
Xpert.press

Die Reihe Xpert.press vermittelt Professionals
in den Bereichen Softwareentwicklung,
Internettechnologie und IT-Management aktuell
und kompetent relevantes Fachwissen über
Technologien und Produkte zur Entwicklung
und Anwendung moderner Informationstechnologien.

Golo Roden

Auf der Fährte von C#

Einführung und Referenz

123

Golo Roden
Carl-Kistner-Str. 17
79115 Freiburg im Breisgau

ISBN 978-3-540-27888-7 e-ISBN 978-3-540-27889-4

DOI 10.1007/978-3-540-27889-4

ISSN 1439-5428

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© 2008 Springer-Verlag Berlin Heidelberg

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Über-
setzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung,
der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenver-
arbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung
dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen
Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in
der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen
unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk be-
rechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der
Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten waren und daher von jedermann
benutzt werden dürften.

Einbandgestaltung: KünkelLopka, Heidelberg
Satz und Herstellung: le-tex publishing services oHG, Leipzig

Gedruckt auf säurefreiem Papier

9 8 7 6 5 4 3 2 1

springer.com

In Liebe
für Susanna

Vorwort

Über dieses Buch

Warum Auf der Fährte von C#? Warum noch ein Buch zu dieser Programmierspra-
che?

Zunächst – dieses Buch ist grundlegend anders als andere verfügbare Literatur
zu C#, und die Unterschiede liefern gleichzeitig auch die Begründung, warum man
gerade dieses Buch lesen sollte. Doch worin bestehen die Unterschiede zwischen
Auf der Fährte von C# und anderen Büchern?

Die Antwort auf diese Frage resultiert aus der Tatsache, dass andere verfügbare
Texte zu C# nicht nur einen, sondern sogar den wesentlichen Aspekt der Anwen-
dungsentwicklung missachten, nämlich den Aspekt, warum Anwendungen eigent-
lich geschrieben werden - nicht um der Anwendung, sondern um der Verarbeitung
von Daten willen.

Andere Bücher, in denen Anwendungsentwicklung behandelt wird, gehen al-
lerdings nicht datenzentrisch vor, sondern betonen statt dessen den Code, der im
Grunde genommen nur Mittel zum Zweck ist. Der Aufbau von Datenstrukturen und
das Denken in diesen werden – wenn überhaupt – lediglich flüchtig vermittelt oder
gänzlich vernachlässigt.

Dieses zunächst unerwartete Vorgehen kann historisch begründet werden, denn
den klassischen Programmiersprachen wie unter anderem C fehlen sprachliche Fä-
higkeiten, um damit datenzentrische Anwendungen entwickeln zu können. Erst mo-
derne und durchgängig objektorientierte Sprachen wie beispielsweise Java und vor
allem C# enthalten dieses Potenzial, doch anscheinend hat dieser Paradigmenwech-
sel die Literatur noch nicht erreicht.

Auf der Fährte von C# hingegen ist datenzentrisch aufgebaut, woraus ein un-
typischer Aufbau resultiert. Das zentrale Element datenzentrischer Anwendungen
sind Typen, die in anderen Büchern in der Regel erst im weiteren Verlauf beschrie-
ben werden. In diesem Buch machen sie nicht nur den Anfang, sondern bilden den
grundlegenden Kern, auf dem alle weiteren Kapitel fußen.

vii

viii Vorwort

Das Ziel des Ganzen ist, dass von Anfang an eine objekt- und datenorientierte
Denkweise aufgebaut wird, da diese beiden Aspekte die entscheidende Basis für
moderne und professionelle Anwendungsentwicklung darstellen.

Einen guten Programmierstil zu lehren und die Fähigkeit zu vermitteln, einen im
mathematischen Sinne eleganten und dabei verständlichen, kommentierten und do-
kumentierten Code zu entwickeln, ist ein weiteres Ziel dieses Buches – ein Thema,
das von den meisten anderen Autoren häufig ebenfalls vernachlässigt wird. So soll
vermieden werden, dass sich bei Anfängern schlechte Angewohnheiten einschlei-
chen, die im weiteren Verlauf mühsam wieder korrigiert werden müssen.

Auf diese Weise dauert es eventuell ein wenig länger bis zur ersten eigenen An-
wendung, dafür verfügt man dann allerdings auch über fundiertes, begründetes Wis-
sen und beherrscht die Thematik.

Zielgruppe

Ein Aspekt ist bei all dem besonders wichtig. Dieses Buch ist nämlich derart ge-
schrieben, dass es so wohl von Anfängern wie auch von Fortgeschrittenen verwen-
det werden kann.

Entwickler, die noch keine oder nur sehr wenig Erfahrung in C# oder einer an-
deren Programmiersprache haben, können Auf der Fährte von C# als Lehrbuch nut-
zen, da großer Wert auf Verständlichkeit und ausführliche, detaillierte Erklärungen
gelegt wird.

Zugleich kann es gerade wegen seines hohen Detailgrades fortgeschrittenen Ent-
wicklern auf Dauer als verlässliche Referenz dienen, so dass man dieses Buch im
Gegensatz zu vielen anderen nicht nach einer Weile ad acta legt, sondern beständig
Nutzen aus ihm ziehen kann.

Auf Grund dieser Dualität ist Auf der Fährte von C# abstrakter und anspruchs-
voller als andere Texte, was für Anfänger partiell durchaus eine Herausforderung
darstellen kann – dafür ist das Resultat allerdings auch ertragreicher.

Struktur

Im ersten Teil des Buches folgen nach einer kurzen Einführung in die Themen
.NET, C# und allgemeine Konzepte der Anwendungsentwicklung als eigentlicher
Anfang – wie bereits erwähnt – die Typen, auf denen anschließend die einzelnen
Datenstrukturen aufbauen.

Danach werden Variablen, Operatoren und Anweisungen beschrieben, womit
dann bereits einfache Anwendungen entwickelt werden können. Weitergehende
Themen wie Nebenläufigkeit, Fehlerbehandlung und die Speicherverwaltung von
.NET runden den ersten Teil schließlich ab.

Vorwort ix

Dabei werden zusammen mit den Konzepten und der Sprache C# auch zugleich
der Umgang mit den Werkzeugen von .NET, erprobte Praktiken und guter Program-
mierstil vermittelt.

Den zweiten Teil bildet eine alphabetisch geordnete Referenz aller Schlüsselwör-
ter von C#. Für jeden einzelnen Eintrag stehen neben allgemeinen und detaillierten
Informationen ein repräsentatives Codebeispiel und Verweise auf weiterführende
Themen zur Verfügung.

Die verwendeten Fachbegriffe entsprechen nach Möglichkeit den deutschspra-
chigen Ausdrücken. Für den Fall der Fälle befindet sich im Anhang eine Liste der
gängigen englischsprachigen Entsprechungen.

Kontakt

Ergänzt wird dieses Buch durch die Webseite guide to C# (http://www.
guidetocsharp.de), auf der sich das komplette Buch als E-Book sowie Aktualisie-
rungen und Errata finden. Zudem kann diese Version auch überall und immer dann
genutzt werden, wenn man das Buch nicht mit sich führt.

Bei Fragen, Anregungen, Lob oder Kritik erreichen Sie den Autor über seine
Webseite goloroden.de (http://www.goloroden.de).

Danken möchte ich meiner Frau Susanna und meinen Eltern Magda und Wil-
fried für ihre beflügelnde und hilfreiche Unterstützung und für ihre kreativen Ideen.
Außerdem möchte ich den Springer-Verlag, Microsoft und myCSharp.de dankend
erwähnen, ohne die es Auf der Fährte von C# in dieser Form nicht gäbe.

Zu guter letzt – ich widme dieses Buch meiner Frau Susanna, der einen großen
Liebe meines Lebens.

Norddorf auf Amrum, im März 2007

Kapitelübersicht

Inhalt

In Auf der Fährte von C# lernen Sie die Entwicklung von Anwendungen in C#. Die
einzelnen Kapitel bauen aufeinander auf, sind aber derart gestaltet, dass sie auch als
Referenz genutzt werden können. Nutzen Sie diese Kapitelübersicht, um sich einen
Überblick über den Aufbau von Auf der Fährte von C# zu verschaffen.

In Kapitel 1 Einführung in .NET werden die Begriffe .NET und C# detailliert er-
läutert. .NET wird zu anderen Plattformen zur Softwareentwicklung abgegrenzt, zu-
dem werden die einzelnen Komponenten und Konzepte von .NET erläutert. Schließ-
lich wird die speziell für .NET entwickelte Sprache C# vorgestellt.

In Kapitel 2 Anwendungsarchitektur wird der Aufbau moderner Anwendungen
beschrieben, die so wohl objekt- wie auch komponentenorientiert entwickelt wer-
den. Die in diesem Kapitel vorgestellten Begriffe bilden den Rahmen zur Einord-
nung der weiteren Themen.

In Kapitel 3 Objektorientierung werden die grundlegenden Konzepte der objekt-
orientierten Programmierung beschrieben. Außerdem werden das prozedurale und
das objektorientierte Paradigma gegenübergestellt und hinsichtlich ihrer Herkunft
und ihrer Leistungsfähigkeit verglichen.

In Kapitel 4 Typen werden Werte- und Verweistypen gegenübergestellt und ih-
re jeweiligen Besonderheiten beschrieben. Eine Einführung in nullbare Wertetypen
und eine Übersicht über die vordefinierten Typen runden das Kapitel ab.

In Kapitel 5 Namensräume werden Namensräume als Konzept vorgestellt, das
zur Organisation von Typen dient. Neben Aliasnamen für Namensräume wird au-
ßerdem beschrieben, wie eigene Namensräume definiert werden können.

In Kapitel 6 Klassen und Strukturen wird beschrieben, wie Klassen und Struk-
turen erstellt werden. Insbesondere werden in diesem Kapitel Felder, Eigenschaften
und Methoden eingeführt. Außerdem werden Konstanten und readonly-Variablen
vorgestellt.

In Kapitel 7 Vererbung werden die objektorientierten Konzepte Vererbung und
Polymorphie beschrieben. Außerdem werden Versionierung von Methoden mit Hil-

xi

xii Kapitelübersicht

fe von Vererbung und die Auswirkungen von Vererbung auf Typmitglieder darge-
stellt.

In Kapitel 8 Schnittstellen werden Schnittstellen als grundlegendes Konzept bei
der Anwendungsentwicklung vorgestellt. Außerdem wird aufgezeigt, auf welche
Arten Schnittstellen implementiert werden können.

In Kapitel 9 Delegaten werden Delegaten vorgestellt, um eine oder mehrere Me-
thoden zu kapseln. Neben der Bindung an benannte Methoden werden insbesondere
auch anonyme Methoden beschrieben.

In Kapitel 10 Ereignisse wird beschrieben, wie Ereignisse implementiert werden
und welche Aspekte es dabei zu beachten gilt. Besonderes Augenmerk wird dabei
auf den Zusammenhang zwischen Ereignissen und Delegaten gelegt.

In Kapitel 11 Generika wird die Möglichkeit vorgestellt, Typen generisch zu
implementieren oder generische Typen als Typparameter zu verwenden. Außer-
dem wird beschrieben, welche Typbedingungen bei generischen Typen zum Einsatz
kommen können, um die Ausführung typsicher zu machen.

In Kapitel 12 Nullbare Wertetypen werden nullbare Wertetypen als ein Hybrid
aus Werte- und Verweistyp vorgestellt. Mit nullbaren Wertetypen ist es möglich, die
Vorteile des Literals null auch für Wertetypen zu nutzen.

In Kapitel 13 Enumerationen werden Enumerationen als einfache Variante eines
wertebasierten Aufzählungstyps vorgestellt. Neben der Implementierung wird auch
die interne technische Umsetzung beschrieben.

In Kapitel 14 Variablen wird das Deklarieren und Definieren von Variablen be-
schrieben. Neben der Zuweisung an sich werden auch die Besonderheiten der Zu-
weisung an nullbare Wertetypen und an Verweistypen erläutert. Außerdem wird die
Instanziierung von Objekten erläutert.

In Kapitel 15 Arrays wird das Konzept der Arrays vorgestellt, um Mengen von
gleich typisierten Daten zu speichern. Dabei werden so wohl ein- und mehrdimen-
sionale wie auch verschachtelte Arrays beschrieben. Außerdem wird aufgezeigt, wie
mit Arrays Indexer für Klassen umgesetzt werden können.

In Kapitel 16 Operatoren werden die diversen Operatoren vorgestellt – arithme-
tische, relationale, logische, bitweise und Zeichenkettenoperatoren. Außerdem wird
auf verkürzende Schreibweisen und Operatorüberladung eingegangen.

In Kapitel 17 Ausdrücke werden implizites und explizites Konvertieren sowie die
Implementierung eigener Konvertierungsoperatoren vorgestellt, um Typen ineinan-
der umzuwandeln.

In Kapitel 18 Anweisungen werden die verschiedenen Arten von Anweisungen
wie Bedingungen und Schleifen vorgestellt. Außerdem wird die Schnittstelle IEnu-
merator als Basis für sämtliche Aufzählungstypen beschrieben und deren Umset-
zung mit der foreach-Anweisung.

In Kapitel 19 Linq wird die in C# seit der Version 3.0 enthaltene Abfragespra-
che behandelt, mit der Aufzählungstypen durchsucht, sortiert und gruppiert werden
können.

In Kapitel 20 Ausnahmen werden Ausnahmen und die Möglichkeiten zur Aus-
nahmebehandlung vorgestellt. Außerdem werden Leistung und Ressourcenbedarf
von Ausnahmen beschrieben.

Kapitelübersicht xiii

In Kapitel 21 Attribute wird beschrieben, wie Attribute entwickelt werden. Au-
ßerdem werden Attributparameter und -ziele vorgestellt.

In Kapitel 22 Speicherverwaltung werden Destruktoren und die Speicherberei-
nigung beschrieben. Außerdem werden Interning von Zeichenketten und Konzepte
zur verspäteten Initialisierung vorgestellt.

Inhaltsverzeichnis

1 Einführung in .NET . 1
1.1 Was ist .NET? . 1
1.2 Plattformunabhängigkeit . 1
1.3 Sprachunabhängigkeit . 3
1.4 Verwalteter Code . 4
1.5 Erweiterungen . 4
1.6 Was ist C#? . 5

2 Anwendungsarchitektur . 7
2.1 Lösungen und Anwendungen . 7
2.2 Komponenten und Assemblies . 8
2.3 Datentypen . 8

3 Objektorientierung . 11
3.1 Prozedurales Paradigma . 11
3.2 Objektorientiertes Paradigma . 12

4 Typen . 15
4.1 Werte- und Verweistypen . 15
4.2 Vordefinierte Typen . 16
4.3 Benutzerdefinierte Typen . 19

5 Namensräume . 21
5.1 Was sind Namensräume? . 21
5.2 Vordefinierte Namensräume . 22
5.3 Benutzerdefinierte Namensräume . 24

6 Klassen und Strukturen . 27
6.1 Was sind Klassen? . 27
6.2 Felder . 31
6.3 Eigenschaften . 33
6.4 Methoden . 40

xv

xvi Inhaltsverzeichnis

6.5 Konstruktoren . 56
6.6 Strukturen . 68

7 Vererbung . 69
7.1 Was ist Vererbung? . 69
7.2 Felder und Eigenschaften . 72
7.3 Methoden . 73
7.4 Konstruktoren . 80

8 Schnittstellen . 83
8.1 Was sind Schnittstellen? . 83
8.2 Benutzerdefinierte Schnittstellen . 84
8.3 Schnittstellen implementieren . 88

9 Delegaten . 91
9.1 Was sind Delegaten? . 91
9.2 Multicast-Delegaten . 92
9.3 Anonyme Methoden . 96
9.4 Lambdaausdrücke . 99

10 Ereignisse . 101
10.1 Was sind Ereignisse? . 101
10.2 Auslösen von Ereignissen . 104
10.3 Reagieren auf Ereignisse . 108

11 Generika . 109
11.1 Was sind Generika? . 109
11.2 Typparameter . 114
11.3 Lambdaausdrücke . 116

12 Nullbare Wertetypen . 117
12.1 Was sind nullbare Wertetypen? . 117

13 Enumerationen . 121
13.1 Was sind Enumerationen? . 121

14 Variablen . 125
14.1 Was sind Variablen? . 125
14.2 Zuweisungen an Variablen . 129

15 Arrays . 133
15.1 Was sind Arrays? . 133
15.2 Indexer . 139

Inhaltsverzeichnis xvii

16 Operatoren . 143
16.1 Was sind Operatoren? . 143
16.2 Arithmetische Operatoren . 143
16.3 Relationale Operatoren . 147
16.4 Logische Operatoren . 149
16.5 Bitweise Operatoren . 150
16.6 Zeichenkettenoperatoren . 151
16.7 Operatorreihenfolge . 153
16.8 Überladen von Operatoren . 156

17 Ausdrücke . 163
17.1 Konvertieren . 163
17.2 Boxing . 164
17.3 Benutzerdefiniertes Konvertieren . 165
17.4 Konvertierbarkeit . 167

18 Anweisungen . 171
18.1 Bedingungen . 171
18.2 Schleifen . 182
18.3 Sprunganweisungen . 186
18.4 foreach . 188

19 Linq . 191
19.1 Was ist Linq? . 191
19.2 Abfrageoperatoren . 191
19.3 Lambdaausdrücke . 199

20 Ausnahmen . 201
20.1 Was sind Ausnahmen? . 201
20.2 Ausnahmen behandeln . 202
20.3 Benutzerdefinierte Ausnahmen . 209
20.4 Leistung und Ressourcenbedarf . 210

21 Attribute . 211
21.1 Was sind Attribute? . 211
21.2 Benutzerdefinierte Attribute . 213
21.3 Ziele von Attributen . 215

22 Speicherverwaltung . 219
22.1 Speicherverbrauch . 219
22.2 Freigabe von Ressourcen . 219
22.3 Verhalten von Zeichenketten . 228
22.4 Verspätete Initialisierung . 230

Sachverzeichnis . 233

Kapitel 1
Einführung in .NET

1.1 Was ist .NET?

.NET ist eine Plattform von Microsoft zur Entwicklung und Ausführung von An-
wendungen.

Da sich am Ende des vergangenen Jahrtausends zahlreiche Plattformen mit ihren
jeweiligen Konzepten und Standards verbreitet hatten, wurde die Entwicklung von
Anwendungen für Windows zunehmend komplexer und damit anspruchsvoller.

Nur die Windows-eigene Basis namens Win32 zu kennen, war bei weitem nicht
mehr ausreichend, man musste sich zusätzlich mit COM, DCOM, Windows DNA,
DirectX, ASP, ISAPI, VBA, WSH und zahlreichen anderen Technologien beschäf-
tigen, um zeitgemäße Anwendungen entwickeln zu können.

Die Idee hinter .NET war, eine einheitliche und konsistent objektorientierte Platt-
form zu schaffen, die alle bestehenden Konzepte vereint. Insofern beerbt .NET ge-
wissermaßen die genannten Plattformen, auch wenn diese – allein schon aus Grün-
den der Abwärtskompatibilität – zumindest vorerst weiterhin zur Verfügung stehen
werden.

Um trotz dieser Revolution einen sanften Übergang zu ermöglichen, ist es mög-
lich, .NET wie COM anzusprechen, und COM im Gegenzug aus .NET heraus zu
nutzen. Daher kann .NET durchaus als eine Revolution mit evolutionärem Rahmen-
werk bezeichnet werden.

1.2 Plattformunabhängigkeit

Die Grundlage von .NET bildet die Common Language Infrastructure – im folgen-
den als CLI abgekürzt –, eine Spezifikation, welche die plattform- und sprachunab-
hängige Entwicklung und Ausführung von Anwendungen beschreibt.

Golo Roden, Auf der Fährte von C# 1
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

2 1 Einführung in .NET

Die CLI wurde im August 2000 von Microsoft, Intel und Hewlett Packard bei
der ECMA zur Standardisierung eingereicht und ein Jahr später, im Dezember 2001,
unter dem Namen ECMA-335 als Standard verabschiedet. Da es sich bei der CLI um
einen frei verfügbaren Standard handelt, kann potenziell von jedem Interessierten
eine eigene Implementierung entwickelt werden.

.NET ist dabei die bekannteste und am weitesten verbreitete Implementierung
der CLI, wobei es außer .NET an sich noch weitere Varianten gibt, die ebenfalls
von Microsoft stammen: Das .NET Compact Framework zur Nutzung auf mobilen
Geräten, das .NET Micro Framework für eingebettete Geräte und schließlich Rotor
unter FreeBSD als Studie einer CLI-Implementierung auf einer anderen Plattform
als Windows.

Die erste Version von .NET erschien am 13. Februar 2002 in Verbindung mit
der dazugehörigen integrierten Entwicklungsumgebung – Visual Studio .NET. Be-
reits ein Jahr später folgten .NET 1.1 und Visual Studio .NET 2003, wobei diese
Aktualisierungen neben einigen wenigen technischen Änderungen im wesentlichen
Sicherheitsaktualisierungen enthielten.

Zudem war .NET 1.1 die erste Version von .NET, die nicht nur als zusätzliche
Komponente zu Windows ausgeliefert wurde – diese Version ist standardmäßig in
Windows Server 2003 enthalten.

Version 2.0 erschien weitere zweieinhalb Jahre später zusammen mit Visual Stu-
dio 2005 am 7. November 2005. Neben zahlreichen technischen Änderungen und
Verbesserungen ist bemerkenswert, dass der Begriff .NET nicht mehr im Produkt-
namen von Visual Studio enthalten ist.

Am 6. November 2006 schließlich wurde .NET 3.0 veröffentlicht, das im Ge-
gensatz zu Version 2.0 keine eigenständige Version im klassischen Sinne darstellt,
sondern im Kern nach wie vor auf .NET 2.0 basiert und dieses lediglich um vier
Komponenten erweitert: Die Windows Presentation Foundation, die Windows Com-
munication Foundation, die Windows Workflow Foundation und Windows Card
Space.

Wie bereits .NET 1.1 wird auch .NET 3.0 nicht nur als zusätzliche Komponente
zu Windows ausgeliefert, sondern ist bereits in Windows Vista integriert.

Am 27. Februar 2008 wurde .NET 3.5 zusammen mit Visual Studio 2008 veröf-
fentlicht. Wie bereits .NET 3.0 setzt auch .NET 3.5 auf der Version 2.0 von .NET
auf und erweitert dieses um weitere Komponenten. Besonders hervorzuheben sind
dabei die neue Version 3.0 von C# und eine in C# enthaltene integrierte Abfrage-
sprache namens Linq.

Neben diesen Implementierungen der CLI durch Microsoft gibt es einige weitere
Implementierungen, von denen vor allem Mono von Novell nennenswert ist. Mono
war ursprünglich von Miguel de Icaza und dessen Firma Ximian entwickelt worden,
die allerdings am 4. August 2003 von Novell übernommen wurde.

Am 30. Juni 2004 schließlich wurde Mono in Version 1.0 veröffentlicht und stellt
seitdem eine interessante Alternative zu .NET dar, da es zum einen nicht nur Win-
dows, sondern auch zahlreiche andere Betriebssysteme wie unter anderem Linux
und Mac OS X unterstützt, und zum anderen als Opensource verfügbar ist.

1.3 Sprachunabhängigkeit 3

1.3 Sprachunabhängigkeit

Die CLI beschreibt jedoch nicht nur die plattform-, sondern auch die sprachunab-
hängige Entwicklung und Ausführung von Anwendungen. Sprachunabhängig be-
deutet dabei, dass es keine Rolle spielt, in welcher Programmiersprache eine An-
wendung geschrieben wurde.

Für die Entwicklung unter Win32 gab es essenzielle Unterschiede zwischen den
verschiedenen Programmiersprachen. Konnte beispielsweise COM aus Visual C++
uneingeschränkt genutzt werden, war dies in Visual Basic nur eingeschränkt mög-
lich. Außerdem unterschieden sich die verschiedenen Sprachen in ihren jeweiligen
Konventionen, so dass die erzeugten Anwendungen auch diesbezüglich nicht immer
vollständig kompatibel zueinander waren.

Zudem war es nicht möglich, in verschiedenen Sprachen geschriebene Kompo-
nenten beliebig miteinander zu kombinieren. Das Resultat dieser Inkompatibilitäten
war, dass Komponenten häufig in mehreren programmiersprachenspezifischen Va-
rianten zur Verfügung standen.

In .NET ist die Kombination von Komponenten und Anwendungen hingegen un-
eingeschränkt möglich, was im wesentlichen der Verdienst der beiden wichtigsten
Komponenten von .NET ist: Der Common Language Runtime – im folgenden als
CLR abgekürzt – und der Framework Class Library – im folgenden als FCL abge-
kürzt.

Die CLR dient zur Ausführung von Anwendungen, wobei diese Anwendungen
in Sprachen entwickelt worden sein müssen, die .NET als Zielplattform adressieren.
All diesen Sprachen ist gemein, dass sie einen Unterstandard der CLI implementie-
ren, nämlich das Common Language Subset – im folgenden als CLS abgekürzt.
Das CLS beschreibt Eigenschaften, die zur CLR, und damit zu .NET, kompatible
Sprachen aufweisen müssen.

Außerdem werden die erzeugten Anwendungen nicht – wie in klassischen Pro-
grammiersprachen – in Maschinensprache umgewandelt, die direkt vom Prozessor
ausgeführt werden kann. Statt dessen wird eine für .NET spezifische Zwischenspra-
che eingesetzt, die sogenannte Microsoft Intermediate Language – im folgenden als
MSIL abgekürzt.

Erst zur Ausführungszeit werden die MSIL-Anweisungen in Maschinensprache
umgesetzt, die dann auf die jeweils ausführende Hardwareplattform optimiert wer-
den kann. Dies geschieht durch einen Compiler, der „just in time“ arbeitet, also
erst auf Anforderung und nur das jeweils Notwendige übersetzt, und daher auch als
JIT-Compiler bezeichnet wird.

Da die Übersetzung während der Ausführung stattfindet, dauert der erste Aufruf
einer .NET-Anwendung naturgemäß ein wenig länger als bei Anwendungen, die in
klassischen Programmiersprachen geschrieben wurden. Die Optimierung des JIT-
Compilers gleicht dies aber aus, so dass JIT-übersetzte Anwendungen in der Regel
schneller ausgeführt werden können.

Die FCL – Framework Class Library – schließlich stellt eine Klassenbibliothek
zur Verfügung, die einige tausend Klassen für häufig auftretende Aufgaben enthält
und aus allen .NET-spezifischen Sprachen heraus genutzt werden kann. Da die FCL

4 1 Einführung in .NET

von der CLR bereitgestellt wird, bleiben Anwendungen für .NET trotz einem po-
tenziell hohen Funktionsumfang verhältnismäßig kompakt, da diese die FCL nicht
enthalten müssen.

1.4 Verwalteter Code

Außer der Anpassung an die ausführende Hardwareplattform hat die Verwendung
einer Zwischensprache noch einen weiteren Grund. Die CLR kann nämlich die aus-
zuführenden MSIL-Anweisungen vor der Übersetzung in Maschinensprache analy-
sieren und potenziell eingreifen. Da der Code zur Ausführungszeit kontrolliert wird,
bezeichnet man ihn als verwalteten Code.

Auf diese Weise kann die CLR unter anderem sicherstellen, dass Anwendungen
nur auf Speicher zugreifen, auf den sie an dieser Stelle zugreifen dürfen. Zudem
kann überprüft werden, auf welche Ressourcen eine Anwendung versucht zuzugrei-
fen, wobei dies bei fehlender Berechtigung verhindert werden kann.

So kann Anwendungen, die aus nicht vertrauenswürdigen Quellen wie dem Inter-
net stammen, zwar die prinzipielle Ausführung erlaubt, der Zugriff beispielsweise
auf das Dateisystem aber verweigert werden. Diese Einschränkung des Zugriffs auf
Ressourcen zur Laufzeit wird als Code Access Security – im folgenden als CAS
abgekürzt – bezeichnet.

Schließlich führt die CLR von Zeit zu Zeit eine Speicherbereinigung durch, ent-
fernt Code und Daten, die nicht mehr benötigt werden, und gibt damit wieder Spei-
cher zur weiteren Verwendung frei. Diese Speicherbereinigung wird als Garbage
Collection bezeichnet und im folgenden als GC abgekürzt.

Zusammengefasst gilt bei .NET also, dass Sicherheit höher priorisiert wird als
eine möglichst schnelle Ausführung von Anwendungen um jeden Preis.

1.5 Erweiterungen

Zu diesem Grundgerüst von .NET, das aus der Common Language Runtime und der
Framework Class Library besteht, gibt es einige Erweiterungen, die erwähnenswert
sind. Diese gliedern sich im wesentlichen in vier Kategorien: Windowsanwendun-
gen, Webanwendungen, Kommunikation und Datenverwaltung.

Für Windowsanwendungen sind zunächst GDI+ und Windows Forms zu nennen.
Während GDI+ den objektorientierten und verwalteten Nachfolger der Grafikbiblio-
thek GDI darstellt, lassen sich mit Windows Forms grafische Oberflächen mit den
gängigen Steuerelementen erstellen.

Im Rahmen von .NET 3.0 wurde die Windows Presentation Foundation – im
folgenden als WPF abgekürzt – eingeführt, die statt eines pixelorientierten Ansatzes
einen vektororientierten Ansatz verfolgt und zudem über die auf XML basierende
Sprache XAML genutzt werden kann.

1.6 Was ist C#? 5

Webanwendungen und Web Services werden in .NET mit Hilfe von ASP.NET
umgesetzt, das den objektorientierten und verwalteten Nachfolger von klassischem
ASP darstellt. Mit dem in Windows Vista enthaltenen Webserver IIS 7.0 erfährt
ASP.NET zudem eine direkte Integration in den Webserver.

Zur Kommunikation mit anderen Anwendungen gibt es in .NET zahlreiche Mög-
lichkeiten – von Remoting über Web Services bis hin zur Microsoft Message Queue.
Mit .NET 3.0 wurde als weitere Komponente die Windows Communication Foun-
dation – im folgenden als WCF abgekürzt – eingeführt, die alle bisherigen Konzepte
kapselt und mit einer einzigen einheitlichen Schnittstelle versieht.

Zugriff auf Datenbanken und sonstige Ressourcen geschieht in .NET mit Hilfe
von ADO.NET, das wiederum den Nachfolger von DAO und ADO darstellt. Mit der
Version 3.0 der Sprache C# wurden zudem Funktionen zur Datenabfrage unter dem
Namen Linq direkt in die Programmiersprache integriert.

Schließlich gibt es noch zwei Komponenten, die sich nicht in die genannten vier
Kategorien eingliedern lassen, sondern eigenständig für sich stehen. Zum einen
ist dies die Windows Workflow Foundation – im folgenden als WF abgekürzt –,
mit der sich Workflows in .NET gestalten lassen, zum anderen Windows Card
Space – im folgenden als WCS abgekürzt –, das zur Verwaltung digitaler Identi-
täten dient.

1.6 Was ist C#?

C#, das als „ßiescharp [­si:"SAôp]“ ausgesprochen wird, ist eine Programmierspra-
che für .NET, die von Microsoft in Zusammenarbeit mit dem Erfinder von Delphi,
Anders Heijlsberg, speziell für diese Plattform entwickelt wurde und daher auch
als Lingua Franca für .NET bezeichnet wird. Wie die CLI wurde auch C# von der
ECMA standardisiert, wobei die Sprache den Namen ECMA-334 trägt.

Der Name von C# lehnt sich in seiner Schreibweise an den in der Musik um
einen Halbton erhöhten Notenwert C namens Cis an, der ebenfalls als C# geschrie-
ben wird, und bezeichnet daher eine höhere Variante der Programmiersprache C.
Außerdem kann C# so wohl als symbolische Anspielung an die Sprache C++ wie
auch als Wortspiel „see sharp“ gesehen werden.

Ein Ziel bei der Entwicklung von C# war nicht nur, eine sich perfekt in .NET ein-
fügende Sprache zu schaffen, sondern diese Sprache modern, durchgängig objekt-
wie auch komponentenorientiert, und vor allem verständlich zu gestalten.

Unter Win32 waren Visual C++ und Visual Basic die gängigen Sprachen zur
Entwicklung von Anwendungen für Windows, allerdings weisen beide gravierende
Nachteile auf. Mit Visual C++ lassen sich zwar alle Möglichkeiten von Windows
ausreizen, und es kann uneingeschränkt auf COM zugegriffen werden, insbesondere
für Anfänger ist es allerdings auf Grund einiger ausgefallener Eigenheiten deutlich
zu komplex.

Im Gegenzug dazu ermöglicht Visual Basic einen sehr einfachen Einstieg, bie-
tet aber bei weitem nicht die Möglichkeiten von Visual C++, ist zudem bezogen

6 1 Einführung in .NET

auf COM nur eine Sprache zweiter Klasse und zeichnet sich vor allem durch die
niedrige Ausführungsgeschwindigkeit der erzeugten Anwendungen aus.

Schließlich sind Visual C++ und Visual Basic auch untereinander nicht ohne
weiteres kompatibel, es gibt weder ein gemeinsames Typsystem noch ein einheitli-
ches System zur Fehlerbehandlung, so dass Komponenten, die in der einen Sprache
entwickelt wurden, nicht notwendigerweise in der anderen weiter genutzt werden
können.

Dank dem Common Language Subset verfügen alle Sprachen unter .NET poten-
ziell über die gleichen Fähigkeiten, das heißt, es gibt unter .NET keine Sprachen
erster und zweiter Klasse, wie dies unter Win32 der Fall war. Die verschiedenen
Sprachen für .NET unterscheiden sich daher zum einen syntaktisch – so hat C# mit
Visual Basic .NET nicht viel gemein –, zum anderen legen sie ihre Schwerpunk-
te auf unterschiedliche Aspekte der Entwicklung und sprechen daher verschiedene
Zielgruppen an.

Im Vergleich zu Visual Basic .NET ist C# die abstraktere, kompaktere und ma-
thematisch elegantere Sprache, lässt einigen syntaktischen Zucker außen vor, und
ermöglicht daher eher, sich auf die wesentlichen Aspekte der zu entwickelnden An-
wendung – die Datenstrukturen und die Algorithmen – zu konzentrieren.

Kapitel 2
Anwendungsarchitektur

2.1 Lösungen und Anwendungen

Warum werden Anwendungen entwickelt? Die Beantwortung dieser Frage setzt vor-
aus, dass eine Definition des Begriffs Anwendung vorliegt, auf die man sich bezie-
hen kann.

In erster Linie werden Anwendungen entwickelt, um Aufgaben einer spezifi-
schen Domäne zu erledigen und die damit einhergehenden Probleme zu lösen. Da-
her wäre es eigentlich angebracht, an Stelle von Anwendungsentwicklung von der
Entwicklung von Lösungen zu sprechen. Dennoch wird im alltäglichen Sprachge-
brauch der Begriff der Anwendung häufig synonym mit dem der Lösung verwendet.

Dabei darf allerdings nicht vergessen werden, dass eine moderne Anwendung –
im Sinne einer Lösung – sehr wohl aus mehr als nur einer Anwendung – im Sinne
einer ausführbaren Anwendung – bestehen kann.

Einerseits kann nämlich bereits die eigentliche Funktionalität auf mehrere An-
wendungen verteilt werden, wie es beispielsweise in Umgebungen mit einer Server-
und mehreren Client-Anwendungen der Fall ist. Andererseits wird gerade für
Webanwendungen häufig eine zusätzliche Windowsanwendung zur Wartung ent-
wickelt.

Außerdem nutzen die meisten modernen Anwendungen eine Reihe unterstützen-
der Anwendungen, wie eine Datenbank, einen Webserver und sonstige Services, die
zwar nicht direkt integriert sind, aber dennoch – wie die eigentliche Anwendung –
ihren jeweiligen Teil zur übergeordneten Lösung beitragen.

Insofern sind Anwendungen genau genommen autonome Bestandteile einer Lö-
sung und kommunizieren miteinander über definierte Schnittstellen und Kanäle.
Dennoch werden im folgenden die Begriffe Anwendung und Lösung synonym ver-
wendet, da die in diesem Buch entwickelten Lösungen zumeist nur aus einer einzel-
nen Anwendung bestehen.

Golo Roden, Auf der Fährte von C# 7
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

8 2 Anwendungsarchitektur

2.2 Komponenten und Assemblies

Die hierarchische Struktur einer Lösung mit mehreren untergeordneten Anwendun-
gen besteht vergleichbar auch innerhalb einer einzelnen Anwendung. Waren diese
früher häufig monolithisch – also aus einem Guss – aufgebaut, werden heutzutage
in der Regel eine Reihe von eigenständigen Komponenten entwickelt, die anschlie-
ßend miteinander integriert und zu einer Anwendung verschmolzen werden.

Komponenten zeichnen sich vor allem durch zwei Aspekte aus: Zum einen sind
sie autarke, in sich abgeschlossene Einheiten, die nicht von anderen Einheiten ab-
hängen. Auf Grund dessen kann die Entwicklung einer komponentenorientierten
Anwendung problemlos innerhalb eines Teams aufgeteilt werden. Zum anderen ver-
fügt jede Komponente über eine definierte Schnittstelle, über die sie von außen an-
geprochen werden kann. Um eine Komponente in eine Anwendung einzubinden,
muss nur ihre Schnittstelle, nicht aber ihr innerer Aufbau bekannt sein, so dass eine
Komponente als Blackbox fungiert.

Außerdem sind verschiedene Komponenten untereinander austauschbar, sofern
sie die gleiche Schnittstelle bereitstellen. Dies erleichtert nicht nur die Wartbarkeit
von Anwendungen, da im Nachhinein problemlos einzelne Komponenten an Stelle
der ganzen Anwendung ausgetauscht werden können. Zudem wird auch die Testbar-
keit verbessert, da bei einer Änderung in einer Komponente nur diese erneut getestet
werden muss, nicht aber die vollständige Anwendung.

Auf Grund dieser Eigenschaften spielen Komponenten eine essenzielle Rolle in
der modernen, teambasierten Anwendungsentwicklung.

Eine Komponente besteht – wie bereits Lösungen und Anwendungen – wiederum
aus kleineren Bestandteilen, den Assemblies. Eine Assembly ist dabei ein Konzept,
das von Microsoft in .NET neu eingeführt wurde. Diese wird physisch von einer Da-
tei mit der Endung .dll oder .exe repräsentiert, wobei eine Assembly außer der Da-
teiendung nicht viel mit einer klassischen Datei mit der selben Endung gemein hat.

Eine Assembly enthält in erster Linie ausführbare Anweisungen in MSIL. Zu-
dem kann sie aber noch Ressourcen enthalten, die zur ihrer Ausführung benötigt
werden, wie beispielsweise Bilder oder Klänge. Erzeugt wird eine Assembly aus
einer oder mehreren Dateien, die Anweisungen in C# enthalten, und zusätzlich aus
den einzubindenden Ressourcendateien.

Außerdem verfügt eine Assembly über Metadaten, die ihren Inhalt näher be-
schreiben. So werden nicht nur Angaben zu den enthaltenen Anweisungen und Res-
sourcen gemacht, sondern auch Informationen über die Assembly an sich wie bei-
spielsweise ihr Hersteller und ihre Versionsnummer bereitgestellt.

2.3 Datentypen

Die Anweisungen in einer Assembly, die ursprünglich in C# geschrieben wurden,
sind ihrerseits allerdings noch einmal in sogenannten Typen organisiert, und zwar
gemeinsam mit den Datenstrukturen, die sie zu ihrer Ausführung benötigen. Das

2.3 Datentypen 9

Entwerfen und Organisieren dieser Typen ist die wesentliche Arbeit, die bei der
Entwicklung einer Anwendung in C# geleistet wird.

Zusammenfassend heißt das auf der einen Seite, dass alles, was sich oberhalb
einer Assembly befindet, zwar zu der Ausführung einer Anwendung benötigt wird,
aber letztlich auch nur die Ausführung sowie die Verteilung der Anwendung betrifft.
Insbesondere wird all dies nicht in C# umgesetzt, da dort nur noch ausführbare
Dateien gehandhabt werden, und man, wenn überhaupt, nur mit MSIL – nicht aber
mit C# – in Berührung kommt.

Auf der anderen Seite wird im Gegenzug alles, was sich unterhalb einer Assem-
bly befindet, in C# umgesetzt. Das heißt, Anwendungen zu entwickeln bedeutet im
wesentlichen, Datenstrukturen zu modellieren, sie zu organisieren und darauf basie-
rend die Verfahren aufzubauen, die mit diesen Datenstrukturen arbeiten.

Kapitel 3
Objektorientierung

3.1 Prozedurales Paradigma

In den vergangenen Kapiteln wurde C# als objektorientierte Sprache bezeichnet,
wobei dieser Begriff bislang noch nicht näher erläutert wurde.

Um das Konzept der Objektorientierung zu verstehen, muss man wissen, wie
Programmiersprachen früher aufgebaut waren. Im vorherigen Kapitel wurde die
Entwicklung von Anwendungen im wesentlichen als Modellierung und Organisa-
tion von Datenstrukturen und als Aufbau der entsprechenden datenverarbeitenden
Verfahren bezeichnet.

Weil Daten ein dermaßen grundlegendes Element für die Entwicklung von An-
wendungen darstellen, kann de facto keine Anwendung ohne Daten bestehen. Da-
mit diese aber überhaupt verarbeitet werden können, müssen sie der Anwendung
zunächst als Eingabe vorliegen. Zudem wird eine Ausgabemöglichkeit benötigt, um
die verarbeiteten Daten an den Benutzer zurückzugeben.

Diese Aspekte jeder Anwendung – das ursprüngliche Einlesen der zu verarbei-
tenden Daten, die eigentliche Verarbeitung und schließlich die Ausgabe von Er-
gebnissen – werden in der Informatik als EVA-Prinzip bezeichnet, wobei EVA als
Akronym für Eingabe, Verarbeitung und Ausgabe steht.

Allerdings darf dabei nicht vergessen werden, dass verschiedene Arten von Da-
ten bestehen, die dementsprechend auch unterschiedlich modelliert und gehandhabt
werden müssen. Zudem muss dieser Diversität in Programmiersprachen Rechnung
getragen werden, weshalb es dort sogenannte Typen gibt, die jeweils eine spezielle
Art von Daten repräsentieren.

In klassischen Programmiersprachen gibt es nur einfache Typen, um elementa-
re Daten aufzunehmen, wie beispielsweise Typen zur Speicherung einer Ganzzahl,
einer Dezimalzahl oder eines Buchstaben. Die Verwendung nur dieser einfachen
Typen reicht bereits aus, um alle möglichen Daten abzubilden, allerdings ist dafür
teilweise eine aufwändige Umwandlung komplexer Daten in einfache Typen not-
wendig.

Golo Roden, Auf der Fährte von C# 11
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

12 3 Objektorientierung

Neben der potenziell aufwändigen Umwandlung birgt dieses Verfahren noch
einen weiteren essenziellen Nachteil: Ein komplexer Typ wird nicht als komple-
xer Typ verarbeitet, sondern als Menge von einfachen Typen. Dass diese einfachen
Typen gemeinsam einen komplexen Typ darstellen, kann nicht explizit abgebildet
werden, statt dessen ist dieses Wissen nur noch implizit vorhanden.

Ein komplexer Typ, wie beispielsweise eine Person, der auf die einfachen Typen
Nachname, Vorname und Alter abgebildet wird, ist demzufolge in der Anwendung
nicht mehr als komplexer Typ vorhanden, sondern er besteht nur noch in den eigen-
ständigen einfachen Typen für Nachname, Vorname und Alter. Die Entscheidung,
diese einfachen Typen wieder zu einem komplexen Typ zusammenzufügen, obliegt
dem Entwickler.

Außerdem werden einzelne Typen in klassischen Programmiersprachen nicht
voneinander abgeschirmt, das heißt, jeder Teil der Anwendung kann auf sämtli-
che Daten unbeschränkt zugreifen. Dass dies nicht nur die gezielte, sondern auch
die unbeabsichtigte Veränderung von Daten ermöglicht und damit potenziell eine
Quelle für zahlreiche, aber nicht offensichtliche Fehler darstellt, liegt auf der Hand.

Aus all diesen Gründen liegt der Schwerpunkt bei der Entwicklung von Anwen-
dungen in den klassischen Programmiersprachen auf dem Code, der die Typen und
damit die Daten verarbeitet, und nicht auf den Typen selbst. Da dabei häufig be-
nötigte Codezeilen in Funktionen – sogenannten Prozeduren – zusammengefasst
werden, wird diese Art der Entwicklung als prozedurales Paradigma bezeichnet.

3.2 Objektorientiertes Paradigma

Für die Entwicklung komplexer Anwendungen ist das prozedurale Paradigma aller-
dings nicht tragfähig und stößt schnell an seine Grenzen. Die wesentlichen Proble-
me dabei sind neben den ungenügenden Typen und den fehlerhaften und ungültigen
Zugriffen zumeist das redundante Zurverfügungstellen von Daten an verschiedenen
Stellen der Anwendung sowie häufig eine nicht überschaubare Komplexität.

Betrachtet man die reale Welt, dann fällt auf, dass man in der Regel mit kom-
plexen Typen in Berührung kommt, deren Komplexität deutlich über der einer Zahl
oder eines Buchstaben liegt. Die in den klassischen Programmiersprachen gängigen
einfachen Typen treten hingegen nur selten eigenständig auf.

Die Objekte der realen Welt haben wie komplexe Typen gewisse Eigenschaften,
verfügen zudem aber noch über Aktionen, die sie ausführen können. So verfügt eine
Person als Objekt neben den bereits erwähnten Daten wie Nachname, Vorname und
Alter auch über Aktionen, wie beispielsweise laufen, lesen und schlafen. Auf diese
Art, nämlich die Zweiteilung in Eigenschaften und Aktionen, kann fast jedes Objekt
hinreichend beschrieben werden.

Der entscheidende Punkt bei dieser Darstellung ist, dass jedes Objekt für sich
über die Information verfügt, welche Aktionen es in einem gegebenen Kontext aus-
führen kann – es handelt autonom. Außerdem sind die Eigenschaften eines Objek-

3.2 Objektorientiertes Paradigma 13

tes von außen nicht einsehbar, denn um Daten zu erhalten, muss eine entsprechende
Anfrage gestellt werden, die einer Aktion entspricht.

Dieses Prinzip, die internen Daten zu verbergen und nach außen nur über kon-
trollierte Aktionen zur Verfügung zu stellen, wird als Information Hiding bezeichnet
und ist eine weitere wesentliche Voraussetzung für die Autonomie von Objekten.
Diese Autonomie wiederum ist die Basis für die Entwicklung komponentenorien-
tierter Anwendungen.

Der komplexe Typ, der einem Objekt zu Grunde liegt, wird dabei als Klasse
bezeichnet. Im Gegensatz zum Objekt, das eine konkrete Ausprägung darstellt, re-
präsentiert die Klasse lediglich den Bauplan für dieses Objekt. Daher kann es zwar
zahlreiche Objekte geben, die auf der selben Klasse basieren, allerdings hat jedes
Objekt nur genau eine Klasse, die den Aufbau des Objektes beschreibt.

Die Klasse Person definiert also, welche Eigenschaften und Aktionen eine kon-
krete Person auszeichnen – sie stellt aber keine konkrete Person dar, ebenso we-
nig wie ein Bauplan eines Hauses ein konkretes Haus darstellt. Erst ein Objekt der
Klasse Person repräsentiert eine konkrete Person. Da ein Objekt also eine konkrete
Ausprägung darstellt, wird es auch als Instanz einer Klasse und seine Erzeugung als
Instanziierung bezeichnet.

Im Unterschied zum prozeduralen Paradigma ist der Code, der die Objekte ver-
arbeitet, in den Objekten selbst enthalten, weshalb auf Klassen und Objekten basie-
rende Anwendungen deutlich weniger codezentrisch aufgebaut sind als klassische
Anwendungen. Statt dessen wird sehr viel mehr Augenmerk auf die Modellierung
und Organisation der notwendigen Klassen und der Verbindungen zwischen ihnen
gelegt.

Auf Grund der Fokussierung auf Objekte wird diese Art, Anwendungen zu
entwickeln, als objektorientiertes Paradigma oder auch als objektorientierte Pro-
grammierung bezeichnet. Dieses Paradigma ist die Basis jeglicher modernen An-
wendungsentwicklung und wird von fast allen modernen Programmiersprachen
unterstützt oder – bei konsequent objektorientierten Sprachen wie C# – sogar
gefordert.

Kapitel 4
Typen

4.1 Werte- und Verweistypen

Damit eine Anwendung Daten verarbeiten kann, muss Speicher für diese Daten re-
serviert werden. Wie viel Speicher dafür benötigt wird, ist jedoch abhängig von den
Typen der Daten, da nicht jeder Typ gleich viel Speicher belegt. Zudem wird in C#
noch zwischen zwei Arten von Typen unterschieden, nämlich Werte- und Verweis-
typen.

Wertetypen sind – wie ihr Name schon sagt – Typen, die Werte direkt speichern.
Das heißt, wird von der Anwendung auf einen Wertetyp zugegriffen, dann werden
die Daten direkt aus der entsprechenden Stelle im Speicher gelesen.

Im Gegensatz dazu speichern Verweistypen nur die Adresse der Speicherstelle,
an der die eigentlichen Daten abgelegt sind. Greift die Anwendung also auf einen
Verweistyp zu, wird zunächst aus der entsprechenden Stelle im Speicher gelesen,
wo sich die eigentlichen Daten befinden, woraufhin diese in einem zweiten Schritt
dann von dort gelesen werden können.

Diese zunächst aufwändig erscheinende Trennung in Werte- und Verweistypen
liegt in der Größe der Daten begründet, die gespeichert werden sollen. Daten, deren
Umfang im Voraus bekannt ist, werden in der Regel als Wertetyp abgelegt. Da Wer-
tetypen – vereinfacht gesagt – in einer Tabelle im Speicher verwaltet werden, findet
der Zugriff auf diese sehr schnell statt.

Bei Daten, deren Umfang allerdings nicht von vornherein feststeht, oder deren
Umfang sich im Lauf der Zeit ändern kann, würde diese Tabelle immer wieder frag-
mentiert und müsste von Zeit zu Zeit umsortiert werden. Um das zu vermeiden,
werden die eigentlichen Daten getrennt von dieser Tabelle an einer freien Adresse
im Speicher abgelegt, während in der Tabelle nur ein Verweis auf diese Adresse
abgelegt wird.

Da ein Verweis auf eine Speicherstelle unabhängig von deren Adresse immer
gleich viel Speicher benötigt, kann die Tabelle problemlos genutzt werden, um diese
Verweise aufzunehmen. Dieses Verfahren löst außerdem das Problem, wie umfang-
reiche Daten innerhalb einer Anwendung weitergereicht werden. Statt sämtliche Da-

Golo Roden, Auf der Fährte von C# 15
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

16 4 Typen

ten zu kopieren, wird lediglich der Verweis weitergegeben, was zum einen deutlich
weniger Speicher verbraucht und zum anderen wesentlich schneller ausgeführt wird.

Allerdings ergibt sich aus der Eigenschaft, in erster Linie nur mit einem Verweis
an Stelle der eigentlichen Daten zu arbeiten, ein wesentlicher Unterschied zwischen
Werte- und Verweistypen, der beim Umgang mit diesen beachtet werden muss. Wird
ein Wertetyp kopiert, um ihn an anderer Stelle in der Anwendung zu verwenden,
wird tatsächlich auf einer Kopie gearbeitet. Veränderungen an dieser beeinflussen
die ursprünglichen Daten nicht.

Wird statt dessen aber ein Verweistyp kopiert, so wird nur der Verweis kopiert –
die eigentlichen Daten liegen nach wie vor nur ein einziges Mal im Speicher. Wer-
den nun die Daten der vermeintlichen Kopie verändert, ändern sich dadurch auch die
ursprünglichen Daten, denn beide Verweise zeigen auf die selbe Adresse im Spei-
cher. Um versehentliche Änderungen an Daten zu vermeiden, ist es wichtig, diesen
Unterschied zu verinnerlichen.

Aus dieser Unterscheidung in Werte- und Verweistypen ergibt sich die Frage,
welchen Wert ein Typ enthält, wenn er zwar bereits im Speicher angelegt wurde,
ihm aber noch keine Daten zugewiesen wurden. Die Antwort auf diese Frage hängt
davon ab, ob es sich um einen Werte- oder einen Verweistyp handelt.

Während Wertetypen ein Standardwert zugewiesen wird, werden Verweistypen
als null gekennzeichnet. Das bedeutet, dass sie derzeit nicht auf eine Speicheradres-
se verweisen. Dabei ist zu beachten, dass null ein eigener Wert ist und nicht der
Zahl Null entspricht. Außerdem muss im späteren Verlauf beim Zugriff auf einen
Verweistyp stets überprüft werden, ob überhaupt Daten vorliegen oder ob der Ver-
weistyp null ist.

Schließlich gibt es noch einen Hybriden zwischen Werte- und Verweistypen,
nämlich die nullbaren Wertetypen. Ihr Ursprung liegt in der Notwendigkeit, einen
Wertetyp kennzeichnen zu können, dessen Wert unbekannt oder undefiniert ist.

Häufig wird dafür der Standardwert verwendet, allerdings besteht gelegentlich
Bedarf, zwischen diesem und einem tatsächlich unbekannten oder undefinierten
Wert zu unterscheiden, wofür bei nullbaren Wertetypen dann null verwendet werden
kann. Intern werden nullbare Wertetypen allerdings als Verweistypen umgesetzt, da
nur diese die Nutzung von null ermöglichen.

4.2 Vordefinierte Typen

Damit bei der Entwicklung von Anwendungen nicht jeder Typ vom Benutzer entwi-
ckelt werden muss, enthält C# eine Reihe vordefinierter Typen für einfache Daten,
die automatisch in jeder Anwendung zur Verfügung stehen.

Für Ganzzahlen bietet C# acht verschiedene Typen, die sich in erster Linie durch
ihren Wertebereich unterscheiden. Der Wertebereich berechnet sich dabei aus der
Anzahl der verfügbaren Bits, wobei nochmals zwischen vorzeichenbehafteten und
vorzeichenfreien Typen unterschieden wird. Als Standardwert verwenden diese Ty-
pen die Zahl Null.

4.2 Vordefinierte Typen 17

Theoretisch sollte für eine Aufgabe zwar der am besten passende Typ verwendet
werden, in der Praxis werden allerdings fast ausschließlich int und long eingesetzt,
da 32- und 64-Bit-Prozessoren mit diesen Typen besser umgehen können. Außer-
dem wirkt sich auf Grund der Art, wie .NET Speicher für Typen reserviert, auch der
geringere Speicherbedarf der kleineren Typen – wenn überhaupt – nur unwesent-
lich aus.

Typ Minimum Maximum Größe Vorzeichen

sbyte −128 127 8 Bit Ja
short −32.768 32.767 16 Bit Ja
int −2.147.483.648 2.147.483.647 32 Bit Ja
long −9.223.372.036.854.775.808 9.223.372.036.854.775.807 64 Bit Ja
byte 0 255 8 Bit Nein
ushort 0 65.535 16 Bit Nein
uint 0 4.294.967.295 32 Bit Nein
ulong 0 18.446.744.073.709.551.615 64 Bit Nein

Für Dezimalzahlen bietet C# drei verschiedene Typen, die sich nicht nur durch
ihren Wertebereich, sondern auch durch die Anzahl der verfügbaren Nachkomma-
stellen unterscheiden. Die Typen float und double entsprechen dabei dem IEEE 754-
Standard, der seit 1985 einen weltweit einheitlichen Standard zur Verarbeitung von
Dezimalzahlen definiert.

Der Typ decimal hingegen verfügt zwar über einen kleineren Wertebereich als
float und double, dafür aber über eine deutlich höhere Genauigkeit, was diesen Typ
insbesondere für Finanzberechnungen interessant macht.

Als Besonderheit bieten die Typen float und double die Möglichkeit, die Wer-
te +0 und −0, +∞, −∞ und NaN zu speichern. Die Werte +0 und −0 sind vor
allem beim Runden interessant. Neben +∞ und −∞ zur Darstellung positiver und
negativer Unendlichkeit können float und double auch den Wert NaN – Not a Num-
ber – speichern, um ein mathematisch nicht definiertes Ergebnis abzubilden. Für
decimal stehen diese besonderen Werte nicht zur Verfügung.

Als Standardwert verwenden diese Typen ebenso wie die ganzzahligen Typen die
Zahl Null.

Typ Minimum Maximum Größe Nachkommastellen

float ±1,5×10−45 ±3,4×1038 32 Bit 7
double ±5,0×10−324 ±1,7×10308 64 Bit 15 bis 16
decimal ±1,0×10−28 ±7,9×1028 128 Bit 28 bis 29

Außer diesen Typen für Ganz- und Dezimalzahlen bietet C# noch den Typ char
zur Aufnahme eines einzelnen Zeichens, wobei Unicode voll unterstützt wird. Ein
einzelnes Zeichen wird in C# dabei durch einfache Anführungszeichen eingeschlos-
sen. Als Standardwert wird das Zeichen mit dem Unicode-Wert Null verwendet.

18 4 Typen

Typ Größe

Char 16 Bit

Schließlich unterstützt C# noch den Typ bool, der zur Darstellung der logischen
Werte true und false dient. Die Werte true und false werden – ebenso wie null – als
Literale bezeichnet. Der Standardwert für diesen Typ ist false.

Obwohl ein Bit in der Theorie genügen würde, um bool abzubilden, wird in der
Praxis ein Byte verwendet, da dies die kleinste Einheit ist, die im Speicher belegt
werden kann.

Typ Größe

bool 8 Bit

Alle bislang vorgestellten Typen sind Wertetypen, deren Speicherbedarf im Vor-
aus bekannt ist. Außer diesen Typen enthält C# noch zwei Verweistypen, nämlich
string und object.

Der Typ string dient zur Aufnahme von Text, der aus beliebig vielen Zeichen
bestehen kann. Wie char ist auch dieser Typ uneingeschränkt Unicode-fähig. Ein
Text wird in C# durch doppelte Anführungszeichen eingeschlossen.

Der Speicherbedarf liegt aus Leistungs- und Verwaltungsgründen bei mindestens
20 Byte, wächst aber linear mit der Länge des zu speichernden Textes. Der Verweis
an sich belegt – je nach Speicherarchitektur – 32 oder 64 Bit.

Typ Größe

string Mindestens 20 Byte

Um in den Typen char und string Sonderzeichen wie beispielsweise einen Zei-
lenumbruch speichern zu können, können Zeichen nicht nur in ihrer kanonischen
Form angegeben, sondern auch als Unicode-Zeichen oder Escape-Sequenzen mas-
kiert werden. Ein Unicode-Zeichen wird durch einen umgekehrten Schrägstrich ein-
geleitet, dem ein kleines u und die vierstellige Nummer des Zeichens folgen.

’\u0013 ’

Die Escape-Sequenzen beginnen ebenfalls mit einem umgekehrten Schrägstrich,
bestehen weiterhin aber nur aus einem einzelnen Zeichen, das die entsprechende
Escape-Sequenz identifiziert.

Um die Interpretation der Escape-Sequenzen durch C# zu unterdrücken, kann
einem Text außerhalb der doppelten Anführungszeichen ein @ vorangestellt wer-
den. Insbesondere bei der Verwendung von Pfadangaben, die zahlreiche umgekehrte

4.3 Benutzerdefinierte Typen 19

Sequenz Bedeutung

’ Einfaches Anführungszeichen
" Doppeltes Anführungszeichen
\ Umgekehrter Schrägstrich
0 Zeichen mit dem Unicode-Wert 0
a Alarmton
b Rückschritt
f Seitenvorschub
n Neue Zeile
r Wagenrücklauf
t Horizontaler Tabulator
v Vertikaler Tabulator

Schrägstriche enthalten, kann dies nützlich sein – diese müssten ansonsten jeweils
als Escape-Sequenz angegeben werden.

Der Typ object schließlich spielt eine Sonderrolle, da alle anderen Typen von
ihm abstammen. Daher kann er für jeden anderen Typ eingesetzt werden, das heißt,
object kann einen Verweis auf beliebige Daten speichern. Dennoch findet der Zu-
griff typsicher statt, so dass nach wie vor der ursprüngliche Typ der Daten bekannt
ist. Das heißt, dass beispielsweise auf einen Text nicht wie auf eine Zahl zugegriffen
werden kann, auch wenn der Text als object abgelegt ist.

Zudem kann jeder Typ in object umgewandelt und von object wieder in den ur-
sprünglichen Typ zurückgewandelt werden, was als Boxing beziehungsweise Un-
boxing bezeichnet wird.

Neben den 32 oder 64 Bit, die für den Verweis auf die Daten anfallen, und dem
Speicherplatz für die Daten an sich, benötigt dieser Typ weitere 64 Bit für interne
Verwaltungsinformationen.

Typ Größe

object 64 Bit

4.3 Benutzerdefinierte Typen

Außer diesen vordefinierten Typen können Typen in C# auch vom Benutzer defi-
niert werden. Zu diesem Zweck gibt es einige Konzepte, auf denen benutzerdefi-
nierte Typen aufgebaut werden, wobei dafür wiederum verschiedene Werte- und
Verweistypen zur Auswahl stehen.

An Wertetypen bietet C# Strukturen und Enumerationen, an Verweistypen neben
den im vergangenen Kapitel erwähnten Klassen auch Schnittstellen, Arrays, De-
legaten und die im Ansatz beschriebenen nullbaren Wertetypen an. Die Definition
eigener Typen auf Basis dieser Konzepte wird in den nächsten Kapiteln im Detail
beschrieben.

Kapitel 5
Namensräume

5.1 Was sind Namensräume?

Die Typen, die während der Entwicklung einer Anwendung entstehen, werden
jeweils mit einem beschreibenden Namen versehen, welche Art von Daten die-
ser Typ verarbeiten soll. Allerdings kann es durch den Einsatz von Komponen-
ten vorkommen, dass zwei verschiedene Typen unabhängig voneinander den glei-
chen Namen tragen, wobei der Name innerhalb der jeweiligen Komponente eindeu-
tig ist.

Um diese Typen dennoch unterscheiden zu können, werden sie üblicherweise in
sogenannten Namensräumen organisiert. Ein Namensraum stellt dabei einen Con-
tainer dar, der die in ihm enthaltenen Typen von den Typen anderer Namensräume
abschottet. Wird ein Typ in keinen Namensraum eingeordnet, befindet er sich auto-
matisch im globalen Namensraum, der mit global:: bezeichnet wird.

Innerhalb eines Namensraumes reicht der Name eines Typs zu seiner Identifika-
tion aus. Typen, die sich in anderen Namensräumen befinden, müssen jedoch zu-
sätzlich mit ihrem zugehörigen Namensraum angesprochen werden. Namensräume
können zudem hierarchisch angeordnet werden, um verschiedene Ebenen zu de-
finieren. Der Name eines Typs einschließlich seines kompletten Namensraumbe-
zeichners wird als vollqualifizierter Name bezeichnet.

Die Verschachtelung von Namensräumen wird in C# mit Hilfe des Punkt-Opera-
tors durchgeführt, wobei der Punkt dann die einzelnen hierarchischen Ebenen von-
einander trennt.

Die FCL enthält bereits zahlreiche Namensräume, von denen der wichtigste Sys-
tem heißt. In ihm befinden sich alle elementaren Typen, die zur Entwicklung von
Anwendungen benötigt werden. Unterhalb von System gibt es spezialisierte Na-
mensräume wie beispielsweise System.Data oder System.Xml zum Zugriff auf Da-
tenbanken und XML-Dokumente.

Generell gilt die Regel, dass der oberste Namensraum einer Komponente dem
Namen der Firma entsprechen sollte, welche die Komponente entwickelt. Darunter
wird üblicherweise ein Namensraum angeordnet, dessen Name dem der Komponen-

Golo Roden, Auf der Fährte von C# 21
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

22 5 Namensräume

te oder der Anwendung entspricht. Weitere Namensräume, mit denen die verwen-
deten Typen detaillierter organisiert werden können, finden sich schließlich auf der
untersten Ebene.

Beispiele für Namensräume, die diesem Schema folgen, sind beispielsweise
Microsoft.IE, Microsoft.SqlServer.Server oder Microsoft.WindowsMobile.DirectX.
Direct3D. Wichtig bei der Benennung von Namensräumen ist, dass sprechende Na-
men verwendet werden, aus denen hervorgeht, welche Arten von Daten die enthal-
tenen Typen abdecken. Außerdem muss das erste Zeichen eines Namens ein Buch-
stabe oder ein Unterstrich sein, Ziffern oder sonstige Zeichen sind nicht erlaubt.

Bei der Namensvergabe muss zudem beachtet werden, dass die Groß- und Klein-
schreibung in C# generell relevant ist. Daher bezeichnen die Namen System und sys-
tem verschiedene Namensräume. Für die Schreibweise zusammengesetzter Wörter
wird in C# je nach Kontext entweder Pascal Case oder Camel Case verwendet. In
Pascal Case wird der Anfangsbuchstabe jedes Wortes groß geschrieben, in Camel
Case bildet das erste Wort hierzu eine Ausnahme, da dessen Anfangsbuchstabe klein
geschrieben wird.

Bei Namensräumen wird immer Pascal Case als Schreibweise verwendet, wes-
wegen es beispielsweise System.SqlServer und nicht system.sqlServer heißt.

Außerdem gelten in .NET für sämtliche Namen die Richtlinien, dass Abkürzun-
gen nicht und Akronyme nur dann verwendet werden, wenn sie allgemein gebräuch-
lich sind. Akronyme, die aus höchstens zwei Zeichen bestehen, werden vollständig
groß geschrieben, ab einer Länge von drei Zeichen gilt wieder, dass je nach Kontext
Pascal Case oder Camel Case verwendet wird.

Auf Grund dieser Richtlinien heißt es System.IO an Stelle von System.Io und
System.Xml an Stelle von System.XML.

Schließlich ist noch zu beachten, dass Bezeichner nicht identisch mit Schlüssel-
wörtern der Sprache C# sein dürfen – als Schlüsselwörter werden dabei alle Wörter
bezeichnet, die in C# bereits als Anweisung oder als sonstiger Ausdruck enthalten
sind. Sofern der Name eines Bezeichners zwingend einem Schlüsselwort entspre-
chen muss, wird dem Bezeichner ein @ vorangestellt, wodurch der Bezeichner und
das Schlüsselwort dann unterschieden werden können. Diese Möglichkeit sollte al-
lerdings nur in Ausnahmefällen in Betracht gezogen und in der Regel vermieden
werden.

5.2 Vordefinierte Namensräume

Verwendet man Typen aus einem anderen Namensraum in einer eigenen Kompo-
nente, so muss jedes Mal der vollqualifizierte Name des Typs angegeben werden.
Da die Lesbarkeit des Codes bei tief verschachtelten Namensräumen dadurch be-
einträchtigt werden kann, ist es möglich, Namensräume einzubinden, so dass deren
Typen so verwendet werden können, als befänden sie sich im aktuellen Namens-
raum.

5.2 Vordefinierte Namensräume 23

Dazu dient in C# die using-Direktive, die in der Regel zu Beginn einer Datei
angegeben wird, wobei sich ein Namensraum durchaus über mehr als eine Datei
erstrecken kann. Da einige Namensräume wie unter anderem System von fast jeder
Komponente benötigt werden, fügen die meisten Entwicklungsumgebungen in eine
neue Datei automatisch die entsprechenden Zeilen ein.

C#

1 using System ;
2 using System .Collections .Generic ;
3 using System .Text;

Die Semikola am jeweiligen Zeilenende kennzeichnen in C# das Ende einer An-
weisung. Da jede Anweisung durch ein Semikolon abgeschlossen werden muss,
kann sie auch auf mehrere Zeilen verteilt werden, was bei langen Zeilen eventuell
die Lesbarkeit verbessern kann. Zudem werden zusätzliche Leerstellen und Leer-
zeilen ignoriert.

Die Namensräume alphabetisch zu sortieren und zwischen Namensräumen, de-
ren oberste Ebene sich unterscheidet, eine Leerzeile einzufügen, erleichtert das Auf-
finden eines bestimmten eingebundenen Namensraumes und wird im allgemeinen
als guter Stil angesehen.

C#

1 using Microsoft .IE;
2 using Microsoft .SqlServer .Server ;
3
4 using System ;
5 using System .Collections .Generic ;
6 using System .Text;

Statt einen Namensraum einzubinden, kann alternativ ein Alias definiert werden,
so dass der Namensraum zumindest über einen kürzeren Namen angesprochen wer-
den kann.

C#

1 using D3D =
2 Microsoft . WindowsMobile.DirectX .Direct3D ;

Alle Typen, die im Namensraum Microsoft.WindowsMobile.DirectX.Direct3D
enthalten sind, können nun vollqualifiziert über den Alias D3D angesprochen wer-
den. Ebenso kann ein Alias für einen Typen definiert werden, indem statt eines Na-
mensraumes der Name eines Typs angegeben wird. Generell kann die Verwendung
von Aliasen manchmal nützlich sein, allerdings wird dieses Konstrukt in der Praxis
eher selten genutzt.

24 5 Namensräume

5.3 Benutzerdefinierte Namensräume

Außer der Einbindung von bestehenden Namensräumen können auch eigene Na-
mensräume definiert werden, um eigene Typen zusammenzufassen und zu organi-
sieren. Dazu dient in C# die namespace-Anweisung. Als Parameter erfordert sie
den Namen eines Namensraumes, zudem folgt ihr ein Namensraumrumpf, der von
geschweiften Klammern eingeschlossen wird.

Anweisungen, denen ein durch geschweifte Klammern eingeschlossener Block
folgt, werden in C# nicht durch ein Semikolon abgeschlossen und stellen daher eine
Ausnahme von der Regel dar.

C#

1 using System ;
2
3 namespace GoloRoden
4 {
5 }

Um verschachtelte Namensräume zu erstellen, kann eine weitere namespace-
Anweisung in den Rumpf eingebettet werden. Die im Rumpf eingebetteten Zei-
len einzurücken, erhöht die Lesbarkeit, da Blockanfang und -ende sofort ersichtlich
sind, zudem gilt dies ebenfalls als guter Stil.

C#

1 using System ;
2
3 namespace GoloRoden
4 {
5 namespace GuideToCSharp
6 {
7 }
8 }

Statt dessen kann auch direkt in der äußeren Anweisung der vollqualifizierte Na-
me des inneren Namensraumes angegeben werden.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 }

Dieser Code kann nun mit Hilfe des C#-Compilers in MSIL übersetzt werden.
Dabei besteht prinzipiell die Möglichkeit, eine Komponente zur Verwendung in ei-
ner Anwendung mit der Dateiendung .dll oder eine eigenständige Anwendung mit
der Dateiendung .exe zu erzeugen.

5.3 Benutzerdefinierte Namensräume 25

Für eine eigenständig lauffähige Anwendung müssen allerdings einige Bedin-
gungen erfüllt werden, denen der vorliegende Code nicht gerecht wird, weshalb
derzeit nur die Möglichkeit besteht, eine Komponente zu erzeugen.

In .NET erfolgt das Kompilieren mit Hilfe des Compilers csc.exe, in Mono trägt
der Compiler den Namen mcs.exe.

Um in .NET eine Komponente zu erzeugen, muss der Compiler mit dem /target-
Parameter und dem Wert library aufgerufen werden, wobei /target optional als /t
abgekürzt werden kann. Zudem muss als weiterer Parameter die zu kompilierende
Datei angegeben werden.

csc /target:library Component.cs

Die Parameter des Compilers von Mono sind kompatibel, so dass der Aufruf fast
identisch mit dem des Compilers von .NET ist.

mcs /target:library Component.cs

Das Ergebnis ist in beiden Fällen eine Assembly mit der Dateiendung .dll, die als
Komponente in einer Anwendung eingesetzt werden kann. Sofern ein anderer Name
für die Assembly vergeben werden soll, kann dazu so wohl in .NET wie auch in
Mono der Parameter /out verwendet werden.

csc /target:library /out:File.dll Component.cs

beziehungsweise

mcs /target:library /out:File.dll Component.cs

Kapitel 6
Klassen und Strukturen

6.1 Was sind Klassen?

Da C# eine objektorientierte Sprache ist, wird am häufigsten das Konzept der Klasse
zur Erstellung eigener Typen verwendet. Klassen sind, wie bereits erwähnt, Bauplä-
ne für Objekte, mit denen Daten modelliert werden können.

Eine Klasse wird in C# mit dem Schlüsselwort class erzeugt, dem der Name der
Klasse folgt. Klassen besitzen ebenso wie Namensräume einen durch geschweifte
Klammern eingeschlossenen Rumpf, weshalb ihre Definition nicht durch ein Semi-
kolon abgeschlossen wird.

Wie bei Namensräumen, so gibt es auch bei Klassen Richtlinien, wie deren Na-
men gebildet werden. Ein Klassenname besteht aus einem oder mehreren Substan-
tiven, die den Zweck der Klasse beschreiben, wobei in der Regel der Singular ver-
wendet wird. Für die Schreibweise gilt Pascal Case.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 class ComplexNumber
6 {
7 }
8 }

Dieser Code erzeugt eine Klasse zur Darstellung komplexer Zahlen. Komplexe
Zahlen zeichnen sich in der Mathematik dadurch aus, dass mit ihnen die Wurzel
von -1 berechnet werden kann, was unter Verwendung lediglich reeller Zahlen nicht
möglich ist. Die Wurzel aus -1 wird dabei mit der imaginären Einheit i bezeichnet,
wobei

i2 = -1

Golo Roden, Auf der Fährte von C# 27
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

28 6 Klassen und Strukturen

gilt. Komplexe Zahlen werden in der Regel in der Form

a + b × i

dargestellt, wobei a als der Real- und b als der Imaginärteil bezeichnet werden.
Bevor die Klasse ausgebaut wird, um komplexe Zahlen darstellen und verarbeiten
zu können, sollte sie zunächst kommentiert werden.

Prinzipiell gibt es in C# drei Arten von Kommentaren. Die einfachste Variante
stellen einzeilige Kommentare dar, die durch einen doppelten Schrägstrich eingelei-
tet werden, und an einer beliebigen Stelle einer Zeile beginnen können, wobei für
einen Kommentar in der Regel eine neue Zeile verwendet wird, um die Übersicht-
lichkeit zu bewahren.

Einzeilige Kommentare werden im wesentlichen für interne Kommentare des
Entwicklers verwendet und kennzeichnen häufig Zeilen im Code, an denen die Ar-
beit noch nicht abgeschlossen ist.

Außerdem werden einzeilige Kommentare oft verwendet, um die Arbeitsweise
von Code zu erläutern, so dass dies auch nach Wochen oder Monaten noch nach-
vollzogen werden kann, ohne dass eine mühsame Analyse und Einarbeitung erfor-
derlich wäre.

Generell ist es beim Einfügen von Kommentaren ratsam, diese mit einem Datum
zu versehen. Vor allem in Teams wird dies zudem häufig durch ein Namenskürzel
ergänzt, was Nachfragen erleichtert. Daher wird es im allgemeinen als guter Stil
angesehen, wenn Code derart kommentiert wird.

In welcher Sprache kommentiert wird, ist prinzipiell beliebig, allerdings wird oft
auf Englisch zurückgegriffen, unter anderem, um in mehrsprachigen Teams über
eine einheitliche Kommunikationssprache zu verfügen.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 class ComplexNumber
6 {
7 // TODO gr: Add code here.
8 // 2007 -04 -08
9 }
10 }

Bei umfangreicheren Kommentaren kann es lästig sein, jede Zeile einzeln durch
einen doppelten Schrägstrich einleiten zu müssen. Daher gibt es die zweite Variante
von Kommentaren, sogenannte Blockkommentare, die durch einen Schrägstrich ge-
folgt von einem Stern eingeleitet werden und erst dann enden, wenn sie durch einen
Stern gefolgt von einem Schrägstrich wieder geschlossen werden.

Wie viele Zeilen sich innerhalb eines solchen Blockkommentars befinden, ist
dabei beliebig. Das Anwendungsgebiet von Blockkommentaren ist dabei aber das
gleiche wie das von einzeiligen Kommentaren. Generell gilt für Kommentare, dass

6.1 Was sind Klassen? 29

sie keine Anweisungen darstellen und daher nicht mit einem Semikolon abgeschlos-
sen werden müssen.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 class ComplexNumber
6 {
7 /* TODO gr: Add code here.
8 2007 -04 -08 */
9 }
10 }

Beiden Typen von Kommentaren ist gemein, dass sie nur für den internen Ge-
brauch gedacht sind. Gerade bei Komponenten, die auch von anderen Entwicklern
genutzt werden, ist jedoch eine Trennung in private und öffentliche Kommentare
sinnvoll. Die privaten Kommentare werden dabei weiterhin dafür genutzt, den Co-
de mit internen Anmerkungen zu versehen, die öffentlichen Kommentare dienen
hingegen als Dokumentation.

Zur Erstellung dieser Dokumentation dient die dritte Variante, die durch drei
Schrägstriche eingeleitet wird und durch XML formatiert werden kann, weshalb
diese Kommentare gelegentlich auch als XML-Kommentare bezeichnet werden. In
diesen Kommentaren werden im Gegensatz zu den anderen Typen weder Datum
noch Namenskürzel angegeben.

Außerdem können XML-Kommentare nicht an beliebiger Stelle im Code auf-
treten, sondern müssen direkt vor dem zu kommentierenden Element stehen. Die
Beschreibung einer Klasse wird durch die XML-Elemente <summary> und </sum-
mary> eingeschlossen.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 class ComplexNumber
9 {
10 // TODO gr: Add code here.
11 // 2007 -04 -08
12 }
13 }

Für jede Klasse muss entschieden werden, ob sie nur innerhalb der Assembly
genutzt werden können soll, welche die Klasse enthält, oder ob jede Komponente

30 6 Klassen und Strukturen

der Anwendung Zugriff erhalten soll. Die Antwort auf die Frage, ob es sinnvoll ist,
die Sichtbarkeit einzuschränken, hängt vom Zweck der Klasse ab.

Handelt es sich um eine unterstützende Klasse, die nur innerhalb der Assemb-
ly benötigt wird, empfiehlt es sich, die Sichtbarkeit einzuschränken. Ist die Klasse
jedoch eine tragende Datenstruktur, die der gesamten Anwendung zur Verfügung
stehen soll, wird sie uneingeschränkt zur Verfügung gestellt.

Um die Sichtbarkeit einer Klasse auf die sie enthaltende Assembly zu beschrän-
ken, wird ihre Definition mit dem Zugriffsmodifizierer internal versehen. Der öf-
fentliche Zugriff wird erreicht, indem statt dessen der Zugriffsmodifizierer public
angegeben wird. Wird auf die Angabe eines solchen Zugriffsmodifizierers verzich-
tet, ist eine Klasse implizit internal.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 // TODO gr: Add code here.
11 // 2007 -04 -08
12 }
13 }

Aus Gründen der Übersichtlichkeit wird generell für jede Klasse eine eigene
Datei verwendet, deren Name dem der enthaltenen Klasse entspricht. Prinzipiell
ist es zwar möglich, innerhalb einer Datei mehrere Klassen zu definieren, dies ist
jedoch unüblich und gilt als schlechter Stil.

Zwei Ausnahmen von dieser Regel kommen in C# vor: Partielle Klassen und
verschachtelte Klassen. Partielle Klassen, die seit Version 2.0 von C# verfügbar
sind, ermöglichen es durch Angabe des zusätzlichen Schlüsselwortes partial bei der
Definition der Klasse, eine Klasse auf mehrere Dateien zu verteilen.

Dies wird beispielsweise von Visual Studio genutzt, um vom Benutzer geschrie-
benen Code und von Visual Studio generierten Code, der sich auf die gleiche Klasse
bezieht, voneinander zu trennen, so dass der Benutzer nicht versehentlich generier-
ten Code überschreibt oder verändert, und umgekehrt. Außer in Fällen, in denen
generierter und benutzergeschriebener Code gemischt werden, sollte vom Einsatz
partieller Klassen abgesehen werden.

Verschachtelte Klassen hingegen ermöglichen, innerhalb einer Klasse eine wei-
tere Klasse zu definieren, genau so, wie auch innerhalb eines Namensraumes ein
weiterer Namensraum angelegt werden kann. Im Gegensatz zu Namensräumen ist
dies bei Klassen in der Praxis jedoch unüblich, zudem gibt es so gut wie keine
Anwendungsfälle, in denen ein solches Verfahren notwendig wäre, weshalb darauf
nicht näher eingegangen wird.

6.2 Felder 31

6.2 Felder

Damit ein Objekt Daten speichern kann, müssen in der zugehörigen Klasse Felder
für die einzelnen Daten definiert werden. Felder sollten nur für solche Daten de-
finiert werden, die nicht funktional abhängig von anderen Daten sind – das heißt,
lassen sich Daten aus anderen vorhandenen Daten ermitteln, werden sie nicht abge-
speichert.

Um eine komplexe Zahl mit der Klasse ComplexNumber abbilden zu können,
werden zwei Felder benötigt, nämlich eines für den Real- und eines für den Imagi-
närteil. Die Frage, von welchem Typ diese Felder sind, ist einfach zu beantworten:
Da so wohl Real- wie auch Imaginärteil nach Definition reelle Zahlen sind, werden
beide mit Hilfe eines Typs für Dezimalzahlen dargestellt.

Die Bennenung von Feldern erfolgt ähnlich wie die von Klassen, da auch hier der
Name aus einem oder mehreren Substantiven gebildet wird und als Gesamtbegriff
im Singular steht. Allerdings wird für Felder Camel Case eingesetzt, zudem wird
den Namen häufig ein Unterstrich vorangestellt.

Da die Definition eines Feldes in C# eine Anweisung darstellt, wird sie mit ei-
nem Semikolon abgeschlossen. Zudem werden auch Felder mit Hilfe von XML-
Kommentaren dokumentiert, wobei auch hier wieder das <summary>-Tag zum Ein-
satz kommt.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 float _realPart ;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 float _imaginaryPart;
19
20 // TODO gr: Add code here.
21 // 2007 -04 -08
22 }
23 }

Ebenso wie für Klassen, so muss auch für Felder die Sichtbarkeit entschieden
werden. Außer internal und public, welche die gleiche Bedeutung wie bei Klassen

32 6 Klassen und Strukturen

haben, steht für Felder zusätzlich noch das Schlüsselwort private zur Verfügung.
Wird ein Feld als private gekennzeichnet, kann nur aus der Klasse auf das Feld
zugegriffen werden, die das Feld enthält.

Im Sinne eines durchgängig objektorientierten Aufbaus einer Anwendung ist es
allerdings erforderlich, quasi jedes Feld als private zu markieren, um den direkten
Zugriff von außen zu verhindern.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 private float _realPart ;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 private float _imaginaryPart;
19
20 // TODO gr: Add code here.
21 // 2007 -04 -08
22 }
23 }

Felder können mit Standardwerten versehen werden, indem ihnen bei der Defi-
nition der gewünschte Wert zugewiesen wird, wobei dies in der Praxis eher selten
angewandt wird, weswegen im folgenden in der Regel darauf verzichtet wird.

Genau genommen wird bei Feldern zwischen Deklaration und Definition unter-
schieden – während das Feld bei der Deklaration nur der Klasse hinzugefügt wird,
wird ihm bei der Definition zusätzlich noch ein Wert zugewiesen. In der Regel wird
diese Unterscheidung allerdings nur selten genutzt und generell von Definition ge-
sprochen.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber

6.3 Eigenschaften 33

9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 private float _realPart = 0;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 private float _imaginaryPart = 0;
19
20 // TODO gr: Add code here.
21 // 2007 -04 -08
22 }
23 }

Die einzige Ausnahme zu dieser Regel besteht in der Definition eines Feldes
mit konstantem Wert, wobei dessen Typ das Schlüsselwort const vorangestellt wird.
Der Wert eines solchen konstanten Feldes kann im weiteren Verlauf der Anwen-
dung dann nicht mehr geändert werden. Konstanten werden beispielsweise genutzt,
um mathematisch feststehende Werte wie die Zahl Pi oder die Eulersche Zahl zu
definieren.

C#

1 private const double _pi = 3.1415926;

6.3 Eigenschaften

Da der Zugriff auf Felder, die als private gekennzeichnet wurden, nur noch inner-
halb der Klasse möglich ist, stellt sich die Frage, wie Daten eines Objektes über-
haupt gelesen oder geschrieben werden können, ohne die Sichtbarkeit des entspre-
chenden Feldes wieder auf internal oder public ändern zu müssen.

Die Lösung stellen Eigenschaften dar, die zwar nach außen sichtbar sind, aber auf
die Felder einer Klasse zugreifen können. Der Unterschied zwischen dem Zugriff
auf ein Feld mit Hilfe einer Eigenschaft und dem direkten Zugriff liegt darin, dass
die Eigenschaft zusätzliche Prüfungen ausführen kann.

Eine Eigenschaft trägt üblicherweise den gleichen Namen wie das Feld, für das
die Eigenschaft zuständig ist. Der einzige Unterschied liegt darin, dass Pascal Case
an Stelle von Camel Case verwendet wird und der einleitende Unterstrich entfällt.
Zudem ist eine Eigenschaft in der Regel internal oder public, da sie ansonsten von
außen nicht sichtbar wäre – dennoch können Eigenschaften theoretisch auch als
private gekennzeichnet werden.

Da eine Eigenschaft den Zugriff auf ein Feld gestattet, muss sie über den gleichen
Typ verfügen. Der Zugriff an sich erfolgt über zwei Schlüsselwörter, get und set, die
für das Auslesen und Schreiben der entsprechenden Daten zuständig sind.

34 6 Klassen und Strukturen

Die einfachste Variante einer Eigenschaft besteht darin, mit get lediglich ein Feld
zurückzugeben, ohne weitere Prüfungen auszuführen. Dies geschieht mit Hilfe der
Anweisung return, der das zurückzugebende Feld folgt. Ebenso wird mit set nur
der zu setzende Wert in das entsprechende Feld geschrieben. Der zu setzende Wert
befindet sich dabei in einem Parameter namens value und kann mit Hilfe des Zu-
weisungsoperators geschrieben werden.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 private float _realPart ;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 private float _imaginaryPart;
19
20 public float RealPart
21 {
22 get
23 {
24 return _realPart ;
25 }
26
27 set
28 {
29 _realPart = value;
30 }
31 }
32
33 public float ImginaryPart
34 {
35 get
36 {
37 return _imaginaryPart;
38 }
39
40 set
41 {
42 _imaginaryPart = value;
43 }
44 }

6.3 Eigenschaften 35

45
46 // TODO gr: Add code here.
47 // 2007 -04 -08
48 }
49 }

Zudem ist es mit Eigenschaften möglich, ein Feld nur für den Lese- oder nur
für den Schreibzugriff freizugeben, indem nur entweder get oder set definiert wird.
Außerdem kann seit C# 2.0 entweder get oder set ein stärker einschränkender Zu-
griffsmodifizierer zugewiesen werden, um beispielsweise den schreibenden Zugriff
auf die Klassenebene zu beschränken, den lesenden Zugriff aber auf Anwendungs-
ebene zu gestatten.

Dazu wird entweder get oder set ein entsprechender Zugriffsmodifizierer wie
internal oder private vorangestellt. Hierbei muss allerdings beachtet werden, dass
dies nur erlaubt ist, wenn eine Eigenschaft so wohl über get wie auch set verfügt,
und selbst dann darf ein weiterer Zugriffsmodifizierer nur bei einem der beiden
Schlüsselwörter angegeben werden. Das andere behält den Zugriffsmodifizierer, der
für die Eigenschaft an sich definiert ist.

Zudem muss der Zugriffsmodifizierer, der get oder set vorangestellt wird, re-
striktiver sein als der Zugriffsmodifizierer der gesamten Eigenschaft. Wenn also
beispielsweise der schreibende Zugriff auf den Realteil einer komplexen Zahl auf
die Klasse beschränkt werden soll, muss dem set ein private vorangestellt werden.

C#

1 public float RealPart
2 {
3 get
4 {
5 return _realPart ;
6 }
7
8 private set
9 {
10 _realPart = value;
11 }
12 }

Auch Eigenschaften werden mit Hilfe von XML-Kommentaren dokumentiert,
wobei ein Kommentar mit einem <summary>-Tag zum Einsatz kommt. Zusätzlich
enthält der Kommentar für eine Eigenschaft aber noch eine Beschreibung der Daten,
die von der Eigenschaft ausgelesen beziehungsweise gesetzt werden. Dies geschieht
mit Hilfe des <value>-Tags.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {

36 6 Klassen und Strukturen

5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 private float _realPart ;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 private float _imaginaryPart;
19
20 /// <summary >
21 /// Gets or sets the real part.
22 /// </summary >
23 /// <value >The real part.</value >
24 public float RealPart
25 {
26 get
27 {
28 return _realPart ;
29 }
30
31 set
32 {
33 _realPart = value;
34 }
35 }
36
37 /// <summary >
38 /// Gets or sets the imaginary part.
39 /// </summary >
40 /// <value >The imaginary part.</ value >
41 public float ImginaryPart
42 {
43 get
44 {
45 return _imaginaryPart;
46 }
47
48 set
49 {
50 _imaginaryPart = value;
51 }
52 }
53
54 // TODO gr: Add code here.
55 // 2007 -04 -08
56 }
57 }

6.3 Eigenschaften 37

Als funktional abhängige Eigenschaft bietet sich der Betrag einer komplexen
Zahl an, der aus dem Real- und dem Imaginärteil ermittelt werden kann, indem
beide quadriert und addiert werden und aus dem Ergebnis die Wurzel gezogen wird.

|z| = sqrt(a2 + b2)

Da mathematische Operatoren noch nicht behandelt wurden, wird die entsprechen-
de Eigenschaft an dieser Stelle nur als Platzhalter eingefügt, wobei als Ergebnis
vorerst immer 0 zurückgegeben wird. Zusätzlich wird die Eigenschaft mit einem
Kommentar versehen, der darauf hinweist, dass die Arbeit an diesem Codeabschnitt
noch nicht abgeschlossen ist. Da lediglich das Auslesen des Betrages Sinn ergibt,
wird für diese Eigenschaft nur get definiert, so dass ein schreibender Zugriff nicht
möglich ist.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Contains the real part.
12 /// </summary >
13 private float _realPart ;
14
15 /// <summary >
16 /// Contains the imaginary part.
17 /// </summary >
18 private float _imaginaryPart;
19
20 /// <summary >
21 /// Gets or sets the real part.
22 /// </summary >
23 /// <value >The real part.</ value >
24 public float RealPart
25 {
26 get
27 {
28 return _realPart ;
29 }
30
31 set
32 {
33 _realPart = value;
34 }
35 }
36

38 6 Klassen und Strukturen

37 /// <summary >
38 /// Gets or sets the imaginary part.
39 /// </summary >
40 /// <value >The imaginary part.</ value >
41 public float ImginaryPart
42 {
43 get
44 {
45 return _imaginaryPart;
46 }
47
48 set
49 {
50 _imaginaryPart = value;
51 }
52 }
53
54 /// <summary >
55 /// Gets the absolute value.
56 /// </summary >
57 /// <value >The absolute value .</ value >
58 public float AbsoluteValue
59 {
60 get
61 {
62 // TODO gr: Calculate absolute value .
63 // 2007 -04 -08
64 return 0;
65 }
66 }
67
68 // TODO gr: Add code here.
69 // 2007 -04 -08
70 }
71 }

Obwohl es möglich ist, innerhalb von get und set weitere Anweisungen unter-
zubringen, enthalten die meisten Eigenschaften lediglich die Minimalvariante zum
Lesen und Schreiben eines Feldes. Seit der Version 3.0 von C# gibt es für solche
Standardeigenschaften eine verkürzte Schreibweise, so dass an Stelle von

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >

6.3 Eigenschaften 39

11 /// Contains a bar value .
12 /// </summary >
13 private object _bar;
14
15 /// <summary >
16 /// Gets or sets the bar value .
17 /// </summary >
18 /// <value >The bar value .</ value >
19 public object Bar
20 {
21 get
22 {
23 return this._bar;
24 }
25
26 set
27 {
28 this._bar = value;
29 }
30 }
31 }
32 }

auch die kürzere Variante

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Gets or sets the bar value .
12 /// </summary >
13 /// <value >The bar value .</ value >
14 public object Bar
15 {
16 get;
17 set;
18 }
19 }
20 }

geschrieben werden kann. Semantisch sind beide Varianten identisch, allerdings
stellt sich bei der verkürzten Schreibweise die Frage, auf welches Feld mit Hilfe
der Eigenschaft zugegriffen wird. Die Antwort auf diese Frage lautet, dass C# in-
tern ein Feld anlegt, dessen Name dem Entwickler nicht bekannt ist, weshalb auf
dieses Feld ausschließlich über die Eigenschaft zugegriffen werden kann.

40 6 Klassen und Strukturen

6.4 Methoden

Während Eigenschaften zwar geeignet sind, auf Felder lesend und schreibend zu-
zugreifen, sind ihre Möglichkeiten, andere Aufgaben auszuführen, eher gering. Au-
ßerdem beziehen sich Eigenschaften immer nur auf jeweils ein Feld, allerdings kann
es vorkommen, dass mehrere Werte verarbeitet werden müssen. Für diese Fälle, die
über einen reinen Datenzugriff hinausgehen, gibt es Methoden.

Eine Methode ist ein benannter Codeabschnitt, der über seinen Namen aufgeru-
fen und ausgeführt werden kann. Dabei können einer Methode mit Hilfe von Para-
metern Daten übergeben werden, außerdem kann eine Methode über einen Rückga-
bewert verfügen. Parameter dienen also der Eingabe von Daten, der Rückgabewert
hingegen der Ausgabe von Daten, wobei beide allerdings optional sind.

Eine einfache Methode verfügt weder über Parameter noch über einen Rückga-
bewert und bezieht alle Daten, die zu ihrer Ausführung benötigt werden, aus der
Klasse, welche die Methode enthält.

Prinzipiell werden Parameter in einer kommagetrennten Liste an die Methode
übergeben, die in runden Klammern hinter dem Methodennamen angegeben wird.
Werden keine Parameter verwendet, so wird nur ein leeres Paar runder Klammern an
den Methodennamen angehängt. Der Rückgabewert wird hingegen vor dem Metho-
dennamen notiert, indem der Typ des Rückgabewertes angegeben wird. Wird kein
Rückgabewert verwendet, wird dies mit dem Schlüsselwort void gekennzeichnet.
Als Methode ohne Parameter und Rückgabewert wird daher Conjugate eingeführt,
welche die Konjugation einer komplexen Zahl berechnet. Die Konjugation ergibt
sich, indem das Vorzeichen des Imaginärteils umgekehrt wird, so dass die Konjuga-
tion der komplexen Zahl

a + b × i

als

a - b × i

dargestellt wird. Da mathematische Operatoren an dieser Stelle noch nicht behandelt
wurden, wird die Methode nur als Platzhalter eingefügt, wobei sie vorerst über keine
Funktionalität verfügt.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >

6.4 Methoden 41

11 /// Gets or sets the real part.
12 /// </summary >
13 /// <value >The real part.</ value >
14 public float RealPart
15 {
16 get;
17 set;
18 }
19
20 /// <summary >
21 /// Gets or sets the imaginary part.
22 /// </summary >
23 /// <value >The imaginary part.</ value >
24 public float ImginaryPart
25 {
26 get;
27 set;
28 }
29
30 /// <summary >
31 /// Gets the absolute value .
32 /// </summary >
33 /// <value >The absolute value .</ value >
34 public float AbsoluteValue
35 {
36 get
37 {
38 // TODO gr: Calculate the absolute value
39 // and return it to the caller .
40 // 2007 -04 -08
41 }
42 }
43
44 void Conjugate ()
45 {
46 // TODO gr: Calculate the conjugation .
47 // 2007 -04 -09
48 }
49
50 // TODO gr: Add code here.
51 // 2007 -04 -08
52 }
53 }

Für die Namensgebung einer Methode gilt, dass der Name mit einem Verb be-
ginnt, dem Substantive folgen können, wobei für die Schreibweise Pascal Case ver-
wendet wird. Auch für eine Methode kann die Sichtbarkeit definiert werden, wobei
die gleichen Zugriffsmodifizierer wie bei Feldern zur Verfügung stehen.

In der Regel werden Methoden, die Hilfsaufgaben übernehmen, als private ge-
kennzeichnet. Methoden, welche die Schnittstelle einer Klasse nach außen darstel-
len, werden mit dem gleichen Zugriffsmodifizierer wie die Klasse gekennzeichnet,
also mit internal oder public, je nachdem, ob die Methode nur in der Assembly oder

42 6 Klassen und Strukturen

der gesamten Anwendung benötigt wird. Wird kein Zugriffsmodifizierer angegeben,
ist eine Methode implizit private.

Methoden werden, da sie die Semantik einer Klasse definieren, ebenfalls mit
XML-Kommentaren versehen, wobei wiederum das <summary>-Tag zum Einsatz
kommt. Da eine Methode keine Anweisung ist, wird ihre Definition nicht mit einem
Semikolon abgeschlossen.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Gets or sets the real part.
12 /// </summary >
13 /// <value >The real part.</value >
14 public float RealPart
15 {
16 get;
17 set;
18 }
19
20 /// <summary >
21 /// Gets or sets the imaginary part.
22 /// </summary >
23 /// <value >The imaginary part.</ value >
24 public float ImginaryPart
25 {
26 get;
27 set;
28 }
29
30 /// <summary >
31 /// Gets the absolute value.
32 /// </summary >
33 /// <value >The absolute value .</ value >
34 public float AbsoluteValue
35 {
36 get
37 {
38 // TODO gr: Calculate the absolute value
39 // and return it to the caller .
40 // 2007 -04 -08
41 }
42 }
43
44 /// <summary >

6.4 Methoden 43

45 /// Calculates the conjugation .
46 /// </summary >
47 public void Conjugate ()
48 {
49 // TODO gr: Calculate the conjugation .
50 // 2007 -04 -09
51 }
52
53 // TODO gr: Add code here.
54 // 2007 -04 -08
55 }
56 }

Wenn ein Rückgabewert für eine Methode benötigt wird, so kann er dadurch
definiert werden, dass sein Typ in der Definition der Methode an Stelle von void
angegeben wird. Eine Methode, die überprüft, ob so wohl Real- wie auch Imaginär-
teil dem Zahlenwert Null entsprechen – und damit die gesamte komplexe Zahl der
komplexen Null entspricht – gibt entweder true oder false zurück, womit sich als
Typ des Rückgabewertes bool ergibt.

Methoden, deren Rückgabewert bool ist, folgen bei der Benennung einer weite-
ren Richtlinie: Als Verb wird in der Regel is eingesetzt, so dass sich für den Test
auf Null der Name IsZero ergibt. Der Grund für diese Richtlinie ist, dass der Name
einer solchen Methode als logische Aussage gelesen werden kann.

Außerdem enthalten Methoden, die über einen Rückgabewert verfügen, als letzte
Anweisung ein return, so dass in dieser Hinsicht eine gewisse Ähnlichkeit zu get
von Eigenschaften besteht.

Sofern eine Methode über einen Rückgabewert verfügt, wird dieser gesondert
von <summary> in dem XML-Kommentar der Methode aufgeführt und durch das
XML-Tag <returns> gekennzeichnet. Um innerhalb der Dokumentation Schlüssel-
wörter als solche hervorzuheben, können sie durch das XML-Tag <c> markiert
werden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Gets or sets the real part.
12 /// </summary >
13 /// <value >The real part.</ value >
14 public float RealPart
15 {
16 get;

44 6 Klassen und Strukturen

17 set;
18 }
19
20 /// <summary >
21 /// Gets or sets the imaginary part.
22 /// </summary >
23 /// <value >The imaginary part.</ value >
24 public float ImginaryPart
25 {
26 get;
27 set;
28 }
29
30 /// <summary >
31 /// Gets the absolute value.
32 /// </summary >
33 /// <value >The absolute value .</ value >
34 public float AbsoluteValue
35 {
36 get
37 {
38 // TODO gr: Calculate the absolute value
39 // and return it to the caller .
40 // 2007 -04 -08
41 }
42 }
43
44 /// <summary >
45 /// Calculates the conjugation .
46 /// </summary >
47 public void Conjugate ()
48 {
49 // TODO gr: Calculate the conjugation .
50 // 2007 -04 -09
51 }
52
53 /// <summary >
54 /// Checks whether the complex number is zero.
55 /// </summary >
56 /// <returns ><c>true </c> if the real and the
57 /// imaginary part are zero; <c>false </c>
58 /// otherwise .<returns >
59 public bool IsZero ()
60 {
61 // TODO gr: Check whether the real and the
62 // imaginary part are zero and return
63 // the result to the caller .
64 // 2007 -04 -09
65 }
66
67 // TODO gr: Add code here.
68 // 2007 -04 -08
69 }
70 }

6.4 Methoden 45

Schließlich können Methoden auch Parameter enthalten, mit deren Hilfe Daten
an eine Methode bei ihrem Aufruf übergeben werden können. Wie bereits erwähnt,
werden Parameter in einer kommaseparierten Liste innerhalb der runden Klammern
definiert. Im Gegensatz zum Rückgabewert reicht es allerdings nicht aus, hierbei
nur die Typen der Parameter anzugeben, da sie sonst innerhalb der Methode nicht
unterscheidbar wären.

Daher erhält jeder Parameter einen Namen, wobei dafür die Richtlinien der Na-
mensgebung von Feldern gelten, mit der Ausnahme, dass für die Schreibweise von
Parametern Camel Case verwendet wird. Als Beispiel bieten sich die Addition und
die Multiplikation mit einer weiteren komplexen Zahl und die Potenz mit einer re-
ellen Zahl an. Alle drei Methoden verfügen über keinen Rückgabewert, da das Er-
gebnis direkt in der komplexen Zahl gespeichert wird.

Während den ersten beiden Methoden ein Objekt der Klasse ComplexNumber
übergeben wird, erwartet die Potenz eine Dezimalzahl als Parameter. Jeder Pa-
rameter wird, wie bereits der Rückgabewert, durch einen entsprechenden XML-
Kommentar beschrieben, der durch das <param>-Tag gekennzeichnet wird. Inner-
halb des öffnenden Tags befindet sich das Attribut name, dem der Name des be-
schriebenen Parameters zugewiesen wird.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 /// <summary >
11 /// Gets or sets the real part.
12 /// </summary >
13 /// <value >The real part.</ value >
14 public float RealPart
15 {
16 get;
17 set;
18 }
19
20 /// <summary >
21 /// Gets or sets the imaginary part.
22 /// </summary >
23 /// <value >The imaginary part.</ value >
24 public float ImginaryPart
25 {
26 get;
27 set;
28 }
29
30 /// <summary >

46 6 Klassen und Strukturen

31 /// Gets the absolute value.
32 /// </summary >
33 /// <value >The absolute value .</ value >
34 public float AbsoluteValue
35 {
36 get
37 {
38 // TODO gr: Calculate the absolute value
39 // and return it to the caller .
40 // 2007 -04 -08
41 }
42 }
43
44 /// <summary >
45 /// Calculates the conjugation .
46 /// </summary >
47 public void Conjugate ()
48 {
49 // TODO gr: Calculate the conjugation .
50 // 2007 -04 -09
51 }
52
53 /// <summary >
54 /// Checks whether the complex number is zero.
55 /// </summary >
56 /// <returns ><c>true </c> if the real and the
57 /// imaginary part are zero; <c>false </c>
58 /// otherwise .<returns >
59 public bool IsZero ()
60 {
61 // TODO gr: Check whether the real and the
62 // imaginary part are zero and return
63 // the result to the caller .
64 // 2007 -04 -09
65 }
66
67 /// <summary >
68 /// Adds the specified summand to the current complex
69 /// number .
70 /// </summary >
71 /// <param name=" summand ">The complex number that is
72 /// used as summand .</ param >
73 public void Add(ComplexNumber summand)
74 {
75 // TODO gr: Add the summand to the current
76 // complex number .
77 // 2007 -04 -09
78 }
79
80 /// <summary >
81 /// Multiplies the current complex number with the
82 /// specified factor .
83 /// </summary >
84 /// <param name=" factor ">The complex number that is

6.4 Methoden 47

85 /// used as factor .</ param >
86 public void Multiply (ComplexNumber factor)
87 {
88 // TODO gr: Multiply the factor with the current
89 // complex number .
90 // 2007 -04 -09
91 }
92
93 /// <summary >
94 /// Raises the current complex number to the power of
95 /// the specified real number .
96 /// </summary >
97 /// <param name =" exponent ">The real number that is
98 /// used as exponent .</ param >
99 public void Pow (float exponent)

100 {
101 // TODO gr: Raise the current complex number to a
102 // power .
103 // 2007 -04 -09
104 }
105
106 // TODO gr: Add code here.
107 // 2007 -04 -08
108 }
109 }

Obwohl die Definitionen der Methoden Add, Multiply und Pow prinzipiell gleich
aussehen, unterscheiden sie sich in einem wesentlichen Aspekt: Die Parameter von
Add und Multiply sind vom Typ ComplexNumber – einem Verweistyp –, während
der Parameter der Methode Pow vom Typ float ist – einem Wertetyp. Das heißt, dass
die Methoden Add und Multiply nur einen Verweis auf ihren jeweiligen Parameter
erhalten, die Methode Pow dagegen eine Kopie des Wertes des Parameters.

Verändert eine der Methoden also ihren Parameter, so hat das verschiedene Aus-
wirkungen. Die Methoden Add und Multiply würden nicht nur den Wert ändern, auf
den sie zugreifen, sondern auch den Wert der Methode, aus der sie aufgerufen wer-
den, was eventuell nicht gewünscht ist. Die Methode Pow hingegen kann ihren Wert
nach Belieben ändern, da sie eine eigene Kopie erhalten und daher keinen Zugriff
auf die Daten der aufrufenden Methode hat.

Diese beiden Möglichkeiten, einen Parameter als Verweis oder als echte Kopie
der Daten zu übergeben, werden by reference und by value genannt. Wertetypen
werden standardmäßig by value übergeben, Verweistypen by reference. Allerdings
kann auch ein Wertetyp by reference übergeben werden, so dass die aufrufende und
die aufgerufene Methode auf die gleichen Daten zugreifen.

Dies geschieht, indem das Schlüsselwort ref dem Parameter vorangestellt wird,
was allerdings in der Praxis nur sehr selten benötigt wird. Andersherum kann ein
Verweistyp auch by value übergeben werden, allerdings muss dazu händisch eine
Kopie des Objektes angelegt werden, was unter Umständen sehr aufwändig ist.

Gelegentlich kommt es vor, dass mehr als ein Rückgabewert benötigt wird. In
der Regel sollte man für diesen Fall eine eigene Datenstruktur entwickeln, welche

48 6 Klassen und Strukturen

alle notwendigen Daten aufnehmen kann. Alternativ können Parameter aber auch
als zusätzliche Rückgabewerte definiert werden, indem ihnen das Schlüsselwort out
vorangestellt wird. Parameter, die als Ausgabeparameter gekennzeichnet werden,
werden implizit by reference übergeben.

Um eine Methode aufzurufen, wird zunächst das Objekt, an dem sie aufgerufen
werden soll, genannt. Darauf folgt der Operator . und der Name der Methode, ge-
folgt von runden Klammern. Schließlich wird dieser Aufruf mit einem Semikolon
abgeschlossen. Sofern Parameter an die Methode übergeben werden sollen, werden
deren Werte innerhalb der runden Klammern kommasepariert angegeben. Sofern
eine Methode innerhalb des eigenen Objektes aufgerufen werden soll, entfällt die
Angabe des Objektnamens.

C#

1 // Conjugate a complex number .
2 complexNumber.Conjugate ();
3
4 // Raise it to the power of 2.
5 complexNumber.Pow (2);
6
7 // Raise to the power of 2 from within the current instance .
8 Pow (2);

Allen Feldern, Eigenschaften und Methoden, die bislang vorgestellt wurden, ist
gemein, dass sie objektgebunden sind. Das heißt, sie beziehen sich immer auf ein
Objekt, auch wenn sie innerhalb einer Klasse definiert wurden. In der Regel ent-
spricht dies dem gewünschten Verhalten, gelegentlich sollen Felder, Eigenschaften
oder Methoden aber klassengebunden sein.

Auf klassengebundene Felder, Eigenschaften und Methoden kann direkt über die
Klasse zugegriffen werden, ohne ein bestimmtes Objekt ansprechen zu müssen. Zu-
dem können diese Elemente verwendet werden, ohne dass überhaupt ein Objekt der
entsprechenden Klasse erzeugt wurde. Außerdem existiert ein klassengebundenes
Element nur ein einziges Mal, unabhängig davon, wie viele Objekte erzeugt wur-
den – alle Objekte der Klasse teilen sich die einzige Instanz der klassengebundenen
Elemente.

Klassengebundene Felder können beispielsweise dazu genutzt werden, um klas-
senweit gültige Status- oder Konfigurationsdaten allen Objekten der Klasse zur Ver-
fügung zu stellen, ohne dass für jedes Objekt eine eigene Verwaltung dieser Daten
bestehen muss. Elemente, die klassengebunden sind, werden in C# als statisch be-
zeichnet.

Um ein Element als statisch zu kennzeichnen, wird hinter dessen Zugriffsmodifi-
zierer das Schlüsselwort static angegeben. Wenn eine Klasse nur statische Elemente
enthält, kann neben den einzelnen Elementen auch die gesamte Klasse als statisch
markiert werden, indem hinter ihrem Zugriffsmodifizierer das Schlüsselwort static
angegeben wird. Da ein Objekt einer statischen Klasse auf Grund der fehlenden ei-
genen Felder, Eigenschaften und Methoden sinnlos wäre, kann von einer statischen
Klasse kein Objekt erzeugt werden.

6.4 Methoden 49

Der Aufruf einer statischen Methode erfolgt genauso wie der einer objektgebun-
denen Methode, mit der Ausnahme, dass nicht das Objekt vorangestellt wird, an
dem die Methode aufgerufen werden soll. Statt dessen wird die Klasse angegeben,
welche die entsprechende Methode enthält. Sofern eine Methode innerhalb der ei-
genen Klasse aufgerufen werden soll, entfällt die Angabe des Klassennamens.

C#

1 // Call a static method on class Foo.
2 Foo.Bar ();
3
4 // Call a static method with parameters .
5 Foo.Bar("Hello world .");
6
7 // Call a static method from within the current class .
8 Bar ();

Eine besondere Rolle in diesem Zusammenhang spielt die statische Methode
Main, bei der die Ausführung einer Anwendung startet, weshalb in der gesamten
Anwendung nur eine einzige Methode diesen Namens existieren darf. Die Klasse,
in der die Methode Main enthalten ist, spielt dabei zunächst keine Rolle, da von ihr
kein Objekt erzeugt wird – was wiederum begründet, warum Main eine statische
Methode sein muss.

Als Rückgabewert für Main können die Typen void und int angegeben werden,
je nachdem, ob ein Rückgabewert benötigt wird. Falls nicht, wird void verwendet,
bei Angabe von int kann mit Hilfe der Anweisung return ein Wert zurückgege-
ben werden, der vom Betriebssystem ausgewertet werden kann. Insbesondere bei
Konsolenanwendungen ist dieser Rückgabewert ein häufig genutztes Verfahren, um
Fehler in der Anwendung an das Betriebssystem zu melden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public static class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 }
16 }
17 }

50 6 Klassen und Strukturen

Die Klasse Program verfügt mit der Existenz der statischen Methode Main über
alle Voraussetzungen, um in eine ausführbare Assembly mit der Dateiendung .exe
übersetzt zu werden. Das Kompilieren erfolgt genauso wie bei einer Assembly,
die als Komponente übersetzt wird, außer dass der Parameter an Stelle von /tar-
get:library nun /target:exe lautet.

Der Aufruf von

csc /target:exe Program.cs

unter .NET und von

mcs /target:exe Program.cs

unter Mono erzeugen also eine entsprechende Assembly, die ausgeführt werden
kann. Unter anderen Betriebssystemen als Windows kann es notwendig sein, die
Assembly explizit über die Runtime von Mono zu starten.

mono Program.exe

Da die Klasse Program die Klasse ComplexNumber nutzen können soll, muss sie
entsprechenden Zugriff erhalten. Dies geschieht entweder, indem die Klasse Com-
plexNumber als eigene Komponente übersetzt und anschließend eingebunden wird,
oder indem beide Klassen in der gleichen Assembly bereitgestellt werden. Das zwei-
te ist an dieser Stelle deutlich einfacher, weshalb die Anwendung mit

csc /target:exe Program.cs ComplexNumber.cs

unter .NET und mit

mcs /target:exe Program.cs ComplexNumber.cs

unter Mono erneut übersetzt wird. Da die Klasse ComplexNumber inzwischen ein
wenig länger geworden ist, bietet es sich an, den Code zu gliedern. Dazu gibt es
in C# die Direktive #region, die den Beginn einer Region markiert, die durch eine
weitere Direktive – #endregion – abgeschlossen wird. Regionen werden beispiels-
weise von Visual Studio dazu genutzt, Abschnitte zusammenfassen und zuklappen
zu können.

Des weiteren kann eine Region benannt werden, indem hinter der Direktive #re-
gion eine Beschreibung angegeben wird. Außerdem können Regionen ineinander
verschachtelt werden, um untergeordnete Regionen zu erstellen.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties

6.4 Methoden 51

11 /// <summary >
12 /// Gets or sets the real part.
13 /// </summary >
14 /// <value >The real part.</ value >
15 public float RealPart
16 {
17 get;
18 set;
19 }
20
21 /// <summary >
22 /// Gets or sets the imaginary part.
23 /// </summary >
24 /// <value >The imaginary part.</ value >
25 public float ImginaryPart
26 {
27 get;
28 set;
29 }
30
31 /// <summary >
32 /// Gets the absolute value .
33 /// </summary >
34 /// <value >The absolute value .</ value >
35 public float AbsoluteValue
36 {
37 get
38 {
39 // TODO gr: Calculate the absolute value
40 // and return it to the caller .
41 // 2007 -04 -08
42 }
43 }
44 #endregion
45
46 #region Methods
47 /// <summary >
48 /// Calculates the conjugation .
49 /// </summary >
50 public void Conjugate ()
51 {
52 // TODO gr: Calculate the conjugation .
53 // 2007 -04 -09
54 }
55
56 /// <summary >
57 /// Checks whether the complex number is zero.
58 /// </summary >
59 /// <returns ><c>true </c> if the real and the
60 /// imaginary part are zero; <c>false </c>
61 /// otherwise .<returns >
62 public bool IsZero ()
63 {
64 // TODO gr: Check whether the real and the

52 6 Klassen und Strukturen

65 // imaginary part are zero and return
66 // the result to the caller .
67 // 2007 -04 -09
68 }
69
70 /// <summary >
71 /// Adds the specified summand to the current complex
72 /// number .
73 /// </summary >
74 /// <param name=" summand ">The complex number that is
75 /// used as summand .</ param >
76 public void Add(ComplexNumber summand)
77 {
78 // TODO gr: Add the summand to the current
79 // complex number .
80 // 2007 -04 -09
81 }
82
83 /// <summary >
84 /// Multiplies the current complex number with the
85 /// specified factor .
86 /// </summary >
87 /// <param name=" factor ">The complex number that is
88 /// used as factor .</param >
89 public void Multiply (ComplexNumber factor)
90 {
91 // TODO gr: Multiply the factor with the current
92 // complex number .
93 // 2007 -04 -09
94 }
95
96 /// <summary >
97 /// Raises the current complex number to the power of
98 /// the specified real number .
99 /// </summary >
100 /// <param name=" exponent ">The real number that is
101 /// used as exponent .</ param >
102 public void Pow(float exponent)
103 {
104 // TODO gr: Raise the current complex number to
105 // a power .
106 // 2007 -04 -09
107 }
108 #endregion
109
110 // TODO gr: Add code here.
111 // 2007 -04 -08
112 }
113 }

Die Methoden zur Addition und Multiplikation von komplexen Zahlen haben
einen Nachteil, denn sie ermöglichen nur die Addition und Multiplikation von zwei
komplexen Zahl. Um allerdings die Summe oder das Produkt aus einer komplexen

6.4 Methoden 53

und einer reellen Zahl zu berechnen, muss die reelle Zahl erst in eine komplexe
Zahl abgebildet werden, bei welcher der Realteil der reellen Zahl entspricht, der
Imaginärteil hingegen Null ist.

Zur Lösung dieses Problems können die Methoden Add und Multiply mehrfach
definiert werden, sofern sich die einzelnen Definitionen in ihrer Signatur unterschei-
den. Als Signatur wird dabei der Name einer Methode einschließlich der Typen ih-
rer Parameter bezeichnet. Der Rückgabewert spielt für die Signatur allerdings keine
Rolle, weshalb zwar zwei Methoden mit dem gleichen Rückgabewert und unter-
schiedlichen Parametern definiert werden können, allerdings nicht umgekehrt.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties
11 /// <summary >
12 /// Gets or sets the real part.
13 /// </summary >
14 /// <value >The real part.</ value >
15 public float RealPart
16 {
17 get;
18 set;
19 }
20
21 /// <summary >
22 /// Gets or sets the imaginary part.
23 /// </summary >
24 /// <value >The imaginary part.</ value >
25 public float ImginaryPart
26 {
27 get;
28 set;
29 }
30
31 /// <summary >
32 /// Gets the absolute value .
33 /// </summary >
34 /// <value >The absolute value .</ value >
35 public float AbsoluteValue
36 {
37 get
38 {
39 // TODO gr: Calculate the absolute value
40 // and return it to the caller .
41 // 2007 -04 -08

54 6 Klassen und Strukturen

42 }
43 }
44 #endregion
45
46 #region Methods
47 /// <summary >
48 /// Calculates the conjugation .
49 /// </summary >
50 public void Conjugate ()
51 {
52 // TODO gr: Calculate the conjugation .
53 // 2007 -04 -09
54 }
55
56 /// <summary >
57 /// Checks whether the complex number is zero.
58 /// </summary >
59 /// <returns ><c>true </c> if the real and the
60 /// imaginary part are zero; <c>false </c>
61 /// otherwise .<returns >
62 public bool IsZero ()
63 {
64 // TODO gr: Check whether the real and the
65 // imaginary part are zero.
66 // 2007 -04 -09
67
68 // Return the result to the caller .
69 return false;
70 }
71
72 /// <summary >
73 /// Adds the specified summand to the current complex
74 /// number .
75 /// </summary >
76 /// <param name=" summand ">The complex number that is
77 /// used as summand .</ param >
78 public void Add(ComplexNumber summand)
79 {
80 // TODO gr: Add the summand to the current
81 // complex number .
82 // 2007 -04 -09
83 }
84
85 /// <summary >
86 /// Adds the specified summand to the current complex
87 /// number .
88 /// </summary >
89 /// <param name=" summand ">The real number that is
90 /// used as summand .</ param >
91 public void Add(float summand)
92 {
93 // TODO gr: Add the summand to the current
94 // complex number .
95 // 2007 -04 -10

6.4 Methoden 55

96 }
97
98 /// <summary >
99 /// Multiplies the current complex number with the

100 /// specified factor .
101 /// </summary >
102 /// <param name =" factor ">The complex number that is
103 /// used as factor .</ param >
104 public void Multiply (ComplexNumber factor)
105 {
106 // TODO gr: Multiply the factor with the current
107 // complex number .
108 // 2007 -04 -09
109 }
110
111 /// <summary >
112 /// Multiplies the current complex number with the
113 /// specified factor .
114 /// </summary >
115 /// <param name =" factor ">The real number that is
116 /// used as factor .</ param >
117 public void Multiply (float factor)
118 {
119 // TODO gr: Multiply the factor with the current
120 // complex number .
121 // 2007 -04 -10
122 }
123
124 /// <summary >
125 /// Raises the current complex number to the power of
126 /// the specified real number .
127 /// </summary >
128 /// <param name =" exponent ">The real number that is
129 /// used as exponent .</ param >
130 public void Pow (float exponent)
131 {
132 // TODO gr: Raise the current complex number to a
133 // power .
134 // 2007 -04 -09
135 }
136 #endregion
137
138 // TODO gr: Add code here.
139 // 2007 -04 -08
140 }
141 }

Seit der Version 3.0 von C# gibt es neben partiellen Klassen auch sogenann-
te partielle Methoden, die ebenfalls mit Hilfe des Schlüsselwortes partial definiert
werden. Eine partielle Methode ermöglicht es, das Vorhandensein einer Methode
in einer partiellen Klasse zu definieren, ohne die Methode an sich bereitstellen zu
müssen. Die partielle Methode kann dann in einem anderen Bestandteil der Klas-

56 6 Klassen und Strukturen

se implementiert werden, geschieht dies nicht, wird der Aufruf der entsprechenden
Methode entfernt.

Das Einsatzgebiet von partiellen Methoden ähnelt dem von partiellen Klassen:
Während es mit partiellen Klassen möglich ist, generierten Code von benutzerde-
finiertem Code zu trennen, was beispielsweise von den Designern in Visual Studio
genutzt wird, ermöglichen partielle Methoden dem Designer, eine Methode zu de-
finieren und bereits zu verwenden, deren Inhalt allerdings vom Entwickler noch
implementiert werden muss.

Partielle Methoden müssen zwingend mit dem Zugriffsmodifizierer private ge-
kennzeichnet werden und können nur void als Rückgabetyp haben. Zudem können
partielle Methoden nur innerhalb einer partiellen Klasse definiert werden, da sie
sonst nicht vom Entwickler ergänzt werden könnten. Zu guter letzt können parti-
elle Methoden so wohl klassen- wie auch instanzbezogen sein und über Parameter
verfügen.

6.5 Konstruktoren

Nachdem die Klasse ComplexNumber nun sämtliche benötigten Felder, Eigenschaf-
ten und Methoden enthält, fehlt zu der Vollendung ihres Rahmens noch eine Metho-
de, die zur Laufzeit der Anwendung ein Objekt dieser Klasse erzeugt und dieses
Objekt mit geeigneten Standardwerten initialisiert. Eine solche Methode wird in der
objektorientierten Programmierung als Konstruktor bezeichnet.

Prinzipiell trägt ein Konstruktor immer den Namen der Klasse und gleicht ab-
gesehen von einer Ausnahme einer normalen Methode: Ein Konstruktor verfügt im
Gegensatz zu allen anderen Methoden nicht über einen Rückgabewert, so dass des-
sen Angabe schlichtweg entfällt. Parameter hingegen können auch bei Konstruk-
toren angegeben werden, um beispielsweise Standardwerte für das zu erstellende
Objekt vorzugeben.

Wird für eine Klasse kein Konstruktor definiert, verfügt sie implizit über einen
parameterlosen Konstruktor, der lediglich dazu dient, ein Objekt dieser Klasse zu
erzeugen. Ebenso wie normale Methoden können Konstruktoren überladen und mit
einem Zugriffsmodifizierer versehen werden, wobei dieser angibt, von wo aus die
Klasse instanziiert werden kann.

In der Regel wird als Zugriffsmodifizierer der der Klasse verwendet, allerdings
gibt es Fälle, in denen die Instanziierung verhindert werden soll. Um ein solches
Verhalten zu erreichen, kann private als Zugriffsmodifizierer für den Konstruktor
angegeben werden, wodurch eine Instanziierung nur noch aus der Klasse selbst er-
folgen kann.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp

6.5 Konstruktoren 57

4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties
11 /// <summary >
12 /// Gets or sets the real part.
13 /// </summary >
14 /// <value >The real part.</ value >
15 public float RealPart
16 {
17 get;
18 set;
19 }
20
21 /// <summary >
22 /// Gets or sets the imaginary part.
23 /// </summary >
24 /// <value >The imaginary part.</ value >
25 public float ImginaryPart
26 {
27 get;
28 set;
29 }
30
31 /// <summary >
32 /// Gets the absolute value .
33 /// </summary >
34 /// <value >The absolute value .</ value >
35 public float AbsoluteValue
36 {
37 get
38 {
39 // TODO gr: Calculate the absolute value
40 // and return it to the caller .
41 // 2007 -04 -08
42 }
43 }
44 #endregion
45
46 #region Methods
47 /// <summary >
48 /// Calculates the conjugation .
49 /// </summary >
50 public void Conjugate ()
51 {
52 // TODO gr: Calculate the conjugation .
53 // 2007 -04 -09
54 }
55
56 /// <summary >
57 /// Checks whether the complex number is zero.

58 6 Klassen und Strukturen

58 /// </summary >
59 /// <returns ><c>true </c> if the real and the
60 /// imaginary part are zero; <c>false </c>
61 /// otherwise .<returns >
62 public bool IsZero ()
63 {
64 // TODO gr: Check whether the real and the
65 // imaginary part are zero and return
66 // the result to the caller .
67 // 2007 -04 -09
68 }
69
70 /// <summary >
71 /// Adds the specified summand to the current complex
72 /// number .
73 /// </summary >
74 /// <param name=" summand ">The complex number that is
75 /// used as summand .</ param >
76 public void Add(ComplexNumber summand)
77 {
78 // TODO gr: Add the summand to the current
79 // complex number .
80 // 2007 -04 -09
81 }
82
83 /// <summary >
84 /// Adds the specified summand to the current complex
85 /// number .
86 /// </summary >
87 /// <param name=" summand ">The real number that is
88 /// used as summand .</ param >
89 public void Add(float summand)
90 {
91 // TODO gr: Add the summand to the current
92 // complex number .
93 // 2007 -04 -10
94 }
95
96 /// <summary >
97 /// Multiplies the current complex number with the
98 /// specified factor .
99 /// </summary >
100 /// <param name=" factor ">The complex number that is
101 /// used as factor .</param >
102 public void Multiply (ComplexNumber factor)
103 {
104 // TODO gr: Multiply the factor with the current
105 // complex number .
106 // 2007 -04 -09
107 }
108
109 /// <summary >
110 /// Multiplies the current complex number with the
111 /// specified factor .

6.5 Konstruktoren 59

112 /// </summary >
113 /// <param name =" factor ">The real number that is
114 /// used as factor .</ param >
115 public void Multiply (float factor)
116 {
117 // TODO gr: Multiply the factor with the current
118 // complex number .
119 // 2007 -04 -10
120 }
121
122 /// <summary >
123 /// Raises the current complex number to the power of
124 /// the specified real number .
125 /// </summary >
126 /// <param name =" exponent ">The real number that is
127 /// used as exponent .</ param >
128 public void Pow (float exponent)
129 {
130 // TODO gr: Raise the current complex number to a
131 // power .
132 // 2007 -04 -09
133 }
134 #endregion
135
136 #region Constructors
137 /// <summary >
138 /// Initializes a new instance of the ComplexNumber
139 /// type using default values .
140 /// </summary >
141 public ComplexNumber()
142 {
143 // TODO gr: Set default values for the real and
144 // imaginary part.
145 // 2007 -04 -25
146 }
147
148 /// <summary >
149 /// Initializes a new instance of the ComplexNumber
150 /// type using the specified real value .
151 /// </summary >
152 /// <param name =" realPart ">The real part.</param >
153 public ComplexNumber(float realPart)
154 {
155 // TODO gr: Set default values for the real and
156 // imaginary part.
157 // 2007 -04 -25
158 }
159
160 /// <summary >
161 /// Initializes a new instance of the ComplexNumber
162 /// type using the specified real and imaginary
163 /// values .
164 /// </summary >
165 /// <param name =" realPart ">The real part.</param >

60 6 Klassen und Strukturen

166 /// <param name=" imaginaryPart">The imaginary
167 /// part.</ param >
168 public ComplexNumber(
169 float realPart , float imaginaryPart)
170 {
171 // TODO gr: Set default values for the real and
172 // imaginary part.
173 // 2007 -04 -25
174 }
175 #endregion
176 }
177 }

Das Setzen der Werte, die in den Parametern übergeben wurden, erfolgt prin-
zipiell genauso wie in Eigenschaften. Der einzige Unterschied besteht darin, dass
jeder Parameter einen eigenen Namen trägt und nicht über das Schlüsselwort value
angesprochen wird.

Dabei besteht die Möglichkeit, den zu setzenden Wert dem Feld oder der Eigen-
schaft zuzuweisen. In der Regel ist es gleich, welche Variante genutzt wird, aller-
dings sollte die gewählte Variante durchgängig verwendet werden.

Unter Umständen kann es zu Namenskonflikten kommen, wenn beispielsweise
ein Feld oder eine Eigenschaft den gleichen Namen trägt wie ein Parameter. Obwohl
solche Konflikte nicht nur in Konstruktoren, sondern grundsätzlich in jeder Methode
auftreten können, häufen sie sich in jenen. Schließlich existiert hier potenziell für
jedes Feld ein entsprechender gleichnamiger Parameter.

Um in diesem Fall den Parameter auf der einen und das Feld oder die Eigen-
schaft auf der anderen Seite unterscheiden zu können, enthält C# das Schlüsselwort
this, das eine Referenz auf das eigene Objekt zur Verfügung stellt. Im Konfliktfall
muss daher jedem nicht eindeutigen Bezeichner, der ein Feld oder eine Eigenschaft
beschreibt, this vorangestellt werden.

Auch wenn die Verwendung des Schlüsselwortes this ansonsten optional ist, gilt
es als guter Stil, es bei jedem Verweis auf ein Feld, eine Eigenschaft oder eine
Methode des eigenen Objektes anzugeben.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties
11 /// <summary >
12 /// Gets or sets the real part.
13 /// </summary >
14 /// <value >The real part.</value >

6.5 Konstruktoren 61

15 public float RealPart
16 {
17 get;
18 set;
19 }
20
21 /// <summary >
22 /// Gets or sets the imaginary part.
23 /// </summary >
24 /// <value >The imaginary part.</ value >
25 public float ImginaryPart
26 {
27 get;
28 set;
29 }
30
31 /// <summary >
32 /// Gets the absolute value .
33 /// </summary >
34 /// <value >The absolute value .</ value >
35 public float AbsoluteValue
36 {
37 get
38 {
39 // TODO gr: Calculate the absolute value
40 // and return it to the caller .
41 // 2007 -04 -08
42 }
43 }
44 #endregion
45
46 #region Methods
47 /// <summary >
48 /// Calculates the conjugation .
49 /// </summary >
50 public void Conjugate ()
51 {
52 // TODO gr: Calculate the conjugation .
53 // 2007 -04 -09
54 }
55
56 /// <summary >
57 /// Checks whether the complex number is zero.
58 /// </summary >
59 /// <returns ><c>true </c> if the real and the
60 /// imaginary part are zero; <c>false </c>
61 /// otherwise .<returns >
62 public bool IsZero ()
63 {
64 // TODO gr: Check whether the real and the
65 // imaginary part are zero and return
66 // the result to the caller .
67 // 2007 -04 -09
68 }

62 6 Klassen und Strukturen

69
70 /// <summary >
71 /// Adds the specified summand to the current complex
72 /// number .
73 /// </summary >
74 /// <param name=" summand ">The complex number that is
75 /// used as summand .</ param >
76 public void Add(ComplexNumber summand)
77 {
78 // TODO gr: Add the summand to the current
79 // complex number .
80 // 2007 -04 -09
81 }
82
83 /// <summary >
84 /// Adds the specified summand to the current complex
85 /// number .
86 /// </summary >
87 /// <param name=" summand ">The real number that is
88 /// used as summand .</ param >
89 public void Add(float summand)
90 {
91 // TODO gr: Add the summand to the current
92 // complex number .
93 // 2007 -04 -10
94 }
95
96 /// <summary >
97 /// Multiplies the current complex number with the
98 /// specified factor .
99 /// </summary >
100 /// <param name=" factor ">The complex number that is
101 /// used as factor .</param >
102 public void Multiply (ComplexNumber factor)
103 {
104 // TODO gr: Multiply the factor with the current
105 // complex number .
106 // 2007 -04 -09
107 }
108
109 /// <summary >
110 /// Multiplies the current complex number with the
111 /// specified factor .
112 /// </summary >
113 /// <param name=" factor ">The real number that is used
114 /// as factor .</ param >
115 public void Multiply (float factor)
116 {
117 // TODO gr: Multiply the factor with the current
118 // complex number .
119 // 2007 -04 -10
120 }
121
122 /// <summary >

6.5 Konstruktoren 63

123 /// Raises the current complex number to the power of
124 /// the specified real number .
125 /// </summary >
126 /// <param name =" exponent ">The real number that is
127 /// used as exponent .</ param >
128 public void Pow (float exponent)
129 {
130 // TODO gr: Raise the current complex number to a
131 // power .
132 // 2007 -04 -09
133 }
134 #endregion
135
136 #region Constructors
137 /// <summary >
138 /// Initializes a new instance of the ComplexNumber
139 /// type using default values .
140 /// </summary >
141 public ComplexNumber()
142 {
143 // Set default values for the real and
144 // imaginary part.
145 this.RealPart = 0;
146 this. ImaginaryPart = 0;
147 }
148
149 /// <summary >
150 /// Initializes a new instance of the ComplexNumber
151 /// type using the specified real value .
152 /// </summary >
153 /// <param name =" realPart ">The real part.</param >
154 public ComplexNumber(float realPart)
155 {
156 // Set default values for the real and
157 // imaginary part.
158 this.RealPart = realPart ;
159 this. ImaginaryPart = 0;
160 }
161
162 /// <summary >
163 /// Initializes a new instance of the ComplexNumber
164 /// type using the specified real and imaginary
165 /// values .
166 /// </summary >
167 /// <param name =" realPart ">The real part.</param >
168 /// <param name =" imaginaryPart">The imaginary
169 /// part.</ param >
170 public ComplexNumber(
171 float realPart , float imaginaryPart)
172 {
173 // Set default values for the real and
174 // imaginary part.
175 this.RealPart = realPart ;
176 this. ImaginaryPart = imaginaryPart;

64 6 Klassen und Strukturen

177 }
178 #endregion
179 }
180 }

Ein unschöner Aspekt überladener Konstruktoren ist, dass sie unter Umständen
redundanten Code enthalten. Daher können Konstruktoren andere Konstruktoren
aufrufen, so dass sämtliche gemeinsam genutzte Funktionalität nur in einem Kon-
struktor enthalten sein muss. Der Aufruf erfolgt, indem hinter der Parameterliste
durch einen Doppelpunkt getrennt das Schlüsselwort this mit den entsprechenden
Parametern angegeben wird.

Jeder Konstruktor kann zusätzlich eigene Anweisungen enthalten, wobei diese
erst dann ausgeführt werden, wenn sämtliche anderen Konstruktoraufrufe abge-
schlossen sind. Wird ein Feld so wohl direkt wie auch im Konstruktor mit einem
Wert versehen, so überschreibt die Zuweisung im Konstruktor die direkte Zuwei-
sung.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties
11 /// <summary >
12 /// Gets or sets the real part.
13 /// </summary >
14 /// <value >The real part.</value >
15 public float RealPart
16 {
17 get;
18 set;
19 }
20
21 /// <summary >
22 /// Gets or sets the imaginary part.
23 /// </summary >
24 /// <value >The imaginary part.</ value >
25 public float ImginaryPart
26 {
27 get;
28 set;
29 }
30
31 /// <summary >
32 /// Gets the absolute value.
33 /// </summary >

6.5 Konstruktoren 65

34 /// <value >The absolute value .</ value >
35 public float AbsoluteValue
36 {
37 get
38 {
39 // TODO gr: Calculate the absolute value
40 // and return it to the caller .
41 // 2007 -04 -08
42 }
43 }
44 #endregion
45
46 #region Methods
47 /// <summary >
48 /// Calculates the conjugation .
49 /// </summary >
50 public void Conjugate ()
51 {
52 // TODO gr: Calculate the conjugation .
53 // 2007 -04 -09
54 }
55
56 /// <summary >
57 /// Checks whether the complex number is zero.
58 /// </summary >
59 /// <returns ><c>true </c> if the real and the
60 /// imaginary part are zero; <c>false </c>
61 /// otherwise .<returns >
62 public bool IsZero ()
63 {
64 // TODO gr: Check whether the real and the
65 // imaginary part are zero and return
66 // the result to the caller .
67 // 2007 -04 -09
68 }
69
70 /// <summary >
71 /// Adds the specified summand to the current complex
72 /// number .
73 /// </summary >
74 /// <param name =" summand ">The complex number that is
75 /// used as summand .</ param >
76 public void Add (ComplexNumber summand)
77 {
78 // TODO gr: Add the summand to the current
79 // complex number .
80 // 2007 -04 -09
81 }
82
83 /// <summary >
84 /// Adds the specified summand to the current complex
85 /// number .
86 /// </summary >
87 /// <param name =" summand ">The real number that is

66 6 Klassen und Strukturen

88 /// used as summand .</ param >
89 public void Add(float summand)
90 {
91 // TODO gr: Add the summand to the current
92 // complex number .
93 // 2007 -04 -10
94 }
95
96 /// <summary >
97 /// Multiplies the current complex number with the
98 /// specified factor .
99 /// </summary >
100 /// <param name=" factor ">The complex number that is
101 /// used as factor .</param >
102 public void Multiply (ComplexNumber factor)
103 {
104 // TODO gr: Multiply the factor with the current
105 // complex number .
106 // 2007 -04 -09
107 }
108
109 /// <summary >
110 /// Multiplies the current complex number with the
111 /// specified factor .
112 /// </summary >
113 /// <param name=" factor ">The real number that is
114 /// used as factor .</param >
115 public void Multiply (float factor)
116 {
117 // TODO gr: Multiply the factor with the current
118 // complex number .
119 // 2007 -04 -10
120 }
121
122 /// <summary >
123 /// Raises the current complex number to the power of
124 /// the specified real number .
125 /// </summary >
126 /// <param name=" exponent ">The real number that is
127 /// used as exponent .</ param >
128 public void Pow(float exponent)
129 {
130 // TODO gr: Raise the current complex number to a
131 // power.
132 // 2007 -04 -09
133 }
134 #endregion
135
136 #region Constructors
137 /// <summary >
138 /// Initializes a new instance of the ComplexNumber
139 /// type using default values .
140 /// </summary >
141 public ComplexNumber()

6.5 Konstruktoren 67

142 : this(0, 0)
143 {
144 }
145
146 /// <summary >
147 /// Initializes a new instance of the ComplexNumber
148 /// type using the specified real value .
149 /// </summary >
150 /// <param name =" realPart ">The real part.</param >
151 public ComplexNumber(float realPart)
152 : this(realPart , 0)
153 {
154 }
155
156 /// <summary >
157 /// Initializes a new instance of the ComplexNumber
158 /// type using the specified real and imaginary
159 /// values .
160 /// </summary >
161 /// <param name =" realPart ">The real part.</param >
162 /// <param name =" imaginaryPart">The imaginary
163 /// part.</ param >
164 public ComplexNumber(
165 float realPart , float imaginaryPart)
166 {
167 // Set default values for the real and
168 // imaginary part.
169 this.RealPart = realPart ;
170 this. ImaginaryPart = imaginaryPart;
171 }
172 #endregion
173 }
174 }

Im Zusammenhang mit Konstruktoren verfügen Felder zudem über eine Beson-
derheit – um Felder als konstant zu definieren, kann an Stelle des Schlüsselwortes
const das Schlüsselwort readonly verwendet werden. Wird readonly der Definition
eines Feldes vorangestellt, kann dessen Wert wie bei const nur direkt und zusätzlich
noch im Konstruktor gesetzt werden. Alle weiteren Zugriffe danach können aber
nur noch lesend stattfinden.

Konstruktoren können jedoch nicht nur dazu genutzt werden, um Objekte zu in-
itialisieren. Gelegentlich kann es notwendig sein, eine Klasse an sich zu initialisie-
ren, wobei dies insbesondere bei der Verwendung statischer Felder, Eigenschaften
oder Methoden vorkommt. Dazu dienen statische Konstruktoren, die auch als Klas-
senkonstruktoren bezeichnet werden, und sich von den übrigen Konstruktoren durch
das zusätzliche Schlüsselwort static unterscheiden.

Außerdem können statische Konstruktoren weder überladen noch parametrisiert
werden, zudem verfügen sie nicht über einen Zugriffsmodifizierer. Ausgeführt wer-
den statische Konstruktoren beim ersten Zugriff auf die Klasse – unabhängig von
der Art des Zugriffs.

68 6 Klassen und Strukturen

6.6 Strukturen

Neben Klassen verfügt C# über ein weiteres Konzept zur Definition von Typen, das
Klassen sehr ähnlich ist, nämlich Strukturen. Der wesentliche Unterschied zwischen
beiden ist, dass Klassen Verweistypen sind, Strukturen hingegen Wertetypen.

Dementsprechend bietet sich der Einsatz von Strukturen in der Regel dann an,
wenn die enthaltenen Felder und Eigenschaften ausschließlich oder zumindest na-
hezu nur auf Wertetypen basieren.

Häufig werden Strukturen eingesetzt, wenn Daten per COM mit nicht verwal-
teten Anwendungen ausgetauscht werden, wobei deren Aufbau dann von der über
COM angesprochenen Anwendung vorgegeben ist. In diesem Zusammenhang kann
mit dem sizeof -Operator der Speicherbedarf einer Struktur in Bytes ermittelt wer-
den, worauf allerdings an dieser Stelle nicht weiter eingegangen wird.

Für Strukturen kann kein parameterloser Konstruktor definiert werden, dieser
existiert hingegen implizit immer und initialisiert alle Felder mit den Standardwer-
ten der entsprechenden Typen. Sofern allerdings ein eigener Konstruktor definiert
wird, muss dieser zum einen über mindestens einen Parameter verfügen, zum ande-
ren müssen in ihm alle Felder der Struktur mit einem Wert initialisiert werden.

Die Definition einer Struktur erfolgt prinzipiell zu der einer Klasse, außer dass
das entsprechende Schlüsselwort struct statt class lautet. In der Entwicklung rein
objektorientierter Anwendungen sind Strukturen allerdings verhältnismäßig selten
geworden, da in der Regel statt dessen eine Klasse definiert wird, die deutlich mehr
Flexibilität bietet.

Kapitel 7
Vererbung

7.1 Was ist Vererbung?

Da die Entwicklung einer Klasse von Grund auf sehr aufwändig sein kann, kann
statt dessen eine bestehende Klasse wiederverwendet und erweitert werden. Dieses
Verfahren, das als Vererbung bezeichnet wird, erzeugt aus einer bestehenden Klas-
se – der sogenannten Basisklasse – eine neue Klasse – die sogenannte abgeleitete
Klasse –, die über alle Felder, Eigenschaften und Methoden der Basisklasse verfügt
und diese um eigene Elemente erweitern kann.

Vererbung wird in C# mit Hilfe des Operators : ausgedrückt, wobei dieser sowie
der Name der Basisklasse dem Namen der abgeleiteten Klasse nachgestellt werden.
Es wurde bereits der Typ object erwähnt, von dem jeder Typ ableitet. Dies kann nun
präzisiert werden: Wird für eine Klasse nicht explizit eine Basisklasse angegeben,
leitet sie implizit von object ab. Das heißt, dass alle Eigenschaften und Methoden,
die für object definiert sind, auch in dieser Klasse zur Verfügung stehen.

Potenziell kann eine Klasse auch explizit von object abgeleitet werden, indem
object als Basisklasse angegeben wird. Da dies auf Grund der impliziten Ableitung
von object aber keinen Unterschied macht, wird diese Ableitung in der Regel nicht
angegeben.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class that explicitly derives from
7 /// object .
8 /// </summary >
9 public class Foo : object
10 {
11 }
12 }

Golo Roden, Auf der Fährte von C# 69
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

70 7 Vererbung

ist also äquivalent zu

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class that implicitly derives from
7 /// object .
8 /// </summary >
9 public class Foo
10 {
11 }
12 }

Ein Beispiel für eine Methode, die implizit in allen Typen enthalten ist, ist die
Methode ToString. Sie dient dazu, einen string zurückzugeben, der eine für Men-
schen lesbare Repräsentation des Objekts darstellt. Die in dem Typ object definierte
Methode kann zwar an einem Objekt einer beliebigen Klasse aufgerufen werden,
allerdings kennt sie die spezifischen Details der Klasse nicht. Daher gibt diese Me-
thode standardmäßig den vollqualifizierten Typ des Objekts zurück, an dem sie auf-
gerufen wird.

Wird ein Objekt vom Typ ComplexNumber, der im vorangegangenen Kapitel
entwickelt wurde, instanziiert, gibt die Methode ToString beispielsweise

GoloRoden.GuideToCSharp.ComplexNumber

zurück. Um eine spezifische Version der Methode ToString für den Typ Complex-
Number zu erzeugen, muss diese Methode der Klasse ComplexNumber hinzuge-
fügt werden. Im Gegensatz zu einer klassischen Methodendefinition muss dieser
Definition zwischen dem Zugriffsmodifizierer und dem Typ des Rückgabewertes
das Schlüsselwort override hinzugefügt werden, um sicherzustellen, dass das Über-
schreiben der Methode der Basisklasse nicht aus Versehen, sondern absichtlich ge-
schieht.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public class ComplexNumber
9 {
10 #region Properties
11 #endregion
12

7.1 Was ist Vererbung? 71

13 #region Methods
14 // ...
15
16 /// <summary >
17 /// Gets a string representation of the current
18 /// instance .
19 /// </summary >
20 /// <returns >A string representation of the current
21 /// instance .</ returns >
22 public override string ToString ()
23 {
24 // TODO gr: Create the string representation and
25 // return it to the caller .
26 // 2007 -06 -11
27 }
28 #endregion
29
30 #region Constructors
31 #endregion
32 }
33 }

Wird das Schlüsselwort override weggelassen, meldet der Compiler beim Über-
setzen der Anwendung eine entsprechende Warnung und fordert den Entwickler auf,
das fehlende Schlüsselwort zu ergänzen.

Eine wesentliche Eigenschaft in der objektorientierten Programmierung ist in
diesem Zusammenhang die Polymorphie, also die Fähigkeit eines Objekts, je nach
Kontext verschiedenen Typen zu entsprechen. Jeder Typ kann durch einen überge-
ordneten und damit allgemeineren Typ repräsentiert werden, da dieser eine Genera-
lisierung darstellt.

In der Praxis heißt das, dass jeder Methode, die beispielsweise einen Parme-
ter vom Typ object erwartet, ein Objekt eines beliebigen Typs übergeben werden
kann – da jeder Typ implizit von object abgeleitet ist und object damit eine Gene-
ralisierung dieses Typs darstellt. Umgekehrt funktioniert dies allerdings nicht: Wird
ein Parameter eines bestimmten Typs erwartet, können nur Objekte dieses oder eines
abgeleiteten Typs übergeben werden.

Dieses System der Generalisierung und Spezialisierung ist ein Kernkonzept der
objektorientierten Programmierung und stellt auch den Grund dar, warum jeder Typ
mit Hilfe von Boxing in object umgewandelt werden kann – intern wird hier auf
Polymorphie zurückgegriffen.

Im Allgemeinen gilt für die Beziehung zwischen einem Typ und seiner Basis-
klasse eine „is a“-Beziehung: Jedes Objekt vom Typ ComplexNumber ist gleichzei-
tig auch vom Typ object, während ein abgeleiteter Typ von ComplexNumber sogar
zugleich vom Typ ComplexNumber und vom Typ object ist.

Allerdings erfordert diese Beziehung bei der Modellierung der Klassenhierarchie
mehr Aufmerksamkeit, als sie zunächst vermuten lässt. Der Grund hierfür liegt in
einer wesentlichen Forderung der objektorientierten Programmierung, die von Bar-
bara Liskov formuliert wurde und daher als Liskov-Prinzip bezeichnet wird. Die

72 7 Vererbung

Forderung besagt, dass das Verhalten einer abgeleiteten Klasse und das ihrer Basis-
klasse identisch sein müssen.

Dies bedeutet, dass entgegen dem umgangssprachlichen Gebrauch ein Quadrat
kein Rechteck ist, weshalb eine Klasse zur Modellierung von Quadraten nicht von
einer Klasse zur Modellierung von Rechtecken abgeleitet werden darf. Während
die Höhe und die Breite eines Rechtecks unabhängig voneinander verändert werden
können, ist dies bei einem Quadrat nicht möglich.

Angenommen, ein Typ Quadrat wäre abgeleitet von einem Typ Rechteck, dann
könnte auf Grund der Polymorphie und der Generalisierung in jeder Methode, die
ein Objekt vom Typ Rechteck als Parameter erwartet, auch ein Objekt vom Typ Qua-
drat übergeben werden. Diese Methode könnte eine Seite dieses Objektes verdop-
peln, wodurch sich bei einem Objekt des Typs Rechteck der Flächeninhalt ebenfalls
verdoppelt.

Wird statt dessen ein Objekt vom Typ Quadrat übergeben, gilt dies nicht – hier
würde sich der Flächeninhalt vervierfachen, da die beiden Seiten nicht unabhängig
voneinander verändert werden können. Weil dabei das Liskovsche Prinzip verletzt
wird, ist diese Ableitung fehlerhaft.

Außer der bislang genannten Vererbung, bei der eine Klasse von genau einer Ba-
sisklasse ableitet, gibt es prinzipiell auch die Mehrfachverebung, bei der eine Klas-
se über mehrere Basisklassen verfügen kann. Dieses Konzept wird in C# allerdings
nicht unterstützt, da Mehrfachvererbung unter Umständen keine eindeutigen Ablei-
tungen erzeugt, und der Nutzen in keinem Verhältnis zu dem nötigen Aufwand und
der hohen Komplexität steht.

Strukturen können im Gegensatz zu Klassen nicht vererbt werden.

7.2 Felder und Eigenschaften

Die einfachsten Elemente eines Typs, die vererbt werden können, sind Felder. Bisher
wurden Felder in der Regel als private gekennzeichnet, um den direkten Zugriff
von außerhalb der Klasse zu verhindern. Allerdings kann auf solche Felder auch aus
einer Unterklasse nicht zugegriffen werden. Um dies in einem gegebenen Fall zu
ermöglichen, gibt es verschiedene Alternativen.

Die einfachste Variante besteht darin, das Feld als internal oder gar als public zu
kennzeichnen. Allerdings geht dabei der Zugriffsschutz von außerhalb der Klasse
verloren, was der Objektorientierung in den meisten Fällen widerspricht. Eine an-
dere Möglichkeit besteht darin, über die entsprechende Eigenschaft indirekt auf das
Feld zuzugreifen, was eine im Hinblick auf die Objektorientierung deutlich saube-
rere Variante darstellt.

In der Praxis verfügt aber nicht jedes Feld über eine zugehörige Eigenschaft,
da in der Regel nur solche Felder mit einer Eigenschaft ausgestattet werden, die
für die Konfiguration eines Objektes von außen wichtig sind. Felder, die hingegen
nur für interne Berechnungen oder sonstige interne Belange genutzt werden und

7.3 Methoden 73

außerhalb eines Objektes nicht zugreifbar sein sollen, bleiben üblicherweise ohne
entsprechende Eigenschaft.

Abhilfe schafft in einem solchen Fall das Schlüsselwort protected, das den Zu-
griff nicht nur aus der Klasse, welche die Felddefinition enthält, ermöglicht, sondern
auch aus jeder Unterklasse dieser Klasse. Felder, die als protected gekennzeichnet
sind, stehen also von der Ebene des Zugriffs zwischen public und private.

Außerdem gibt es noch die Erweiterung des Schlüsselwortes protected auf pro-
tected internal, wodurch der Zugriff ebenfalls aus abgeleiteten Klassen ermöglicht
wird, allerdings nur, sofern diese sich innerhalb der gleichen Assembly befinden.

7.3 Methoden

Werden Methoden in einem abgeleiteten Typ überschrieben, muss in dem abgeleite-
ten Typ die Methode explizit als override gekennzeichnet werden, um anzuzeigen,
dass das Überschreiben beabsichtigt und kein Versehen ist. Allerdings kann nicht
jede beliebige Methode einer Basisklasse überschrieben werden – dort muss eine
Methode zunächst als überschreibbar gekennzeichnet werden. Dies geschieht mit
Hilfe des Schlüsselwortes virtual.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a base class.
7 /// </summary >
8 public class BaseClass
9 {
10 /// <summary >
11 /// Represents a virtual foo method .
12 /// </summary >
13 public virtual void Foo ();
14 }
15 }

Methoden, die nicht als virtual gekennzeichnet werden, können von abgeleite-
ten Typen nicht überschrieben werden. Damit eine Methode mit dem Schlüsselwort
virtual markiert werden kann, darf sie nicht mit dem Zugriffsmodifizierer priva-
te markiert sein – da sie in diesem Fall in dem abgeleiteten Typ nicht sichtbar ist.
Zudem kann virtual nicht gleichzeitig mit override angegeben werden.

Wird während der Ausführung einer Anwendung eine virtuelle Methode aufgeru-
fen, ermittelt die Common Language Runtime den tatsächlichen Typ des Objektes,
an dem die Methode aufgerufen wird und ruft die zugehörige Methode auf – falls

74 7 Vererbung

eine entsprechende überschriebene Variante verfügbar ist. Auf diese Art wird ge-
währleistet, dass für ein Objekt immer die korrekte Version einer Methode aufgeru-
fen wird.

Außer override gibt es noch das Schlüsselwort new. Der Unterschied liegt in der
Bindung der Methode an den Typ – bei override wird die Methode in jedem Fall
für den zugehörigen Typ aufgerufen, da die Methode der Basisklasse überschrieben
wurde, bei new wird die Methode unter Umständen für den Basistyp aufgerufen, da
diese Methode nicht überschrieben, sondern nur ausgeblendet wurde.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a base class .
7 /// </summary >
8 public class BaseClass
9 {
10 /// <summary >
11 /// Represents a virtual foo method .
12 /// </summary >
13 public virtual void Foo ()
14 {
15 }
16 }
17
18 /// <summary >
19 /// Represents a class that derives from BaseClass .
20 /// </summary >
21 public class DerivedClassA : BaseClass
22 {
23 /// <summary >
24 /// Represents a foo method that overwrites the base
25 /// class ’s implementation.
26 /// </summary >
27 public override void Foo ()
28 {
29 }
30 }
31
32 /// <summary >
33 /// Represents another class that derives from
34 /// BaseClass .
35 /// </summary >
36 public class DerivedClassB : BaseClass
37 {
38 /// <summary >
39 /// Represents a foo method that shadows the base
40 /// class ’s implementation.
41 /// </summary >
42 public new void Foo ()

7.3 Methoden 75

43 {
44 }
45 }
46 }

Beispielhaft lässt sich das an der Klasse ComplexNumber verdeutlichen. Die
Methode ToString ist dort als override gekennzeichnet. Das heißt, wird die Methode
ToString an einem Objekt dieser Klasse aufgerufen, dann wird der Code ausgeführt,
der in der überschriebenen Methode definiert wurde. Dieser Code wird auch dann
ausgeführt, wenn das Objekt beispielsweise als object geboxt wird.

Wäre die Methode ToString statt dessen als new gekennzeichnet, würde ebenfalls
der in der Klasse ComplexNumber definierte Code ausgeführt – aber nur, wenn
diese Methode an dem ungeboxten Objekt aufgerufen wird. Erfolgte der Aufruf statt
dessen an einer geboxten Version des Objektes, so würde der Code des geboxten
Typs ausgeführt.

Würde das Objekt also als object geboxt, würde bei einem Aufruf der Metho-
de ToString die Version ausgeführt, die in der Klasse object definiert wurde. In der
Praxis wird new allerdings eher selten verwendet, in der Regel kommt das Schlüs-
selwort override zum Einsatz.

In einigen Fällen soll aus einer überschriebenen Methode explizit die Methode
der Basisklasse aufgerufen werden, zum Beispiel, um deren Funktionalität auch in
der überschreibenden Methode nutzen zu können. Dazu dient das Schlüsselwort
base, das analog zu this verwendet werden kann, allerdings statt auf das eigene
Objekt immer auf den Typ der Basisklasse verweist.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a base class.
7 /// </summary >
8 public class BaseClass
9 {
10 /// <summary >
11 /// Represents a virtual foo method .
12 /// </summary >
13 public virtual void Foo ()
14 {
15 }
16 }
17
18 /// <summary >
19 /// Represents a class that derives from BaseClass .
20 /// </summary >
21 public class DerivedClass : BaseClass
22 {
23 /// <summary >

76 7 Vererbung

24 /// Represents a foo method that overwrites the base
25 /// class ’s implementation.
26 /// </summary >
27 public override void Foo ()
28 {
29 // Call the base method .
30 base.Foo ();
31 }
32 }
33 }

Prinzipiell kann eine Methode, die mit override oder new gekennzeichnet wurde,
in einer weiteren abgeleiteten Klasse wiederum überschrieben werden. Das Schlüs-
selwort virtual bezieht sich also nicht nur auf die direkt nachfolgende Ableitung,
sondern auf alle Klassen, die in der Ableitungshierarchie nachfolgen. Um dies zu
verhindern und eine weitere Vererbung zu verhindern, kann eine Methode, die mit
override oder new gekennzeichnet wurde, mit Hilfe des Schlüsselwortes sealed ver-
siegelt werden, wodurch keine weitere Überschreibung dieser Methode mehr mög-
lich ist.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a base class .
7 /// </summary >
8 public class BaseClass
9 {
10 /// <summary >
11 /// Represents a virtual foo method .
12 /// </summary >
13 public virtual void Foo ()
14 {
15 }
16 }
17
18 /// <summary >
19 /// Represents a class that derives from BaseClass .
20 /// </summary >
21 public class DerivedClass : BaseClass
22 {
23 /// <summary >
24 /// Represents a foo method that overwrites the base
25 /// class ’s implementation and avoids any further
26 /// overwriting by sealing this method .
27 /// </summary >
28 public override sealed void Foo ()
29 {
30 }

7.3 Methoden 77

31 }
32 }

Außerdem können vollständige Klassen versiegelt werden, was bedeutet, dass
eine solche Klasse nicht vererbt werden kann. Dies ist bei Klassen sinnvoll, die eine
feststehende Funktionalität bereitstellen, wie beispielsweise Klassen mit mathema-
tischen Methoden – eine Methode zur Berechnung der Sinusfunktion zu überschrei-
ben, ergibt wenig Sinn, schließlich ist der Sinus bereits das endgültige Resultat.

Daher ist beispielsweise die von .NET bereitgestellte Klasse Math im Namens-
raum System versiegelt, ebenso kann die Klasse ComplexNumber versiegelt werden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public sealed class ComplexNumber
9 {
10 #region Properties
11 #endregion
12
13 #region Methods
14 #endregion
15
16 #region Constructors
17 #endregion
18 }
19 }

Unabhängig davon, ob die Klasse ComplexNumber versiegelt ist oder nicht, han-
delt es sich um eine konkrete Klasse. Das bedeutet, dass sie instanziiert werden
kann, dass also Objekte von ihr erzeugt werden können.

Manchmal kann es sinnvoll sein, statt dessen eine sogenannte abstrakte Klasse
zu erzeugen, die nicht instanziiert werden kann, die nur als Basisklasse für andere
Klassen genutzt wird, um beispielsweise gemeinsam genutzte Funktionalität zentral
zur Verfügung zu stellen. Eine solche Klasse wird mit dem Schlüsselwort abstract
gekennzeichnet und kann nicht versiegelt werden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents an abstract base class .
7 /// </summary >

78 7 Vererbung

8 public abstract class AbstractBaseClass
9 {
10 /// <summary >
11 /// Represents a virtual foo method .
12 /// </summary >
13 public virtual void Foo ()
14 {
15 }
16 }
17 }

In einer abstrakten Klasse können zudem abstrakte Methoden definiert wer-
den, die keinen Methodenrumpf enthalten, sondern nur aus dem Methodenkopf be-
stehen. Solche Methoden müssen mit dem Schlüsselwort abstract versehen wer-
den und sind implizit virtual. Statt eines Methodenrumpfes, der in geschweiften
Klammern angegeben wird, wird deren Methodenkopf mit einem Semikolon abge-
schlossen.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents an abstract base class.
7 /// </summary >
8 public abstract class AbstractBaseClass
9 {
10 /// <summary >
11 /// Represents an abstract foo method .
12 /// </summary >
13 public abstract void Foo ();
14 }
15
16 /// <summary >
17 /// Represents a class that derived from
18 /// AbstractBaseClass.
19 /// </summary >
20 public class DerivedClass : AbstactBaseClass
21 {
22 /// <summary >
23 /// Represents a method that implements the base
24 /// class ’s abstract method .
25 /// </summary >
26 public override void Foo ()
27 {
28 // TODO gr: Implement abstract method .
29 // 2008 -01 -03
30 }
31 }
32 }

7.3 Methoden 79

In einer abgeleiteten Klasse müssen abstrakte Methoden in jedem Fall imple-
mentiert werden, es sei denn, die abgeleitete Klasse wird ihrerseits wiederum als
abstract gekennzeichnet.

Gelegentlich kann es notwendig sein, eine bestehende Klasse ohne Erzeugung
einer abgeleiteten Klasse zu erweitern, ohne allerdings Zugriff auf ihren Quelltext
zu haben. Beispielsweise würde eine Erweiterung des Typs string diesem Vorhaben
entsprechen.

Zu diesem Zweck gibt es seit der Version 3.0 von C# sogenannte Erweite-
rungsmethoden, mit denen vorhandene Typen ergänzt werden können. Da die-
se Möglichkeit äußerst mächtig ist und schnell zu unübersichtlichem Code führt,
wird ihr Einsatz in der Praxis als schlechter Stil angesehen. Dass Erweiterungs-
methoden in C# 3.0 überhaupt in Erscheinung treten, gründet sich in der Abfra-
getechnik Linq, die mit C# 3.0 eingeführt wurde und auf Erweiterungsmethoden
basiert.

Um einen bestehenden Typ zu erweitern, wird innerhalb einer statischen Klasse
eine statische Methode definiert, welche die entsprechende Funktionalität bereit-
stellt. Als erster Parameter wird dieser Methode der zu erweiternde Typ übergeben,
allerdings ergänzt um das Schlüsselwort this, woran C# erkennen kann, dass es sich
nicht um eine normale, sondern um eine Erweiterungsmethode handelt.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Contains extension methods .
7 /// </summary >
8 public static class ExtensionMethods
9 {
10 /// <summary >
11 /// Converts the specified string to its XML
12 /// representation.
13 /// </summary >
14 /// <param name =" source ">The string that shall be
15 /// converted to XML .</ param >
16 /// <returns >The XML representation of the specified
17 /// string .</ returns >
18 public static string ToXml(this string source)
19 {
20 // TODO gr: Transform the source string to XML
21 // and return the result to the caller .
22 // 2007 -12 -26
23 }
24 }
25 }

Die auf diese Art definierte Erweiterungsmethode für den Typ string kann nun an
jeder Zeichenkette aufgerufen werden, als ob sie eine vordefinierte Methode wäre.

80 7 Vererbung

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a foo string .
16 string foo = "Hello world !";
17
18 // Get the XML representation of the string .
19 string xml = foo .ToXml ();
20 }
21 }
22 }

Intern prüft C# beim Aufruf einer Methode zunächst, ob eine entsprechende Me-
thode an dem jeweiligen Typ definiert ist. Wenn nicht, wird überprüft, ob es eine
statische Methode innerhalb einer statischen Klasse gibt, deren Name dem der auf-
gerufenen Methode entspricht, und deren erster Parameter dem gewünschten Typ
entspricht, der außerdem mit dem Schlüsselwort this gekennzeichnet wurde. Falls
eine solche Methode existiert, wird diese ausgeführt, andernfalls wird ein Fehler
gemeldet.

7.4 Konstruktoren

Die einzigen Elemente eines Typs, die nicht an einen abgeleiteten Typ vererbt wer-
den, sind Konstruktoren. Der Grund dafür liegt in einer Definition der objektorien-
tierten Programmierung, in der die Aufgabe von Konstruktoren beschrieben wird.
Diese liegt darin, ein vollständig initialisiertes Objekt zurückzugeben.

Da ein abgeleiteter Typ in der Regel weitere Felder einführt, die der Konstruktor
des Basistyps nicht berücksichtigt, würde dieser der Anforderung nicht mehr ge-
recht, ein vollständig initialisiertes Objekt zurückzugeben. Eine abgeleitete Klasse
verfügt daher zunächst nur über einen parameterlosen, leeren Standardkonstruktor.

Allerdings können entsprechende Konstruktoren definiert werden. Analog zu
Methoden ist auch in den Konstruktoren der Zugriff auf die Konstrutoren des Basi-
styps möglich, wiederum mit Hilfe des Schlüsselwortes base, das mit der gleichen
Syntax wie das Schlüsselwort this bei Konstruktoren angegeben werden kann. Wird

7.4 Konstruktoren 81

es angegeben, wird zunächst der Konstruktor des Basistyps aufgerufen, bevor der
Konstruktor des zu instanziierenden Typs ausgeführt wird. Allerdings kann nur ent-
weder base oder this angegeben werden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a base class.
7 /// </summary >
8 public class BaseClass
9 {
10 /// <summary >
11 /// Initializes an instance of the BaseClass type.
12 /// </summary >
13 public BaseClass ()
14 {
15 }
16 }
17
18 /// <summary >
19 /// Represents a class that derives from BaseClass .
20 /// </summary >
21 public class DerivedClass : BaseClass
22 {
23 /// <summary >
24 /// Initializes an instance of the DerivedClass
25 /// type.
26 /// </summary >
27 public DerivedClass()
28 : base()
29 {
30 }
31 }
32 }

Kapitel 8
Schnittstellen

8.1 Was sind Schnittstellen?

Abstrakte Basisklassen werden häufig eingesetzt, um semantisch verwandte abge-
leitete Klassen mit einer gemeinsamen Basisklasse auszustatten und gemeinsam ge-
nutzte Methoden in einem einzigen Typ zur Verfügung zu stellen. Allerdings birgt
der Einsatz abstrakter Klassen einen entscheidenden Nachteil: Gelegentlich ist es
notwendig, eine Klasse von einer Basisklasse der Framework Class Library abzu-
leiten.

Da eine Klasse aber nur über eine Basisklasse verfügen kann, können solche ab-
geleiteten Klassen nicht mehr unter einer benutzerdefinierten abstrakten Basisklasse
angeordnet werden. In Sprachen, die Mehrfachvererbung unterstützen, können einer
Klasse in einem solchen Fall einfach mehrere Basisklassen zugeordnet werden, in
C# ist dies jedoch nicht möglich.

Die Lösung liegt in sogenannten Schnittstellen, die abstrakten Klassen sehr ähn-
lich sind, da sie ebenfalls Methodendefinitionen enthalten, aber im Gegensatz zu
Klassen mehrfach vererbt werden können. Die einzige Einschränkung einer Schnitt-
stelle ist, dass sie keine Implementierung enthalten können, sondern auf die Metho-
dendefinitionen beschränkt sind. Insofern entspricht eine Schnittstelle einer voll-
ständig abstrakten Klasse.

In der modernen, komponentenorientierten Entwicklung von Anwendungen spie-
len Schnittstellen noch eine weitere, zusätzliche Rolle. Da sie mit den in ihnen ent-
haltenen Methodendefinitionen nicht nur eine syntaktische Vorgabe leisten, sondern
auch eine gewisse Semantik vorgeben, werden sie als eine Art Vertrag für Kompo-
nenten eingesetzt – sofern zwei verschiedene Komponenten die gleiche Schnittstel-
le implementieren, können sie als semantisch äquivalent eingestuft werden und sind
damit untereinander austauschbar.

Wenn dieser Aspekt von Schnittstellen besonders hervorgehoben werden soll,
wird an Stelle von Schnittstelle häufig auch von Kontrakt gesprochen. In der Re-
gel werden bei der Entwicklung von Komponenten zunächst die Kontrakte defi-
niert, bevor Komponenten entwickelt werden, die deren abstrakte Semantik kon-

Golo Roden, Auf der Fährte von C# 83
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

84 8 Schnittstellen

kret umsetzen. Daher spricht man auch von Contract First Design oder Design by
Contract.

Contract First Design bietet noch einen weiteren Vorteil. Da die Semantik voll-
ständig über den Kontrakt definiert ist, ist es möglich, den Zugriff auf eine Kom-
ponente ausschließlich über deren Schnittstelle zu gestalten. Wenn die Komponente
eines Tages gegen eine andere, aber semantisch äquivalente Komponente ausge-
tauscht werden soll, muss an der Anwendung an sich nichts geändert werden, da die
Schnittstelle gleich geblieben ist.

8.2 Benutzerdefinierte Schnittstellen

Schnittstellen werden in C# mit Hilfe des Schlüsselwortes interface definiert, wobei
ihr sonstiger Aufbau dem einer abstrakten Klasse ähnelt. Das bedeutet, dass in einer
Schnittstelle wie in einer vollständig abstrakten Klasse nur Methodendefinitionen
enthalten sein können, im Gegensatz zu diesen allerdings keine Zugriffsmodifizierer
angegeben werden können. Alle Methoden sind implizit public, um den Charakter
eines Kontraktes zu erfüllen.

Als Namensrichtlinie für Schnittstellen gibt es zwei Varianten. Für beide Vari-
anten gilt, dass der Name in Pascal Case genannt wird, wobei ihm zusätzlich ein
großes I vorangestellt wird. Der Name besteht entweder aus einem Adjektiv, das
eine Eigenschaft beschreibt, die mit Hilfe der Schnittstelle umgesetzt wird, oder aus
einem Substantiv, sofern die Schnittstelle an Stelle einer Klasse verwendet wird.

Im Namensraum System gibt es zahlreiche Beispiele für beide Varianten: Die
Schnittstelle ICloneable wird von allen Klassen implementiert, deren Objekte klon-
bar sind – die Schnittstelle beschreibt also eine Eigenschaft, weshalb für ihren Na-
men ein Adjektiv gewählt wurde. Hingegen wird die Schnittstelle IServiceProvider
von solchen Klassen implementiert, die Mechanismen zum Abrufen von Services
bereitstellen. In diesem Fall ersetzt IServiceProvider eine entsrechende Basisklasse,
weshalb für den Namen ein Substantiv gewählt wurde.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for persisting an object .
7 /// </summary >
8 public interface IPersistable
9 {
10 }
11 }

Dieser Code erzeugt eine Schnittstelle IPersistable, die dazu dient, das Entwurfs-
muster Memento zu implementieren. Memento ermöglicht es beliebigen Objekten,

8.2 Benutzerdefinierte Schnittstellen 85

ihren Zustand zu speichern und diesen zu einem späteren Zeitpunkt wieder abzu-
rufen. Dazu werden die beiden Methoden Store und Restore definiert, welche die
Aufgabe des Speicherns und des Wiederherstellens übernehmen.

Das Speichern der Daten übernimmt dabei ein spezielles Objekt, das sogenannte
Memento. Häufig wird dieses Entwurfsmuster eingesetzt, wenn die Absicht besteht,
ein Objekt zu ändern, vor der Änderung allerdings eine Kopie angefertigt werden
soll, um im Falle des Falles einen Rollback ausführen und damit auf den gespei-
cherten Stand zurückgreifen zu können.

Da alle Methoden einer Schnittstelle implizit public sind, kann die Angabe eines
Zugriffsmodifizierers entfallen. Da die Methoden einer Schnittstelle zudem implizit
abstrakt sind, werden ihre Definitionen jeweils mit einem Semikolon abgeschlossen,
wie es in einer vollständig abstrakten Klasse ebenfalls der Fall wäre.

Der Typ des Mementos, welches die zu speichernden Daten aufnimmt und den
beiden Methoden als Parameter übergeben wird, wird ebenfalls als Schnittstelle an-
gegeben – auf diese Art kann die konkrete Klasse, welche die Funktionalität des
Mementos bereitstellt, problemlos ausgetauscht werden. Die einzige Voraussetzung
dafür ist, dass sie die Schnittstelle IMemento implementiert.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for persisting an object .
7 /// </summary >
8 public interface IPersistable
9 {
10 /// <summary >
11 /// Stores the current instance to the specified
12 /// memento .
13 /// </summary >
14 /// <param name =" memento ">The memento .</param >
15 void Store(IMemento memento);
16
17 /// <summary >
18 /// Restores the current instance to the specified
19 /// memento .
20 /// </summary >
21 /// <param name =" memento ">The memento .</param >
22 void Restore (IMemento memento);
23 }
24 }

Damit der Code kompiliert werden kann, muss zusätzlich noch die Schnittstel-
le IMemento definiert werden, die Methoden zum Speichern und Wiederherstellen
von Daten enthält. Da das Memento zunächst nur in Verbindung mit der Klasse
ComplexNumber eingesetzt werden soll, sind Methoden zum Speichern und Wie-
derherstellen von Daten des Typs float ausreichend.

86 8 Schnittstellen

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes .
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name="key ">The key .</ param >
15 /// <param name=" value">The value .</param >
16 void Store(string key , float value);
17
18 /// <summary >
19 /// Restores the value stored with the specified
20 /// key.
21 /// </summary >
22 /// <param name="key ">The key .</ param >
23 /// <returns >The value .</ returns >
24 float Restore (string key);
25 }
26 }

Das Prizip der Vererbung ist auch bei Schnittstellen möglich: Schnittstellen kön-
nen als Basisschnittstelle für abgeleitete Schnittstellen dienen. Dies geschieht wie
bei Klassen, indem bei der Definition der Schnittstelle die Basisschnittstelle durch
den Operator : angehängt wird. Es kann also eine spezialisierte Version von IMe-
mento für die Klasse ComplexNumber namens IMementoComplexNumber erzeugt
werden.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes .
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name="key ">The key .</ param >
15 /// <param name=" value">The value .</param >

8.2 Benutzerdefinierte Schnittstellen 87

16 void Store(string key , float value);
17
18 /// <summary >
19 /// Restores the value stored with the specified
20 /// key.
21 /// </summary >
22 /// <param name ="key">The key .</ param >
23 /// <returns >The value .</ returns >
24 float Restore (string key);
25 }
26
27 /// <summary >
28 /// Provides methods for a memento for the
29 /// ComplexNumber class.
30 /// </summary >
31 public interface IMementoComplexNumber : IMemento
32 {
33 /// <summary >
34 /// Stores the real value of a complex number .
35 /// </summary >
36 /// <param name =" value">The real value .</ param >
37 void StoreRealValue(float value);
38
39 /// <summary >
40 /// Restores the real value of a complex number .
41 /// </summary >
42 /// <returns >The real value .</ returns >
43 float RestoreRealValue ();
44
45 /// <summary >
46 /// Stores the imaginary value of a complex number .
47 /// </summary >
48 /// <param name =" value">The imaginary value .</param >
49 void StoreImaginaryValue(float value);
50
51 /// <summary >
52 /// Restores the imaginary value of a complex number .
53 /// </summary >
54 /// <returns >The imaginary value .</ returns >
55 float RestoreImaginaryValue ();
56 }
57 }

Neben Methoden können in Schnittstellen auch Eigenschaften mit Definitionen
für get und set vorgegeben werden. Felder und Konstruktoren sind hingegen aus-
geschlossen, diese können nur in einer abstrakten oder konkreten Klasse definiert
werden.

Schließlich stellt sich die Frage, wann eine Schnittstelle und wann eine abstrakte
Basisklasse eingesetzt werden sollte. Prinzipiell bieten Schnittstellen den Vorteil,
dass sie mehr Flexibilität bereitstellen, da eine Klasse zum einen von mehreren
Schnittstellen ableiten kann – aber nur von einer Basisklasse –, und zum anderen
eine Trennung zwischen Kontrakt und eigentlicher Implementierung besteht.

88 8 Schnittstellen

Des weiteren lässt der Einsatz von Schnittstellen die Möglichkeit bestehen, nach
wie vor von einer Klasse ableiten zu können, was unter Umständen nötig ist, wenn
eine Klasse beispielsweise eine bestimmte Klasse der Framework Class Library ab-
geleitet werden soll.

Eine abstrakte Basisklasse verfügt jedoch über einen wesentlichen Vorteil: Im
Gegensatz zu Schnittstellen kann sie nicht nur Methodendefinitionen, sondern auch
Code enthalten. Falls also von zahlreichen Klassen gemeinsam genutzter Code be-
steht, kann eine abstrakte Basisklasse helfen, die Redundanz zu vermindern und die
Wartbarkeit zu verbessern.

8.3 Schnittstellen implementieren

Nachdem die Schnittstellen IPersistable, IMemento und IMementoComplexNum-
ber definiert wurden, können diese nun von der Klasse ComplexNumber verwendet
werden. Werden Schnittstellen von einer Klasse implementiert, werden diese genau-
so wie Basisklassen mit dem Operator : angegeben, wobei mehrere Schnittstellen
kommasepariert aufgezählt werden. Wird so wohl eine Basisklasse wie auch min-
destens eine Schnittstelle angegeben, muss die Basisklasse vor den Schnittstellen
genannt werden.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public sealed class ComplexNumber : IPersistable
9 {
10 #region Properties
11 #endregion
12
13 #region Methods
14 #endregion
15
16 #region Constructors
17 #endregion
18 }
19 }

Da die Klasse ComplexNumber nun die Schnittstelle IPersistable implementiert,
muss sie die beiden Methoden Store und Restore der Schnittstelle bereitstellen und
mit Inhalt füllen. Dazu werden die beiden Methoden implementiert, als handele es
sich um native Methoden der Klasse ComplexNumber.

8.3 Schnittstellen implementieren 89

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public sealed class ComplexNumber : IPersistable
9 {
10 #region Properties
11 #endregion
12
13 #region Methods
14 // ...
15
16 /// <summary >
17 /// Stores the current instance in the specified
18 /// memento .
19 /// </summary >
20 /// <param name =" memento ">The memento .</param >
21 public void Store(IMemento memento)
22 {
23 // TODO gr: Store the current instance .
24 // 2007 -06 -25
25 }
26
27 /// <summary >
28 /// Restores the current instance from the specified
29 /// memento .
30 /// </summary >
31 /// <param name =" memento ">The memento .</param >
32 public void Restore (IMemento memento)
33 {
34 // TODO gr: Restore the current instance .
35 // 2007 -06 -25
36 }
37 #endregion
38
39 #region Constructors
40 #endregion
41 }
42 }

Diese Variante der Implementierung wird implizit genannt, da implizit gegeben
ist, aus welcher Schnittstelle die Definition der entsprechenden Methode stammt.
Werden von einer Klasse mehrere Schnittstellen implementiert, kann es allerdings
zu Mehrdeutigkeiten kommen, wenn zwei Schnittstellen beispielsweise eine gleich-
namige Methode definieren.

Für diesen Fall gibt es die explizite Implementierung, bei der dem Methodenna-
men der Name der Schnittstelle samt dem Operator . vorangestellt wird. Wird eine
Methode explizit implementiert, darf kein Zugriffsmodifizierer angegeben werden.

90 8 Schnittstellen

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a complex number .
7 /// </summary >
8 public sealed class ComplexNumber : IPersistable
9 {
10 #region Properties
11 #endregion
12
13 #region Methods
14 // ...
15
16 /// <summary >
17 /// Stores the current instance in the specified
18 /// memento .
19 /// </summary >
20 /// <param name=" memento ">The memento .</ param >
21 void IPersistable.Store (IMemento memento)
22 {
23 // TODO gr: Store the current instance .
24 // 2007 -06 -25
25 }
26
27 /// <summary >
28 /// Restores the current instance from the specified
29 /// memento .
30 /// </summary >
31 /// <param name=" memento ">The memento .</ param >
32 void IPersistable.Restore (IMemento memento)
33 {
34 // TODO gr: Restore the current instance .
35 // 2007 -06 -25
36 }
37 #endregion
38
39 #region Constructors
40 #endregion
41 }
42 }

Kapitel 9
Delegaten

9.1 Was sind Delegaten?

Delegaten sind Verweistypen, die im Gegensatz zu den übrigen Verweistypen nicht
auf Datenstrukturen, sondern auf Methoden verweisen. Delegaten ermöglichen es
unter anderem, einer aufzurufenden Methode eine weitere Methode als Parameter
zu übergeben. Diese übergebene Methode kann im weiteren Verlauf von der ur-
sprünglich aufgerufenen Methode ausgeführt werden, ohne dass bekannt sein muss,
in welcher Klasse diese Methode enthalten ist.

Häufig wird dies verwendet, um bei aufwändigen Berechnungen einem überwa-
chenden Objekt zu signalisieren, dass die Berechnung abgeschlossen wurde. Da-
für wird eine Methode des überwachenden Objektes als Delegat an die berech-
nende Klasse übergeben. Sobald die Berechnung beendet ist, wird die Methode
als sogenannte Rückrufmethode an dem überwachenden Objekt aufgerufen, ohne
dass die überwachende Klasse der berechnenden Klasse überhaupt bekannt sein
muss.

Sobald einem Delegaten eine Methode zugewiesen wurde, verhält er sich genau
wie diese Methode. Da die Bindung einer Methode an einen Delegaten allerdings
nicht feststehend ist, kann dies dynamisch zur Laufzeit geändert werden, so dass
sich das Verhalten der Anwendung ändern lässt. Die einzige Voraussetzung zur Bin-
dung einer Methode an einen Delegaten ist, dass beide im Hinblick auf den Typ des
Rückgabewertes und der Parameter übereinstimmen.

Ein Delegat wird ähnlich einer abstrakten Methode definiert, allerdings wird zwi-
schen dem Zugriffsmodifizierer und dem Rückgabewert zusätzlich das Schlüssel-
wort delegate angegeben. Für die Namensgebung gilt als Richtlinie, dass der Na-
me eines Delegaten um das Suffix Callback ergänzt wird, für die Schreibweise gilt
Pascal Case. Diese Syntax wird zwar von Microsoft empfohlen, in der Framework
Class Library allerdings nicht konsistent eingehalten, weshalb es einige Delegaten
gibt, deren Namen dieser Konvention nicht folgen.

Im folgenden sollen ergänzend zu der Schnittstelle IPersistable Delegaten einge-
setzt werden, um den Beginn und das Abschließen so wohl des Speicherns wie auch

Golo Roden, Auf der Fährte von C# 91
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

92 9 Delegaten

des Wiederherstellens zu signalisieren. Daher werden zunächst die entsprechenden
Delegaten definiert:

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins .
7 /// </summary >
8 public delegate void StoringCallback();
9
10 /// <summary >
11 /// Executes when storing has finished .
12 /// </summary >
13 public delegate void StoredCallback();
14
15 /// <summary >
16 /// Executes when restoring begins .
17 /// </summary >
18 public delegate void RestoringCallback ();
19
20 /// <summary >
21 /// Executes when restoring has finished .
22 /// </summary >
23 public delegate void RestoredCallback ();
24 }

Obwohl Delegaten so wohl außerhalb wie auch innerhalb einer Klasse definiert
werden können, ist es üblich, sie außerhalb einer Klasse zu definieren, da sie an-
sonsten nur innerhalb der sie umgebenden Klasse verwendbar sind.

9.2 Multicast-Delegaten

Nachdem ein Delegat definiert wurde, kann er ebenso wie eine Klasse instanziiert
werden. Während der Delegat als Typ an Hand seiner Signatur nur beschreibt, auf
welche Methoden mit ihm verwiesen werden kann, verweist eine Instanz hingegen
auf eine konkrete Methode. Prinzipiell entspricht diese Unterscheidung zwischen
Delegat und Delegatinstanz der Unterscheidung zwischen Klasse und Objekt.

Eine Delegatinstanz wird ebenso wie ein Feld erzeugt, indem innerhalb einer
Klasse ein entsprechendes Element definiert wird. Um ihr eine Methode zuzuwei-
sen, gibt es zwei verschiedene Varianten. Zum einen kann direkt die Methode an-
gegeben werden, zum anderen wird die Methode einem Delegatenkonstruktor über-
geben. Da eine Delegatinstanz zunächst auf genau eine Methode verweist, wird sie
häufig auch als Unicast-Delegat bezeichnet.

9.2 Multicast-Delegaten 93

Im folgenden Code werden vier Delegatinstanzen in der Klasse ComplexNum-
ber definiert, die auf klasseninterne Methoden verweisen. Da den Delegaten statt
dessen auch Methoden anderer Objekte oder Klassen zugeordnet werden könnten,
kann beliebiger Code auf die Ereignisse des Speicherns und des Wiederherstellens
reagieren, ohne dass der Code in der Klasse ComplexNumber dafür speziell ange-
passt werden müsste. Delegaten sind dabei nicht auf objektgebundene Methoden
beschränkt, sondern können ebenfalls Verweise auf klassengebundene Methoden
aufnehmen.

Der Aufruf eines Delegaten gleicht dem Aufruf einer Methode. Zudem gelten für
einen objektbezogenen Delegaten die gleichen Richtlinien wie für objektbezogene
Methoden, für einen klassenbezogenen Delegaten gelten die gleichen Richtlinien
wie für klassenbezogene Methoden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins .
7 /// </summary >
8 public delegate void StoringCallback ();
9
10 /// <summary >
11 /// Executes when storing has finished .
12 /// </summary >
13 public delegate void StoredCallback ();
14
15 /// <summary >
16 /// Executes when restoring begins .
17 /// </summary >
18 public delegate void RestoringCallback ();
19
20 /// <summary >
21 /// Executes when restoring has finished .
22 /// </summary >
23 public delegate void RestoredCallback ();
24
25 /// <summary >
26 /// Represents a complex number .
27 /// </summary >
28 public sealed class ComplexNumber : IPersistable
29 {
30 #region Properties
31 #endregion
32
33 #region Delegates
34 /// <summary >
35 /// Executes when storing begins .
36 /// </summary >

94 9 Delegaten

37 private StoringCallback StoringCallback =
38 this.Storing ;
39
40 /// <summary >
41 /// Executes when storing has finished .
42 /// </summary >
43 private StoredCallback StoredCallback =
44 this.Stored ;
45
46 /// <summary >
47 /// Executes when restoring begins .
48 /// </summary >
49 private RestoringCallback RestoringCallback =
50 this.Restoring ;
51
52 /// <summary >
53 /// Executes when restoring has finished .
54 /// </summary >
55 private RestoredCallback RestoredCallback =
56 this.Restored ;
57 #endregion
58
59 #region Methods
60 // ...
61
62 /// <summary >
63 /// Stores the current instance in the specified
64 /// memento .
65 /// </summary >
66 /// <param name=" memento ">The memento .</ param >
67 public void Store (IMemento memento)
68 {
69 // Call the storing callback .
70 this.StoringCallback ();
71
72 // TODO gr: Store the current instance .
73 // 2007 -06 -25
74
75 // Call the stored callback .
76 this.StoredCallback();
77 }
78
79 /// <summary >
80 /// Restores the current instance from the specified
81 /// memento .
82 /// </summary >
83 /// <param name=" memento ">The memento .</ param >
84 public void Restore (IMemento memento)
85 {
86 // Call the restoring callback .
87 this.RestoringCallback ();
88
89 // TODO gr: Restore the current instance .
90 // 2007 -06 -25

9.2 Multicast-Delegaten 95

91
92 // Call the restored callback .
93 this. RestoredCallback ();
94 }
95
96 /// <summary >
97 /// Executes when storing begins .
98 /// </summary >
99 public void Storing ()

100 {
101 // TODO gr: Insert code here.
102 // 2007 -06 -26
103 }
104
105 /// <summary >
106 /// Executes when storing has finished .
107 /// </summary >
108 public void Stored ()
109 {
110 // TODO gr: Insert code here.
111 // 2007 -06 -26
112 }
113
114 /// <summary >
115 /// Executes when restoring begins .
116 /// </summary >
117 public void Restoring ()
118 {
119 // TODO gr: Insert code here.
120 // 2007 -06 -26
121 }
122
123 /// <summary >
124 /// Executes when restoring has finished .
125 /// </summary >
126 public void Restored ()
127 {
128 // TODO gr: Insert code here.
129 // 2007 -06 -26
130 }
131 #endregion
132
133 #region Constructors
134 #endregion
135 }
136 }

Allerdings können einer Delegatinstanz problemlos weitere Methoden zugeord-
net werden. Wird ein solcher Delegat aufgerufen, werden nacheinander alle ihm zu-
geordneten Methoden aufgerufen. Die Aufrufreihenfolge der einzelnen Methoden
ist dabei allerdings unbekannt ist, weshalb Abhängigkeiten zwischen den Methoden
vermieden werden sollten. Solche Delegatinstanzen werden, da sie auf mehrere Me-

96 9 Delegaten

thoden verweisen, als Multicast-Delegaten bezeichnet. Hingegen werden Delegaten,
die auf lediglich eine Methode verweisen, als Singlecast-Delegaten bezeichnet.

Um einer Delegatinstanz eine weitere, zusätzliche Methode zuzuordnen, wird
der Operator += verwendet. Dabei kann die gleiche Methode einem Delegaten auch
mehrfach zugeordnet werden, so dass sie mehrfach ausgeführt wird, sobald der De-
legat aufgerufen wird. Sofern als Rückgabewert eines Delegaten nicht void definiert
wird, wird der Rückgabewert der intern zuletzt aufgerufenen Methode zurückgege-
ben. Alle anderen Rückgabewerte gehen verloren.

C#

1 // Assign a method to the delegate .
2 MyDelegate Foo = this.Bar1;
3
4 // Assign an additional method to the delegate .
5 Foo += this.Bar2;

Analog zu += kann die Bindung von Methoden an einen Delegaten mit dem Ope-
rator -= wieder aufgelöst werden, wobei keine Prüfung stattfindet, ob die zu entfer-
nende Methode tatsächlich an den Delegaten gebunden ist. Wurde eine Methode
mehrfach an einen Delegaten gebunden, so muss jede Bindung einzeln aufgehoben
werden. Alternativ kann einem Delegaten explizit der Wert null zugewiesen werden,
wodurch alle Bindungen an jegliche Methoden aufgehoben werden.

C#

1 // Assign a method to the delegate .
2 MyDelegate Foo = this.Bar1;
3
4 // Assign an additional method to the delegate .
5 Foo += this.Bar2;
6
7 // Remove the first method from the delegate .
8 Foo -= this.Bar1;
9
10 // Assign null to the delegate and remove all methods from
11 // the delegate .
12 Foo = null;

9.3 Anonyme Methoden

Unter Umständen kann es aufwändig sein, eine Methode für einen Delegaten zur
Verfügung zu stellen. Dies ist insbesondere dann der Fall, wenn die Methode zum
einen nur an den Delegaten gebunden und ansonsten nirgends verwendet wird, und
wenn sie zum anderen nur sehr wenig Code enthält.

Seit der Version 2.0 von C# gibt es daher die Möglichkeit, Code direkt an einen
Delegaten zu binden, ohne dafür eine eigenständige Methode definieren zu müssen.

9.3 Anonyme Methoden 97

Ein solches Konstrukt wird – da der auszuführende Code sich wie eine Methode
verhält, allerdings namenlos ist – als anonyme Methode bezeichnet, wohingegen
tatsächliche Methoden als benannte Methoden bezeichnet werden.

Um einem Delegaten eine anonyme Methode zuzuweisen, wird wiederum das
Schlüsselwort delegate verwendet. Der Methodenrumpf wird wie bei der Definition
einer Methode durch geschweifte Klammern umschlossen, wobei die schließende
geschweifte Klammer bei einer anonymen Methode durch ein zusätzliches Semiko-
lon abgeschlossen werden muss.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins .
7 /// </summary >
8 public delegate void StoringCallback();
9
10 /// <summary >
11 /// Executes when storing has finished .
12 /// </summary >
13 public delegate void StoredCallback();
14
15 /// <summary >
16 /// Executes when restoring begins .
17 /// </summary >
18 public delegate void RestoringCallback ();
19
20 /// <summary >
21 /// Executes when restoring has finished .
22 /// </summary >
23 public delegate void RestoredCallback ();
24
25 /// <summary >
26 /// Represents a complex number .
27 /// </summary >
28 public sealed class ComplexNumber : IPersistable
29 {
30 #region Properties
31 # endregion
32
33 #region Delegates
34 /// <summary >
35 /// Executes when storing begins .
36 /// </summary >
37 private StoringCallback StoringCallback = delegate ()
38 {
39 // TODO gr: Insert code here.
40 // 2007 -06 -27
41 };
42

98 9 Delegaten

43 /// <summary >
44 /// Executes when storing has finished .
45 /// </summary >
46 private StoredCallback StoredCallback = delegate ()
47 {
48 // TODO gr: Insert code here.
49 // 2007 -06 -27
50 };
51
52 /// <summary >
53 /// Executes when restoring begins .
54 /// </summary >
55 private RestoringCallback RestoringCallback = delegate ()
56 {
57 // TODO gr: Insert code here.
58 // 2007 -06 -27
59 };
60
61 /// <summary >
62 /// Executes when restoring has finished .
63 /// </summary >
64 private RestoredCallback RestoredCallback = delegate ()
65 {
66 // TODO gr: Insert code here.
67 // 2007 -06 -27
68 };
69 #endregion
70
71 #region Methods
72 // ...
73 /// <summary >
74 /// Stores the current instance in the specified memento .
75 /// </summary >
76 /// <param name =" memento ">The memento .</param >
77 public void Store(IMemento memento)
78 {
79 // Call the storing callback .
80 this. StoringCallback();
81
82 // TODO gr: Store the current instance .
83 // 2007 -06 -25
84
85 // Call the stored callback .
86 this. StoredCallback();
87 }
88
89 /// <summary >
90 /// Restores the current instance from the specified
91 /// memento .
92 /// </summary >
93 /// <param name =" memento ">The memento .</param >
94 public void Restore (IMemento memento)
95 {
96 // Call the restoring callback .

9.4 Lambdaausdrücke 99

97 this. RestoringCallback ();
98
99 // TODO gr: Restore the current instance .

100 // 2007 -06 -25
101
102 // Call the restored callback .
103 this.RestoredCallback ();
104 }
105 # endregion
106
107 #region Constructors
108 # endregion
109 }
110 }

Sofern ein Delegat über Parameter verfügt, können diese innerhalb der runden
Klammern wie bei der Definition einer Methode angegeben werden. Insgesamt soll-
ten anonyme Methoden allerdings sehr sparsam und gezielt eingesetzt werden, da
sie dazu verführen, sämtliche Delegaten vor Ort zu behandeln, statt eine Anwendung
sauber zu strukturieren.

9.4 Lambdaausdrücke

Seit der Version 3.0 von C# gibt es mit Hilfe der sogenannten Lambdaausdrücke ei-
ne noch weiter verkürzte Möglichkeit, anonyme Methoden zu definieren. Ein Lamb-
daausdruck kann überall dort verwendet werden, wo auch eine anonyme Methode
möglich wäre. An Stelle des Schlüsselwortes delegate wird ein Lambdaausdruck
innerhalb runder Klammern angegeben, die den eigentlichen Ausdruck enthalten.

Ein Lambdaausdruck bildet dabei einen Eingangsparameter auf einen Ausgangs-
parameter ab, wobei der Operator => verwendet wird. Um beispielsweise eine kom-
plexe Zahl auf ihren Absolutbetrag abzubilden, kann der Lambdaausdruck

C#

1 (c => c. AbsoluteValue)

verwendet werden. Der Typ des Ein- und Ausgangsparameters ergibt sich dabei dy-
namisch, ebenso spielt die Wahl des Bezeichners zur Identifikation der komplexen
Zahl keine Rolle, er dient nur dazu, die komplexe Zahl überhaupt ansprechen zu
können.

Kapitel 10
Ereignisse

10.1 Was sind Ereignisse?

Delegaten sind nützlich, um von Objekten benachrichtigt zu werden, wenn be-
stimmte Ereignisse eintreffen. Allerdings gibt es ein Problem, wenn sich ein be-
obachtendes Objekt an einen Delegaten anhängen will – entweder müssen die Dele-
gaten für den Zugriff von außen freigegeben werden, oder es müssen entsprechende
Methoden zum Hinzufügen und Entfernen einer Methode existieren.

Beide Varianten verfügen jeweils über einige Nachteile. Während bei der Frei-
gabe für den Zugriff von außen die Kontrolle verloren geht, so dass beispielswei-
se sämtliche gebundenen Methoden von außen entfernt werden könnten, erzeugt
die Bereitstellung entsprechender Methoden zusätzlichen Entwicklungs- und War-
tungsaufwand.

Um den Zugriff sauber kapseln zu können und den Entwicklungsaufwand mög-
lichst gering zu halten, verfügt C# über das Konzept der Ereignisse. Prinzipiell
ist ein Ereignis nichts anderes als eine für interne Delegaten öffentlich verfügbare
Schnittstelle, über die beliebige Methoden an den zugehörigen Delegaten gebunden
werden können. Insofern fußen Ereignisse in C# auf der Basis der Delegaten.

Damit ein Ereignis definiert werden kann, muss zunächst ein entsprechender De-
legat bestehen, der als Vorlage für die Rückrufmethoden des Ereignisses fungiert.
Delegaten, die für Ereignisse eingesetzt werden, folgen einer anderen Namenskon-
vention als die übrigen Delegaten: Ihr Name besteht aus dem Namen des Ereignisses
in Pascal Case, ergänzt um das Suffix EventHandler.

Die Ereignisse an sich werden mit Hilfe des Schlüsselwortes event in der Klas-
se ComplexNumber definiert, wobei der zu verwendende Delegat in der Definition
angegeben wird. Für Ereignisse gilt die Namenskonvention, dass ihr Name einem
Verb entspricht – in der Verlaufsform, falls das Ereignis ausgelöst wird, bevor die
eigentliche Aktion ausgeführt wird, in der Vergangenheitsform, falls danach. Für
die Schreibweise gilt Pascal Case.

In der Regel sollen Methoden, die durch ein Ereignis aufgerufen werden, einige
Informationen über das das Ereignis auslösende Objekt zur Verfügung gestellt wer-

Golo Roden, Auf der Fährte von C# 101
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

102 10 Ereignisse

den. Daher wird ein Delegat, der als ereignisbehandelnde Methode fungiert, selten
parameterlos definiert. Es gilt als guter Stil, zwei Parameter mitzugeben, von de-
nen der erste eine Referenz auf das Objekt, welches das Ereignis ausgelöst hat, zur
Verfügung stellt, der zweite hingegen zusätzliche Informationen zu dem Ereignis an
sich enthält.

Für den ersten Parameter wird zumeist der Typ object verwendet, wobei der Pa-
rameter mit dem Namen sender versehen wird. Der Typ des zweiten Parameters ent-
spricht häufig einer eigens zu diesem Zweck definierten Klasse, die lediglich Felder
und zugehörige Eigenschaften enthält, um Daten auszutauschen, wobei diese Klasse
üblicherweise von der Klasse EventArgs aus dem Namensraum System abgeleitet
wird.

Der Name der Klasse folgt den für Klassen üblichen Namenskonventionen, wo-
bei als Suffix zusätzlich noch EventArgs angehängt wird. Sofern keine eigene Klas-
se zum Datenaustausch benötigt wird, kann auch direkt auf die Klasse EventArgs
zurückgegriffen werden. Als Name für den Parameter wird in beiden Fällen übli-
cherweise der Buchstabe e verwendet, gängig sind allerdings auch ea, eventArgs
und eventArguments.

Obwohl in der Framework Class Library durchgängig e verwendet wird, ent-
spricht dies am wenigsten den Namenskonventionen von C#. Unter diesem Ge-
sichtspunkt sollte am ehesten eventArguments eingesetzt werden.

C#

1 public delegate void Bar(object sender , EventArgs e);
2
3 public event Bar FooEvent ;

Sofern ein Ereignis auf Grund einer Datenänderung auftritt, werden im ersten
Parameter häufig so wohl der alte wie auch der neue Wert an alle ereignisbehan-
delnden Methoden übergeben. Diese haben dann die Möglichkeit, auf Basis dieser
beiden Werte eigene Aktionen auszuführen. Gelegentlich wird dieser Parameter zu-
dem eingesetzt, um die Ausführung des Ereignisses abzubrechen, indem eine ent-
sprechende Eigenschaft namens Cancel auf true gesetzt wird, die schließlich vor der
eigentlichen Ausführung des Ereignisses abgefragt wird.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins .
7 /// </summary >
8 /// <param name =" sender ">The sender .</ param >
9 /// <param name ="e">The event arguments .</ param >
10 public delegate void StoringEventHandler(
11 object sender , EventArgs eventArguments);
12

10.1 Was sind Ereignisse? 103

13 /// <summary >
14 /// Executes when storing has finished .
15 /// </summary >
16 /// <param name =" sender ">The sender .</ param >
17 /// <param name ="e">The event arguments .</ param >
18 public delegate void StoredEventHandler(
19 object sender , EventArgs eventArguments);
20
21 /// <summary >
22 /// Executes when restoring begins .
23 /// </summary >
24 /// <param name =" sender ">The sender .</ param >
25 /// <param name ="e">The event arguments .</ param >
26 public delegate void RestoringEventHandler(
27 object sender , EventArgs eventArguments);
28
29 /// <summary >
30 /// Executes when restoring has finished .
31 /// </summary >
32 /// <param name =" sender ">The sender .</ param >
33 /// <param name ="e">The event arguments .</ param >
34 public delegate void RestoredEventHandler(
35 object sender , EventArgs eventArguments);
36
37 /// <summary >
38 /// Represents a complex number .
39 /// </summary >
40 public sealed class ComplexNumber : IPersistable
41 {
42 #region Properties
43 #endregion
44
45 #region Events
46 /// <summary >
47 /// Fires when storing begins .
48 /// </summary >
49 public event StoringEventHandler Storing ;
50
51 /// <summary >
52 /// Fires when storing has finished .
53 /// </summary >
54 public event StoredEventHandler Stored ;
55
56 /// <summary >
57 /// Fires when restoring begins .
58 /// </summary >
59 public event RestoringEventHandler Restoring ;
60
61 /// <summary >
62 /// Fires when restoring has finished .
63 /// </summary >
64 public event RestoredEventHandler Restored ;
65 #endregion
66

104 10 Ereignisse

67 #region Methods
68 // ...
69
70 /// <summary >
71 /// Stores the current instance in the specified
72 /// memento .
73 /// </summary >
74 /// <param name=" memento ">The memento .</ param >
75 public void Store (IMemento memento)
76 {
77 // TODO gr: Store the current instance .
78 // 2007 -06 -25
79 }
80
81 /// <summary >
82 /// Restores the current instance from the specified
83 /// memento .
84 /// </summary >
85 /// <param name=" memento ">The memento .</ param >
86 public void Restore (IMemento memento)
87 {
88 // TODO gr: Restore the current instance .
89 // 2007 -06 -25
90 }
91 #endregion
92
93 #region Constructors
94 #endregion
95 }
96 }

Obwohl die in diesem Beispiel verwendeten Ereignisse sämtlich objektgebunden
sind, können Ereignisse mit Hilfe des Schlüsselwortes static wie auch Felder, Eigen-
schaften und Methoden als klassengebunden definiert werden. Klassengebundene
Ereignisse erlauben es, auf Aktionen des gesamten Typs und nicht eines speziellen
Objekts zu reagieren.

10.2 Auslösen von Ereignissen

Nachdem ein Ereignis definiert wurde, kann es ausgelöst werden. Prinzipiell ge-
schieht dies, indem es wie eine Methode aufgerufen wird, wobei die gleichen Kon-
ventionen wie für den direkten Aufruf einer Methode oder eines Delegaten gelten.
Intern wird dabei der Aufruf an den Delegaten weitergereicht, der dem Ereignis zu-
geordnet ist. Dieser wiederum löst – je nachdem, ob es sich um einen Singlecast-
oder einen Multicast-Delegaten handelt, eine oder mehrere Methoden aus, die an
den Delegaten gebunden worden sind.

Da ein Ereignis in der Regel von dem Objekt ausgelöst wird, das auch die Ur-
sache für das Ereignis darstellt, wird zumeist this als erster Parameter angegeben.

10.2 Auslösen von Ereignissen 105

Der zweite Parameter muss allerdings kontextbezogen erzeugt werden. Da sich dies
aufwändiger gestalten kann, wird das Auslösen eines Ereignisses in eine eigene Me-
thode ausgelagert, deren Aufruf sich an den entsprechenden Stellen dann deutlich
kompakter als das direkte Auslösen des Ereignisses gestaltet.

Als Name trägt eine solche Methode den Namen des Ereignisses, ergänzt um das
Präfix On. Die Methode, die also beispielsweise das Ereignis Stored auslöst, hieße
OnStored. Häufig werden in der Praxis die Methoden, die auf ein Ereignis reagieren,
derart benannt, was nach den Namensrichtlinien von C# allerdings falsch ist.

Da diese Methoden nur von innerhalb der Klasse ausgelöst werden sollten, wer-
den sie in der Regel mit dem Zugriffsmodifizierer protected und zusätzlich mit dem
Schlüsselwort virtual versehen. Dies geschieht, damit eine abgeleitete Klasse die
ereignisauslösende Methode gegebenenfalls überschreiben kann. Im folgenden Bei-
spiel ist die Klasse allerdings versiegelt, weshalb der Zugriffsmodifizierer private
gewählt wurde.

Bevor ein Ereignis in einer solchen Methode aufgerufen wird, sollte zunächst
noch geprüft werden, ob sich überhaupt Objekte zur Überwachung des Ereignisses
registriert haben. Da der Delegat ansonsten null ist, würde der Aufruf ohne eine
solche Prüfung ins Leere laufen und einen Fehler erzeugen, der zum Abbruch der
Anwendung führt.

Obwohl noch nicht alle Konzepte vorgestellt wurden, die für diese Prüfung benö-
tigt werden, wird sie an dieser Stelle dennoch eingeführt, da sie zum einen zwingend
benötigt wird, zum anderen Ereignisaufrufe sich nur durch das konkrete, auszulö-
sende Ereignis unterscheiden – der Rest folgt immer dem gleichen Schema. Nähere
Informationen finden sich in den Kapiteln zu Operatoren und Anweisungen.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins .
7 /// </summary >
8 /// <param name =" sender ">The sender .</ param >
9 /// <param name ="e">The event arguments .</ param >
10 public delegate void StoringEventHandler(
11 object sender , EventArgs eventArguments);
12
13 /// <summary >
14 /// Executes when storing has finished .
15 /// </summary >
16 /// <param name =" sender ">The sender .</ param >
17 /// <param name ="e">The event arguments .</ param >
18 public delegate void StoredEventHandler(
19 object sender , EventArgs eventArguments);
20
21 /// <summary >
22 /// Executes when restoring begins .
23 /// </summary >

106 10 Ereignisse

24 /// <param name =" sender ">The sender .</ param >
25 /// <param name ="e">The event arguments .</ param >
26 public delegate void RestoringEventHandler (
27 object sender , EventArgs eventArguments);
28
29 /// <summary >
30 /// Executes when restoring has finished .
31 /// </summary >
32 /// <param name =" sender ">The sender .</ param >
33 /// <param name ="e">The event arguments .</ param >
34 public delegate void RestoredEventHandler(
35 object sender , EventArgs eventArguments);
36
37 /// <summary >
38 /// Represents a complex number .
39 /// </summary >
40 public sealed class ComplexNumber : IPersistable
41 {
42 #region Properties
43 #endregion
44
45 #region Events
46 /// <summary >
47 /// Fires when storing begins .
48 /// </summary >
49 public event StoringEventHandler Storing ;
50
51 /// <summary >
52 /// Fires when storing has finished .
53 /// </summary >
54 public event StoredEventHandler Stored ;
55
56 /// <summary >
57 /// Fires when restoring begins .
58 /// </summary >
59 public event RestoringEventHandler Restoring ;
60
61 /// <summary >
62 /// Fires when restoring has finished .
63 /// </summary >
64 public event RestoredEventHandler Restored ;
65 #endregion
66
67 #region Methods
68 // ...
69
70 /// <summary >
71 /// Raises the storing event.
72 /// </summary >
73 private void OnStoring ()
74 {
75 // Check if there are any event handlers .
76 if(this.Storing != null)
77 {

10.2 Auslösen von Ereignissen 107

78 // Raise the storing event.
79 this.Storing (this , null);
80 }
81 }
82
83 /// <summary >
84 /// Raises the stored event .
85 /// </summary >
86 private void OnStored ()
87 {
88 // Check if there are any event handlers .
89 if(this.Stored != null)
90 {
91 // Raise the stored event .
92 this.Stored (this , null);
93 }
94 }
95
96 /// <summary >
97 /// Raises the restoring event .
98 /// </summary >
99 private void OnRestoring ()

100 {
101 // Check if there are any event handlers .
102 if(this. Restoring != null)
103 {
104 // Raise the restoring event .
105 this.Restoring (this , null);
106 }
107 }
108
109 /// <summary >
110 /// Raises the restored event.
111 /// </summary >
112 private void OnRestored ()
113 {
114 // Check if there are any event handlers .
115 if(this.Restored != null)
116 {
117 // Raise the restored event.
118 this.Restored (this , null);
119 }
120 }
121
122 /// <summary >
123 /// Stores the current instance in the specified
124 /// memento .
125 /// </summary >
126 /// <param name =" memento ">The memento .</param >
127 public void Store(IMemento memento)
128 {
129 // Raise the storing event .
130 this. OnStoring ();
131

108 10 Ereignisse

132 // TODO gr: Store the current instance .
133 // 2007 -06 -25
134
135 // Raise the stored event .
136 this.OnStored ();
137 }
138
139 /// <summary >
140 /// Restores the current instance from the specified
141 /// memento .
142 /// </summary >
143 /// <param name=" memento ">The memento .</ param >
144 public void Restore (IMemento memento)
145 {
146 // Raise the restoring event .
147 this.OnRestoring ();
148
149 // TODO gr: Restore the current instance .
150 // 2007 -06 -25
151
152 // Raise the restored event.
153 this.OnRestored ();
154 }
155 #endregion
156
157 #region Constructors
158 #endregion
159 }
160 }

10.3 Reagieren auf Ereignisse

Damit ein außenstehendes Objekt auf ein Ereignis reagieren kann, muss es eine
Methode als ereignisbehandelnde Methode an dem Ereignis registrieren. Da Ereig-
nisse intern nichts anderes als Delegaten sind, entspricht die Vorgehensweise zum
Registrieren und Deregistrieren der zum Binden und Lösen von Methoden an De-
legaten – der einzige Unterschied ist, dass für Ereignisse nur die Varianten mit den
Operatoren += und -= zulässig sind. Eine direkte Zuweisung einer Methode oder
das Zuweisen des Wertes null sind nicht möglich.

Als Namensrichtlinie gilt, dass eine ereignisbehandelnde Methode dem Namen
des ereignisauslösenden Objekts, ergänzt um einen Unterstrich und den Namen des
Ereignisses entspricht, wobei jeweils Pascal Case angewandt wird. Eine Methode,
die das Ereignis Stored der Klasse ComplexNumber behandelt, hieße also Complex-
Number_Stored.

Kapitel 11
Generika

11.1 Was sind Generika?

Die Schnittstelle IMemento, die zum Speichern und Wiederherstellen von Daten
dient, verfügt über einen eklatanten Nachteil: In der bislang verwendeten Form ist
sie auf Daten vom Typ float beschränkt.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes .
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name ="key">The key .</ param >
15 /// <param name =" value">The value .</ param >
16 void Store(string key , float value);
17
18 /// <summary >
19 /// Restores the value stored with the specified
20 /// key.
21 /// </summary >
22 /// <param name ="key">The key .</ param >
23 /// <returns >The value .</ returns >
24 float Restore (string key);
25 }
26 }

Bei der Verwendung der Schnittstelle mit der Klasse ComplexNumber hat sich
diese Einschränkung nicht ausgewirkt, da dort nur Daten vom Typ float verwen-

Golo Roden, Auf der Fährte von C# 109
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

110 11 Generika

det werden. Falls die Schnittstelle jedoch mehr Datentypen unterstützen soll, was
spätestens dann benötigt wird, wenn die Schnittstelle allgemeingültig für zahlrei-
che verschiedene Klassen eingesetzt werden soll, macht sich diese Einschränkung
deutlich bemerkbar.

Die einfachste Variante, die Schnittstelle um die benötigten Datentypen zu er-
weitern, liegt darin, die entsprechenden Methoden zu ergänzen. Bei der Methode
Store bedeutet dies zwar einigen Aufwand, prinzipiell ist es aber überhaupt mög-
lich, da sich die einzelnen überladenen Methoden im Typ des zweiten Parameters
unterscheiden. Im folgenden Code wurde die Schnittstelle um eine Methode zum
Speichern von Zeichenketten erweitert.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes .
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name="key ">The key .</ param >
15 /// <param name=" value">The value .</param >
16 void Store(string key , float value);
17
18 /// <summary >
19 /// Stores the specified value using the specified
20 /// key.
21 /// </summary >
22 /// <param name="key ">The key .</ param >
23 /// <param name=" value">The value .</param >
24 void Store(string key , string value);
25
26 /// <summary >
27 /// Restores the value stored with the specified
28 /// key.
29 /// </summary >
30 /// <param name="key ">The key .</ param >
31 /// <returns >The value .</ returns >
32 float Restore (string key);
33 }
34 }

Abgesehen von dem notwendigen Aufwand, eine prinzipiell immer gleiche Me-
thode zu definieren, funktioniert dieser Ansatz bei der Methode Restore nicht: Da als
Parameter immer ein string übergeben wird und sich die Methoden nur durch den
Typ des Rückgabewertes unterscheiden würden, ist ein Überladen nicht möglich.

11.1 Was sind Generika? 111

Als Ausweg bietet es sich an, den Typ des Rückgabewertes in den Methodennamen
aufzunehmen, um die Methoden unterscheidbar zu machen.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes .
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >
11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <param name ="key">The key .</ param >
15 /// <param name =" value">The value .</ param >
16 void Store(string key , float value);
17
18 /// <summary >
19 /// Stores the specified value using the specified
20 /// key.
21 /// </summary >
22 /// <param name ="key">The key .</ param >
23 /// <param name =" value">The value .</ param >
24 void Store(string key , string value);
25
26 /// <summary >
27 /// Restores the value stored with the specified
28 /// key.
29 /// </summary >
30 /// <param name ="key">The key .</ param >
31 /// <returns >The value .</ returns >
32 float RestoreAsFloat(string key);
33
34 /// <summary >
35 /// Restores the value stored with the specified
36 /// key.
37 /// </summary >
38 /// <param name ="key">The key .</ param >
39 /// <returns >The value .</ returns >
40 string RestoreAsString(string key);
41 }
42 }

Auch wenn dieser Ansatz funktioniert, ist dies nicht sonderlich elegant. Seit C#
2.0 gibt es für derartige Probleme eine Lösung, nämlich die sogenannten generi-
schen Datentypen, die kurz auch als Generika bezeichnet werden. Generika stellen
immer dann eine gangbare elegante Lösung dar, wenn der gleiche Algorithmus oder

112 11 Generika

die gleiche Datenstruktur mehrfach implementiert werden muss, wobei sich die ein-
zelnen Varianten nur durch den Typ der zu verarbeitenden Daten unterscheiden.

In einem solchen Fall ermöglichen es Generika, den Algorithmus oder die Daten-
struktur nur ein einziges Mal implementieren zu müssen, ohne von vornherein einen
konkreten Typ festzulegen. Statt dessen wird der Typ abstrahiert und an seiner Stel-
le ein Platzhalter eingefügt, der erst von dem Compiler durch den tatsächlichen Typ
ersetzt wird. Da der Compiler den tatsächlichen Typ in den MSIL-Code schreibt,
sind generische Datentypen trotz ihres abstrakten Ansatzes typsicher.

Der Platzhalter kann so wohl bei Klassen und Schnittstellen wie auch bei be-
liebigen Elementen wie Feldern, Eigenschaften oder Methoden eingesetzt werden
und wird durch ein paar Spitzklammern begrenzt. Als Name wird üblicherweise der
Buchstabe T, der als Kürzel für Type steht, verwendet. Falls mehr als ein Platz-
halter benötigt wird, wird jeder einzelne Typparameter mit dem Buchstaben T als
Suffix und einem folgenden Substantiv in Pascal Case benannt, wobei die zusätzli-
chen Platzhalter durch Kommata getrennt innerhalb der Spitzklammern aufgelistet
werden.

Um also die Schnittstelle IMemento als generischen Datentyp zur Verfügung zu
stellen, muss ihre Definition um den Platzhalter für den tatsächlich zu verarbeiten-
den Typ ergänzt werden. Innerhalb der Schnittstelle kann an Stelle der Typangabe
dann der Platzhalter T verwendet werden. Der Typparameter wird dabei im XML-
Kommentar mit Hilfe des Elementes typeparam beschrieben.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes .
7 /// </summary >
8 /// <typeparam name="T">The type.</ typeparam >
9 public interface IMemento <T>
10 {
11 /// <summary >
12 /// Stores the specified value using the specified
13 /// key.
14 /// </summary >
15 /// <param name="key ">The key .</ param >
16 /// <param name=" value">The value .</param >
17 void Store(string key , T value);
18
19 /// <summary >
20 /// Restores the value stored with the specified
21 /// key.
22 /// </summary >
23 /// <param name="key ">The key .</ param >
24 /// <returns >The value .</ returns >
25 T Restore (string key);
26 }

11.1 Was sind Generika? 113

27 }

Die Schnittstelle IMemento kann nun für beliebige Typen eingesetzt werden, in-
dem sie über ihren Namen ergänzt um einen konkreten Typ angesprochen wird. Statt
IMemento muss in der Schnittstelle IPersistable nun IMemento<float> angegeben
werden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for persisting an object .
7 /// </summary >
8 public interface IPersistable
9 {
10 /// <summary >
11 /// Stores the current instance to the specified
12 /// memento .
13 /// </summary >
14 /// <param name =" memento ">The memento .</param >
15 void Store(IMemento <float > memento);
16
17 /// <summary >
18 /// Restores the current instance to the specified
19 /// memento .
20 /// </summary >
21 /// <param name =" memento ">The memento .</param >
22 void Restore (IMemento <float > memento);
23 }
24 }

Nachteilig an dieser Variante ist allerdings, dass nun für jeden einzelnen Daten-
typ eine eigene Schnittstelle IMemento mit dem jeweiligen Typ definiert werden
muss. Daher kann der Typ auch nur für eine Methode angegeben werden, so dass
die Schnittstelle IMemento nach wie vor allgemein gültig bleibt, ihre Methoden aber
unter Angabe eines Typs aufgerufen werden müssen.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Provides methods for memento classes .
7 /// </summary >
8 public interface IMemento
9 {
10 /// <summary >

114 11 Generika

11 /// Stores the specified value using the specified
12 /// key.
13 /// </summary >
14 /// <typeparam name="T">The type.</ typeparam >
15 /// <param name="key ">The key .</ param >
16 /// <param name=" value">The value .</param >
17 void Store <T>(string key , T value);
18
19 /// <summary >
20 /// Restores the value stored with the specified
21 /// key.
22 /// </summary >
23 /// <typeparam name="T">The type.</ typeparam >
24 /// <param name="key ">The key .</ param >
25 /// <returns >The value .</ returns >
26 T Restore <T>(string key);
27 }
28
29 /// <summary >
30 /// Provides methods for persisting an object .
31 /// </summary >
32 public interface IPersistable
33 {
34 /// <summary >
35 /// Stores the current instance to the specified
36 /// memento .
37 /// </summary >
38 /// <param name=" memento ">The memento .</ param >
39 void Store(IMemento <float > memento);
40
41 /// <summary >
42 /// Restores the current instance to the specified
43 /// memento .
44 /// </summary >
45 /// <param name=" memento ">The memento .</ param >
46 void Restore (IMemento <float > memento);
47 }
48 }

11.2 Typparameter

Allen bisher verwendeten generischen Typparametern ist gemein, dass es keine Ein-
schränkungen gibt, welche Typen an Stelle des Platzhalters eingesetzt werden kön-
nen. Solche Typparameter werden daher auch als nicht gebundene oder ungebun-
dene Typparameter bezeichnet. Allerdings verfügen ungebundene Typparameter –
eben weil es keine Einschränkung der potenziellen Typen gibt – ihrerseits über ei-
nige Einschränkungen.

Unabhängig davon, dass der Typ bei ungebundenen Typparametern unbekannt
ist, lassen sich auch keinerlei Annahmen über die Art des Typs machen: Es ist unbe-

11.2 Typparameter 115

kannt, welche Schnittstellen dieser Typ implementiert, es ist unbekannt, ob der Typ
von einer bestimmten Basisklasse ableitet, es ist nicht einmal bekannt, ob es sich
bei dem Typ um einen Verweis- oder einen Wertetyp handelt.

In einigen Fällen kann es erforderlich sein, die potenziellen Typen einzuschrän-
ken. Dazu dient in C# das Schlüsselwort where, mit dem zusätzliche Angaben zu
einem Typ gemacht werden können. Typparameter, die mit diesem Schlüsselwort
näher spezifiziert wurden, werden als gebundene Typparameter bezeichnet.

Sofern mehr als ein Typparameter verwendet wird, muss für jeden dieser Typpa-
rameter, der gebunden werden soll, ein eigenes where angegeben werden.

Die einfachste Variante einer Typeinschränkung gibt an, ob es sich bei dem Typ-
parameter um einen Verweis- oder einen Wertetyp handelt. Für Wertetypen wird als
Basisklasse des Typparameters das Schlüsselwort struct angegeben, für Verweisty-
pen class.

C#

1 public void Foo <T> where T : class
2 {
3 }

Ebenso kann an Stelle des Schlüsselwortes class auch eine konkrete Klasse oder
Schnittstelle angegeben werden, welcher der Typparameter entsprechen muss. Wie
bei der Vererbung von Klassen können mehrere Schnittstellen angegeben werden,
zudem können sie mit der Angabe einer Klasse kombiniert werden. In diesem Fall
werden die einzelnen Angaben durch Kommata getrennt.

C#

1 public void Foo <T> where T : Bar , IBar1 , IBar2
2 {
3 }

Schließlich kann der Ausdruck new() angegeben werden, um zu definieren, dass
der Typparameter über einen öffentlichen parameterlosen Konstruktor verfügen
muss. Falls dieser Ausdruck angegeben wird, muss er als letzter angegeben werden.

C#

1 public void Foo <T> where T : class , new ()
2 {
3 }

Als Spezialfall gibt es des weiteren noch Typparameter, die wiederum durch
einen Typparameter eingeschränkt werden, indem dieser weitere Typparameter bei-
spielsweise als notwendige Basisklasse angegeben wird. Solche Typeinschränkun-
gen werden als naked bezeichnet.

C#

1 public void Foo <TDerived , TBase > where TDerived : TBase

116 11 Generika

2 {
3 }

Da bei einem Typparameter nicht notwendigerweise bekannt ist, ob es sich um
einen Verweis- oder einen Wertetyp handelt, ist es nicht möglich, ihn mit dem Stan-
dardwert zu initialisieren. Um einen Typparameter dennoch mit dem Standardwert
seines Typs initialisieren zu können, gibt es das Schlüsselwort default, das wie eine
Methode verwendet wird, und dem als Parameter der entsprechende Typ übergeben
werden muss.

C#

1 public T Foo <T >()
2 {
3 return default (T);
4 }

Neben Schnittstellen und Methoden können auch Klassen, Strukturen und Dele-
gaten mit Typparametern versehen werden.

11.3 Lambdaausdrücke

Generika eignen sich jedoch nicht nur dazu, Typen mit Hilfe von Typparametern
flexibel gestalten zu können, sie ermöglichen auch die Definition von Lambdaaus-
drücken während der Ausführung. Dazu bietet C# seit der Version 3.0 den vorgefer-
tigten Delegaten Func im Namensraum System an, dem als Typparameter die Typen
der Parameter und des Rückgabewertes des zu erzeugenden Lambdaausdrucks über-
geben werden.

Soll beispielsweise ein Lambdaausdruck definiert werden, der eine komplexe
Zahl in ihren Absolutbetrag überführt, so ist dies mit Hilfe dieses Delegaten mög-
lich. Als Typparameter werden in diesem Fall die Klasse ComplexNumber sowie
float als Typ des Absolutbetrags angegeben.

C#

1 Func <ComplexNumber , float > GetAbsoluteValue =
2 (c => c.AbsoluteValue);

Die auf diese Art erzeugte Delegatinstanz kann im weiteren Verlauf wie jeder an-
dere Delegat aufgerufen werden. Sollen nicht nur ein, sondern mehrere Parameter
angegeben werden, müssen diese zum einen dem Delegaten Func wie auch inner-
halb des Lambdaausdrucks kommasepariert innerhalb von runden Klammern ange-
geben werden.

C#

1 Func <ComplexNumber , ComplexNumber , ComplexNumber > Add =
2 ((c1 , c2) => c1 + c2);

Kapitel 12
Nullbare Wertetypen

12.1 Was sind nullbare Wertetypen?

Neben Verweis- und Wertetypen verfügt C# seit der Version 2.0 über eine weite-
re Art von Typen, die nullbaren Wertetypen. Diese entsprechen einem Hybriden
zwischen Verweis- und Wertetypen, da sie in ihrer Funktion den Wertetypen ent-
sprechen, zusätzlich allerdings den Wert null annehmen können, der üblicherweise
Verweistypen vorbehalten ist.

Mit nullbaren Wertetypen ist es beispielsweise möglich, den Wert eines Werte-
typs als unbekannt zu kennzeichnen. Ohne die Möglichkeit, null zuordnen zu kön-
nen, müsste dafür ein konkreter Wert verwendet werden, wie beispielsweise die Zahl
Null oder eine leere Zeichenkette. Allerdings entfiele in diesem Fall die Möglich-
keit, zwischen dem tatsächlichen Wert Null beziehungsweise der leeren Zeichenket-
te und einem unbekannten Wert zu unterscheiden.

Intern werden nullbare Wertetypen durch einen Verweistyp dargestellt, indem
dieser als Container für den Wertetyp dient und zusätzliche Eigenschaften bereit-
stellt, um mit dem Wert null umgehen zu können.

Definiert wird ein nullbarer Wertetyp, indem an die Typdefinition ein ? angehängt
wird. Um die Klasse ComplexNumber derart zu erweitern, dass der Real- und der
Imaginärteil einer komplexen Zahl der Wert null angegeben werden kann, muss
in den entsprechenden Definitionen der Typ float? an Stelle von float verwendet
werden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins .
7 /// </summary >
8 /// <param name =" sender ">The sender .</ param >
9 /// <param name ="e">The event arguments .</ param >

Golo Roden, Auf der Fährte von C# 117
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

118 12 Nullbare Wertetypen

10 public delegate void StoringEventHandler(
11 object sender , EventArgs eventArguments);
12
13 /// <summary >
14 /// Executes when storing has finished .
15 /// </summary >
16 /// <param name =" sender ">The sender .</ param >
17 /// <param name ="e">The event arguments .</ param >
18 public delegate void StoredEventHandler(
19 object sender , EventArgs eventArguments);
20
21 /// <summary >
22 /// Executes when restoring begins .
23 /// </summary >
24 /// <param name =" sender ">The sender .</ param >
25 /// <param name ="e">The event arguments .</ param >
26 public delegate void RestoringEventHandler (
27 object sender , EventArgs eventArguments);
28
29 /// <summary >
30 /// Executes when restoring has finished .
31 /// </summary >
32 /// <param name =" sender ">The sender .</ param >
33 /// <param name ="e">The event arguments .</ param >
34 public delegate void RestoredEventHandler(
35 object sender , EventArgs eventArguments);
36
37 /// <summary >
38 /// Represents a complex number .
39 /// </summary >
40 public sealed class ComplexNumber : IPersistable
41 {
42 #region Properties
43 // ...
44
45 /// <summary >
46 /// Gets or sets the real part.
47 /// </summary >
48 /// <value >The real part.</value >
49 public float? RealPart
50 {
51 get
52 {
53 return this._realPart ;
54 }
55
56 set
57 {
58 this._realPart = value;
59 }
60 }
61
62 /// <summary >
63 /// Gets or sets the imaginary part.

12.1 Was sind nullbare Wertetypen? 119

64 /// </summary >
65 /// <value >The imaginary part.</ value >
66 public float ? ImginaryPart
67 {
68 get
69 {
70 return this._imaginaryPart;
71 }
72
73 set
74 {
75 this._imaginaryPart = value;
76 }
77 }
78 #endregion
79
80 #region Events
81 #endregion
82
83 #region Methods
84 #endregion
85
86 #region Constructors
87 /// <summary >
88 /// Initializes a new instance of the ComplexNumber
89 /// type using default values .
90 /// </summary >
91 public ComplexNumber()
92 : this(null , null)
93 {
94 }
95
96 /// <summary >
97 /// Initializes a new instance of the ComplexNumber
98 /// type using the specified real value .
99 /// </summary >

100 /// <param name =" realPart ">The real part.</param >
101 public ComplexNumber(float? realPart)
102 : this(realPart , null)
103 {
104 }
105
106 /// <summary >
107 /// Initializes a new instance of the ComplexNumber
108 /// type using the specified real and imaginary
109 /// values .
110 /// </summary >
111 /// <param name =" realPart ">The real part.</param >
112 /// <param name =" imaginaryPart">The imaginary
113 /// part.</ param >
114 public ComplexNumber(
115 float ? realPart , float? imaginaryPart)
116 {
117 // Set default values for the real and

120 12 Nullbare Wertetypen

118 // imaginary part.
119 this.RealPart = realPart ;
120 this.ImaginaryPart = imaginaryPart;
121 }
122 #endregion
123 }
124 }

Da die Typen float und float? für C# verschieden sind, müssen nicht nur die
Definitionen der Felder, sondern auch die der zugehörigen Eigenschaften, Methoden
und Konstruktoren angepasst werden.

Insbesondere in den Konstruktoren muss entschieden werden, mit welchen Stan-
dardwerten die Felder initialisiert werden sollen – bislang war es die Zahl Null, in
der neuen Version werden die Felder statt dessen mit null initialisiert, falls kein kon-
kreter Wert angegeben wird. Dies entspricht der Bedeutung des Literals null, dass
der eigentliche Wert nämlich nicht bekannt ist.

Kapitel 13
Enumerationen

13.1 Was sind Enumerationen?

Häufig besteht Bedarf, für einen Parameter einer Methode nur eine gewisse Auswahl
an vorgegebenen Werten zuzulassen. Handelt es sich dabei nur um einen Wahrheits-
wert, also einen Wert, der entweder wahr oder falsch ist, bietet sich dafür als Typ
bool an. Dieser Typ sollte allerdings nur verwendet werden, wenn true und false
tatsächlich die beiden Alternativen darstellen.

In der Praxis wird bool häufig auch dann verwendet, wenn nur eine der beiden
Alternativen selbstbeschreibend ist. Der Konstruktor der Klasse ComplexNumber
könnte beispielsweise derart erweitert werden, dass ihm ein Parameter vom Typ bool
übergeben wird, der angibt, ob es sich bei der zu initialisierenden komplexen Zahl
um eine konjugierte Zahl handelt. In diesem Fall entsprechen die möglichen Werte
true und false den beiden Alternativen, da eine komplexe Zahl entweder konjugiert
ist oder nicht.

In einem anderen Fall könnte die Schnittstelle IPersistent um einen Parameter
erweitert werden, der angibt, ob die Daten auf Festplatte geschrieben und von dort
wieder geladen werden sollen. Hierfür ergibt der Typ bool wenig Sinn, denn true
gibt als Wert zwar an, dass die Festplatte verwendet werden soll, aber die Angabe
von false ist sinnlos – es wird zwar festgelegt, dass die Festplatte nicht verwendet
werden soll, die Angabe des Speicherortes ist aber nicht gegeben.

Für diese Fälle, in denen mehr als eine Option angegeben werden sollen, verfügt
C# über sogenannte Enumerationen. Eine Enumeration kann verschiedene Werte
enthalten, die über ihren jeweiligen Namen angesprochen werden können. Definiert
wird eine Enumeration mit Hilfe des Schlüsselwortes enum, wobei die einzelnen
Werte kommasepariert innerhalb geschweifter Klammern aufgezählt werden. Im
Gegensatz zu einer Klasse muss allerdings hinter der schließenden geschweiften
Klammer ein Semikolon angegeben werden.

Die Namenskonventionen für Enumerationen entsprechen prinzipiell denen von
Klassen, allerdings wird der Name einer Enumeration im Plural angegeben.

Golo Roden, Auf der Fährte von C# 121
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

122 13 Enumerationen

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Contains storage locations for the persistence
7 /// interface .
8 /// </summary >
9 public enum StorageLocations
10 {
11 /// <summary >
12 /// The disk as storage location .
13 /// </summary >
14 Disk ,
15
16 /// <summary >
17 /// A databse as storage location .
18 /// </summary >
19 Database
20 };
21 }

Der Vorteil in der Verwendung einer Enumeration an Stelle einer Zahl oder einer
Zeichenkette zur Identifikation des Wertes liegt zum einen in der Verständlichkeit,
da der entsprechende Wert über seinen Namen angesprochen wird, zum anderen
in der Überprüfbarkeit durch den Compiler. Ein Schreibfehler eines Wertes aus ei-
ner Enumeration wird vom Compiler entdeckt, während ein Schreibfehler in einer
Zeichenkette erst zur Laufzeit durch einen auftretenden Fehler entdeckt wird.

Intern wird eine Enumeration allerdings durch den Datentyp int repräsentiert,
wobei die einzelnen Werte der Enumeration von Null beginnend nummeriert wer-
den. Dieses standardmäßige Verhalten kann allerdings überschrieben werden, indem
einem oder mehreren Werten explizit eine Ganzzahl zugeordnet wird. Alle Werte,
denen keine eigene Zahl zugeordnet wird, erhalten dabei als interne Repräsentation
eine automatisch inkrementierte Nummer.

Im folgenden Beispiel beginnt die Enumeration bei eins, da für den Wert Data-
base keine eigene Repräsentation angegeben wird, erhält er automatisch den nächst-
höheren Wert, nämlich zwei.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Contains storage locations for the persistence
7 /// interface .
8 /// </summary >
9 public enum StorageLocations

13.1 Was sind Enumerationen? 123

10 {
11 /// <summary >
12 /// The disk as storage location .
13 /// </summary >
14 Disk = 1,
15
16 /// <summary >
17 /// A databse as storage location .
18 /// </summary >
19 Database
20 };
21 }

Anders als Klassen leiten Enumerationen nicht direkt von dem Typ object ab,
sondern von der Struktur Enum im Namensraum System.

Kapitel 14
Variablen

14.1 Was sind Variablen?

Die bisher einzige Möglichkeit, Daten zu speichern, besteht in der Verwendung von
Feldern. Diese sind dann nützlich, wenn die entsprechenden Daten relevant für den
Status des Objektes an sich sind. Allerdings besteht manchmal die Notwendigkeit,
Daten temporär zu speichern, wenn diese beispielsweise als Zwischenergebnis einer
Berechnung für eine spätere Verarbeitung zur Verfügung stehen sollen, nach dem
Abschluss der Berechnung aber nicht mehr benötigt werden.

Für diese Fälle verfügt C# über ein ähnliches Konzept wie Felder, nämlich Va-
riablen. Im Gegensatz zu Feldern werden Variablen allerdings nicht innerhalb eines
Typs, sondern innerhalb einer Methode definiert und stehen dort auch nur so lan-
ge zur Verfügung, wie die Methode ausgeführt wird. Deshalb werden sie auch als
lokale Variablen bezeichnet.

Nachdem die Ausführung der Methode, welche die lokalen Variablen enthält, be-
endet wurde, wird der Speicher der lokalen Variablen wieder freigegeben, wodurch
diese ihren Wert verlieren und sich beim nächsten Aufruf der Methode wieder derart
verhalten, als wären sie noch nie verwendet worden.

Da der Zugriff auf lokale Variablen nur aus der Methode möglich ist, welche die
lokalen Variablen enthält, wird bei deren Deklaration auf die Angabe eines Zugriffs-
modifizierers verzichtet. Wie bei Feldern kann auch lokalen Variablen ein Standard-
wert zugewiesen werden. Falls ein Standardwert für eine lokale Variable angegeben
wird, wird ihre Erzeugung als Definition bezeichnet, andernfalls als Deklaration.

Als Namenskonventionen gelten die Regeln von Feldern, mit der Ausnahme, dass
auf den führenden Unterstrich verzichtet wird.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >

Golo Roden, Auf der Fährte von C# 125
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

126 14 Variablen

8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Declare the mathematical constant pi.
16 double pi;
17 }
18 }
19 }

Nachdem eine Variable deklariert wurde, kann auf sie und damit auf ihren Wert
zugegriffen werden. Die Zuweisung eines neuen Wertes erfolgt analog der Zuwei-
sung eines Wertes an ein Feld mit Hilfe des Operators =.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define the mathematical constant pi.
16 double pi = 3.1415926;
17 }
18 }
19 }

Mit Variablen ist es nun auch möglich, den Rückgabewert von Methoden zu ver-
arbeiten, indem bei der Zuweisung an Stelle eines konkreten Wertes der Methoden-
aufruf angegeben wird. In diesem Fall wird zunächst die Methode aufgerufen und
ausgeführt und anschließend ihr Rückgabewert der Variablen zugewiesen.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >

14.1 Was sind Variablen? 127

8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // TODO gr: Create a complex number .
16 // 2007 -07 -10
17
18 // Determine the absolute value and assign it
19 // to a local variable .
20 float absoluteValue =
21 complexNumber.AbsoluteValue;
22 }
23 }
24 }

Die lokale Variable kann im folgenden Verlauf der Methode verwendet werden,
um weitere Berechnungen auszuführen, oder um ihren Wert auf die Konsole auszu-
geben. Zu diesem Zweck enthält die Framework Class Library die Klasse Console
im Namensraum System, deren Methode WriteLine den Wert des übergebenen Pa-
rameters auf der Konsole ausgibt.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // TODO gr: Create a complex number .
16 // 2007 -07 -10
17
18 // Determine the absolute value and assign it
19 // to a local variable .
20 float absoluteValue =
21 complexNumber.AbsoluteValue;
22
23 // Print the absolute value to the console .
24 Console . WriteLine (absoluteValue);
25 }
26 }
27 }

128 14 Variablen

Variablen eignen sich jedoch nicht nur dazu, den Rückgabewert eines einfachen
Methodenaufrufs aufzunehmen. Mit ihrer Hilfe kann eine weitere, neue Art von Me-
thoden definiert werden, die vorher nicht möglich war: Rekursive Methoden. Dabei
handelt es sich um Methoden, die sich intern selbst aufrufen, um ihren Rückgabe-
wert zu berechnen.

Ein bekanntes Beispiel für eine rekursive Berechnung ist die Folge der Fibonacci-
Zahlen. In dieser Folge werden nur für die beiden ersten Elemente die Werte 0 und
1 vorgegeben, alle folgenden Elemente berechnen sich aus der Summe ihrer beiden
Vorgänger. Das dritte Element entspricht also der Summe aus 0 und 1, das vierte
Element der Summe aus 1 und 1, das fünfte der Summe aus 1 und 2, ...

Hierdurch ergibt sich die Folge:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Diese Folge lässt sich rekursiv berechnen, da die n-te Fibonacci-Zahl der Summe
aus der n-1-ten und n-2-ten Fibonacci-Zahl entspricht, wobei diese wiederum aus
ihren Vorgängern berechnet werden können. Prinzipiell folgt eine Methode zur Be-
rechnung der Fibonacci-Zahlen also dem folgenden Schema:

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Calculates the n-th Fibonacci number .
12 /// </summary >
13 public int CalculateFibonacci(int n)
14 {
15 // Declare a variable for the sum of the
16 // predecessors.
17 int sum ;
18
19 // TODO gr: Calculate the number by adding
20 // its predecessors.
21 // 2007 -07 -17
22
23 // Return the sum to the caller .
24 return sum ;
25 }
26 }
27 }

Würde man diese Methode allerdings in dieser Form aufrufen, käme es zu einem
Überlauf im Methodenstapel, da sich die Methode ohne Abbruch immer wieder
selbst aufriefe und somit in eine endlose Schleife geriete. Die Lösung stellt ein Ab-

14.2 Zuweisungen an Variablen 129

bruchkriterium dar, das im Fall von n gleich 1 oder 2 die entsprechend definierten
Startwerte der Fibonacci-Folge zurückgibt.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Calculates the n-th Fibonacci number .
12 /// </summary >
13 public int CalculateFibonacci(int n)
14 {
15 // TODO gr: Check whether the first or the
16 // second Fibonacci number is requested .
17 // If so , return the appropriate values .
18 // 2007 -07 -17
19
20 // Declare a variable for the sum of the
21 // predecessors.
22 int sum;
23
24 // TODO gr: Calculate the number by adding its
25 // predecessors.
26 // 2007 -07 -17
27
28 // Return the sum to the caller .
29 return sum;
30 }
31 }
32 }

Prinzipiell kann eine lokale Variable an jeder beliebigen Stelle einer Methode
definiert werden, sofern die Deklaration vor der ersten Verwendung der Variablen
statt findet. Es gilt allerdings als guter Stil, eine lokale Variable so spät wie möglich
vor ihrer ersten Verwendung zu definieren.

Da die Variable sum, welche die Summe der beiden vorangegangenen Fibonacci-
Zahlen aufnimmt, erst ab der Berechnung der dritten Fibonacci-Zahl benötigt wird,
wird sie erst nach der entsprechenden Prüfung definiert.

14.2 Zuweisungen an Variablen

Bislang wurde bereits einige Male der Operator = verwendet, um einem Feld oder
einer Variablen einen Wert zuzuweisen, weshalb dieser Operator als Zuweisungs-

130 14 Variablen

operator bezeichnet wird. Bei einer Zuweisung wird immer der Wert rechts des
Operators dem Element zu seiner Linken zugeordnet. Bisher wurde bei den Zu-
weisungen allerdings immer nur auf Wertetypen zugegriffen.

Die Zuweisung an Verweistypen funktioniert prinzipiell gleich: Einem Element
auf der linken Seite kann ein auf der rechten Seite des Operators stehendes Objekt
zugewiesen werden. Allerdings muss – damit ein Objekt zugewiesen werden kann –
zunächst ein Objekt erzeugt werden. Es wurde bereits erwähnt, dass die entspre-
chende Methode, die bei der sogenannten Instanziierung von Objekten ausgeführt
wird, der Konstruktor der entsprechenden Klasse ist.

Um also eine neue Instanz zu erzeugen, muss der Konstruktor aufgerufen wer-
den, dem allerdings zusätzlich das Schlüsselwort new vorangestellt wird. Obwohl
ein Konstruktor nicht über einen Rückgabewert verfügt, wird durch das Schlüssel-
wort new ein Verweis auf das neu erzeugte Objekt zurückgegeben, der in einem
Element gespeichert werden kann.

Um also ein Objekt der Klasse ComplexNumber zu erzeugen, müsste der Aufruf
folgendermaßen lauten:

C#

1 new ComplexNumber();

Falls der neu erzeugten komplexen Zahl direkt Werte für den Real- und den Ima-
ginärteil zugewiesen werden sollen, können diese als Parameter übergeben werden –
vorausgesetzt, es wurde ein entsprechender Konstruktor definiert.

C#

1 new ComplexNumber(23, 42);

Damit schließlich der Verweis auf das neu erzeugte Objekt gespeichert wird,
muss die Anweisung noch um eine Zuweisung an eine Variable ergänzt werden, die
zuvor deklariert werden muss.

C#

1 ComplexNumber myNumber ;
2 myNumber = new ComplexNumber(23, 42);

Alternativ kann, wie bei Wertetypen auch, die Deklaration mit einer Zuweisung
zu einer Definition verbunden werden:

C#

1 ComplexNumber myNumber = new ComplexNumber(23, 42);

Mit der Möglichkeit, Objekte erzeugen zu können, lässt sich die Klasse Com-
plexNumber nun auch in einer Anwendung nutzen, um beispielsweise die Summe
zweier komplexer Zahlen zu berechnen.

14.2 Zuweisungen an Variablen 131

C#

1 using System
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public static class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Create two complex numbers .
16 ComplexNumber first = new ComplexNumber(23, 42);
17 ComplexNumber second = new ComplexNumber(17, 2);
18
19 // Add the second number to the first one .
20 first .Add(second);
21
22 // Print the result to the console .
23 Console . WriteLine (first .Real);
24 Console . WriteLine (first .Imaginary);
25 }
26 }
27 }

Die Zuweisung an nullbare Wertetypen hingegen funktioniert wiederum so wie
die Zuweisung an normale Wertetypen. Der einzige Unterschied liegt darin, dass
nullbaren Wertetypen das Literal null zugewiesen werden kann, was bei normalen
Wertetypen nicht möglich ist.

Seit der Version 3.0 von C# gibt es mit Hilfe der sogenannten Objektinitialisierer
eine weitere Möglichkeit, Objekte zu erzeugen. Mit Objektinitialisierern ist es nicht
mehr nötig, für jede potenzielle Initialisierung einen eigenen Konstruktur bereitzu-
stellen. Statt dessen werden die zu initialisierenden Eigenschaften und ihre Werte
direkt beim Aufruf von new mit angegeben. An Stelle von

C#

1 // Create an instance of the Person type.
2 Person person = new Person ();
3
4 // Set the values .
5 person .LastName = "Roden";
6 person .FirstName = "Golo";
7 person .EMail = " webmaster@goloroden.de";

kann mit Hilfe von Objektinitialisierern also auch

132 14 Variablen

C#

1 // Create an instance of the Person type and set its
2 // values .
3 Person person = new Person {
4 LastName = "Roden", FirstName = "Golo",
5 EMail = " webmaster@goloroden.de" };

geschrieben werden. Um das Ganze noch weiter zu vereinfachen, kann sogar die
Angabe des Typs entfallen. C# erzeugt in diesem Fall im Hintergrund einen pas-
senden Typ, dessen Name dem Entwickler nicht bekannt ist, und der deshalb als
anonymer Typ bezeichnet wird. Um ein solches Objekt eines anonymen Typs in
einer Variablen speichern zu können, gibt es das Schlüsselwort var.

C#

1 // Create a new instance of an anonymous type for persons
2 // and set its values .
3 var person =
4 new { LastName = "Roden", FirstName = "Golo",
5 EMail = "webmaster@goloroden.de" };

Obwohl der Typ in diesem Beispiel dem Entwickler nicht bekannt ist, ist der
Zugriff auf das Objekt trotzdem typsicher. var steht also nicht austauschbar für jeden
beliebigen Typ, sondern leitet den zu verwendenden Typ aus dem Ausdruck auf der
rechten Seite des Zuweisungsoperators ab.

Wird ein Typ hergeleitet, dessen Eigenschaften namentlich und von ihrem Typ
einem bestehenden Typ entsprechen, wird dieser Typ verwendet. Es wird also nicht
bei jedem Aufruf von new ohne Angabe eines Typs ein neuer Typ erzeugt, sondern
nur dann, wenn kein passender Typ gefunden wird.

Das Schlüsselwort var kann prinzipiell auch für eingebaute Typen verwendet
werden, so kann an Stelle der Zeile

C#

1 // Initialize a variable of type int.
2 int i = 23;

auch die Zeile

C#

1 // Initialize a variable of type int by using type
2 // inference .
3 var i = 23;

verwendet werden. In beiden Fällen wird eine Variable des Typs int erzeugt. Zu be-
achten ist bei anonymen Typen, dass ihr Einsatz nur für lokale Variablen möglich ist,
sie können insbesondere nicht als Rückgabewert für Methoden verwendet werden.

Kapitel 15
Arrays

15.1 Was sind Arrays?

Felder ermöglichen zwar das Speichern von Daten, aber ein Feld kann jeweils nur
einen einzelnen Wert aufnehmen. Besteht die Notwendigkeit, mehrere gleichartige
Werte speichern zu müssen, so müssen mehrere Felder definiert werden. Insbeson-
dere bei einer hohen Anzahl an Werten neigt dieses Verfahren aber dazu, unüber-
sichtlich zu werden. Außerdem sind Fälle denkbar, in denen nicht bereits zur Ent-
wicklungszeit bekannt ist, wie viele Werte gespeichert werden sollen, da sich dies
erst zur Laufzeit ergibt.

Die Lösung für dieses Problem stellen sogenannte Arrays dar, die mehrere Werte
eines Typs aufnehmen können. Anstatt also jeden Wert in einem eigenen Feld zu
speichern, wird statt dessen ein Array als Feld angelegt, dessen Dimension ausrei-
chend ist, um alle Werte aufzunehmen.

Der Typ eines Arrays besteht aus dem Typ der Daten, die das Array aufnehmen
soll, dem ein Paar eckige Klammern folgen. Da ein Array ein Verweistyp ist, wird
es ebenso wie ein Objekt mit Hilfe des Schlüsselwortes new erzeugt, wobei dort
innerhalb eckiger Klammern die Größe des Arrays definiert wird. Im Gegensatz zu
den übrigen Klassen leitet ein Array allerdings nicht direkt von object ab, sondern
von der Klasse System.Array.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >

Golo Roden, Auf der Fährte von C# 133
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

134 15 Arrays

11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define an array for fibonacci numbers .
16 int [] fibonacci = new int [10];
17 }
18 }
19 }

Auf die einzelnen Elemente des Arrays kann im weiteren Verlauf der Anwendung
wiederum mit Hilfe der eckigen Klammern zugegriffen werden, indem in ihnen
der Index des Elements angegeben wird, auf das zugegriffen werden soll. In C#
beginnen Indizes von Arrays immer bei Null, das heißt, der höchste Index in einem
Array mit n Elementen trägt die Nummer n-1.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define an array for fibonacci numbers .
16 int [] fibonacci = new int [10];
17
18 // Initialize the array with the first two
19 // numbers .
20 fibonacci [0] = 1;
21 fibonacci [1] = 1;
22
23 // Calculate all following numbers .
24 for(int i = 2; i < 10; i++)
25 {
26 fibonacci [i] =
27 fibonacci [i - 1] + fibonacci [i - 2];
28 }
29 }
30 }
31 }

Da es aufwändig und unübersichtlich sein kann, Arrays auf diese Art zu initiali-
seren, können die enthaltenen Werte auch direkt innerhalb geschweifter Klammern

15.1 Was sind Arrays? 135

angegeben werden. In diesem Fall entfällt die Angabe der Größe des Arrays, sie
wird statt dessen aus der Anzahl der übergebenen Werte ermittelt.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define an array for fibonacci numbers and
16 // fill it with numbers .
17 int [] fibonacci =
18 new int [] { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
19 }
20 }
21 }

Arrays, die wie die bisherigen Beispiele einer Aufzählung von Werten entspre-
chen, werden auch als eindimensionale Arrays bezeichnet, da ihre Elemente nur
über einen Index verfügen. In C# können Arrays jedoch auch mehrdimensional de-
finiert werden, so dass beispielsweise bei zwei Dimensionen eine Tabelle und bei
dreien ein Würfel von Daten entsteht.

Um ein Array mit mehreren Indizes auszustatten, genügt es, bei seiner Definiti-
on mehrere Größen anzugeben, die jeweils durch ein Komma voneinander getrennt
werden. Hierbei muss allerdings beachtet werden, dass die Kommata innerhalb der
eckigen Klammern der Typdefinition ebenfalls angegeben werden müssen. Im fol-
genden Beispiel wird ein Schachbrett als Feld von acht mal acht Feldern definiert,
auf dem Figuren platziert werden können.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Contains chess figures .
7 /// </summary >
8 public enum ChessFigure
9 {
10 /// <summary >
11 /// The figure castle .

136 15 Arrays

12 /// </summary >
13 Castle ,
14
15 /// <summary >
16 /// The figure knight .
17 /// </summary >
18 Knight
19
20 // TODO gr: Define the other chess figures .
21 // 2008 -01 -03
22 }
23
24 /// <summary >
25 /// Represents the application class .
26 /// </summary >
27 public class Program
28 {
29 /// <summary >
30 /// Executes the application .
31 /// </summary >
32 public static void Main ()
33 {
34 // Create a chess board.
35 ChessFigure [,] chessBoard =
36 new ChessFigure [8, 8];
37
38 // Put chessmen onto the board.
39 chessBoard [0, 0] = ChessFigure .Castle ;
40 chessBoard [0, 1] = ChessFigure .Knight ;
41 }
42 }
43 }

Neben der Möglichkeit, Arrays ein- oder mehrdimensional zu definieren, besteht
zusätzlich die Option, Arrays ineinander zu verschachteln. Prinzipiell entspricht
ein verschachteltes Array einem mehrdimensionalen Array, allerdings können ver-
schachtelte Arrays beispielsweise für jede einzelne Zeile eine individuelle Anzahl
an Spalten definieren.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >

15.1 Was sind Arrays? 137

13 public static void Main ()
14 {
15 // Create a nested array with two lines and
16 // three columns in the first row and two
17 // columns in the second row.
18 string [] colors = new string [2];
19 colors [0] = new string [3];
20 colors [1] = new string [2];
21
22 // Fill the array .
23 colors [0][0] = "Blau";
24 colors [0][1] = "Blue";
25 colors [0][2] = "Bleu";
26 colors [1][0] = "Rot";
27 colors [1][1] = "Red";
28 }
29 }
30 }

Bei verschachtelten Arrays ist zu beachten, dass die einzelnen Dimensionen in
jeweils einem eigenen Paar eckiger Klammern angegeben werden, und die Dimen-
sionen nicht wie bei den mehrdimensionalen Arrays kommasepariert sind.

Der Einsatz von Arrays ermöglicht nicht nur, mehrere Werte in einer einzelnen
Variablen beziehungsweise einem Feld zu speichern, sondern auch, Parameter von
der Kommandozeile an die Methode Main zu übergeben. Als Parameter kann für
diese in C# nämlich ein Array von Strings angegeben werden, das die einzelnen auf
der Kommandozeile angegebenen Parameter enthält.

Auf die einzelnen Elemente kann analog zu den Elementen aller anderen Arrays
mit Hilfe des Indizes zugegriffen werden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 /// <param name =" arguments ">The arguments .</ param >
14 public static void Main(string [] arguments)
15 {
16 Console . WriteLine (
17 "The first argument is " + arguments [0]);
18 }
19 }
20 }

138 15 Arrays

Arrays können außerdem dazu eingesetzt werden, eine vorher nicht festgelegte
Anzahl von Parametern an eine Methode zu übergeben, indem die Werte in ein Ar-
ray verpackt werden, und nur dieses Array übergeben wird. Da der Typ des Arrays
nicht die Größenangabe enthält, kann das übergebene Array eine beliebige Größe
haben.

Allerdings kann es aufwändig sein, zur Übergabe einiger Parameter ein Array
erzeugen zu müssen. Daher stellt C# das Schlüsselwort params zur Verfügung, mit
dem ein Array alternativ auch als Liste einzelner Werte übergeben werden kann.
Sofern das Schlüsselwort params einem Parameter vorangestellt wird, muss die-
ser Parameter zum einen ein Array sein, zum zweiten dürfen ihm keine weiteren
Parameter folgen, und er muss der einzige Parameter sein, der über das params-
Schlüsselwort verfügt.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Sorts the specified numbers .
12 /// </summary >
13 /// <param name=" numbers ">An array of
14 /// numbers .</ param >
15 /// <returns >A sorted array of the specified
16 /// numbers .</ returns >
17 public int [] Sort(params int [] numbers)
18 {
19 // TODO gr: Sort the numbers and return them
20 // as int array to the caller .
21 // 2008 -01 -03
22 }
23 }
24 }

Wird eine solche Methode aufgerufen, so kann ihr an Stelle eines Arrays

C#

1 this.Sort(new int [] { 3, 13, 1, 8, 1, 5, 2, 34, 21, 55 });

auch eine Auflistung einzelner Zahlen übergeben werden.

C#

1 this.Sort(3, 13, 1, 8, 1, 5, 2, 34, 21, 55);

15.2 Indexer 139

15.2 Indexer

Verwandt mit Arrays sind die sogenannten Indexer, die den indizierten Zugriff auf
eine Klasse ermöglichen. Sie entsprechen technisch gesehen einer Eigenschaft, die
allerdings immer den Namen this trägt und der als Parameter ein Index innerhalb
eckiger Klammern übergeben wird.

Auf diesen kann dann innerhalb der Methoden get und set zugegriffen werden,
um beispielsweise gezielt auf ein bestimmtes Element eines Arrays zuzugreifen.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents an IP address .
7 /// </summary >
8 public class IPAddress
9 {
10 /// <summary >
11 /// Contains the individual parts of an IP address .
12 /// </summary >
13 private int [] _ipPart ;
14
15 /// <summary >
16 /// Gets or sets an individual part of the IP
17 /// address .
18 /// </summary >
19 /// <param name ="i">The index of the individual
20 /// part.</ param >
21 /// <returns >The individual part of the IP
22 /// address .</ returns >
23 public int this[int i]
24 {
25 get
26 {
27 return this._ipPart [i];
28 }
29
30 set
31 {
32 this._ipPart [i] = value;
33 }
34 }
35
36 /// <summary >
37 /// Initializes a new instance of the IPAddress
38 /// type.
39 /// </summary >
40 public IPAddress ()
41 {

140 15 Arrays

42 this._ipPart = new int [4];
43 }
44
45 /// <summary >
46 /// Initializes a new instance of the IPAddress
47 /// type.
48 /// </summary >
49 /// <param name=" ipPart1 ">The first part of the IP
50 /// address .</ param >
51 /// <param name=" ipPart2 ">The second part of the IP
52 /// address .</ param >
53 /// <param name=" ipPart3 ">The thired part of the IP
54 /// address .</ param >
55 /// <param name=" ipPart4 ">The fourth part of the IP
56 /// address .</ param >
57 public IPAddress (int ipPart1 , int ipPart2 ,
58 int ipPart3 , int ipPart4)
59 : this()
60 {
61 // Set the individual parts.
62 this._ipPart [0] = ipPart1 ;
63 this._ipPart [1] = ipPart2 ;
64 this._ipPart [2] = ipPart3 ;
65 this._ipPart [3] = ipPart4 ;
66 }
67 }
68 }

Um diesen Indexer nun von außen zu verwenden, muss die Eigenschaft nicht
mehr explizit angegeben werden, sondern es genügt, die eckigen Klammern direkt
hinter dem Namen des Objekts anzugeben.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Create a new instance of the IP address and
16 // initialize it to 192.168.0.1.
17 IPAddress ipAddress =
18 new IPAddress (192, 168, 0, 1);
19
20 // Print the first part of the address to the

15.2 Indexer 141

21 // console .
22 Console . WriteLine (ipAddress [0]);
23 }
24 }
25 }

Kapitel 16
Operatoren

16.1 Was sind Operatoren?

Nachdem Felder und Variablen nun bekannt sind, können Anwendungen Daten
speichern und auch wieder abrufen. Allerdings fehlt noch eine Möglichkeit, Daten
zu verändern, um beispielsweise Berechnungen ausführen oder Daten miteinander
verknüpfen zu können. Die Änderung von Daten wird in C# durch sogenannte Ope-
ratoren unterstützt, deren einfachster der bereits bekannte Zuweisungsoperator = ist.

16.2 Arithmetische Operatoren

Den ersten Typ von Operatoren stellen in C# die arithmetischen Operatoren dar, die
zum Rechnen mit Daten dienen. Arithmetische Operatoren können mit allen Werte-
typen verwendet werden, die Zahlen darstellen, wobei darauf geachtet werden muss,
dass die beiden miteinander zu verrechnenden Werte den gleichen Typ aufweisen.

Operator Funktion Beispiel

+ Addition C#

1 int x = 2;
2 int y = 3;
3
4 // The sum is 5.
5 int sum = x + y;

- Subtraktion C#

1 int x = 2;
2 int y = 3;
3
4 // The difference is -1.
5 int difference = x - y;

Golo Roden, Auf der Fährte von C# 143
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

144 16 Operatoren

* Multiplikation C#

1 int x = 2;
2 int y = 3;
3
4 // The product is 6.
5 int product = x * y;

/ Division C#

1 int x = 2;
2 int y = 3;
3
4 // The quotient is 0.
5 int quotient = x / y;

% Modulo C#

1 int x = 2;
2 int y = 3;
3
4 // The remainder is 2.
5 int remainder = x % y;

C# rechnet dabei nach den üblichen mathematischen Regeln, das heißt, es gilt
Punkt- vor Strichrechnung. Allerdings kann diese Regelung – wie in der Mathema-
tik auch – durch das Setzen von Klammern geändert werden.

C#

1 int x = 2;
2 int y = 3;
3 int z = 5;
4
5 // The result without brackets is 17, with brackets it is 25.
6 int resultA = x + y * z;
7 int resultB = (x + y) * z;

Während sich die Operatoren +, - und * so verhalten, wie man es erwarten würde,
gibt es bei den beiden Divisionsoperatoren / und % einige Sonderfälle zu beachten.
Zunächst ist das Ergebnis einer Verknüpfung von zwei Operanden mit einem arith-
metischen Operator wieder vom gleichen Typ wie die beiden Operanden.

Wenn allerdings zwei Operanden von einem ganzzahligen Typ wie beispielswei-
se int oder long dividiert werden sollen, ist das Ergebnis unter Umständen nicht
ganzzahlig. Deshalb werden in diesem Fall die Nachkommastellen abgeschnitten
und nur der ganzzahlige Anteil als Ergebnis zurückgegeben.

C#

1 int x = 4;
2 int y = 2;
3
4 // The quotient is 2, since the result is an integer (2).
5 int quotient = x / y;

16.2 Arithmetische Operatoren 145

6 x = 3;
7
8 // The quotient is 1, since the result is not an integer
9 // (1,5) and hence the decimal part is cut off.
10 quotient = x / y;

Außerdem muss darauf geachtet werden, dass bei der Division nicht durch die
Zahl Null geteilt wird, da dies mathematisch nicht definiert ist und zur Laufzeit der
Anwendung ein entsprechender Fehler ausgelöst wird.

Die einzige Ausnahme von der Regel, dass arithmetische Operatoren mit jedem
Wertetyp verwendet werden können, der Zahlen darstellt, ist der Modulo-Opera-
tor %, der nur für ganzzahlige Operanden definiert ist. Der Modulo-Operator gibt
den Rest zurück, der entsteht, wenn der eine Operand durch den anderen geteilt
wird.

C#

1 int x = 1;
2 int y = 3;
3
4 // The remainder is 1, since 3 is not contained in 1,
5 // so there is 1 left.
6 int remainder = x % y;
7
8 x = 2;
9
10 // The remainder is 2, since 3 is not contained in 2,
11 // so there is 2 left.
12 remainder = x % y;
13
14 x = 3;
15
16 // The remainder is 0, since 3 is contained one time in 3,
17 // so there is 0 left.
18 remainder = x % y;

Die Modulo-Division entspricht also in gewisser Weise der Art, wie Uhrzeiten
berechnet werden. Eine Uhr könnte die Stunden intern nämlich fortlaufend zählen,
diese für die Ausgabe allerdings modulo zwölf rechnen.

Häufig kommt es vor, dass eine Variable mit sich selbst verrechnet wird, indem
ihr Wert beispielsweise verdoppelt werden soll. Um den Wert einer Variablen i zu
verdoppeln, muss dieser mit zwei multipliziert und das Ergebnis anschließend wie-
der der Variablen i zugewiesen werden.

C#

1 i = i * 2;

Da Berechnungen dieser Art häufig auftreten, gibt es eine kürzere Schreibweise
für diesen Fall, bei dem eine Nennung der Variablen entfallen kann, und der Zuwei-

146 16 Operatoren

sungsoperator seinen Platz mit dem arithmetischen Operator tauscht, wobei dieses
Verfahren mit jedem arithmetischen Operator funktioniert.

C#

1 // Adequate to i = i * 2.
2 i *= 2;

Für die besonders häufig auftretenden Fälle, dass eine Variable um eins erhöht
oder vermindert werden muss, gibt es sogar eine noch kürzere Schreibweise, indem
die Variable mit dem Operator ++ oder -- verknüpft wird. Da dieser Operator keinen
zweiten Operanden benötigt, wird er als unärer Operator bezeichnet, wohingegen
die anderen arithmetischen Operatoren binäre Operatoren sind.

C#

1 // Adequate to i = i + 1.
2 i++;

Für die beiden unären Operatoren ++ und -- gibt es allerdings zwei Varianten -
- der Operator kann nämlich entweder hinter der Variablen, in der sogenannten
Postfix-Notation, oder vor der Variablen, in der sogenannten Präfix-Notation ange-
geben werden. Der Unterschied liegt darin, ob zuerst der Wert verändert oder zuerst
das Ergebnis zurückgegeben wird.

C#

1 int i = 3;
2
3 // Prints 3 to the console and increments i afterwards to 4.
4 Console .WriteLine (i++);
5
6 // Prints 5 to the console , since i is incremented before it
7 // gets printed .
8 Console .WriteLine (++i);

Schließlich gibt es noch zwei spezielle Fälle, die berücksichtigt werden müs-
sen: Der mathematische Über- beziehungsweise Unterlauf. Ein Überlauf tritt immer
dann auf, wenn das Resultat einer Berechnung zu groß für den entsprechenden Typ
ist, ein Unterlauf analog dazu, wenn das Resultat zu klein ist.

Sofern diese beiden Fälle nicht gesondert berücksichtigt werden, treten Rechen-
fehler auf, sobald der größt- oder kleinstmögliche Wert über- oder unterschritten
wurden. Die Anwendung wird ansonsten aber weiterhin ausgeführt. Falls eine ex-
plizite Überprüfung erforderlich ist, kann diese mit dem Schlüsselwort checked für
einen abgeschlossenen Codeabschnitt aktiviert werden.

C#

1 int x = 2;
2 int y = 3;

16.3 Relationale Operatoren 147

3
4 // Activate checked calculations.
5 checked
6 {
7 Console .WriteLine (x + y);
8 }

Im Fall eines Über- oder Unterlaufs tritt wie bei einer Division durch Null ein
Fehler auf. So nützlich der Einsatz von checked ist, so sollte dennoch berücksichtigt
werden, dass diese Prüfung Rechenzeit erfordert und die Anwendung daher an den
zu prüfenden Stellen verlangsamt, und dass diese Prüfung einen Spezialfall prüft,
der in der Praxis nicht all zu häufig auftritt. Ob checked verwendet wird oder nicht,
hängt also vom konkreten Bedarf ab.

Sofern eine Anwendung generell als checked ausgeführt werden soll, kann dem
Compiler dies durch den Parameter /checked mitgeteilt werden. Auf diese Art ist es
nicht notwendig, alle Stellen innerhalb des Codes mit dem Schlüsselwort checked zu
kennzeichnen. Allerdings ist es möglich, einzelne Stellen innerhalb des Codes mit
dem Schlüsselwort unchecked zu kennzeichnen, um sie von der generellen Prüfung
auszuschließen, wobei dieses Schlüsselwort genauso verwendet wird wie checked.

C#

1 int x = 2;
2 int y = 3;
3
4 // Activate unchecked calculations.
5 unchecked
6 {
7 Console .WriteLine (x + y);
8 }

16.3 Relationale Operatoren

Im Gegensatz zu arithmetischen Operatoren dienen die relationalen Operatoren da-
zu, etwas über das Verhältnis zweier Operanden auszusagen. Mit ihnen kann geprüft
werden, ob die beiden Operanden gleich, ungleich, größer, kleiner, größer gleich
oder kleiner gleich sind. Als Resultat wird immer ein Wahrheitswert zurückgege-
ben, der angibt, ob die angegebene Relation wahr oder falsch ist.

Operator Funktion Beispiel

== gleich C#

1 int x = 2;
2 int y = 3;
3
4 // x and y are not equal , hence false.
5 bool result = x == y;

148 16 Operatoren

!= ungleich C#

1 int x = 2;
2 int y = 3;
3
4 // x and y are not equal , hence true.
5 bool result = x != y;

> größer C#

1 int x = 2;
2 int y = 3;
3
4 // x is not greater than y, hence false.

5 bool result = x > y;

< kleiner C#

1 int x = 2;
2 int y = 3;
3
4 // x is smaller than y, hence true.
5 bool result = x < y;

>= größer
oder
gleich

C#

1 int x = 2;
2 int y = 3;
3
4 // x is not greater than or equal to y, hence
5 // false.
6 bool result = x >= y;

<= kleiner
oder
gleich

C#

1 int x = 2;
2 int y = 3;
3
4 // x is smaller than or equal to y, hence true.
5 bool result = x <= y;

Es gilt als guter Stil, die beiden Operanden mitsamt dem relationalen Operator
zu klammern, um die Lesbarkeit zu verbessern. An Stelle von

C#

1 bool result = foo == bar;

würde man also

C#

1 bool result = (foo == bar);

schreiben.
Relationale Operatoren können prinzipiell zwar auf alle Wertetypen angewandt

werden, allerdings ist dies nur begrenzt sinnvoll. Da Dezimalzahlen von Prozes-

16.4 Logische Operatoren 149

soren intern nicht exakt dargestellt werden können, kann man sich nicht darauf
verlassen, dass zwei anscheinend gleich große Zahlen des Typs float, double oder
decimal bei einem Vergleich mit dem Operator == das Literal true als Ergebnis lie-
fern. Dezimalzahlen sollten immer nur mit Hilfe von >, <, >= und <= verglichen
werden.

Verweistypen können zumindest mit Hilfe der Operatoren == und != verglichen
werden, wobei dies eine andere Semantik als bei Wertetypen hat. Während bei Wer-
tetypen der tatsächliche Wert verglichen wird, wird bei Verweistypen lediglich die
Referenz verglichen. Sofern zwei Variablen also eine Referenz auf das identische
Objekt enthalten, wird bei einem Vergleich mit == das Literal true zurückgeliefert.
Enthalten sie aber Referenzen auf zwei verschiedene Objekte, die zwar in ihren
Werten, aber nicht in ihrer Objektidentität übereinstimmen, so liefert der Vergleich
das Literal false.

C#

1 ComplexNumber foo = new ComplexNumber(23, 42);
2 ComplexNumber bar = foo ;
3
4 // Returns true , since foo and bar reference the identical
5 // object .
6 Console . WriteLine (foo == bar);
7
8 y = new ComplexNumber(23, 42);
9
10 // Returns false , since foo and bar reference different
11 // objects , even if they have the same value .
12 Console . WriteLine (foo == bar);

16.4 Logische Operatoren

Während relationale Operatoren einen Vergleich zwischen den beiden Operanden
durchführen, verknüpfen logische Operatoren diese. Logische Operatoren können
im Gegensatz zu den anderen Operatoren nur auf Operanden des Typs bool ange-
wandt werden und liefern auch als Ergebnis einen Wert des Typs bool.

Operator Funktion Beschreibung Beispiel

&& und Ergibt true, wenn
beide Operanden
true sind.

C#

1 bool x = true;
2 bool y = false;
3
4 // x and y are not both true ,
5 // hence false.
6 bool result = x && y;

150 16 Operatoren

|| oder Ergibt true, wenn
mindestens einer
der beiden Ope-
randen true ist.

C#

1 bool x = true;
2 bool y = false ;
3
4 // At least one of x and y
5 // is true , hence true.
6 bool result = x || y;

^ exklusives
oder

Ergibt true, wenn
genau einer der
beiden Operan-
den true ist.

C#

1 bool x = true;
2 bool y = false ;
3
4 // x is true , y is not ,
5 // hence true.
6 bool result = x ^ y;

! nicht Ergibt true, wenn
der Operand false
ist, und umge-
kehrt.

C#

1 bool x = true;
2
3 // x is true , hence false.
4 bool result = !x;

C# verwendet bei der Auswertung logischer Operatoren die sogenannte Kurz-
schlussevaluierung. Dies bedeutet, dass für die Auswertung eines Operators unter
Umständen nicht alle Operanden überprüft werden – ist beispielsweise bei einer
und-Verknüpfung bereits der erste Operand false, so kann das Ergebnis nicht true
sein, unabhängig davon, welchen Wert der zweite Operand aufweist. Daher wird
dieser nicht mehr überprüft und direkt false zurückgegeben.

16.5 Bitweise Operatoren

Bitweise Operatoren ähneln logischen Operatoren sehr stark, allerdings werden sie
nicht für Wahrheitswerte, sondern für Ganzzahlen verwendet. Die Überprüfung fin-
det dementsprechend auch nicht auf den Wahrheitswerten der Operanden statt, son-
dern auf Bitebene der Operanden.

Operator Funktion Beschreibung Beispiel

& und Ergibt 1, wenn
beide Bits 1 sind.

C#

1 int x = 23;
2 int y = 42;
3
4 // x is binary 010111 and y
5 // is binary 101010 , hence
6 // 000010 , which is 2.
7 int result = x {\&} y;

16.6 Zeichenkettenoperatoren 151

| oder Ergibt 1, wenn
mindestens eines
der beiden Bits 1
ist.

C#

1 int x = 23;
2 int y = 42;
3 // x is binary 010111 and y
4 // is binary 101010 , hence
5 // 111111 , which is 63.
6 int result = x | y;

^ exklusives
oder

Ergibt 1, wenn
genau eines der
beiden Bits 1 ist.

C#

1 int x = 23;
2 int y = 42;
3
4 // x is binary 010111 and y
5 // is binary 101010 , hence
6 // 111101 , which is 61.
7 int result = x ^ y;

~ nicht Ergibt 1, wenn
das Bit 0 ist, und
umgekehrt.

C#

1 int x = 23;
2
3 // x is binary 010111 , hence
4 // 101000 , which is -24 due
5 // to internal reasons .
6 int result = ~ x;

<< verschie-
ben nach
links

Schiebt alle Bits
um die angegebe-
ne Anzahl nach
links.

C#

1 int x = 23;
2
3 // x is binary 010111 , hence
4 // 101110 , which is 46.
5 int result = x << 1;

>> verschie-
ben nach
rechts

Schiebt alle Bits
um die angegebe-
ne Anzahl nach
rechts.

C#

1 int x = 23;
2
3 // x is binary 010111 , hence
4 // 001011 , which is 11.
5 int result = x >> 1;

Bitweise Operatoren werden häufig verwendet, um zu überprüfen, ob einzelne
Bits gesetzt sind, oder um diese zu setzen beziehungsweise zu löschen. Ebenso wie
arithmetische Operatoren können bitweise Operatoren mit dem Zuweisungsoperator
zu einer verkürzten Schreibweise zusammengezogen werden.

16.6 Zeichenkettenoperatoren

Zeichenketten erfahren in C# eine Sonderbehandlung. Obwohl sie technisch gese-
hen Verweistypen sind, verhalten sie sich größtenteils wie Wertetypen, was ihre
Handhabung teilweise deutlich erleichtert.

152 16 Operatoren

So liefert der Vergleich von zwei Strings mit Hilfe von == und != ein Ergeb-
nis, als wären Strings Wertetypen – enthalten sie den gleichen Text, sind sie gleich.
Außerdem können Strings mit Hilfe von <, >, <= und >= alphabetisch miteinan-
der verglichen werden. Ein String gilt dann als kleiner als ein anderer, wenn er im
Alphabet vorher einzuordnen ist.

C#

1 string foo = "Hello ";
2 string bar = "World ";
3
4 // foo and bar do not contain the same text , hence false.
5 bool result = (foo == bar);
6
7 // foo and bar do not contain the same text , hence true.
8 result = (foo != bar);
9
10 // foo is alphabetically prior to bar , hence true.
11 result = (foo < bar);
12
13 // foo is alphabetically not superior to bar , hence false.
14 result = (foo > bar);
15
16 // foo is alphabetically prior or equal to bar , hence true.
17 result = (foo <= bar);
18
19 // foo is alphabetically neither superior nor equal to bar ,
20 // hence false.
21 result = (foo >= bar);

Zudem können Strings mit dem Operator + aneinander gehängt werden, so dass
sie einen neuen zusammenhängenden String ergeben. Dieser Vorgang wird auch als
Konkatenation bezeichnet.

C#

1 string foo = "Hello ";
2 string bar = "world !";
3
4 // The result is "Hello world !".
5 string result = foo + bar ;

Ob ein String leer ist, kann geprüft werden, indem er mit dem leeren String ver-
glichen wird. Alternativ kann auch die Eigenschaft Empty der Klasse String ver-
wendet werden. Eine weitere Möglichkeit ist, die Eigenschaft Length des Strings zu
prüfen, ob diese dem Wert Null entspricht.

Da der Vergleich auf die Länge auf Grund der internen Organisation von Strings
am schnellsten ausgeführt werden kann, gilt es als guter Stil, diese Variante zu ver-
wenden.

16.7 Operatorreihenfolge 153

C#

1 string foo = "Hello";
2
3 // foo is not empty , hence false .
4 bool result = (foo == "");
5 result = (foo == String .Empty);
6 result = (foo.Length == 0);

Ob ein String leer oder eventuell sogar null ist, kann mit der statischen Methode
IsNullOrEmpty der Klasse string ermittelt werden.

C#

1 string foo = null;
2
3 // foo is null , hence true.
4 bool result = String .IsNullOrEmpty(foo);
5
6 foo = "";
7
8 // foo is empty , hence true.
9 result = String .IsNullOrEmpty(foo);
10
11 foo = "Hello";
12
13 // foo is neither null nor empty , hence false.
14 result = String .IsNullOrEmpty(foo);

16.7 Operatorreihenfolge

Falls mehrere Operatoren gleichzeitig in einer Anweisung verwendet werden, wer-
den diese zunächst von links nach rechts verarbeitet. Allerdings verfügen einige
Operatoren über eine höhere Priorität als andere, so dass die Verarbeitung diesen
Regeln folgt – ähnlich den Regeln bei den arithmetischen Operatoren.

Die Operatoren haben folgende Priorität, wobei die höchstpriorisierten Operato-
ren an oberster Stelle stehen:

Operatoren

(), []
++ (postfix), -- (postfix), ++ (präfix), --(präfix), ~, !
*, /, %
+, -
>>, >>>, <<
>, >=;, <, <=

154 16 Operatoren

==, =!
&
^
|
&&
||
?:
=, <operator>=

Mit Hilfe von Operatoren können nun die meisten Methoden der Klasse Com-
plexNumber implementiert werden.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins .
7 /// </summary >
8 /// <param name =" sender ">The sender .</ param >
9 /// <param name ="e">The event arguments .</ param >
10 public delegate void StoringEventHandler(
11 object sender , EventArgs eventArguments);
12
13 /// <summary >
14 /// Executes when storing has finished .
15 /// </summary >
16 /// <param name =" sender ">The sender .</ param >
17 /// <param name ="e">The event arguments .</ param >
18 public delegate void StoredEventHandler(
19 object sender , EventArgs eventArguments);
20
21 /// <summary >
22 /// Executes when restoring begins .
23 /// </summary >
24 /// <param name =" sender ">The sender .</ param >
25 /// <param name ="e">The event arguments .</ param >
26 public delegate void RestoringEventHandler (
27 object sender , EventArgs eventArguments);
28
29 /// <summary >
30 /// Executes when restoring has finished .
31 /// </summary >
32 /// <param name =" sender ">The sender .</ param >
33 /// <param name ="e">The event arguments .</ param >
34 public delegate void RestoredEventHandler(
35 object sender , EventArgs eventArguments);
36
37 /// <summary >
38 /// Represents a complex number .

16.7 Operatorreihenfolge 155

39 /// </summary >
40 public sealed class ComplexNumber : IPersistable
41 {
42 #region Properties
43 #endregion
44
45 #region Events
46 #endregion
47
48 #region Methods
49 // ...
50
51 /// <summary >
52 /// Calculates the conjugation .
53 /// </summary >
54 public void Conjugate ()
55 {
56 // Calculate the conjugation .
57 this. _imaginaryPart *= -1;
58 }
59
60 /// <summary >
61 /// Adds the specified summand to the current complex
62 /// number .
63 /// </summary >
64 /// <param name =" summand ">The complex number that is
65 /// used as summand .</ param >
66 public void Add (ComplexNumber summand)
67 {
68 // Add the summand to the current complex
69 this. _realPart += summand .RealPart ;
70 this. _imaginaryPart += summand .ImaginaryPart;
71 }
72
73 /// <summary >
74 /// Adds the specified summand to the current complex
75 /// number .
76 /// </summary >
77 /// <param name =" summand ">The real number that is
78 /// used as summand .</ param >
79 public void Add (float summand)
80 {
81 // Add the summand to the current complex
82 this. _realPart += summand ;
83 }
84
85 /// <summary >
86 /// Multiplies the current complex number with the
87 /// specified factor .
88 /// </summary >
89 /// <param name =" factor ">The complex number that is
90 /// used as factor .</ param >
91 public void Multiply (ComplexNumber factor)
92 {

156 16 Operatoren

93 // Multiply the factor with the current complex
94 // number .
95 float? newRealPart =
96 (this.RealPart * factor .RealPart) -
97 (this. ImaginaryPart * factor .ImaginaryPart);
98 float? newImaginaryPart =
99 (this.RealPart * factor . ImaginaryPart) +
100 (this. ImaginaryPart * factor .RealPart);
101
102 // Assign the new values to the current complex
103 // number .
104 this.RealPart = newRealPart ;
105 this.ImaginaryPart = newImaginaryPart;
106 }
107
108 /// <summary >
109 /// Multiplies the current complex number with the
110 /// specified factor .
111 /// </summary >
112 /// <param name=" factor ">The real number that is
113 /// used as factor .</param >
114 public void Multiply (float factor)
115 {
116 // Multiply the factor with the current complex
117 // number .
118 this.Multiply (new ComplexNumber(factor));
119 }
120 #endregion
121
122 #region Constructors
123 #endregion
124 }
125 }

16.8 Überladen von Operatoren

Zwar ist es mit Hilfe dieser Operatoren nun möglich, Berechnungen mit komple-
xen Zahlen durchzuführen, allerdings muss für jede einzelne Operation eine eigene
Methode aufgerufen werden. So muss beispielsweise für die Addition zweier kom-
plexer Zahlen die entsprechende Methode Add verwendet werden, welche die als
Parameter übergebene komplexe Zahl zu der addiert, an der die Methode aufgeru-
fen wird.

C#

1 firstComplexNumber.Add (secondComplexNumber);

16.8 Überladen von Operatoren 157

Obwohl dieses Vorgehen funktioniert, entspricht die sich dadurch ergebende
Syntax nicht der aus der Mathematik gewohnten Schreibweise, in der zwischen den
beiden zu addierenden Zahlen ein + angegeben wird.

Der Grund, warum eine Addition komplexer Zahlen mit Hilfe des Symbols + in
C# nicht funktioniert, ist offensichtlich: Die Klasse ComplexNumber ist für .NET
eine beliebige, vom Benutzer definierte Klasse, deren mathematische Eigenheiten
nur dem Entwickler bekannt sind. In C# ist also schlichtweg nicht definiert, welche
Bedeutung dem Symbol + für komplexe Zahlen innewohnt.

Allerdings lassen sich Operatoren – und nichts anderes stellt das Symbol + in
C# dar – für benutzerdefinierte Klassen überladen, so dass eigene Datentypen in
mathematischen Ausdrücken unter Verwendung der klassischen Syntax miteinander
verrechnet werden können.

Um einen Operator zu überladen, genügt es, eine entsprechende Methode inner-
halb der Klasse zu definieren, für die der Operator gelten soll. Als Methodenname
wird dabei der Operator an sich angegeben, zusätzlich muss ihm allerdings noch
das Schlüsselwort operator vorangestellt werden. Außerdem muss beachtet werden,
dass operatorüberladende Methoden immer klassengebunden, also mit dem Schlüs-
selwort static gekennzeichnet werden müssen.

Als Parameter werden dabei die einzelnen Operanden angegeben, die miteinan-
der verrechnet werden sollen. Die Anzahl der Parameter bestimmt sich dabei aus der
Anzahl der Operanden, die für den jeweiligen Operator benötigt werden. Die Ope-
ratoren + und * erwarten beispielsweise zwei Operanden, der Operator ! hingegen
nur einen.

Der Typ des Rückgabewerts entspricht in jedem Fall der Klasse, in welcher der
überladene Operator definiert wird.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins .
7 /// </summary >
8 /// <param name =" sender ">The sender .</ param >
9 /// <param name ="e">The event arguments .</ param >
10 public delegate void StoringEventHandler(
11 object sender , EventArgs eventArguments);
12
13 /// <summary >
14 /// Executes when storing has finished .
15 /// </summary >
16 /// <param name =" sender ">The sender .</ param >
17 /// <param name ="e">The event arguments .</ param >
18 public delegate void StoredEventHandler(
19 object sender , EventArgs eventArguments);
20

158 16 Operatoren

21 /// <summary >
22 /// Executes when restoring begins .
23 /// </summary >
24 /// <param name =" sender ">The sender .</ param >
25 /// <param name ="e">The event arguments .</ param >
26 public delegate void RestoringEventHandler (
27 object sender , EventArgs eventArguments);
28
29 /// <summary >
30 /// Executes when restoring has finished .
31 /// </summary >
32 /// <param name =" sender ">The sender .</ param >
33 /// <param name ="e">The event arguments .</ param >
34 public delegate void RestoredEventHandler(
35 object sender , EventArgs eventArguments);
36
37 /// <summary >
38 /// Represents a complex number .
39 /// </summary >
40 public sealed class ComplexNumber : IPersistable
41 {
42 #region Properties
43 #endregion
44
45 #region Events
46 #endregion
47
48 #region Operators
49 /// <summary >
50 /// Adds the specified complex numbers .
51 /// </summary >
52 /// <param name=" firstSummand">The complex number
53 /// that is used as first summand .</param >
54 /// <param name=" secondSummand">The complex number
55 /// that is used as second summand .</ param >
56 /// <returns >The sum of the specified complex
57 /// numbers .</ returns >
58 public static ComplexNumber operator +(
59 ComplexNumber firstSummand ,
60 ComplexNumber secondSummand)
61 {
62 // Add the two complex numbers .
63 ComplexNumber result =
64 new ComplexNumber(
65 firstSummand.RealPart ,
66 firstSummand.ImaginaryPart);
67 result .Add (secondSummand);
68
69 // Return the result to the caller .
70 return result ;
71 }
72
73 /// <summary >
74 /// Multiplies the specified complex numbers .

16.8 Überladen von Operatoren 159

75 /// </summary >
76 /// <param name =" firstFactor ">The complex number
77 /// that is used as first factor .</ param >
78 /// <param name =" secondFactor">The complex number
79 /// that is used as second factor .</ param >
80 /// <returns >The product of the specified complex
81 /// numbers .</ returns >
82 public static ComplexNumber operator *(
83 ComplexNumber firstFactor ,
84 ComplexNumber secondFactor)
85 {
86 // Multiply the two complex numbers .
87 ComplexNumber result =
88 new ComplexNumber(
89 firstFactor .RealPart ,
90 firstFactor . ImaginaryPart);
91 result .Multiply (secondFactor);
92
93 // Return the result to the caller .
94 return result ;
95 }
96 #endregion
97
98 #region Methods
99 #endregion

100
101 #region Constructors
102 #endregion
103 }
104 }

Überladene Operatoren ermöglichen in C# nicht nur, gleichartige Operanden mit-
einander zu verrechnen, sondern es können auch Operatoren verschiedener Typen
angegeben werden. Allerdings muss mindestens einer der Operanden immer der
Klasse entsprechen, in welcher der Operator überladen wird. Es ist also beispiels-
weise nicht möglich, in der Klasse ComplexNumber die Addition für zwei Operan-
den des Typs int zu überladen.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Executes when storing begins .
7 /// </summary >
8 /// <param name =" sender ">The sender .</ param >
9 /// <param name ="e">The event arguments .</ param >
10 public delegate void StoringEventHandler(
11 object sender , EventArgs eventArguments);
12
13 /// <summary >

160 16 Operatoren

14 /// Executes when storing has finished .
15 /// </summary >
16 /// <param name =" sender ">The sender .</ param >
17 /// <param name ="e">The event arguments .</ param >
18 public delegate void StoredEventHandler(
19 object sender , EventArgs eventArguments);
20
21 /// <summary >
22 /// Executes when restoring begins .
23 /// </summary >
24 /// <param name =" sender ">The sender .</ param >
25 /// <param name ="e">The event arguments .</ param >
26 public delegate void RestoringEventHandler (
27 object sender , EventArgs eventArguments);
28
29 /// <summary >
30 /// Executes when restoring has finished .
31 /// </summary >
32 /// <param name =" sender ">The sender .</ param >
33 /// <param name ="e">The event arguments .</ param >
34 public delegate void RestoredEventHandler(
35 object sender , EventArgs eventArguments);
36
37 /// <summary >
38 /// Represents a complex number .
39 /// </summary >
40 public sealed class ComplexNumber : IPersistable
41 {
42 #region Properties
43 #endregion
44
45 #region Events
46 #endregion
47
48 #region Operators
49 /// <summary >
50 /// Adds the specified complex numbers .
51 /// </summary >
52 /// <param name=" firstSummand">The complex number
53 /// that is used as first summand .</param >
54 /// <param name=" secondSummand">The complex number
55 /// that is used as second summand .</ param >
56 /// <returns >The sum of the specified complex
57 /// numbers .</ returns >
58 public static ComplexNumber operator +(
59 ComplexNumber firstSummand ,
60 ComplexNumber secondSummand)
61 {
62 // Add the two complex numbers .
63 ComplexNumber result =
64 new ComplexNumber(
65 firstSummand.RealPart ,
66 firstSummand.ImaginaryPart);
67 result .Add (secondSummand);

16.8 Überladen von Operatoren 161

68
69 // Return the result to the caller .
70 return result ;
71 }
72
73 /// <summary >
74 /// Adds the specified summand to the specified
75 /// complex number .
76 /// </summary >
77 /// <param name =" complexNumber">The complex number
78 /// that is used as first summand .</ param >
79 /// <param name =" summand ">The summand that is used
80 /// as second summand .</ param >
81 /// <returns >The sum of the specified complex number
82 /// and the specified summand .</ returns >
83 public static ComplexNumber operator +(
84 ComplexNumber complexNumber , float summand)
85 {
86 // Add the two complex numbers .
87 ComplexNumber result =
88 new ComplexNumber(
89 complexNumber.RealPart ,
90 complexNumber.ImaginaryPart);
91 result .Add(summand);
92
93 // Return the result to the caller .
94 return result ;
95 }
96
97 /// <summary >
98 /// Multiplies the specified complex numbers .
99 /// </summary >

100 /// <param name =" firstFactor ">The complex number
101 /// that is used as first factor .</ param >
102 /// <param name =" secondFactor">The complex number
103 /// that is used as second factor .</ param >
104 /// <returns >The product of the specified complex
105 /// numbers .</ returns >
106 public static ComplexNumber operator *(
107 ComplexNumber firstFactor ,
108 ComplexNumber secondFactor)
109 {
110 // Multiply the two complex numbers .
111 ComplexNumber result =
112 new ComplexNumber(
113 firstFactor .RealPart ,
114 firstFactor . ImaginaryPart);
115 result .Multiply (secondFactor);
116
117 // Return the result to the caller .
118 return result ;
119 }
120
121 /// <summary >

162 16 Operatoren

122 /// Multiplies the specified complex number with
123 /// the specified factor .
124 /// </summary >
125 /// <param name=" complexNumber">The complex number
126 /// that is used as first factor .</ param >
127 /// <param name=" factor ">The factor that is used
128 /// as second factor .</ param >
129 /// <returns >The product of the specified complex
130 /// number and the specified factor .</ returns >
131 public static ComplexNumber operator *(
132 ComplexNumber complexNumber , float factor)
133 {
134 // Multiply the two complex numbers .
135 ComplexNumber result =
136 new ComplexNumber(
137 complexNumber.RealPart ,
138 complexNumber. ImaginaryPart);
139 result .Multiply (factor);
140
141 // Return the result to the caller .
142 return result ;
143 }
144 #endregion
145
146 #region Methods
147 #endregion
148
149 #region Constructors
150 #endregion
151 }
152 }

Bei der Überladung von Operatoren gibt es drei Einschränkungen, die beachtet
werden müssen: Zum einen können in C# einige Operatoren nicht überladen wer-
den, dazu zählen insbesondere der Zuweisungsoperator, sämtliche Klammern und
auch alle Operatoren, die nicht durch ein Symbol wie + oder *, sondern durch ein
Schlüsselwort repräsentiert werden.

Zum zweiten können einige Operatoren nur paarweise überladen werden, was
insbesondere für die relationalen Operatoren gilt. Das heißt, wird beispielsweise
der Operator > überladen, so muss auch der entsprechende Operator < überladen
werden.

Zu guter letzt ist es nicht möglich, die verkürzte Schreibweise, die einen Operator
mit dem Zuweisungsoperator verbindet, getrennt von dem eigentlichen Operator
zu überladen. Wird also zum Beispiel der Operator + überladen, so wird dadurch
implizit auch der Operator += überladen.

Kapitel 17
Ausdrücke

17.1 Konvertieren

Bei der Division und Modulodivision von Typen wurde erwähnt, dass das Ergebnis
einer Verknüpfung von zwei Operanden mit Hilfe eines arithmetischen Operators
immer dem Typ der beiden Operanden entspricht, weshalb es insbesondere bei der
Division von ganzzahligen Datentypen zu Problemen kommen kann, da der Dezi-
malteil verloren geht.

Die vermeintliche Lösung, das Ergebnis einer solchen Division einer Variablen
vom Typ float oder double zuzuweisen, erweist sich bei näherer Betrachtung als un-
zureichend, da die Dezimalstellen des Ergebnisses bereits im Speicher abgeschnit-
ten werden, noch bevor die Zuweisung an die aufnehmende Variable ausgeführt
wird.

Eine Möglichkeit, diesem Problem zu begegnen, liegt darin, mindestens einen
der Operanden in einen Typ zu wandeln, der über Dezimalstellen verfügt. Da es aber
nicht in jedem Fall möglich ist, einen Operanden von vornherein als entsprechenden
Typ zu deklarieren, muss dies gegebenenfalls während der Ausführung zur Laufzeit
geschehen. Dieser Vorgang wird als konvertieren oder casten bezeichnet.

Die einfachste Möglichkeit, einen Typ in einen anderen zu konvertieren, ist, den
eigentlichen Wert dem neuen Typen zuzuweisen. Da hierbei die Umwandlung in
den neuen Typ implizit geschieht, wird diese Art der Konvertierung als implizite
Konvertierung bezeichnet.

C#

1 // Assign a value to an int variable .
2 int x = 23;
3
4 // Assign the value to a long variable . The value is
5 // implicitly casted from int to long.
6 long y = x;

Golo Roden, Auf der Fährte von C# 163
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

164 17 Ausdrücke

Sofern der Wertebereich des Typs, in den konvertiert wird, umfangreicher ist als
der des Typs, der den ursprünglichen Wert enthält, funktioniert dieses Verfahren
ohne weiteres. Auf diese Art können beispielsweise int in long und float in dou-
ble konvertiert werden. Beim Versuch, eine Konvertierung in umgekehrter Richtung
durchzuführen, meldet C# allerdings einen Fehler, da potenziell ein Werteverlust
eintreten könnte.

Soll eine solche Konvertierung dennoch ausgeführt werden, muss dies mit Hilfe
einer expliziten Konvertierung geschehen. Bei dieser wird dem umzuwandelnden
Wert der Typ, in den konvertiert wird, innerhalb runder Klammern vorangestellt.

C#

1 // Assign a value to a long variable .
2 long x = 23;
3
4 // Assign the value to an int variable . The value needs to
5 // be casted explicitly .
6 int y = (long)x;

Die explizite Konvertierung ermöglicht auch die Division zweier Ganzzahlen un-
ter Beibehaltung des Dezimalteils des Ergebnisses. Dazu muss lediglich einer der
beiden Operanden in einen Dezimaltyp konvertiert werden.

C#

1 int x = 23;
2 int y = 42;
3
4 // The quotient is 0, since no cast has been done.
5 float quotient = x / y;
6
7 // The quotient is 0.547619 , since one of the operands has
8 // been casted explicitly to a decimal type.
9 quotient = (float)x / y;

17.2 Boxing

Im Rahmen der Vererbung wurde erwähnt, dass alle Typen von object ableiten. Aus
diesem Grund ist es möglich, jeden beliebigen Typ nach object zu konvertieren,
sogar dann, wenn es sich bei dem ursprünglichen Typ um einen Werte- und nicht
um einen Verweistyp handelt.

Während sich bei einem Verweistyp lediglich der Typ des Verweises ändert, än-
dert sich bei einem Wertetyp zusätzlich die Art, wie der Wert gespeichert wird, da
die Anwendung bei einem Verweistyp nur mit einem Verweis auf die eigentlichen
Daten, bei einem Wertetyp aber direkt mit den eigentlichen Daten arbeitet. Daher
ist es notwendig, einen Wertetyp, der nach objekt konvertiert werden soll, zunächst

17.3 Benutzerdefiniertes Konvertieren 165

in einen zusätzlichen Verweistyp zu verpacken, auf den dann wiederum ein Verweis
vom Typ object angelegt werden kann.

Dieses Verpacken wird als Boxing bezeichnet und von C# intern automatisch
durchgeführt, sobald ein Wertetyp in einen Verweistyp konvertiert wird. Obwohl
man sich also nicht händisch um das Boxing kümmern muss, sollte man sich wäh-
rend der Entwicklung dieses Vorgangs im Hintergrund immer bewusst sein, da die-
ser nicht nur zusätzlichen Speicher verbraucht, sondern auch Zeit benötigt. Insofern
sollte Boxing nur mit Bedacht und gezielt an einigen Stellen eingesetzt werden.

Nachdem ein Wertetyp in einen Verweistyp verpackt wurde, kann dieser Vorgang
auch wieder umgekehrt werden, um aus dem Verweistyp den ursprünglichen Wer-
tetyp zu erhalten. Dies wird als Unboxing bezeichnet und folgt den gleichen Regeln
wie das Boxing.

C#

1 int valueType = 23;
2
3 // Box the value type and create a reference type.
4 object referenceType = valueType ;
5
6 // Unbox the reference type.
7 valueType = (int) referenceType;

17.3 Benutzerdefiniertes Konvertieren

Prinzipiell können mit diesen Möglichkeiten zum einen beliebige Typen in object
konvertiert werden, zum anderen können Typen ineinander konvertiert werden, die
über eine gemeinsame Basis verfügen oder die in einer Vererbungshierarchie zuein-
ander stehen. Gelegentlich kann es jedoch nützlich sein, eine eigene Konvertierung
definieren zu können, um beispielsweise eine komplexe Zahl mit Hilfe ihres Abso-
lutbetrags in float? zu konvertieren.

Diese Konvertierung kann so wohl implizit wie auch explizit implementiert wer-
den. In beiden Fällen muss die bestehende Klasse durch eine weitere Operator-
überladung ergänzt werden, wobei der Zieltyp der Konvertierung als Operatorna-
me dient. Außerdem muss eines der beiden Schlüsselwörter implicit und explicit
angegeben werden, um zu definieren, ob die Konvertierung in den Zieltyp implizit
ausgeführt werden kann, oder ob zwingend eine explizite Konvertierung benötigt
wird.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >

166 17 Ausdrücke

6 /// Executes when storing begins .
7 /// </summary >
8 /// <param name =" sender ">The sender .</ param >
9 /// <param name ="e">The event arguments .</ param >
10 public delegate void StoringEventHandler(
11 object sender , EventArgs eventArguments);
12
13 /// <summary >
14 /// Executes when storing has finished .
15 /// </summary >
16 /// <param name =" sender ">The sender .</ param >
17 /// <param name ="e">The event arguments .</ param >
18 public delegate void StoredEventHandler(
19 object sender , EventArgs eventArguments);
20
21 /// <summary >
22 /// Executes when restoring begins .
23 /// </summary >
24 /// <param name =" sender ">The sender .</ param >
25 /// <param name ="e">The event arguments .</ param >
26 public delegate void RestoringEventHandler (
27 object sender , EventArgs eventArguments);
28
29 /// <summary >
30 /// Executes when restoring has finished .
31 /// </summary >
32 /// <param name =" sender ">The sender .</ param >
33 /// <param name ="e">The event arguments .</ param >
34 public delegate void RestoredEventHandler(
35 object sender , EventArgs eventArguments);
36
37 /// <summary >
38 /// Represents a complex number .
39 /// </summary >
40 public sealed class ComplexNumber : IPersistable
41 {
42 #region Properties
43 #endregion
44
45 #region Events
46 #endregion
47
48 #region Operators
49 // ...
50
51 /// <summary >
52 /// Casts the specified complex number to float ?.
53 /// </summary >
54 /// <param name=" complexNumber">The complex number
55 /// that shall be casted .</param >
56 /// <returns >A float ? representation of the specified
57 /// complex number .</ returns >
58 public static implicit operator float ?(
59 ComplexNumber complexNumber)

17.4 Konvertierbarkeit 167

60 {
61 // Return the complex number as float? by using
62 // its absolute value.
63 return complexNumber.AbsoluteValue;
64 }
65 #endregion
66
67 #region Methods
68 #endregion
69
70 #region Constructors
71 #endregion
72 }
73 }

Ein Rückgabetyp muss im Gegensatz zu den bisherigen Operatorüberladungen
nicht angegeben werden, da sich dieser aus dem Operator an sich bereits ergibt. Zu
beachten ist bei der Definition benutzerdefinierter Konvertierungsoperatoren noch,
dass es nicht für einen Zieltyp zugleich so wohl einen impliziten wie auch einen
expliziten Operator geben kann. Die Definition mehrerer Konvertierungsoperatoren
ist nur möglich, sofern sich diese durch ihren Zieltyp unterscheiden.

17.4 Konvertierbarkeit

Obwohl C# zahlreiche Möglichkeiten bietet, zwischen verschiedenen Typen zu kon-
vertieren, kann es dennoch vorkommen, dass ein bestimmter Typ schlichtweg nicht
in einen anderen Typ konvertierbar ist. Wird ein solcher Versuch trotzdem unter-
nommen, tritt ein Fehler auf und die Ausführung der Anwendung wird abgebro-
chen.

Um dies zu verhindern, enthält C# drei Schlüsselwörter, mit denen geprüft wer-
den kann, ob sich ein Typ in einen bestimmten Zieltyp konvertiert lässt. Das ein-
fachste dieser Schlüsselwörter ist typeof, das ein Objekt der Klasse Type zurückgibt,
das Informationen zu dem jeweiligen Typ enthält. Eine Analyse dieses Typobjekts
ermöglicht dann im weiteren Verlauf, zu bestimmen, ob und auf welche Art konver-
tiert werden kann.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >

168 17 Ausdrücke

11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Get type information on the Program type.
16 Type type = typeof (Program);
17
18 // Print the type’s full name to the console .
19 Console .WriteLine (type.FullName);
20 }
21 }
22 }

Häufig ist der Einsatz eines kompletten Typobjekts allerdings zu aufwändig, da
nur von Interesse ist, ob ein Typ überhaupt in einen bestimmten Zieltyp konvertiert
werden kann. Dazu dient das Schlüsselwort is, das je nach Konvertierbarkeit true
oder false an den Aufrufer zurückgibt.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a string and store it within an object
16 // reference .
17 object value = "Hello world!";
18
19 // Execute code depending on the type of the
20 // value.
21 if (value is string)
22 {
23 // Cast the value to a string .
24 string valueAsString = (string)value ;
25
26 // TODO gr: Do something ...
27 // 2008 -01 -03
28 }
29 }
30 }
31 }

17.4 Konvertierbarkeit 169

Schließlich gibt es noch das Schlüsselwort as, das prinzipiell ebenfalls eine ex-
plizite Konvertierung durchführt, im Fehlerfall aber nicht die Ausführung der An-
wendung abbricht, sondern das Literal null zurückgibt.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a string and store it within an object
16 // reference .
17 object value = "Hello world!";
18
19 // Try to cast the value to string .
20 string valueAsString = value as string ;
21
22 // If the cast was successful , execute some
23 // code.
24 if (valueAsString != null)
25 {
26 // TODO gr: Do something ...
27 // 2008 -01 -03
28 }
29 }
30 }
31 }

Kapitel 18
Anweisungen

18.1 Bedingungen

Allen Beispielen in den vergangenen Kapiteln ist gemein, dass sie noch keine einzi-
ge Zeile Code enthalten, der im klassischen Sinn ausgeführt werden kann. Sämtliche
Konzepte, die bislang thematisiert wurden, dienen lediglich der Modellierung und
Strukturierung von Daten und Anwendungen. Sie bilden also nur den äußeren Rah-
men für eine Anwendung, deren Inneres aber noch mit konkretem Code gefüllt und
damit zum Leben erweckt werden muss.

Zur Steuerung des Ablaufs einer Anwendung gibt es in C# zwei wesentliche
Konzepte: Bedingungen und Schleifen. Während Codeabschnitte mit Hilfe von Be-
dingungen nur unter bestimmten Umständen ausgeführt werden und die Ausfüh-
rung dadurch dynamisch an den äußeren Kontext angepasst werden kann, dienen
Schleifen der wiederholten Ausführung von Code, um beispielsweise eine Menge
gleichartiger Daten zu verarbeiten.

Die einfachste Anweisung zur Abfrage einer Bedingung wurde im Kapitel zu
Ereignissen bereits erwähnt, da dort überprüft werden musste, ob an den Delegaten
eines Ereignisses überhaupt Methoden angehängt worden sind.

Der Anweisung if wird dabei in runden Klammern ein Ausdruck übergeben,
der von C# ausgewertet und entweder zu true oder false evaluiert wird. Sofern der
Ausdruck true ergibt, wird der Rumpf von if ausgeführt, andernfalls nicht.

In dem folgenden Beispiel wird also überprüft, ob der Storing-Delegat ungleich
dem Literal null ist. Wenn dem so ist, wird der Rumpf ausgeführt und das entspre-
chende Ereignis ausgelöst.

C#

1 // Check if there are any event handlers .
2 if(this.Storing != null)
3 {
4 // Raise the storing event.
5 this.Storing (this , null);
6 }

Golo Roden, Auf der Fährte von C# 171
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

172 18 Anweisungen

Die geschweiften Klammern um den Rumpf sind optional, solange der Rumpf
nur aus einer einzelnen Zeile besteht, allerdings ist es guter Stil, die geschweiften
Klammern in jedem Fall zu verwenden.

Die einfache if -Anweisung ermöglicht zwar bereits die bedingte Ausführung von
Code, allerdings erfordert eine exklusive Ausführung zweier Codeabschnitte zwei
Abfragen, die einander außer in der Prüfung auf true oder false gleichen.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition .
16 bool condition = 23 < 42;
17
18 // Check whether the condition evaluates to
19 // true. If so , run the specified code.
20 if (condition == true)
21 {
22 // TODO gr: Do something ...
23 // 2008 -01 -03
24 }
25
26 // Check whether the condition evaluates to
27 // false. If so, run the specified code.
28 if (condition == false)
29 {
30 // TODO gr: Do something else ...
31 // 2008 -01 -03
32 }
33 }
34 }
35 }

Daher gibt es das Schlüsselwort else, das einen weiteren Rumpf einleitet, der
ausgeführt wird, wenn die bei if genannte Bedingung eben nicht zu true evaluiert
wird. Die erneute Angabe einer weiteren Bedingung kann somit also entfallen.

C#

1 using System ;
2

18.1 Bedingungen 173

3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition .
16 bool condition = 23 < 42;
17
18 // Check whether the condition evaluates to
19 // true. If so , run the specified code. If not ,
20 // run the second block .
21 if (condition == true)
22 {
23 // TODO gr: Do something ...
24 // 2008 -01 -03
25 }
26 else
27 {
28 // TODO gr: Do something else ...
29 // 2008 -01 -03
30 }
31 }
32 }
33 }

Ein wichtiger Aspekt bei der Überprüfung der Bedingung ist, dass die explizite
Angabe des Vergleichs mit true oder false entfallen kann, da eine logische Bedin-
gung automatisch zu einem der beiden Literale evaluiert wird. Ein Vergleich auf
false kann dabei mit Hilfe des Operators ! durchgeführt werden.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {

174 18 Anweisungen

15 // Define a condition .
16 bool condition = 23 < 42;
17
18 // Check whether the condition evaluates to
19 // true.
20 if (condition)
21 {
22 // TODO gr: Do something ...
23 // 2008 -01 -03
24 }
25
26 // Check whether the condition evaluates to
27 // false.
28 if (! condition)
29 {
30 // TODO gr: Do something ...
31 // 2008 -01 -03
32 }
33 }
34 }
35 }

Unter Umständen kann es notwendig sein, mehr als zwei Optionen zu prüfen.
Dazu kann auf mehrere if -Anweisungen zurückgegriffen werden, die ineinander
verschachtelt werden.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define some conditions .
16 bool condition1 = 23 < 42;
17 bool condition2 = 17 < 23;
18
19 // Check whether the first condition evaluates
20 // to true.
21 if (condition1)
22 {
23 // TODO gr: Do something ...
24 // 2008 -01 -03
25 }
26 else

18.1 Bedingungen 175

27 {
28 // Check whether the second condition
29 // evaluates to true.
30 if (condition2)
31 {
32 // TODO gr: Do something else ...
33 // 2008 -01 -03
34 }
35 else
36 {
37 // TODO gr: Do something completely
38 // else ...
39 // 2008 -01 -03
40 }
41 }
42 }
43 }
44 }

Zunächst wird also geprüft, ob die erste Bedingung zutrifft, wenn nein, wird in
den entsprechenden else-Block verzweigt, in dem wiederum die zweite Bedingung
geprüft wird, und so weiter. Der innerste else-Block wird dabei nur ausgeführt, wenn
alle vorangegangenen Bedingungen fehlgeschlagen sind.

Obwohl dieses Vorgehen zum gewünschten Ziel führt, wird die Darstellung bei
einer zunehmenden Anzahl von Ebenen unübersichtlich. Daher gibt es die Mög-
lichkeit, weitere Abfragen mit dem Konstrukt else if auf der gleichen Ebene wie
das erste if zu positionieren. Die Angabe des abschließenden else ohne Bedingung
ist dabei wiederum optional.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define some conditions .
16 bool condition1 = 23 < 42;
17 bool condition2 = 17 < 23;
18
19 if (condition1)
20 {
21 // TODO gr: Do something ...

176 18 Anweisungen

22 // 2008 -01 -03
23 }
24 else if (condition2)
25 {
26 // TODO gr: Do something else ...
27 // 2008 -01 -03
28 }
29 else
30 {
31 // TODO gr: Do something completely else ...
32 // 2008 -01 -03
33 }
34 }
35 }
36 }

Werden innerhalb einer Bedingung mehrere Bedingungen angegeben und mit
Hilfe von logischen Operatoren wie && oder || verknüpft, werden diese in C# von
links nach rechts ausgewertet. Zu beachten ist hierbei, dass C# die Auswertung ab-
bricht, sobald das endgültige Ergebnis des Gesamtausdrucks feststeht. Diese Tech-
nik wird als Kurzschlussevaluierung bezeichnet.

Werden beispielsweise zwei Bedingungen mit Hilfe von && verknüpft und er-
gibt bereits die erste Bedingung false, so wird die zweite Bedingung nicht mehr
ausgewertet, da der Gesamtausdruck unabhängig von deren Ergebnis in jedem Fall
nur noch zu false evaluiert werden kann.

Da es häufig Abfragen der Art gibt, dass einer Variablen entweder ein oder ein
anderer Wert zugewiesen werden soll, gibt es dafür in C# zwei abkürzende Schreib-
weisen. Handelt es sich bei der entsprechenden Variablen um eine Variable des Typs
bool, so ist es kürzer, an Stelle von

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition .
16 bool condition = 23 < 42;
17
18 // Set result to true if the condition evaluates
19 // to true , otherwise set the result to false.

18.1 Bedingungen 177

20 bool result ;
21 if (condition)
22 {
23 result = true;
24 }
25 else
26 {
27 result = false;
28 }
29 }
30 }
31 }

den verkürzten Ausdruck

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition .
16 bool condition = 23 < 42;
17
18 // Set the result to true if the condition
19 // evaluates to true , otherwise set the result
20 // to false .
21 bool result = condition ;
22 }
23 }
24 }

zu verwenden. Ebenso kann bei Variablen jedes beliebigen anderen Typs der einzige
Operator mit drei Operanden verwendet werden, der sogenannte triäre Operator. An
Stelle von

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >

178 18 Anweisungen

6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition .
16 bool condition = 23 < 42;
17
18 // Set the result to 23 if the condition
19 // evaluates to true , otherwise set the result
20 // to 42.
21 int result ;
22 if (condition)
23 {
24 result = 23;
25 }
26 else
27 {
28 result = 42;
29 }
30 }
31 }
32 }

lässt sich unter Zuhilfenahme des triären Operators

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition .
16 bool condition = 23 < 42;
17
18 // Set the result to 23 if the condition
19 // evaluates to true , otherwise set the result
20 // to 42.
21 int result = condition ? 23 : 42;
22 }

18.1 Bedingungen 179

23 }
24 }

schreiben. Des weiteren besteht im Zusammenhang mit nullbaren Wertetypen häu-
fig der Wunsch, einen Standardwert zuzuweisen, falls der nullbare Wertetyp dem
Literal null entspricht. An Stelle der umfangreichen Abfrage

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a nullable type.
16 int? nullableType = null;
17
18 // Set the value type to 23 if the nullable type
19 // is null , otherwise set it to the value of the
20 // nullable type.
21 int valueType ;
22 if (nullableType == null)
23 {
24 valueType = 23;
25 }
26 else
27 {
28 valueType = (int)nullableType;
29 }
30 }
31 }
32 }

kann in C# seit der Version 2.0 der Operator ?? verwendet werden, so dass statt
dessen

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.

180 18 Anweisungen

7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a nullable type.
16 int? nullableType = null;
17
18 // Set the value type to the value of the
19 // nullable type if it is not equal to null ,
20 // otherwise set the value type to 23.
21 int valueType = nullableType ?? 23;
22 }
23 }
24 }

geschrieben werden kann. Schließlich gibt es neben if noch die Anweisung switch
zur bedingten Ausführung von Code, die sich insbesondere dann anbietet, wenn für
jede Ausführungsalternative der gleiche Ausdruck ausgewertet werden soll und die
Ausführung nur vom jeweiligen Ergebnis abhängt.

Die switch-Anweisung erwartet die Bedingung ebenfalls innerhalb von runden
Klammern, die einzelnen Fälle werden aber über entsprechende case-Zweige abge-
deckt. Ebenso wie bei if gibt es auch bei switch einen optionalen Ausführungspfad
ohne Bedingung, der ausgeführt wird, falls jeder vorige Option fehlschlägt, und der
mit Hilfe des Schlüsselwortes default eingeleitet wird.

Alle Blöcke müssen bei switch mit dem Schlüsselwort break abgeschlossen wer-
den.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the condition .
16 int condition = 23;
17
18 // Execute code depending on the condition .
19 switch (condition)

18.1 Bedingungen 181

20 {
21 case 23:
22 // TODO gr: Do something ...
23 // 2008 -01 -03
24 break;
25 case 42:
26 // TODO gr: Do something else ...
27 // 2008 -01 -03
28 break;
29 default :
30 // TODO gr: Do something completely
31 // else ...
32 // 2008 -01 -03
33 break;
34 }
35 }
36 }
37 }

Die einzige Ausnahme davon ist das sogenannte Durchfallen von einer Alterna-
tive zu der darauffolgenden, was genutzt werden kann, falls beide Alternativen den
gleichen Ausführungsblock verwenden sollen. Sobald der durchfallende Block al-
lerdings eine einzige Zeile Code enthält, wird von C# ein entsprechender Fehler bei
der Übersetzung ausgelöst.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define a condition .
16 int condition = 23;
17
18 // Execute code depending on the condition .
19 switch (condition)
20 {
21 case 17:
22 case 23:
23 // TODO gr: Do something ...
24 // 2008 -01 -03
25 break;
26 case 42:

182 18 Anweisungen

27 // TODO gr: Do something else ...
28 // 2008 -01 -03
29 break ;
30 default :
31 // TODO gr: Do something completely
32 // else ...
33 // 2008 -01 -03
34 break ;
35 }
36 }
37 }
38 }

Prinzipiell kann in C# auch gezielt von einem Ausführungsblock in einen ande-
ren gesprungen werden, um beispielsweise trotz enthaltenem Code in einen weiteren
Ausführungsblock durchzufallen. Dies geschieht mittels des Schlüsselwortes goto.
Da dies in der Praxis aber als schlechter Stil angesehen wird, wird an dieser Stelle
nicht näher darauf eingegangen.

18.2 Schleifen

Während durch eine Bedingung wie if oder switch definiert werden kann, welche
Anweisungen unter welchen Umständen ausgeführt werden, können Anweisungen
mit Hilfe von Schleifen wiederholt ausgeführt werden, wobei die Anzahl der Wie-
derholungen entweder vorher festgelegt wird oder sich dynamisch während der Aus-
führung ergibt.

Die einfachste Schleife in C# ist eine reine Zählschleife, welche die in ihrem
Rumpf enthaltenen Anweisungen in einer vorherbestimmten Anzahl an Durchläu-
fen ausführt. Diese Schleife wird mittels des Schlüsselworts for implementiert. In-
nerhalb runder Klammern werden mit Hilfe dreier Ausdrücke der Initialisierungs-
ausdruck, das Abbruchkriterium und der Aktualisierungsausdruck angegeben.

Um beispielsweise eine Anweisung n Mal auszuführen, wird zu Beginn der
Schleife eine Variable mit dem Wert 0 initialisiert und anschließend in jedem Durch-
lauf um eins erhöht, bis die Schleife n Mal durchlaufen wurde. Diese Variable wird
auch als Schleifenvariable oder Schleifeninvariante bezeichnet und enthält in jedem
Durchlauf den Wert des jeweils aktuellen Durchlaufs.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program

18.2 Schleifen 183

9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the upper limit for the loop.
16 int n = 23;
17
18 // Initialize the invariant with 0 and execute
19 // the loop as long as i is less than n.
20 for (int i = 0; i < n; i++)
21 {
22 // Print the square numbers to the console .
23 Console .WriteLine ("The square number of " +
24 i + " is " + i * i + ".");
25 }
26 }
27 }
28 }

Es hat sich in der Praxis eingebürgert, die Invariante mit i zu bezeichnen, obwohl
dies den Namenskonventionen für lokale Variablen widerspricht. Sofern Schleifen
verschachtelt werden, werden für die Invarianten der inneren Schleifen fortlaufend
die Buchstaben ab j verwendet.

Des weiteren ist es guter Stil, die Invariante einer Schleife mit dem Wert 0 und
nicht mit 1 zu initialisieren, wobei abhängig vom Kontext auch vollständig andere
Startwerte sinnvoll sein können. Ebenso wird die Invariante in den meisten Fällen
bei jedem Durchlauf um eins erhöht, jedoch kann auch dies je nach Bedarf belie-
big gewählt werden. Unter Umständen sind auch Schleifen denkbar, deren Initia-
lisierungsausdruck die Invariante zunächst auf einen hohen Wert setzt, der dann
in jedem Schleifendurchlauf verringert wird – kurz, der Fantasie sind dabei keine
Grenzen gesetzt.

Da das Abbruchkriterium vor jedem neuen Durchlauf überprüft wird, kann es
vorkommen, dass eine for-Schleife überhaupt nicht ausgeführt wird. Dann nämlich,
wenn der Initialisierungsausdruck die Invariante auf einen Wert setzt, für den das
Abbruchkriterium zu false evaluiert wird.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .

184 18 Anweisungen

12 /// </summary >
13 public static void Main ()
14 {
15 for (int i = 0; i > 1; i++)
16 {
17 // This loop is never executed , since i is
18 // initialized with 0, so i > 1 evaluates
19 // to false.
20 }
21 }
22 }
23 }

Der wesentliche Nachteil der for-Schleife ist, dass von vornherein feststehen
muss, wie viele Durchläufe ausgeführt werden sollen. Falls dies nicht bekannt ist,
sondern nur ein Abbruchkriterium feststeht, kann in C# die while-Schleife einge-
setzt werden. Ihr Prinzip entspricht dem der for-Schleife, wobei sich die Angabe
innerhalb der runden Klammern auf das Abbruchkriterium beschränken.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the upper limit .
16 int upperLimit = 23;
17
18 // Iterate over all square numbers from 0 to the
19 // upper limit.
20 int i = 0;
21 while (i < upperLimit)
22 {
23 // Print the square number to the console .
24 Console .WriteLine ("The square number of " +
25 i + " is " + i * i + ".");
26
27 // Increase i by 1.
28 i++;
29 }
30 }
31 }
32 }

18.2 Schleifen 185

Falls sich in einem Durchlauf nichts an der Gültigkeit des Abbruchkriteriums
ändert, wird die Schleife ein weiteres Mal durchlaufen. Um keine Endlosschleife zu
erhalten, ist es allerdings wichtig, darauf zu achten, dass sich das Abbruchkriterium
zumindest überhaupt ändern könnte.

Wie bei der for-Schleife wird auch die while-Schleife unter Umständen kein ein-
ziges Mal durchlaufen, falls nämlich das Abbruchkriterium von vornherein zu false
evaluiert wird. Daher werden diese beiden Schleifen auch als abweisende Schleifen
bezeichnet.

Sofern eine Schleife in jedem Fall mindestens ein Mal durchlaufen werden soll,
gibt es in C# auch eine nichtabweisende Variante der while-Schleife, die sich des
Schlüsselworts do bedient.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the upper limit.
16 int upperLimit = 23;
17
18 // Iterate over all square numbers from 0 to the
19 // upper limit .
20 int i = 0;
21 do
22 {
23 // Print the square number to the console .
24 Console .WriteLine ("The square number of " +
25 i + " is " + i * i + ".");
26
27 // Increase i by 1.
28 i++;
29 }
30 while (i < upperLimit);
31 }
32 }
33 }

Abgesehen davon, dass die do-Schleife das Abbruchkriterium erst nach und nicht
vor dem Durchlauf überprüft, ist sie in ihrer sonstigen Arbeitsweise identisch mit
der while-Schleife.

186 18 Anweisungen

Beachtenswert bei diesen beiden Schleifen ist, dass der öffnenden Anweisung
nie ein Semikolon folgt, das schließende while bei der do-Schleife allerdings durch
ein Semikolon abgeschlossen wird.

18.3 Sprunganweisungen

In manchen Fällen kann es je nach Kontext notwendig sein, die Ausführung ei-
ner Schleife mit sofortiger Wirkung abzubrechen. Dies ist in C# mit Hilfe des
Schlüsselworts break möglich, das bereits bei den einzelnen Zweigen einer switch-
Anweisung Verwendung fand.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the upper limit .
16 int upperLimit = 23;
17
18 // Iterate over all square numbers from 0 to the
19 // upper limit.
20 for (int i = 0; i < upperLimit ; i++)
21 {
22 // Print the square number to the console .
23 Console .WriteLine ("The square number of " +
24 i + " is " + i * i + ".");
25
26 // Check whether the loop shall still be
27 // continued . If not , break .
28 if (i > 17)
29 {
30 break ;
31 }
32 }
33 }
34 }
35 }

18.3 Sprunganweisungen 187

break bricht die Ausführung der aktuellen Schleife ab, indem es diese verlässt
und in die umgebende Struktur springt. Sofern dies beispielsweise bei geschachtel-
ten Schleifen wiederum eine Schleife ist, wird diese allerdings nach wie vor ausge-
führt, da break nur eine einzelne Ebene verlässt.

Während break einen Schleifenablauf vollständig abbricht, kann es unter Um-
ständen nur gewünscht sein, den aktuellen Durchlauf abzubrechen, prinzipiell aber
innerhalb der Schleifenausführung zu bleiben, das heißt, direkt mit dem nächsten
Durchlauf fortzufahren. Dies geschieht in C# mit Hilfe des Schlüsselwortes conti-
nue.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Set the upper limit.
16 int upperLimit = 23;
17
18 // Iterate over all square numbers from 0 to the
19 // upper limit .
20 for (int i = 0; i < upperLimit ; i++)
21 {
22 // Check whether the current number is odd.
23 // If so , skip the current iteration .
24 if (i {\%} 2 != 0)
25 {
26 continue ;
27 }
28
29 // Print the square number to the console .
30 Console .WriteLine ("The square number of " +
31 i + " is " + i * i + ".");
32 }
33 }
34 }
35 }

188 18 Anweisungen

18.4 foreach

Zu guter letzt gibt es in C# noch eine weitere Schleife, die allerdings über kein ent-
sprechendes Pendant in MSIL verfügt, sondern die lediglich als komfortable Lösung
in C# enthalten ist, vom Compiler während der Übersetzung aber in eine klassische
while-Schleife umgewandelt wird.

Diese Schleife dient dazu, alle Elemente einer Aufzählung zu durchlaufen, ohne
den Aufwand, zunächst die Länge dieser Auflistung ermitteln und eine Schleife-
ninvariante erzeugen zu müssen. Implementiert wird diese Schleife mit Hilfe des
Schlüsselwortes foreach.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Define an array of colors .
16 string [] colors =
17 new string [] { "Red", "Green", "Blue" };
18
19 // Iterate over all colors .
20 foreach (string color in colors)
21 {
22 // Print the current color to the console .
23 Console .WriteLine (color);
24 }
25 }
26 }
27 }

Intern wandelt der Compiler diese Schleife in eine while-Schleife um, die mit
sämtlichen Aufzählungen arbeiten kann, welche die Schnittstelle IEnumerator im-
plementieren. Dies sind nicht nur sämtliche Arrays, sondern auch etliche der in
den Namensräumen System.Collections und System.Collections.Generic enthalte-
nen Typen.

Im Gegensatz zu den anderen Schleifen, bei denen die Invariante als Index für
eine Aufzählung dienen kann, liefert die Invariante der foreach-Schleife direkt ein
Element der Aufzählung. Dabei wird allerdings nicht garantiert, in welcher Rei-
henfolge diese Elemente zurückgegeben werden. Insbesondere wird also nicht ga-

18.4 foreach 189

rantiert, dass zwei foreach-Schleifen über eine gemeinsame Aufzählung die darin
enthaltenen Elemente in der identischen Reihenfolge durchlaufen.

Gelegentlich steht die Aufzählung, über die mit einer foreach-Schleife iteriert
werden soll, nicht fest, sondern soll erst zur Laufzeit von einer Methode erzeugt
werden. Seit C# 2.0 gibt es dafür das Schlüsselwort yield, das genau diese Funktio-
nalität ermöglicht.

Damit eine Methode als Aufzählung für eine foreach-Schleife dienen kann, muss
sie über die Schnittstelle IEnumerable als Rückgabetyp verfügen. Allerdings gibt sie
nicht die gesamte Aufzählung auf einmal zurück, sondern liefert bei jedem Metho-
denaufruf den nächsten Wert der Aufzählung.

Das Schlüsselwort yield bewirkt, dass der nächste Aufruf die Methode an der
Stelle fortsetzt, an der sie im vorherigen Durchlauf verlassen wurde. yield ermög-
licht also eine zeitweise Unterbrechung der Methodenausführung.

C#

1 using System ;
2 using System .Collections ;
3
4 namespace GoloRoden . GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Iterate over all square numbers .
17 foreach (int i in this. GetNextSquareNumber ())
18 {
19 // Print the square number to the console .
20 Console .WriteLine (
21 "The next square number is " + i + ".");
22 }
23 }
24
25 /// <summary >
26 /// Gets the next square number .
27 /// </summary >
28 /// <returns >The next square number .</ returns >
29 private IEnumerable GetNextSquareNumber ()
30 {
31 // Initialize the square numbers with 0.
32 int i = 0;
33
34 // Iterate endlessly over all numbers .
35 while (true)
36 {

190 18 Anweisungen

37 // Return the current square number to the
38 // caller .
39 yield return i * i;
40
41 // Increase i by 1.
42 i++;
43 }
44 }
45 }
46 }

Kapitel 19
Linq

19.1 Was ist Linq?

Während es in früheren Versionen von C# unter Umständen sehr aufwändig war,
einzelne Elemente innerhalb einer Aufzählung zu suchen oder diese zu sortieren,
stellt C# dafür seit der Version 3.0 eine eigene Abfragesprache zur Verfügung, die
als Language Integrated Query, abgekürzt Linq, bezeichnet wird.

Um beispielsweise aus einem Array, das Elemente des Typs string enthält, alle
diejenigen zu ermitteln, deren Wert mit einem bestimmten Buchstaben beginnt und
diese alphabetisch sortiert auszugeben, wurden zumindest eine Schleife und zahlrei-
che if -Anweisungen benötigt. Seit der Version 3.0 von C# gibt es dafür eine eigene
Abfragesprache, deren Syntax sich an der Datenbanksprache SQL orientiert, die
aber über vollständige Unterstützung in C# und Visual Studio verfügt. Durch die In-
tegration in C# wird Linq ebenso wie der übrige Code durch den Compiler in MSIL
übersetzt, so dass auf Linq basierende Abfragen auf Fehler überprüft werden kön-
nen. Im Gegensatz zu klassischen Abfragen, die beispielsweise als Zeichenketten
innerhalb von C# vorliegen, können Fehler auf diese Art bereits vor der Ausführung
erkannt werden.

Außerdem werden in Linq geschriebene Abfragen ebenfalls von der Common
Language Runtime ausgeführt und nutzen daher wie C# ebenfalls die Vorteile von
verwalteter Ausführung.

19.2 Abfrageoperatoren

Die einfachste Abfrage, die in Linq geschrieben werden kann, ermittelt alle Ele-
mente aus einer Aufzählung, gibt also die Aufzählung selbst zurück, ohne diese zu
durchsuchen oder zu sortieren. Um die Fähigkeiten von Linq nutzen zu können,
muss der Namensraum System.Linq eingebunden werden, der sich in der Assembly
System.Core befindet.

Golo Roden, Auf der Fährte von C# 191
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

192 19 Linq

Eine Abfrage wird in Linq mit Hilfe des Schlüsselwortes form eingeleitet, dem
ein Bezeichner für ein einzelnes Element folgt. Die Wahl dieses Bezeichners ist
beliebig und vergleichbar mit der Wahl des Bezeichners innerhalb einer foreach-
Schleife.

Im Anschluss wird mit Hilfe des Schlüsselwortes in angegeben, aus welcher Auf-
zählung die Elemente stammen, mit dem Schlüsselwort select wird schließlich das
jeweilige Element als relevant für die Ergebnismenge ausgewählt.

C#

1 using System ;
2 using System .Linq;
3
4 namespace GoloRoden .GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class .
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors .
17 string [] colors =
18 new string [] { "Red", "Green", "Blue" };
19
20 // Get all colors .
21 var result =
22 from c in colors
23 select c;
24
25 // Print all colors to the console .
26 foreach (var color in result)
27 {
28 Console .WriteLine (color);
29 }
30 }
31 }
32 }

Obwohl die Ergebnismenge nur aus Elementen des Typs string besteht, ist es in
der Praxis üblich, den Typ einer in Linq geschriebenen Abfrage mit Hilfe von var
zu definieren.

Ebenso könnte die Schleifenvariable der foreach-Schleife als string definiert wer-
den, da jedes einzelne Element diesem Typ entspricht, aber auch dies ist in der Pra-
xis unüblich.

Um die Ergebnismenge zu sortieren, kann das Schlüsselwort orderby verwendet
werden, wobei nach diesem ein Ausdruck angegeben werden muss, welcher die

19.2 Abfrageoperatoren 193

Sortierreihenfolge definiert. Es ist also nicht nur möglich, nach dem Element an
sich zu sortieren, sondern es kann beispielsweise auch eine Eigenschaft oder ein
Delegat angegeben werden, der die Sortierung vornimmt.

C#

1 using System ;
2 using System .Linq;
3
4 namespace GoloRoden . GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors .
17 string [] colors =
18 new string [] { "Red ", "Green ", "Blue" };
19
20 // Get all colors in alphabetical order.
21 var result =
22 from c in colors
23 orderby c
24 select c;
25
26 // Print all colors to the console .
27 foreach (var color in result)
28 {
29 Console .WriteLine (color);
30 }
31 }
32 }
33 }

Alternativ zu der aufsteigenden Sortierung können die Elemente der Ergebnis-
menge durch die Angabe des zusätzlichen Schlüsselwortes descending auch abstei-
gend sortiert werden.

C#

1 using System ;
2 using System .Linq;
3
4 namespace GoloRoden . GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >

194 19 Linq

9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors .
17 string [] colors =
18 new string [] { "Red", "Green", "Blue" };
19
20 // Get all colors in reversed alphabetical order.
21 var result =
22 from c in colors
23 orderby c descending
24 select c;
25
26 // Print all colors to the console .
27 foreach (var color in result)
28 {
29 Console .WriteLine (color);
30 }
31 }
32 }
33 }

Zusätzlich kann die Ergebnismenge mit dem Schlüsselwort where durchsucht
werden, so dass nur einige Elemente in der Ergebnismenge enthalten sind. Im fol-
genden Beispiel werden beispielsweise nur die Elemente in die Ergebnismenge auf-
genommen, deren Anfangsbuchstabe ein R ist.

C#

1 using System ;
2 using System .Linq;
3
4 namespace GoloRoden .GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class .
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors .
17 string [] colors =
18 new string [] { "Red", "Green", "Blue" };
19
20 // Get all colors whose name starts with an R

19.2 Abfrageoperatoren 195

21 // in reversed alphabetical order.
22 var result =
23 from c in colors
24 where c.StartsWith ("R")
25 orderby c descending
26 select c;
27
28 // Print all colors to the console .
29 foreach (var color in result)
30 {
31 Console .WriteLine (color);
32 }
33 }
34 }
35 }

Falls der Typ der Elemente der Ergebnismenge kein einfacher Typ, sondern ein
komplexer Typ wie beispielsweise ein Objekt ist, kann es gewünscht sein, nicht
das gesamte Element in die Ergebnismenge aufzunehmen, sondern nur eine oder
mehrere Eigenschaften.

Sofern nur eine einzelne Eigenschaft als Element in die Ergebnismenge aufge-
nommen werden soll, genügt es, diese an Stelle des eigentlichen Objekts bei select
anzugeben. Sollen statt dessen mehrere Eigenschaften verwendet werden, können
diese mit Hilfe von Objektinitialisierern in ein neues Objekt von einem anonymen
Typ zusammengeführt werden.

C#

1 using System ;
2 using System .Linq;
3
4 namespace GoloRoden . GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an arrays of colors .
17 string [] colors =
18 new string [] { "Red ", "Green ", "Blue" };
19
20 // Get all colors whose name starts with R in
21 // reversed alphabetical order , and limit the
22 // result set to the name and length of the
23 // colors .
24 var result =

196 19 Linq

25 from c in colors
26 where c.StartsWith ("R")
27 orderby c descending
28 select new { Name = c, c.Length };
29
30 // Print all colors to the console .
31 foreach (var color in result)
32 {
33 Console .WriteLine (
34 color .Name + " (" + color.Length + ")");
35 }
36 }
37 }
38 }

Spätestens an dieser Stelle wird deutlich, warum der Datentyp bei Linq nie spe-
zifisch, sondern in der Regel mit dem Schlüsselwort var definiert wird. Ändert sich
die Auswahl der in der Ergebnismenge enthaltenen Eigenschaften, so müssen die
verwendeten Typen nicht angepasst werden.

Mit Linq ist es jedoch nicht nur möglich, einzelne Elemente in einer Ergebnis-
menge zusammenzufassen, zusätzlich kann diese Menge ihrerseits gruppiert wer-
den. Dazu dient das Schlüsselwort group, das immer in Kombination mit dem
Schlüsselwort by verwendet werden muss, und das angibt, welche Elemente wie
gruppiert werden sollen. Wird group innerhalb einer Abfrage verwendet, so kann
diese Abfrage kein select enthalten.

Eine auf diese Art erzeugte Gruppe von Elementen enthält das Kriterium, mit
dessen Hilfe sie erstellt wurde, in der Eigenschaft Key und kann ihrerseits wiederum
als Quelle für eine Schleife oder eine weitere Abfrage dienen. Im folgenden Beispiel
werden jeweils all jene Elemente zu einer Gruppe zusammengefasst, deren Namen
die gleiche Länge haben.

C#

1 using System ;
2 using System .Linq;
3
4 namespace GoloRoden .GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class .
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors .
17 string [] colors =
18 new string [] { "Red", "Green", "Blue" };

19.2 Abfrageoperatoren 197

19
20 // Get all colors ordered alphabetically and put
21 // them in groups depending on the length of the
22 // color ’s name.
23 var result =
24 from c in colors
25 orderby c
26 group c by c.Length ;
27
28 // Iterate over all groups .
29 foreach (var group in result)
30 {
31 // Print the group ’s key to the console .
32 Console .WriteLine (group.Key);
33
34 // Iterate over all colors within the group .
35 foreach (var color in group)
36 {
37 // Print the color to the console .
38 Console .WriteLine (color);
39 }
40 }
41 }
42 }
43 }

Neben den Möglichkeiten, die sich direkt aus der Verwendung solcher Abfragen
ergeben, erweitert Linq sämtliche Aufzählungstypen mit Hilfe von Erweiterungs-
methoden um weitere Methoden zur Manipulation der Ergebnismenge.

Soll beispielsweise nur das erste Element einer Ergebnismenge ausgewertet wer-
den, so kann dies mit Hilfe der Methode First abgerufen werden.

C#

1 using System ;
2 using System .Linq;
3
4 namespace GoloRoden . GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors .
17 string [] colors =
18 new string [] { "Red ", "Green ", "Blue" };
19

198 19 Linq

20 // Get all colors ordered alphabetically.
21 var result =
22 from c in colors
23 orderby c
24 select c;
25
26 // Get the first color from the result .
27 string color = result .First ();
28 }
29 }
30 }

Ebenso kann eine gewisse Anzahl an ersten Elementen abgerufen werden, wo-
zu die Methode Take dient. Im folgenden Beispiel werden immer nur die ersten
beiden Elemente der Ergebnismenge zurückgegeben, unabhängig davon, wie viele
Elemente tatsächlich enthalten sind.

C#

1 using System ;
2 using System .Linq;
3
4 namespace GoloRoden .GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class .
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Define an array of colors .
17 string [] colors =
18 new string [] { "Red", "Green", "Blue" };
19
20 // Get all colors ordered alphabetically.
21 var result =
22 from c in colors
23 orderby c
24 select c;
25
26 // Get the two top colors from the result .
27 var topColors = result .Take (2);
28 }
29 }
30 }

19.3 Lambdaausdrücke 199

19.3 Lambdaausdrücke

Intern werden in Linq geschriebene Abfragen in Aufrufe von Erweiterungsmetho-
den und Lambdaausdrücke umgewandelt. Dies geschieht ähnlich wie bei der fore-
ach-Schleife im Hintergrund durch den Compiler, ohne dass der Entwickler dies
bemerkt.

Beispielsweise wird die Abfrage

C#

1 // Get all colors whose name starts with an R in reversed
2 // alphabetical order.
3 var result =
4 from c in colors
5 where c.StartsWith ("R")
6 orderby c descending
7 select c;

von C# in

C#

1 // Get all colors whose name starts with an R in reversed
2 // alphabetical order.
3 var result =
4 colors .Where(c => c.StartsWith ("R"))
5 . OrderByDescending(c => c). Select (c => c);

umgewandelt.

Kapitel 20
Ausnahmen

20.1 Was sind Ausnahmen?

Wird die Frage gestellt, aus welchem Grund Anwendungen entwickelt werden, so
geschieht dies zunächst im Wesentlichen zur Bewältigung einer Aufgabe und zur
Lösung der mit dieser Aufgabe einhergehenden Problemen. Obwohl dies den initia-
len Beweggrund darstellt, enthält jede Anwendung zahlreiche weitere Aspekte, die
bei der Entwicklung neben der eigentlichen Domäne beachtet werden müssen.

Dazu zählen beispielsweise Aspekte wie Sicherheit, Ausführungsgeschwindig-
keit oder Stabilität. Ein wesentlicher Faktor, der sich in direkter Konsequenz auf die
Qualität einer jeden Anwendung auswirkt, ist der Umgang mit potenziellen Fehlern,
die während der Ausführung der Anwendung auftreten können.

Anwendungen, die auf Basis der Win32-API und COM entwickelt werden, ver-
fügen nicht über ein einheitliches System, wie Fehler ausgelöst und behandelt
werden. Einige Methoden der Win32-API verwenden Rückgabewerte, wobei es
dem Entwickler obliegt, den Rückgabewert überhaupt auszuwerten und ihn außer-
dem entsprechend seiner Bedeutung zu interpretieren. Andere Methoden wiederum
handhaben die Fehlerbehandlung anders, wobei dies nicht nur von der verwendeten
Plattform, sondern zusätzlich noch von der verwendeten Sprache abhängt.

.NET hingegen stellt allen Anwendungen, die für .NET entwickelt werden, ein
einheitliches System zur Fehlerbehandlung zur Verfügung. Dieses basiert auf so-
genannten Ausnahmen, wobei eine Ausnahme einen konkreten Fehlerfall darstellt.
Ein wesentlicher Unterschied zwischen Ausnahmen und den klassischen Rückga-
bewerten liegt darin, wie sie behandelt werden.

Während es früher Aufgabe des Entwicklers war, auf die Behandlung zu achten,
brechen Ausnahmen die Ausführung der Anwendung ab. Damit dies jedoch nicht
bei jeder Ausnahme geschieht, bietet C# entsprechende Möglichkeiten, auf Ausnah-
men zu reagieren, so dass die Ausführung nach der Fehlerbehandlung fortgesetzt
werden kann – erfolgt jedoch keine Fehlerbehandlung, so wird die Ausführung der
Anwendung abgebrochen. Es ist also nicht mehr möglich, Fehler zu ignorieren.

Golo Roden, Auf der Fährte von C# 201
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

202 20 Ausnahmen

Ausnahmen können in .NET so wohl von der Common Language Runtime aus-
gelöst werden, wenn eine Anwendung beispielsweise versucht, auf eine nicht vor-
handene Ressource zuzugreifen, sie können aber auch vom Entwickler gezielt ein-
gesetzt werden, um Fehlersituationen innerhalb der Anwendung zu kennzeichnen.

Damit der fehlerbehandelnde Code auf eine Ausnahme möglichst geeignet rea-
gieren kann, enthalten Ausnahmen neben einer ausführlichen, detaillierten Fehler-
meldung auch den sogenannten Aufrufstapel, mit dessen Hilfe sich nachverfolgen
lässt, an welcher Stelle in der Ausführung sich die Anwendung gerade befindet. Da-
bei enthält der Aufrufstapel nicht nur Informationen zu der Klasse, Methode und
Zeile, welche die Ausnahme ausgelöst hat, sondern auch zur Aufrufhierarchie.

Des weiteren enthält eine Ausnahme unter Umständen noch weitere, sogenannte
innere Ausnahmen, wenn beispielsweise während der Fehlerbehandlung ein weite-
rer Fehler aufgetreten ist, allerdings Informationen zu beiden Fehlern an die nächste
Fehlerbehandlung weitergereicht werden sollen.

20.2 Ausnahmen behandeln

Prinzipiell werden Ausnahmen immer dort behandelt, wo sie auftreten. Das heißt,
tritt eine Ausnahme innerhalb einer Methode auf, obliegt es dieser Methode, sich
um die Fehlerbehandlung zu kümmern. Geschieht dies nicht, so wird die Ausnahme
an die aufrufende Methode weitergereicht, die sich ihrerseits nun um die Fehlerbe-
handlung kümmern kann.

Geschieht auch dies nicht, wird die Ausnahme wieder eine Ebene nach oben
gereicht, bis sich entweder eine Methode findet, welche die Ausnahme behandelt,
oder die oberste Ebene, also die Main-Methode, erreicht ist. Wird die Ausnahme
auch dort nicht behandelt, wird die Ausführung der Anwendung abgebrochen und
.NET gibt die Fehlermeldung der Ausnahme an den Benutzer aus.

Um eine Ausnahme abzufangen, bietet C# die beiden Schlüsselwörter try und
catch. Beide verfügen über einen Rumpf, der durch geschweifte Klammern einge-
schlossen wird. Während try die Anweisungen umschließt, die potenziell eine Aus-
nahme auslösen könnten, stellt catch den fehlerbehandelnden Code zur Verfügung.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >

20.2 Ausnahmen behandeln 203

13 public static void Main ()
14 {
15 try
16 {
17 // Define two operands .
18 int operand1 = 23;
19 int operand2 = 0;
20
21 // Cause an exception .
22 int result = operand1 / operand2 ;
23
24 // Print the result to the console .
25 Console .WriteLine (
26 "The result is " + result + ".");
27 }
28 catch
29 {
30 // Catch any exceptions .
31 Console .WriteLine ("Division by zero!");
32 }
33 }
34 }
35 }

Im vorangegangenen Beispiel löst die Zeile, in der versucht wird, den einen Ope-
randen durch den anderen zu teilen, eine Ausnahme aus, da die Division durch Null
mathematisch nicht definiert ist. Die Ausführung innerhalb des try-Blocks wird dar-
aufhin abgebrochen, weshalb die Ausgabe des Ergebnisses nicht erfolgt. Statt des-
sen verzweigt die Ausführung in den catch-Block, der eine entsprechende Fehler-
meldung ausgibt.

Ein solcher catch-Block reagiert allerdings nicht nur auf die aufgetretene Divide-
ByZeroException, sondern auf sämtliche Ausnahmen. Unter Umständen ist dieses
Verhalten allerdings nicht gewünscht, da nur gezielt einige Ausnahmen behandelt
werden sollen. Dazu ist es möglich, den Typ der zu behandelnden Ausnahme als
Parameter anzugeben.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {

204 20 Ausnahmen

15 try
16 {
17 // Define two operands .
18 int operand1 = 23;
19 int operand2 = 0;
20
21 // Cause an exception .
22 int result = operand1 / operand2 ;
23
24 // Print the result to the console .
25 Console .WriteLine (
26 "The result is " + result + ".");
27 }
28 catch (DivideByZeroException)
29 {
30 // Catch a DivideByZeroException .
31 Console .WriteLine ("Division by zero!");
32 }
33 }
34 }
35 }

Derzeit ist es in C# allerdings nicht möglich, mehrere Typen anzugeben. Sollen
also mehrere Ausnahmen behandelt werden, müssen mehrere catch-Blöcke verwen-
det werden.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 try
16 {
17 // Define two operands .
18 int operand1 = 23;
19 int operand2 = 0;
20
21 // Cause an exception .
22 int result = operand1 / operand2 ;
23
24 // Print the result to the console .
25 Console .WriteLine (
26 "The result is " + result + ".");

20.2 Ausnahmen behandeln 205

27 }
28 catch (DivideByZeroException)
29 {
30 // Catch a DivideByZeroException .
31 Console .WriteLine ("Division by zero!");
32 }
33 catch (OverflowException)
34 {
35 // Catch an OverflowException.
36 Console .WriteLine ("Result too large!");
37 }
38 }
39 }
40 }

Die einzige Möglichkeit, diese Einschränkung zu umgehen, ist, eine gemeinsa-
me Basisklasse als Typ anzugeben, sofern eine solche existiert. Prinzipiell leiten alle
Ausnahmen von der Klasse System.Exception ab, manche verfügen allerdings über
eine andere Basisklasse, die ihrerseits erst von System.Exception ableitet. Ein typi-
sierter catch-Block behandelt also nicht nur die Ausnahmen, die dem angegebenen
Typ entsprechen, sondern auch all jene, die von diesem Typ abgeleitet sind.

Generell gilt allerdings, dass Ausnahmen so lokal und so spezifisch wie möglich
behandelt werden sollten.

Sofern mehrere catch-Blöcke vorhanden sind, muss deren Reihenfolge beach-
tet werden. Da C# immer den frühesten passenden catch-Block mit der Fehlerbe-
handlung betraut, ist es wichtig, Blöcke für spezifische Ausnahmen vor solchen für
allgemeinere Ausnahmen zu positionieren.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 try
16 {
17 // Define two operands .
18 int operand1 = 23;
19 int operand2 = 0;
20
21 // Cause an exception .
22 int result = operand1 / operand2 ;

206 20 Ausnahmen

23
24 // Print the result to the console .
25 Console .WriteLine (
26 "The result is " + result + ".");
27 }
28 catch
29 {
30 // This block is executed on every exception
31 // since it catches any exception .
32 }
33 catch(DivideByZeroException)
34 {
35 // This block is executed never.
36 }
37 }
38 }
39 }

Eine Fähigkeit von Ausnahmen wurde noch nicht vorgestellt: Der Zugriff auf die
in einer Ausnahme enthaltenen Informationen wie Fehlermeldung, Aufrufstapel und
innere Ausnahmen. Dazu ist es nötig, eine Ausnahme mit einem Variablennamen zu
kennzeichnen, so dass darauf innerhalb des catch-Blocks zugegriffen werden kann.
Es hat sich in der Praxis eingebürgert, Ausnahmen mit der Abkürzung ex zu benen-
nen, obwohl dies nicht den Namenskonventionen für lokale Variablen entspricht,
weshalb diese Bezeichnung in den folgenden Beispiele nicht verwendet wird.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 try
16 {
17 // Define two operands .
18 int operand1 = 23;
19 int operand2 = 0;
20
21 // Cause an exception .
22 int result = operand1 / operand2 ;
23
24 // Print the result to the console .
25 Console .WriteLine (

20.2 Ausnahmen behandeln 207

26 "The result is " + result + ".");
27 }
28 catch (DivideByZeroException exception)
29 {
30 // Catch a DivideByZeroException .
31 Console .WriteLine (exception .Message);
32 }
33 }
34 }
35 }

Auch ein Weiterreichen und somit ein erneutes Auslösen einer Ausnahme inner-
halb eines catch-Blocks ist möglich, was in C# mit Hilfe des Schlüsselwortes throw
geschieht. Es wird kein weiterer Parameter benötigt, da throw immer die Ausnah-
me weiterreicht, in deren fehlerbehandelndem Block sich der entsprechende Aufruf
befindet.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 try
16 {
17 // Define two operands .
18 int operand1 = 23;
19 int operand2 = 0;
20
21 // Cause an exception .
22 int result = operand1 / operand2 ;
23
24 // Print the result to the console .
25 Console .WriteLine (
26 "The result is " + result + ".");
27 }
28 catch (DivideByZeroException exception)
29 {
30 // Catch the DivideByZeroException .
31 Console .WriteLine (exception .Message);
32
33 // Rethrow the exception .
34 throw;

208 20 Ausnahmen

35 }
36 }
37 }
38 }

Dennoch kann eine Ausnahme als Parameter angegeben werden, wobei dabei
allerdings der Aufrufstapel verloren geht, weshalb dies in der Praxis als schlechter
Stil angesehen wird.

In einigen Fällen kann es vorkommen, dass Code im Anschluss an einen try-
catch-Block ausgeführt werden muss, unabhängig davon, ob der try-Block vollstän-
dig erfolgreich durchlaufen wurde oder nicht, wenn also eine Ausnahme ausgelöst
wurde. Solcher Code könnte beispielsweise dazu dienen, eine geöffnete Verbindung
zu einer Datenbank zu schließen oder sonstige Ressourcen wieder freizugeben. Im
einfachsten Fall genügt es, solchen Code hinter dem catch-Block anzugeben.

C#

1 try
2 {
3 // TODO gr: Do something .
4 // 2008 -01 -02
5 }
6 catch
7 {
8 // TODO gr: Handle eventually thrown exceptions .
9 // 2008 -01 -02
10 }
11
12 // TODO gr: Clean up.
13 // 2008 -01 -02

Führt jedoch mindestens einer der beiden Blöcke ein return aus und verlässt die
aktuelle Methode damit, oder reicht der catch-Block die Ausnahme an eine höher-
gelegene Methode weiter, wird der entsprechende Code nicht mehr ausgeführt.

Eine denkbare Lösung wäre, den entsprechenden Code in beiden Blöcken einzu-
fügen, doch dies verschlechtert die Wartbarkeit und erhöht die Unübersichtlichkeit.
Statt dessen stellt C# das Schlüsselwort finally zur Verfügung, das einen weiteren
Block nach try und catch einleitet, dessen Inhalt in jedem Fall ausgeführt wird – so-
gar dann, wenn durch einen der beiden Blöcke ein return oder ein throw ausgeführt
wird.

C#

1 Try
2 {
3 // TODO gr: Do something .
4 // 2008 -01 -02
5
6 return ;
7 // Return to the caller .
8 }

20.3 Benutzerdefinierte Ausnahmen 209

9 catch
10 {
11 // TODO gr: Handle eventually thrown exceptions .
12 // 2008 -01 -02
13
14 // Rethrow the exception .
15 throw;
16 }
17 finally
18 {
19 // TODO gr: Clean up.
20 // 2008 -01 -02
21 }

20.3 Benutzerdefinierte Ausnahmen

Wie zu Anfang bereits erwähnt ist es dem Entwickler möglich, eigene Ausnahmen
zu definieren, um Fehlerzustände innerhalb der Anwendung zu kennzeichnen. Prin-
zipiell ist eine solche benutzerdefinierte Ausnahme nichts anderes, als eine direkt
oder indirekt von System.Exception abgeleitete Klasse.

Um systembedingte und benutzerdefinierte Ausnahmen unterscheiden zu kön-
nen, ist es in der Praxis üblich, eigene Ausnahmeklassen nicht von System.Excep-
tion, sondern von der Klasse System.ApplicationException abzuleiten, die ihrerseits
wiederum von System.Exception ableitet.

Ausgelöst wird eine benutzerdefinierte Ausnahme mit Hilfe des bereits bekann-
ten Schlüsselwortes throw, wobei diesem als Parameter eine neue Instanz der ent-
sprechenden Ausnahme übergeben wird.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a custom defined exception .
7 /// </summary >
8 public class MyException : ApplicationException
9 {
10 }
11
12 /// <summary >
13 /// Represents the application class.
14 /// </summary >
15 public class Program
16 {
17 /// <summary >
18 /// Executes the application .

210 20 Ausnahmen

19 /// </summary >
20 public static void Main ()
21 {
22 // Throw a custom defined exception .
23 throw new MyException ();
24 }
25 }
26 }

Es wird in der Praxis als guter Stil angesehen, die Standardkonstruktoren der
Basisklasse System.ApplicationException zu überschreiben, um auch benutzerde-
finierte Ausnahmen durch Angabe der entsprechenden Parameter mit einer Fehler-
meldung und inneren Ausnahmen ausstatten zu können.

20.4 Leistung und Ressourcenbedarf

Im Zusammenhang mit Ausnahmen liest und hört man häufig, dass diese nicht ein-
gesetzt werden sollten, da sie sehr leistungshungrig seien. Aus dieser Aussage ergibt
sich direkt die Frage, wann Ausnahmen überhaupt eingesetzt werden sollten.

Prinzipiell ergibt sich die Antwort auf diese Frage bereits aus dem Begriff einer
Ausnahme: Sie stellen Ausnahmesituationen dar. Das heißt, Ausnahmen sind expli-
zit nicht dazu gedacht, bedenkenlos an den verschiedensten Stellen innerhalb einer
Anwendung eingesetzt zu werden. Sofern es möglich ist, einen Fehler im Vorfeld
abzufangen, sollte dies dem Einsatz einer Ausnahme vorgezogen werden.

Beispielsweise würde man in dem Beispiel, das die DivideByZeroException ab-
fängt, in der Praxis keine Ausnahme einsetzen, sondern im Vorfeld mit Hilfe einer
if -Abfrage prüfen, ob durch 0 geteilt werden soll. Insbesondere, wenn solche Be-
rechnungen innerhalb von Schleifen auftreten, kann dadurch die Leistung der An-
wendung durchaus gesteigert werden.

Dies liegt daran, dass für jede Ausnahme, die ausgelöst wird, der Aufrufstapel
ermittelt werden muss, was bei einer entsprechend tiefen Verschachtelung von Me-
thodenaufrufen unter Umständen aufwändig sein kann.

Obwohl Ausnahmen also nicht wahlfrei eingesetzt werden sollten, gibt es den-
noch Fälle, in denen ihr Einsatz nicht verzichtbar ist. Dann nämlich, wenn Fehler
nicht erwartbar sind und auf Ausnahmesituationen reagiert werden muss. In einem
solchen Fall ist es in der Regel allerdings ohnehin nötig, den Benutzer zu informie-
ren und ihn das weitere Vorgehen bestimmen zu lassen, weshalb es in einer solchen
Situation nicht darauf ankommt, ob eine Ausnahme schnell oder langsam erzeugt
wird – die Anwendung gelangt auf beide Arten zum Stillstand.

Zusammengefasst lässt sich also sagen, dass Ausnahmen entgegen ihrem Ruf
durchaus eingesetzt werden können, dass dies allerdings gezielt und mit Bedacht
geschehen sollte. Insbesondere sollten Fehlersituationen bereits im Vorfeld vermie-
den werden, sofern dies möglich ist.

Kapitel 21
Attribute

21.1 Was sind Attribute?

Wie bereits im Rahmen der Fehlerbehandlung erwähnt, gibt es Aspekte in Anwen-
dungen, die über die reine fachliche Domäne hinausgehen. Als Beispiele waren
dort unter anderem Sicherheit, Ausführungsgeschwindigkeit und Stabilität genannt.
Auch die Fehlerbehandlung zählt zu diesen nicht-fachlichen Aspekten.

Neben Aspekten, die per Code definiert werden, bietet C# auch die Möglichkeit,
Aspekte deklarativ umzusetzen, das heißt, ohne dass Code zu ihrer Umsetzung ge-
schrieben werden müsste. Statt dessen werden die entsprechenden Stellen innerhalb
der Anwendung mit sogenannten Attributen markiert, die Einfluss auf die Semantik
des markierten Codes haben.

Beispielsweise gibt es für Enumerationen ein Attribut, das bewirkt, dass die in-
terne Abbildung der Enumeration auf Ganzzahlen dem Schema der Zweierpotenzen
folgt, statt die Zahlen lediglich fortlaufend zuzuordnen. Dieses Attribut ist beispiels-
weise dann äußerst nützlich, wenn die einzelnen Werte einer Enumeration binär
verknüpft werden sollen.

Um ein Attribut in C# zu verwenden, genügt es, das entsprechende Attribut vor
dem zu markierenden Abschnitt innerhalb eckiger Klammern anzugeben. Das At-
tribut, um die einer Enumeration zugeordneten Zahlen als Zweierpotenzen zu orga-
nisieren, heißt FlagsAttribute und befindet sich im Namensraum System.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Contains colors .
7 /// </summary >
8 [Flags]
9 enum Colors
10 {

Golo Roden, Auf der Fährte von C# 211
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

212 21 Attribute

11 /// <summary >
12 /// Represents the red color.
13 /// </summary >
14 Red , // = 1
15
16 /// <summary >
17 /// Represents the green color.
18 /// </summary >
19 Green , // = 2
20
21 /// <summary >
22 /// Represents the blue color .
23 /// </summary >
24 Blue // = 4
25 }
26 }

Wie das Beispiel zeigt, entfällt bei der Angabe eines Attributs das Suffix Attribu-
te, obwohl der interne Bezeichner der Klasse FlagsAttribute lautet. Attribute ermög-
lichen prinzipiell also, die Semantik von Code auf deklarativem Wege zu verändern.

Die meisten Attribute ermöglichen außerdem, sie mit Hilfe von Parametern an
den jeweiligen Kontext anzupassen. Prinzipiell werden Parameter zu Attributen ähn-
lich denen zu einer Methode angegeben, innerhalb runder Klammern. Allerdings
werden bei Attributen zwei Typen von Parametern unterschieden: Positions- und
Namensparameter.

Während Positionsparameter eine feste Reihenfolge besitzen, in der sie angege-
ben werden müssen, ist diese bei Namensparametern frei wählbar. Allerdings muss
diesen ein Name vorangestellt werden, damit C# den Parameter entsprechend zu-
ordnen kann. Die meisten Attribute folgen dem Schema, dass Positionsparameter
zwingende, Namensparameter allerdings nur optionale Parameter darstellen. Sofern
Namensparameter angegeben werden, muss dies nach den Positionsparametern er-
folgen.

Ein Beispiel für Positionsparameter bietet das Attribut ObsoleteAttribute, das ge-
nutzt werden kann, um Methoden oder Typen zu kennzeichnen, die aus Kompatibi-
litätsgründen noch enthalten sind, allerdings nicht mehr verwendet werden sollten.
Es gibt dieses Attribut in drei Ausführungen: Ohne Parameter, mit einem und mit
zwei Parametern. Der erste Parameter definiert eine Fehlermeldung, die C# ausge-
ben soll, wenn die Methode oder der Typ verwendet wird, der zweite Parameter legt
mit Hilfe eines logischen Wertes fest, ob der Compiler eine Warnung oder einen
Fehler erzeugen soll.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >

21.2 Benutzerdefinierte Attribute 213

8 public class Foo
9 {
10 /// <summary >
11 /// Does nothing .
12 /// </summary >
13 [Obsolete]
14 public void Bar ()
15 {
16 }
17
18 /// <summary >
19 /// Does nothing .
20 /// </summary >
21 /// <param name =" param0 ">A foo parameter .</param >
22 [Obsolete ("Use method X instead .")]
23 public void Bar (int param0)
24 {
25 }
26
27 /// <summary >
28 /// Does nothing .
29 /// </summary >
30 /// <param name =" param0 ">A foo parameter .</param >
31 /// <param name =" param1 "> Another foo parameter .
32 /// </param >
33 [Obsolete ("Use method X instead .", true)]
34 public void Bar (int param0 , int param1)
35 {
36 }
37 }
38 }

21.2 Benutzerdefinierte Attribute

Außer den vordefinierten Attributen bietet C# auch die Möglichkeit, eigene Attri-
bute zu definieren. Dies geschieht, indem eine eigene Klasse definiert wird, die von
der Basisklasse Attribute im Namensraum System ableitet und deren Name auf das
Suffix Attribute endet.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the author attribute .
7 /// </summary >
8 public class AuthorAttribute : Attribute
9 {

214 21 Attribute

10 }
11 }

Um dieses Attribut mit Parametern zu versehen, werden zum einen Felder be-
nötigt, welche die entsprechenden Werte aufnehmen. Außerdem muss das Attribut
für Positionsparameter mindestens mit einem Konstruktor versehen werden, für Na-
mensparameter muss es entsprechende Eigenschaften geben.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the author attribute .
7 /// </summary >
8 public class AuthorAttribute : Attribute
9 {
10 /// <summary >
11 /// Contains the name.
12 /// </summary >
13 private string _name ;
14
15 /// <summary >
16 /// Contains the email address .
17 /// </summary >
18 private string _eMail ;
19
20 /// <summary >
21 /// Gets or sets the name.
22 /// </summary >
23 /// <value >The name.</ value >
24 public string Name
25 {
26 get
27 {
28 return this._name;
29 }
30
31 set
32 {
33 this._name = value ;
34 }
35 }
36
37 /// <summary >
38 /// Gets or sets the email .
39 /// </summary >
40 /// <value >The email .</ value >
41 public string EMail
42 {
43 get

21.3 Ziele von Attributen 215

44 {
45 return this._eMail ;
46 }
47
48 set
49 {
50 this._eMail = value ;
51 }
52 }
53
54 /// <summary >
55 /// Initializes a new instance of the
56 /// AuthorAttribute type.
57 /// </summary >
58 /// <param name ="name">The name.</ param >
59 public AuthorAttribute(string name)
60 {
61 // Set the values .
62 this._name = name;
63 }
64 }
65 }

In diesem Beispiel ist es auf Grund des Konstruktors notwendig, den Namen des
Autors anzugeben, die E-Mail-Adresse ist allerdings optional. Methoden und Typen
können, sofern sie mit diesem Attribut markiert werden, mit der Angabe versehen
werden, wer sie entwickelt hat und für sie zuständig ist, was beispielsweise in Teams
nützlich zu wissen sein kann.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 [Author ("Golo Roden ", EMail = " webmaster@goloroden.de")]
9 public class Foo
10 {
11 }
12 }

21.3 Ziele von Attributen

Attribute selbst können wiederum mit Attributen versehen werden, was in C# un-
ter anderem dafür genutzt wird, die potenziellen Ziele für Attribute vorzugeben.

216 21 Attribute

Ein Ziel ist ein Element innerhalb des Codes, auf welches das Attribut angewendet
werden kann, wie beispielsweise eine Methode, ein Parameter oder eine Klasse.

Ziele werden in C# mit Hilfe des Attributes AttributeUsageAttribute definiert,
das als Parameter eine bitweise-oder-verknüpfte Liste von Zielen erwartet. Um die
Verwendung des Attributs AuthorAttribute beispielsweise auf Methoden und Klas-
sen einzuschränken, werden dem AttributeUsageAttribut die entsprechenden Ziele
übergeben.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the author attribute .
7 /// </summary >
8 [AttributeUsage(AttributeTargets.Method $\vert $
9 AttributeTargets.Class)]
10 public class AuthorAttribute : Attribute
11 {
12 /// <summary >
13 /// Contains the name.
14 /// </summary >
15 private string _name ;
16
17 /// <summary >
18 /// Contains the email.
19 /// </summary >
20 private string _eMail ;
21
22 /// <summary >
23 /// Gets or sets the name.
24 /// </summary >
25 /// <value >The name.</ value >
26 public string Name
27 {
28 get
29 {
30 return this._name;
31 }
32
33 set
34 {
35 this._name = value ;
36 }
37 }
38
39 /// <summary >
40 /// Gets or sets the email .
41 /// </summary >
42 /// <value >The email .</ value >
43 public string EMail

21.3 Ziele von Attributen 217

44 {
45 get
46 {
47 return this._eMail ;
48 }
49
50 set
51 {
52 this._eMail = value ;
53 }
54 }
55
56 /// <summary >
57 /// Initializes a new instance of the
58 /// AuthorAttribute type.
59 /// </summary >
60 /// <param name ="name">The name.</ param >
61 public AuthorAttribute(string name)
62 {
63 this._name = name;
64 }
65 }
66 }

Kapitel 22
Speicherverwaltung

22.1 Speicherverbrauch

Wird eine auf .NET basierende Anwendung ausgeführt, so wird nicht nur sie in
den Speicher geladen, sondern auch die Common Language Runtime und die Klas-
senbibliothek von .NET. Aus diesem Grund verbraucht eine Anwendung, die auf
.NET basiert, zunächst deutlich mehr Speicher als eine vergleichbare Anwendung,
die beispielsweise ausschließlich auf der Win32-API aufbaut.

Seit .NET 2.0 werden die Systemkomponenten allerdings nur ein einziges Mal
geladen und anschließend allen derzeit im Speicher befindlichen Anwendungen zur
Verfügung gestellt, so dass der hohe Speicherbedarf bei zahlreichen gleichzeitig
laufenden Anwendungen relativiert wird. Obwohl diese Maßnahme den Speicher-
bedarf von Anwendungen für .NET bereits deutlich gesenkt hat, scheinen sie doch
übermäßig viel Speicher zu verbrauchen.

Verlässt man sich auf die Angaben, die beispielsweise der Taskmanager von
Windows anzeigt, wird allerdings ein Detail des Speichermanagements von .NET
übersehen: .NET reserviert für jede gestartete Anwendung zunächst zu viel freien
Speicher, so dass nicht während der Ausführung der Anwendung aufwändig neuer
Speicher angefordert werden muss. Der Anwendung steht also in jedem Fall genü-
gend Speicher zur Verfügung, was der Ausführungsgeschwindigkeit zugute kommt.

Wird allerdings der Speicher im System knapp, da in der Zwischenzeit weitere
Anwendungen gestartet wurden, oder da der Speicherbedarf anderer gleichzeitig
ausgeführter Anwendungen gestiegen ist, gibt .NET Teile des zwar reservierten,
aber ungenutzen Speichers frei. Insofern liegt der Speicherbedarf einer auf .NET
basierenden Anwendung deutlich niedriger, als man zunächst annehmen könnte.

22.2 Freigabe von Ressourcen

Die aus diesem Verhalten resultierende Frage ist, warum .NET den Speicher auf
diese Art verwaltet. Um diese Frage beantworten zu können, muss man wissen, was
intern geschieht, wenn Typen instanziiert werden.

Golo Roden, Auf der Fährte von C# 219
DOI: 10.1007/978-3-540-27889-4, © Springer 2008

220 22 Speicherverwaltung

Bisher wurde zwischen Werte- und Verweistypen unterschieden, die entweder di-
rekt oder indirekt im Speicher verwaltet werden. Ein weiterer Unterschied zwischen
diesen Arten von Typen besteht darin, wo im Speicher Instanzen dieser Typen abge-
legt werden. Während Wertetypen im sogenannten Stack abgelegt werden, werden
Verweistypen auf dem sogenannten Managed Heap gespeichert, und nur ein Verweis
auf diese Speicherstelle wird im Stack abgelegt.

Auffällig ist, dass Objekte in C# zwar mit Hilfe des Operators new erzeugt wer-
den können, dass sie aber – beispielsweise im Gegensatz zu C++ – nicht wieder
freigegeben werden müssen. Dies liegt daran, dass C# die Bereinigung des Spei-
chers um nicht mehr benötigte Objekte eigenständig mit einer entsprechenden Kom-
ponente durchführt, die als Garbage Collection oder Garbage Collector bezeichnet
wird.

Da es notwendig sein kann, vor dem Freigeben des Speichers, der durch ein Ob-
jekt belegt ist, einige Aufräumarbeiten auszuführen, gibt es dafür eine eigene Me-
thode, die als Finalisierer bezeichnet wird und deren Basisimplementierung sich als
Finalize in object befindet. Innerhalb dieser Methode können beispielsweise Res-
sourcen freigegeben werden, die nicht unter der Verwaltung von .NET stehen, wie
unter anderem COM-Objekte oder Win32-Handles. Allerdings muss darauf geach-
tet werden, in jedem Fall den Finalisierer der Basisklasse aufzurufen.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Finalizes this instance .
12 /// </summary >
13 protected override void Finalize ()
14 {
15 // TODO gr: Clean up any managed and unmanaged
16 // resources .
17 // 2008 -01 -01
18
19 // Call the base finalizer .
20 base.Finalize ();
21 }
22 }
23 }

Da es durchaus geschehen kann, dass der händische Aufruf des Finalisierers in
der Basisklasse vergessen wird, bietet C# die Möglichkeit, analog zu einem Kon-
struktor eine Methode als Destruktor zu implementieren, die diesen Aufruf implizit
durchführt. Ein Destruktor folgt dem gleichen Namensschema wie der Konstruk-

22.2 Freigabe von Ressourcen 221

tor, allerdings wird ihm eine Tilde als Präfix vorangestellt. Außerdem verfügt ein
Destruktor nicht über einen Zugriffsmodifizierer. An Stelle von

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Finalizes this instance .
12 /// </summary >
13 protected override void Finalize ()
14 {
15 // TODO gr: Clean up any managed and unmanaged
16 // resources .
17 // 2008 -01 -02
18
19 // Call the base finalizer .
20 base.Finalize ();
21 }
22 }
23 }

kann in C# also auch

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 // Finalizes this instance .
11 ~Foo ()
12 {
13 // TODO gr: Clean up any managed and unmanaged
14 // resources .
15 // 2008 -01 -02
16 }
17 }
18 }

verwendet werden. Obwohl beide Varianten semantisch gleichwertig sind, sollte in
der Praxis immer die zweite Variante verwendet werden.

222 22 Speicherverwaltung

Der einzige Nachteil an Destruktoren in C# ist, dass ihr Ausführungszeitpunkt
nicht deterministisch ist. Sie werden dann ausgeführt, wenn die Garbage Collection
den Speicher aufräumt und nicht mehr benötigte Objekte entfernt. Da die Ausfüh-
rung der Garbage Collection nach einem internen Algorithmus von .NET gesteuert
wird, kann man sich nicht darauf verlassen, dass ein Objekt zu einem bestimmten
Zeitpunkt aufgeräumt und damit sein Finalisierer ausgeführt wird.

Die Garbage Collection kann ein Objekt jedoch nur dann freigeben, wenn sein Fi-
nalisierer ausgeführt wurde, weshalb Objekte, die über einen Finalisierer verfügen,
länger im Speicher verbleiben als solche, die keinen Finalisierer enthalten. Diese
Verzögerung dauert bis zur nächsten Ausführung der Garbage Collection, weshalb
nur solche Klassen einen Finalisierer implementieren sollten, die nicht verwaltete
Ressourcen wieder freigeben müssen.

Sollen nicht verwaltete Ressourcen zu einem vom Entwickler bestimmten Zeit-
punkt oder auch verwaltete Ressourcen freigegeben werden, stellt .NET die Schnitt-
stelle IDisposable zur Verfügung. Eine Klasse, deren Freigabeprozesse gezielt ge-
steuert werden sollen, muss diese Schnittstelle und die damit einhergehende Metho-
de Dispose implementieren.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo : IDisposable
9 {
10 /// <summary >
11 /// Disposes this instance .
12 /// </summary >
13 public void Dispose ()
14 {
15 // TODO gr: Clean up any unmanaged resources .
16 // 2008 -01 -02
17
18 // TODO gr: Clean up any managed resources .
19 // 2008 -01 -02
20 }
21 }
22 }

Nun kann die Methode Dispose aufgerufen werden, um die entsprechenden Res-
sourcen freizugeben. Allerdings kann dieser Aufruf nun wiederum vergessen wer-
den, weshalb der Finalisierer ebenfalls Dispose aufrufen sollte.

C#

1 using System ;
2

22.2 Freigabe von Ressourcen 223

3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo : IDisposable
9 {
10 /// <summary >
11 /// Finalizes this instance .
12 /// </summary >
13 ~Foo ()
14 {
15 // Dispose this instance .
16 this.Dispose ();
17 }
18
19 /// <summary >
20 /// Disposes this instance .
21 /// </summary >
22 public void Dispose ()
23 {
24 // TODO gr: Clean up any unmanaged resources .
25 // 2008 -01 -02
26
27 // TODO gr: Clean up any managed resources .
28 // 2008 -01 -02
29 }
30 }
31 }

Doch auch diese Variante enthält einen Fehler. Wird Dispose vom Entwickler
aufgerufen, so wird der Finalisierer dennoch von der Garbage Collection ausge-
führt, die ihrerseits Dispose ein zweites Mal aufruft. Das heißt, es wird versucht,
Ressourcen freizugeben, die längst nicht mehr belegt sind. Um dies zu verhindern,
muss die Dispose-Methode den Finalisierer in der Garbage Collection abmelden, so
dass dieser nicht mehr ausgeführt wird.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo : IDisposable
9 {
10 /// <summary >
11 /// Finalizes this instance .
12 /// </summary >
13 ~Foo ()
14 {

224 22 Speicherverwaltung

15 // Dispose this instance .
16 this.Dispose ();
17 }
18
19 /// <summary >
20 /// Disposes this instance .
21 /// </summary >
22 public void Dispose ()
23 {
24 // TODO gr: Clean up any unmanaged resources .
25 // 2008 -01 -02
26
27 // TODO gr: Clean up any managed resources .
28 // 2008 -01 -02
29
30 // Suppress execution of the finalizer for this
31 // object .
32 GC.SuppressFinalize(this);
33 }
34 }
35 }

Da die Garbage Collection alle verwalteten Objekte in einer beliebigen Reihen-
folge aufräumt, kann es beim automatischen Aufruf von Dispose durch die Garbage
Collection vorkommen, dass einige der verwalteten Ressourcen, die freigegeben
werden sollen, bereits nicht mehr existieren. Um dies zu verhindern, wird eine neue
Variable eingeführt, mit der überprüft werden kann, ob Dispose vom Entwickler
oder von der GarbageCollection aufgerufen wird.

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo : IDisposable
9 {
10 /// <summary >
11 /// Finalizes this instance .
12 /// </summary >
13 ~Foo ()
14 {
15 // Dispose this instance .
16 this.Dispose (false);
17 }
18
19 /// <summary >
20 /// Disposes this instance .
21 /// </summary >

22.2 Freigabe von Ressourcen 225

22 /// <param name =" isDisposeByUser"><c>true </c> whether
23 /// disposing is called by the user; <c>false </c>
24 /// otherwise .</ param >
25 private void Dispose (bool isDisposeByUser)
26 {
27 // If the disposing is called by the user ,
28 // managed resources may be cleaned up , too.
29 if (isDisposeByUser)
30 {
31 // TODO gr: Clean up any managed resources .
32 // 2008 -01 -02
33 }
34
35 // TODO gr: Clean up any unmanaged resources .
36 // 2008 -01 -02
37
38 // Suppress execution of the finalizer for
39 // this object .
40 GC.SuppressFinalize(this);
41 }
42
43 /// <summary >
44 /// Disposes this instance .
45 /// </summary >
46 public void Dispose ()
47 {
48 // Dispose this instance .
49 this.Dispose (true);
50 }
51 }
52 }

Es bietet sich an, eine weitere Variable einzuführen, die festlegt, ob Dispose be-
reits ausgeführt wurde oder nicht, um zu verhindern, dass eine Methode noch nach
dem Aufruf von Dispose ausgeführt werden soll. Geschieht dies, kann eine Aus-
nahme vom Typ ObjectDisposedException ausgelöst werden, der als Parameter der
Name des aktuellen Objekts übergeben werden muss.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo : IDisposable
9 {
10 /// <summary >
11 /// Contains , whether this instance has been
12 /// disposed yet.

226 22 Speicherverwaltung

13 /// </summary >
14 private bool _isDisposed ;
15
16 /// <summary >
17 /// Finalizes this instance .
18 /// </summary >
19 ~Foo ()
20 {
21 // Dispose this instance .
22 this.Dispose (false);
23 }
24
25 /// <summary >
26 /// Disposes this instance .
27 /// </summary >
28 /// <param name=" isDisposeByUser"><c>true </c> whether
29 /// disposing is called by the user; <c>false </c>
30 /// otherwise .</ param >
31 private void Dispose (bool isDisposeByUser)
32 {
33 // If the disposing is called by the user ,
34 // managed resources may be cleaned up , too .
35 if (isDisposeByUser)
36 {
37 // TODO gr: Clean up any managed resources .
38 // 2008 -01 -02
39 }
40
41 // TODO gr: Clean up any unmanaged resources .
42 // 2008 -01 -02
43
44 // Suppress execution of the finalizer for
45 // this object .
46 GC.SuppressFinalize(this);
47
48 // Define this instance as disposed .
49 this._isDisposed = true;
50 }
51
52 /// <summary >
53 /// Dispose this instance .
54 /// </summary >
55 public void Dispose ()
56 {
57 // If this instance has been disposed , throw an
58 // exception .
59 if (this._isDisposed)
60 {
61 throw new ObjectDisposedException (
62 this.ToString ());
63 }
64
65 // Dispose this instance .
66 this.Dispose (true);

22.2 Freigabe von Ressourcen 227

67 }
68 }
69 }

Prinzipiell kann eine solche Klasse wie jede andere Klasse verwendet werden,
mit dem Unterschied, dass ihre Dispose-Methode aufgerufen werden sollte, sobald
die Arbeit mit ihr erledigt ist.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Create an instance of the Foo class .
16 Foo foo = new Foo ();
17
18 // TODO gr: Use the object .
19 // 2008 -01 -02
20
21 // Dispose the object .
22 foo.Dispose ();
23 }
24 }
25 }

Damit dieser Aufruf nicht vergessen wird, bietet C# eine abkürzende Schreib-
weise mit Hilfe des Schlüsselwortes using.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class.
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >

228 22 Speicherverwaltung

13 public static void Main ()
14 {
15 // Create an instance of the Foo class and
16 // dispose it implicitly .
17 using (Foo foo = new Foo ())
18 {
19 // TODO gr: Use the object .
20 // 2008 -01 -02
21 }
22 }
23 }
24 }

22.3 Verhalten von Zeichenketten

Neben der Art, wie .NET Speicher verwaltet, gibt es einige weitere Themen, über
die ein wenig Hintergrundwissen nicht schadet. Eines dieser Themen ist die Ver-
waltung von Strings. Strings nehmen in .NET eine Sonderstellung ein, da sie im
Speicher nicht veränderbar sind. Wird ein String verändert, wird im Hintergrund
eine veränderte Kopie erzeugt, was wiederum Speicher und Zeit kostet.

Aus diesem Grund ist es nicht empfehlenswert, Strings mit Hilfe des Operators
+ zu verketten. Bei dem Ausdruck

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents the application class .
7 /// </summary >
8 public class Program
9 {
10 /// <summary >
11 /// Executes the application .
12 /// </summary >
13 public static void Main ()
14 {
15 // Concatenate some strings .
16 string result =
17 "Hallo " + " " + "Welt" + "!";
18 }
19 }
20 }

22.3 Verhalten von Zeichenketten 229

werden intern sieben Strings erzeugt – zunächst jeder Teilstring einzeln, dann die
Kombination aus den ersten beiden, dann die Kombination aus dieser Kombination
und dem dritten, und abschließend die Kombination aller Strings.

Bei einigen wenigen Strings, die miteinander verkettet werden, ist dies noch ak-
zeptabel, ist die Anzahl aber hoch oder geschieht eine solche Verkettung innerhalb
einer Schleife, so wird dadurch der Speicherbedarf unnötig in die Höhe getrieben.

Als Alternative gibt es die Klasse StringBuilder aus dem Namensraum Sys-
tem.Text, die einen großen Speicherbereich reserviert, in dem einzelne Strings hin-
tereinander platziert und anschließend auf Anforderung in einen einzigen String
zusammengefügt werden.

C#

1 using System ;
2 using System .Text;
3
4 namespace GoloRoden . GuideToCSharp
5 {
6 /// <summary >
7 /// Represents the application class.
8 /// </summary >
9 public class Program
10 {
11 /// <summary >
12 /// Executes the application .
13 /// </summary >
14 public static void Main ()
15 {
16 // Create a string builder instance .
17 StringBuilder stringBuilder =
18 new StringBuilder();
19
20 // Append some strings .
21 stringBuilder.Append ("Hallo");
22 stringBuilder.Append (" ");
23 stringBuilder.Append ("Welt");
24 stringBuilder.Append ("!");
25
26 // Get the string from the string builder .
27 string result = stringBuilder.ToString ();
28 }
29 }
30 }

Obwohl das Verketten von Strings mit Hilfe der StringBuilder-Klasse deutlich
schneller und speicherschonender funktioniert als auf dem klassischen Weg, muss
bei ihrem Einsatz bedacht werden, dass auch hier zunächst eine Instanz erzeugt wird
und Speicher reserviert werden muss, was ebenfalls Zeit kostet. Je nach Kontext gilt
es also abzuwägen, auf welche Art Strings verkettet werden.

230 22 Speicherverwaltung

22.4 Verspätete Initialisierung

Im Zusammenhang mit statischen Konstruktoren gibt es in C# noch einen wesent-
lichen Aspekt zu beachten. Zunächst könnte man vermuten, die Ausführung der
Klasse

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Contains a bar field.
12 /// </summary >
13 private static int _bar = 23;
14 }
15 }

würde analog zur Ausführung der Klasse

C#

1 using System ;
2
3 namespace GoloRoden .GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Contains a bar field.
12 /// </summary >
13 private static int _bar;
14
15 /// <summary >
16 /// Initializes the Foo type.
17 /// </summary >
18 static Foo ()
19 {
20 // Set the class ’s fields .
21 _bar = 23;
22 }
23 }
24 }

22.4 Verspätete Initialisierung 231

stattfinden. Es gibt allerdings einen Unterschied, der sich darin bemerkbar macht,
wann die Zuweisung des Wertes an die Variable stattfindet. Während der Wert in
der ersten Variante irgendwann zwischen dem Start der Anwendung und dem ersten
Zugriff auf den Typ stattfindet, geschieht dies bei der zweiten Variante auf jeden
Fall erst beim Zugriff auf den Typ.

Es wäre sogar ausreichend, einen vollständig leeren statischen Konstruktur be-
reitzustellen, der Effekt wäre der gleiche: Sobald ein statischer Konstruktor vorhan-
den ist, wird ein Typ erst initialisiert, wenn er tatsächlich verwendet wird.

C#

1 using System ;
2
3 namespace GoloRoden . GuideToCSharp
4 {
5 /// <summary >
6 /// Represents a foo class.
7 /// </summary >
8 public class Foo
9 {
10 /// <summary >
11 /// Contains a bar field .
12 /// </summary >
13 private static int _bar = 23;
14
15 /// <summary >
16 /// Initializes the Foo type.
17 /// </summary >
18 static Foo ()
19 {
20 }
21 }
22 }

Dies liegt daran, dass der Compiler jeden Typ mit dem internen Flag beforefield-
init kennzeichnet, der nicht über einen statischen Konstruktor verfügt. Dieses Flag
bewirkt, dass der Typ irgendwann vor, spätestens aber beim ersten Zugriff initiali-
siert wird.

Ausnutzen lässt sich dieses Verhalten, wenn ein Typ nicht in jedem Fall in einer
Anwendung benötigt wird, seine Erzeugung aber relativ aufwändig ist, weil bei-
spielsweise auf zahlreiche externe Ressourcen zugegriffen werden muss. In einem
solchen Fall kann die Initialisierung durch das Hinzufügen eines statischen Kon-
struktors verzögert werden, bis der Typ tatsächlich benötigt wird.

Sachverzeichnis

! 150
!= 148, 152
* 144
+ 143, 144, 152, 228
++ 146
+= 96, 108
− 143, 144
−− 146
−= 96, 108
. 23, 48
.NET 1

Compact Framework 2
Micro Framework 2

/ 144
/* 29
// 28
/// 29
: 69, 86, 88
; 23
< 148, 152
<< 151
<= 148, 152
<c> 43
<param> 45
<returns> 43
<summary> 29, 31, 42
<value> 35
= 126, 129
== 147, 152
=> 99
> 148, 152
>> 151
>= 148, 152
? 117
?? 179
@ 18, 22
[] 134

% 144, 145
& 150
&& 149, 176
ˆ 150, 151
{} 24
˜ 151
#endregion 50
#region 50
| 151
|| 150, 176

Abbruchkriterium 185
abstract 77–79
Addition 143
ADO 5
ADO.NET 5
Alias 23
Anders Heijlsberg 5
Anweisung 171
Anwendung 7
ApplicationException 209, 210
Array 133–135

Eindimensionales Array 135
Mehrdimensionales Array 135
Verschachteltes Array 136

as 169
ASP 1
ASP.NET 5
Assembly 8
Attribut 211–216
AttributeUsageAttribute 216
Auflistung 188
Aufrufreihenfolge 95
Aufrufstapel 202, 206, 208, 210
Aufzählung 188
Ausdruck 163
Ausnahme 201–210

233

234 Sachverzeichnis

Barbara Liskov 71
base 75, 80
Bedingung 171–173, 175, 176, 180
Binden 108
Bindung 91
Bitebene 150
bool 18, 121, 149
Boxing 19, 71, 164, 165
break 180, 186, 187
by 196
by reference 47
by value 47
byte 17

Callback 91
Camel Case 22, 31, 45
CAS 4
case 180
Cast 163
catch 202–208
char 17
checked 146, 147
class 27
CLI 1
CLR 3
CLS 3
Code Access Security 4
COM 1, 5, 6, 68
Common Language Infrastructure 1
Common Language Runtime 3
Common Language Subset 3
Compiler 25
const 33, 67
continue 187
Contract First Design 84
csc.exe 25
C# 5

DAO 5
DCOM 1
decimal 17
default 116, 180
Definition 32, 125
Deklaration 32, 125
Delegat 91, 92, 101

Delegatinstanz 92
Multicast-Delegat 92, 96
Singlecast-Delegat 96
Unicast-Delegat 92

delegate 91, 99
Delegatinstanz 92
Delphi 5
descending 193
Design by Contract 84

Destruktor 220–222
Dezimalzahl 17
Dimension 133
DirectX 1
Dispose 222–225, 227
Division 144
do 185
double 17

e 102
ea 102
ECMA 2, 5
Eigenschaft 33, 72

Standardeigenschaft 38
else 172, 175
else if 175
Empty 152
enum 121
Enumeration 121, 211
Ereignis 101
Erweiterungsmethode 79
Escape-Sequenz 18
EVA-Prinzip 11
event 101
EventArgs 102
EventHandler 101
ex 206
Exception 205, 209
Exklusives Oder 150, 151
explicit 165
Explizite Implementierung 89
Explizite Konvertierung 164

false 18, 149, 171
FCL 3
Fehler 201, 202, 210

Fehlerbehandlung 201, 202, 205, 211
Fehlermeldung 202, 206, 210

Feld 31, 72
Finalisierer 220, 222, 223
Finalize 220
finally 208
Finanzberechnung 17
First 197
FlagsAttribute 211, 212
float 17
for 182, 183, 185
foreach 188, 189
Framework Class Library 3
from 192
Func 116

Ganzzahl 16
Garbage Collection 4, 220, 222–224

Sachverzeichnis 235

GC 4
GDI+ 4
Generalisierung 71
Generika 109
Generischer Datentyp 111
get 33, 139
gleich 147
global 21
goto 182
größer 148
größer oder gleich 148
group 196

IDisposable 222
IEEE 754 17
IEnumerable 189
IEnumerator 188
if 171, 172, 174, 175
IIS 5
implicit 165
Implizite Implementierung 89
Implizite Konvertierung 163
in 192
Index 134, 135, 139
Indexer 139
Information Hiding 13
Initialisierungsausdruck 183
int 17
interface 84
internal 30, 31, 33, 41, 72
Invariante 183, 188
is 168
is a 71
ISAPI 1
IsNullOrEmpty 153

JIT-Compiler 3
just in time 3

Klasse 13, 27
abgeleitete Klasse 69
Abstrakte Klasse 77, 83, 87
Basisklasse 69, 75
Partielle Klasse 30
Verschachtelte Klasse 30

Klassenbibliothek 3
klassengebunden 48
kleiner 148
kleiner oder gleich 148
Kommentar 28

Blockkommentar 28
XML-Kommentar 29, 31

Komponente 8
Konkatenation 152

Konstante 33, 67
Konstruktor 56, 80, 130

Statischer Konstruktor 231
Kontrakt 83
Konvertierbarkeit 167, 168
Konvertieren 163
Kurzschlussevaluierung 150, 176

Lambdaausdruck 99, 116, 199
Language Integrated Query 191
Length 152
Lesbarkeit 23
Linq 2, 5, 191, 196, 197
Linux 2
Liskov-Prinzip 72
long 17
Lösen 108
Lösung 7

Mac OS X 2
Main 49
Managed Heap 220
mcs.exe 25
Memento 85
Metadaten 8
Methode 40, 73

Anonyme Methode 96, 97
Erweiterungsmethode 79, 199
Partielle Methode 55
Rekursive Methode 128
Rückrufmethode 91

Microsoft Intermediate Language 3
Microsoft Message Queue 5
Miguel de Icaza 2
Modulo 144, 145
Mono 2, 25, 50
MSIL 3, 8
Multiplikation 144

naked 115
Namensraum 21
namespace 24
new 74–76, 115, 130, 133, 220
nicht 150, 151
Novell 2
null 16, 96, 117

object 18, 19, 69, 164
ObjectDisposedException 225
Objekt 12
objektgebunden 48
Objektinitialisierer 131, 195
Objektorientiertes Paradigma 12
Objektorientierung 11

236 Sachverzeichnis

ObsoleteAttribute 212
oder 150, 151
On 105
Operator 143

Abfrageoperator 191
Arithmetischer Operator 143
Bitweiser Operator 150
Logischer Operator 149, 176
Operatorreihenfolge 153
Operatorüberladung 156
Relationaler Operator 147
Triärer Operator 177
Zuweisungsoperator 143

operator 157
orderby 192
out 48
override 70, 71, 73–76

Parameter 40, 45
Ausgabeparameter 48
Namensparameter 212, 214
Positionsparameter 212

params 138
partial 30, 55
Pascal Case 22, 33, 41, 84, 91, 101, 108, 112
Plattformunabhängigkeit 1
Polymorphie 71
Postfix-Notation 146
Präfix-Notation 146
private 32, 33, 42, 56, 72
protected 73
protected internal 73
public 30, 31, 33, 41, 72

readonly 67
ref 47
rekursiv 128
Remoting 5
Ressource 8
return 34, 208
Rotor 2
Rückgabewert 40

sbyte 17
Schleife 171, 182–184, 189

Abweisende Schleife 185
Endlosschleife 185
Nichtabweisende Schleife 185
Zählschleife 182

Schleifendurchlauf 183
Schleifeninvariante 182
Schleifenvariable 182
Schlüsselwörter 22
Schnittstelle 83, 84, 87, 89

sealed 76
select 192, 195, 196
set 33, 139
short 17
sizeof 68
Sonderzeichen 18
Speicher 219, 220, 222, 229
Speicherbedarf 219
Speichermanagement 219
Speicherverbrauch 219
Speicherverwaltung 219
Spezialisierung 71
Sprachunabhängigkeit 3
Sprunganweisung 186
SQL 191
Stack 220
Standardwert 16, 32, 56, 116, 125, 179
static 48, 67
statisch 48
string 18
StringBuilder 229
struct 68, 115
Struktur 68
Subtraktion 143
switch 180
System 21

T 112
Take 198
this 60, 64, 79, 80, 139
throw 207–209
ToString 70
true 18, 149, 171
try 202, 203, 208
Typ 8, 15

Anonymer Typ 132, 195
Datentyp 8
Einfacher Typ 11
Komplexer Typ 12
Nullbarer Wertetyp 16, 117, 179
Vordefinierter Typ 16
Wertetyp 15, 115

Type 112
typeof 167
typeparam 112
Typparameter 112, 115

Gebundener Typparameter 114
Ungebundener Typparameter 114

Überlauf 146
Überschreiben 70
uint 17
ulong 17
Unboxing 19, 165

Sachverzeichnis 237

unchecked 147
und 149, 150
ungleich 148
Unicode 17
Unterlauf 146
ushort 17
using 23, 227

value 34
var 132, 192, 196
Variable 125

Lokale Variable 125
VBA 1
Vererbung 69

Mehrfachvererbung 72
verschieben nach links 151
verschieben nach rechts 151
versiegelt 77
Verspätete Initialisierung 230
Vertrag 83
Verwalteter Code 4
Verweistyp 15, 115
virtual 73, 76
Visual Basic 3, 5, 6
Visual C++ 3, 5, 6
Visual Studio 2, 30
void 40, 56
Vollqualifizierter Name 21

WCF 5
WCS 5
Web Services 5
Werteverlust 164
WF 5
where 115, 194
while 184, 185
Win32 1, 5
Windows Card Space 2, 5
Windows Communication Foundation 2, 5
Windows DNA 1
Windows Forms 4
Windows Presentation Foundation 2, 4
Windows Workflow Foundation 2, 5
WPF 4
WSH 1

XAML 4
Ximian 2

yield 189

Zeichen 17
Ziel 215, 216
Zugriffsmodifizierer 30, 56
Zuweisung 126, 129

	front-matter
	1-6
	7-9
	11-13
	15-19
	21-25
	27-68
	69-81
	83-90
	91-99
	101-108
	109-116
	117-120
	121-123
	125-132
	133-141
	143-162
	163-169
	171-190
	191-199
	201-210
	211-217
	219-231
	back-matter

