE, Microsoft.SqlServer.Server oder Microsoft. WindowsMobile.DirectX.
Direct3D. Wichtig bei der Benennung von Namensrdaumen ist, dass sprechende Na-
men verwendet werden, aus denen hervorgeht, welche Arten von Daten die enthal-
tenen Typen abdecken. Auflerdem muss das erste Zeichen eines Namens ein Buch-
stabe oder ein Unterstrich sein, Ziffern oder sonstige Zeichen sind nicht erlaubt.

Bei der Namensvergabe muss zudem beachtet werden, dass die Grof3- und Klein-
schreibung in C# generell relevant ist. Daher bezeichnen die Namen System und sys-
tem verschiedene Namensrdaume. Fiir die Schreibweise zusammengesetzter Worter
wird in C# je nach Kontext entweder Pascal Case oder Camel Case verwendet. In
Pascal Case wird der Anfangsbuchstabe jedes Wortes grof3 geschrieben, in Camel
Case bildet das erste Wort hierzu eine Ausnahme, da dessen Anfangsbuchstabe klein
geschrieben wird.

Bei Namensrdumen wird immer Pascal Case als Schreibweise verwendet, wes-
wegen es beispielsweise System.SqlServer und nicht system.sqlServer heif3t.

AuBerdem gelten in .NET fiir simtliche Namen die Richtlinien, dass Abkiirzun-
gen nicht und Akronyme nur dann verwendet werden, wenn sie allgemein gebrauch-
lich sind. Akronyme, die aus hochstens zwei Zeichen bestehen, werden vollstindig
grof} geschrieben, ab einer Linge von drei Zeichen gilt wieder, dass je nach Kontext
Pascal Case oder Camel Case verwendet wird.

Auf Grund dieser Richtlinien heifit es System.IO an Stelle von System.Io und
System.Xml an Stelle von System.XML.

SchlieBlich ist noch zu beachten, dass Bezeichner nicht identisch mit Schliissel-
wortern der Sprache C# sein diirfen — als Schliisselworter werden dabei alle Worter
bezeichnet, die in C# bereits als Anweisung oder als sonstiger Ausdruck enthalten
sind. Sofern der Name eines Bezeichners zwingend einem Schliisselwort entspre-
chen muss, wird dem Bezeichner ein @ vorangestellt, wodurch der Bezeichner und
das Schliisselwort dann unterschieden werden konnen. Diese Moglichkeit sollte al-
lerdings nur in Ausnahmefillen in Betracht gezogen und in der Regel vermieden
werden.

5.2 Vordefinierte Namensriume

Verwendet man Typen aus einem anderen Namensraum in einer eigenen Kompo-
nente, so muss jedes Mal der vollqualifizierte Name des Typs angegeben werden.
Da die Lesbarkeit des Codes bei tief verschachtelten Namensrdumen dadurch be-
eintrachtigt werden kann, ist es moglich, Namensrdume einzubinden, so dass deren
Typen so verwendet werden konnen, als befidnden sie sich im aktuellen Namens-
raum.

5.2 Vordefinierte Namensrdume 23

Dazu dient in C# die using-Direktive, die in der Regel zu Beginn einer Datei
angegeben wird, wobei sich ein Namensraum durchaus iiber mehr als eine Datei
erstrecken kann. Da einige Namensrdume wie unter anderem System von fast jeder
Komponente benétigt werden, fiigen die meisten Entwicklungsumgebungen in eine
neue Datei automatisch die entsprechenden Zeilen ein.

C#

1 using System;
2 using System.Collections .Generic;
3 using System.Text;

Die Semikola am jeweiligen Zeilenende kennzeichnen in C# das Ende einer An-
weisung. Da jede Anweisung durch ein Semikolon abgeschlossen werden muss,
kann sie auch auf mehrere Zeilen verteilt werden, was bei langen Zeilen eventuell
die Lesbarkeit verbessern kann. Zudem werden zusitzliche Leerstellen und Leer-
zeilen ignoriert.

Die Namensridume alphabetisch zu sortieren und zwischen Namensraumen, de-
ren oberste Ebene sich unterscheidet, eine Leerzeile einzufiigen, erleichtert das Auf-
finden eines bestimmten eingebundenen Namensraumes und wird im allgemeinen
als guter Stil angesehen.

C#
1 using Microsoft.IE;
2 using Microsoft.SqlServer .Server;
3
4 using System;
5 using System.Collections .Generic;
6 using System.Text;

Statt einen Namensraum einzubinden, kann alternativ ein Alias definiert werden,
so dass der Namensraum zumindest iiber einen kiirzeren Namen angesprochen wer-
den kann.

C#

1 using D3D =
2 Microsoft .WindowsMobile.DirectX.Direct3D;

Alle Typen, die im Namensraum Microsoft. WindowsMobile.DirectX.Direct3D
enthalten sind, konnen nun vollqualifiziert iiber den Alias D3D angesprochen wer-
den. Ebenso kann ein Alias fiir einen Typen definiert werden, indem statt eines Na-
mensraumes der Name eines Typs angegeben wird. Generell kann die Verwendung
von Aliasen manchmal niitzlich sein, allerdings wird dieses Konstrukt in der Praxis
eher selten genutzt.

24 5 Namensrdume

5.3 Benutzerdefinierte Namensriume

Aufler der Einbindung von bestehenden Namensrdumen konnen auch eigene Na-
mensrdume definiert werden, um eigene Typen zusammenzufassen und zu organi-
sieren. Dazu dient in C# die namespace-Anweisung. Als Parameter erfordert sie
den Namen eines Namensraumes, zudem folgt ihr ein Namensraumrumpf, der von
geschweiften Klammern eingeschlossen wird.

Anweisungen, denen ein durch geschweifte Klammern eingeschlossener Block
folgt, werden in C# nicht durch ein Semikolon abgeschlossen und stellen daher eine
Ausnahme von der Regel dar.

C#

using System;

{

1
2
3 namespace GoloRoden
4
5 }

Um verschachtelte Namensraume zu erstellen, kann eine weitere namespace-
Anweisung in den Rumpf eingebettet werden. Die im Rumpf eingebetteten Zei-
len einzuriicken, erhoht die Lesbarkeit, da Blockanfang und -ende sofort ersichtlich
sind, zudem gilt dies ebenfalls als guter Stil.

C#

using System;

1
2
3 namespace GoloRoden

4 {

5 namespace GuideToCSharp
6 {

7 }

8

Statt dessen kann auch direkt in der duleren Anweisung der vollqualifizierte Na-
me des inneren Namensraumes angegeben werden.

C#

using System;

{

1
2
3 namespace GoloRoden.GuideToCSharp
4
5 }

Dieser Code kann nun mit Hilfe des C#-Compilers in MSIL iibersetzt werden.
Dabei besteht prinzipiell die Moglichkeit, eine Komponente zur Verwendung in ei-
ner Anwendung mit der Dateiendung .dll oder eine eigenstindige Anwendung mit
der Dateiendung .exe zu erzeugen.

5.3 Benutzerdefinierte Namensrdaume 25

Fiir eine eigenstindig lauffdhige Anwendung miissen allerdings einige Bedin-
gungen erfiillt werden, denen der vorliegende Code nicht gerecht wird, weshalb
derzeit nur die Moglichkeit besteht, eine Komponente zu erzeugen.

In .NET erfolgt das Kompilieren mit Hilfe des Compilers csc.exe, in Mono trigt
der Compiler den Namen mcs.exe.

Um in .NET eine Komponente zu erzeugen, muss der Compiler mit dem /target-
Parameter und dem Wert library aufgerufen werden, wobei /target optional als /t
abgekiirzt werden kann. Zudem muss als weiterer Parameter die zu kompilierende
Datei angegeben werden.

csc /target:library Component.cs

Die Parameter des Compilers von Mono sind kompatibel, so dass der Aufruf fast
identisch mit dem des Compilers von .NET ist.

mcs /target:library Component.cs

Das Ergebnis ist in beiden Fillen eine Assembly mit der Dateiendung .dlIl, die als
Komponente in einer Anwendung eingesetzt werden kann. Sofern ein anderer Name
fiir die Assembly vergeben werden soll, kann dazu so wohl in .NET wie auch in
Mono der Parameter /out verwendet werden.

csc /target:library /out:File.dll Component.cs
beziehungsweise

mcs /target:library /out:File.dll Component.cs

Kapitel 6
Klassen und Strukturen

6.1 Was sind Klassen?

Da C# eine objektorientierte Sprache ist, wird am hédufigsten das Konzept der Klasse
zur Erstellung eigener Typen verwendet. Klassen sind, wie bereits erwihnt, Baupla-
ne fiir Objekte, mit denen Daten modelliert werden konnen.

Eine Klasse wird in C# mit dem Schliisselwort class erzeugt, dem der Name der
Klasse folgt. Klassen besitzen ebenso wie Namensraume einen durch geschweifte
Klammern eingeschlossenen Rumpf, weshalb ihre Definition nicht durch ein Semi-
kolon abgeschlossen wird.

Wie bei Namensrdaumen, so gibt es auch bei Klassen Richtlinien, wie deren Na-
men gebildet werden. Ein Klassenname besteht aus einem oder mehreren Substan-
tiven, die den Zweck der Klasse beschreiben, wobei in der Regel der Singular ver-
wendet wird. Fiir die Schreibweise gilt Pascal Case.

C#

using System;

1
2
3 namespace GoloRoden.GuideToCSharp
4 {

5 class ComplexNumber

6 {

7 }

8 }

Dieser Code erzeugt eine Klasse zur Darstellung komplexer Zahlen. Komplexe
Zahlen zeichnen sich in der Mathematik dadurch aus, dass mit ihnen die Wurzel
von -1 berechnet werden kann, was unter Verwendung lediglich reeller Zahlen nicht
moglich ist. Die Wurzel aus -1 wird dabei mit der imagindren Einheit i bezeichnet,
wobei

Golo Roden, Auf der Fiihrte von C# 27
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

28 6 Klassen und Strukturen
gilt. Komplexe Zahlen werden in der Regel in der Form
a+b x i

dargestellt, wobei a als der Real- und b als der Imaginirteil bezeichnet werden.
Bevor die Klasse ausgebaut wird, um komplexe Zahlen darstellen und verarbeiten
zu konnen, sollte sie zundchst kommentiert werden.

Prinzipiell gibt es in C# drei Arten von Kommentaren. Die einfachste Variante
stellen einzeilige Kommentare dar, die durch einen doppelten Schrigstrich eingelei-
tet werden, und an einer beliebigen Stelle einer Zeile beginnen kdnnen, wobei fiir
einen Kommentar in der Regel eine neue Zeile verwendet wird, um die Ubersicht-
lichkeit zu bewahren.

Einzeilige Kommentare werden im wesentlichen fiir interne Kommentare des
Entwicklers verwendet und kennzeichnen hiufig Zeilen im Code, an denen die Ar-
beit noch nicht abgeschlossen ist.

AuBerdem werden einzeilige Kommentare oft verwendet, um die Arbeitsweise
von Code zu erldutern, so dass dies auch nach Wochen oder Monaten noch nach-
vollzogen werden kann, ohne dass eine mithsame Analyse und Einarbeitung erfor-
derlich wire.

Generell ist es beim Einfiigen von Kommentaren ratsam, diese mit einem Datum
zu versehen. Vor allem in Teams wird dies zudem hiufig durch ein Namenskiirzel
erginzt, was Nachfragen erleichtert. Daher wird es im allgemeinen als guter Stil
angesehen, wenn Code derart kommentiert wird.

In welcher Sprache kommentiert wird, ist prinzipiell beliebig, allerdings wird oft
auf Englisch zuriickgegriffen, unter anderem, um in mehrsprachigen Teams iiber
eine einheitliche Kommunikationssprache zu verfiigen.

C#

using System;

1
2
3 namespace GoloRoden.GuideToCSharp
4 {

5 class ComplexNumber
6 {

7 // TODO gr: Add code here.
8 // 2007-04-08

)

10 }

Bei umfangreicheren Kommentaren kann es ldstig sein, jede Zeile einzeln durch
einen doppelten Schrégstrich einleiten zu miissen. Daher gibt es die zweite Variante
von Kommentaren, sogenannte Blockkommentare, die durch einen Schrigstrich ge-
folgt von einem Stern eingeleitet werden und erst dann enden, wenn sie durch einen
Stern gefolgt von einem Schrigstrich wieder geschlossen werden.

Wie viele Zeilen sich innerhalb eines solchen Blockkommentars befinden, ist
dabei beliebig. Das Anwendungsgebiet von Blockkommentaren ist dabei aber das
gleiche wie das von einzeiligen Kommentaren. Generell gilt fiir Kommentare, dass

6.1 Was sind Klassen? 29

sie keine Anweisungen darstellen und daher nicht mit einem Semikolon abgeschlos-
sen werden miissen.

C#

using System;

1
2
3 namespace GoloRoden.GuideToCSharp
4 {

5 class ComplexNumber
6 {

7 /* TODO gr: Add code here.
8 2007 -04-08 */
9

10 }

Beiden Typen von Kommentaren ist gemein, dass sie nur fiir den internen Ge-
brauch gedacht sind. Gerade bei Komponenten, die auch von anderen Entwicklern
genutzt werden, ist jedoch eine Trennung in private und offentliche Kommentare
sinnvoll. Die privaten Kommentare werden dabei weiterhin dafiir genutzt, den Co-
de mit internen Anmerkungen zu versehen, die offentlichen Kommentare dienen
hingegen als Dokumentation.

Zur Erstellung dieser Dokumentation dient die dritte Variante, die durch drei
Schrigstriche eingeleitet wird und durch XML formatiert werden kann, weshalb
diese Kommentare gelegentlich auch als XML-Kommentare bezeichnet werden. In
diesen Kommentaren werden im Gegensatz zu den anderen Typen weder Datum
noch Namenskiirzel angegeben.

AuBerdem konnen XML-Kommentare nicht an beliebiger Stelle im Code auf-
treten, sondern miissen direkt vor dem zu kommentierenden Element stehen. Die
Beschreibung einer Klasse wird durch die XML-Elemente <summary> und </sum-
mary> eingeschlossen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 class ComplexNumber
9 {
10 // TODO gr: Add code here.
11 // 2007-04-08
12 }
13 }

Fiir jede Klasse muss entschieden werden, ob sie nur innerhalb der Assembly
genutzt werden konnen soll, welche die Klasse enthilt, oder ob jede Komponente

30 6 Klassen und Strukturen

der Anwendung Zugriff erhalten soll. Die Antwort auf die Frage, ob es sinnvoll ist,
die Sichtbarkeit einzuschrinken, hingt vom Zweck der Klasse ab.

Handelt es sich um eine unterstiitzende Klasse, die nur innerhalb der Assemb-
ly bendtigt wird, empfiehlt es sich, die Sichtbarkeit einzuschridnken. Ist die Klasse
jedoch eine tragende Datenstruktur, die der gesamten Anwendung zur Verfiigung
stehen soll, wird sie uneingeschrinkt zur Verfiigung gestellt.

Um die Sichtbarkeit einer Klasse auf die sie enthaltende Assembly zu beschrin-
ken, wird ihre Definition mit dem Zugriffsmodifizierer internal versehen. Der 6f-
fentliche Zugriff wird erreicht, indem statt dessen der Zugriffsmodifizierer public
angegeben wird. Wird auf die Angabe eines solchen Zugriffsmodifizierers verzich-
tet, ist eine Klasse implizit internal.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 // TODO gr: Add code here.
11 // 2007-04-08
12 ¥
13 %

Aus Griinden der Ubersichtlichkeit wird generell fiir jede Klasse eine eigene
Datei verwendet, deren Name dem der enthaltenen Klasse entspricht. Prinzipiell
ist es zwar moglich, innerhalb einer Datei mehrere Klassen zu definieren, dies ist
jedoch uniiblich und gilt als schlechter Stil.

Zwei Ausnahmen von dieser Regel kommen in C# vor: Partielle Klassen und
verschachtelte Klassen. Partielle Klassen, die seit Version 2.0 von C# verfiigbar
sind, ermoglichen es durch Angabe des zusitzlichen Schliisselwortes partial bei der
Definition der Klasse, eine Klasse auf mehrere Dateien zu verteilen.

Dies wird beispielsweise von Visual Studio genutzt, um vom Benutzer geschrie-
benen Code und von Visual Studio generierten Code, der sich auf die gleiche Klasse
bezieht, voneinander zu trennen, so dass der Benutzer nicht versehentlich generier-
ten Code tiberschreibt oder veridndert, und umgekehrt. Aufler in Fillen, in denen
generierter und benutzergeschriebener Code gemischt werden, sollte vom Einsatz
partieller Klassen abgesehen werden.

Verschachtelte Klassen hingegen ermoglichen, innerhalb einer Klasse eine wei-
tere Klasse zu definieren, genau so, wie auch innerhalb eines Namensraumes ein
weiterer Namensraum angelegt werden kann. Im Gegensatz zu Namensrdumen ist
dies bei Klassen in der Praxis jedoch uniiblich, zudem gibt es so gut wie keine
Anwendungsfille, in denen ein solches Verfahren notwendig wire, weshalb darauf
nicht niher eingegangen wird.

6.2 Felder 31

6.2 Felder

Damit ein Objekt Daten speichern kann, miissen in der zugehdrigen Klasse Felder
fiir die einzelnen Daten definiert werden. Felder sollten nur fiir solche Daten de-
finiert werden, die nicht funktional abhédngig von anderen Daten sind — das heif3t,
lassen sich Daten aus anderen vorhandenen Daten ermitteln, werden sie nicht abge-
speichert.

Um eine komplexe Zahl mit der Klasse ComplexNumber abbilden zu konnen,
werden zwei Felder benotigt, namlich eines fiir den Real- und eines fiir den Imagi-
nirteil. Die Frage, von welchem Typ diese Felder sind, ist einfach zu beantworten:
Da so wohl Real- wie auch Imaginérteil nach Definition reelle Zahlen sind, werden
beide mit Hilfe eines Typs fiir Dezimalzahlen dargestellt.

Die Bennenung von Feldern erfolgt dhnlich wie die von Klassen, da auch hier der
Name aus einem oder mehreren Substantiven gebildet wird und als Gesamtbegriff
im Singular steht. Allerdings wird fiir Felder Camel Case eingesetzt, zudem wird
den Namen hiufig ein Unterstrich vorangestellt.

Da die Definition eines Feldes in C# eine Anweisung darstellt, wird sie mit ei-
nem Semikolon abgeschlossen. Zudem werden auch Felder mit Hilfe von XML-
Kommentaren dokumentiert, wobei auch hier wieder das <summary>-Tag zum Ein-
satz kommt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 float _realPart;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 float _imaginaryPart;
19
20 // TODO gr: Add code here.
21 // 2007 -04-08
22 ¥
23 }

Ebenso wie fiir Klassen, so muss auch fiir Felder die Sichtbarkeit entschieden
werden. AuBler internal und public, welche die gleiche Bedeutung wie bei Klassen

32 6 Klassen und Strukturen

haben, steht fiir Felder zusitzlich noch das Schliisselwort private zur Verfiigung.
Wird ein Feld als private gekennzeichnet, kann nur aus der Klasse auf das Feld
zugegriffen werden, die das Feld enthiilt.

Im Sinne eines durchgéingig objektorientierten Aufbaus einer Anwendung ist es
allerdings erforderlich, quasi jedes Feld als private zu markieren, um den direkten
Zugriff von aufien zu verhindern.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 private float _realPart;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 private float _imaginaryPart;
19
20 // TODO gr: Add code here.
21 // 2007-04-08
22 ¥
23 }

Felder konnen mit Standardwerten versehen werden, indem ihnen bei der Defi-
nition der gewiinschte Wert zugewiesen wird, wobei dies in der Praxis eher selten
angewandt wird, weswegen im folgenden in der Regel darauf verzichtet wird.

Genau genommen wird bei Feldern zwischen Deklaration und Definition unter-
schieden — wihrend das Feld bei der Deklaration nur der Klasse hinzugefiigt wird,
wird ihm bei der Definition zusétzlich noch ein Wert zugewiesen. In der Regel wird
diese Unterscheidung allerdings nur selten genutzt und generell von Definition ge-
sprochen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber

6.3 Eigenschaften 33

9 {

10 /// <summary >

11 /// Contains the real part.

12 /// </summary >

13 private float _realPart = 0;

14

15 /// <summary >

16 /// Contains the imaginary part.
17 /// </summary >

18 private float _imaginaryPart = O0;
19

20 // TODO gr: Add code here.

21 // 2007 -04-08

22 }

23 }

Die einzige Ausnahme zu dieser Regel besteht in der Definition eines Feldes
mit konstantem Wert, wobei dessen Typ das Schliisselwort const vorangestellt wird.
Der Wert eines solchen konstanten Feldes kann im weiteren Verlauf der Anwen-
dung dann nicht mehr gedndert werden. Konstanten werden beispielsweise genutzt,
um mathematisch feststehende Werte wie die Zahl Pi oder die Eulersche Zahl zu
definieren.

C#

1 private const double _pi = 3.1415926;

6.3 Eigenschaften

Da der Zugriff auf Felder, die als private gekennzeichnet wurden, nur noch inner-
halb der Klasse moglich ist, stellt sich die Frage, wie Daten eines Objektes iiber-
haupt gelesen oder geschrieben werden konnen, ohne die Sichtbarkeit des entspre-
chenden Feldes wieder auf internal oder public indern zu miissen.

Die Losung stellen Eigenschaften dar, die zwar nach auflen sichtbar sind, aber auf
die Felder einer Klasse zugreifen konnen. Der Unterschied zwischen dem Zugriff
auf ein Feld mit Hilfe einer Eigenschaft und dem direkten Zugriff liegt darin, dass
die Eigenschaft zusétzliche Priifungen ausfiihren kann.

Eine Eigenschaft trigt iiblicherweise den gleichen Namen wie das Feld, fiir das
die Eigenschaft zustindig ist. Der einzige Unterschied liegt darin, dass Pascal Case
an Stelle von Camel Case verwendet wird und der einleitende Unterstrich entfillt.
Zudem ist eine Eigenschaft in der Regel internal oder public, da sie ansonsten von
auflen nicht sichtbar wére — dennoch konnen Eigenschaften theoretisch auch als
private gekennzeichnet werden.

Da eine Eigenschaft den Zugriff auf ein Feld gestattet, muss sie {iber den gleichen
Typ verfiigen. Der Zugriff an sich erfolgt iiber zwei Schliisselworter, get und set, die
fiir das Auslesen und Schreiben der entsprechenden Daten zustindig sind.

34 6 Klassen und Strukturen

Die einfachste Variante einer Eigenschaft besteht darin, mit get lediglich ein Feld
zuriickzugeben, ohne weitere Priifungen auszufiihren. Dies geschieht mit Hilfe der
Anweisung return, der das zuriickzugebende Feld folgt. Ebenso wird mit sef nur
der zu setzende Wert in das entsprechende Feld geschrieben. Der zu setzende Wert
befindet sich dabei in einem Parameter namens value und kann mit Hilfe des Zu-
weisungsoperators geschrieben werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 private float _realPart;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 private float _imaginaryPart;
19
20 public float RealPart
21 {
22 get
23 {
24 return _realPart;
25 }
26
27 set
28 {
29 _realPart = value;
30 }
31 }
32
33 public float ImginaryPart
34 {
35 get
36 {
37 return _imaginaryPart;
38 }
39
40 set
41 {
42 _imaginaryPart = value;
43 }

44 }

6.3 Eigenschaften 35

45

46 // TODO gr: Add code here.
47 // 2007 -04-08

48 ¥

49 }

Zudem ist es mit Eigenschaften moglich, ein Feld nur fiir den Lese- oder nur
fiir den Schreibzugriff freizugeben, indem nur entweder get oder set definiert wird.
AuBerdem kann seit C# 2.0 entweder get oder set ein stirker einschrinkender Zu-
griffsmodifizierer zugewiesen werden, um beispielsweise den schreibenden Zugriff
auf die Klassenebene zu beschrinken, den lesenden Zugriff aber auf Anwendungs-
ebene zu gestatten.

Dazu wird entweder get oder set ein entsprechender Zugriffsmodifizierer wie
internal oder private vorangestellt. Hierbei muss allerdings beachtet werden, dass
dies nur erlaubt ist, wenn eine Eigenschaft so wohl iliber get wie auch set verfiigt,
und selbst dann darf ein weiterer Zugriffsmodifizierer nur bei einem der beiden
Schliisselworter angegeben werden. Das andere behilt den Zugriffsmodifizierer, der
fiir die Eigenschaft an sich definiert ist.

Zudem muss der Zugriffsmodifizierer, der get oder set vorangestellt wird, re-
striktiver sein als der Zugriffsmodifizierer der gesamten Eigenschaft. Wenn also
beispielsweise der schreibende Zugriff auf den Realteil einer komplexen Zahl auf
die Klasse beschrinkt werden soll, muss dem set ein private vorangestellt werden.

C#
1 public float RealPart
2 {
3 get
4 {
5 return _realPart;
6 }
7
8 private set
9 {
10 _realPart = value;
11 ¥
12 }

Auch Eigenschaften werden mit Hilfe von XML-Kommentaren dokumentiert,
wobei ein Kommentar mit einem <summary>-Tag zum Einsatz kommt. Zusitzlich
enthilt der Kommentar fiir eine Eigenschaft aber noch eine Beschreibung der Daten,
die von der Eigenschaft ausgelesen beziehungsweise gesetzt werden. Dies geschieht
mit Hilfe des <value>-Tags.

C#

using System;

1
2
3 namespace GoloRoden.GuideToCSharp
4 {

36

© 00w N o ;o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57

/// <summary >

/// Represents a complex number.
/// </summary >

public class ComplexNumber

{

/// <summary >

/// Contains the real part.
/// </summary >

private float _realPart;

/// <summary >

/// Contains the imaginary part.
/// </summary >

private float _imaginaryPart;

/// <summary >
/// Gets or sets the real part.
/// </summary >
/// <value>The real part.</value>
public float RealPart
{

get

{

return _realPart;

_realPart = value;

/// <summary >

/// Gets or sets the imaginary part.

/// </summary >

6 Klassen und Strukturen

/// <value>The imaginary part.</value>

public float ImginaryPart
{

get

{

return _imaginaryPart;

_imaginaryPart = value;

// TODO gr: Add code here.
// 2007-04-08

6.3 Eigenschaften 37

Als funktional abhingige Eigenschaft bietet sich der Betrag einer komplexen
Zahl an, der aus dem Real- und dem Imaginérteil ermittelt werden kann, indem
beide quadriert und addiert werden und aus dem Ergebnis die Wurzel gezogen wird.

lz| = sqrt(a® + b?)

Da mathematische Operatoren noch nicht behandelt wurden, wird die entsprechen-
de Eigenschaft an dieser Stelle nur als Platzhalter eingefiigt, wobei als Ergebnis
vorerst immer 0 zuriickgegeben wird. Zusitzlich wird die Eigenschaft mit einem
Kommentar versehen, der darauf hinweist, dass die Arbeit an diesem Codeabschnitt
noch nicht abgeschlossen ist. Da lediglich das Auslesen des Betrages Sinn ergibt,
wird fiir diese Eigenschaft nur ger definiert, so dass ein schreibender Zugriff nicht
moglich ist.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 private float _realPart;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 private float _imaginaryPart;
19
20 /// <summary >
21 /// Gets or sets the real part.
22 /// </summary >
23 /// <value>The real part.</value>
24 public float RealPart
25 {
26 get
27 {
28 return _realPart;
29 }
30
31 set
32 {
B8E _realPart = value;
34 }
35 ¥

36

38 6 Klassen und Strukturen

37 /// <summary >

38 /// Gets or sets the imaginary part.
39 /// </summary >

40 /// <value>The imaginary part.</value>
41 public float ImginaryPart

42 {

43 get

44 {

45 return _imaginaryPart;

46 }

47

48 set

49 {

50 _imaginaryPart = value;

51 ¥

52 +

53

54 /// <summary >

55 /// Gets the absolute value.

56 /// </summary >

57 /// <value>The absolute value.</value>
58 public float AbsoluteValue

59 {

60 get

61 {

62 // TODO gr: Calculate absolute value.
63 // 2007 -04-08

64 return O;

65 }

66 }

67

68 // TODO gr: Add code here.

69 // 2007 -04-08

70 }

71}

Obwohl es moglich ist, innerhalb von gef und set weitere Anweisungen unter-
zubringen, enthalten die meisten Eigenschaften lediglich die Minimalvariante zum
Lesen und Schreiben eines Feldes. Seit der Version 3.0 von C# gibt es fiir solche
Standardeigenschaften eine verkiirzte Schreibweise, so dass an Stelle von

C#

using System;

1

2

3 namespace GoloRoden.GuideToCSharp
4 {

5 /// <summary >

6 /// Represents a foo class.

7 /// </summary >

8 public class Foo

9 {

10 /// <summary >

6.3 Eigenschaften 39

11 /// Contains a bar value.
12 /// </summary >

13 private object _bar;

14

15 /// <summary >

16 /// Gets or sets the bar value.
17 /// </summary >

18 /// <value>The bar value.</value>
19 public object Bar

20 {

21 get

22 {

23 return this._bar;
24 }

25

26 set

27 {

28 this._bar = value;
29 }

30 ¥

31 }

32 }

auch die kiirzere Variante

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Gets or sets the bar value.
12 /// </summary >
13 /// <value>The bar value.</value>
14 public object Bar
15 {
16 get;
17 set;
18 }
19 }
20 }

geschrieben werden kann. Semantisch sind beide Varianten identisch, allerdings
stellt sich bei der verkiirzten Schreibweise die Frage, auf welches Feld mit Hilfe
der Eigenschaft zugegriffen wird. Die Antwort auf diese Frage lautet, dass C# in-
tern ein Feld anlegt, dessen Name dem Entwickler nicht bekannt ist, weshalb auf
dieses Feld ausschlieBlich iiber die Eigenschaft zugegriffen werden kann.

40 6 Klassen und Strukturen

6.4 Methoden

Wihrend Eigenschaften zwar geeignet sind, auf Felder lesend und schreibend zu-
zugreifen, sind ihre Moglichkeiten, andere Aufgaben auszufiihren, eher gering. Au-
Berdem beziehen sich Eigenschaften immer nur auf jeweils ein Feld, allerdings kann
es vorkommen, dass mehrere Werte verarbeitet werden miissen. Fiir diese Fille, die
tiber einen reinen Datenzugriff hinausgehen, gibt es Methoden.

Eine Methode ist ein benannter Codeabschnitt, der iiber seinen Namen aufgeru-
fen und ausgefiihrt werden kann. Dabei konnen einer Methode mit Hilfe von Para-
metern Daten iibergeben werden, auerdem kann eine Methode iiber einen Riickga-
bewert verfiigen. Parameter dienen also der Eingabe von Daten, der Riickgabewert
hingegen der Ausgabe von Daten, wobei beide allerdings optional sind.

Eine einfache Methode verfiigt weder iiber Parameter noch iiber einen Riickga-
bewert und bezieht alle Daten, die zu ihrer Ausfiihrung benétigt werden, aus der
Klasse, welche die Methode enthélt.

Prinzipiell werden Parameter in einer kommagetrennten Liste an die Methode
iibergeben, die in runden Klammern hinter dem Methodennamen angegeben wird.
Werden keine Parameter verwendet, so wird nur ein leeres Paar runder Klammern an
den Methodennamen angehingt. Der Riickgabewert wird hingegen vor dem Metho-
dennamen notiert, indem der Typ des Riickgabewertes angegeben wird. Wird kein
Riickgabewert verwendet, wird dies mit dem Schliisselwort void gekennzeichnet.
Als Methode ohne Parameter und Riickgabewert wird daher Conjugate eingefiihrt,
welche die Konjugation einer komplexen Zahl berechnet. Die Konjugation ergibt
sich, indem das Vorzeichen des Imaginérteils umgekehrt wird, so dass die Konjuga-
tion der komplexen Zahl

a+b x i
als
a-b x i

dargestellt wird. Da mathematische Operatoren an dieser Stelle noch nicht behandelt
wurden, wird die Methode nur als Platzhalter eingefiigt, wobei sie vorerst iiber keine
Funktionalitit verfiigt.

C#

using System;

1

2

3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Represents a complex number.
7 /// </summary >

8 public class ComplexNumber

9 {

10 /// <summary >

6.4 Methoden 41

11 /// Gets or sets the real part.

12 /// </summary >

13 /// <value>The real part.</value>

14 public float RealPart

15 {

16 get;

17 set;

18 }

19

20 /// <summary >

21 /// Gets or sets the imaginary part.
22 /// </summary >

23 /// <value>The imaginary part.</value>
24 public float ImginaryPart

25 {

26 get;

27 set;

28 }

29

30 /// <summary >

31 /// Gets the absolute value.

32 /// </summary >

g8 /// <value>The absolute value.</value>
34 public float AbsoluteValue

35 {

36 get

37 {

38 // TODO gr: Calculate the absolute value
39 // and return it to the caller.
40 // 2007-04-08

41 }

42 }

43

44 void Conjugate ()

45 {

46 // TODO gr: Calculate the conjugation.
a7 // 2007-04-09

48 }

49

50 // TODO gr: Add code here.

51 // 2007-04-08

52 }

53 }

Fiir die Namensgebung einer Methode gilt, dass der Name mit einem Verb be-
ginnt, dem Substantive folgen konnen, wobei fiir die Schreibweise Pascal Case ver-
wendet wird. Auch fiir eine Methode kann die Sichtbarkeit definiert werden, wobei
die gleichen Zugriffsmodifizierer wie bei Feldern zur Verfiigung stehen.

In der Regel werden Methoden, die Hilfsaufgaben iibernehmen, als private ge-
kennzeichnet. Methoden, welche die Schnittstelle einer Klasse nach auflen darstel-
len, werden mit dem gleichen Zugriffsmodifizierer wie die Klasse gekennzeichnet,
also mit internal oder public, je nachdem, ob die Methode nur in der Assembly oder

42 6 Klassen und Strukturen

der gesamten Anwendung benétigt wird. Wird kein Zugriffsmodifizierer angegeben,
ist eine Methode implizit private.

Methoden werden, da sie die Semantik einer Klasse definieren, ebenfalls mit
XML-Kommentaren versehen, wobei wiederum das <summary>-Tag zum Einsatz
kommt. Da eine Methode keine Anweisung ist, wird ihre Definition nicht mit einem
Semikolon abgeschlossen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Gets or sets the real part.
12 /// </summary >
i /// <value>The real part.</value>
14 public float RealPart
15 {
16 get;
17 set;
18 }
19
20 /// <summary >
21 /// Gets or sets the imaginary part.
22 /// </summary >
23 /// <value>The imaginary part.</value>
24 public float ImginaryPart
25 {
26 get;
27 set;
28 }
29
30 /// <summary >
Sl /// Gets the absolute value.
32 /// </summary >
33 /// <value>The absolute value.</value>
34 public float AbsoluteValue
35 {
36 get
37 {
38 // TODO gr: Calculate the absolute value
39 // and return it to the caller.
40 // 2007 -04-08
41 }
42 }
43

44 /// <summary >

6.4 Methoden 43

45 /// Calculates the conjugation.
46 /// </summary >

47 public void Conjugate ()

48 {

49 // TODO gr: Calculate the conjugation.
50 // 2007 -04-09

51 }

52

53 // TODO gr: Add code here.

54 // 2007-04-08

55 }

56 }

Wenn ein Riickgabewert fiir eine Methode bendtigt wird, so kann er dadurch
definiert werden, dass sein Typ in der Definition der Methode an Stelle von void
angegeben wird. Eine Methode, die iiberpriift, ob so wohl Real- wie auch Imaginir-
teil dem Zahlenwert Null entsprechen — und damit die gesamte komplexe Zahl der
komplexen Null entspricht — gibt entweder true oder false zuriick, womit sich als
Typ des Riickgabewertes bool ergibt.

Methoden, deren Riickgabewert bool ist, folgen bei der Benennung einer weite-
ren Richtlinie: Als Verb wird in der Regel is eingesetzt, so dass sich fiir den Test
auf Null der Name IsZero ergibt. Der Grund fiir diese Richtlinie ist, dass der Name
einer solchen Methode als logische Aussage gelesen werden kann.

AuBerdem enthalten Methoden, die iiber einen Riickgabewert verfiigen, als letzte
Anweisung ein return, so dass in dieser Hinsicht eine gewisse Ahnlichkeit zu get
von Eigenschaften besteht.

Sofern eine Methode iiber einen Riickgabewert verfiigt, wird dieser gesondert
von <summary> in dem XML-Kommentar der Methode aufgefiihrt und durch das
XML-Tag <returns> gekennzeichnet. Um innerhalb der Dokumentation Schliissel-
worter als solche hervorzuheben, kénnen sie durch das XML-Tag <c> markiert
werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Gets or sets the real part.
12 /// </summary >
13 /// <value>The real part.</value>
14 public float RealPart
15 {

16 get;

44

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

6 Klassen und Strukturen

set ;

/// <summary >
/// Gets or sets the imaginary part.
/// </summary >
/// <value>The imaginary part.</value>
public float ImginaryPart
{

get;

set;

/// <summary >

/// Gets the absolute value.

/// </summary >

/// <value>The absolute value.</value>
public float AbsoluteValue

{
get
{
// TODO gr: Calculate the absolute value
// and return it to the caller.
// 2007 -04-08
}
}

/// <summary >

/// Calculates the conjugation.

/// </summary >

public void Conjugate ()

{
// TODO gr: Calculate the conjugation.
// 2007-04-09

/// <summary >

/// Checks whether the complex number is =zero.
/// </summary >

/// <returns ><c>true</c> if the real and the
/// imaginary part are zero; <c>false</c>

/// otherwise .<returns >

public bool IsZero ()

{
// TODO gr: Check whether the real and the
// imaginary part are zero and return
// the result to the caller.
// 2007-04-09
}

// TODO gr: Add code here.
// 2007-04-08

6.4 Methoden 45

SchlieBlich konnen Methoden auch Parameter enthalten, mit deren Hilfe Daten
an eine Methode bei ihrem Aufruf iibergeben werden kénnen. Wie bereits erwihnt,
werden Parameter in einer kommaseparierten Liste innerhalb der runden Klammern
definiert. Im Gegensatz zum Riickgabewert reicht es allerdings nicht aus, hierbei
nur die Typen der Parameter anzugeben, da sie sonst innerhalb der Methode nicht
unterscheidbar wiren.

Daher erhilt jeder Parameter einen Namen, wobei dafiir die Richtlinien der Na-
mensgebung von Feldern gelten, mit der Ausnahme, dass fiir die Schreibweise von
Parametern Camel Case verwendet wird. Als Beispiel bieten sich die Addition und
die Multiplikation mit einer weiteren komplexen Zahl und die Potenz mit einer re-
ellen Zahl an. Alle drei Methoden verfiigen iiber keinen Riickgabewert, da das Er-
gebnis direkt in der komplexen Zahl gespeichert wird.

Wihrend den ersten beiden Methoden ein Objekt der Klasse ComplexNumber
iibergeben wird, erwartet die Potenz eine Dezimalzahl als Parameter. Jeder Pa-
rameter wird, wie bereits der Riickgabewert, durch einen entsprechenden XML-
Kommentar beschrieben, der durch das <param>-Tag gekennzeichnet wird. Inner-
halb des 6ffnenden Tags befindet sich das Attribut name, dem der Name des be-
schriebenen Parameters zugewiesen wird.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Gets or sets the real part.
12 /// </summary >
13 /// <value>The real part.</value>
14 public float RealPart
15 {
16 get;
17 set;
18 ¥
19
20 /// <summary >
21 /// Gets or sets the imaginary part.
22 /// </summary >
23 /// <value>The imaginary part.</value>
24 public float ImginaryPart
25 {
26 get;
27 set;
28 ¥
29

30 /// <summary >

46

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

6 Klassen und Strukturen

/// Gets the absolute value.

/// </summary >

/// <value>The absolute value.</value>
public float AbsoluteValue

{
get
{
// TODO gr: Calculate the absolute value
// and return it to the caller.
// 2007 -04-08
}
}

/// <summary >

/// Calculates the conjugation.

/// </summary >

public void Conjugate ()

{
// TODO gr: Calculate the conjugation.
// 2007-04-09

/// <summary >

/// Checks whether the complex number is =zero.
/// </summary >

/// <returns ><c>true</c> if the real and the
/// imaginary part are zero; <c>false</c>

/// otherwise .<returns >

public bool IsZero ()

{
// TODO gr: Check whether the real and the
// imaginary part are zero and return
// the result to the caller.
// 2007-04-09
}

/// <summary >

/// Adds the specified summand to the current complex
/// number .

/// </summary >

/// <param name="summand">The complex number that is
/// used as summand.</param>

public void Add(ComplexNumber summand)

{
// TODO gr: Add the summand to the current
// complex number.
// 2007-04-09

}

/// <summary >

/// Multiplies the current complex number with the
/// specified factor.

/// </summary >

/// <param name="factor">The complex number that is

6.4 Methoden 47

85 /// used as factor.</param>

86 public void Multiply (ComplexNumber factor)

87 {

88 // TODO gr: Multiply the factor with the current
89 // complex number.

90 // 2007 -04-09

91 }

92

93 /// <summary >

94 /// Raises the current complex number to the power of
95 /// the specified real number.

96 /// </summary >

97 /// <param name="exponent">The real number that is
98 /// used as exponent .</param>

99 public void Pow(float exponent)

100 {

101 // TODO gr: Raise the current complex number to a
102 // power .

103 // 2007-04-09

104 }

105

106 // TODO gr: Add code here.

107 // 2007-04-08

108 }

109 1}

Obwohl die Definitionen der Methoden Add, Multiply und Pow prinzipiell gleich
aussehen, unterscheiden sie sich in einem wesentlichen Aspekt: Die Parameter von
Add und Multiply sind vom Typ ComplexNumber — einem Verweistyp —, wihrend
der Parameter der Methode Pow vom Typ float ist — einem Wertetyp. Das heif3t, dass
die Methoden Add und Multiply nur einen Verweis auf ihren jeweiligen Parameter
erhalten, die Methode Pow dagegen eine Kopie des Wertes des Parameters.

Verindert eine der Methoden also ihren Parameter, so hat das verschiedene Aus-
wirkungen. Die Methoden Add und Multiply wiirden nicht nur den Wert dndern, auf
den sie zugreifen, sondern auch den Wert der Methode, aus der sie aufgerufen wer-
den, was eventuell nicht gewiinscht ist. Die Methode Pow hingegen kann ihren Wert
nach Belieben dndern, da sie eine eigene Kopie erhalten und daher keinen Zugriff
auf die Daten der aufrufenden Methode hat.

Diese beiden Moglichkeiten, einen Parameter als Verweis oder als echte Kopie
der Daten zu iibergeben, werden by reference und by value genannt. Wertetypen
werden standardméfig by value iibergeben, Verweistypen by reference. Allerdings
kann auch ein Wertetyp by reference iibergeben werden, so dass die aufrufende und
die aufgerufene Methode auf die gleichen Daten zugreifen.

Dies geschieht, indem das Schliisselwort ref dem Parameter vorangestellt wird,
was allerdings in der Praxis nur sehr selten benétigt wird. Andersherum kann ein
Verweistyp auch by value iibergeben werden, allerdings muss dazu hédndisch eine
Kopie des Objektes angelegt werden, was unter Umsténden sehr aufwindig ist.

Gelegentlich kommt es vor, dass mehr als ein Riickgabewert bendtigt wird. In
der Regel sollte man fiir diesen Fall eine eigene Datenstruktur entwickeln, welche

48 6 Klassen und Strukturen

alle notwendigen Daten aufnehmen kann. Alternativ konnen Parameter aber auch
als zusitzliche Riickgabewerte definiert werden, indem ihnen das Schliisselwort out
vorangestellt wird. Parameter, die als Ausgabeparameter gekennzeichnet werden,
werden implizit by reference iibergeben.

Um eine Methode aufzurufen, wird zunéchst das Objekt, an dem sie aufgerufen
werden soll, genannt. Darauf folgt der Operator . und der Name der Methode, ge-
folgt von runden Klammern. SchlieBlich wird dieser Aufruf mit einem Semikolon
abgeschlossen. Sofern Parameter an die Methode iibergeben werden sollen, werden
deren Werte innerhalb der runden Klammern kommasepariert angegeben. Sofern
eine Methode innerhalb des eigenen Objektes aufgerufen werden soll, entfillt die
Angabe des Objektnamens.

C#
1 // Conjugate a complex number.
2 complexNumber.Conjugate ();
3
4 // Raise it to the power of 2.
5 complexNumber.Pow (2);
6
7 // Raise to the power of 2 from within the current instance.
8 Pow (2);

Allen Feldern, Eigenschaften und Methoden, die bislang vorgestellt wurden, ist
gemein, dass sie objektgebunden sind. Das heifit, sie beziehen sich immer auf ein
Objekt, auch wenn sie innerhalb einer Klasse definiert wurden. In der Regel ent-
spricht dies dem gewiinschten Verhalten, gelegentlich sollen Felder, Eigenschaften
oder Methoden aber klassengebunden sein.

Auf klassengebundene Felder, Eigenschaften und Methoden kann direkt liber die
Klasse zugegriffen werden, ohne ein bestimmtes Objekt ansprechen zu miissen. Zu-
dem konnen diese Elemente verwendet werden, ohne dass iiberhaupt ein Objekt der
entsprechenden Klasse erzeugt wurde. Auflerdem existiert ein klassengebundenes
Element nur ein einziges Mal, unabhingig davon, wie viele Objekte erzeugt wur-
den — alle Objekte der Klasse teilen sich die einzige Instanz der klassengebundenen
Elemente.

Klassengebundene Felder kdnnen beispielsweise dazu genutzt werden, um klas-
senweit giiltige Status- oder Konfigurationsdaten allen Objekten der Klasse zur Ver-
fligung zu stellen, ohne dass fiir jedes Objekt eine eigene Verwaltung dieser Daten
bestehen muss. Elemente, die klassengebunden sind, werden in C# als statisch be-
zeichnet.

Um ein Element als statisch zu kennzeichnen, wird hinter dessen Zugriffsmodifi-
zierer das Schliisselwort static angegeben. Wenn eine Klasse nur statische Elemente
enthilt, kann neben den einzelnen Elementen auch die gesamte Klasse als statisch
markiert werden, indem hinter ihrem Zugriffsmodifizierer das Schliisselwort static
angegeben wird. Da ein Objekt einer statischen Klasse auf Grund der fehlenden ei-
genen Felder, Eigenschaften und Methoden sinnlos wire, kann von einer statischen
Klasse kein Objekt erzeugt werden.

6.4 Methoden 49

Der Aufruf einer statischen Methode erfolgt genauso wie der einer objektgebun-
denen Methode, mit der Ausnahme, dass nicht das Objekt vorangestellt wird, an
dem die Methode aufgerufen werden soll. Statt dessen wird die Klasse angegeben,
welche die entsprechende Methode enthilt. Sofern eine Methode innerhalb der ei-
genen Klasse aufgerufen werden soll, entféllt die Angabe des Klassennamens.

C#

// Call a static method on class Foo.
Foo.Bar () ;

// Call a static method with parameters.
Foo.Bar ("Hello world.");

// Call a static method from within the current class.
Bar () ;

0 N O O W N

Eine besondere Rolle in diesem Zusammenhang spielt die statische Methode
Main, bei der die Ausfiihrung einer Anwendung startet, weshalb in der gesamten
Anwendung nur eine einzige Methode diesen Namens existieren darf. Die Klasse,
in der die Methode Main enthalten ist, spielt dabei zunichst keine Rolle, da von ihr
kein Objekt erzeugt wird — was wiederum begriindet, warum Main eine statische
Methode sein muss.

Als Riickgabewert fiir Main konnen die Typen void und int angegeben werden,
je nachdem, ob ein Riickgabewert bendtigt wird. Falls nicht, wird void verwendet,
bei Angabe von int kann mit Hilfe der Anweisung refurn ein Wert zuriickgege-
ben werden, der vom Betriebssystem ausgewertet werden kann. Insbesondere bei
Konsolenanwendungen ist dieser Riickgabewert ein hdufig genutztes Verfahren, um
Fehler in der Anwendung an das Betriebssystem zu melden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public static class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 }
16 ¥

17 }

50 6 Klassen und Strukturen

Die Klasse Program verfiigt mit der Existenz der statischen Methode Main iiber
alle Voraussetzungen, um in eine ausfiihrbare Assembly mit der Dateiendung .exe
iibersetzt zu werden. Das Kompilieren erfolgt genauso wie bei einer Assembly,
die als Komponente iibersetzt wird, auller dass der Parameter an Stelle von /tar-
get:library nun /target:exe lautet.

Der Aufruf von

csc /target:exe Program.cs
unter .NET und von
mcs /target:exe Program.cs

unter Mono erzeugen also eine entsprechende Assembly, die ausgefiihrt werden
kann. Unter anderen Betriebssystemen als Windows kann es notwendig sein, die
Assembly explizit iiber die Runtime von Mono zu starten.

mono Program. exe

Da die Klasse Program die Klasse ComplexNumber nutzen kénnen soll, muss sie
entsprechenden Zugriff erhalten. Dies geschieht entweder, indem die Klasse Com-
plexNumber als eigene Komponente iibersetzt und anschliefend eingebunden wird,
oder indem beide Klassen in der gleichen Assembly bereitgestellt werden. Das zwei-
te ist an dieser Stelle deutlich einfacher, weshalb die Anwendung mit

csc /target:exe Program.cs ComplexNumber.cs
unter .NET und mit
mcs /target:exe Program.cs ComplexNumber.cs

unter Mono erneut iibersetzt wird. Da die Klasse ComplexNumber inzwischen ein
wenig ldnger geworden ist, bietet es sich an, den Code zu gliedern. Dazu gibt es
in C# die Direktive #region, die den Beginn einer Region markiert, die durch eine
weitere Direktive — #endregion — abgeschlossen wird. Regionen werden beispiels-
weise von Visual Studio dazu genutzt, Abschnitte zusammenfassen und zuklappen
zu konnen.

Des weiteren kann eine Region benannt werden, indem hinter der Direktive #re-
gion eine Beschreibung angegeben wird. Aullerdem konnen Regionen ineinander
verschachtelt werden, um untergeordnete Regionen zu erstellen.

C#

using System;

1

2

3 namespace GoloRoden.GuideToCSharp
4 {

5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >

8 public class ComplexNumber

9 {

10 #region Properties

6.4 Methoden

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

51

/// <summary >
/// Gets or sets the real part.
/// </summary >
/// <value>The real part.</value>
public float RealPart
{

get;

set;

/// <summary >
/// Gets or sets the imaginary part.
/// </summary >
/// <value>The imaginary part.</value>
public float ImginaryPart
{

get;

set;

/// <summary >

/// Gets the absolute value.

/// </summary >

/// <value>The absolute value.</value>
public float AbsoluteValue

{
get
{
// TODO gr: Calculate the absolute value
// and return it to the caller.
// 2007 -04-08
}
¥

#endregion

#region Methods

/// <summary >

/// Calculates the conjugation.

/// </summary >

public void Conjugate ()

{
// TODO gr: Calculate the conjugation.
// 2007-04-09

/// <summary >
/// Checks whether the complex number is zero.
/// </summary >
/// <returns ><c>true</c> if the real and the
/// imaginary part are zero; <c>false</c>
/// otherwise .<returns >
public bool IsZero ()
{
// TODO gr: Check whether the real and the

52

65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

6 Klassen und Strukturen

// imaginary part are zero and return
// the result to the caller.
// 2007-04-09

/// <summary >

/// Adds the specified summand to the current complex
/// number.

/// </summary >

/// <param name="summand">The complex number that is
/// used as summand.</param>

public void Add(ComplexNumber summand)

{
// TODO gr: Add the summand to the current
// complex number .
// 2007-04-09

}

/// <summary >
/// Multiplies the current complex number with the
/// specified factor.
/// </summary >
/// <param name="factor">The complex number that is
/// used as factor.</param>
public void Multiply (ComplexNumber factor)
{
// TODO gr: Multiply the factor with the current
// complex number.
// 2007-04-09

/// <summary >

/// Raises the current complex number to the power of
/// the specified real number.

/// </summary >

/// <param name="exponent">The real number that is
/// used as exponent.</param>

public void Pow(float exponent)

{
// TODO gr: Raise the current complex number to
// a power.
// 2007-04-09

}

#endregion

// TODO gr: Add code here.
// 2007-04-08

Die Methoden zur Addition und Multiplikation von komplexen Zahlen haben
einen Nachteil, denn sie ermdglichen nur die Addition und Multiplikation von zwei
komplexen Zahl. Um allerdings die Summe oder das Produkt aus einer komplexen

6.4 Methoden 53

und einer reellen Zahl zu berechnen, muss die reelle Zahl erst in eine komplexe
Zahl abgebildet werden, bei welcher der Realteil der reellen Zahl entspricht, der
Imaginirteil hingegen Null ist.

Zur Losung dieses Problems konnen die Methoden Add und Multiply mehrfach
definiert werden, sofern sich die einzelnen Definitionen in ihrer Signatur unterschei-
den. Als Signatur wird dabei der Name einer Methode einschlieBlich der Typen ih-
rer Parameter bezeichnet. Der Riickgabewert spielt fiir die Signatur allerdings keine
Rolle, weshalb zwar zwei Methoden mit dem gleichen Riickgabewert und unter-
schiedlichen Parametern definiert werden kdnnen, allerdings nicht umgekehrt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties
11 /// <summary >
12 /// Gets or sets the real part.
13 /// </summary >
14 /// <value>The real part.</value>
15 public float RealPart
16 {
17 get;
18 set;
19 }
20
21 /// <summary >
22 /// Gets or sets the imaginary part.
23 /// </summary >
24 /// <value>The imaginary part.</value>
25 public float ImginaryPart
26 {
27 get;
28 set;
29 }
30
31 /// <summary >
32 /// Gets the absolute value.
33 /// </summary >
34 /// <value>The absolute value.</value>
35 public float AbsoluteValue
36 {
37 get
38 {
39 // TODO gr: Calculate the absolute value
40 // and return it to the caller.

41 // 2007-04-08

54

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

}

6 Klassen und Strukturen

#endregion

#region Methods

/17
/17
/17

<summary >
Calculates the conjugation.
</summary >

public void Conjugate ()

{

/17
/17
/17
/17
/17
/17

// TODO gr: Calculate the conjugation.
// 2007-04-09

<summary >

Checks whether the complex number is =zero.
</summary >

<returns ><c>true</c> if the real and the
imaginary part are zero; <c>false</c>
otherwise .<returns >

public bool IsZero ()

{

/17
/17
/17
/17
/17
/17

// TODO gr: Check whether the real and the
// imaginary part are zero.
// 2007-04-09

// Return the result to the caller.
return false;

<summary >

Adds the specified summand to the current complex
number .

</summary >

<param name="summand">The complex number that is
used as summand.</param>

public void Add(ComplexNumber summand)

{

/17
/17
/17
/17
/17
/17

// TODO gr: Add the summand to the current
// complex number.
// 2007-04-09

<summary >

Adds the specified summand to the current complex
number .

</summary >

<param name="summand">The real number that is
used as summand.</param>

public void Add(float summand)

{

// TODO gr: Add the summand to the current
// complex number.
// 2007-04-10

6.4 Methoden

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140 ¥
141 }

55

/// <summary >
/// Multiplies the current complex number with the
/// specified factor.
/// </summary >
/// <param name="factor">The complex number that is
/// used as factor.</param>
public void Multiply (ComplexNumber factor)
{
// TODO gr: Multiply the factor with the current
// complex number.
// 2007-04-09

/// <summary >

/// Multiplies the current complex number with the
/// specified factor.

/// </summary >

/// <param name="factor">The real number that is
/// used as factor.</param>

public void Multiply (float factor)

{
// TODO gr: Multiply the factor with the current
// complex number .
// 2007-04-10

}

/// <summary >

/// Raises the current complex number to the power of
/// the specified real number.

/// </summary >

/// <param name="exponent">The real number that is
/// used as exponent .</param>

public void Pow(float exponent)

{
// TODO gr: Raise the current complex number to a
// power .
// 2007-04-09

}

#endregion

// TODO gr: Add code here.
// 2007-04-08

Seit der Version 3.0 von C# gibt es neben partiellen Klassen auch sogenann-
te partielle Methoden, die ebenfalls mit Hilfe des Schliisselwortes partial definiert
werden. Eine partielle Methode ermoglicht es, das Vorhandensein einer Methode
in einer partiellen Klasse zu definieren, ohne die Methode an sich bereitstellen zu
miissen. Die partielle Methode kann dann in einem anderen Bestandteil der Klas-

56 6 Klassen und Strukturen

se implementiert werden, geschieht dies nicht, wird der Aufruf der entsprechenden
Methode entfernt.

Das Einsatzgebiet von partiellen Methoden dhnelt dem von partiellen Klassen:
Wihrend es mit partiellen Klassen moglich ist, generierten Code von benutzerde-
finiertem Code zu trennen, was beispielsweise von den Designern in Visual Studio
genutzt wird, ermoglichen partielle Methoden dem Designer, eine Methode zu de-
finieren und bereits zu verwenden, deren Inhalt allerdings vom Entwickler noch
implementiert werden muss.

Partielle Methoden miissen zwingend mit dem Zugriffsmodifizierer private ge-
kennzeichnet werden und konnen nur void als Riickgabetyp haben. Zudem konnen
partielle Methoden nur innerhalb einer partiellen Klasse definiert werden, da sie
sonst nicht vom Entwickler ergénzt werden konnten. Zu guter letzt konnen parti-
elle Methoden so wohl klassen- wie auch instanzbezogen sein und iiber Parameter
verfiigen.

6.5 Konstruktoren

Nachdem die Klasse ComplexNumber nun sdmtliche benotigten Felder, Eigenschaf-
ten und Methoden enthilt, fehlt zu der Vollendung ihres Rahmens noch eine Metho-
de, die zur Laufzeit der Anwendung ein Objekt dieser Klasse erzeugt und dieses
Objekt mit geeigneten Standardwerten initialisiert. Eine solche Methode wird in der
objektorientierten Programmierung als Konstruktor bezeichnet.

Prinzipiell trigt ein Konstruktor immer den Namen der Klasse und gleicht ab-
gesehen von einer Ausnahme einer normalen Methode: Ein Konstruktor verfiigt im
Gegensatz zu allen anderen Methoden nicht iiber einen Riickgabewert, so dass des-
sen Angabe schlichtweg entfdllt. Parameter hingegen kdnnen auch bei Konstruk-
toren angegeben werden, um beispielsweise Standardwerte fiir das zu erstellende
Objekt vorzugeben.

Wird fiir eine Klasse kein Konstruktor definiert, verfiigt sie implizit iiber einen
parameterlosen Konstruktor, der lediglich dazu dient, ein Objekt dieser Klasse zu
erzeugen. Ebenso wie normale Methoden konnen Konstruktoren iiberladen und mit
einem Zugriffsmodifizierer versehen werden, wobei dieser angibt, von wo aus die
Klasse instanziiert werden kann.

In der Regel wird als Zugriffsmodifizierer der der Klasse verwendet, allerdings
gibt es Fille, in denen die Instanziierung verhindert werden soll. Um ein solches
Verhalten zu erreichen, kann private als Zugriffsmodifizierer fiir den Konstruktor
angegeben werden, wodurch eine Instanziierung nur noch aus der Klasse selbst er-
folgen kann.

C#

1 using System;
2
3 namespace GoloRoden.GuideToCSharp

6.5 Konstruktoren

/// <summary >

/// Represents a complex number.
/// </summary >

public class ComplexNumber

#region Properties
/// <summary >
/// Gets or sets the real part.
/// </summary >
/// <value>The real part.</value>
public float RealPart
{
get;
set;

/// <summary >
/// Gets or sets the imaginary part.
/// </summary >
/// <value>The imaginary part.</value>
public float ImginaryPart
{

get;

set;

/// <summary >

/// Gets the absolute value.

/// </summary >

/// <value>The absolute value.</value>
public float AbsoluteValue

{
get
{
// TODO gr: Calculate the absolute value
// and return it to the caller.
// 2007 -04-08
}
}

#endregion

#region Methods

/// <summary >

/// Calculates the conjugation.

/// </summary >

public void Conjugate ()

{
// TODO gr: Calculate the conjugation.
// 2007-04-09

/// <summary >
/// Checks whether the complex number is zero.

57

58

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
o8
100
101
102
103
104
105
106
107
108
109
110
111

/17
/17
/17
/17

6 Klassen und Strukturen

</summary >

<returns ><c>true</c> if the real and the
imaginary part are zero; <c>false</c>
otherwise .<returns >

public bool IsZero ()

{

/17
/17
/17
/17
/17
/17

// TODO gr: Check whether the real and the

// imaginary part are zero and return
// the result to the caller.
// 2007-04-09

<summary >

Adds the specified summand to the current complex
number .

</summary >

<param name="summand">The complex number that is
used as summand.</param>

public void Add(ComplexNumber summand)

{

/17
/17
/17
/17
/17
/17

// TODO gr: Add the summand to the current
// complex number.
// 2007-04-09

<summary >

Adds the specified summand to the current complex
number .

</summary >

<param name="summand">The real number that is
used as summand.</param>

public void Add(float summand)

{

/17
/17
/17
/17
/77
/17

// TODO gr: Add the summand to the current
// complex number.
// 2007-04-10

<summary >

Multiplies the current complex number with the
specified factor.

</summary >

<param name="factor">The complex number that is
used as factor.</param>

public void Multiply (ComplexNumber factor)

{

/77
/17
/17

// TODO gr: Multiply the factor with the current
// complex number.
// 2007-04-09

<summary >
Multiplies the current complex number with the
specified factor.

6.5 Konstruktoren 59

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

/// </summary >

/// <param name="factor">The real number that is
/// used as factor.</param>

public void Multiply (float factor)

{
// TODO gr: Multiply the factor with the current
// complex number .
// 2007-04-10

}

/// <summary >

/// Raises the current complex number to the power of
/// the specified real number.

/// </summary >

/// <param name="exponent">The real number that is
/// used as exponent .</param>

public void Pow(float exponent)

{
// TODO gr: Raise the current complex number to a
// power .
// 2007-04-09

}

#endregion

#region Constructors

/// <summary >

/// Initializes a new instance of the ComplexNumber
/// type using default values.

/// </summary >

public ComplexNumber ()

{
// TODO gr: Set default values for the real and
// imaginary part.
// 2007 -04-25

}

/// <summary >

/// Initializes a new instance of the ComplexNumber
/// type using the specified real value.

/// </summary >

/// <param name="realPart">The real part.</param>
public ComplexNumber (float realPart)

{
// TODO gr: Set default values for the real and
// imaginary part.
// 2007 -04-25

}

/// <summary >

/// Initializes a new instance of the ComplexNumber
/// type using the specified real and imaginary

/// values.

/// </summary >

/// <param name="realPart">The real part.</param>

60 6 Klassen und Strukturen

166 /// <param name="imaginaryPart">The imaginary
167 /// part.</param>

168 public ComplexNumber (

169 float realPart, float imaginaryPart)

170 {

171 // TODO gr: Set default values for the real and
172 // imaginary part.

173 // 2007-04-25

174 }

175 #endregion

176 ¥

177 X

Das Setzen der Werte, die in den Parametern iibergeben wurden, erfolgt prin-
zipiell genauso wie in Eigenschaften. Der einzige Unterschied besteht darin, dass
jeder Parameter einen eigenen Namen trigt und nicht iiber das Schliisselwort value
angesprochen wird.

Dabei besteht die Moglichkeit, den zu setzenden Wert dem Feld oder der Eigen-
schaft zuzuweisen. In der Regel ist es gleich, welche Variante genutzt wird, aller-
dings sollte die gewéhlte Variante durchgéngig verwendet werden.

Unter Umstinden kann es zu Namenskonflikten kommen, wenn beispielsweise
ein Feld oder eine Eigenschaft den gleichen Namen trigt wie ein Parameter. Obwohl
solche Konflikte nicht nur in Konstruktoren, sondern grundsitzlich in jeder Methode
auftreten konnen, hdufen sie sich in jenen. SchlieBlich existiert hier potenziell fiir
jedes Feld ein entsprechender gleichnamiger Parameter.

Um in diesem Fall den Parameter auf der einen und das Feld oder die Eigen-
schaft auf der anderen Seite unterscheiden zu konnen, enthilt C# das Schliisselwort
this, das eine Referenz auf das eigene Objekt zur Verfiigung stellt. Im Konfliktfall
muss daher jedem nicht eindeutigen Bezeichner, der ein Feld oder eine Eigenschaft
beschreibt, this vorangestellt werden.

Auch wenn die Verwendung des Schliisselwortes this ansonsten optional ist, gilt
es als guter Stil, es bei jedem Verweis auf ein Feld, eine Eigenschaft oder eine
Methode des eigenen Objektes anzugeben.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties
11 /// <summary >
12 /// Gets or sets the real part.
13 /// </summary >

14 /// <value>The real part.</value>

6.5 Konstruktoren

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

public float RealPart
{

get;

set;

/// <summary >
/// Gets or sets the imaginary part.
/// </summary >
/// <value>The imaginary part.</value>
public float ImginaryPart
{

get;

set;

/// <summary >

/// Gets the absolute value.

/// </summary >

/// <value>The absolute value.</value>
public float AbsoluteValue

{
get
{
// TODO gr: Calculate the absolute value
// and return it to the caller.
// 2007 -04-08
}
¥

#endregion

#region Methods

/// <summary >

/// Calculates the conjugation.

/// </summary >

public void Conjugate ()

{
// TODO gr: Calculate the conjugation.
// 2007-04-09

/// <summary >

/// Checks whether the complex number is zero.
/// </summary >

/// <returns ><c>true</c> if the real and the
/// imaginary part are zero; <c>false</c>

/// otherwise .<returns >

public bool IsZero ()

{
// TODO gr: Check whether the real and the
// imaginary part are zero and return
// the result to the caller.
// 2007-04-09

61

62

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

/17
/17
/17
/17
/17
/17

6 Klassen und Strukturen

<summary >

Adds the specified summand to the current complex
number .

</summary >

<param name="summand">The complex number that is
used as summand.</param>

public void Add(ComplexNumber summand)

{

/17
/17
/17
/17
/17
/17

// TODO gr: Add the summand to the current
// complex number.
// 2007-04-09

<summary >

Adds the specified summand to the current complex
number .

</summary >

<param name="summand">The real number that is
used as summand.</param>

public void Add(float summand)

{

/17
/17
/17
/17
/17
/77

// TODO gr: Add the summand to the current
// complex number.
// 2007-04-10

<summary >

Multiplies the current complex number with the
specified factor.

</summary >

<param name="factor">The complex number that is
used as factor.</param>

public void Multiply (ComplexNumber factor)

{

/77
/17
/77
/17
/77
/17

// TODO gr: Multiply the factor with the current
// complex number.
// 2007-04-09

<summary >

Multiplies the current complex number with the
specified factor.

</summary >

<param name="factor">The real number that is used
as factor.</param>

public void Multiply (float factor)

{

/17

// TODO gr: Multiply the factor with the current
// complex number.
// 2007-04-10

<summary >

6.5 Konstruktoren 63

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

/// Raises the current complex number to the power of
/// the specified real number.

/// </summary >

/// <param name="exponent ">The real number that is
/// used as exponent .</param>

public void Pow(float exponent)

{
// TODO gr: Raise the current complex number to a
// power .
// 2007-04-09

}

#endregion

#region Constructors

/// <summary >

/// Initializes a new instance of the ComplexNumber
/// type using default values.

/// </summary >

public ComplexNumber ()

{
// Set default values for the real and
// imaginary part.
this.RealPart = 0;
this.ImaginaryPart = 0;
}

/// <summary >

/// Initializes a new instance of the ComplexNumber
/// type using the specified real value.

/// </summary >

/// <param name="realPart">The real part.</param>
public ComplexNumber (float realPart)

{
// Set default values for the real and
// imaginary part.
this.RealPart = realPart;
this.ImaginaryPart = 0;

}

/// <summary >
/// Initializes a new instance of the ComplexNumber
/// type using the specified real and imaginary
/// values.
/// </summary >
/// <param name="realPart">The real part.</param>
/// <param name="imaginaryPart">The imaginary
/// part.</param>
public ComplexNumber (
float realPart, float imaginaryPart)
{
// Set default values for the real and
// imaginary part.
this.RealPart = realPart;
this.ImaginaryPart = imaginaryPart;

64 6 Klassen und Strukturen

177 }

178 #endregion
179 }

180 }

Ein unschoner Aspekt iiberladener Konstruktoren ist, dass sie unter Umstinden
redundanten Code enthalten. Daher konnen Konstruktoren andere Konstruktoren
aufrufen, so dass sdmtliche gemeinsam genutzte Funktionalitit nur in einem Kon-
struktor enthalten sein muss. Der Aufruf erfolgt, indem hinter der Parameterliste
durch einen Doppelpunkt getrennt das Schliisselwort this mit den entsprechenden
Parametern angegeben wird.

Jeder Konstruktor kann zusitzlich eigene Anweisungen enthalten, wobei diese
erst dann ausgefiihrt werden, wenn sdmtliche anderen Konstruktoraufrufe abge-
schlossen sind. Wird ein Feld so wohl direkt wie auch im Konstruktor mit einem
Wert versehen, so tiberschreibt die Zuweisung im Konstruktor die direkte Zuwei-
sung.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties
11 /// <summary >
12 /// Gets or sets the real part.
13 /// </summary >
14 /// <value>The real part.</value>
15 public float RealPart
16 {
17 get ;
18 set;
19 }
20
21 /// <summary >
22 /// Gets or sets the imaginary part.
23 /// </summary >
24 /// <value>The imaginary part.</value>
25 public float ImginaryPart
26 {
27 get;
28 set;
29 }
30
31 /// <summary >
32 /// Gets the absolute value.

33 /// </summary >

6.5 Konstruktoren 65

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

/// <value>The absolute value.</value>
public float AbsoluteValue

{
get
{
// TODO gr: Calculate the absolute value
// and return it to the caller.
// 2007-04-08
}
}

#endregion

#region Methods

/// <summary >

/// Calculates the conjugation.

/// </summary >

public void Conjugate ()

{
// TODO gr: Calculate the conjugation.
// 2007-04-09

/// <summary >

/// Checks whether the complex number is zero.
/// </summary >

/// <returns ><c>true</c> if the real and the
/// imaginary part are zero; <c>false</c>

/// otherwise .<returns >

public bool IsZero ()

{
// TODO gr: Check whether the real and the
// imaginary part are zero and return
// the result to the caller.
// 2007-04-09
¥

/// <summary >

/// Adds the specified summand to the current complex
/// number.

/// </summary >

/// <param name="summand">The complex number that is
/// used as summand.</param>

public void Add (ComplexNumber summand)

{
// TODO gr: Add the summand to the current
// complex number.
// 2007-04-09

}

/// <summary >

/// Adds the specified summand to the current complex
/// number.

/// </summary >

/// <param name="summand">The real number that is

66

88

89

90

91

92

93

94

95

96

97

98

o8
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

6 Klassen und Strukturen

/// used as summand.</param>
public void Add(float summand)

{
// TODO gr: Add the summand to the current
// complex number .
// 2007-04-10

}

/// <summary >
/// Multiplies the current complex number with the
/// specified factor.
/// </summary >
/// <param name="factor">The complex number that is
/// used as factor.</param>
public void Multiply (ComplexNumber factor)
{
// TODO gr: Multiply the factor with the current
// complex number.
// 2007-04-09

/// <summary >

/// Multiplies the current complex number with the
/// specified factor.

/// </summary >

/// <param name="factor">The real number that is
/// used as factor.</param>

public void Multiply (float factor)

{
// TODO gr: Multiply the factor with the current
// complex number.
// 2007-04-10

}

/// <summary >

/// Raises the current complex number to the power of
/// the specified real number.

/// </summary >

/// <param name="exponent">The real number that is
/// used as exponent .</param>

public void Pow(float exponent)

{
// TODO gr: Raise the current complex number to a
// power .
// 2007 -04-09

}

#endregion

#region Constructors

/// <summary >

/// Initializes a new instance of the ComplexNumber
/// type using default values.

/// </summary >

public ComplexNumber ()

6.5 Konstruktoren 67

142 . this (0, 0)

143 {

144 ¥

145

146 /// <summary >

147 /// Initializes a new instance of the ComplexNumber
148 /// type using the specified real value.

149 /// </summary >

150 /// <param name="realPart">The real part.</param>
151 public ComplexNumber (float realPart)

152 : this(realPart, 0)

153 {

154 }

155

156 /// <summary >

157 /// Initializes a new instance of the ComplexNumber
158 /// type using the specified real and imaginary
159 /// values.

160 /// </summary >

161 /// <param name="realPart">The real part.</param>
162 /// <param name="imaginaryPart">The imaginary

163 /// part.</param>

164 public ComplexNumber (

165 float realPart, float imaginaryPart)

166 {

167 // Set default values for the real and

168 // imaginary part.

169 this.RealPart = realPart;

170 this.ImaginaryPart = imaginaryPart;

171 }

172 #endregion

173 }

174 %}

Im Zusammenhang mit Konstruktoren verfiigen Felder zudem {iber eine Beson-
derheit — um Felder als konstant zu definieren, kann an Stelle des Schliisselwortes
const das Schliisselwort readonly verwendet werden. Wird readonly der Definition
eines Feldes vorangestellt, kann dessen Wert wie bei const nur direkt und zusitzlich
noch im Konstruktor gesetzt werden. Alle weiteren Zugriffe danach konnen aber
nur noch lesend stattfinden.

Konstruktoren kénnen jedoch nicht nur dazu genutzt werden, um Objekte zu in-
itialisieren. Gelegentlich kann es notwendig sein, eine Klasse an sich zu initialisie-
ren, wobei dies insbesondere bei der Verwendung statischer Felder, Eigenschaften
oder Methoden vorkommt. Dazu dienen statische Konstruktoren, die auch als Klas-
senkonstruktoren bezeichnet werden, und sich von den iibrigen Konstruktoren durch
das zusitzliche Schliisselwort static unterscheiden.

AuBerdem konnen statische Konstruktoren weder iiberladen noch parametrisiert
werden, zudem verfiigen sie nicht iiber einen Zugriffsmodifizierer. Ausgefiihrt wer-
den statische Konstruktoren beim ersten Zugriff auf die Klasse — unabhéngig von
der Art des Zugriffs.

68 6 Klassen und Strukturen

6.6 Strukturen

Neben Klassen verfiigt C# {iber ein weiteres Konzept zur Definition von Typen, das
Klassen sehr dhnlich ist, ndmlich Strukturen. Der wesentliche Unterschied zwischen
beiden ist, dass Klassen Verweistypen sind, Strukturen hingegen Wertetypen.

Dementsprechend bietet sich der Einsatz von Strukturen in der Regel dann an,
wenn die enthaltenen Felder und Eigenschaften ausschlieBlich oder zumindest na-
hezu nur auf Wertetypen basieren.

Hiaufig werden Strukturen eingesetzt, wenn Daten per COM mit nicht verwal-
teten Anwendungen ausgetauscht werden, wobei deren Aufbau dann von der iiber
COM angesprochenen Anwendung vorgegeben ist. In diesem Zusammenhang kann
mit dem sizeof-Operator der Speicherbedarf einer Struktur in Bytes ermittelt wer-
den, worauf allerdings an dieser Stelle nicht weiter eingegangen wird.

Fiir Strukturen kann kein parameterloser Konstruktor definiert werden, dieser
existiert hingegen implizit immer und initialisiert alle Felder mit den Standardwer-
ten der entsprechenden Typen. Sofern allerdings ein eigener Konstruktor definiert
wird, muss dieser zum einen {iber mindestens einen Parameter verfiigen, zum ande-
ren miissen in ihm alle Felder der Struktur mit einem Wert initialisiert werden.

Die Definition einer Struktur erfolgt prinzipiell zu der einer Klasse, auler dass
das entsprechende Schliisselwort struct statt class lautet. In der Entwicklung rein
objektorientierter Anwendungen sind Strukturen allerdings verhéltnisméBig selten
geworden, da in der Regel statt dessen eine Klasse definiert wird, die deutlich mehr
Flexibilitit bietet.

Kapitel 7
Vererbung

7.1 Was ist Vererbung?

Da die Entwicklung einer Klasse von Grund auf sehr aufwéndig sein kann, kann
statt dessen eine bestehende Klasse wiederverwendet und erweitert werden. Dieses
Verfahren, das als Vererbung bezeichnet wird, erzeugt aus einer bestehenden Klas-
se — der sogenannten Basisklasse — eine neue Klasse — die sogenannte abgeleitete
Klasse —, die iiber alle Felder, Eigenschaften und Methoden der Basisklasse verfiigt
und diese um eigene Elemente erweitern kann.

Vererbung wird in C# mit Hilfe des Operators : ausgedriickt, wobei dieser sowie
der Name der Basisklasse dem Namen der abgeleiteten Klasse nachgestellt werden.
Es wurde bereits der Typ object erwihnt, von dem jeder Typ ableitet. Dies kann nun
prézisiert werden: Wird fiir eine Klasse nicht explizit eine Basisklasse angegeben,
leitet sie implizit von object ab. Das heil3t, dass alle Eigenschaften und Methoden,
die fiir object definiert sind, auch in dieser Klasse zur Verfiigung stehen.

Potenziell kann eine Klasse auch explizit von object abgeleitet werden, indem
object als Basisklasse angegeben wird. Da dies auf Grund der impliziten Ableitung
von object aber keinen Unterschied macht, wird diese Ableitung in der Regel nicht
angegeben.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class that explicitly derives from
7 /// object.
8 /// </summary >
9 public class Foo : object
10 {
11 }
12 }
Golo Roden, Auf der Fiihrte von C# 69

DOI: 10.1007/978-3-540-27889-4, © Springer 2008

70 7 Vererbung

ist also dquivalent zu

C#

using System;

1
2
3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Represents a foo class that implicitly derives from
7 /// object.

8 /// </summary >

9 public class Foo

10 {

11 }

12 %

Ein Beispiel fiir eine Methode, die implizit in allen Typen enthalten ist, ist die
Methode ToString. Sie dient dazu, einen string zuriickzugeben, der eine fiir Men-
schen lesbare Reprisentation des Objekts darstellt. Die in dem Typ object definierte
Methode kann zwar an einem Objekt einer beliebigen Klasse aufgerufen werden,
allerdings kennt sie die spezifischen Details der Klasse nicht. Daher gibt diese Me-
thode standardm@Big den vollqualifizierten Typ des Objekts zuriick, an dem sie auf-
gerufen wird.

Wird ein Objekt vom Typ ComplexNumber, der im vorangegangenen Kapitel
entwickelt wurde, instanziiert, gibt die Methode ToString beispielsweise

GoloRoden.GuideToCSharp.ComplexNumber

zuriick. Um eine spezifische Version der Methode ToString fiir den Typ Complex-
Number zu erzeugen, muss diese Methode der Klasse ComplexNumber hinzuge-
fligt werden. Im Gegensatz zu einer klassischen Methodendefinition muss dieser
Definition zwischen dem Zugriffsmodifizierer und dem Typ des Riickgabewertes
das Schliisselwort override hinzugefiigt werden, um sicherzustellen, dass das Uber-
schreiben der Methode der Basisklasse nicht aus Versehen, sondern absichtlich ge-
schieht.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties
11 #endregion

12

7.1 Was ist Vererbung? 71

13 #region Methods

14 //

15

16 /// <summary >

17 /// Gets a string representation of the current
18 /// instance.

19 /// </summary >

20 /// <returns >A string representation of the current
21 /// instance.</returns>

22 public override string ToString ()

23 {

24 // TODO gr: Create the string representation and
25 // return it to the caller.

26 // 2007-06-11

27 }

28 #endregion

29

30 #region Constructors

31 #endregion

32 }

33 }

Wird das Schliisselwort override weggelassen, meldet der Compiler beim Uber-
setzen der Anwendung eine entsprechende Warnung und fordert den Entwickler auf,
das fehlende Schliisselwort zu ergédnzen.

Eine wesentliche Eigenschaft in der objektorientierten Programmierung ist in
diesem Zusammenhang die Polymorphie, also die Fihigkeit eines Objekts, je nach
Kontext verschiedenen Typen zu entsprechen. Jeder Typ kann durch einen iiberge-
ordneten und damit allgemeineren Typ représentiert werden, da dieser eine Genera-
lisierung darstellt.

In der Praxis heift das, dass jeder Methode, die beispielsweise einen Parme-
ter vom Typ object erwartet, ein Objekt eines beliebigen Typs iibergeben werden
kann — da jeder Typ implizit von object abgeleitet ist und object damit eine Gene-
ralisierung dieses Typs darstellt. Umgekehrt funktioniert dies allerdings nicht: Wird
ein Parameter eines bestimmten Typs erwartet, konnen nur Objekte dieses oder eines
abgeleiteten Typs iibergeben werden.

Dieses System der Generalisierung und Spezialisierung ist ein Kernkonzept der
objektorientierten Programmierung und stellt auch den Grund dar, warum jeder Typ
mit Hilfe von Boxing in object umgewandelt werden kann — intern wird hier auf
Polymorphie zuriickgegriffen.

Im Allgemeinen gilt fiir die Beziehung zwischen einem Typ und seiner Basis-
klasse eine ,,is a“-Beziehung: Jedes Objekt vom Typ ComplexNumber ist gleichzei-
tig auch vom Typ object, wihrend ein abgeleiteter Typ von ComplexNumber sogar
zugleich vom Typ ComplexNumber und vom Typ object ist.

Allerdings erfordert diese Beziehung bei der Modellierung der Klassenhierarchie
mehr Aufmerksamkeit, als sie zunédchst vermuten lidsst. Der Grund hierfiir liegt in
einer wesentlichen Forderung der objektorientierten Programmierung, die von Bar-
bara Liskov formuliert wurde und daher als Liskov-Prinzip bezeichnet wird. Die

72 7 Vererbung

Forderung besagt, dass das Verhalten einer abgeleiteten Klasse und das ihrer Basis-
klasse identisch sein miissen.

Dies bedeutet, dass entgegen dem umgangssprachlichen Gebrauch ein Quadrat
kein Rechteck ist, weshalb eine Klasse zur Modellierung von Quadraten nicht von
einer Klasse zur Modellierung von Rechtecken abgeleitet werden darf. Wahrend
die Hohe und die Breite eines Rechtecks unabhingig voneinander verdndert werden
konnen, ist dies bei einem Quadrat nicht moglich.

Angenommen, ein Typ Quadrat wire abgeleitet von einem Typ Rechteck, dann
konnte auf Grund der Polymorphie und der Generalisierung in jeder Methode, die
ein Objekt vom Typ Rechteck als Parameter erwartet, auch ein Objekt vom Typ Qua-
drat iibergeben werden. Diese Methode konnte eine Seite dieses Objektes verdop-
peln, wodurch sich bei einem Objekt des Typs Rechteck der Flicheninhalt ebenfalls
verdoppelt.

Wird statt dessen ein Objekt vom Typ Quadrat iibergeben, gilt dies nicht — hier
wiirde sich der Flidcheninhalt vervierfachen, da die beiden Seiten nicht unabhingig
voneinander veridndert werden konnen. Weil dabei das Liskovsche Prinzip verletzt
wird, ist diese Ableitung fehlerhaft.

AuBer der bislang genannten Vererbung, bei der eine Klasse von genau einer Ba-
sisklasse ableitet, gibt es prinzipiell auch die Mehrfachverebung, bei der eine Klas-
se liber mehrere Basisklassen verfiigen kann. Dieses Konzept wird in C# allerdings
nicht unterstiitzt, da Mehrfachvererbung unter Umsténden keine eindeutigen Ablei-
tungen erzeugt, und der Nutzen in keinem Verhiltnis zu dem notigen Aufwand und
der hohen Komplexitit steht.

Strukturen konnen im Gegensatz zu Klassen nicht vererbt werden.

7.2 Felder und Eigenschaften

Die einfachsten Elemente eines Typs, die vererbt werden konnen, sind Felder. Bisher
wurden Felder in der Regel als private gekennzeichnet, um den direkten Zugriff
von auferhalb der Klasse zu verhindern. Allerdings kann auf solche Felder auch aus
einer Unterklasse nicht zugegriffen werden. Um dies in einem gegebenen Fall zu
ermdglichen, gibt es verschiedene Alternativen.

Die einfachste Variante besteht darin, das Feld als internal oder gar als public zu
kennzeichnen. Allerdings geht dabei der Zugriffsschutz von auflerhalb der Klasse
verloren, was der Objektorientierung in den meisten Fillen widerspricht. Eine an-
dere Moglichkeit besteht darin, iiber die entsprechende Eigenschaft indirekt auf das
Feld zuzugreifen, was eine im Hinblick auf die Objektorientierung deutlich saube-
rere Variante darstellt.

In der Praxis verfiigt aber nicht jedes Feld iiber eine zugehorige Eigenschaft,
da in der Regel nur solche Felder mit einer Eigenschaft ausgestattet werden, die
fiir die Konfiguration eines Objektes von auflen wichtig sind. Felder, die hingegen
nur fiir interne Berechnungen oder sonstige interne Belange genutzt werden und

7.3 Methoden 73

auBlerhalb eines Objektes nicht zugreifbar sein sollen, bleiben iiblicherweise ohne
entsprechende Eigenschaft.

Abhilfe schafft in einem solchen Fall das Schliisselwort protected, das den Zu-
griff nicht nur aus der Klasse, welche die Felddefinition enthilt, ermoglicht, sondern
auch aus jeder Unterklasse dieser Klasse. Felder, die als protected gekennzeichnet
sind, stehen also von der Ebene des Zugriffs zwischen public und private.

AuBerdem gibt es noch die Erweiterung des Schliisselwortes protected auf pro-
tected internal, wodurch der Zugriff ebenfalls aus abgeleiteten Klassen ermoglicht
wird, allerdings nur, sofern diese sich innerhalb der gleichen Assembly befinden.

7.3 Methoden

Werden Methoden in einem abgeleiteten Typ tiberschrieben, muss in dem abgeleite-
ten Typ die Methode explizit als override gekennzeichnet werden, um anzuzeigen,
dass das Uberschreiben beabsichtigt und kein Versehen ist. Allerdings kann nicht
jede beliebige Methode einer Basisklasse iiberschrieben werden — dort muss eine
Methode zunichst als iiberschreibbar gekennzeichnet werden. Dies geschieht mit
Hilfe des Schliisselwortes virtual.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a base class.
7 /// </summary >
8 public class BaseClass
9 {
10 /// <summary >
11 /// Represents a virtual foo method.
12 /// </summary >
13 public virtual void Foo ();
14 }
15 }

Methoden, die nicht als virtual gekennzeichnet werden, kdnnen von abgeleite-
ten Typen nicht iiberschrieben werden. Damit eine Methode mit dem Schliisselwort
virtual markiert werden kann, darf sie nicht mit dem Zugriffsmodifizierer priva-
te markiert sein — da sie in diesem Fall in dem abgeleiteten Typ nicht sichtbar ist.
Zudem kann virtual nicht gleichzeitig mit override angegeben werden.

Wird wihrend der Ausfiihrung einer Anwendung eine virtuelle Methode aufgeru-
fen, ermittelt die Common Language Runtime den tatsdchlichen Typ des Objektes,
an dem die Methode aufgerufen wird und ruft die zugehorige Methode auf — falls

74 7 Vererbung

eine entsprechende iiberschriebene Variante verfiigbar ist. Auf diese Art wird ge-
wihrleistet, dass fiir ein Objekt immer die korrekte Version einer Methode aufgeru-
fen wird.

Auler override gibt es noch das Schliisselwort new. Der Unterschied liegt in der
Bindung der Methode an den Typ — bei override wird die Methode in jedem Fall
fiir den zugehorigen Typ aufgerufen, da die Methode der Basisklasse {iberschrieben
wurde, bei new wird die Methode unter Umstédnden fiir den Basistyp aufgerufen, da
diese Methode nicht liberschrieben, sondern nur ausgeblendet wurde.

C#

1 using System;

2

3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Represents a base class.

7 /// </summary >

8 public class BaseClass

9 {

10 /// <summary >

11 /// Represents a virtual foo method.

12 /// </summary >

13 public virtual void Foo ()

14 {

15 }

16 }

17

18 /// <summary >

19 /// Represents a class that derives from BaseClass.
20 /// </summary >

21 public class DerivedClassA : BaseClass

22 {

23 /// <summary >

24 /// Represents a foo method that overwrites the base
25 /// class’s implementation.

26 /// </summary >

27 public override void Foo ()

28 {

29 }

30 }

31

32 /// <summary >

33 /// Represents another class that derives from
34 /// BaseClass.

35 /// </summary >

36 public class DerivedClassB : BaseClass

37 {

38 /// <summary >

39 /// Represents a foo method that shadows the base
40 /// class’s implementation.

41 /// </summary >

42 public new void Foo ()

7.3 Methoden 75

43 {
44 }
45 }

46 1}

Beispielhaft ldsst sich das an der Klasse ComplexNumber verdeutlichen. Die
Methode ToString ist dort als override gekennzeichnet. Das heil3t, wird die Methode
ToString an einem Objekt dieser Klasse aufgerufen, dann wird der Code ausgefiihrt,
der in der iiberschriebenen Methode definiert wurde. Dieser Code wird auch dann
ausgefiihrt, wenn das Objekt beispielsweise als object geboxt wird.

Wiire die Methode ToString statt dessen als new gekennzeichnet, wiirde ebenfalls
der in der Klasse ComplexNumber definierte Code ausgefiihrt — aber nur, wenn
diese Methode an dem ungeboxten Objekt aufgerufen wird. Erfolgte der Aufruf statt
dessen an einer geboxten Version des Objektes, so wiirde der Code des geboxten
Typs ausgefiihrt.

Wiirde das Objekt also als object geboxt, wiirde bei einem Aufruf der Metho-
de ToString die Version ausgefiihrt, die in der Klasse object definiert wurde. In der
Praxis wird new allerdings eher selten verwendet, in der Regel kommt das Schliis-
selwort override zum Einsatz.

In einigen Fillen soll aus einer iiberschriebenen Methode explizit die Methode
der Basisklasse aufgerufen werden, zum Beispiel, um deren Funktionalitit auch in
der iiberschreibenden Methode nutzen zu konnen. Dazu dient das Schliisselwort
base, das analog zu this verwendet werden kann, allerdings statt auf das eigene
Objekt immer auf den Typ der Basisklasse verweist.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a base class.
7 /// </summary >
8 public class BaseClass
9 {
10 /// <summary >
11 /// Represents a virtual foo method.
12 /// </summary >
13 public virtual void Foo ()
14 {
15 }
16 }
17
18 /// <summary >
19 /// Represents a class that derives from BaseClass.
20 /// </summary >
21 public class DerivedClass : BaseClass
22 {

23 /// <summary >

76 7 Vererbung

24 /// Represents a foo method that overwrites the base
25 /// class’s implementation.

26 /// </summary >

27 public override void Foo ()

28 {

29 // Call the base method.

30 base.Foo () ;

31 }

32 }

SSEN)

Prinzipiell kann eine Methode, die mit override oder new gekennzeichnet wurde,
in einer weiteren abgeleiteten Klasse wiederum iiberschrieben werden. Das Schliis-
selwort virtual bezieht sich also nicht nur auf die direkt nachfolgende Ableitung,
sondern auf alle Klassen, die in der Ableitungshierarchie nachfolgen. Um dies zu
verhindern und eine weitere Vererbung zu verhindern, kann eine Methode, die mit
override oder new gekennzeichnet wurde, mit Hilfe des Schliisselwortes sealed ver-
siegelt werden, wodurch keine weitere Uberschreibung dieser Methode mehr mog-
lich ist.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a base class.
7 /// </summary >
8 public class BaseClass
9 {
10 /// <summary >
11 /// Represents a virtual foo method.
12 /// </summary >
13 public virtual void Foo ()
14 {
15 }
16 }
17
18 /// <summary >
19 /// Represents a class that derives from BaseClass.
20 /// </summary >
21 public class DerivedClass : BaseClass
22 {
23 /// <summary >
24 /// Represents a foo method that overwrites the base
25 /// class’s implementation and avoids any further
26 /// overwriting by sealing this method.
27 /// </summary >
28 public override sealed void Foo ()
29 {

30 }

7.3 Methoden 77

il ¥
32 }

AuBerdem konnen vollstindige Klassen versiegelt werden, was bedeutet, dass
eine solche Klasse nicht vererbt werden kann. Dies ist bei Klassen sinnvoll, die eine
feststehende Funktionalitit bereitstellen, wie beispielsweise Klassen mit mathema-
tischen Methoden — eine Methode zur Berechnung der Sinusfunktion zu {iberschrei-
ben, ergibt wenig Sinn, schlieBlich ist der Sinus bereits das endgiiltige Resultat.

Daher ist beispielsweise die von .NET bereitgestellte Klasse Math im Namens-
raum System versiegelt, ebenso kann die Klasse ComplexNumber versiegelt werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public sealed class ComplexNumber
9 {
10 #region Properties
11 #endregion
12
13 #region Methods
14 #endregion
15
16 #region Constructors
17 #endregion
18 }
19 %

Unabhéngig davon, ob die Klasse ComplexNumber versiegelt ist oder nicht, han-
delt es sich um eine konkrete Klasse. Das bedeutet, dass sie instanziiert werden
kann, dass also Objekte von ihr erzeugt werden konnen.

Manchmal kann es sinnvoll sein, statt dessen eine sogenannte abstrakte Klasse
zu erzeugen, die nicht instanziiert werden kann, die nur als Basisklasse fiir andere
Klassen genutzt wird, um beispielsweise gemeinsam genutzte Funktionalitét zentral
zur Verfiigung zu stellen. Eine solche Klasse wird mit dem Schliisselwort abstract
gekennzeichnet und kann nicht versiegelt werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents an abstract base class.
7 /// </summary >

78 7 Vererbung

8 public abstract class AbstractBaseClass
9 {

10 /// <summary >

11 /// Represents a virtual foo method.
12 /// </summary >

13 public virtual void Foo ()

14 {

15 }

16 }

17 '}

In einer abstrakten Klasse konnen zudem abstrakte Methoden definiert wer-
den, die keinen Methodenrumpf enthalten, sondern nur aus dem Methodenkopf be-
stehen. Solche Methoden miissen mit dem Schliisselwort abstract versehen wer-
den und sind implizit virtual. Statt eines Methodenrumpfes, der in geschweiften
Klammern angegeben wird, wird deren Methodenkopf mit einem Semikolon abge-
schlossen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents an abstract base class.
7 /// </summary >
8 public abstract class AbstractBaseClass
9 {
10 /// <summary >
11 /// Represents an abstract foo method.
12 /// </summary >
13 public abstract void Foo ();
14 }
15
16 /// <summary >
17 /// Represents a class that derived from
18 /// AbstractBaseClass.
19 /// </summary >
20 public class DerivedClass : AbstactBaseClass
21 {
22 /// <summary >
23 /// Represents a method that implements the base
24 /// class’s abstract method.
25 /// </summary >
26 public override void Foo ()
27 {
28 // TODO gr: Implement abstract method.
29 // 2008-01-03
30 }
31 }

32 }

7.3 Methoden 79

In einer abgeleiteten Klasse miissen abstrakte Methoden in jedem Fall imple-
mentiert werden, es sei denn, die abgeleitete Klasse wird ihrerseits wiederum als
abstract gekennzeichnet.

Gelegentlich kann es notwendig sein, eine bestehende Klasse ohne Erzeugung
einer abgeleiteten Klasse zu erweitern, ohne allerdings Zugriff auf ihren Quelltext
zu haben. Beispielsweise wiirde eine Erweiterung des Typs string diesem Vorhaben
entsprechen.

Zu diesem Zweck gibt es seit der Version 3.0 von C# sogenannte Erweite-
rungsmethoden, mit denen vorhandene Typen ergidnzt werden konnen. Da die-
se Moglichkeit duBerst michtig ist und schnell zu uniibersichtlichem Code fiihrt,
wird ihr Einsatz in der Praxis als schlechter Stil angesehen. Dass Erweiterungs-
methoden in C# 3.0 iiberhaupt in Erscheinung treten, griindet sich in der Abfra-
getechnik Ling, die mit C# 3.0 eingefiihrt wurde und auf Erweiterungsmethoden
basiert.

Um einen bestehenden Typ zu erweitern, wird innerhalb einer statischen Klasse
eine statische Methode definiert, welche die entsprechende Funktionalitét bereit-
stellt. Als erster Parameter wird dieser Methode der zu erweiternde Typ tibergeben,
allerdings ergénzt um das Schliisselwort this, woran C# erkennen kann, dass es sich
nicht um eine normale, sondern um eine Erweiterungsmethode handelt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Contains extension methods.
7 /// </summary >
8 public static class ExtensionMethods
9 {
10 /// <summary >
11 /// Converts the specified string to its XML
12 /// representation.
13 /// </summary >
14 /// <param name="source">The string that shall be
15 /// converted to XML.</param>
16 /// <returns >The XML representation of the specified
17 /// string.</returns>
18 public static string ToXml(this string source)
19 {
20 // TODO gr: Transform the source string to XML
21 // and return the result to the caller.
22 // 2007-12-26
23 }
24 }
25 }

Die auf diese Art definierte Erweiterungsmethode fiir den Typ string kann nun an
jeder Zeichenkette aufgerufen werden, als ob sie eine vordefinierte Methode wire.

80 7 Vererbung

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a foo string.
16 string foo = "Hello world!";
17
18 // Get the XML representation of the string.
19 string xml = foo.ToXml ();
20 }
21 }
22 }

Intern priift C# beim Aufruf einer Methode zunichst, ob eine entsprechende Me-
thode an dem jeweiligen Typ definiert ist. Wenn nicht, wird liberpriift, ob es eine
statische Methode innerhalb einer statischen Klasse gibt, deren Name dem der auf-
gerufenen Methode entspricht, und deren erster Parameter dem gewiinschten Typ
entspricht, der auBerdem mit dem Schliisselwort this gekennzeichnet wurde. Falls
eine solche Methode existiert, wird diese ausgefiihrt, andernfalls wird ein Fehler
gemeldet.

7.4 Konstruktoren

Die einzigen Elemente eines Typs, die nicht an einen abgeleiteten Typ vererbt wer-
den, sind Konstruktoren. Der Grund dafiir liegt in einer Definition der objektorien-
tierten Programmierung, in der die Aufgabe von Konstruktoren beschrieben wird.
Diese liegt darin, ein vollstdndig initialisiertes Objekt zuriickzugeben.

Da ein abgeleiteter Typ in der Regel weitere Felder einfiihrt, die der Konstruktor
des Basistyps nicht beriicksichtigt, wiirde dieser der Anforderung nicht mehr ge-
recht, ein vollstindig initialisiertes Objekt zuriickzugeben. Eine abgeleitete Klasse
verfiigt daher zunéchst nur iiber einen parameterlosen, leeren Standardkonstruktor.

Allerdings konnen entsprechende Konstruktoren definiert werden. Analog zu
Methoden ist auch in den Konstruktoren der Zugriff auf die Konstrutoren des Basi-
styps moglich, wiederum mit Hilfe des Schliisselwortes base, das mit der gleichen
Syntax wie das Schliisselwort this bei Konstruktoren angegeben werden kann. Wird

7.4 Konstruktoren 81

es angegeben, wird zunichst der Konstruktor des Basistyps aufgerufen, bevor der
Konstruktor des zu instanziierenden Typs ausgefiihrt wird. Allerdings kann nur ent-
weder base oder this angegeben werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a base class.
7 /// </summary >
8 public class BaseClass
9 {
10 /// <summary >
11 /// Initializes an instance of the BaseClass type.
12 /// </summary >
13 public BaseClass ()
14 {
15 ¥
16 }
17
18 /// <summary >
19 /// Represents a class that derives from BaseClass.
20 /// </summary >
21 public class DerivedClass : BaseClass
22 {
23 /// <summary >
24 /// Initializes an instance of the DerivedClass
25 /// type.
26 /// </summary >
27 public DerivedClass ()
28 base ()
29 {
30 }
31 }
32 }

Kapitel 8
Schnittstellen

8.1 Was sind Schnittstellen?

Abstrakte Basisklassen werden hdufig eingesetzt, um semantisch verwandte abge-
leitete Klassen mit einer gemeinsamen Basisklasse auszustatten und gemeinsam ge-
nutzte Methoden in einem einzigen Typ zur Verfiigung zu stellen. Allerdings birgt
der Einsatz abstrakter Klassen einen entscheidenden Nachteil: Gelegentlich ist es
notwendig, eine Klasse von einer Basisklasse der Framework Class Library abzu-
leiten.

Da eine Klasse aber nur iiber eine Basisklasse verfiigen kann, kénnen solche ab-
geleiteten Klassen nicht mehr unter einer benutzerdefinierten abstrakten Basisklasse
angeordnet werden. In Sprachen, die Mehrfachvererbung unterstiitzen, konnen einer
Klasse in einem solchen Fall einfach mehrere Basisklassen zugeordnet werden, in
C# ist dies jedoch nicht moglich.

Die Losung liegt in sogenannten Schnittstellen, die abstrakten Klassen sehr dhn-
lich sind, da sie ebenfalls Methodendefinitionen enthalten, aber im Gegensatz zu
Klassen mehrfach vererbt werden konnen. Die einzige Einschriankung einer Schnitt-
stelle ist, dass sie keine Implementierung enthalten kénnen, sondern auf die Metho-
dendefinitionen beschrinkt sind. Insofern entspricht eine Schnittstelle einer voll-
stindig abstrakten Klasse.

In der modernen, komponentenorientierten Entwicklung von Anwendungen spie-
len Schnittstellen noch eine weitere, zusitzliche Rolle. Da sie mit den in ihnen ent-
haltenen Methodendefinitionen nicht nur eine syntaktische Vorgabe leisten, sondern
auch eine gewisse Semantik vorgeben, werden sie als eine Art Vertrag fiir Kompo-
nenten eingesetzt — sofern zwei verschiedene Komponenten die gleiche Schnittstel-
le implementieren, konnen sie als semantisch dquivalent eingestuft werden und sind
damit untereinander austauschbar.

Wenn dieser Aspekt von Schnittstellen besonders hervorgehoben werden soll,
wird an Stelle von Schnittstelle haufig auch von Kontrakt gesprochen. In der Re-
gel werden bei der Entwicklung von Komponenten zunichst die Kontrakte defi-
niert, bevor Komponenten entwickelt werden, die deren abstrakte Semantik kon-

Golo Roden, Auf der Fiihrte von C# 83
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

84 8 Schnittstellen

kret umsetzen. Daher spricht man auch von Contract First Design oder Design by
Contract.

Contract First Design bietet noch einen weiteren Vorteil. Da die Semantik voll-
stindig tiber den Kontrakt definiert ist, ist es moglich, den Zugriff auf eine Kom-
ponente ausschlieBlich iiber deren Schnittstelle zu gestalten. Wenn die Komponente
eines Tages gegen eine andere, aber semantisch dquivalente Komponente ausge-
tauscht werden soll, muss an der Anwendung an sich nichts gedndert werden, da die
Schnittstelle gleich geblieben ist.

8.2 Benutzerdefinierte Schnittstellen

Schnittstellen werden in C# mit Hilfe des Schliisselwortes interface definiert, wobei
ihr sonstiger Aufbau dem einer abstrakten Klasse dhnelt. Das bedeutet, dass in einer
Schnittstelle wie in einer vollstindig abstrakten Klasse nur Methodendefinitionen
enthalten sein konnen, im Gegensatz zu diesen allerdings keine Zugriffsmodifizierer
angegeben werden konnen. Alle Methoden sind implizit public, um den Charakter
eines Kontraktes zu erfiillen.

Als Namensrichtlinie fiir Schnittstellen gibt es zwei Varianten. Fiir beide Vari-
anten gilt, dass der Name in Pascal Case genannt wird, wobei ihm zusitzlich ein
grofles I vorangestellt wird. Der Name besteht entweder aus einem Adjektiv, das
eine Eigenschaft beschreibt, die mit Hilfe der Schnittstelle umgesetzt wird, oder aus
einem Substantiv, sofern die Schnittstelle an Stelle einer Klasse verwendet wird.

Im Namensraum System gibt es zahlreiche Beispiele fiir beide Varianten: Die
Schnittstelle ICloneable wird von allen Klassen implementiert, deren Objekte klon-
bar sind — die Schnittstelle beschreibt also eine Eigenschaft, weshalb fiir ihren Na-
men ein Adjektiv gewihlt wurde. Hingegen wird die Schnittstelle IServiceProvider
von solchen Klassen implementiert, die Mechanismen zum Abrufen von Services
bereitstellen. In diesem Fall ersetzt IServiceProvider eine entsrechende Basisklasse,
weshalb fiir den Namen ein Substantiv gewihlt wurde.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for persisting an object.
7 /// </summary >
8 public interface IPersistable
9 {
10 }
11 2

Dieser Code erzeugt eine Schnittstelle [Persistable, die dazu dient, das Entwurfs-
muster Memento zu implementieren. Memento ermoglicht es beliebigen Objekten,

8.2 Benutzerdefinierte Schnittstellen 85

ihren Zustand zu speichern und diesen zu einem spiteren Zeitpunkt wieder abzu-
rufen. Dazu werden die beiden Methoden Store und Restore definiert, welche die
Aufgabe des Speicherns und des Wiederherstellens libernehmen.

Das Speichern der Daten tibernimmt dabei ein spezielles Objekt, das sogenannte
Memento. Hiufig wird dieses Entwurfsmuster eingesetzt, wenn die Absicht besteht,
ein Objekt zu dndern, vor der Anderung allerdings eine Kopie angefertigt werden
soll, um im Falle des Falles einen Rollback ausfiihren und damit auf den gespei-
cherten Stand zuriickgreifen zu kénnen.

Da alle Methoden einer Schnittstelle implizit public sind, kann die Angabe eines
Zugriffsmodifizierers entfallen. Da die Methoden einer Schnittstelle zudem implizit
abstrakt sind, werden ihre Definitionen jeweils mit einem Semikolon abgeschlossen,
wie es in einer vollstindig abstrakten Klasse ebenfalls der Fall wiire.

Der Typ des Mementos, welches die zu speichernden Daten aufnimmt und den
beiden Methoden als Parameter iibergeben wird, wird ebenfalls als Schnittstelle an-
gegeben — auf diese Art kann die konkrete Klasse, welche die Funktionalitit des
Mementos bereitstellt, problemlos ausgetauscht werden. Die einzige Voraussetzung
dafiir ist, dass sie die Schnittstelle IMemento implementiert.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for persisting an object.
7 /// </summary >
8 public interface IPersistable
9 {
10 /// <summary >
11 /// Stores the current instance to the specified
12 /// memento .
13 /// </summary >
14 /// <param name="memento">The memento.</param>
15 void Store(IMemento memento);
16
17 /// <summary >
18 /// Restores the current instance to the specified
19 /// memento .
20 /// </summary >
21 /// <param name="memento">The memento .</param>
22 void Restore (IMemento memento);
23 }
24 }

Damit der Code kompiliert werden kann, muss zusétzlich noch die Schnittstel-
le IMemento definiert werden, die Methoden zum Speichern und Wiederherstellen
von Daten enthilt. Da das Memento zunidchst nur in Verbindung mit der Klasse
ComplexNumber eingesetzt werden soll, sind Methoden zum Speichern und Wie-
derherstellen von Daten des Typs float ausreichend.

86

8 Schnittstellen

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes.
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name="key">The key.</param>
15 /// <param name="value">The value.</param>
16 void Store(string key, float value);
17
18 /// <summary >
19 /// Restores the value stored with the specified
20 /// key.
21 /// </summary >
22 /// <param name="key">The key.</param>
23 /// <returns >The value.</returns>
24 float Restore(string key);
25 }
26 }

Das Prizip der Vererbung ist auch bei Schnittstellen moglich: Schnittstellen kon-
nen als Basisschnittstelle fiir abgeleitete Schnittstellen dienen. Dies geschieht wie
bei Klassen, indem bei der Definition der Schnittstelle die Basisschnittstelle durch
den Operator : angehiingt wird. Es kann also eine spezialisierte Version von IMe-
mento fiir die Klasse ComplexNumber namens IMementoComplexNumber erzeugt

werden.
C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes.
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name="key">The key.</param>

15 /// <param name="value">The value.</param>

8.2 Benutzerdefinierte Schnittstellen 87

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

}

void Store(string key, float value);

/// <summary >

/// Restores the value stored with the specified
/// key.

/// </summary >

/// <param name="key">The key.</param>

/// <returns >The value.</returns>

float Restore (string key);

}
/// <summary >
/// Provides methods for a memento for the
/// ComplexNumber class.
/// </summary >
public interface IMementoComplexNumber : IMemento
{
/// <summary >
/// Stores the real value of a complex number.
/// </summary >
/// <param name="value">The real value.</param>
void StoreRealValue(float value);
/// <summary >
/// Restores the real value of a complex number.
/// </summary >
/// <returns >The real value.</returns>
float RestoreRealValue();
/// <summary >
/// Stores the imaginary value of a complex number.
/// </summary >
/// <param name="value">The imaginary value.</param>
void StoreImaginaryValue(float value);
/// <summary >
/// Restores the imaginary value of a complex number.
/// </summary >
/// <returns >The imaginary value.</returns>
float RestoreImaginaryValue ();
}

Neben Methoden konnen in Schnittstellen auch Eigenschaften mit Definitionen
fiir get und set vorgegeben werden. Felder und Konstruktoren sind hingegen aus-
geschlossen, diese konnen nur in einer abstrakten oder konkreten Klasse definiert

werden.

SchlieBlich stellt sich die Frage, wann eine Schnittstelle und wann eine abstrakte
Basisklasse eingesetzt werden sollte. Prinzipiell bieten Schnittstellen den Vorteil,
dass sie mehr Flexibilitit bereitstellen, da eine Klasse zum einen von mehreren
Schnittstellen ableiten kann — aber nur von einer Basisklasse —, und zum anderen
eine Trennung zwischen Kontrakt und eigentlicher Implementierung besteht.

88 8 Schnittstellen

Des weiteren lisst der Einsatz von Schnittstellen die Moglichkeit bestehen, nach
wie vor von einer Klasse ableiten zu konnen, was unter Umstidnden nétig ist, wenn
eine Klasse beispielsweise eine bestimmte Klasse der Framework Class Library ab-
geleitet werden soll.

Eine abstrakte Basisklasse verfiigt jedoch iiber einen wesentlichen Vorteil: Im
Gegensatz zu Schnittstellen kann sie nicht nur Methodendefinitionen, sondern auch
Code enthalten. Falls also von zahlreichen Klassen gemeinsam genutzter Code be-
steht, kann eine abstrakte Basisklasse helfen, die Redundanz zu vermindern und die
Wartbarkeit zu verbessern.

8.3 Schnittstellen implementieren

Nachdem die Schnittstellen IPersistable, IMemento und IMementoComplexNum-
ber definiert wurden, konnen diese nun von der Klasse ComplexNumber verwendet
werden. Werden Schnittstellen von einer Klasse implementiert, werden diese genau-
so wie Basisklassen mit dem Operator : angegeben, wobei mehrere Schnittstellen
kommasepariert aufgezihlt werden. Wird so wohl eine Basisklasse wie auch min-
destens eine Schnittstelle angegeben, muss die Basisklasse vor den Schnittstellen
genannt werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public sealed class ComplexNumber : IPersistable
9 {
10 #region Properties
11 #endregion
12
13 #region Methods
14 #endregion
15
16 #region Constructors
17 #endregion
18 ¥
19 %

Da die Klasse ComplexNumber nun die Schnittstelle IPersistable implementiert,
muss sie die beiden Methoden Store und Restore der Schnittstelle bereitstellen und
mit Inhalt fiillen. Dazu werden die beiden Methoden implementiert, als handele es
sich um native Methoden der Klasse ComplexNumber.

8.3 Schnittstellen implementieren

89

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public sealed class ComplexNumber : IPersistable
9 {
10 #region Properties
11 #endregion
12
13 #region Methods
14 //
15
16 /// <summary >
17 /// Stores the current instance in the specified
18 /// memento .
19 /// </summary >
20 /// <param name="memento">The memento.</param>
21 public void Store (IMemento memento)
22 {
23 // TODO gr: Store the current instance.
24 // 2007-06-25
25 }
26
27 /// <summary >
28 /// Restores the current instance from the specified
29 /// memento .
30 /// </summary >
&l /// <param name="memento">The memento .</param>
32 public void Restore (IMemento memento)
33 {
34 // TODO gr: Restore the current instance.
35 // 2007 -06-25
36 }
37 #endregion
38
39 #region Constructors
40 #endregion
41 }
42 }

Diese Variante der Implementierung wird implizit genannt, da implizit gegeben
ist, aus welcher Schnittstelle die Definition der entsprechenden Methode stammt.
Werden von einer Klasse mehrere Schnittstellen implementiert, kann es allerdings
zu Mehrdeutigkeiten kommen, wenn zwei Schnittstellen beispielsweise eine gleich-

namige Methode definieren.

Fiir diesen Fall gibt es die explizite Implementierung, bei der dem Methodenna-
men der Name der Schnittstelle samt dem Operator . vorangestellt wird. Wird eine
Methode explizit implementiert, darf kein Zugriffsmodifizierer angegeben werden.

90

8 Schnittstellen

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number.
7 /// </summary >
8 public sealed class ComplexNumber : IPersistable
9 {
10 #region Properties
11 #endregion
12
13 #region Methods
14 //
15
16 /// <summary >
17 /// Stores the current instance in the specified
18 /// memento .
19 /// </summary >
20 /// <param name="memento">The memento .</param>
21 void IPersistable.Store(IMemento memento)
22 {
23 // TODO gr: Store the current instance.
24 // 2007-06-25
25 }
26
27 /// <summary >
28 /// Restores the current instance from the specified
29 /// memento .
30 /// </summary >
31 /// <param name="memento">The memento.</param>
32 void IPersistable.Restore (IMemento memento)
33 {
34 // TODO gr: Restore the current instance.
35 // 2007-06-25
36 }
37 #endregion
38
39 #region Constructors
40 #endregion
41 }
42 }

Kapitel 9
Delegaten

9.1 Was sind Delegaten?

Delegaten sind Verweistypen, die im Gegensatz zu den iibrigen Verweistypen nicht
auf Datenstrukturen, sondern auf Methoden verweisen. Delegaten ermdglichen es
unter anderem, einer aufzurufenden Methode eine weitere Methode als Parameter
zu iibergeben. Diese iibergebene Methode kann im weiteren Verlauf von der ur-
spriinglich aufgerufenen Methode ausgefiihrt werden, ohne dass bekannt sein muss,
in welcher Klasse diese Methode enthalten ist.

Héufig wird dies verwendet, um bei aufwindigen Berechnungen einem iiberwa-
chenden Objekt zu signalisieren, dass die Berechnung abgeschlossen wurde. Da-
fiir wird eine Methode des iiberwachenden Objektes als Delegat an die berech-
nende Klasse iibergeben. Sobald die Berechnung beendet ist, wird die Methode
als sogenannte Riickrufmethode an dem iiberwachenden Objekt aufgerufen, ohne
dass die tiberwachende Klasse der berechnenden Klasse iiberhaupt bekannt sein
muss.

Sobald einem Delegaten eine Methode zugewiesen wurde, verhilt er sich genau
wie diese Methode. Da die Bindung einer Methode an einen Delegaten allerdings
nicht feststehend ist, kann dies dynamisch zur Laufzeit gedndert werden, so dass
sich das Verhalten der Anwendung @ndern lisst. Die einzige Voraussetzung zur Bin-
dung einer Methode an einen Delegaten ist, dass beide im Hinblick auf den Typ des
Riickgabewertes und der Parameter libereinstimmen.

Ein Delegat wird dhnlich einer abstrakten Methode definiert, allerdings wird zwi-
schen dem Zugriffsmodifizierer und dem Riickgabewert zusitzlich das Schliissel-
wort delegate angegeben. Fiir die Namensgebung gilt als Richtlinie, dass der Na-
me eines Delegaten um das Suffix Callback ergénzt wird, fiir die Schreibweise gilt
Pascal Case. Diese Syntax wird zwar von Microsoft empfohlen, in der Framework
Class Library allerdings nicht konsistent eingehalten, weshalb es einige Delegaten
gibt, deren Namen dieser Konvention nicht folgen.

Im folgenden sollen ergidnzend zu der Schnittstelle [Persistable Delegaten einge-
setzt werden, um den Beginn und das Abschlieen so wohl des Speicherns wie auch

Golo Roden, Auf der Fiihrte von C# 91
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

92 9 Delegaten

des Wiederherstellens zu signalisieren. Daher werden zunichst die entsprechenden
Delegaten definiert:

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins.
7 /// </summary >
8 public delegate void StoringCallback();
9
10 /// <summary >
11 /// Executes when storing has finished.
12 /// </summary >
13 public delegate void StoredCallback();
14
15 /// <summary >
16 /// Executes when restoring begins.
17 /// </summary >
18 public delegate void RestoringCallback();
19
20 /// <summary >
21 /// Executes when restoring has finished.
22 /// </summary >
23 public delegate void RestoredCallback();
24 }

Obwohl Delegaten so wohl auBerhalb wie auch innerhalb einer Klasse definiert
werden konnen, ist es iiblich, sie aullerhalb einer Klasse zu definieren, da sie an-
sonsten nur innerhalb der sie umgebenden Klasse verwendbar sind.

9.2 Multicast-Delegaten

Nachdem ein Delegat definiert wurde, kann er ebenso wie eine Klasse instanziiert
werden. Wihrend der Delegat als Typ an Hand seiner Signatur nur beschreibt, auf
welche Methoden mit ihm verwiesen werden kann, verweist eine Instanz hingegen
auf eine konkrete Methode. Prinzipiell entspricht diese Unterscheidung zwischen
Delegat und Delegatinstanz der Unterscheidung zwischen Klasse und Objekt.

Eine Delegatinstanz wird ebenso wie ein Feld erzeugt, indem innerhalb einer
Klasse ein entsprechendes Element definiert wird. Um ihr eine Methode zuzuwei-
sen, gibt es zwei verschiedene Varianten. Zum einen kann direkt die Methode an-
gegeben werden, zum anderen wird die Methode einem Delegatenkonstruktor iiber-
geben. Da eine Delegatinstanz zunéchst auf genau eine Methode verweist, wird sie
hiufig auch als Unicast-Delegat bezeichnet.

9.2 Multicast-Delegaten 93

Im folgenden Code werden vier Delegatinstanzen in der Klasse ComplexNum-
ber definiert, die auf klasseninterne Methoden verweisen. Da den Delegaten statt
dessen auch Methoden anderer Objekte oder Klassen zugeordnet werden konnten,
kann beliebiger Code auf die Ereignisse des Speicherns und des Wiederherstellens
reagieren, ohne dass der Code in der Klasse ComplexNumber dafiir speziell ange-
passt werden miisste. Delegaten sind dabei nicht auf objektgebundene Methoden
beschrinkt, sondern kénnen ebenfalls Verweise auf klassengebundene Methoden
aufnehmen.

Der Aufruf eines Delegaten gleicht dem Aufruf einer Methode. Zudem gelten fiir
einen objektbezogenen Delegaten die gleichen Richtlinien wie fiir objektbezogene
Methoden, fiir einen klassenbezogenen Delegaten gelten die gleichen Richtlinien
wie fiir klassenbezogene Methoden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins.
7 /// </summary >
8 public delegate void StoringCallback();
9
10 /// <summary >
11 /// Executes when storing has finished.
12 /// </summary >
i3 public delegate void StoredCallback();
14
15 /// <summary >
16 /// Executes when restoring begins.
17 /// </summary >
18 public delegate void RestoringCallback();
19
20 /// <summary >
21 /// Executes when restoring has finished.
22 /// </summary >
23 public delegate void RestoredCallback();
24
25 /// <summary >
26 /// Represents a complex number.
27 /// </summary >
28 public sealed class ComplexNumber : IPersistable
29 {
30 #region Properties
31 #endregion
32
33 #region Delegates
34 /// <summary >
35 /// Executes when storing begins.

36 /// </summary >

94

37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

9 Delegaten

private StoringCallback StoringCallback =
this.Storing;

/// <summary >

/// Executes when storing has finished.

/// </summary >

private StoredCallback StoredCallback =
this.Stored;

/// <summary >

/// Executes when restoring begins.

/// </summary >

private RestoringCallback RestoringCallback =
this.Restoring;

/// <summary >

/// Executes when restoring has finished.

/// </summary >

private RestoredCallback RestoredCallback =
this.Restored;

#endregion

#region Methods
/7

/// <summary >
/// Stores the current instance in the specified
/// memento .
/// </summary >
/// <param name="memento">The memento.</param>
public void Store(IMemento memento)
{
// Call the storing callback.
this.StoringCallback ();

// TODO gr: Store the current instance.
// 2007 -06-25

// Call the stored callback.
this.StoredCallback();

/// <summary >
/// Restores the current instance from the specified
/// memento .
/// </summary >
/// <param name="memento">The memento.</param>
public void Restore (IMemento memento)
{
// Call the restoring callback.
this.RestoringCallback ();

// TODO gr: Restore the current instance.
// 2007-06-25

9.2 Multicast-Delegaten 95

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136 }

/17
17/
11/

// Call the restored callback.
this.RestoredCallback () ;

<summary >
Executes when storing begins.
</summary >

public void Storing ()

{

11/
117/
11/

// TODO gr: Insert code here.
// 2007-06-26

<summary >
Executes when storing has finished.
</summary >

public void Stored ()

{

117/
11/
117/

// TODO gr: Insert code here.
// 2007 -06-26

<summary >
Executes when restoring begins.
</summary >

public void Restoring ()

{

11/
117/
11/

// TODO gr: Insert code here.
// 2007 -06-26

<summary >
Executes when restoring has finished.
</summary >

public void Restored ()

{

}

// TODO gr: Insert code here.
// 2007 -06-26

#endregion

#region Constructors
#endregion

Allerdings konnen einer Delegatinstanz problemlos weitere Methoden zugeord-
net werden. Wird ein solcher Delegat aufgerufen, werden nacheinander alle ihm zu-
geordneten Methoden aufgerufen. Die Aufrufreihenfolge der einzelnen Methoden
ist dabei allerdings unbekannt ist, weshalb Abhéngigkeiten zwischen den Methoden
vermieden werden sollten. Solche Delegatinstanzen werden, da sie auf mehrere Me-

96 9 Delegaten

thoden verweisen, als Multicast-Delegaten bezeichnet. Hingegen werden Delegaten,
die auf lediglich eine Methode verweisen, als Singlecast-Delegaten bezeichnet.

Um einer Delegatinstanz eine weitere, zusitzliche Methode zuzuordnen, wird
der Operator += verwendet. Dabei kann die gleiche Methode einem Delegaten auch
mehrfach zugeordnet werden, so dass sie mehrfach ausgefiihrt wird, sobald der De-
legat aufgerufen wird. Sofern als Riickgabewert eines Delegaten nicht void definiert
wird, wird der Riickgabewert der intern zuletzt aufgerufenen Methode zuriickgege-
ben. Alle anderen Riickgabewerte gehen verloren.

C#

// Assign a method to the delegate.
MyDelegate Foo = this.Barl;

// Assign an additional method to the delegate.
Foo += this.Bar2;

a s W N

Analog zu += kann die Bindung von Methoden an einen Delegaten mit dem Ope-
rator -= wieder aufgelost werden, wobei keine Priifung stattfindet, ob die zu entfer-
nende Methode tatsdchlich an den Delegaten gebunden ist. Wurde eine Methode
mehrfach an einen Delegaten gebunden, so muss jede Bindung einzeln aufgehoben
werden. Alternativ kann einem Delegaten explizit der Wert null zugewiesen werden,
wodurch alle Bindungen an jegliche Methoden aufgehoben werden.

C#
1 // Assign a method to the delegate.
2 MyDelegate Foo = this.Baril;
3
4 // Assign an additional method to the delegate.
5 Foo += this.Bar2;
6
7 // Remove the first method from the delegate.
8 Foo -= this.Baril;
9
10 // Assign null to the delegate and remove all methods from
11 // the delegate.

e
N

Foo = null;

9.3 Anonyme Methoden

Unter Umstédnden kann es aufwindig sein, eine Methode fiir einen Delegaten zur
Verfiigung zu stellen. Dies ist insbesondere dann der Fall, wenn die Methode zum
einen nur an den Delegaten gebunden und ansonsten nirgends verwendet wird, und
wenn sie zum anderen nur sehr wenig Code enthilt.

Seit der Version 2.0 von C# gibt es daher die Moglichkeit, Code direkt an einen
Delegaten zu binden, ohne dafiir eine eigenstéindige Methode definieren zu miissen.

9.3 Anonyme Methoden 97

Ein solches Konstrukt wird — da der auszufiihrende Code sich wie eine Methode
verhilt, allerdings namenlos ist — als anonyme Methode bezeichnet, wohingegen
tatsidchliche Methoden als benannte Methoden bezeichnet werden.

Um einem Delegaten eine anonyme Methode zuzuweisen, wird wiederum das
Schliisselwort delegate verwendet. Der Methodenrumpf wird wie bei der Definition
einer Methode durch geschweifte Klammern umschlossen, wobei die schlieBende
geschweifte Klammer bei einer anonymen Methode durch ein zusétzliches Semiko-
lon abgeschlossen werden muss.

C#

using System;

1

2

3 namespace GoloRoden.GuideToCSharp
4 {

5 /// <summary >
6 /// Executes when storing begins.

7 /// </summary >

8 public delegate void StoringCallback();
9

10 /// <summary >
11 /// Executes when storing has finished.
12 /// </summary >
13 public delegate void StoredCallback();

14
15 /// <summary >
16 /// Executes when restoring begins.

17 /// </summary >
18 public delegate void RestoringCallback();

19
20 /// <summary >
21 /// Executes when restoring has finished.

22 /// </summary >
23 public delegate void RestoredCallback();

24

25 /// <summary >

26 /// Represents a complex number.

27 /// </summary >

28 public sealed class ComplexNumber : IPersistable
29 {

30 #region Properties

31 #endregion

32

33 #region Delegates

34 /// <summary >

35 /// Executes when storing begins.

36 /// </summary >

37 private StoringCallback StoringCallback = delegate ()
38 {

39 // TODO gr: Insert code here.

40 // 2007 -06-27

41 i

42

98

43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

11/
/17
11/

9 Delegaten

<summary >
Executes when storing has finished.
</summary >

private StoredCallback StoredCallback = delegate ()

{

73

/17
11/
/17

private RestoringCallback RestoringCallback = delegate ()

{

i

11/
/17
11/

// TODO gr: Insert code here.
// 2007 -06-27

<summary >
Executes when restoring begins.
</summary >

// TODO gr: Insert code here.
// 2007 -06-27

<summary >
Executes when restoring has finished.
</summary >

private RestoredCallback RestoredCallback = delegate ()

{

73

// TODO gr: Insert code here.
// 2007 -06-27

#endregion

#region Methods

//

/17
11/
/17

11/

<summary >

Stores the current instance in the specified memento.

</summary >
<param name="memento">The memento .</param>

public void Store(IMemento memento)

{

11/
11/
11/
11/
/17

// Call the storing callback.
this.StoringCallback();

// TODO gr: Store the current instance.
// 2007 -06-25

// Call the stored callback.
this.StoredCallback();

<summary >

Restores the current instance from the specified
memento .

</summary >

<param name="memento">The memento .</param>

public void Restore (IMemento memento)

{

// Call the restoring callback.

9.4 Lambdaausdriicke 99

97 this.RestoringCallback ();

98

99 // TODO gr: Restore the current instance.
100 // 2007-06-25

101

102 // Call the restored callback.
103 this.RestoredCallback();

104 }

105 #endregion

106

107 #region Constructors

108 #endregion

109 }

110 %}

Sofern ein Delegat iiber Parameter verfiigt, konnen diese innerhalb der runden
Klammern wie bei der Definition einer Methode angegeben werden. Insgesamt soll-
ten anonyme Methoden allerdings sehr sparsam und gezielt eingesetzt werden, da
sie dazu verfiihren, samtliche Delegaten vor Ort zu behandeln, statt eine Anwendung
sauber zu strukturieren.

9.4 Lambdaausdriicke

Seit der Version 3.0 von C# gibt es mit Hilfe der sogenannten Lambdaausdriicke ei-
ne noch weiter verkiirzte Moglichkeit, anonyme Methoden zu definieren. Ein Lamb-
daausdruck kann tiberall dort verwendet werden, wo auch eine anonyme Methode
moglich wire. An Stelle des Schliisselwortes delegate wird ein Lambdaausdruck
innerhalb runder Klammern angegeben, die den eigentlichen Ausdruck enthalten.

Ein Lambdaausdruck bildet dabei einen Eingangsparameter auf einen Ausgangs-
parameter ab, wobei der Operator => verwendet wird. Um beispielsweise eine kom-
plexe Zahl auf ihren Absolutbetrag abzubilden, kann der Lambdaausdruck

C#

1 (c => c.AbsoluteValue)

verwendet werden. Der Typ des Ein- und Ausgangsparameters ergibt sich dabei dy-
namisch, ebenso spielt die Wahl des Bezeichners zur Identifikation der komplexen
Zahl keine Rolle, er dient nur dazu, die komplexe Zahl iiberhaupt ansprechen zu
konnen.

Kapitel 10
Ereignisse

10.1 Was sind Ereignisse?

Delegaten sind niitzlich, um von Objekten benachrichtigt zu werden, wenn be-
stimmte Ereignisse eintreffen. Allerdings gibt es ein Problem, wenn sich ein be-
obachtendes Objekt an einen Delegaten anhéngen will — entweder miissen die Dele-
gaten fiir den Zugriff von aullen freigegeben werden, oder es miissen entsprechende
Methoden zum Hinzufiigen und Entfernen einer Methode existieren.

Beide Varianten verfiigen jeweils iiber einige Nachteile. Wihrend bei der Frei-
gabe fiir den Zugriff von auflen die Kontrolle verloren geht, so dass beispielswei-
se sdmtliche gebundenen Methoden von auflen entfernt werden konnten, erzeugt
die Bereitstellung entsprechender Methoden zusitzlichen Entwicklungs- und War-
tungsaufwand.

Um den Zugriff sauber kapseln zu konnen und den Entwicklungsaufwand mog-
lichst gering zu halten, verfiigt C# iiber das Konzept der Ereignisse. Prinzipiell
ist ein Ereignis nichts anderes als eine fiir interne Delegaten offentlich verfiigbare
Schnittstelle, iiber die beliebige Methoden an den zugehdrigen Delegaten gebunden
werden konnen. Insofern fuB3en Ereignisse in C# auf der Basis der Delegaten.

Damit ein Ereignis definiert werden kann, muss zunéchst ein entsprechender De-
legat bestehen, der als Vorlage fiir die Riickrufmethoden des Ereignisses fungiert.
Delegaten, die fiir Ereignisse eingesetzt werden, folgen einer anderen Namenskon-
vention als die librigen Delegaten: Thr Name besteht aus dem Namen des Ereignisses
in Pascal Case, ergénzt um das Suffix EventHandler.

Die Ereignisse an sich werden mit Hilfe des Schliisselwortes event in der Klas-
se ComplexNumber definiert, wobei der zu verwendende Delegat in der Definition
angegeben wird. Fiir Ereignisse gilt die Namenskonvention, dass ihr Name einem
Verb entspricht — in der Verlaufsform, falls das Ereignis ausgelost wird, bevor die
eigentliche Aktion ausgefiihrt wird, in der Vergangenheitsform, falls danach. Fiir
die Schreibweise gilt Pascal Case.

In der Regel sollen Methoden, die durch ein Ereignis aufgerufen werden, einige
Informationen iiber das das Ereignis auslosende Objekt zur Verfiigung gestellt wer-

Golo Roden, Auf der Fiihrte von C# 101
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

102 10 Ereignisse

den. Daher wird ein Delegat, der als ereignisbehandelnde Methode fungiert, selten
parameterlos definiert. Es gilt als guter Stil, zwei Parameter mitzugeben, von de-
nen der erste eine Referenz auf das Objekt, welches das Ereignis ausgelost hat, zur
Verfiigung stellt, der zweite hingegen zusitzliche Informationen zu dem Ereignis an
sich enthilt.

Fiir den ersten Parameter wird zumeist der Typ object verwendet, wobei der Pa-
rameter mit dem Namen sender versehen wird. Der Typ des zweiten Parameters ent-
spricht hdufig einer eigens zu diesem Zweck definierten Klasse, die lediglich Felder
und zugehorige Eigenschaften enthilt, um Daten auszutauschen, wobei diese Klasse
tiblicherweise von der Klasse EventArgs aus dem Namensraum System abgeleitet
wird.

Der Name der Klasse folgt den fiir Klassen iiblichen Namenskonventionen, wo-
bei als Suffix zusitzlich noch EventArgs angehiingt wird. Sofern keine eigene Klas-
se zum Datenaustausch benétigt wird, kann auch direkt auf die Klasse EventArgs
zuriickgegriffen werden. Als Name fiir den Parameter wird in beiden Féllen {ibli-
cherweise der Buchstabe e verwendet, gingig sind allerdings auch ea, eventArgs
und eventArguments.

Obwohl in der Framework Class Library durchgingig e verwendet wird, ent-
spricht dies am wenigsten den Namenskonventionen von C#. Unter diesem Ge-
sichtspunkt sollte am ehesten eventArguments eingesetzt werden.

C#

1 public delegate void Bar (object sender, EventArgs e);
2
3 public event Bar FooEvent;

Sofern ein Ereignis auf Grund einer Datendnderung auftritt, werden im ersten
Parameter hédufig so wohl der alte wie auch der neue Wert an alle ereignisbehan-
delnden Methoden iibergeben. Diese haben dann die Moglichkeit, auf Basis dieser
beiden Werte eigene Aktionen auszufiihren. Gelegentlich wird dieser Parameter zu-
dem eingesetzt, um die Ausfiihrung des Ereignisses abzubrechen, indem eine ent-
sprechende Eigenschaft namens Cancel auf true gesetzt wird, die schlielich vor der
eigentlichen Ausfiihrung des Ereignisses abgefragt wird.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins.
7 /// </summary >
8 /// <param name="sender">The sender.</param>
9 /// <param name="e">The event arguments .</param>
10 public delegate void StoringEventHandler (
11 object sender , EventArgs eventArguments);

12

10.1 Was sind Ereignisse? 103

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

/// <summary >
/// Executes when storing has finished.
/// </summary >
/// <param name="sender">The sender.</param>
/// <param name="e">The event arguments .</param>
public delegate void StoredEventHandler(
object sender, EventArgs eventArguments);

/// <summary >

/// Executes when restoring begins.

/// </summary >

/// <param name="sender">The sender.</param>

/// <param name="e">The event arguments.</param>

public delegate void RestoringEventHandler (
object sender, EventArgs eventArguments);

/// <summary >

/// Executes when restoring has finished.

/// </summary >

/// <param name="sender">The sender.</param>

/// <param name="e">The event arguments.</param>

public delegate void RestoredEventHandler (
object sender, EventArgs eventArguments);

/// <summary >
/// Represents a complex number.
/// </summary >
public sealed class ComplexNumber : IPersistable
{
#region Properties
#endregion

#region Events

/// <summary >

/// Fires when storing begins.

/// </summary >

public event StoringEventHandler Storing;

/// <summary >

/// Fires when storing has finished.
/// </summary >

public event StoredEventHandler Stored;

/// <summary >

/// Fires when restoring begins.

/// </summary >

public event RestoringEventHandler Restoring;

/// <summary >

/// Fires when restoring has finished.

/// </summary >

public event RestoredEventHandler Restored;
#endregion

104 10 Ereignisse

67 #region Methods

68 //

69

70 /// <summary >

71 /// Stores the current instance in the specified
72 /// memento .

73 /// </summary >

74 /// <param name="memento">The memento.</param>
75 public void Store(IMemento memento)

76 {

7 // TODO gr: Store the current instance.

78 // 2007-06-25

79 }

80

81 /// <summary >

82 /// Restores the current instance from the specified
83 /// memento .

84 /// </summary >

85 /// <param name="memento">The memento .</param>
86 public void Restore (IMemento memento)

87 {

88 // TODO gr: Restore the current instance.
89 // 2007-06-25

90 }

91 #endregion

92

93 #region Constructors

94 #endregion

95 }

96 1}

Obwohl die in diesem Beispiel verwendeten Ereignisse simtlich objektgebunden
sind, konnen Ereignisse mit Hilfe des Schliisselwortes static wie auch Felder, Eigen-
schaften und Methoden als klassengebunden definiert werden. Klassengebundene
Ereignisse erlauben es, auf Aktionen des gesamten Typs und nicht eines speziellen
Objekts zu reagieren.

10.2 Auslosen von Ereignissen

Nachdem ein Ereignis definiert wurde, kann es ausgelost werden. Prinzipiell ge-
schieht dies, indem es wie eine Methode aufgerufen wird, wobei die gleichen Kon-
ventionen wie fiir den direkten Aufruf einer Methode oder eines Delegaten gelten.
Intern wird dabei der Aufruf an den Delegaten weitergereicht, der dem Ereignis zu-
geordnet ist. Dieser wiederum 16st — je nachdem, ob es sich um einen Singlecast-
oder einen Multicast-Delegaten handelt, eine oder mehrere Methoden aus, die an
den Delegaten gebunden worden sind.

Da ein Ereignis in der Regel von dem Objekt ausgeldst wird, das auch die Ur-
sache fiir das Ereignis darstellt, wird zumeist this als erster Parameter angegeben.

10.2 Auslosen von Ereignissen 105

Der zweite Parameter muss allerdings kontextbezogen erzeugt werden. Da sich dies
aufwindiger gestalten kann, wird das Ausldsen eines Ereignisses in eine eigene Me-
thode ausgelagert, deren Aufruf sich an den entsprechenden Stellen dann deutlich
kompakter als das direkte Auslosen des Ereignisses gestaltet.

Als Name trégt eine solche Methode den Namen des Ereignisses, ergénzt um das
Prifix On. Die Methode, die also beispielsweise das Ereignis Stored auslost, hiefe
OnStored. Haufig werden in der Praxis die Methoden, die auf ein Ereignis reagieren,
derart benannt, was nach den Namensrichtlinien von C# allerdings falsch ist.

Da diese Methoden nur von innerhalb der Klasse ausgelost werden sollten, wer-
den sie in der Regel mit dem Zugriffsmodifizierer protected und zusétzlich mit dem
Schliisselwort virtual versehen. Dies geschieht, damit eine abgeleitete Klasse die
ereignisauslosende Methode gegebenenfalls liberschreiben kann. Im folgenden Bei-
spiel ist die Klasse allerdings versiegelt, weshalb der Zugriffsmodifizierer private
gewdhlt wurde.

Bevor ein Ereignis in einer solchen Methode aufgerufen wird, sollte zunédchst
noch gepriift werden, ob sich iiberhaupt Objekte zur Uberwachung des Ereignisses
registriert haben. Da der Delegat ansonsten null ist, wiirde der Aufruf ohne eine
solche Priifung ins Leere laufen und einen Fehler erzeugen, der zum Abbruch der
Anwendung fiihrt.

Obwohl noch nicht alle Konzepte vorgestellt wurden, die fiir diese Priifung beno-
tigt werden, wird sie an dieser Stelle dennoch eingefiihrt, da sie zum einen zwingend
benotigt wird, zum anderen Ereignisaufrufe sich nur durch das konkrete, auszulo-
sende Ereignis unterscheiden — der Rest folgt immer dem gleichen Schema. Nihere
Informationen finden sich in den Kapiteln zu Operatoren und Anweisungen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins.
7 /// </summary >
8 /// <param name="sender">The sender.</param>
9 /// <param name="e">The event arguments .</param>
10 public delegate void StoringEventHandler (
11 object sender, EventArgs eventArguments);
12
13 /// <summary >
14 /// Executes when storing has finished.
15 /// </summary >
16 /// <param name="sender">The sender.</param>
17 /// <param name="e">The event arguments .</param>
18 public delegate void StoredEventHandler(
19 object sender, EventArgs eventArguments);
20
21 /// <summary >
22 /// Executes when restoring begins.

23 /// </summary >

106 10 Ereignisse

24 /// <param name="sender">The sender.</param>

25 /// <param name="e">The event arguments .</param>
26 public delegate void RestoringEventHandler (

27 object sender, EventArgs eventArguments);
28

29 /// <summary >

30 /// Executes when restoring has finished.

31 /// </summary >

32 /// <param name="sender">The sender.</param>

33 /// <param name="e">The event arguments.</param>
34 public delegate void RestoredEventHandler (

35 object sender, EventArgs eventArguments);
36

37 /// <summary >

38 /// Represents a complex number.

39 /// </summary >

40 public sealed class ComplexNumber : IPersistable
41 {

42 #region Properties

43 #endregion

44

45 #region Events

46 /// <summary >

47 /// Fires when storing begins.

48 /// </summary >

49 public event StoringEventHandler Storing;
50

51 /// <summary >

52 /// Fires when storing has finished.

53 /// </summary >

54 public event StoredEventHandler Stored;

55

56 /// <summary >

57 /// Fires when restoring begins.

58 /// </summary >

59 public event RestoringEventHandler Restoring;
60

61 /// <summary >

62 /// Fires when restoring has finished.

63 /// </summary >

64 public event RestoredEventHandler Restored;
65 #endregion

66

67 #region Methods

68 //

69

70 /// <summary >

71 /// Raises the storing event.

72 /// </summary >

73 private void OnStoring ()

74 {

75 // Check if there are any event handlers.
76 if (this.Storing != null)

7 {

10.2 Auslosen von Ereignissen 107

78 // Raise the storing event.
79 this.Storing (this, null);

80 }

81 }

82

83 /// <summary >

84 /// Raises the stored event.

85 /// </summary >

86 private void OnStored ()

87 {

88 // Check if there are any event handlers.
89 if (this.Stored !'= null)

90 {

91 // Raise the stored event.

92 this.Stored (this, null);

93 }

94 }

95

96 /// <summary >

97 /// Raises the restoring event.

98 /// </summary >

99 private void OnRestoring ()

100 {

101 // Check if there are any event handlers.
102 if (this.Restoring != null)

103 {

104 // Raise the restoring event.
105 this.Restoring (this, null);
106 }

107 }

108

109 /// <summary >

110 /// Raises the restored event.

111 /// </summary >

112 private void OnRestored ()

113 {

114 // Check if there are any event handlers.
115 if (this.Restored != null)

116 {

117 // Raise the restored event.
118 this.Restored (this, null);
119 }

120 }

121

122 /// <summary >

123 /// Stores the current instance in the specified
124 /// memento .

125 /// </summary >

126 /// <param name="memento">The memento .</param>
127 public void Store(IMemento memento)
128 {

129 // Raise the storing event.

130 this.0OnStoring ();

131

108 10 Ereignisse

132 // TODO gr: Store the current instance.
133 // 2007-06-25

134

135 // Raise the stored event.

136 this.0OnStored () ;

137 }

138

139 /// <summary >

140 /// Restores the current instance from the specified
141 /// memento .

142 /// </summary >

143 /// <param name="memento">The memento.</param>
144 public void Restore (IMemento memento)

145 {

146 // Raise the restoring event.

147 this.OnRestoring ();

148

149 // TODO gr: Restore the current instance.
150 // 2007-06-25

151

152 // Raise the restored event.

153 this.OnRestored ();

154 }

155 #endregion

156

157 #region Constructors

158 #endregion

159 }

160 }

10.3 Reagieren auf Ereignisse

Damit ein auBenstehendes Objekt auf ein Ereignis reagieren kann, muss es eine
Methode als ereignisbehandelnde Methode an dem Ereignis registrieren. Da Ereig-
nisse intern nichts anderes als Delegaten sind, entspricht die Vorgehensweise zum
Registrieren und Deregistrieren der zum Binden und Losen von Methoden an De-
legaten — der einzige Unterschied ist, dass fiir Ereignisse nur die Varianten mit den
Operatoren += und -= zuléssig sind. Eine direkte Zuweisung einer Methode oder
das Zuweisen des Wertes null sind nicht moglich.

Als Namensrichtlinie gilt, dass eine ereignisbehandelnde Methode dem Namen
des ereignisauslosenden Objekts, ergdnzt um einen Unterstrich und den Namen des
Ereignisses entspricht, wobei jeweils Pascal Case angewandt wird. Eine Methode,
die das Ereignis Stored der Klasse ComplexNumber behandelt, hie3e also Complex-
Number_Stored.

Kapitel 11
Generika

11.1 Was sind Generika?

Die Schnittstelle IMemento, die zum Speichern und Wiederherstellen von Daten
dient, verfiigt iiber einen eklatanten Nachteil: In der bislang verwendeten Form ist
sie auf Daten vom Typ float beschrénkt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes.
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name="key">The key.</param>
15 /// <param name="value">The value.</param>
16 void Store(string key, float value);
17
18 /// <summary >
19 /// Restores the value stored with the specified
20 /// key.
21 /// </summary >
22 /// <param name="key">The key.</param>
23 /// <returns >The value.</returns>
24 float Restore(string key);
25 ¥
26 1}

Bei der Verwendung der Schnittstelle mit der Klasse ComplexNumber hat sich
diese Einschrinkung nicht ausgewirkt, da dort nur Daten vom Typ float verwen-

Golo Roden, Auf der Fiihrte von C# 109
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

110 11 Generika

det werden. Falls die Schnittstelle jedoch mehr Datentypen unterstiitzen soll, was
spétestens dann benotigt wird, wenn die Schnittstelle allgemeingiiltig fiir zahlrei-
che verschiedene Klassen eingesetzt werden soll, macht sich diese Einschrinkung
deutlich bemerkbar.

Die einfachste Variante, die Schnittstelle um die benétigten Datentypen zu er-
weitern, liegt darin, die entsprechenden Methoden zu ergéinzen. Bei der Methode
Store bedeutet dies zwar einigen Aufwand, prinzipiell ist es aber tiberhaupt mog-
lich, da sich die einzelnen iiberladenen Methoden im Typ des zweiten Parameters
unterscheiden. Im folgenden Code wurde die Schnittstelle um eine Methode zum
Speichern von Zeichenketten erweitert.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes.
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name="key">The key.</param>
15 /// <param name="value">The value.</param>
16 void Store(string key, float value);
17
18 /// <summary >
19 /// Stores the specified value using the specified
20 /// key.
21 /// </summary >
22 /// <param name="key">The key.</param>
23 /// <param name="value">The value.</param>
24 void Store(string key, string value);
25
26 /// <summary >
27 /// Restores the value stored with the specified
28 /// key.
29 /// </summary >
30 /// <param name="key">The key.</param>
31 /// <returns>The value.</returns>
32 float Restore(string key);
33 }
34 }

Abgesehen von dem notwendigen Aufwand, eine prinzipiell immer gleiche Me-
thode zu definieren, funktioniert dieser Ansatz bei der Methode Restore nicht: Da als
Parameter immer ein string libergeben wird und sich die Methoden nur durch den
Typ des Riickgabewertes unterscheiden wiirden, ist ein Uberladen nicht moglich.

11.1 Was sind Generika? 111

Als Ausweg bietet es sich an, den Typ des Riickgabewertes in den Methodennamen
aufzunehmen, um die Methoden unterscheidbar zu machen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes.
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name="key">The key.</param>
15 /// <param name="value">The value.</param>
16 void Store(string key, float value);
17
18 /// <summary >
19 /// Stores the specified value using the specified
20 /// key.
21 /// </summary >
22 /// <param name="key">The key.</param>
23 /// <param name="value">The value.</param>
24 void Store(string key, string value);
25
26 /// <summary >
27 /// Restores the value stored with the specified
28 /// key.
29 /// </summary >
30 /// <param name="key">The key.</param>
&l /// <returns >The value.</returns>
32 float RestoreAsFloat(string key);
33
34 /// <summary >
35 /// Restores the value stored with the specified
36 /// key.
Sid /// </summary >
38 /// <param name="key">The key.</param>
89 /// <returns >The value.</returns>
40 string RestoreAsString(string key);
41 }
42 }

Auch wenn dieser Ansatz funktioniert, ist dies nicht sonderlich elegant. Seit C#
2.0 gibt es fiir derartige Probleme eine Losung, ndmlich die sogenannten generi-
schen Datentypen, die kurz auch als Generika bezeichnet werden. Generika stellen
immer dann eine gangbare elegante Losung dar, wenn der gleiche Algorithmus oder

112 11 Generika

die gleiche Datenstruktur mehrfach implementiert werden muss, wobei sich die ein-
zelnen Varianten nur durch den Typ der zu verarbeitenden Daten unterscheiden.

In einem solchen Fall erméglichen es Generika, den Algorithmus oder die Daten-
struktur nur ein einziges Mal implementieren zu miissen, ohne von vornherein einen
konkreten Typ festzulegen. Statt dessen wird der Typ abstrahiert und an seiner Stel-
le ein Platzhalter eingefiigt, der erst von dem Compiler durch den tatsdchlichen Typ
ersetzt wird. Da der Compiler den tatsidchlichen Typ in den MSIL-Code schreibt,
sind generische Datentypen trotz ihres abstrakten Ansatzes typsicher.

Der Platzhalter kann so wohl bei Klassen und Schnittstellen wie auch bei be-
liebigen Elementen wie Feldern, Eigenschaften oder Methoden eingesetzt werden
und wird durch ein paar Spitzklammern begrenzt. Als Name wird iiblicherweise der
Buchstabe T, der als Kiirzel fiir Type steht, verwendet. Falls mehr als ein Platz-
halter benétigt wird, wird jeder einzelne Typparameter mit dem Buchstaben T als
Suffix und einem folgenden Substantiv in Pascal Case benannt, wobei die zusétzli-
chen Platzhalter durch Kommata getrennt innerhalb der Spitzklammern aufgelistet
werden.

Um also die Schnittstelle IMemento als generischen Datentyp zur Verfiigung zu
stellen, muss ihre Definition um den Platzhalter fiir den tatsédchlich zu verarbeiten-
den Typ ergiinzt werden. Innerhalb der Schnittstelle kann an Stelle der Typangabe
dann der Platzhalter T verwendet werden. Der Typparameter wird dabei im XML-
Kommentar mit Hilfe des Elementes typeparam beschrieben.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes.
7 /// </summary >
8 /// <typeparam name="T">The type.</typeparam>
9 public interface IMemento<T>
10 {
11 /// <summary >
12 /// Stores the specified value using the specified
13 /// key.
14 /// </summary >
15 /// <param name="key">The key.</param>
16 /// <param name="value">The value.</param>
17 void Store(string key, T value);
18
19 /// <summary >
20 /// Restores the value stored with the specified
21 /// key.
22 /// </summary >
23 /// <param name="key">The key.</param>
24 /// <returns >The value.</returns>
25 T Restore (string key);

26 ¥

11.1 Was sind Generika?

27

}

Die Schnittstelle IMemento kann nun fiir beliebige Typen eingesetzt werden, in-
dem sie tiber ihren Namen ergédnzt um einen konkreten Typ angesprochen wird. Statt
IMemento muss in der Schnittstelle IPersistable nun IMemento<floar> angegeben

werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for persisting an object.
7 /// </summary >
8 public interface IPersistable
9 {
10 /// <summary >
11 /// Stores the current instance to the specified
12 /// memento .
13 /// </summary >
14 /// <param name="memento">The memento .</param>
15 void Store(IMemento<float> memento);
16
17 /// <summary >
18 /// Restores the current instance to the specified
19 /// memento .
20 /// </summary >
21 /// <param name="memento">The memento .</param>
22 void Restore (IMemento<float> memento);
23 }
24 }

Nachteilig an dieser Variante ist allerdings, dass nun fiir jeden einzelnen Daten-
typ eine eigene Schnittstelle IMemento mit dem jeweiligen Typ definiert werden
muss. Daher kann der Typ auch nur fiir eine Methode angegeben werden, so dass
die Schnittstelle IMemento nach wie vor allgemein giiltig bleibt, ihre Methoden aber

unter Angabe eines Typs aufgerufen werden miissen.

C#

1
2
3
4
5
6
7
8
9

10

using System;

namespace GoloRoden.GuideToCSharp

{

/// <summary >

/// Provides methods for memento classes.
/// </summary >

public interface IMemento

{

17/

<summary >

114

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48

/17
/17
/17
/17
/17
/17

11 Generika

Stores the specified value using the specified
key .

</summary >

<typeparam name="T">The type.</typeparam>
<param name="key">The key.</param>

<param name="value">The value.</param>

void Store<T>(string key, T value);

/17
/17
/17
/17
/17
/17
/17

<summary >

Restores the value stored with the specified
key .

</summary >

<typeparam name="T">The type.</typeparam>
<param name="key">The key.</param>

<returns >The value.</returns >

T Restore<T>(string key);

/// <summary >
/// Provides methods for persisting an object.
/// </summary >

public
{
/17
/17
/17
/17

/17

interface IPersistable

<summary >

Stores the current instance to the specified
memento .

</summary >

<param name="memento">The memento.</param>

void Store (IMemento<float> memento);

/17
/17
/17
/17
/17

<summary >

Restores the current instance to the specified
memento .

</summary >

<param name="memento">The memento .</param>

void Restore (IMemento<float> memento);

11.2 Typparameter

Allen bisher verwendeten generischen Typparametern ist gemein, dass es keine Ein-
schrinkungen gibt, welche Typen an Stelle des Platzhalters eingesetzt werden kon-
nen. Solche Typparameter werden daher auch als nicht gebundene oder ungebun-
dene Typparameter bezeichnet. Allerdings verfiigen ungebundene Typparameter —
eben weil es keine Einschrinkung der potenziellen Typen gibt — ihrerseits tiber ei-
nige Einschrinkungen.

Unabhéngig davon, dass der Typ bei ungebundenen Typparametern unbekannt
ist, lassen sich auch keinerlei Annahmen iiber die Art des Typs machen: Es ist unbe-

11.2 Typparameter 115

kannt, welche Schnittstellen dieser Typ implementiert, es ist unbekannt, ob der Typ
von einer bestimmten Basisklasse ableitet, es ist nicht einmal bekannt, ob es sich
bei dem Typ um einen Verweis- oder einen Wertetyp handelt.

In einigen Fillen kann es erforderlich sein, die potenziellen Typen einzuschrén-
ken. Dazu dient in C# das Schliisselwort where, mit dem zusitzliche Angaben zu
einem Typ gemacht werden konnen. Typparameter, die mit diesem Schliisselwort
niher spezifiziert wurden, werden als gebundene Typparameter bezeichnet.

Sofern mehr als ein Typparameter verwendet wird, muss fiir jeden dieser Typpa-
rameter, der gebunden werden soll, ein eigenes where angegeben werden.

Die einfachste Variante einer Typeinschriankung gibt an, ob es sich bei dem Typ-
parameter um einen Verweis- oder einen Wertetyp handelt. Fiir Wertetypen wird als
Basisklasse des Typparameters das Schliisselwort struct angegeben, fiir Verweisty-
pen class.

C#

1 public void Foo<T> where T : class
2 {
3}

Ebenso kann an Stelle des Schliisselwortes class auch eine konkrete Klasse oder
Schnittstelle angegeben werden, welcher der Typparameter entsprechen muss. Wie
bei der Vererbung von Klassen kénnen mehrere Schnittstellen angegeben werden,
zudem konnen sie mit der Angabe einer Klasse kombiniert werden. In diesem Fall
werden die einzelnen Angaben durch Kommata getrennt.

C#

1 public void Foo<T> where T : Bar, IBarl, IBar2
2 {
3}

SchlieBlich kann der Ausdruck new() angegeben werden, um zu definieren, dass
der Typparameter iiber einen Offentlichen parameterlosen Konstruktor verfiigen
muss. Falls dieser Ausdruck angegeben wird, muss er als letzter angegeben werden.

C#

1 public void Foo<T> where T : class, new()
2 {
g ¥

Als Spezialfall gibt es des weiteren noch Typparameter, die wiederum durch
einen Typparameter eingeschrinkt werden, indem dieser weitere Typparameter bei-
spielsweise als notwendige Basisklasse angegeben wird. Solche Typeinschrinkun-
gen werden als naked bezeichnet.

C#

1 public void Foo<TDerived, TBase> where TDerived : TBase

116 11 Generika

w N
(SR

Da bei einem Typparameter nicht notwendigerweise bekannt ist, ob es sich um
einen Verweis- oder einen Wertetyp handelt, ist es nicht moglich, ihn mit dem Stan-
dardwert zu initialisieren. Um einen Typparameter dennoch mit dem Standardwert
seines Typs initialisieren zu konnen, gibt es das Schliisselwort default, das wie eine
Methode verwendet wird, und dem als Parameter der entsprechende Typ iibergeben
werden muss.

C#
1 public T Foo<T>()
2 {
3 return default (T);
4 3}

Neben Schnittstellen und Methoden kdnnen auch Klassen, Strukturen und Dele-
gaten mit Typparametern versehen werden.

11.3 Lambdaausdriicke

Generika eignen sich jedoch nicht nur dazu, Typen mit Hilfe von Typparametern
flexibel gestalten zu konnen, sie ermoglichen auch die Definition von Lambdaaus-
driicken wihrend der Ausfiihrung. Dazu bietet C# seit der Version 3.0 den vorgefer-
tigten Delegaten Func im Namensraum System an, dem als Typparameter die Typen
der Parameter und des Riickgabewertes des zu erzeugenden Lambdaausdrucks tiber-
geben werden.

Soll beispielsweise ein Lambdaausdruck definiert werden, der eine komplexe
Zahl in ihren Absolutbetrag iiberfiihrt, so ist dies mit Hilfe dieses Delegaten mog-
lich. Als Typparameter werden in diesem Fall die Klasse ComplexNumber sowie
float als Typ des Absolutbetrags angegeben.

C#

1 Func<ComplexNumber , float> GetAbsoluteValue =
2 (c => c.AbsoluteValue);

Die auf diese Art erzeugte Delegatinstanz kann im weiteren Verlauf wie jeder an-
dere Delegat aufgerufen werden. Sollen nicht nur ein, sondern mehrere Parameter
angegeben werden, miissen diese zum einen dem Delegaten Func wie auch inner-
halb des Lambdaausdrucks kommasepariert innerhalb von runden Klammern ange-
geben werden.

C#

1 Func<ComplexNumber , ComplexNumber , ComplexNumber > Add =
2 ((c1l, c2) => c1 + c2);

Kapitel 12
Nullbare Wertetypen

12.1 Was sind nullbare Wertetypen?

Neben Verweis- und Wertetypen verfiigt C# seit der Version 2.0 iiber eine weite-
re Art von Typen, die nullbaren Wertetypen. Diese entsprechen einem Hybriden
zwischen Verweis- und Wertetypen, da sie in ihrer Funktion den Wertetypen ent-
sprechen, zusitzlich allerdings den Wert null annehmen konnen, der iiblicherweise
Verweistypen vorbehalten ist.

Mit nullbaren Wertetypen ist es beispielsweise moglich, den Wert eines Werte-
typs als unbekannt zu kennzeichnen. Ohne die Mdglichkeit, null zuordnen zu kon-
nen, miisste dafiir ein konkreter Wert verwendet werden, wie beispielsweise die Zahl
Null oder eine leere Zeichenkette. Allerdings entfiele in diesem Fall die Moglich-
keit, zwischen dem tatsdchlichen Wert Null beziehungsweise der leeren Zeichenket-
te und einem unbekannten Wert zu unterscheiden.

Intern werden nullbare Wertetypen durch einen Verweistyp dargestellt, indem
dieser als Container fiir den Wertetyp dient und zusitzliche Eigenschaften bereit-
stellt, um mit dem Wert null umgehen zu kdnnen.

Definiert wird ein nullbarer Wertetyp, indem an die Typdefinition ein ? angehéngt
wird. Um die Klasse ComplexNumber derart zu erweitern, dass der Real- und der
Imaginérteil einer komplexen Zahl der Wert null angegeben werden kann, muss
in den entsprechenden Definitionen der Typ float? an Stelle von float verwendet
werden.

C#

1 using System;

2

3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Executes when storing begins.

7 /// </summary >

8 /// <param name="sender">The sender.</param>

9 /// <param name="e">The event arguments .</param>
Golo Roden, Auf der Fiihrte von C# 117

DOI: 10.1007/978-3-540-27889-4, © Springer 2008

118

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

12 Nullbare Wertetypen

public delegate void StoringEventHandler (
object sender, EventArgs eventArguments);

/// <summary >
/// Executes when storing has finished.
/// </summary >
/// <param name="sender">The sender.</param>
/// <param name="e">The event arguments.</param>
public delegate void StoredEventHandler (
object sender, EventArgs eventArguments);

/// <summary >

/// Executes when restoring begins.

/// </summary >

/// <param name="sender">The sender .</param>

/// <param name="e">The event arguments.</param>

public delegate void RestoringEventHandler (
object sender, EventArgs eventArguments);

/// <summary >

/// Executes when restoring has finished.

/// </summary >

/// <param name="sender">The sender .</param>

/// <param name="e">The event arguments.</param>

public delegate void RestoredEventHandler (
object sender , EventArgs eventArguments);

/// <summary >
/// Represents a complex number.
/// </summary >
public sealed class ComplexNumber : IPersistable
{
#region Properties

//

/// <summary >
/// Gets or sets the real part.
/// </summary >
/// <value>The real part.</value>
public float? RealPart
{

get

{

return this._realPart;

this._realPart = value;

/// <summary >
/// Gets or sets the imaginary part.

12.1 Was sind nullbare Wertetypen?

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

/// </summary >
/// <value>The imaginary part.</value>
public float? ImginaryPart
{
get
{

return this._imaginaryPart;

this._imaginaryPart = value;

}

#endregion

#region Events
#endregion

#region Methods
#endregion

#region Constructors
/// <summary >
/// Initializes a new instance of the ComplexNumber
/// type using default values.
/// </summary >
public ComplexNumber ()
this (null, null)
{
}

/// <summary >

/// Initializes a new instance of the ComplexNumber

/// type using the specified real value.

/// </summary >

/// <param name="realPart">The real part.</param>

public ComplexNumber (float? realPart)
this(realPart, null)

{

¥

/// <summary >
/// Initializes a new instance of the ComplexNumber
/// type using the specified real and imaginary
/// values.
/// </summary >
/// <param name="realPart">The real part.</param>
/// <param name="imaginaryPart">The imaginary
/// part.</param>
public ComplexNumber (
float? realPart, float? imaginaryPart)
{
// Set default values for the real and

119

120 12 Nullbare Wertetypen

118 // imaginary part.

119 this.RealPart = realPart;

120 this.ImaginaryPart = imaginaryPart;
121 }

122 #endregion

123 }

124 }

Da die Typen float und float? fiir C# verschieden sind, miissen nicht nur die
Definitionen der Felder, sondern auch die der zugehorigen Eigenschaften, Methoden
und Konstruktoren angepasst werden.

Insbesondere in den Konstruktoren muss entschieden werden, mit welchen Stan-
dardwerten die Felder initialisiert werden sollen — bislang war es die Zahl Null, in
der neuen Version werden die Felder statt dessen mit nu/l initialisiert, falls kein kon-
kreter Wert angegeben wird. Dies entspricht der Bedeutung des Literals null, dass
der eigentliche Wert ndamlich nicht bekannt ist.

Kapitel 13
Enumerationen

13.1 Was sind Enumerationen?

Haufig besteht Bedarf, fiir einen Parameter einer Methode nur eine gewisse Auswahl
an vorgegebenen Werten zuzulassen. Handelt es sich dabei nur um einen Wahrheits-
wert, also einen Wert, der entweder wahr oder falsch ist, bietet sich dafiir als Typ
bool an. Dieser Typ sollte allerdings nur verwendet werden, wenn true und false
tatsidchlich die beiden Alternativen darstellen.

In der Praxis wird bool hiufig auch dann verwendet, wenn nur eine der beiden
Alternativen selbstbeschreibend ist. Der Konstruktor der Klasse ComplexNumber
konnte beispielsweise derart erweitert werden, dass ihm ein Parameter vom Typ bool
iibergeben wird, der angibt, ob es sich bei der zu initialisierenden komplexen Zahl
um eine konjugierte Zahl handelt. In diesem Fall entsprechen die moglichen Werte
true und false den beiden Alternativen, da eine komplexe Zahl entweder konjugiert
ist oder nicht.

In einem anderen Fall konnte die Schnittstelle IPersistent um einen Parameter
erweitert werden, der angibt, ob die Daten auf Festplatte geschrieben und von dort
wieder geladen werden sollen. Hierfiir ergibt der Typ bool wenig Sinn, denn frue
gibt als Wert zwar an, dass die Festplatte verwendet werden soll, aber die Angabe
von false ist sinnlos — es wird zwar festgelegt, dass die Festplatte nicht verwendet
werden soll, die Angabe des Speicherortes ist aber nicht gegeben.

Fiir diese Fille, in denen mehr als eine Option angegeben werden sollen, verfiigt
C# iiber sogenannte Enumerationen. Eine Enumeration kann verschiedene Werte
enthalten, die iiber ihren jeweiligen Namen angesprochen werden konnen. Definiert
wird eine Enumeration mit Hilfe des Schliisselwortes enum, wobei die einzelnen
Werte kommasepariert innerhalb geschweifter Klammern aufgezihlt werden. Im
Gegensatz zu einer Klasse muss allerdings hinter der schlieBenden geschweiften
Klammer ein Semikolon angegeben werden.

Die Namenskonventionen fiir Enumerationen entsprechen prinzipiell denen von
Klassen, allerdings wird der Name einer Enumeration im Plural angegeben.

Golo Roden, Auf der Fiihrte von C# 121
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

122 13 Enumerationen

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Contains storage locations for the persistence
7 /// interface.
8 /// </summary >
© public enum Storagelocations
10 {
11 /// <summary >
12 /// The disk as storage location.
13 /// </summary >
14 Disk,
15
16 /// <summary >
17 /// A databse as storage location.
18 /// </summary >
19 Database
20 i
21 }

Der Vorteil in der Verwendung einer Enumeration an Stelle einer Zahl oder einer
Zeichenkette zur Identifikation des Wertes liegt zum einen in der Verstdndlichkeit,
da der entsprechende Wert iiber seinen Namen angesprochen wird, zum anderen
in der Uberpriifbarkeit durch den Compiler. Ein Schreibfehler eines Wertes aus ei-
ner Enumeration wird vom Compiler entdeckt, wihrend ein Schreibfehler in einer
Zeichenkette erst zur Laufzeit durch einen auftretenden Fehler entdeckt wird.

Intern wird eine Enumeration allerdings durch den Datentyp int représentiert,
wobei die einzelnen Werte der Enumeration von Null beginnend nummeriert wer-
den. Dieses standardmé@Bige Verhalten kann allerdings iiberschrieben werden, indem
einem oder mehreren Werten explizit eine Ganzzahl zugeordnet wird. Alle Werte,
denen keine eigene Zahl zugeordnet wird, erhalten dabei als interne Reprisentation
eine automatisch inkrementierte Nummer.

Im folgenden Beispiel beginnt die Enumeration bei eins, da fiir den Wert Data-
base keine eigene Reprisentation angegeben wird, erhilt er automatisch den néchst-
hoheren Wert, namlich zwei.

C#

using System;

1

2

3 namespace GoloRoden.GuideToCSharp
4 {

5 /// <summary >
6 /// Contains storage locations for the persistence
7 /// interface.

8 /// </summary >

9 public enum StoragelLocations

13.1 Was sind Enumerationen? 123

10 {

11 /// <summary >

12 /// The disk as storage location.
13 /// </summary >

14 Disk =1,

15

16 /// <summary >

17 /// A databse as storage location.
18 /// </summary >

19 Database

20 I

21 }

Anders als Klassen leiten Enumerationen nicht direkt von dem Typ object ab,
sondern von der Struktur Enum im Namensraum System.

Kapitel 14
Variablen

14.1 Was sind Variablen?

Die bisher einzige Moglichkeit, Daten zu speichern, besteht in der Verwendung von
Feldern. Diese sind dann niitzlich, wenn die entsprechenden Daten relevant fiir den
Status des Objektes an sich sind. Allerdings besteht manchmal die Notwendigkeit,
Daten temporir zu speichern, wenn diese beispielsweise als Zwischenergebnis einer
Berechnung fiir eine spitere Verarbeitung zur Verfiigung stehen sollen, nach dem
Abschluss der Berechnung aber nicht mehr benétigt werden.

Fiir diese Fille verfiigt C# iiber ein dhnliches Konzept wie Felder, ndmlich Va-
riablen. Im Gegensatz zu Feldern werden Variablen allerdings nicht innerhalb eines
Typs, sondern innerhalb einer Methode definiert und stehen dort auch nur so lan-
ge zur Verfiigung, wie die Methode ausgefiihrt wird. Deshalb werden sie auch als
lokale Variablen bezeichnet.

Nachdem die Ausfiihrung der Methode, welche die lokalen Variablen enthilt, be-
endet wurde, wird der Speicher der lokalen Variablen wieder freigegeben, wodurch
diese ihren Wert verlieren und sich beim néchsten Aufruf der Methode wieder derart
verhalten, als wiren sie noch nie verwendet worden.

Da der Zugriff auf lokale Variablen nur aus der Methode moglich ist, welche die
lokalen Variablen enthilt, wird bei deren Deklaration auf die Angabe eines Zugriffs-
modifizierers verzichtet. Wie bei Feldern kann auch lokalen Variablen ein Standard-
wert zugewiesen werden. Falls ein Standardwert fiir eine lokale Variable angegeben
wird, wird ihre Erzeugung als Definition bezeichnet, andernfalls als Deklaration.

Als Namenskonventionen gelten die Regeln von Feldern, mit der Ausnahme, dass
auf den fiihrenden Unterstrich verzichtet wird.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >

Golo Roden, Auf der Fiihrte von C# 125
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

126 14 Variablen

8 public class Program

9 {

10 /// <summary >

11 /// Executes the application.
12 /// </summary >

13 public static void Main ()

14 {

15 // Declare the mathematical constant pi.
16 double pi;

17 }

18 }

19 }

Nachdem eine Variable deklariert wurde, kann auf sie und damit auf ihren Wert
zugegriffen werden. Die Zuweisung eines neuen Wertes erfolgt analog der Zuwei-
sung eines Wertes an ein Feld mit Hilfe des Operators =.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define the mathematical constant pi.
16 double pi = 3.1415926;
17 }
18 }
19 }

Mit Variablen ist es nun auch moglich, den Riickgabewert von Methoden zu ver-
arbeiten, indem bei der Zuweisung an Stelle eines konkreten Wertes der Methoden-
aufruf angegeben wird. In diesem Fall wird zunichst die Methode aufgerufen und
ausgefiihrt und anschliefend ihr Riickgabewert der Variablen zugewiesen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >

14.1 Was sind Variablen? 127

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

}

public class Program

{

/// <summary >

/// Executes the application.
/// </summary >

public static void Main ()

{

// TODO gr: Create a complex number.
// 2007-07-10

// Determine the absolute value and assign it

// to a local variable.

float absoluteValue =
complexNumber.AbsoluteValue;

Die lokale Variable kann im folgenden Verlauf der Methode verwendet werden,
um weitere Berechnungen auszufiihren, oder um ihren Wert auf die Konsole auszu-
geben. Zu diesem Zweck enthilt die Framework Class Library die Klasse Console
im Namensraum System, deren Methode WriteLine den Wert des iibergebenen Pa-
rameters auf der Konsole ausgibt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // TODO gr: Create a complex number.
16 // 2007-07-10
17
18 // Determine the absolute value and assign it
19 // to a local variable.
20 float absoluteValue =
21 complexNumber.AbsoluteValue;
22
23 // Print the absolute value to the console.
24 Console.WriteLine (absoluteValue);
25 }
26 }
27 }

128 14 Variablen

Variablen eignen sich jedoch nicht nur dazu, den Riickgabewert eines einfachen
Methodenaufrufs aufzunehmen. Mit ihrer Hilfe kann eine weitere, neue Art von Me-
thoden definiert werden, die vorher nicht moglich war: Rekursive Methoden. Dabei
handelt es sich um Methoden, die sich intern selbst aufrufen, um ihren Riickgabe-
wert zu berechnen.

Ein bekanntes Beispiel fiir eine rekursive Berechnung ist die Folge der Fibonacci-
Zahlen. In dieser Folge werden nur fiir die beiden ersten Elemente die Werte 0 und
1 vorgegeben, alle folgenden Elemente berechnen sich aus der Summe ihrer beiden
Vorginger. Das dritte Element entspricht also der Summe aus 0 und 1, das vierte
Element der Summe aus 1 und 1, das fiinfte der Summe aus 1 und 2, ...

Hierdurch ergibt sich die Folge:

o, 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

Diese Folge lisst sich rekursiv berechnen, da die n-te Fibonacci-Zahl der Summe
aus der n-1-ten und n-2-ten Fibonacci-Zahl entspricht, wobei diese wiederum aus
ihren Vorgédngern berechnet werden konnen. Prinzipiell folgt eine Methode zur Be-
rechnung der Fibonacci-Zahlen also dem folgenden Schema:

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Calculates the n-th Fibonacci number.
12 /// </summary >
13 public int CalculateFibonacci(int n)
14 {
15 // Declare a variable for the sum of the
16 // predecessors.
17 int sum;
18
19 // TODO gr: Calculate the number by adding
20 // its predecessors.
21 // 2007-07-17
22
23 // Return the sum to the caller.
24 return sum;
25 }
26 }
27 }

Wiirde man diese Methode allerdings in dieser Form aufrufen, kiime es zu einem
Uberlauf im Methodenstapel, da sich die Methode ohne Abbruch immer wieder
selbst aufriefe und somit in eine endlose Schleife geriete. Die Losung stellt ein Ab-

14.2 Zuweisungen an Variablen 129

bruchkriterium dar, das im Fall von n gleich 1 oder 2 die entsprechend definierten
Startwerte der Fibonacci-Folge zuriickgibt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Calculates the n-th Fibonacci number.
12 /// </summary >
13 public int CalculateFibonacci(int n)
14 {
15 // TODO gr: Check whether the first or the
16 // second Fibonacci number is requested.
17 // If so, return the appropriate values.
18 // 2007-07-17
19
20 // Declare a variable for the sum of the
21 // predecessors.
22 int sum;
23
24 // TODO gr: Calculate the number by adding its
25 // predecessors.
26 // 2007-07-17
27
28 // Return the sum to the caller.
29 return sum;
30 }
31 }
32 }

Prinzipiell kann eine lokale Variable an jeder beliebigen Stelle einer Methode
definiert werden, sofern die Deklaration vor der ersten Verwendung der Variablen
statt findet. Es gilt allerdings als guter Stil, eine lokale Variable so spit wie moglich
vor ihrer ersten Verwendung zu definieren.

Da die Variable sum, welche die Summe der beiden vorangegangenen Fibonacci-
Zahlen aufnimmt, erst ab der Berechnung der dritten Fibonacci-Zahl bendtigt wird,
wird sie erst nach der entsprechenden Priifung definiert.

14.2 Zuweisungen an Variablen

Bislang wurde bereits einige Male der Operator = verwendet, um einem Feld oder
einer Variablen einen Wert zuzuweisen, weshalb dieser Operator als Zuweisungs-

130 14 Variablen

operator bezeichnet wird. Bei einer Zuweisung wird immer der Wert rechts des
Operators dem Element zu seiner Linken zugeordnet. Bisher wurde bei den Zu-
weisungen allerdings immer nur auf Wertetypen zugegriffen.

Die Zuweisung an Verweistypen funktioniert prinzipiell gleich: Einem Element
auf der linken Seite kann ein auf der rechten Seite des Operators stehendes Objekt
zugewiesen werden. Allerdings muss — damit ein Objekt zugewiesen werden kann —
zunichst ein Objekt erzeugt werden. Es wurde bereits erwihnt, dass die entspre-
chende Methode, die bei der sogenannten Instanziierung von Objekten ausgefiihrt
wird, der Konstruktor der entsprechenden Klasse ist.

Um also eine neue Instanz zu erzeugen, muss der Konstruktor aufgerufen wer-
den, dem allerdings zusitzlich das Schliisselwort new vorangestellt wird. Obwohl
ein Konstruktor nicht iiber einen Riickgabewert verfiigt, wird durch das Schliissel-
wort new ein Verweis auf das neu erzeugte Objekt zuriickgegeben, der in einem
Element gespeichert werden kann.

Um also ein Objekt der Klasse ComplexNumber zu erzeugen, miisste der Aufruf
folgendermalien lauten:

C#

1 new ComplexNumber ();

Falls der neu erzeugten komplexen Zahl direkt Werte fiir den Real- und den Ima-
ginirteil zugewiesen werden sollen, konnen diese als Parameter tibergeben werden —
vorausgesetzt, es wurde ein entsprechender Konstruktor definiert.

C#

1 new ComplexNumber (23, 42);

Damit schlieBlich der Verweis auf das neu erzeugte Objekt gespeichert wird,
muss die Anweisung noch um eine Zuweisung an eine Variable ergénzt werden, die
zuvor deklariert werden muss.

C#

1 ComplexNumber myNumber ;
2 myNumber = new ComplexNumber (23, 42);

Alternativ kann, wie bei Wertetypen auch, die Deklaration mit einer Zuweisung
zu einer Definition verbunden werden:

C#

1 ComplexNumber myNumber = new ComplexNumber (23, 42);

Mit der Moglichkeit, Objekte erzeugen zu konnen, lasst sich die Klasse Com-
plexNumber nun auch in einer Anwendung nutzen, um beispielsweise die Summe
zweier komplexer Zahlen zu berechnen.

14.2 Zuweisungen an Variablen 131

C#

1 using System

2

3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Represents the application class.

7 /// </summary >

8 public static class Program

9 {

10 /// <summary >

11 /// Executes the application.

12 /// </summary >

13 public static void Main ()

14 {

15 // Create two complex numbers.

16 ComplexNumber first = new ComplexNumber (23, 42);
17 ComplexNumber second = new ComplexNumber (17, 2);
18

19 // Add the second number to the first one.
20 first.Add (second);

21

22 // Print the result to the console.

23 Console.WriteLine (first.Real);

24 Console.WriteLine (first.Imaginary);

25 }

26 }

27 }

Die Zuweisung an nullbare Wertetypen hingegen funktioniert wiederum so wie
die Zuweisung an normale Wertetypen. Der einzige Unterschied liegt darin, dass
nullbaren Wertetypen das Literal null zugewiesen werden kann, was bei normalen
Wertetypen nicht moglich ist.

Seit der Version 3.0 von C# gibt es mit Hilfe der sogenannten Objektinitialisierer
eine weitere Moglichkeit, Objekte zu erzeugen. Mit Objektinitialisierern ist es nicht
mehr noétig, fiir jede potenzielle Initialisierung einen eigenen Konstruktur bereitzu-
stellen. Statt dessen werden die zu initialisierenden Eigenschaften und ihre Werte
direkt beim Aufruf von new mit angegeben. An Stelle von

C#

// Create an instance of the Person type.
Person person = new Person();

// Set the values.

person.LastName = "Roden";
person.FirstName = "Golo";

person.EMail = "webmaster@goloroden.de";

N oo WN

kann mit Hilfe von Objektinitialisierern also auch

132 14 Variablen

C#

1 // Create an instance of the Person type and set its
2 // values.

3 Person person = new Person {
4 LastName = "Roden", FirstName = "Golo",
5 EMail = "webmaster@goloroden.de" };

geschrieben werden. Um das Ganze noch weiter zu vereinfachen, kann sogar die
Angabe des Typs entfallen. C# erzeugt in diesem Fall im Hintergrund einen pas-
senden Typ, dessen Name dem Entwickler nicht bekannt ist, und der deshalb als
anonymer Typ bezeichnet wird. Um ein solches Objekt eines anonymen Typs in
einer Variablen speichern zu konnen, gibt es das Schliisselwort var.

C#

1 // Create a new instance of an anonymous type for persons
2 // and set its values.

3 var person =

4 new { LastName = "Roden", FirstName = "Golo",

5 EMail = "webmaster@goloroden.de" };

Obwohl der Typ in diesem Beispiel dem Entwickler nicht bekannt ist, ist der
Zugriff auf das Objekt trotzdem typsicher. var steht also nicht austauschbar fiir jeden
beliebigen Typ, sondern leitet den zu verwendenden Typ aus dem Ausdruck auf der
rechten Seite des Zuweisungsoperators ab.

Wird ein Typ hergeleitet, dessen Eigenschaften namentlich und von ihrem Typ
einem bestehenden Typ entsprechen, wird dieser Typ verwendet. Es wird also nicht
bei jedem Aufruf von new ohne Angabe eines Typs ein neuer Typ erzeugt, sondern
nur dann, wenn kein passender Typ gefunden wird.

Das Schliisselwort var kann prinzipiell auch fiir eingebaute Typen verwendet
werden, so kann an Stelle der Zeile

C#

1 // Initialize a variable of type int.
2 int i = 23;

auch die Zeile

C#

1 // Initialize a variable of type int by using type
2 // inference.
3 var i = 23;

verwendet werden. In beiden Fillen wird eine Variable des Typs int erzeugt. Zu be-
achten ist bei anonymen Typen, dass ihr Einsatz nur fiir lokale Variablen méglich ist,
sie konnen insbesondere nicht als Riickgabewert fiir Methoden verwendet werden.

Kapitel 15
Arrays

15.1 Was sind Arrays?

Felder ermoglichen zwar das Speichern von Daten, aber ein Feld kann jeweils nur
einen einzelnen Wert aufnehmen. Besteht die Notwendigkeit, mehrere gleichartige
Werte speichern zu miissen, so miissen mehrere Felder definiert werden. Insbeson-
dere bei einer hohen Anzahl an Werten neigt dieses Verfahren aber dazu, uniiber-
sichtlich zu werden. AuBBerdem sind Fille denkbar, in denen nicht bereits zur Ent-
wicklungszeit bekannt ist, wie viele Werte gespeichert werden sollen, da sich dies
erst zur Laufzeit ergibt.

Die Losung fiir dieses Problem stellen sogenannte Arrays dar, die mehrere Werte
eines Typs aufnehmen konnen. Anstatt also jeden Wert in einem eigenen Feld zu
speichern, wird statt dessen ein Array als Feld angelegt, dessen Dimension ausrei-
chend ist, um alle Werte aufzunehmen.

Der Typ eines Arrays besteht aus dem Typ der Daten, die das Array aufnehmen
soll, dem ein Paar eckige Klammern folgen. Da ein Array ein Verweistyp ist, wird
es ebenso wie ein Objekt mit Hilfe des Schliisselwortes new erzeugt, wobei dort
innerhalb eckiger Klammern die Grofe des Arrays definiert wird. Im Gegensatz zu
den tibrigen Klassen leitet ein Array allerdings nicht direkt von object ab, sondern
von der Klasse System.Array.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
Golo Roden, Auf der Fiihrte von C# 133

DOI: 10.1007/978-3-540-27889-4, © Springer 2008

134

11
12
13
14
15
16
17
18
19

}

15 Arrays

/// Executes the application.

/// </summary >

public static void Main ()

{
// Define an array for fibonacci numbers.
int [] fibonacci = new int [10];

Auf die einzelnen Elemente des Arrays kann im weiteren Verlauf der Anwendung
wiederum mit Hilfe der eckigen Klammern zugegriffen werden, indem in ihnen
der Index des Elements angegeben wird, auf das zugegriffen werden soll. In C#
beginnen Indizes von Arrays immer bei Null, das heif3t, der hochste Index in einem
Array mit n Elementen trigt die Nummer n-1.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define an array for fibonacci numbers.
16 int [] fibonacci = new int [10];
17
18 // Initialize the array with the first two
19 // numbers .
20 fibonacci [0] = 1;
21 fibonacci [1] = 1;
22
23 // Calculate all following numbers.
24 for(int i = 2; i < 10; i++)
25 {
26 fibonacci [i] =
27 fibonacci[i - 1] + fibonaccil[i - 2];
28 }
29 }
30 }
31 }

Da es aufwindig und uniibersichtlich sein kann, Arrays auf diese Art zu initiali-
seren, konnen die enthaltenen Werte auch direkt innerhalb geschweifter Klammern

15.1 Was sind Arrays? 135

angegeben werden. In diesem Fall entféllt die Angabe der GroBe des Arrays, sie
wird statt dessen aus der Anzahl der libergebenen Werte ermittelt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define an array for fibonacci numbers and
16 // £ill it with numbers.
17 int [] fibonacci =
18 new int[] { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
19 }
20 }
21 }

Arrays, die wie die bisherigen Beispiele einer Aufzihlung von Werten entspre-
chen, werden auch als eindimensionale Arrays bezeichnet, da ihre Elemente nur
iiber einen Index verfiigen. In C# konnen Arrays jedoch auch mehrdimensional de-
finiert werden, so dass beispielsweise bei zwei Dimensionen eine Tabelle und bei
dreien ein Wiirfel von Daten entsteht.

Um ein Array mit mehreren Indizes auszustatten, geniigt es, bei seiner Definiti-
on mehrere Grofen anzugeben, die jeweils durch ein Komma voneinander getrennt
werden. Hierbei muss allerdings beachtet werden, dass die Kommata innerhalb der
eckigen Klammern der Typdefinition ebenfalls angegeben werden miissen. Im fol-
genden Beispiel wird ein Schachbrett als Feld von acht mal acht Feldern definiert,
auf dem Figuren platziert werden konnen.

C#

1 using System;

2

3 namespace GoloRoden.GuideToCSharp
4 {

5 /// <summary >

6 /// Contains chess figures.

7 /// </summary >

8 public enum ChessFigure

9 {

10 /// <summary >

11 /// The figure castle.

136

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

}

15 Arrays

/// </summary >
Castle,

/// <summary >

/// The figure knight.
/// </summary >

Knight

// TODO gr: Define the other chess figures.
// 2008-01-03

/// <summary >

/// Represents the application class.
/// </summary >

public class Program

{

/// <summary >
/// Executes the application.
/// </summary >
public static void Main ()
{
// Create a chess board.
ChessFigure [,] chessBoard =
new ChessFigure [8, 8];

// Put chessmen onto the board.
chessBoard [0, 0] = ChessFigure.Castle;
chessBoard [0, 1] = ChessFigure .Knight;

Neben der Moglichkeit, Arrays ein- oder mehrdimensional zu definieren, besteht
zusitzlich die Option, Arrays ineinander zu verschachteln. Prinzipiell entspricht
ein verschachteltes Array einem mehrdimensionalen Array, allerdings konnen ver-
schachtelte Arrays beispielsweise fiir jede einzelne Zeile eine individuelle Anzahl
an Spalten definieren.

C#

using System;

namespace GoloRoden.GuideToCSharp

{

/// <summary >

/// Represents the application class.
/// </summary >

public class Program

{

/// <summary >
/// Executes the application.
/// </summary >

15.1 Was sind Arrays? 137

13 public static void Main ()

14 {

15 // Create a nested array with two lines and
16 // three columns in the first row and two
17 // columns in the second row.

18 string[] colors = new stringl[2];

19 colors [0] = new stringl[3];

20 colors [1] = new stringl[2];

21

22 // Fill the array.

23 colors [0] [0] = "Blau";

24 colors [0][1] = "Blue";

25 colors [0][2] = "Bleu";

26 colors [1][0] = "Rot";

27 colors [1][1] = "Red";

28 ¥

29 }

30 }

Bei verschachtelten Arrays ist zu beachten, dass die einzelnen Dimensionen in
jeweils einem eigenen Paar eckiger Klammern angegeben werden, und die Dimen-
sionen nicht wie bei den mehrdimensionalen Arrays kommasepariert sind.

Der Einsatz von Arrays ermoglicht nicht nur, mehrere Werte in einer einzelnen
Variablen beziehungsweise einem Feld zu speichern, sondern auch, Parameter von
der Kommandozeile an die Methode Main zu iibergeben. Als Parameter kann fiir
diese in C# ndmlich ein Array von Strings angegeben werden, das die einzelnen auf
der Kommandozeile angegebenen Parameter enthilt.

Auf die einzelnen Elemente kann analog zu den Elementen aller anderen Arrays
mit Hilfe des Indizes zugegriffen werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 /// <param name="arguments">The arguments .</param>
14 public static void Main(string[] arguments)
15 {
16 Console.WriteLine (
17 "The first argument is " + arguments [0]);
18 }
19 ¥

20 }

138 15 Arrays

Arrays konnen auflerdem dazu eingesetzt werden, eine vorher nicht festgelegte
Anzahl von Parametern an eine Methode zu libergeben, indem die Werte in ein Ar-
ray verpackt werden, und nur dieses Array iibergeben wird. Da der Typ des Arrays
nicht die Groflenangabe enthilt, kann das {ibergebene Array eine beliebige Grofie
haben.

Allerdings kann es aufwindig sein, zur Ubergabe einiger Parameter ein Array
erzeugen zu miissen. Daher stellt C# das Schliisselwort params zur Verfiigung, mit
dem ein Array alternativ auch als Liste einzelner Werte iibergeben werden kann.
Sofern das Schliisselwort params einem Parameter vorangestellt wird, muss die-
ser Parameter zum einen ein Array sein, zum zweiten diirfen ihm keine weiteren
Parameter folgen, und er muss der einzige Parameter sein, der iiber das params-
Schliisselwort verfiigt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Sorts the specified numbers.
12 /// </summary >
13 /// <param name="numbers">An array of
14 /// numbers .</param>
15 /// <returns>A sorted array of the specified
16 /// numbers.</returns >
17 public int[] Sort(params int[] numbers)
18 {
19 // TODO gr: Sort the numbers and return them
20 // as int array to the caller.
21 // 2008-01-03
22 }
23 }
24 }

Wird eine solche Methode aufgerufen, so kann ihr an Stelle eines Arrays

C#

1 this.Sort(new int([] { 3, 13, 1, 8, 1, 5, 2, 34, 21, 55 });

auch eine Auflistung einzelner Zahlen iibergeben werden.

C#

1 this.Sort(3, 13, 1, 8, 1, 5, 2, 34, 21, 55);

15.2 Indexer 139

15.2 Indexer

Verwandt mit Arrays sind die sogenannten Indexer, die den indizierten Zugriff auf
eine Klasse ermoglichen. Sie entsprechen technisch gesehen einer Eigenschaft, die
allerdings immer den Namen this trigt und der als Parameter ein Index innerhalb
eckiger Klammern iibergeben wird.

Auf diesen kann dann innerhalb der Methoden ger und set zugegriffen werden,
um beispielsweise gezielt auf ein bestimmtes Element eines Arrays zuzugreifen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents an IP address.
7 /// </summary >
8 public class IPAddress
9 {
10 /// <summary >
11 /// Contains the individual parts of an IP address.
12 /// </summary >
13 private int[] _ipPart;
14
15 /// <summary >
16 /// Gets or sets an individual part of the IP
17 /// address.
18 /// </summary >
19 /// <param name="i">The index of the individual
20 /// part.</param>
21 /// <returns >The individual part of the IP
22 /// address.</returns >
23 public int this[int il
24 {
25 get
26 {
27 return this._ipPart[i];
28 }
29
30 set
31 {
32 this._ipPart [i] = value;
33 }
34 }
35
36 /// <summary >
37 /// Initializes a new instance of the IPAddress
38 /// type.
39 /// </summary >
40 public IPAddress ()

41 {

140

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public IPAddress (int ipPartil,

this._ipPart = new int [4];

<summary >

15 Arrays

Initializes a new instance of the IPAddress

type.
</summary >

<param name="ipPartl">The first part of the IP

address .</param>

<param name="ipPart2">The second part of the IP

address .</param>

<param name="ipPart3">The thired part of the IP

address .</param>

<param name="ipPart4">The fourth part of the IP

address .</param>

int ipPart3, int ipPart4)
this ()

// Set the individual parts.
this._ipPart [0] = ipPartil;
this._ipPart [1] = ipPart2;
this._ipPart [2] = ipPart3;
this._ipPart [3] = ipPart4;

int ipPart2,

Um diesen Indexer nun von auflen zu verwenden, muss die Eigenschaft nicht
mehr explizit angegeben werden, sondern es geniigt, die eckigen Klammern direkt
hinter dem Namen des Objekts anzugeben.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Create a new instance of the IP address and
16 // initialize it to 192.168.0.1.
17 IPAddress ipAddress =
18 new IPAddress (192, 168, 0, 1);
19
20 // Print the first part of the address to the

15.2 Indexer 141

Kapitel 16
Operatoren

16.1 Was sind Operatoren?

Nachdem Felder und Variablen nun bekannt sind, kénnen Anwendungen Daten
speichern und auch wieder abrufen. Allerdings fehlt noch eine Moglichkeit, Daten
zu verdndern, um beispielsweise Berechnungen ausfiihren oder Daten miteinander
verkniipfen zu konnen. Die Anderung von Daten wird in C# durch sogenannte Ope-
ratoren unterstiitzt, deren einfachster der bereits bekannte Zuweisungsoperator = ist.

16.2 Arithmetische Operatoren

Den ersten Typ von Operatoren stellen in C# die arithmetischen Operatoren dar, die
zum Rechnen mit Daten dienen. Arithmetische Operatoren konnen mit allen Werte-
typen verwendet werden, die Zahlen darstellen, wobei darauf geachtet werden muss,
dass die beiden miteinander zu verrechnenden Werte den gleichen Typ aufweisen.

Operator Funktion Beispiel
+ Addition C#
1 int x = 2;
2 int y = 3;
&
4 // The sum is 5.
5 int sum = x + y;
- Subtraktion C#
1 int x = 2;
2 int y = 3;
&
4 // The difference is -1.
5 int difference = x - y;
Golo Roden, Auf der Fihrte von C# 143

DOI: 10.1007/978-3-540-27889-4, © Springer 2008

144 16 Operatoren

* Multiplikation c#

int x 2;

int y = 3;

// The product is 6.
int product = x * y;

O W N

/ Division c#

int x
int y

2;
3;

// The quotient is O.
int quotient = x / y;

O W N

% Modulo c#

int x
int y

2;
3;

// The remainder is 2.
int remainder = x % y;

g W N

C# rechnet dabei nach den iiblichen mathematischen Regeln, das heif3t, es gilt
Punkt- vor Strichrechnung. Allerdings kann diese Regelung — wie in der Mathema-
tik auch — durch das Setzen von Klammern geindert werden.

C#
1 int x = 2;
2 int y = 3;
3 int z = 5;
4
5 // The result without brackets is 17, with brackets it is 25.
6 int resultA = x + y * z;
7 int resultB = (x + y) * z;

Wihrend sich die Operatoren +, - und * so verhalten, wie man es erwarten wiirde,
gibt es bei den beiden Divisionsoperatoren / und % einige Sonderfille zu beachten.
Zunichst ist das Ergebnis einer Verkniipfung von zwei Operanden mit einem arith-
metischen Operator wieder vom gleichen Typ wie die beiden Operanden.

Wenn allerdings zwei Operanden von einem ganzzahligen Typ wie beispielswei-
se int oder long dividiert werden sollen, ist das Ergebnis unter Umstinden nicht
ganzzahlig. Deshalb werden in diesem Fall die Nachkommastellen abgeschnitten
und nur der ganzzahlige Anteil als Ergebnis zuriickgegeben.

C#
1 int x = 4;
2 int y = 2;
3
4 // The quotient is 2, since the result is an integer (2).
5 int quotient = x / y;

16.2 Arithmetische Operatoren 145
x = 3;
// The quotient is 1, since the result is not an integer

// (1,5) and hence the decimal part is cut off.
10 quotient = x / y;

6
7
8
9

AuBerdem muss darauf geachtet werden, dass bei der Division nicht durch die
Zahl Null geteilt wird, da dies mathematisch nicht definiert ist und zur Laufzeit der
Anwendung ein entsprechender Fehler ausgelost wird.

Die einzige Ausnahme von der Regel, dass arithmetische Operatoren mit jedem
Wertetyp verwendet werden konnen, der Zahlen darstellt, ist der Modulo-Opera-
tor %, der nur fiir ganzzahlige Operanden definiert ist. Der Modulo-Operator gibt
den Rest zuriick, der entsteht, wenn der eine Operand durch den anderen geteilt
wird.

Q
**

int x 1;

int y = 3;

// The remainder is 1, since 3 is not contained in 1,
// so there is 1 left.
int remainder = x % y;

X = 2;
// The remainder is 2, since 3 is not contained in 2,

// so there is 2 left.
remainder = x % y;

=
= O O 00 N O O W N =

B oe e
S W N

x = 3;

=
o ol

// The remainder is 0, since 3 is contained one time in 3,
// so there is 0 left.
remainder = x % y;

=
o

Die Modulo-Division entspricht also in gewisser Weise der Art, wie Uhrzeiten
berechnet werden. Eine Uhr konnte die Stunden intern ndmlich fortlaufend zihlen,
diese fiir die Ausgabe allerdings modulo zwolf rechnen.

Héufig kommt es vor, dass eine Variable mit sich selbst verrechnet wird, indem
ihr Wert beispielsweise verdoppelt werden soll. Um den Wert einer Variablen i zu
verdoppeln, muss dieser mit zwei multipliziert und das Ergebnis anschlieBend wie-
der der Variablen i zugewiesen werden.

C#

Da Berechnungen dieser Art hidufig auftreten, gibt es eine kiirzere Schreibweise
fiir diesen Fall, bei dem eine Nennung der Variablen entfallen kann, und der Zuwei-

146 16 Operatoren

sungsoperator seinen Platz mit dem arithmetischen Operator tauscht, wobei dieses
Verfahren mit jedem arithmetischen Operator funktioniert.

C#

1 // Adequate to i = i * 2.
2 i x= 2;

Fiir die besonders hiufig auftretenden Fille, dass eine Variable um eins erhoht
oder vermindert werden muss, gibt es sogar eine noch kiirzere Schreibweise, indem
die Variable mit dem Operator ++ oder -- verkniipft wird. Da dieser Operator keinen
zweiten Operanden bendtigt, wird er als unirer Operator bezeichnet, wohingegen
die anderen arithmetischen Operatoren binidre Operatoren sind.

C#

1 // Adequate to i = i + 1.
2 i++;

Fiir die beiden uniren Operatoren ++ und -- gibt es allerdings zwei Varianten -
- der Operator kann ndmlich entweder hinter der Variablen, in der sogenannten
Postfix-Notation, oder vor der Variablen, in der sogenannten Prifix-Notation ange-
geben werden. Der Unterschied liegt darin, ob zuerst der Wert verdndert oder zuerst
das Ergebnis zuriickgegeben wird.

C#

int i = 3;

// Prints 3 to the console and increments i afterwards to 4.
Console.WriteLine (i++);

// Prints 5 to the console, since i is incremented before it
// gets printed.
Console.WriteLine (++1i);

W N O Ol WN -

SchlieBlich gibt es noch zwei spezielle Fille, die beriicksichtigt werden miis-
sen: Der mathematische Uber- beziehungsweise Unterlauf. Ein Uberlauf tritt immer
dann auf, wenn das Resultat einer Berechnung zu grof fiir den entsprechenden Typ
ist, ein Unterlauf analog dazu, wenn das Resultat zu klein ist.

Sofern diese beiden Fille nicht gesondert beriicksichtigt werden, treten Rechen-
fehler auf, sobald der grofit- oder kleinstmogliche Wert iiber- oder unterschritten
wurden. Die Anwendung wird ansonsten aber weiterhin ausgefiihrt. Falls eine ex-
plizite Uberpriifung erforderlich ist, kann diese mit dem Schliisselwort checked fiir
einen abgeschlossenen Codeabschnitt aktiviert werden.

C#

1 int x =
2 int y

[
w N

16.3 Relationale Operatoren 147

// Activate checked calculations.
checked
{

Console.WriteLine (x + y);

0 N O O W

}

Im Fall eines Uber- oder Unterlaufs tritt wie bei einer Division durch Null ein
Fehler auf. So niitzlich der Einsatz von checked ist, so sollte dennoch beriicksichtigt
werden, dass diese Priifung Rechenzeit erfordert und die Anwendung daher an den
zu priifenden Stellen verlangsamt, und dass diese Priifung einen Spezialfall priift,
der in der Praxis nicht all zu haufig auftritt. Ob checked verwendet wird oder nicht,
hingt also vom konkreten Bedarf ab.

Sofern eine Anwendung generell als checked ausgefiihrt werden soll, kann dem
Compiler dies durch den Parameter /checked mitgeteilt werden. Auf diese Art ist es
nicht notwendig, alle Stellen innerhalb des Codes mit dem Schliisselwort checked zu
kennzeichnen. Allerdings ist es moglich, einzelne Stellen innerhalb des Codes mit
dem Schliisselwort unchecked zu kennzeichnen, um sie von der generellen Priifung
auszuschliefen, wobei dieses Schliisselwort genauso verwendet wird wie checked.

C#

int x
int y

2;
3;

// Activate unchecked calculations.
unchecked
{

Console.WriteLine (x + y);

W N O O WN

}

16.3 Relationale Operatoren

Im Gegensatz zu arithmetischen Operatoren dienen die relationalen Operatoren da-
zu, etwas liber das Verhiltnis zweier Operanden auszusagen. Mit ihnen kann gepriift
werden, ob die beiden Operanden gleich, ungleich, groBer, kleiner, groBler gleich
oder kleiner gleich sind. Als Resultat wird immer ein Wahrheitswert zuriickgege-
ben, der angibt, ob die angegebene Relation wahr oder falsch ist.

Operator Funktion Beispiel

== gleich c#
1 int x = 2;
2 int y = 3;
3
4 // x and y are not equal, hence false.
5 bool result = x == y;

148

1= ungleich

> grofler

< kleiner

>= grofer
oder
gleich

<= kleiner
oder
gleich

16 Operatoren

C#

O W N

int x 2;

int y = 3;

// x and y are not equal, hence true.
bool result = x != y;

O W N

int x
int y

2;
3;

// x is not greater than y, hence false.

bool result = x > y;

C#

O W N

int x
int y

2;
3;

// x is smaller than y, hence true.
bool result = x < y;

o O WN

int x 2;

int y = 3;

// x is not greater than or equal to y, hence
// false.
bool result = x >= y;

C#

g W N

int x
int y

2;
3;

// x is smaller than or equal to y, hence true.
bool result = x <= y;

Es gilt als guter Stil, die beiden Operanden mitsamt dem relationalen Operator
zu klammern, um die Lesbarkeit zu verbessern. An Stelle von

C#

1 bool result = foo == bar;
wiirde man also
C#

1 bool result = (foo == bar);

schreiben.

Relationale Operatoren konnen prinzipiell zwar auf alle Wertetypen angewandt
werden, allerdings ist dies nur begrenzt sinnvoll. Da Dezimalzahlen von Prozes-

16.4 Logische Operatoren 149

soren intern nicht exakt dargestellt werden konnen, kann man sich nicht darauf
verlassen, dass zwei anscheinend gleich grofle Zahlen des Typs float, double oder
decimal bei einem Vergleich mit dem Operator == das Literal true als Ergebnis lie-
fern. Dezimalzahlen sollten immer nur mit Hilfe von >, <, >= und <= verglichen
werden.

Verweistypen konnen zumindest mit Hilfe der Operatoren == und != verglichen
werden, wobei dies eine andere Semantik als bei Wertetypen hat. Wihrend bei Wer-
tetypen der tatsdchliche Wert verglichen wird, wird bei Verweistypen lediglich die
Referenz verglichen. Sofern zwei Variablen also eine Referenz auf das identische
Objekt enthalten, wird bei einem Vergleich mit == das Literal true zuriickgeliefert.
Enthalten sie aber Referenzen auf zwei verschiedene Objekte, die zwar in ihren
Werten, aber nicht in ihrer Objektidentitt iibereinstimmen, so liefert der Vergleich
das Literal false.

C#

ComplexNumber foo = new ComplexNumber (23, 42);
ComplexNumber bar = foo;

1

2

3

4 // Returns true, since foo and bar reference the identical
5 // object.

6 Console.WritelLine (foo == bar);

7

8 y = new ComplexNumber (23, 42);

9

10 // Returns false, since foo and bar reference different

11 // objects, even if they have the same value.
12 Console.WriteLine (foo == bar);

16.4 Logische Operatoren

Wiihrend relationale Operatoren einen Vergleich zwischen den beiden Operanden
durchfiihren, verkniipfen logische Operatoren diese. Logische Operatoren konnen
im Gegensatz zu den anderen Operatoren nur auf Operanden des Typs bool ange-
wandt werden und liefern auch als Ergebnis einen Wert des Typs bool.

Operator Funktion Beschreibung Beispiel

&& und Ergibt true, wenn C#
beide Operanden 1 007 y = true;
true sind. 2 bool y = false;
3
4 // x and y are not both true,
5 // hence false.
6 bool result = x && y;

150 16 Operatoren

[oder Ergibt true, wenn C#
mindestens einer
der beiden Ope-
randen true ist.

bool x = true;
bool y = false;

// is true, hence true.

1
2
3
4 // At least one of x and y
5
6 bool result = x || y;

exklusives Ergibt true, wenn cC#

oder genau einer der
beiden Operan-
den true ist.

bool x = true;
bool y = false;

1

2

3

4 // x is true, y is not,
5 // hence true.

6

bool result = x ~ y;
! nicht Ergibt true, wenn c#
FierOperand false ;o071 x = true;
ist, und umge- 2
kehrt. 3 // x is true, hence false.
4 bool result = !x;

C# verwendet bei der Auswertung logischer Operatoren die sogenannte Kurz-
schlussevaluierung. Dies bedeutet, dass fiir die Auswertung eines Operators unter
Umstinden nicht alle Operanden iiberpriift werden — ist beispielsweise bei einer
und-Verkniipfung bereits der erste Operand false, so kann das Ergebnis nicht true
sein, unabhingig davon, welchen Wert der zweite Operand aufweist. Daher wird
dieser nicht mehr tiberpriift und direkt false zuriickgegeben.

16.5 Bitweise Operatoren

Bitweise Operatoren dhneln logischen Operatoren sehr stark, allerdings werden sie
nicht fiir Wahrheitswerte, sondern fiir Ganzzahlen verwendet. Die Uberpriifung fin-
det dementsprechend auch nicht auf den Wahrheitswerten der Operanden statt, son-
dern auf Bitebene der Operanden.

Operator Funktion Beschreibung Beispiel

& und Ergibt 1, wenn C#
beide Bits 1 sind.

int x = 23;
int y 42;

// x is binary 010111 and y
// is binary 101010, hence
// 000010, which is 2.

int result = x {\&} y;

N o O WN

16.6 Zeichenkettenoperatoren

| oder

exklusives
oder

nicht

<< verschie-
ben nach

links

>> verschie-
ben nach

rechts

151

Ergibt 1, wenn c#

mlnde'stens e'lnes 1 int x = 23;

der beiden Bits 1 2 int y = 42;

ist. 3 // x is binary 010111 and y
4 // is binary 101010, hence
5 // 111111, which is 63.
6 int result = x | y;

Ergibt 1, wenn C#

genau eines der | . o - o3,

beiden Bits 1ist. 2 int y = 42;
&
4 // x is binary 010111 and y
5 // is binary 101010, hence
6 // 111101, which is 61.
7 int result = x v

Ergibt 1, wenn C#

das Bit O ist, und 1 int x = 23;

umgekehrt. 2
3 // x is binary 010111, hence
4 // 101000, which is -24 due
5 // to internal reasons.
6 int result = X3

Schiebt alle Bits c#

um die angegebe- ~ L 23;

ne Anzahl nach 2

links. 3 // x is binary 010111, hence
4 // 101110, which is 46.
5 int result = x << 1;

Schiebt alle Bits c#

um die angegebe- ~ L 23;

ne Anzahl nach 2

rechts. 3 // x is binary 010111, hence
4 // 001011, which is 11.
5 int result = x >> 1;

Bitweise Operatoren werden héaufig verwendet, um zu iiberpriifen, ob einzelne
Bits gesetzt sind, oder um diese zu setzen beziehungsweise zu loschen. Ebenso wie
arithmetische Operatoren konnen bitweise Operatoren mit dem Zuweisungsoperator
zu einer verkiirzten Schreibweise zusammengezogen werden.

16.6 Zeichenkettenoperatoren

Zeichenketten erfahren in C# eine Sonderbehandlung. Obwohl sie technisch gese-
hen Verweistypen sind, verhalten sie sich groftenteils wie Wertetypen, was ihre
Handhabung teilweise deutlich erleichtert.

152 16 Operatoren

So liefert der Vergleich von zwei Strings mit Hilfe von == und != ein Ergeb-
nis, als wiiren Strings Wertetypen — enthalten sie den gleichen Text, sind sie gleich.
Auflerdem konnen Strings mit Hilfe von <, >, <= und >= alphabetisch miteinan-
der verglichen werden. Ein String gilt dann als kleiner als ein anderer, wenn er im
Alphabet vorher einzuordnen ist.

C#

string foo "Hello";
string bar = "World";

// foo and bar do not contain the same text, hence false.
bool result = (foo == bar);

// foo and bar do not contain the same text, hence true.
result = (foo != bar);

© 00N O O WwN -

fure
o

// foo is alphabetically prior to bar, hence true.

11 result = (foo < bar);

12

13 // foo is alphabetically not superior to bar, hence false.
14 result = (foo > bar);

15

16 // foo is alphabetically prior or equal to bar, hence true.
17 result = (foo <= bar);

18

19 // foo is alphabetically neither superior nor equal to bar,
20 // hence false.

21 result = (foo >= bar);

Zudem konnen Strings mit dem Operator + aneinander gehiingt werden, so dass
sie einen neuen zusammenhingenden String ergeben. Dieser Vorgang wird auch als
Konkatenation bezeichnet.

C#

string foo "Hello ";
string bar = "world!";

// The result is "Hello world!".
string result = foo + bar;

O W N

Ob ein String leer ist, kann gepriift werden, indem er mit dem leeren String ver-
glichen wird. Alternativ kann auch die Eigenschaft Empty der Klasse String ver-
wendet werden. Eine weitere Moglichkeit ist, die Eigenschaft Length des Strings zu
priifen, ob diese dem Wert Null entspricht.

Da der Vergleich auf die Lange auf Grund der internen Organisation von Strings
am schnellsten ausgefiihrt werden kann, gilt es als guter Stil, diese Variante zu ver-
wenden.

16.7 Operatorreihenfolge 153
C#

1 string foo = "Hello";

2

3 // foo is not empty, hence false.

4 bool result = (foo == "");

5 result = (foo == String.Empty);

6 result = (foo.Length == 0);

Ob ein String leer oder eventuell sogar null ist, kann mit der statischen Methode
IsNullOrEmpty der Klasse string ermittelt werden.

C#

© 00 N O O WN -

e el
B> W N e O

string foo = null;

// foo is null, hence true.
bool result = String.IsNullOrEmpty(£foo);

Fowm = WU

// foo is empty, hence true.
result = String.IsNullOrEmpty (foo);

foo = "Hello";

// foo is neither null nor empty, hence false.
result = String.IsNullOrEmpty (foo);

16.7 Operatorreihenfolge

Falls mehrere Operatoren gleichzeitig in einer Anweisung verwendet werden, wer-
den diese zundchst von links nach rechts verarbeitet. Allerdings verfiigen einige
Operatoren iiber eine hohere Prioritit als andere, so dass die Verarbeitung diesen
Regeln folgt — dhnlich den Regeln bei den arithmetischen Operatoren.

Die Operatoren haben folgende Prioritét, wobei die hochstpriorisierten Operato-
ren an oberster Stelle stehen:

Operatoren

O

td

++ (postfix), -- (postfix), ++ (prafix), --(prafix), ~, !
*, [/, h

154 16 Operatoren

=, <operator>=

Mit Hilfe von Operatoren konnen nun die meisten Methoden der Klasse Com-
plexNumber implementiert werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins.
7 /// </summary >
8 /// <param name="sender">The sender .</param>
9 /// <param name="e">The event arguments.</param>
10 public delegate void StoringEventHandler (
11 object sender , EventArgs eventArguments);
12
13 /// <summary >
14 /// Executes when storing has finished.
15 /// </summary >
16 /// <param name="sender">The sender .</param>
17 /// <param name="e">The event arguments.</param>
18 public delegate void StoredEventHandler (
19 object sender , EventArgs eventArguments);
20
21 /// <summary >
22 /// Executes when restoring begins.
23 /// </summary >
24 /// <param name="sender">The sender .</param>
25 /// <param name="e">The event arguments.</param>
26 public delegate void RestoringEventHandler (
27 object sender, EventArgs eventArguments);
28
29 /// <summary >
30 /// Executes when restoring has finished.
31 /// </summary >
32 /// <param name="sender">The sender .</param>
33 /// <param name="e">The event arguments.</param>
34 public delegate void RestoredEventHandler (
35 object sender, EventArgs eventArguments);
36
37 /// <summary >

38 /// Represents a complex number.

16.7 Operatorreihenfolge

39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

/// </summary >
public sealed class ComplexNumber : IPersistable

#region Properties
#endregion

#region Events
#endregion

#region Methods
//

/// <summary >
/// Calculates the conjugation.
/// </summary >
public void Conjugate ()
{
// Calculate the conjugation.
this._imaginaryPart *x= -1;

/// <summary >

/// Adds the specified summand to the current compl
/// number .

/// </summary >

/// <param name="summand">The complex number that i
/// used as summand.</param>

public void Add(ComplexNumber summand)

{
// Add the summand to the current complex
this._realPart += summand.RealPart;
this._imaginaryPart += summand.ImaginaryPart;
}

/// <summary >
/// Adds the specified summand to the current compl
/// number.
/// </summary >
/// <param name="summand">The real number that is
/// used as summand.</param>
public void Add(float summand)
{
// Add the summand to the current complex
this._realPart += summand;

/// <summary >

/// Multiplies the current complex number with the
/// specified factor.

/// </summary >

/// <param name="factor">The complex number that is
/// used as factor.</param>

public void Multiply (ComplexNumber factor)

{

155

ex

S

ex

156 16 Operatoren

93 // Multiply the factor with the current complex
94 // number.

95 float? newRealPart =

96 (this.RealPart * factor.RealPart) -

97 (this.ImaginaryPart * factor.ImaginaryPart);
98 float? newImaginaryPart =

99 (this.RealPart * factor.ImaginaryPart) +
100 (this.ImaginaryPart * factor.RealPart);

101

102 // Assign the new values to the current complex
103 // number.

104 this.RealPart = newRealPart;

105 this.ImaginaryPart = newlImaginaryPart;

106 }

107

108 /// <summary >

109 /// Multiplies the current complex number with the
110 /// specified factor.

111 /// </summary >

112 /// <param name="factor">The real number that is
113 /// used as factor.</param>

114 public void Multiply (float factor)

115 {

116 // Multiply the factor with the current complex
117 // number.

118 this.Multiply (new ComplexNumber (factor));

119 }

120 #endregion

121

122 #region Constructors

123 #endregion

124 ¥

125 }

16.8 Uberladen von Operatoren

Zwar ist es mit Hilfe dieser Operatoren nun moglich, Berechnungen mit komple-
xen Zahlen durchzufiihren, allerdings muss fiir jede einzelne Operation eine eigene
Methode aufgerufen werden. So muss beispielsweise fiir die Addition zweier kom-
plexer Zahlen die entsprechende Methode Add verwendet werden, welche die als
Parameter iibergebene komplexe Zahl zu der addiert, an der die Methode aufgeru-
fen wird.

C#

1 firstComplexNumber .Add (secondComplexNumber) ;

16.8 Uberladen von Operatoren 157

Obwohl dieses Vorgehen funktioniert, entspricht die sich dadurch ergebende
Syntax nicht der aus der Mathematik gewohnten Schreibweise, in der zwischen den
beiden zu addierenden Zahlen ein + angegeben wird.

Der Grund, warum eine Addition komplexer Zahlen mit Hilfe des Symbols + in
C# nicht funktioniert, ist offensichtlich: Die Klasse ComplexNumber ist fiir .NET
eine beliebige, vom Benutzer definierte Klasse, deren mathematische Eigenheiten
nur dem Entwickler bekannt sind. In C# ist also schlichtweg nicht definiert, welche
Bedeutung dem Symbol + fiir komplexe Zahlen innewohnt.

Allerdings lassen sich Operatoren — und nichts anderes stellt das Symbol + in
C# dar — fiir benutzerdefinierte Klassen iiberladen, so dass eigene Datentypen in
mathematischen Ausdriicken unter Verwendung der klassischen Syntax miteinander
verrechnet werden kdnnen.

Um einen Operator zu iiberladen, geniigt es, eine entsprechende Methode inner-
halb der Klasse zu definieren, fiir die der Operator gelten soll. Als Methodenname
wird dabei der Operator an sich angegeben, zusitzlich muss ihm allerdings noch
das Schliisselwort operator vorangestellt werden. Aulerdem muss beachtet werden,
dass operatoriiberladende Methoden immer klassengebunden, also mit dem Schliis-
selwort static gekennzeichnet werden miissen.

Als Parameter werden dabei die einzelnen Operanden angegeben, die miteinan-
der verrechnet werden sollen. Die Anzahl der Parameter bestimmt sich dabei aus der
Anzahl der Operanden, die fiir den jeweiligen Operator benotigt werden. Die Ope-
ratoren + und * erwarten beispielsweise zwei Operanden, der Operator ! hingegen
nur einen.

Der Typ des Riickgabewerts entspricht in jedem Fall der Klasse, in welcher der
iiberladene Operator definiert wird.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins.
7 /// </summary >
8 /// <param name="sender">The sender.</param>
9 /// <param name="e">The event arguments .</param>
10 public delegate void StoringEventHandler (
11 object sender, EventArgs eventArguments);
12
13 /// <summary >
14 /// Executes when storing has finished.
15 /// </summary >
16 /// <param name="sender">The sender.</param>
17 /// <param name="e">The event arguments .</param>
18 public delegate void StoredEventHandler(
19 object sender, EventArgs eventArguments);

20

158

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

/// <summary >

/// Executes when restoring begins.

/// </summary >

/// <param name="sender">The sender.</param>

/// <param name="e">The event arguments .</param>

public delegate void RestoringEventHandler (
object sender , EventArgs eventArguments);

/// <summary >

/// Executes when restoring has finished.

/// </summary >

/// <param name="sender">The sender.</param>

/// <param name="e">The event arguments .</param>

public delegate void RestoredEventHandler (
object sender , EventArgs eventArguments);

/// <summary >
/// Represents a complex number.
/// </summary >
public sealed class ComplexNumber : IPersistable
{
#region Properties
#endregion

#region Events
#endregion

#region Operators

/// <summary >

/// Adds the specified complex numbers.
/// </summary >

Operatoren

/// <param name="firstSummand">The complex number

/// that is used as first summand.</param>

/// <param name="secondSummand">The complex number

/// that is used as second summand.</param>
/// <returns >The sum of the specified complex
/// numbers.</returns>
public static ComplexNumber operator +(
ComplexNumber firstSummand,
ComplexNumber secondSummand)

// Add the two complex numbers.
ComplexNumber result =
new ComplexNumber (
firstSummand.RealPart,
firstSummand. ImaginaryPart) ;
result.Add (secondSummand);

// Return the result to the caller.

return result;

/// <summary >
/// Multiplies the specified complex numbers.

16.8 Uberladen von Operatoren 159

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

}

/// </summary >
/// <param name="firstFactor ">The complex number
/// that is used as first factor.</param>
/// <param name="secondFactor">The complex number
/// that is used as second factor.</param>
/// <returns >The product of the specified complex
/// numbers.</returns >
public static ComplexNumber operator *(
ComplexNumber firstFactor,
ComplexNumber secondFactor)

// Multiply the two complex numbers.
ComplexNumber result =
new ComplexNumber (
firstFactor .RealPart,
firstFactor . ImaginaryPart);
result.Multiply (secondFactor) ;

// Return the result to the caller.
return result;
}

#endregion

#region Methods
#endregion

#region Constructors
#endregion

Uberladene Operatoren ermoglichen in C# nicht nur, gleichartige Operanden mit-
einander zu verrechnen, sondern es konnen auch Operatoren verschiedener Typen
angegeben werden. Allerdings muss mindestens einer der Operanden immer der
Klasse entsprechen, in welcher der Operator iiberladen wird. Es ist also beispiels-
weise nicht moglich, in der Klasse ComplexNumber die Addition fiir zwei Operan-
den des Typs int zu tiberladen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins.
7 /// </summary >
8 /// <param name="sender">The sender.</param>
9 /// <param name="e">The event arguments .</param>
10 public delegate void StoringEventHandler (
11 object sender, EventArgs eventArguments);
12
13 /// <summary >

160 16 Operatoren

14 /// Executes when storing has finished.

15 /// </summary >

16 /// <param name="sender">The sender.</param>

17 /// <param name="e">The event arguments.</param>
18 public delegate void StoredEventHandler (

19 object sender, EventArgs eventArguments);

20

21 /// <summary >

22 /// Executes when restoring begins.

23 /// </summary >

24 /// <param name="sender">The sender.</param>

25 /// <param name="e">The event arguments.</param>
26 public delegate void RestoringEventHandler (

27 object sender, EventArgs eventArguments);

28

29 /// <summary >

30 /// Executes when restoring has finished.

31 /// </summary >

32 /// <param name="sender">The sender.</param>

33 /// <param name="e">The event arguments.</param>
34 public delegate void RestoredEventHandler (

35 object sender, EventArgs eventArguments);

36

37 /// <summary >

38 /// Represents a complex number.

39 /// </summary >

40 public sealed class ComplexNumber : IPersistable
41 {

42 #region Properties

43 #endregion

44

45 #region Events

46 #endregion

47

48 #region Operators

49 /// <summary >

50 /// Adds the specified complex numbers.

51 /// </summary >

52 /// <param name="firstSummand">The complex number
53 /// that is used as first summand.</param>
54 /// <param name="secondSummand">The complex number
55 /// that is used as second summand.</param>
56 /// <returns >The sum of the specified complex
57 /// numbers.</returns >

58 public static ComplexNumber operator +(

59 ComplexNumber firstSummand,

60 ComplexNumber secondSummand)

61 {

62 // Add the two complex numbers.

63 ComplexNumber result =

64 new ComplexNumber (

65 firstSummand.RealPart,

66 firstSummand. ImaginaryPart) ;

67 result .Add (secondSummand) ;

16.8 Uberladen von Operatoren 161

68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

/17
17/
11/
17/
11/
17/
11/
11/
11/
17/

// Return the result to the caller.
return result;

<summary >

Adds the specified summand to the specified
complex number.

</summary >

<param name="complexNumber">The complex number
that is used as first summand.</param>

<param name="summand">The summand that is used
as second summand.</param>

<returns >The sum of the specified complex number
and the specified summand.</returns>

public static ComplexNumber operator +(

{

11/
17/
11/
11/
117/
11/
117/
11/
117/

ComplexNumber complexNumber , float summand)

// Add the two complex numbers.
ComplexNumber result =
new ComplexNumber (
complexNumber.RealPart,
complexNumber.ImaginaryPart) ;
result.Add (summand) ;

// Return the result to the caller.
return result;

<summary >

Multiplies the specified complex numbers.
</summary >

<param name="firstFactor ">The complex number
that is used as first factor.</param>

<param name="secondFactor">The complex number
that is used as second factor.</param>
<returns >The product of the specified complex
numbers .</returns >

public static ComplexNumber operator *(

11/

ComplexNumber firstFactor,
ComplexNumber secondFactor)

// Multiply the two complex numbers.
ComplexNumber result =
new ComplexNumber (
firstFactor .RealPart,
firstFactor . ImaginaryPart);
result.Multiply (secondFactor) ;

// Return the result to the caller.
return result;

<summary >

162 16 Operatoren

122 /// Multiplies the specified complex number with
123 /// the specified factor.

124 /// </summary >

125 /// <param name="complexNumber">The complex number
126 /// that is used as first factor.</param>

127 /// <param name="factor">The factor that is used
128 /// as second factor.</param>

129 /// <returns >The product of the specified complex
130 /// number and the specified factor.</returns>
131 public static ComplexNumber operator *(

132 ComplexNumber complexNumber , float factor)
133 {

134 // Multiply the two complex numbers.

135 ComplexNumber result =

136 new ComplexNumber (

137 complexNumber.RealPart,

138 complexNumber.ImaginaryPart) ;

139 result.Multiply (factor);

140

141 // Return the result to the caller.

142 return result;

143 }

144 #endregion

145

146 #region Methods

147 #endregion

148

149 #region Constructors

150 #endregion

151 ¥

152 }

Bei der Uberladung von Operatoren gibt es drei Einschrinkungen, die beachtet
werden miissen: Zum einen konnen in C# einige Operatoren nicht iiberladen wer-
den, dazu zdhlen insbesondere der Zuweisungsoperator, sdmtliche Klammern und
auch alle Operatoren, die nicht durch ein Symbol wie + oder *, sondern durch ein
Schliisselwort reprisentiert werden.

Zum zweiten konnen einige Operatoren nur paarweise iiberladen werden, was
insbesondere fiir die relationalen Operatoren gilt. Das heif3t, wird beispielsweise
der Operator > iiberladen, so muss auch der entsprechende Operator < iiberladen
werden.

Zu guter letzt ist es nicht moglich, die verkiirzte Schreibweise, die einen Operator
mit dem Zuweisungsoperator verbindet, getrennt von dem eigentlichen Operator
zu liberladen. Wird also zum Beispiel der Operator + iiberladen, so wird dadurch
implizit auch der Operator += iiberladen.

Kapitel 17
Ausdriicke

17.1 Konvertieren

Bei der Division und Modulodivision von Typen wurde erwihnt, dass das Ergebnis
einer Verkniipfung von zwei Operanden mit Hilfe eines arithmetischen Operators
immer dem Typ der beiden Operanden entspricht, weshalb es insbesondere bei der
Division von ganzzahligen Datentypen zu Problemen kommen kann, da der Dezi-
malteil verloren geht.

Die vermeintliche Losung, das Ergebnis einer solchen Division einer Variablen
vom Typ float oder double zuzuweisen, erweist sich bei niherer Betrachtung als un-
zureichend, da die Dezimalstellen des Ergebnisses bereits im Speicher abgeschnit-
ten werden, noch bevor die Zuweisung an die aufnehmende Variable ausgefiihrt
wird.

Eine Moglichkeit, diesem Problem zu begegnen, liegt darin, mindestens einen
der Operanden in einen Typ zu wandeln, der tiber Dezimalstellen verfiigt. Da es aber
nicht in jedem Fall méglich ist, einen Operanden von vornherein als entsprechenden
Typ zu deklarieren, muss dies gegebenenfalls wihrend der Ausfiihrung zur Laufzeit
geschehen. Dieser Vorgang wird als konvertieren oder casten bezeichnet.

Die einfachste Moglichkeit, einen Typ in einen anderen zu konvertieren, ist, den
eigentlichen Wert dem neuen Typen zuzuweisen. Da hierbei die Umwandlung in
den neuen Typ implizit geschieht, wird diese Art der Konvertierung als implizite
Konvertierung bezeichnet.

C#
1 // Assign a value to an int variable.
2 int x = 23;
3
4 // Assign the value to a long variable. The value is
5 // implicitly casted from int to long.
6 long y = x;
Golo Roden, Auf der Fiihrte von C# 163

DOI: 10.1007/978-3-540-27889-4, © Springer 2008

164 17 Ausdriicke

Sofern der Wertebereich des Typs, in den konvertiert wird, umfangreicher ist als
der des Typs, der den urspriinglichen Wert enthélt, funktioniert dieses Verfahren
ohne weiteres. Auf diese Art konnen beispielsweise int in long und float in dou-
ble konvertiert werden. Beim Versuch, eine Konvertierung in umgekehrter Richtung
durchzufiihren, meldet C# allerdings einen Fehler, da potenziell ein Werteverlust
eintreten konnte.

Soll eine solche Konvertierung dennoch ausgefiihrt werden, muss dies mit Hilfe
einer expliziten Konvertierung geschehen. Bei dieser wird dem umzuwandelnden
Wert der Typ, in den konvertiert wird, innerhalb runder Klammern vorangestellt.

C#

// Assign a value to a long variable.
long x = 23;

// Assign the value to an int variable. The value needs to
// be casted explicitly.
int y = (long)x;

o G WN

Die explizite Konvertierung ermoglicht auch die Division zweier Ganzzahlen un-
ter Beibehaltung des Dezimalteils des Ergebnisses. Dazu muss lediglich einer der
beiden Operanden in einen Dezimaltyp konvertiert werden.

C#
1 int x = 23;
2 int y = 42;
3
4 // The quotient is 0O, since no cast has been done.
5 float quotient = x / y;
6
7 // The quotient is 0.547619, since one of the operands has
8 // been casted explicitly to a decimal type.
9 quotient = (float)x / y;

17.2 Boxing

Im Rahmen der Vererbung wurde erwihnt, dass alle Typen von object ableiten. Aus
diesem Grund ist es moglich, jeden beliebigen Typ nach object zu konvertieren,
sogar dann, wenn es sich bei dem urspriinglichen Typ um einen Werte- und nicht
um einen Verweistyp handelt.

Wiihrend sich bei einem Verweistyp lediglich der Typ des Verweises dndert, dn-
dert sich bei einem Wertetyp zusitzlich die Art, wie der Wert gespeichert wird, da
die Anwendung bei einem Verweistyp nur mit einem Verweis auf die eigentlichen
Daten, bei einem Wertetyp aber direkt mit den eigentlichen Daten arbeitet. Daher
ist es notwendig, einen Wertetyp, der nach objekt konvertiert werden soll, zunédchst

17.3 Benutzerdefiniertes Konvertieren 165

in einen zusitzlichen Verweistyp zu verpacken, auf den dann wiederum ein Verweis
vom Typ object angelegt werden kann.

Dieses Verpacken wird als Boxing bezeichnet und von C# intern automatisch
durchgefiihrt, sobald ein Wertetyp in einen Verweistyp konvertiert wird. Obwohl
man sich also nicht hindisch um das Boxing kiimmern muss, sollte man sich wih-
rend der Entwicklung dieses Vorgangs im Hintergrund immer bewusst sein, da die-
ser nicht nur zusétzlichen Speicher verbraucht, sondern auch Zeit benétigt. Insofern
sollte Boxing nur mit Bedacht und gezielt an einigen Stellen eingesetzt werden.

Nachdem ein Wertetyp in einen Verweistyp verpackt wurde, kann dieser Vorgang
auch wieder umgekehrt werden, um aus dem Verweistyp den urspriinglichen Wer-
tetyp zu erhalten. Dies wird als Unboxing bezeichnet und folgt den gleichen Regeln
wie das Boxing.

C#

int valueType = 23;

// Box the value type and create a reference type.
object referenceType = valueType;

// Unbox the reference type.
valueType = (int)referenceType;

N oo WN

17.3 Benutzerdefiniertes Konvertieren

Prinzipiell konnen mit diesen Moglichkeiten zum einen beliebige Typen in object
konvertiert werden, zum anderen kénnen Typen ineinander konvertiert werden, die
tiber eine gemeinsame Basis verfiigen oder die in einer Vererbungshierarchie zuein-
ander stehen. Gelegentlich kann es jedoch niitzlich sein, eine eigene Konvertierung
definieren zu konnen, um beispielsweise eine komplexe Zahl mit Hilfe ihres Abso-
lutbetrags in float? zu konvertieren.

Diese Konvertierung kann so wohl implizit wie auch explizit implementiert wer-
den. In beiden Fiéllen muss die bestehende Klasse durch eine weitere Operator-
iberladung ergénzt werden, wobei der Zieltyp der Konvertierung als Operatorna-
me dient. Auerdem muss eines der beiden Schliisselworter implicit und explicit
angegeben werden, um zu definieren, ob die Konvertierung in den Zieltyp implizit
ausgefiihrt werden kann, oder ob zwingend eine explizite Konvertierung benétigt
wird.

C#

using System;

1
2
3 namespace GoloRoden.GuideToCSharp
4 {

5

/// <summary >

166 17 Ausdriicke

6 /// Executes when storing begins.

7 /// </summary >

8 /// <param name="sender">The sender.</param>

9 /// <param name="e">The event arguments.</param>
10 public delegate void StoringEventHandler (

11 object sender, EventArgs eventArguments);

12

13 /// <summary >

14 /// Executes when storing has finished.

15 /// </summary >

16 /// <param name="sender">The sender.</param>

17 /// <param name="e">The event arguments.</param>
18 public delegate void StoredEventHandler (

19 object sender, EventArgs eventArguments);

20

21 /// <summary >

22 /// Executes when restoring begins.

23 /// </summary >

24 /// <param name="sender">The sender.</param>

25 /// <param name="e">The event arguments.</param>
26 public delegate void RestoringEventHandler (

27 object sender, EventArgs eventArguments);

28

29 /// <summary >

30 /// Executes when restoring has finished.

31 /// </summary >

32 /// <param name="sender">The sender.</param>

33 /// <param name="e">The event arguments.</param>
34 public delegate void RestoredEventHandler (

35 object sender, EventArgs eventArguments);

36

37 /// <summary >

38 /// Represents a complex number.

39 /// </summary >

40 public sealed class ComplexNumber : IPersistable
41 {

42 #region Properties

43 #endregion

44

45 #region Events

46 #endregion

47

48 #region Operators

49 //

50

51 /// <summary >

52 /// Casts the specified complex number to float?.
53 /// </summary >

54 /// <param name="complexNumber">The complex number
55 /// that shall be casted.</param>

56 /// <returns>A float? representation of the specified
57 /// complex number .</returns>

58 public static implicit operator float?(

59 ComplexNumber complexNumber)

17.4 Konvertierbarkeit 167

60 {

61 // Return the complex number as float? by using
62 // its absolute value.

63 return complexNumber.AbsoluteValue;
64 ¥

65 #endregion

66

67 #region Methods

68 #endregion

69

70 #region Constructors

71 #endregion

72 }

73 }

Ein Riickgabetyp muss im Gegensatz zu den bisherigen Operatoriiberladungen
nicht angegeben werden, da sich dieser aus dem Operator an sich bereits ergibt. Zu
beachten ist bei der Definition benutzerdefinierter Konvertierungsoperatoren noch,
dass es nicht fiir einen Zieltyp zugleich so wohl einen impliziten wie auch einen
expliziten Operator geben kann. Die Definition mehrerer Konvertierungsoperatoren
ist nur moglich, sofern sich diese durch ihren Zieltyp unterscheiden.

17.4 Konvertierbarkeit

Obwohl C# zahlreiche Moglichkeiten bietet, zwischen verschiedenen Typen zu kon-
vertieren, kann es dennoch vorkommen, dass ein bestimmter Typ schlichtweg nicht
in einen anderen Typ konvertierbar ist. Wird ein solcher Versuch trotzdem unter-
nommen, tritt ein Fehler auf und die Ausfiihrung der Anwendung wird abgebro-
chen.

Um dies zu verhindern, enthilt C# drei Schliisselworter, mit denen gepriift wer-
den kann, ob sich ein Typ in einen bestimmten Zieltyp konvertiert lisst. Das ein-
fachste dieser Schliisselworter ist fypeof, das ein Objekt der Klasse Type zuriickgibt,
das Informationen zu dem jeweiligen Typ enthilt. Eine Analyse dieses Typobjekts
ermoglicht dann im weiteren Verlauf, zu bestimmen, ob und auf welche Art konver-
tiert werden kann.

C#

using System;

1

2

3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Represents the application class.
7 /// </summary >

8 public class Program

9 {

10 /// <summary >

168

11
12
13
14
15
16
17
18
19
20
21
22

}

17 Ausdriicke

/// Executes the application.
/// </summary >
public static void Main ()

{

// Get type information on the Program type.
Type type = typeof (Program);

// Print the type’s full name to the console.
Console .WriteLine (type.FullName) ;

Haufig ist der Einsatz eines kompletten Typobjekts allerdings zu aufwindig, da
nur von Interesse ist, ob ein Typ tiberhaupt in einen bestimmten Zieltyp konvertiert
werden kann. Dazu dient das Schliisselwort is, das je nach Konvertierbarkeit true
oder false an den Aufrufer zuriickgibt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a string and store it within an object
16 // reference.
17 object value = "Hello world!";
18
19 // Execute code depending on the type of the
20 // value.
21 if (value is string)
22 {
23 // Cast the value to a string.
24 string valueAsString = (string)value;
25
26 // TODO gr: Do something
27 // 2008-01-03
28 }
29 }
30 ¥
31 }

17.4 Konvertierbarkeit 169

SchlieBlich gibt es noch das Schliisselwort as, das prinzipiell ebenfalls eine ex-
plizite Konvertierung durchfiihrt, im Fehlerfall aber nicht die Ausfiihrung der An-
wendung abbricht, sondern das Literal null zuriickgibt.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a string and store it within an object
16 // reference.
17 object value = "Hello world!";
18
19 // Try to cast the value to string.
20 string valueAsString = value as string;
21
22 // If the cast was successful, execute some
23 // code.
24 if (valueAsString != null)
25 {
26 // TODO gr: Do something
27 // 2008-01-03
28 }
29 }
30 }

31 }

Kapitel 18
Anweisungen

18.1 Bedingungen

Allen Beispielen in den vergangenen Kapiteln ist gemein, dass sie noch keine einzi-
ge Zeile Code enthalten, der im klassischen Sinn ausgefiihrt werden kann. Samtliche
Konzepte, die bislang thematisiert wurden, dienen lediglich der Modellierung und
Strukturierung von Daten und Anwendungen. Sie bilden also nur den dufleren Rah-
men fiir eine Anwendung, deren Inneres aber noch mit konkretem Code gefiillt und
damit zum Leben erweckt werden muss.

Zur Steuerung des Ablaufs einer Anwendung gibt es in C# zwei wesentliche
Konzepte: Bedingungen und Schleifen. Wihrend Codeabschnitte mit Hilfe von Be-
dingungen nur unter bestimmten Umsténden ausgefiihrt werden und die Ausfiih-
rung dadurch dynamisch an den dufleren Kontext angepasst werden kann, dienen
Schleifen der wiederholten Ausfiihrung von Code, um beispielsweise eine Menge
gleichartiger Daten zu verarbeiten.

Die einfachste Anweisung zur Abfrage einer Bedingung wurde im Kapitel zu
Ereignissen bereits erwihnt, da dort iiberpriift werden musste, ob an den Delegaten
eines Ereignisses liberhaupt Methoden angehingt worden sind.

Der Anweisung if wird dabei in runden Klammern ein Ausdruck iibergeben,
der von C# ausgewertet und entweder zu true oder false evaluiert wird. Sofern der
Ausdruck true ergibt, wird der Rumpf von if ausgefiihrt, andernfalls nicht.

In dem folgenden Beispiel wird also iiberpriift, ob der Storing-Delegat ungleich
dem Literal null ist. Wenn dem so ist, wird der Rumpf ausgefiihrt und das entspre-
chende Ereignis ausgelost.

C#

// Check if there are any event handlers.
if (this.Storing !'= null)
{
// Raise the storing event.
this.Storing (this, null);

o O WN

Golo Roden, Auf der Fiihrte von C# 171
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

172

Die geschweiften Klammern um den Rumpf sind optional, solange der Rumpf
nur aus einer einzelnen Zeile besteht, allerdings ist es guter Stil, die geschweiften

18 Anweisungen

Klammern in jedem Fall zu verwenden.

Die einfache if-Anweisung ermdoglicht zwar bereits die bedingte Ausfiihrung von
Code, allerdings erfordert eine exklusive Ausfithrung zweier Codeabschnitte zwei

Abfragen, die einander auf3er in der Priifung auf true oder false gleichen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition.
16 bool condition = 23 < 42;
17
18 // Check whether the condition evaluates to
19 // true. If so, run the specified code.
20 if (condition == true)
21 {
22 // TODO gr: Do something
23 // 2008-01-03
24 }
25
26 // Check whether the condition evaluates to
27 // false. If so, run the specified code.
28 if (condition == false)
29 {
30 // TODO gr: Do something else
31 // 2008-01-03
32 }
33 }
34 ¥
35 }

Daher gibt es das Schliisselwort else, das einen weiteren Rumpf einleitet, der
ausgefiihrt wird, wenn die bei if genannte Bedingung eben nicht zu true evaluiert
wird. Die erneute Angabe einer weiteren Bedingung kann somit also entfallen.

C#

1 using System;

2

18.1 Bedingungen 173

3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Represents the application class.
7 /// </summary >

8 public class Program

9

{
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition.
16 bool condition = 23 < 42;
17
18 // Check whether the condition evaluates to
19 // true. If so, run the specified code. If mnot,
20 // run the second block.
21 if (condition == true)
22 {
23 // TODO gr: Do something
24 // 2008-01-03
25 }
26 else
27 {
28 // TODO gr: Do something else
29 // 2008-01-03
30 }
31 ¥
32 ¥
33 }

Ein wichtiger Aspekt bei der Uberpriifung der Bedingung ist, dass die explizite
Angabe des Vergleichs mit true oder false entfallen kann, da eine logische Bedin-
gung automatisch zu einem der beiden Literale evaluiert wird. Ein Vergleich auf
false kann dabei mit Hilfe des Operators ! durchgefiihrt werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()

14 {

174 18 Anweisungen

15 // Define a condition.

16 bool condition = 23 < 42;

17

18 // Check whether the condition evaluates to
19 // true.

20 if (condition)

21 {

22 // TODO gr: Do something
23 // 2008-01-03
24 }

25

26 // Check whether the condition evaluates to
27 // false.

28 if (!condition)

29 {

30 // TODO gr: Do something
31 // 2008-01-03
32 }

B3] }

34 }

35 }

Unter Umsténden kann es notwendig sein, mehr als zwei Optionen zu priifen.
Dazu kann auf mehrere if-Anweisungen zuriickgegriffen werden, die ineinander
verschachtelt werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define some conditions .
16 bool conditionl = 23 < 42;
17 bool condition2 = 17 < 23;
18
19 // Check whether the first condition evaluates
20 // to true.
21 if (conditionl)
22 {
23 // TODO gr: Do something
24 // 2008-01-03
25 }

26 else

18.1 Bedingungen 175

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

}

{
// Check whether the second condition
// evaluates to true.
if (condition2)
{
// TODO gr: Do something else
// 2008-01-03
}
else
{
// TODO gr: Do something completely
// else
// 2008-01-03
}
}

Zunichst wird also gepriift, ob die erste Bedingung zutrifft, wenn nein, wird in
den entsprechenden else-Block verzweigt, in dem wiederum die zweite Bedingung
gepriift wird, und so weiter. Der innerste e/se-Block wird dabei nur ausgefiihrt, wenn
alle vorangegangenen Bedingungen fehlgeschlagen sind.

Obwohl dieses Vorgehen zum gewiinschten Ziel fiihrt, wird die Darstellung bei
einer zunehmenden Anzahl von Ebenen uniibersichtlich. Daher gibt es die Mog-
lichkeit, weitere Abfragen mit dem Konstrukt else if auf der gleichen Ebene wie
das erste if zu positionieren. Die Angabe des abschlieenden else ohne Bedingung
ist dabei wiederum optional.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define some conditions.
16 bool conditionl = 23 < 42;
17 bool condition2 = 17 < 23;
18
19 if (conditionl)
20 {
21 // TODO gr: Do something

176 18 Anweisungen

22 // 2008-01-03

23 }

24 else if (condition2)

25 {

26 // TODO gr: Do something else
27 // 2008-01-03

28 }

29 else

30 {

Sl // TODO gr: Do something completely else
32 // 2008-01-03

33 }

34 }

35 }

36 1}

Werden innerhalb einer Bedingung mehrere Bedingungen angegeben und mit
Hilfe von logischen Operatoren wie && oder || verkniipft, werden diese in C# von
links nach rechts ausgewertet. Zu beachten ist hierbei, dass C# die Auswertung ab-
bricht, sobald das endgiiltige Ergebnis des Gesamtausdrucks feststeht. Diese Tech-
nik wird als Kurzschlussevaluierung bezeichnet.

Werden beispielsweise zwei Bedingungen mit Hilfe von && verkniipft und er-
gibt bereits die erste Bedingung false, so wird die zweite Bedingung nicht mehr
ausgewertet, da der Gesamtausdruck unabhingig von deren Ergebnis in jedem Fall
nur noch zu false evaluiert werden kann.

Da es hdufig Abfragen der Art gibt, dass einer Variablen entweder ein oder ein
anderer Wert zugewiesen werden soll, gibt es dafiir in C# zwei abkiirzende Schreib-
weisen. Handelt es sich bei der entsprechenden Variablen um eine Variable des Typs
bool, so ist es kiirzer, an Stelle von

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition.
16 bool condition = 23 < 42;
17
18 // Set result to true if the condition evaluates

19 // to true, otherwise set the result to false.

18.1 Bedingungen

20
21
22
23
24
25
26
27
28
29
30
31

177

bool result;
if (condition)

{

result = true;
}
else
{

result = false;
}

den verkiirzten Ausdruck

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition.
16 bool condition = 23 < 42;
17
18 // Set the result to true if the condition
19 // evaluates to true, otherwise set the result
20 // to false.
21 bool result = condition;
22 }
23 }
24 }

zu verwenden. Ebenso kann bei Variablen jedes beliebigen anderen Typs der einzige
Operator mit drei Operanden verwendet werden, der sogenannte trifire Operator. An

Stelle von

C#

using System;

namespace GoloRoden.GuideToCSharp

{

/// <summary >

178

© 0N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

}

18 Anweisungen

/// Represents the application class.
/// </summary >
public class Program

{

/// <summary >

/// Executes the application.
/// </summary >

public static void Main ()

{

// Define a condition.
bool condition = 23 < 42;

// Set the result to 23 if the condition

// evaluates to true, otherwise set the result
// to 42.

int result;

if (condition)

{

result = 23;
}
else
{

result = 42;
}

lasst sich unter Zuhilfenahme des triiren Operators

C#

1 using System;

2

3 namespace GoloRoden.GuideToCSharp

4

© 0w N o o

10
11
12
13
14
15
16
17
18
19
20
21
22

{

/// <summary >

/// Represents the application class.
/// </summary >

public class Program

{

/// <summary >

/// Executes the application.
/// </summary >

public static void Main ()

{

// Define a condition.
bool condition = 23 < 42;

// Set the result to 23 if the condition

// evaluates to true, otherwise set the result
// to 42.

int result = condition 7 23 : 42;

18.1 Bedingungen 179

23 }
24 }

schreiben. Des weiteren besteht im Zusammenhang mit nullbaren Wertetypen héu-
fig der Wunsch, einen Standardwert zuzuweisen, falls der nullbare Wertetyp dem
Literal null entspricht. An Stelle der umfangreichen Abfrage

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a nullable type.
16 int? nullableType = null;
17
18 // Set the value type to 23 if the nullable type
19 // is null, otherwise set it to the value of the
20 // nullable type.
21 int valueType;
22 if (nullableType == null)
23 {
24 valueType = 23;
25 }
26 else
27 {
28 valueType = (int)nullableType;
29 }
30 }
31 }
32 %

kann in C# seit der Version 2.0 der Operator ?? verwendet werden, so dass statt
dessen

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.

180

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

}

/// </summary >
public class Program

18 Anweisungen

{
/// <summary >
/// Executes the application.
/// </summary >
public static void Main ()
{
// Define a nullable type.
int? nullableType = null;
// Set the value type to the value of the
// nullable type if it is not equal to null,
// otherwise set the value type to 23.
int valueType = nullableType 77 23;
}
}

geschrieben werden kann. SchlieBlich gibt es neben if noch die Anweisung switch
zur bedingten Ausfiihrung von Code, die sich insbesondere dann anbietet, wenn fiir
jede Ausfithrungsalternative der gleiche Ausdruck ausgewertet werden soll und die
Ausfiihrung nur vom jeweiligen Ergebnis abhéngt.

Die switch-Anweisung erwartet die Bedingung ebenfalls innerhalb von runden
Klammern, die einzelnen Fille werden aber iiber entsprechende case-Zweige abge-
deckt. Ebenso wie bei if gibt es auch bei switch einen optionalen Ausfiihrungspfad
ohne Bedingung, der ausgefiihrt wird, falls jeder vorige Option fehlschligt, und der
mit Hilfe des Schliisselwortes default eingeleitet wird.

Alle Blocke miissen bei switch mit dem Schliisselwort break abgeschlossen wer-

den.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the condition.
16 int condition = 23;
17
18 // Execute code depending on the condition.
19 switch (condition)

18.1 Bedingungen

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

}

completely

{
case 23:
// TODO gr: Do something
// 2008-01-03
break;
case 42:
// TODO gr: Do something else
// 2008-01-03
break;
default:
// TODO gr: Do something
// else
// 2008-01-03
break;
}

181

Die einzige Ausnahme davon ist das sogenannte Durchfallen von einer Alterna-
tive zu der darauffolgenden, was genutzt werden kann, falls beide Alternativen den
gleichen Ausfiihrungsblock verwenden sollen. Sobald der durchfallende Block al-
lerdings eine einzige Zeile Code enthilt, wird von C# ein entsprechender Fehler bei
der Ubersetzung ausgelost.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition.
16 int condition = 23;
17
18 // Execute code depending on the condition.
19 switch (condition)
20 {
21 case 17:
22 case 23:
23 // TODO gr: Do something
24 // 2008-01-03
25 break;
26 case 42:

182 18 Anweisungen

27 // TODO gr: Do something else
28 // 2008-01-03

29 break;

30 default :

31 // TODO gr: Do something completely
32 // else

33 // 2008-01-03

34 break;

35 }

36 }

37 }

38 }

Prinzipiell kann in C# auch gezielt von einem Ausfiihrungsblock in einen ande-
ren gesprungen werden, um beispielsweise trotz enthaltenem Code in einen weiteren
Ausfithrungsblock durchzufallen. Dies geschieht mittels des Schliisselwortes goto.
Da dies in der Praxis aber als schlechter Stil angesehen wird, wird an dieser Stelle
nicht ndher darauf eingegangen.

18.2 Schleifen

Wihrend durch eine Bedingung wie if oder switch definiert werden kann, welche
Anweisungen unter welchen Umstidnden ausgefiihrt werden, konnen Anweisungen
mit Hilfe von Schleifen wiederholt ausgefiihrt werden, wobei die Anzahl der Wie-
derholungen entweder vorher festgelegt wird oder sich dynamisch wihrend der Aus-
fiihrung ergibt.

Die einfachste Schleife in C# ist eine reine Zidhlschleife, welche die in ihrem
Rumpf enthaltenen Anweisungen in einer vorherbestimmten Anzahl an Durchlédu-
fen ausfiihrt. Diese Schleife wird mittels des Schliisselworts for implementiert. In-
nerhalb runder Klammern werden mit Hilfe dreier Ausdriicke der Initialisierungs-
ausdruck, das Abbruchkriterium und der Aktualisierungsausdruck angegeben.

Um beispielsweise eine Anweisung n Mal auszufiihren, wird zu Beginn der
Schleife eine Variable mit dem Wert O initialisiert und anschlieend in jedem Durch-
lauf um eins erhoht, bis die Schleife n Mal durchlaufen wurde. Diese Variable wird
auch als Schleifenvariable oder Schleifeninvariante bezeichnet und enthilt in jedem
Durchlauf den Wert des jeweils aktuellen Durchlaufs.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program

18.2 Schleifen 183

9 {

10 /// <summary >

11 /// Executes the application.

12 /// </summary >

13 public static void Main ()

14 {

15 // Set the upper limit for the loop.

16 int n = 23;

17

18 // Initialize the invariant with O and execute
19 // the loop as long as i is less than n.

20 for (int i = 0; i < n; i++)

21 {

22 // Print the square numbers to the comnsole.
23 Console.WriteLine ("The square number of " +
24 I P TP i S T

25 }

26 }

27 }

28 }

Es hat sich in der Praxis eingebiirgert, die Invariante mit i zu bezeichnen, obwohl
dies den Namenskonventionen fiir lokale Variablen widerspricht. Sofern Schleifen
verschachtelt werden, werden fiir die Invarianten der inneren Schleifen fortlaufend
die Buchstaben ab j verwendet.

Des weiteren ist es guter Stil, die Invariante einer Schleife mit dem Wert 0 und
nicht mit 1 zu initialisieren, wobei abhédngig vom Kontext auch vollstindig andere
Startwerte sinnvoll sein konnen. Ebenso wird die Invariante in den meisten Fillen
bei jedem Durchlauf um eins erhoht, jedoch kann auch dies je nach Bedarf belie-
big gewihlt werden. Unter Umstéinden sind auch Schleifen denkbar, deren Initia-
lisierungsausdruck die Invariante zunichst auf einen hohen Wert setzt, der dann
in jedem Schleifendurchlauf verringert wird — kurz, der Fantasie sind dabei keine
Grenzen gesetzt.

Da das Abbruchkriterium vor jedem neuen Durchlauf tiberpriift wird, kann es
vorkommen, dass eine for-Schleife iiberhaupt nicht ausgefiihrt wird. Dann nidmlich,
wenn der Initialisierungsausdruck die Invariante auf einen Wert setzt, fiir den das
Abbruchkriterium zu false evaluiert wird.

C#

1 using System;

2

3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Represents the application class.
7 /// </summary >

8 public class Program

9 {

10 /// <summary >

11 /// Executes the application.

184

12
13
14
15
16
17
18
19
20
21
22
23

}

18 Anweisungen

/// </summary >
public static void Main ()

{

for (int i = 0; i > 1; i++)

{
// This loop is never executed, since i is
// initialized with 0, so i > 1 evaluates
// to false.

Der wesentliche Nachteil der for-Schleife ist, dass von vornherein feststehen
muss, wie viele Durchldufe ausgefiihrt werden sollen. Falls dies nicht bekannt ist,
sondern nur ein Abbruchkriterium feststeht, kann in C# die while-Schleife einge-
setzt werden. IThr Prinzip entspricht dem der for-Schleife, wobei sich die Angabe
innerhalb der runden Klammern auf das Abbruchkriterium beschréinken.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the upper limit.
16 int upperlLimit = 23;
17
18 // Iterate over all square numbers from O to the
19 // upper limit.
20 int i = 0;
21 while (i < upperLimit)
22 {
23 // Print the square number to the comnsole.
24 Console .WriteLine ("The square number of " +
25 i+ " dis " o4+ i ok i+ ")
26
27 // Increase i by 1.
28 i++;
29 }
30 }
31 }
32 }

18.2 Schleifen 185

Falls sich in einem Durchlauf nichts an der Giiltigkeit des Abbruchkriteriums
andert, wird die Schleife ein weiteres Mal durchlaufen. Um keine Endlosschleife zu
erhalten, ist es allerdings wichtig, darauf zu achten, dass sich das Abbruchkriterium
zumindest iiberhaupt dndern konnte.

Wie bei der for-Schleife wird auch die while-Schleife unter Umstidnden kein ein-
ziges Mal durchlaufen, falls nimlich das Abbruchkriterium von vornherein zu false
evaluiert wird. Daher werden diese beiden Schleifen auch als abweisende Schleifen
bezeichnet.

Sofern eine Schleife in jedem Fall mindestens ein Mal durchlaufen werden soll,
gibt es in C# auch eine nichtabweisende Variante der while-Schleife, die sich des
Schliisselworts do bedient.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the upper limit.
16 int upperLimit = 23;
17
18 // Iterate over all square numbers from O to the
19 // upper limit.
20 int i = 03
21 do
22 {
23 // Print the square number to the console.
24 Console .WriteLine ("The square number of " +
25 i+ " odis "o+ i ok i+ "),
26
27 // Increase i by 1.
28 i++;
29 }
30 while (i < upperLimit);
31 }
32 }
33 }

Abgesehen davon, dass die do-Schleife das Abbruchkriterium erst nach und nicht
vor dem Durchlauf iiberpriift, ist sie in ihrer sonstigen Arbeitsweise identisch mit
der while-Schleife.

186 18 Anweisungen

Beachtenswert bei diesen beiden Schleifen ist, dass der 6ffnenden Anweisung
nie ein Semikolon folgt, das schlieBende while bei der do-Schleife allerdings durch
ein Semikolon abgeschlossen wird.

18.3 Sprunganweisungen

In manchen Fillen kann es je nach Kontext notwendig sein, die Ausfiihrung ei-
ner Schleife mit sofortiger Wirkung abzubrechen. Dies ist in C# mit Hilfe des
Schliisselworts break moglich, das bereits bei den einzelnen Zweigen einer switch-
Anweisung Verwendung fand.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the upper limit.
16 int upperlLimit = 23;
17
18 // Iterate over all square numbers from O to the
19 // upper limit.
20 for (int i = 0; i < upperLimit; i++)
21 {
22 // Print the square number to the console.
23 Console .WriteLine ("The square number of " +
24 i+ " dis " o4+ i ok i+ ")
25
26 // Check whether the loop shall still be
27 // continued. If not, break.
28 if (4 > 17)
29 {
30 break;
31 }
32 }
33 }
34 ¥

35 %

18.3 Sprunganweisungen 187

break bricht die Ausfiihrung der aktuellen Schleife ab, indem es diese verlidsst
und in die umgebende Struktur springt. Sofern dies beispielsweise bei geschachtel-
ten Schleifen wiederum eine Schleife ist, wird diese allerdings nach wie vor ausge-
fiihrt, da break nur eine einzelne Ebene verlésst.

Wihrend break einen Schleifenablauf vollstdndig abbricht, kann es unter Um-
stinden nur gewiinscht sein, den aktuellen Durchlauf abzubrechen, prinzipiell aber
innerhalb der Schleifenausfiihrung zu bleiben, das heilt, direkt mit dem néchsten
Durchlauf fortzufahren. Dies geschieht in C# mit Hilfe des Schliisselwortes conti-
nue.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the upper limit.
16 int upperLimit = 23;
17
18 // Iterate over all square numbers from O to the
19 // upper limit.
20 for (int i = 0; i < upperLimit; i++)
21 {
22 // Check whether the current number is odd.
23 // If so, skip the current iteration.
24 if (14 {\%} 2 !'= 0)
25 {
26 continue ;
27 }
28
29 // Print the square number to the console.
30 Console .WriteLine ("The square number of " +
31 i+ " dis " 4+ iox i+ ".");
32 }
33 }
34 }

35 }

188 18 Anweisungen

18.4 foreach

Zu guter letzt gibt es in C# noch eine weitere Schleife, die allerdings tiber kein ent-
sprechendes Pendant in MSIL verfiigt, sondern die lediglich als komfortable Losung
in C# enthalten ist, vom Compiler wihrend der Ubersetzung aber in eine klassische
while-Schleife umgewandelt wird.

Diese Schleife dient dazu, alle Elemente einer Aufzéhlung zu durchlaufen, ohne
den Aufwand, zunichst die Linge dieser Auflistung ermitteln und eine Schleife-
ninvariante erzeugen zu miissen. Implementiert wird diese Schleife mit Hilfe des
Schliisselwortes foreach.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Define an array of colors.
16 string[] colors =
17 new string[] { "Red", "Green", "Blue" };
18
19 // Iterate over all colors.
20 foreach (string color in colors)
21 {
22 // Print the current color to the console.
23 Console.WriteLine (color);
24 }
25 }
26 }
27 }

Intern wandelt der Compiler diese Schleife in eine while-Schleife um, die mit
samtlichen Aufzidhlungen arbeiten kann, welche die Schnittstelle IEnumerator im-
plementieren. Dies sind nicht nur sdmtliche Arrays, sondern auch etliche der in
den Namensriumen System.Collections und System.Collections.Generic enthalte-
nen Typen.

Im Gegensatz zu den anderen Schleifen, bei denen die Invariante als Index fiir
eine Aufzdhlung dienen kann, liefert die Invariante der foreach-Schleife direkt ein
Element der Aufzdhlung. Dabei wird allerdings nicht garantiert, in welcher Rei-
henfolge diese Elemente zuriickgegeben werden. Insbesondere wird also nicht ga-

18.4 foreach 189

rantiert, dass zwei foreach-Schleifen iiber eine gemeinsame Aufzihlung die darin
enthaltenen Elemente in der identischen Reihenfolge durchlaufen.

Gelegentlich steht die Aufzihlung, iiber die mit einer foreach-Schleife iteriert
werden soll, nicht fest, sondern soll erst zur Laufzeit von einer Methode erzeugt
werden. Seit C# 2.0 gibt es dafiir das Schliisselwort yield, das genau diese Funktio-
nalitdt ermoglicht.

Damit eine Methode als Aufzidhlung fiir eine foreach-Schleife dienen kann, muss
sie liber die Schnittstelle IEnumerable als Riickgabetyp verfiigen. Allerdings gibt sie
nicht die gesamte Aufzdhlung auf einmal zuriick, sondern liefert bei jedem Metho-
denaufruf den ndchsten Wert der Aufzéhlung.

Das Schliisselwort yield bewirkt, dass der nachste Aufruf die Methode an der
Stelle fortsetzt, an der sie im vorherigen Durchlauf verlassen wurde. yield ermog-
licht also eine zeitweise Unterbrechung der Methodenausfiihrung.

C#

1 using System;
2 using System.Collections;

3

4 namespace GoloRoden.GuideToCSharp

5 {

6 /// <summary >

7 /// Represents the application class.

8 /// </summary >

9 public class Program

10 {

11 /// <summary >

12 /// Executes the application.

13 /// </summary >

14 public static void Main ()

15 {

16 // Iterate over all square numbers.

17 foreach (int i in this.GetNextSquareNumber ())
18 {

19 // Print the square number to the comnsole.
20 Console .WriteLine (

21 "The next square number is " + i + ".");
22 }

23 }

24

25 /// <summary >

26 /// Gets the next square number.

27 /// </summary >

28 /// <returns >The next square number.</returns>
29 private IEnumerable GetNextSquareNumber ()

30 {

31 // Initialize the square numbers with 0.
32 int i = 0;

33

34 // Iterate endlessly over all numbers.

35 while (true)

36 {

190 18 Anweisungen

Kapitel 19
Linq

19.1 Was ist Linq?

Wihrend es in fritheren Versionen von C# unter Umstidnden sehr aufwindig war,
einzelne Elemente innerhalb einer Aufzdhlung zu suchen oder diese zu sortieren,
stellt C# dafiir seit der Version 3.0 eine eigene Abfragesprache zur Verfiigung, die
als Language Integrated Query, abgekiirzt Ling, bezeichnet wird.

Um beispielsweise aus einem Array, das Elemente des Typs string enthilt, alle
diejenigen zu ermitteln, deren Wert mit einem bestimmten Buchstaben beginnt und
diese alphabetisch sortiert auszugeben, wurden zumindest eine Schleife und zahlrei-
che if-Anweisungen benotigt. Seit der Version 3.0 von C# gibt es dafiir eine eigene
Abfragesprache, deren Syntax sich an der Datenbanksprache SQL orientiert, die
aber tiber vollstindige Unterstiitzung in C# und Visual Studio verfiigt. Durch die In-
tegration in C# wird Linq ebenso wie der tibrige Code durch den Compiler in MSIL
tibersetzt, so dass auf Linq basierende Abfragen auf Fehler iiberpriift werden kon-
nen. Im Gegensatz zu klassischen Abfragen, die beispielsweise als Zeichenketten
innerhalb von C# vorliegen, konnen Fehler auf diese Art bereits vor der Ausfiihrung
erkannt werden.

Auferdem werden in Linq geschriebene Abfragen ebenfalls von der Common
Language Runtime ausgefiihrt und nutzen daher wie C# ebenfalls die Vorteile von
verwalteter Ausfiihrung.

19.2 Abfrageoperatoren

Die einfachste Abfrage, die in Linq geschrieben werden kann, ermittelt alle Ele-
mente aus einer Aufzihlung, gibt also die Aufzéhlung selbst zuriick, ohne diese zu
durchsuchen oder zu sortieren. Um die Fihigkeiten von Ling nutzen zu konnen,
muss der Namensraum System.Linq eingebunden werden, der sich in der Assembly
System.Core befindet.

Golo Roden, Auf der Fiihrte von C# 191
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

192 19 Ling

Eine Abfrage wird in Linq mit Hilfe des Schliisselwortes form eingeleitet, dem
ein Bezeichner fiir ein einzelnes Element folgt. Die Wahl dieses Bezeichners ist
beliebig und vergleichbar mit der Wahl des Bezeichners innerhalb einer foreach-
Schleife.

Im Anschluss wird mit Hilfe des Schliisselwortes in angegeben, aus welcher Auf-
zdhlung die Elemente stammen, mit dem Schliisselwort select wird schlielich das
jeweilige Element als relevant fiir die Ergebnismenge ausgewdhlt.

C#
1 using System;
2 using System.Ling;
3
4 namespace GoloRoden.GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application.
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors.
17 string[] colors =
18 new string[] { "Red", "Green", "Blue" };
19
20 // Get all colors.
21 var result =
22 from ¢ in colors
23 select c;
24
25 // Print all colors to the console.
26 foreach (var color in result)
27 {
28 Console.WriteLine (color);
29 }
30 }
31 }
32 }

Obwohl die Ergebnismenge nur aus Elementen des Typs string besteht, ist es in
der Praxis tiblich, den Typ einer in Linq geschriebenen Abfrage mit Hilfe von var
zu definieren.

Ebenso konnte die Schleifenvariable der foreach-Schleife als string definiert wer-
den, da jedes einzelne Element diesem Typ entspricht, aber auch dies ist in der Pra-
xis uniiblich.

Um die Ergebnismenge zu sortieren, kann das Schliisselwort orderby verwendet
werden, wobei nach diesem ein Ausdruck angegeben werden muss, welcher die

19.2 Abfrageoperatoren 193

Sortierreihenfolge definiert. Es ist also nicht nur méglich, nach dem Element an
sich zu sortieren, sondern es kann beispielsweise auch eine Eigenschaft oder ein
Delegat angegeben werden, der die Sortierung vornimmt.

C#

1 using System;
2 using System.Ling;

3

4 namespace GoloRoden.GuideToCSharp

5 {

6 /// <summary >

7 /// Represents the application class.
8 /// </summary >

9 public class Program

10 {

11 /// <summary >

12 /// Executes the application.

13 /// </summary >

14 public static void Main ()

15 {

16 // Define an array of colors.
17 string[] colors =

18 new string[] { "Red", "Green", "Blue" };
19

20 // Get all colors in alphabetical order.
21 var result =

22 from c in colors

23 orderby c

24 select c;

25

26 // Print all colors to the console.
27 foreach (var color in result)
28 {

29 Console.WriteLine (color);
30 }

31 }

32 }

33 }

Alternativ zu der aufsteigenden Sortierung konnen die Elemente der Ergebnis-
menge durch die Angabe des zusitzlichen Schliisselwortes descending auch abstei-
gend sortiert werden.

C#

using System;
using System.Ling;

namespace GoloRoden.GuideToCSharp

{
/// <summary >
/// Represents the application class.
/// </summary >

0 N O O W N

194 19 Ling

© public class Program

10 {

11 /// <summary >

12 /// Executes the application.

13 /// </summary >

14 public static void Main ()

15 {

16 // Define an array of colors.

17 string[] colors =

18 new string[] { "Red", "Green", "Blue" };
19

20 // Get all colors in reversed alphabetical order.
21 var result =

22 from c in colors

23 orderby c descending

24 select c;

25

26 // Print all colors to the console.
27 foreach (var color in result)

28 {

29 Console.WriteLine (color);

30 }

31 }

32 }

33 }

Zusitzlich kann die Ergebnismenge mit dem Schliisselwort where durchsucht
werden, so dass nur einige Elemente in der Ergebnismenge enthalten sind. Im fol-
genden Beispiel werden beispielsweise nur die Elemente in die Ergebnismenge auf-
genommen, deren Anfangsbuchstabe ein R ist.

C#
1 using System;
2 using System.Ling;
3
4 namespace GoloRoden.GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >
© public class Program
10 {
11 /// <summary >
12 /// Executes the application.
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors.
17 string[] colors =
18 new string[] { "Red", "Green", "Blue" };
19

20 // Get all colors whose name starts with an R

19.2 Abfrageoperatoren 195

21 // in reversed alphabetical order.
22 var result =

23 from c¢ in colors

24 where c.StartsWith ("R")

25 orderby c¢ descending

26 select c;

27

28 // Print all colors to the console.
29 foreach (var color in result)

30 {

31 Console.WriteLine (color);

32 }

33 ¥

34 ¥

35 }

Falls der Typ der Elemente der Ergebnismenge kein einfacher Typ, sondern ein
komplexer Typ wie beispielsweise ein Objekt ist, kann es gewiinscht sein, nicht
das gesamte Element in die Ergebnismenge aufzunehmen, sondern nur eine oder
mehrere Eigenschaften.

Sofern nur eine einzelne Eigenschaft als Element in die Ergebnismenge aufge-
nommen werden soll, geniigt es, diese an Stelle des eigentlichen Objekts bei select
anzugeben. Sollen statt dessen mehrere Eigenschaften verwendet werden, kénnen
diese mit Hilfe von Objektinitialisierern in ein neues Objekt von einem anonymen
Typ zusammengefiihrt werden.

C#

1 using System;
2 using System.Ling;

3

4 namespace GoloRoden.GuideToCSharp

5 {

6 /// <summary >

7 /// Represents the application class.

8 /// </summary >

9 public class Program

10 {

11 /// <summary >

12 /// Executes the application.

13 /// </summary >

14 public static void Main ()

15 {

16 // Define an arrays of colors.

17 string[] colors =

18 new string[] { "Red", "Green", "Blue" };
19

20 // Get all colors whose name starts with R in
21 // reversed alphabetical order, and limit the
22 // result set to the name and length of the
23 // colors.

24 var result =

196 19 Ling

25 from ¢ in colors

26 where c.StartsWith ("R")

27 orderby c descending

28 select new { Name = c, c.Length };
29

30 // Print all colors to the console.

31 foreach (var color in result)

32 {

33 Console.WriteLine (

34 color .Name + " (" + color.Length + ")");
85 }

36 }

37 }

38 }

Spétestens an dieser Stelle wird deutlich, warum der Datentyp bei Ling nie spe-
zifisch, sondern in der Regel mit dem Schliisselwort var definiert wird. Andert sich
die Auswahl der in der Ergebnismenge enthaltenen Eigenschaften, so miissen die
verwendeten Typen nicht angepasst werden.

Mit Lingq ist es jedoch nicht nur moglich, einzelne Elemente in einer Ergebnis-
menge zusammenzufassen, zusatzlich kann diese Menge ihrerseits gruppiert wer-
den. Dazu dient das Schliisselwort group, das immer in Kombination mit dem
Schliisselwort by verwendet werden muss, und das angibt, welche Elemente wie
gruppiert werden sollen. Wird group innerhalb einer Abfrage verwendet, so kann
diese Abfrage kein select enthalten.

Eine auf diese Art erzeugte Gruppe von Elementen enthélt das Kriterium, mit
dessen Hilfe sie erstellt wurde, in der Eigenschaft Key und kann ihrerseits wiederum
als Quelle fiir eine Schleife oder eine weitere Abfrage dienen. Im folgenden Beispiel
werden jeweils all jene Elemente zu einer Gruppe zusammengefasst, deren Namen
die gleiche Lidnge haben.

C#
1 using System;
2 using System.Ling;
3
4 namespace GoloRoden.GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application.
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors.
17 string[] colors =
18 new string[] { "Red", "Green", "Blue" };

19.2 Abfrageoperatoren

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 }

// Get all
// them in
// color’s
var result

from c

colors ordered alphabetically and
groups depending on the length of
name .

in colors

orderby c¢
group c by c.Length;

// Iterate

over all groups.

foreach (var group in result)

{

// Print the group’s key to the console.
Console .WriteLine (group.Key);

197

put
the

// Iterate over all colors within the group.
foreach (var color in group)

{
//

Print the color to the console.

Console .WriteLine (color);

Neben den Moglichkeiten, die sich direkt aus der Verwendung solcher Abfragen
ergeben, erweitert Linq sdmtliche Aufzdhlungstypen mit Hilfe von Erweiterungs-
methoden um weitere Methoden zur Manipulation der Ergebnismenge.

Soll beispielsweise nur das erste Element einer Ergebnismenge ausgewertet wer-
den, so kann dies mit Hilfe der Methode First abgerufen werden.

C#

1 using System;
2 using System.Ling;

S

4 namespace GoloRoden.GuideToCSharp

5 {

/// <summary >
/// Represents the
/// </summary >

application class.

public class Program

{

/// <summary >

/// Executes the application.

/// </summary >

public static void Main ()

{

// Define an array of colors.
string[] colors =
new string[] { "Red", "Green", "Blue" };

198 19 Ling

20 // Get all colors ordered alphabetically.
21 var result =

22 from c in colors

23 orderby c

24 select c;

25

26 // Get the first color from the result.
27 string color = result.First();

28 }

29 ¥

30 }

Ebenso kann eine gewisse Anzahl an ersten Elementen abgerufen werden, wo-
zu die Methode Take dient. Im folgenden Beispiel werden immer nur die ersten
beiden Elemente der Ergebnismenge zuriickgegeben, unabhingig davon, wie viele
Elemente tatsdchlich enthalten sind.

C#
1 using System;
2 using System.Ling;
3
4 namespace GoloRoden.GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >
© public class Program
10 {
11 /// <summary >
12 /// Executes the application.
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors.
17 string[] colors =
18 new string[] { "Red", "Green", "Blue" };
19
20 // Get all colors ordered alphabetically.
21 var result =
22 from ¢ in colors
23 orderby c
24 select c;
25
26 // Get the two top colors from the result.
27 var topColors = result.Take(2);
28 }
29 }

30

19.3 Lambdaausdriicke 199

19.3 Lambdaausdriicke

Intern werden in Linq geschriebene Abfragen in Aufrufe von Erweiterungsmetho-
den und Lambdaausdriicke umgewandelt. Dies geschieht dhnlich wie bei der fore-
ach-Schleife im Hintergrund durch den Compiler, ohne dass der Entwickler dies
bemerkt.

Beispielsweise wird die Abfrage

C#
1 // Get all colors whose name starts with an R in reversed
2 // alphabetical order.
3 var result =
4 from ¢ in colors
5 where c.StartsWith ("R")
6 orderby c descending
7 select c;
von C# in
C#
1 // Get all colors whose name starts with an R in reversed
2 // alphabetical order.
3 var result =
4 colors.Where(c => c.StartsWith ("R"))
5 .0rderByDescending(c => c).Select(c => c);

umgewandelt.

Kapitel 20
Ausnahmen

20.1 Was sind Ausnahmen?

Wird die Frage gestellt, aus welchem Grund Anwendungen entwickelt werden, so
geschieht dies zunédchst im Wesentlichen zur Bewiltigung einer Aufgabe und zur
Losung der mit dieser Aufgabe einhergehenden Problemen. Obwohl dies den initia-
len Beweggrund darstellt, enthilt jede Anwendung zahlreiche weitere Aspekte, die
bei der Entwicklung neben der eigentlichen Doméne beachtet werden miissen.

Dazu zihlen beispielsweise Aspekte wie Sicherheit, Ausfiihrungsgeschwindig-
keit oder Stabilitit. Ein wesentlicher Faktor, der sich in direkter Konsequenz auf die
Qualitit einer jeden Anwendung auswirkt, ist der Umgang mit potenziellen Fehlern,
die wihrend der Ausfiihrung der Anwendung auftreten konnen.

Anwendungen, die auf Basis der Win32-API und COM entwickelt werden, ver-
fligen nicht iiber ein einheitliches System, wie Fehler ausgelost und behandelt
werden. Einige Methoden der Win32-API verwenden Riickgabewerte, wobei es
dem Entwickler obliegt, den Riickgabewert liberhaupt auszuwerten und ihn aufer-
dem entsprechend seiner Bedeutung zu interpretieren. Andere Methoden wiederum
handhaben die Fehlerbehandlung anders, wobei dies nicht nur von der verwendeten
Plattform, sondern zusétzlich noch von der verwendeten Sprache abhingt.

NET hingegen stellt allen Anwendungen, die fiir .NET entwickelt werden, ein
einheitliches System zur Fehlerbehandlung zur Verfiigung. Dieses basiert auf so-
genannten Ausnahmen, wobei eine Ausnahme einen konkreten Fehlerfall darstellt.
Ein wesentlicher Unterschied zwischen Ausnahmen und den klassischen Riickga-
bewerten liegt darin, wie sie behandelt werden.

Wihrend es frither Aufgabe des Entwicklers war, auf die Behandlung zu achten,
brechen Ausnahmen die Ausfithrung der Anwendung ab. Damit dies jedoch nicht
bei jeder Ausnahme geschieht, bietet C# entsprechende Moglichkeiten, auf Ausnah-
men zu reagieren, so dass die Ausfiihrung nach der Fehlerbehandlung fortgesetzt
werden kann — erfolgt jedoch keine Fehlerbehandlung, so wird die Ausfiihrung der
Anwendung abgebrochen. Es ist also nicht mehr moglich, Fehler zu ignorieren.

Golo Roden, Auf der Fiihrte von C# 201
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

202 20 Ausnahmen

Ausnahmen kénnen in .NET so wohl von der Common Language Runtime aus-
gelost werden, wenn eine Anwendung beispielsweise versucht, auf eine nicht vor-
handene Ressource zuzugreifen, sie konnen aber auch vom Entwickler gezielt ein-
gesetzt werden, um Fehlersituationen innerhalb der Anwendung zu kennzeichnen.

Damit der fehlerbehandelnde Code auf eine Ausnahme moglichst geeignet rea-
gieren kann, enthalten Ausnahmen neben einer ausfiihrlichen, detaillierten Fehler-
meldung auch den sogenannten Aufrufstapel, mit dessen Hilfe sich nachverfolgen
lasst, an welcher Stelle in der Ausfiihrung sich die Anwendung gerade befindet. Da-
bei enthilt der Aufrufstapel nicht nur Informationen zu der Klasse, Methode und
Zeile, welche die Ausnahme ausgelost hat, sondern auch zur Aufrufhierarchie.

Des weiteren enthélt eine Ausnahme unter Umstinden noch weitere, sogenannte
innere Ausnahmen, wenn beispielsweise wihrend der Fehlerbehandlung ein weite-
rer Fehler aufgetreten ist, allerdings Informationen zu beiden Fehlern an die néchste
Fehlerbehandlung weitergereicht werden sollen.

20.2 Ausnahmen behandeln

Prinzipiell werden Ausnahmen immer dort behandelt, wo sie auftreten. Das heif3t,
tritt eine Ausnahme innerhalb einer Methode auf, obliegt es dieser Methode, sich
um die Fehlerbehandlung zu kiimmern. Geschieht dies nicht, so wird die Ausnahme
an die aufrufende Methode weitergereicht, die sich ihrerseits nun um die Fehlerbe-
handlung kiimmern kann.

Geschieht auch dies nicht, wird die Ausnahme wieder eine Ebene nach oben
gereicht, bis sich entweder eine Methode findet, welche die Ausnahme behandelt,
oder die oberste Ebene, also die Main-Methode, erreicht ist. Wird die Ausnahme
auch dort nicht behandelt, wird die Ausfithrung der Anwendung abgebrochen und
.NET gibt die Fehlermeldung der Ausnahme an den Benutzer aus.

Um eine Ausnahme abzufangen, bietet C# die beiden Schliisselworter #ry und
catch. Beide verfiigen iiber einen Rumpf, der durch geschweifte Klammern einge-
schlossen wird. Wéhrend #ry die Anweisungen umschlief3t, die potenziell eine Aus-
nahme auslosen konnten, stellt catch den fehlerbehandelnden Code zur Verfiigung.

C#

using System;

1

2

3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Represents the application class.
7 /// </summary >

8 public class Program

9 {

10 /// <summary >

11 /// Executes the application.
12 /// </summary >

20.2 Ausnahmen behandeln 203

13 public static void Main ()

14 {

15 try

16 {

17 // Define two operands.

18 int operandl = 23;

19 int operand2 = 0;

20

21 // Cause an exception.

22 int result = operandl / operand2;
23

24 // Print the result to the console.
25 Console .WriteLine (

26 "The result is " + result + ".");
27 b

28 catch

29 {

30 // Catch any exceptions.

31 Console .WriteLine ("Division by zero!");
32 }

33 }

34 }

35 }

Im vorangegangenen Beispiel 16st die Zeile, in der versucht wird, den einen Ope-
randen durch den anderen zu teilen, eine Ausnahme aus, da die Division durch Null
mathematisch nicht definiert ist. Die Ausfiihrung innerhalb des #ry-Blocks wird dar-
aufhin abgebrochen, weshalb die Ausgabe des Ergebnisses nicht erfolgt. Statt des-
sen verzweigt die Ausfithrung in den catch-Block, der eine entsprechende Fehler-
meldung ausgibt.

Ein solcher catch-Block reagiert allerdings nicht nur auf die aufgetretene Divide-
ByZeroException, sondern auf simtliche Ausnahmen. Unter Umstiinden ist dieses
Verhalten allerdings nicht gewiinscht, da nur gezielt einige Ausnahmen behandelt
werden sollen. Dazu ist es moglich, den Typ der zu behandelnden Ausnahme als
Parameter anzugeben.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()

14 {

204

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

}

20 Ausnahmen
try
// Define two operands.
int operandl = 23;

int operand2 = 0;

// Cause an exception.
int result = operandl / operand2;

// Print the result to the console.
Console .WriteLine (

"The result is " + result + ".");
}
catch (DivideByZeroException)
{
// Catch a DivideByZeroException.
Console .WriteLine ("Division by zero!");
¥

Derzeit ist es in C# allerdings nicht moglich, mehrere Typen anzugeben. Sollen
also mehrere Ausnahmen behandelt werden, miissen mehrere catch-Blocke verwen-

det werden.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 try
16 {
17 // Define two operands.
18 int operandl = 23;
19 int operand2 = 0;
20
21 // Cause an exception.
22 int result = operandl / operand2;
23
24 // Print the result to the console.
25 Console.WriteLine (
26 "The result is " + result + ".");

20.2 Ausnahmen behandeln 205

27 }

28 catch (DivideByZeroException)

29 {

30 // Catch a DivideByZeroException.

31 Console .WriteLine ("Division by zero!");
32 }

33 catch (OverflowException)

34 {

35 // Catch an OverflowException.

36 Console .WriteLine ("Result too large!");
37 }

38 }

39 }

40 }

Die einzige Moglichkeit, diese Einschrankung zu umgehen, ist, eine gemeinsa-
me Basisklasse als Typ anzugeben, sofern eine solche existiert. Prinzipiell leiten alle
Ausnahmen von der Klasse System.Exception ab, manche verfiigen allerdings iiber
eine andere Basisklasse, die ihrerseits erst von System.Exception ableitet. Ein typi-
sierter catch-Block behandelt also nicht nur die Ausnahmen, die dem angegebenen
Typ entsprechen, sondern auch all jene, die von diesem Typ abgeleitet sind.

Generell gilt allerdings, dass Ausnahmen so lokal und so spezifisch wie moglich
behandelt werden sollten.

Sofern mehrere catch-Blocke vorhanden sind, muss deren Reihenfolge beach-
tet werden. Da C# immer den friihesten passenden cafch-Block mit der Fehlerbe-
handlung betraut, ist es wichtig, Blocke fiir spezifische Ausnahmen vor solchen fiir
allgemeinere Ausnahmen zu positionieren.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 try
16 {
17 // Define two operands.
18 int operandl = 23;
19 int operand2 = 0;
20
21 // Cause an exception.

22 int result = operandl / operand2;

206

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

}

20 Ausnahmen

// Print the result to the console.
Console .WriteLine (

"The result is " + result + ".");
}
catch
{
// This block is executed on every exception
// since it catches any exception.
}
catch(DivideByZeroException)
{
// This block is executed never.
}

Eine Fihigkeit von Ausnahmen wurde noch nicht vorgestellt: Der Zugriff auf die
in einer Ausnahme enthaltenen Informationen wie Fehlermeldung, Aufrufstapel und
innere Ausnahmen. Dazu ist es notig, eine Ausnahme mit einem Variablennamen zu
kennzeichnen, so dass darauf innerhalb des catch-Blocks zugegriffen werden kann.
Es hat sich in der Praxis eingebiirgert, Ausnahmen mit der Abkiirzung ex zu benen-
nen, obwohl dies nicht den Namenskonventionen fiir lokale Variablen entspricht,
weshalb diese Bezeichnung in den folgenden Beispiele nicht verwendet wird.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 try
16 {
17 // Define two operands.
18 int operandl = 23;
19 int operand2 = 0;
20
21 // Cause an exception.
22 int result = operandl / operand2;
23
24 // Print the result to the console.
25 Console .WriteLine (

20.2 Ausnahmen behandeln 207

26 "The result is " + result + ".");
27 }

28 catch (DivideByZeroException exception)
29 {

30 // Catch a DivideByZeroException.

31 Console .WriteLine (exception .Message);
32 }

33 }

34 }

35 }

Auch ein Weiterreichen und somit ein erneutes Auslosen einer Ausnahme inner-
halb eines catch-Blocks ist moglich, was in C# mit Hilfe des Schliisselwortes throw
geschieht. Es wird kein weiterer Parameter bendotigt, da throw immer die Ausnah-
me weiterreicht, in deren fehlerbehandelndem Block sich der entsprechende Aufruf
befindet.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 try
16 {
17 // Define two operands.
18 int operandl = 23;
19 int operand2 = 0;
20
21 // Cause an exception.
22 int result = operandl / operand2;
23
24 // Print the result to the console.
25 Console .WriteLine (
26 "The result is " + result + ".");
27 }
28 catch (DivideByZeroException exception)
29 {
30 // Catch the DivideByZeroException.
31 Console .WriteLine (exception.Message);
32
33 // Rethrow the exception.

34 throw;

208 20 Ausnahmen

35 }
36 }

37 ¥

38 1

Dennoch kann eine Ausnahme als Parameter angegeben werden, wobei dabei
allerdings der Aufrufstapel verloren geht, weshalb dies in der Praxis als schlechter
Stil angesehen wird.

In einigen Fillen kann es vorkommen, dass Code im Anschluss an einen fry-
catch-Block ausgefiihrt werden muss, unabhéngig davon, ob der #ry-Block vollstin-
dig erfolgreich durchlaufen wurde oder nicht, wenn also eine Ausnahme ausgelost
wurde. Solcher Code konnte beispielsweise dazu dienen, eine gedffnete Verbindung
zu einer Datenbank zu schlieBen oder sonstige Ressourcen wieder freizugeben. Im
einfachsten Fall geniigt es, solchen Code hinter dem catch-Block anzugeben.

C#
1 try
2 {
3 // TODO gr: Do something.
4 // 2008-01-02
5 %
6 catch
7 {
8 // TODO gr: Handle eventually thrown exceptions.
9 // 2008-01-02
10 }
11
12 // TODO gr: Clean up.
13 // 2008-01-02

Fiihrt jedoch mindestens einer der beiden Blocke ein return aus und verlésst die
aktuelle Methode damit, oder reicht der catch-Block die Ausnahme an eine hoher-
gelegene Methode weiter, wird der entsprechende Code nicht mehr ausgefiihrt.

Eine denkbare Losung wire, den entsprechenden Code in beiden Blocken einzu-
fligen, doch dies verschlechtert die Wartbarkeit und erhoht die Uniibersichtlichkeit.
Statt dessen stellt C# das Schliisselwort finally zur Verfiigung, das einen weiteren
Block nach fry und catch einleitet, dessen Inhalt in jedem Fall ausgefiihrt wird — so-
gar dann, wenn durch einen der beiden Blocke ein refurn oder ein throw ausgefiihrt
wird.

C#
1 Try
2 {
3] // TODO gr: Do something.
4 // 2008-01-02
5
6 return ;
7 // Return to the caller.
8

20.3 Benutzerdefinierte Ausnahmen 209

9 catch

10 {

11 // TODO gr: Handle eventually thrown exceptions.
12 // 2008-01-02

13

14 // Rethrow the exception.
15 throw;

16 }

17 finally

18 {

19 // TODO gr: Clean up.

20 // 2008-01-02

21 }

20.3 Benutzerdefinierte Ausnahmen

Wie zu Anfang bereits erwéhnt ist es dem Entwickler moglich, eigene Ausnahmen
zu definieren, um Fehlerzustdnde innerhalb der Anwendung zu kennzeichnen. Prin-
zipiell ist eine solche benutzerdefinierte Ausnahme nichts anderes, als eine direkt
oder indirekt von System.Exception abgeleitete Klasse.

Um systembedingte und benutzerdefinierte Ausnahmen unterscheiden zu kon-
nen, ist es in der Praxis iiblich, eigene Ausnahmeklassen nicht von System.Excep-
tion, sondern von der Klasse System.ApplicationException abzuleiten, die ihrerseits
wiederum von System.Exception ableitet.

Ausgelost wird eine benutzerdefinierte Ausnahme mit Hilfe des bereits bekann-
ten Schliisselwortes throw, wobei diesem als Parameter eine neue Instanz der ent-
sprechenden Ausnahme libergeben wird.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a custom defined exception.
7 /// </summary >
8 public class MyException : ApplicationException
9 {
10 }
11
12 /// <summary >
13 /// Represents the application class.
14 /// </summary >
15 public class Program
16 {
17 /// <summary >

18 /// Executes the application.

210 20 Ausnahmen

19 /// </summary >

20 public static void Main ()

21 {

22 // Throw a custom defined exception.
23 throw new MyException ();

24 }

25 }

26 }

Es wird in der Praxis als guter Stil angesehen, die Standardkonstruktoren der
Basisklasse System.ApplicationException zu iiberschreiben, um auch benutzerde-
finierte Ausnahmen durch Angabe der entsprechenden Parameter mit einer Fehler-
meldung und inneren Ausnahmen ausstatten zu konnen.

20.4 Leistung und Ressourcenbedarf

Im Zusammenhang mit Ausnahmen liest und hort man hdufig, dass diese nicht ein-
gesetzt werden sollten, da sie sehr leistungshungrig seien. Aus dieser Aussage ergibt
sich direkt die Frage, wann Ausnahmen iiberhaupt eingesetzt werden sollten.

Prinzipiell ergibt sich die Antwort auf diese Frage bereits aus dem Begriff einer
Ausnahme: Sie stellen Ausnahmesituationen dar. Das heifit, Ausnahmen sind expli-
zit nicht dazu gedacht, bedenkenlos an den verschiedensten Stellen innerhalb einer
Anwendung eingesetzt zu werden. Sofern es moglich ist, einen Fehler im Vorfeld
abzufangen, sollte dies dem Einsatz einer Ausnahme vorgezogen werden.

Beispielsweise wiirde man in dem Beispiel, das die DivideByZeroException ab-
fangt, in der Praxis keine Ausnahme einsetzen, sondern im Vorfeld mit Hilfe einer
if-Abfrage priifen, ob durch 0 geteilt werden soll. Insbesondere, wenn solche Be-
rechnungen innerhalb von Schleifen auftreten, kann dadurch die Leistung der An-
wendung durchaus gesteigert werden.

Dies liegt daran, dass fiir jede Ausnahme, die ausgelost wird, der Aufrufstapel
ermittelt werden muss, was bei einer entsprechend tiefen Verschachtelung von Me-
thodenaufrufen unter Umstéinden aufwiindig sein kann.

Obwohl Ausnahmen also nicht wahlfrei eingesetzt werden sollten, gibt es den-
noch Fille, in denen ihr Einsatz nicht verzichtbar ist. Dann ndmlich, wenn Fehler
nicht erwartbar sind und auf Ausnahmesituationen reagiert werden muss. In einem
solchen Fall ist es in der Regel allerdings ohnehin nétig, den Benutzer zu informie-
ren und ihn das weitere Vorgehen bestimmen zu lassen, weshalb es in einer solchen
Situation nicht darauf ankommt, ob eine Ausnahme schnell oder langsam erzeugt
wird — die Anwendung gelangt auf beide Arten zum Stillstand.

Zusammengefasst ldsst sich also sagen, dass Ausnahmen entgegen ihrem Ruf
durchaus eingesetzt werden konnen, dass dies allerdings gezielt und mit Bedacht
geschehen sollte. Insbesondere sollten Fehlersituationen bereits im Vorfeld vermie-
den werden, sofern dies moglich ist.

Kapitel 21
Attribute

21.1 Was sind Attribute?

Wie bereits im Rahmen der Fehlerbehandlung erwéhnt, gibt es Aspekte in Anwen-
dungen, die iiber die reine fachliche Domine hinausgehen. Als Beispiele waren
dort unter anderem Sicherheit, Ausfiihrungsgeschwindigkeit und Stabilitéit genannt.
Auch die Fehlerbehandlung zihlt zu diesen nicht-fachlichen Aspekten.

Neben Aspekten, die per Code definiert werden, bietet C# auch die Moglichkeit,
Aspekte deklarativ umzusetzen, das heifit, ohne dass Code zu ihrer Umsetzung ge-
schrieben werden miisste. Statt dessen werden die entsprechenden Stellen innerhalb
der Anwendung mit sogenannten Attributen markiert, die Einfluss auf die Semantik
des markierten Codes haben.

Beispielsweise gibt es fiir Enumerationen ein Attribut, das bewirkt, dass die in-
terne Abbildung der Enumeration auf Ganzzahlen dem Schema der Zweierpotenzen
folgt, statt die Zahlen lediglich fortlaufend zuzuordnen. Dieses Attribut ist beispiels-
weise dann duBlerst niitzlich, wenn die einzelnen Werte einer Enumeration binir
verkniipft werden sollen.

Um ein Attribut in C# zu verwenden, geniigt es, das entsprechende Attribut vor
dem zu markierenden Abschnitt innerhalb eckiger Klammern anzugeben. Das At-
tribut, um die einer Enumeration zugeordneten Zahlen als Zweierpotenzen zu orga-
nisieren, heiflit FlagsAttribute und befindet sich im Namensraum System.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Contains colors.
7 /// </summary >
8 [Flags]
9 enum Colors
10 {
Golo Roden, Auf der Fiihrte von C# 211

DOI: 10.1007/978-3-540-27889-4, © Springer 2008

212 21 Attribute

11 /// <summary >

12 /// Represents the red color.
13 /// </summary >

14 Red, /] =1

15

16 /// <summary >

17 /// Represents the green color.
18 /// </summary >

19 Green, // = 2

20

21 /// <summary >

22 /// Represents the blue color.
23 /// </summary >

24 Blue // = 4

25 }

26 }

Wie das Beispiel zeigt, entfillt bei der Angabe eines Attributs das Suffix Attribu-
te, obwohl der interne Bezeichner der Klasse FlagsAttribute lautet. Attribute ermog-
lichen prinzipiell also, die Semantik von Code auf deklarativem Wege zu veridndern.

Die meisten Attribute ermoglichen auflerdem, sie mit Hilfe von Parametern an
den jeweiligen Kontext anzupassen. Prinzipiell werden Parameter zu Attributen dhn-
lich denen zu einer Methode angegeben, innerhalb runder Klammern. Allerdings
werden bei Attributen zwei Typen von Parametern unterschieden: Positions- und
Namensparameter.

Wihrend Positionsparameter eine feste Reihenfolge besitzen, in der sie angege-
ben werden miissen, ist diese bei Namensparametern frei wihlbar. Allerdings muss
diesen ein Name vorangestellt werden, damit C# den Parameter entsprechend zu-
ordnen kann. Die meisten Attribute folgen dem Schema, dass Positionsparameter
zwingende, Namensparameter allerdings nur optionale Parameter darstellen. Sofern
Namensparameter angegeben werden, muss dies nach den Positionsparametern er-
folgen.

Ein Beispiel fiir Positionsparameter bietet das Attribut ObsoleteAttribute, das ge-
nutzt werden kann, um Methoden oder Typen zu kennzeichnen, die aus Kompatibi-
litatsgriinden noch enthalten sind, allerdings nicht mehr verwendet werden sollten.
Es gibt dieses Attribut in drei Ausfithrungen: Ohne Parameter, mit einem und mit
zwei Parametern. Der erste Parameter definiert eine Fehlermeldung, die C# ausge-
ben soll, wenn die Methode oder der Typ verwendet wird, der zweite Parameter legt
mit Hilfe eines logischen Wertes fest, ob der Compiler eine Warnung oder einen
Fehler erzeugen soll.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >

21.2 Benutzerdefinierte Attribute 213

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 }

public class Foo

{

/// <summary >

/// Does nothing.
/// </summary >
[Obsolete]

public void Bar ()
{

¥

/// <summary >

/// Does nothing.

/// </summary >

/// <param name="param0">A foo parameter .</param>
[Obsolete ("Use method X instead.")]

public void Bar (int paramO)

{

}

/// <summary >

/// Does nothing.

/// </summary >

/// <param name="param0">A foo parameter .</param>
/// <param name="paraml">Another foo parameter.
/// </param>

[Obsolete ("Use method X instead.", true)]
public void Bar (int paramO, int paraml)

{

¥

21.2 Benutzerdefinierte Attribute

AuBer den vordefinierten Attributen bietet C# auch die Moglichkeit, eigene Attri-
bute zu definieren. Dies geschieht, indem eine eigene Klasse definiert wird, die von
der Basisklasse Attribute im Namensraum System ableitet und deren Name auf das
Suffix Attribute endet.

C#

1
2
3
4 {
5
6
7
8
9

using System;

namespace GoloRoden.GuideToCSharp

/// <summary >

/// Represents the author attribute.

/// </summary >

public class AuthorAttribute : Attribute

{

214 21 Attribute

10 }
11 }

Um dieses Attribut mit Parametern zu versehen, werden zum einen Felder be-
notigt, welche die entsprechenden Werte aufnehmen. AuBBerdem muss das Attribut
fiir Positionsparameter mindestens mit einem Konstruktor versehen werden, fiir Na-
mensparameter muss es entsprechende Eigenschaften geben.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the author attribute.
7 /// </summary >
8 public class AuthorAttribute : Attribute
9 {
10 /// <summary >
11 /// Contains the name.
12 /// </summary >
13 private string _name;
14
15 /// <summary >
16 /// Contains the email address.
17 /// </summary >
18 private string _eMail;
19
20 /// <summary >
21 /// Gets or sets the name.
22 /// </summary >
23 /// <value>The name.</value>
24 public string Name
25 {
26 get
27 {
28 return this._name;
29 }
30
31 set
32 {
88! this._name = value;
34 }
35 }
36
37 /// <summary >
38 /// Gets or sets the email.
39 /// </summary >
40 /// <value>The email.</value>
41 public string EMail
42 {

43 get

21.3 Ziele von Attributen 215

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

}

11/
11/
11/
11/
17/

{

return this._eMail;
}
set
{

this._eMail = value;
}

<summary >

Initializes a new instance of the
AuthorAttribute type.

</summary >

<param name="name">The name.</param>

public AuthorAttribute(string name)

{

// Set the values.
this._name = name;

In diesem Beispiel ist es auf Grund des Konstruktors notwendig, den Namen des
Autors anzugeben, die E-Mail-Adresse ist allerdings optional. Methoden und Typen
konnen, sofern sie mit diesem Attribut markiert werden, mit der Angabe versehen
werden, wer sie entwickelt hat und fiir sie zusténdig ist, was beispielsweise in Teams
niitzlich zu wissen sein kann.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 [Author ("Golo Roden", EMail = "webmaster@goloroden.de")]
9 public class Foo
10 {
11 ¥
12}

21.3 Ziele von Attributen

Attribute selbst konnen wiederum mit Attributen versehen werden, was in C# un-
ter anderem dafiir genutzt wird, die potenziellen Ziele fiir Attribute vorzugeben.

216

Ein Ziel ist ein Element innerhalb des Codes, auf welches das Attribut angewendet
werden kann, wie beispielsweise eine Methode, ein Parameter oder eine Klasse.
Ziele werden in C# mit Hilfe des Attributes AttributeUsageAttribute definiert,
das als Parameter eine bitweise-oder-verkniipfte Liste von Zielen erwartet. Um die
Verwendung des Attributs AuthorAttribute beispielsweise auf Methoden und Klas-
sen einzuschrinken, werden dem AttributeUsageAttribut die entsprechenden Ziele

tibergeben.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the author attribute.
7 /// </summary >
8 [AttributeUsage (AttributeTargets.Method $\vert $
9 AttributeTargets.Class)]
10 public class AuthorAttribute : Attribute
11 {
12 /// <summary >
g /// Contains the name.
14 /// </summary >
15 private string _name;
16
17 /// <summary >
18 /// Contains the email.
19 /// </summary >
20 private string _eMail;
21
22 /// <summary >
23 /// Gets or sets the name.
24 /// </summary >
25 /// <value>The name.</value>
26 public string Name
27 {
28 get
29 {
30 return this._name;
Sl }
32
33 set
34 {
35 this._name = value;
36 }
37 }
38
39 /// <summary >
40 /// Gets or sets the email.
41 /// </summary >
42 /// <value>The email.</value>
43 public string EMail

21.3 Ziele von Attributen 217

Kapitel 22
Speicherverwaltung

22.1 Speicherverbrauch

Wird eine auf .NET basierende Anwendung ausgefiihrt, so wird nicht nur sie in
den Speicher geladen, sondern auch die Common Language Runtime und die Klas-
senbibliothek von .NET. Aus diesem Grund verbraucht eine Anwendung, die auf
NET basiert, zunéchst deutlich mehr Speicher als eine vergleichbare Anwendung,
die beispielsweise ausschlieflich auf der Win32-API aufbaut.

Seit .NET 2.0 werden die Systemkomponenten allerdings nur ein einziges Mal
geladen und anschlieBend allen derzeit im Speicher befindlichen Anwendungen zur
Verfiigung gestellt, so dass der hohe Speicherbedarf bei zahlreichen gleichzeitig
laufenden Anwendungen relativiert wird. Obwohl diese Maflnahme den Speicher-
bedarf von Anwendungen fiir .NET bereits deutlich gesenkt hat, scheinen sie doch
iiberméBig viel Speicher zu verbrauchen.

Verldsst man sich auf die Angaben, die beispielsweise der Taskmanager von
Windows anzeigt, wird allerdings ein Detail des Speichermanagements von .NET
tibersehen: .NET reserviert fiir jede gestartete Anwendung zunéchst zu viel freien
Speicher, so dass nicht wéihrend der Ausfiihrung der Anwendung aufwéndig neuer
Speicher angefordert werden muss. Der Anwendung steht also in jedem Fall genii-
gend Speicher zur Verfiigung, was der Ausfiihrungsgeschwindigkeit zugute kommt.

Wird allerdings der Speicher im System knapp, da in der Zwischenzeit weitere
Anwendungen gestartet wurden, oder da der Speicherbedarf anderer gleichzeitig
ausgefiihrter Anwendungen gestiegen ist, gibt .NET Teile des zwar reservierten,
aber ungenutzen Speichers frei. Insofern liegt der Speicherbedarf einer auf .NET
basierenden Anwendung deutlich niedriger, als man zundchst annehmen konnte.

22.2 Freigabe von Ressourcen

Die aus diesem Verhalten resultierende Frage ist, warum .NET den Speicher auf
diese Art verwaltet. Um diese Frage beantworten zu konnen, muss man wissen, was
intern geschieht, wenn Typen instanziiert werden.

Golo Roden, Auf der Fiihrte von C# 219
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

220 22 Speicherverwaltung

Bisher wurde zwischen Werte- und Verweistypen unterschieden, die entweder di-
rekt oder indirekt im Speicher verwaltet werden. Ein weiterer Unterschied zwischen
diesen Arten von Typen besteht darin, wo im Speicher Instanzen dieser Typen abge-
legt werden. Wihrend Wertetypen im sogenannten Stack abgelegt werden, werden
Verweistypen auf dem sogenannten Managed Heap gespeichert, und nur ein Verweis
auf diese Speicherstelle wird im Stack abgelegt.

Auftillig ist, dass Objekte in C# zwar mit Hilfe des Operators new erzeugt wer-
den konnen, dass sie aber — beispielsweise im Gegensatz zu C++ — nicht wieder
freigegeben werden miissen. Dies liegt daran, dass C# die Bereinigung des Spei-
chers um nicht mehr benétigte Objekte eigenstéindig mit einer entsprechenden Kom-
ponente durchfiihrt, die als Garbage Collection oder Garbage Collector bezeichnet
wird.

Da es notwendig sein kann, vor dem Freigeben des Speichers, der durch ein Ob-
jekt belegt ist, einige Aufrdumarbeiten auszufiihren, gibt es dafiir eine eigene Me-
thode, die als Finalisierer bezeichnet wird und deren Basisimplementierung sich als
Finalize in object befindet. Innerhalb dieser Methode konnen beispielsweise Res-
sourcen freigegeben werden, die nicht unter der Verwaltung von .NET stehen, wie
unter anderem COM-Objekte oder Win32-Handles. Allerdings muss darauf geach-
tet werden, in jedem Fall den Finalisierer der Basisklasse aufzurufen.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Finalizes this instance.
12 /// </summary >
13 protected override void Finalize ()
14 {
15 // TODO gr: Clean up any managed and unmanaged
16 // resources .
17 // 2008-01-01
18
19 // Call the base finalizer.
20 base.Finalize ();
21 }
22 }
23 }

Da es durchaus geschehen kann, dass der hindische Aufruf des Finalisierers in
der Basisklasse vergessen wird, bietet C# die Moglichkeit, analog zu einem Kon-
struktor eine Methode als Destruktor zu implementieren, die diesen Aufruf implizit
durchfiihrt. Ein Destruktor folgt dem gleichen Namensschema wie der Konstruk-

22.2 Freigabe von Ressourcen 221

tor, allerdings wird ihm eine Tilde als Prifix vorangestellt. Auerdem verfiigt ein
Destruktor nicht iiber einen Zugriffsmodifizierer. An Stelle von

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Finalizes this instance.
12 /// </summary >
13 protected override void Finalize ()
14 {
15 // TODO gr: Clean up any managed and unmanaged
16 // resources .
17 // 2008-01-02
18
19 // Call the base finalizer.
20 base.Finalize ();
21 }
22 }
23 %

kann in C# also auch

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 // Finalizes this instance.
11 “Foo ()
12 {
i3 // TODO gr: Clean up any managed and unmanaged
14 // resources .
15 // 2008-01-02
16 }
17 }
18 }

verwendet werden. Obwohl beide Varianten semantisch gleichwertig sind, sollte in
der Praxis immer die zweite Variante verwendet werden.

222 22 Speicherverwaltung

Der einzige Nachteil an Destruktoren in C# ist, dass ihr Ausfiihrungszeitpunkt
nicht deterministisch ist. Sie werden dann ausgefiihrt, wenn die Garbage Collection
den Speicher aufriumt und nicht mehr benétigte Objekte entfernt. Da die Ausfiih-
rung der Garbage Collection nach einem internen Algorithmus von .NET gesteuert
wird, kann man sich nicht darauf verlassen, dass ein Objekt zu einem bestimmten
Zeitpunkt aufgerdaumt und damit sein Finalisierer ausgefiihrt wird.

Die Garbage Collection kann ein Objekt jedoch nur dann freigeben, wenn sein Fi-
nalisierer ausgefiihrt wurde, weshalb Objekte, die iiber einen Finalisierer verfiigen,
langer im Speicher verbleiben als solche, die keinen Finalisierer enthalten. Diese
Verzogerung dauert bis zur ndchsten Ausfiihrung der Garbage Collection, weshalb
nur solche Klassen einen Finalisierer implementieren sollten, die nicht verwaltete
Ressourcen wieder freigeben miissen.

Sollen nicht verwaltete Ressourcen zu einem vom Entwickler bestimmten Zeit-
punkt oder auch verwaltete Ressourcen freigegeben werden, stellt NET die Schnitt-
stelle IDisposable zur Verfiigung. Eine Klasse, deren Freigabeprozesse gezielt ge-
steuert werden sollen, muss diese Schnittstelle und die damit einhergehende Metho-
de Dispose implementieren.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo : IDisposable
9 {
10 /// <summary >
11 /// Disposes this instance.
12 /// </summary >
13 public void Dispose ()
14 {
15 // TODO gr: Clean up any unmanaged resources.
16 // 2008-01-02
17
18 // TODO gr: Clean up any managed resources.
19 // 2008-01-02
20 }
21 ¥
22 }

Nun kann die Methode Dispose aufgerufen werden, um die entsprechenden Res-
sourcen freizugeben. Allerdings kann dieser Aufruf nun wiederum vergessen wer-
den, weshalb der Finalisierer ebenfalls Dispose aufrufen sollte.

C#

1 using System;
2

22.2 Freigabe von Ressourcen 223

3 namespace GoloRoden.GuideToCSharp
4 {

5 /// <summary >

6 /// Represents a foo class.

7 /// </summary >

8 public class Foo : IDisposable
9

{
10 /// <summary >
11 /// Finalizes this instance.
12 /// </summary >
13 ~Foo ()
14 {
15 // Dispose this instance.
16 this.Dispose ();
17 }
18
19 /// <summary >
20 /// Disposes this instance.
21 /// </summary >
22 public void Dispose ()
23 {
24 // TODO gr: Clean up any unmanaged resources .
25 // 2008-01-02
26
27 // TODO gr: Clean up any managed resources.
28 // 2008-01-02
29 }
30 }
31 }

Doch auch diese Variante enthilt einen Fehler. Wird Dispose vom Entwickler
aufgerufen, so wird der Finalisierer dennoch von der Garbage Collection ausge-
fiihrt, die ihrerseits Dispose ein zweites Mal aufruft. Das heiflt, es wird versucht,
Ressourcen freizugeben, die ldngst nicht mehr belegt sind. Um dies zu verhindern,
muss die Dispose-Methode den Finalisierer in der Garbage Collection abmelden, so
dass dieser nicht mehr ausgefiihrt wird.

c#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo : IDisposable
9 {
10 /// <summary >
11 /// Finalizes this instance.
12 /// </summary >
13 “Foo ()

14 {

224

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

}

// Dispose this instance.

this.Dispose ();

/// <summary >

/// Disposes this instance.
/// </summary >

public void Dispose ()

22 Speicherverwaltung

unmanaged resources .

managed resources .

the finalizer for this

{
// TODO gr: Clean up any
// 2008-01-02
// TODO gr: Clean up any
// 2008-01-02
// Suppress execution of
// object.
GC.SuppressFinalize (this);
}

Da die Garbage Collection alle verwalteten Objekte in einer beliebigen Reihen-
folge aufrdumt, kann es beim automatischen Aufruf von Dispose durch die Garbage
Collection vorkommen, dass einige der verwalteten Ressourcen, die freigegeben
werden sollen, bereits nicht mehr existieren. Um dies zu verhindern, wird eine neue
Variable eingefiihrt, mit der liberpriift werden kann, ob Dispose vom Entwickler
oder von der GarbageCollection aufgerufen wird.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo : IDisposable
9 {
10 /// <summary >
11 /// Finalizes this instance.
12 /// </summary >
13 ~“Foo ()
14 {
15 // Dispose this instance.
16 this.Dispose (false);
17 }
18
19 /// <summary >
20 /// Disposes this instance.
21 /// </summary >

22.2 Freigabe von Ressourcen 225

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

}

/// <param name="isDisposeByUser"><c>true</c> whether
/// disposing is called by the user; <c>false</c>
/// otherwise .</param>
private void Dispose (bool isDisposeByUser)
{
// I1If the disposing is called by the user,
// managed resources may be cleaned up, too.
if (isDisposeByUser)
{
// TODO gr: Clean up any managed resources.
// 2008-01-02

// TODO gr: Clean up any unmanaged resources .
// 2008-01-02

// Suppress execution of the finalizer for
// this object.
GC.SuppressFinalize (this);

/// <summary >
/// Disposes this instance.
/// </summary >
public void Dispose ()
{
// Dispose this instance.
this.Dispose (true);

Es bietet sich an, eine weitere Variable einzufiihren, die festlegt, ob Dispose be-
reits ausgefiihrt wurde oder nicht, um zu verhindern, dass eine Methode noch nach
dem Aufruf von Dispose ausgefiihrt werden soll. Geschieht dies, kann eine Aus-
nahme vom Typ ObjectDisposedException ausgelost werden, der als Parameter der
Name des aktuellen Objekts iibergeben werden muss.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo : IDisposable
9
10 /// <summary >
11 /// Contains, whether this instance has been
12 /// disposed yet.

226 22 Speicherverwaltung

13 /// </summary >

14 private bool _isDisposed;

15

16 /// <summary >

17 /// Finalizes this instance.

18 /// </summary >

19 ~“Foo ()

20 {

21 // Dispose this instance.

22 this.Dispose (false);

23 }

24

25 /// <summary >

26 /// Disposes this instance.

27 /// </summary >

28 /// <param name="isDisposeByUser"><c>true</c> whether
29 /// disposing is called by the user; <c>false</c>
30 /// otherwise .</param>

31 private void Dispose (bool isDisposeByUser)

32 {

33 // If the disposing is called by the user,
34 // managed resources may be cleaned up, too.
35 if (isDisposeByUser)

36 {

37 // TODO gr: Clean up any managed resources.
38 // 2008-01-02

39 }

40

41 // TODO gr: Clean up any unmanaged resources.
42 // 2008-01-02

43

44 // Suppress execution of the finalizer for
45 // this object.

46 GC.SuppressFinalize (this);

a7

48 // Define this instance as disposed.

49 this._isDisposed = true;

50 }

51

52 /// <summary >

53 /// Dispose this instance.

54 /// </summary >

55 public void Dispose ()

56 {

57 // If this instance has been disposed, throw an
58 // exception.

59 if (this._isDisposed)

60 {

61 throw new ObjectDisposedException (

62 this.ToString ());

63 }

64

65 // Dispose this instance.

66 this.Dispose (true);

22.2 Freigabe von Ressourcen 227

67 }
68 }
69 }

Prinzipiell kann eine solche Klasse wie jede andere Klasse verwendet werden,
mit dem Unterschied, dass ihre Dispose-Methode aufgerufen werden sollte, sobald
die Arbeit mit ihr erledigt ist.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Create an instance of the Foo class.
16 Foo foo = new Foo();
17
18 // TODO gr: Use the object.
19 // 2008-01-02
20
21 // Dispose the object.
22 foo.Dispose ();
23 }
24 }
25 %

Damit dieser Aufruf nicht vergessen wird, bietet C# eine abkiirzende Schreib-
weise mit Hilfe des Schliisselwortes using.

C#

using System;

1

2

3 namespace GoloRoden.GuideToCSharp

4 {

5 /// <summary >

6 /// Represents the application class.
7 /// </summary >

8 public class Program

9 {

10 /// <summary >

11 /// Executes the application.
12 /// </summary >

228 22 Speicherverwaltung

13 public static void Main ()

14 {

15 // Create an instance of the Foo class and
16 // dispose it implicitly.

17 using (Foo foo = new Foo())

18 {

19 // TODO gr: Use the object.
20 // 2008-01-02

21 }

22 }

23 }

24 }

22.3 Verhalten von Zeichenketten

Neben der Art, wie .NET Speicher verwaltet, gibt es einige weitere Themen, iiber
die ein wenig Hintergrundwissen nicht schadet. Eines dieser Themen ist die Ver-
waltung von Strings. Strings nehmen in .NET eine Sonderstellung ein, da sie im
Speicher nicht verdnderbar sind. Wird ein String verindert, wird im Hintergrund
eine verinderte Kopie erzeugt, was wiederum Speicher und Zeit kostet.

Aus diesem Grund ist es nicht empfehlenswert, Strings mit Hilfe des Operators
+ zu verketten. Bei dem Ausdruck

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application.
12 /// </summary >
13 public static void Main ()
14 {
15 // Concatenate some strings.
16 string result =
17 "Hallo" + " " + "Welt" + "!";
18 }
19 }

20 }

22.3 Verhalten von Zeichenketten 229

werden intern sieben Strings erzeugt — zunéchst jeder Teilstring einzeln, dann die
Kombination aus den ersten beiden, dann die Kombination aus dieser Kombination
und dem dritten, und abschlieBend die Kombination aller Strings.

Bei einigen wenigen Strings, die miteinander verkettet werden, ist dies noch ak-
zeptabel, ist die Anzahl aber hoch oder geschieht eine solche Verkettung innerhalb
einer Schleife, so wird dadurch der Speicherbedarf unnétig in die Hohe getrieben.

Als Alternative gibt es die Klasse StringBuilder aus dem Namensraum Sys-
tem.Text, die einen groBen Speicherbereich reserviert, in dem einzelne Strings hin-
tereinander platziert und anschlieBend auf Anforderung in einen einzigen String
zusammengefiigt werden.

C#

1 using System;
2 using System.Text;

3

4 namespace GoloRoden.GuideToCSharp

5 {

6 /// <summary >

7 /// Represents the application class.

8 /// </summary >

9 public class Program

10 {

11 /// <summary >

12 /// Executes the application.

13 /// </summary >

14 public static void Main ()

15 {

16 // Create a string builder instance.
17 StringBuilder stringBuilder =

18 new StringBuilder();

19

20 // Append some strings.

21 stringBuilder.Append ("Hallo");

22 stringBuilder.Append (" ");

23 stringBuilder.Append ("Welt");

24 stringBuilder.Append ("!");

25

26 // Get the string from the string builder.
27 string result = stringBuilder.ToString ();
28 }

29 ¥

30 }

Obwohl das Verketten von Strings mit Hilfe der StringBuilder-Klasse deutlich
schneller und speicherschonender funktioniert als auf dem klassischen Weg, muss
bei ihrem Einsatz bedacht werden, dass auch hier zunichst eine Instanz erzeugt wird
und Speicher reserviert werden muss, was ebenfalls Zeit kostet. Je nach Kontext gilt
es also abzuwigen, auf welche Art Strings verkettet werden.

230 22 Speicherverwaltung

22.4 Verspitete Initialisierung

Im Zusammenhang mit statischen Konstruktoren gibt es in C# noch einen wesent-
lichen Aspekt zu beachten. Zunichst konnte man vermuten, die Ausfithrung der
Klasse

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Contains a bar field.
12 /// </summary >
13 private static int _bar = 23;
14 }
15 }

wiirde analog zur Ausfiihrung der Klasse

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Contains a bar field.
12 /// </summary >
13 private static int _bar;
14
15 /// <summary >
16 /// Initializes the Foo type.
17 /// </summary >
18 static Foo ()
19 {
20 // Set the class’s fields.
21 _bar = 23;
22 }
23 }

24 }

22.4 Verspitete Initialisierung 231

stattfinden. Es gibt allerdings einen Unterschied, der sich darin bemerkbar macht,
wann die Zuweisung des Wertes an die Variable stattfindet. Wihrend der Wert in
der ersten Variante irgendwann zwischen dem Start der Anwendung und dem ersten
Zugriff auf den Typ stattfindet, geschieht dies bei der zweiten Variante auf jeden
Fall erst beim Zugriff auf den Typ.

Es wire sogar ausreichend, einen vollstindig leeren statischen Konstruktur be-
reitzustellen, der Effekt wire der gleiche: Sobald ein statischer Konstruktor vorhan-
den ist, wird ein Typ erst initialisiert, wenn er tatsidchlich verwendet wird.

C#
1 using System;
2
3 namespace GoloRoden.GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Contains a bar field.
12 /// </summary >
13 private static int _bar = 23;
14
15 /// <summary >
16 /// Initializes the Foo type.
17 /// </summary >
18 static Foo ()
19 {
20 }
21 ¥
22 }

Dies liegt daran, dass der Compiler jeden Typ mit dem internen Flag beforefield-
init kennzeichnet, der nicht iiber einen statischen Konstruktor verfiigt. Dieses Flag
bewirkt, dass der Typ irgendwann vor, spétestens aber beim ersten Zugriff initiali-
siert wird.

Ausnutzen ldsst sich dieses Verhalten, wenn ein Typ nicht in jedem Fall in einer
Anwendung bendtigt wird, seine Erzeugung aber relativ aufwindig ist, weil bei-
spielsweise auf zahlreiche externe Ressourcen zugegriffen werden muss. In einem
solchen Fall kann die Initialisierung durch das Hinzufiigen eines statischen Kon-
struktors verzogert werden, bis der Typ tatsdchlich benotigt wird.

Sachverzeichnis

1150

1= 148,152

* 144

+ 143, 144,152,228

++ 146

+= 96,108

— 143,144

—— 146

—= 96, 108
23,48

NET 1

Compact Framework 2
Micro Framework 2
/144
/¥ 29
/Il 28
/1 29

69, 86, 88
;23
< 148,152
<< 151
<= 148,152
<c> 43
<param> 45
<returns> 43
<summary> 29, 31,42
<value> 35

= 126,129
== 147,152
= 99

> 148,152
>> 151

>= 148,152
? 117

77 179

@ 18,22

[134

% 144,145

& 150

&& 149,176
~ 150, 151

{y 24

- 151
#endregion 50
#region 50

| 151

Il 150,176

Abbruchkriterium 185

abstract 77-79

Addition 143

ADO 5

ADO.NET 5

Alias 23

Anders Heijlsberg 5

Anweisung 171

Anwendung 7

ApplicationException 209, 210

Array 133-135
Eindimensionales Array 135
Mehrdimensionales Array 135
Verschachteltes Array 136

as 169

ASP 1
ASPNET 5
Assembly 8

Attribut 211-216
AttributeUsageAttribute 216
Auflistung 188
Aufrufreihenfolge 95
Aufrufstapel 202, 206, 208, 210
Aufzéhlung 188

Ausdruck 163

Ausnahme 201-210

233

234 Sachverzeichnis

Barbara Liskov 71 Destruktor 220-222

base 75,80 Dezimalzahl 17

Bedingung 171-173, 175, 176, 180 Dimension 133

Binden 108 DirectX 1

Bindung 91 Dispose = 222-225, 227

Bitebene 150 Division 144

bool 18,121, 149 do 185

Boxing 19,71, 164, 165 double 17

break 180, 186, 187

by 196 e 102

by reference 47 ea 102

by value 47 ECMA 2,5

byte 17 Eigenschaft 33,72

Standardeigenschaft 38

Callback 91 else 172,175

Camel Case 22,31,45 elseif 175

CAS 4 Empty 152

case 180 enum 121

Cast 163 Enumeration 121,211

catch 202-208 Ereignis 101

char 17 Erweiterungsmethode 79

checked 146, 147 Escape-Sequenz 18

class 27 EVA-Prinzip 11

CLI 1 event 101

CLR 3 EventArgs 102

CLS 3 EventHandler 101

Code Access Security 4 ex 206

COM 1,5,6,68 Exception 205, 209

Common Language Infrastructure 1 Exklusives Oder 150, 151

Common Language Runtime 3 explicit 165

Common Language Subset 3 Explizite Implementierung 89

Compiler 25 Explizite Konvertierung 164

const 33,67

continue 187 false 18,149,171

Contract First Design 84 FCL 3

csc.exe 25 Fehler 201,202,210

C# 5 Fehlerbehandlung 201, 202, 205, 211

Fehlermeldung 202, 206, 210

DAO 5 Feld 31,72

DCOM 1 Finalisierer 220, 222,223

decimal 17 Finalize 220

default 116, 180 finally 208

Definition 32, 125 Finanzberechnung 17

Deklaration 32, 125 First 197

Delegat 91,92, 101 FlagsAttribute 211,212
Delegatinstanz 92 float 17
Multicast-Delegat 92, 96 for 182,183,185
Singlecast-Delegat 96 foreach 188, 189
Unicast-Delegat 92 Framework Class Library 3

delegate 91,99 from 192

Delegatinstanz =~ 92 Func 116

Delphi 5

descending 193 Ganzzahl 16

Design by Contract 84 Garbage Collection 4,220, 222-224

Sachverzeichnis

GC 4

GDI+ 4

Generalisierung 71
Generika 109
Generischer Datentyp 111
get 33,139

gleich 147
global 21
goto 182
grofler 148

grofer oder gleich 148
group 196

IDisposable 222

IEEE 754 17

IEnumerable 189
IEnumerator 188

if 171,172,174, 175

s s

implicit 165

Implizite Implementierung 89
Implizite Konvertierung 163
in 192

Index 134,135,139

Indexer 139

Information Hiding 13
Initialisierungsausdruck 183
int 17

interface 84

internal 30,31, 33,41,72
Invariante 183, 188

is 168

isa 71

ISAPI 1

IsNullOrEmpty 153

JT-Compiler 3
justintime 3

Klasse 13,27

abgeleitete Klasse 69
Abstrakte Klasse 77, 83, 87
Basisklasse 69, 75
Partielle Klasse 30
Verschachtelte Klasse 30
Klassenbibliothek 3
klassengebunden 48
kleiner 148

kleiner oder gleich 148
Kommentar 28
Blockkommentar 28
XML-Kommentar 29, 31
Komponente 8
Konkatenation 152

Konstante 33,67
Konstruktor 56, 80, 130
Statischer Konstruktor 231
Kontrakt 83
Konvertierbarkeit
Konvertieren 163
Kurzschlussevaluierung

167, 168

Lambdaausdruck 99, 116, 199

150, 176

Language Integrated Query 191

Length 152

Lesbarkeit 23

Ling 2,5,191, 196, 197
Linux 2

Liskov-Prinzip 72

long 17

Losen 108

Losung 7

MacOS X 2
Main 49
Managed Heap 220
mcs.exe 25
Memento 85
Metadaten 8
Methode 40,73
Anonyme Methode 96, 97

Erweiterungsmethode 79, 199

Partielle Methode 55
Rekursive Methode 128
Riickrufmethode 91

Microsoft Intermediate Language

Microsoft Message Queue 5
Miguel de Icaza 2

Modulo 144, 145
Mono 2,25,50
MSIL 3,8

Multiplikation 144

naked 115
Namensraum 21
namespace 24

new 74-76, 115, 130, 133,220

nicht 150, 151
Novell 2
null 16,96, 117

object 18,19, 69, 164

ObjectDisposedException 225

Objekt 12

objektgebunden 48
Objektinitialisierer 131, 195
Objektorientiertes Paradigma
Objektorientierung 11

12

3

235

236

ObsoleteAttribute 212

oder 150, 151

On 105

Operator 143
Abfrageoperator 191
Arithmetischer Operator 143
Bitweiser Operator 150
Logischer Operator 149, 176
Operatorreihenfolge 153
Operatoriiberladung 156
Relationaler Operator 147
Tridrer Operator 177
Zuweisungsoperator 143

operator 157

orderby 192

out 48

override 70, 71,7376

Parameter 40, 45
Ausgabeparameter 48
Namensparameter 212,214
Positionsparameter 212

params 138

partial 30, 55

Pascal Case 22,33,41, 84,91, 101, 108, 112

Plattformunabhingigkeit 1
Polymorphie 71
Postfix-Notation 146
Prifix-Notation 146
private 32, 33,42,56,72
protected 73

protected internal 73
public 30,31, 33,41,72

readonly 67

ref 47
rekursiv 128
Remoting 5

Ressource 8
return 34,208
Rotor 2
Riickgabewert 40

sbyte 17
Schleife 171, 182-184, 189
Abweisende Schleife 185
Endlosschleife 185
Nichtabweisende Schleife 185
Zihlschleife 182
Schleifendurchlauf 183
Schleifeninvariante 182
Schleifenvariable 182
Schliisselworter 22
Schnittstelle 83, 84, 87, 89

sealed 76

select 192,195, 196

set 33,13
short 17
sizeof 68

9

Sonderzeichen 18

Speicher

219, 220, 222,229

Speicherbedarf 219

Speicherma

nagement 219

Speicherverbrauch 219
Speicherverwaltung 219

Spezialisier!
Sprachunab!

ung 71
hingigkeit 3

Sprunganweisung 186

SQL 191

Stack 220
rt 16, 32,56, 116, 125,179

Standardwe
static 48,
statisch 4
string 18
StringBuild,
struct 68,

67
8

er 229
115

Struktur 68

Subtraktion

143

switch 180

System 2

T 112
Take 198

1

this 60, 64,79, 80, 139
throw 207-209

ToString
true 18,1

70
49,171

try 202,203,208

Typ 8,15

Anonymer Typ 132, 195

Datentyp

8

Einfacher Typ 11

Komplex

Nullbarer Wertetyp

Vordefini
Wertetyp
Type 112

erTyp 12

erter Typ 16
15,115

typeof 167

typeparam

112

Typparameter 112,115
Gebundener Typparameter
Ungebundener Typparameter 114

Uberlauf

146

Uberschreiben 70

uint 17
ulong 17
Unboxing

19, 165

Sachverzeichnis

16,117,179

114

Sachverzeichnis

unchecked 147
und 149, 150
ungleich 148
Unicode 17
Unterlauf 146
ushort 17
using 23,227

value 34
var 132,192, 196
Variable 125
Lokale Variable 125
VBA 1
Vererbung 69
Mehrfachvererbung 72
verschieben nach links 151
verschieben nach rechts 151
versiegelt 77
Verspitete Initialisierung 230
Vertrag 83
Verwalteter Code 4
Verweistyp 15,115
virtual 73,76
Visual Basic 3,5,6
Visual C++ 3,5,6
Visual Studio 2, 30
void 40, 56
Vollqualifizierter Name 21

237

WCF 5

WCS 5

Web Services 5

Werteverlust 164

WF 5

where 115, 194

while 184, 185

Win32 1,5

Windows Card Space 2,5

‘Windows Communication Foundation 2,5
Windows DNA 1

Windows Forms 4

‘Windows Presentation Foundation 2,4
Windows Workflow Foundation 2,5
WPF 4

WSH 1

XAML 4
Ximian 2

yield 189

Zeichen 17

Ziel 215,216
Zugriffsmodifizierer 30, 56
Zuweisung 126, 129

	front-matter
	1-6
	7-9
	11-13
	15-19
	21-25
	27-68
	69-81
	83-90
	91-99
	101-108
	109-116
	117-120
	121-123
	125-132
	133-141
	143-162
	163-169
	171-190
	191-199
	201-210
	211-217
	219-231
	back-matter

