

Die Reihe Xpert.press vermittelt Professionals
in den Bereichen Softwareentwicklung,
Internettechnologie und IT-Management aktuell
und kompetent relevantes Fachwissen über
Technologien und Produkte zur Entwicklung
und Anwendung moderner Informationstechnologien.

Thomas Winkler

123

ABAP/4
Programmiertechniken
Trainingsbuch

Mit 350 Abbildungen und 51 Tabellen

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

ISSN 1439-5428
ISBN 3-540-40486-4 Springer Berlin Heidelberg New York

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbe-
sondere d ie der Übersetzung, des Nachdr ucks , des Vortrags, der Entnahme von
Abbildungen und Tabellen, der Funksendung, der Mikroverfi lmung oder der
Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungs-
anlagen bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Verviel-
fältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den
Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik
Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig.
Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Straf-
bestimmungen des Urheberrechtsgesetzes.

Springer ist nicht Urheber der Daten und Programme. Weder Springer noch die Autoren
übernehmen die Haftung für die CD-ROM und das Buch, einschließlich Ihrer Qulität,
Handels- und Anwendungseignung. In keinem Fall übernehmen Springer oder die Autoren
Haftung für direkte, indirekte, zufällige oder Folgeschäden, die sich aus der Nutzung der
CD-ROM oder des Buches ergeben.

Springer ist ein Unternehmen von Springer Science+Business Media

springer.de

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in die-
sem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass
solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu be-
trachten wären und daher von jedermann benutzt werden dürften. Text und Abbildungen
wurden mit größter Sorgfalt erarbeitet. Verlag und Autor können jedoch für eventuell ver-
bliebene fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch
irgendeine Haftung übernehmen.

Satz und Herstellung: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Umschlaggestaltung: KünkelLopka Werbeagentur, Heidelberg
Gedruckt auf säurefreiem Papier 33/3142/YL - 5 4 3 2 1 0

Thomas Winkler
Gerhard-Hauptmann-Str. 26
15537 Erkner
th.winkler1001@t-online.de

Einführung ■

■

■

V

Einführung

Wieder ein neues Buch zu ABAP/4 – wer soll es lesen und wie un-
terscheidet es sich von den anderen Werken, die sich mit der Pro-
grammiersprache des SAP R/3-Systems befassen?

So wie das Boxen nicht durch die Analyse von Kämpfen guter Bo-
xer zu erlernen ist, kann auch das Programmieren nicht allein durch
Analysieren von Syntaxdiagrammen, Lernen von Definitionen und
Klauseln gemeistert werden. Programmieren lernt man am besten
durch - Programmieren.

Deshalb vermittelt Ihnen das vorliegende Buch grundlegende und
weiterführende ABAP/4-Programmiertechniken, wie z.B. das Erstel-
len von interaktiven Listen und die Nutzung aller klassischen Kom-
ponenten der Dialogprogrammierung, am Beispiel der Entwicklung
eines „Literaturrecherche- und -verwaltungsprogrammes“ für die
East-Side-Library.

Ein Ausblick in die objektorientierte Programmierung mit
ABAP-Objects erklärt wichtige Begriffe und Prinzipien dieser integ-
rierten, objektorientierten Komponente der Programmiersprache
ABAP – ebenfalls am Beispiel des „Literaturrecherche- und verwal-
tungsprogrammes“, das mit einer objektorientierten Komponente zur
komfortablen Tabellenausgabe von Daten, dem ALV Grid Control,
vervollkommnet wird.

Das vorliegende Buch versteht sich als handlungsorientierte Ergän-
zung zu den ABAP/4-Standardwerken. In den einzelnen Kapiteln
programmieren Sie, in leicht überschaubaren Programmierschritten,
das „Literaturrecherche- und -verwaltungsprogramm“ der East-Side-
Library. Zu jedem Programmierschritt wird eine kurze Einführung
gegeben, den Abschluss bildet jeweils eine Programmieraufgabe de-
ren Lösung sowohl im Buch als auch auf der mitgelieferten CD zu
finden ist.

Durch den Transport der für die einzelnen Programmierschritte
benötigten Entwicklungsobjekte von der Buch-CD in Ihr R/3-

Inhaltübersicht

Methode

Einführung■

■

■

VI

System, können Sie selbst bestimmen, mit welchem Schwierigkeits-
grad Sie Ihr ABAP/4-Training beginnen. Vorkenntnisse sind dem-
nach nicht notwendig, wenn Sie Ihr Training mit dem ersten Kapitel
beginnen. Der Anhang enthält eine detaillierte Anleitung zum
Transport der Entwicklungsobjekte in Ihr R/3-System.

Alle Übungen können Sie auf dem „Mini SAP-System“ durchfüh-
ren, dessen neueste Version Sie für 29,00 € bei der SAP erwerben
können (http://www.sap.com/company/shop, Link: SAP Knowledge
Shop, Suchbegriff „Mini SAP“). Dieses System läuft unter Windows
2000 oder Windows XP. Sie benötigen 199 Mbyte RAM und 3,5
Gbyte freie Plattenkapazität.

Im Buch werden zur Verbesserung der Übersichtlichkeit die folgen-
den Icons benutzt:

Der Student macht auf wichtige Definitionen und
Begriffe aufmerksam.

Das Stopschild warnt vor Aktionen, deren Ausführung
weitreichende Konsequenzen für das R/3-System hat.

Auf Vorgehensweisen, wie z.B. das Anlegen einer
Tabelle oder eines Dynpros, weist Sie das Computer-
symbol hin.

Und dieses Symbol zeigt Ihnen an, dass durch Sie eine
Aufgabe zur Programmierung des „Literaturrecher-
che- und –verwaltungsprogramm“ zu erledigen ist.

Ich wünsche Ihnen viel Freude beim Programmieren, denn die Freu-
de über ein funktionierendes Programm garantiert den Erfolg beim
bewältigen der nächsten Aufgabe (Hinweis: Dieses rekursive Prinzip
wirkt nicht nur beim Programmieren).

Thomas Winkler

Vorkenntnisse

Entwicklungs-
system

Zeichen-
erklärung

Inhaltsverzeichnis ■

■

■

VII

Inhaltsverzeichnis

1 Projektmanagement..1

1.1 Komponenten eines SAP-R/3-Systems.......................1
1.2 Datenstruktur eines R/3-Systems3
1.3 Änderungen an R/3-Datenobjekten.............................6

1.3.1 Änderungsebenen ...6
1.3.2 Änderungsstrategien ...8

1.4 Die Drei-System-Landschaft10
1.5 Transporte durchführen ...12

1.5.1 Transporte innerhalb eines R/3-Systems12
1.5.2 Transporte in andere R/3-Systeme.................39

2 Wegweiser ..69

2.1 Projektbeschreibung...69

3 Das ABAP-Dictionary...79

3.1 Einführung ...79
3.2 Domäne, Datenelement, Datenbankfeld85

3.2.1 Domänen anlegen ...86
3.2.2 Datenelemente anlegen...................................88

3.3 Eigenschaften von Tabellen.......................................92
3.3.1 Tabellenarten ..92
3.3.2 Schlüsselfelder und Primärindex....................98
3.3.3 Sekundärindizes..100
3.3.4 Fremdschlüssel ...101
3.3.5 Pufferungsarten...102
3.3.6 Synchronisation von Puffern........................106
3.3.7 Änderungen an Tabellen108
3.3.8 Anlegen der Tabellen für das

Bibliotheksprojekt ..111
3.3.9 Anlegen und Einbinden von Suchhilfen118
3.3.10 Tabellen mit Werten laden124

Inhaltsverzeichnis ■

■

■

VIII

3.3.11 Übungsaufgaben .. 125
3.3.12 Lösungen.. 129

4 Grundlegende Techniken der Listenprogrammierung 135

4.1 Zielstellung des Kapitels... 135
4.2 Grundaufbau eines ABAP-Programmes 136
4.3 Ausgabe von Texten.. 140
4.4 Datentypen und Datenobjekte................................. 155

4.4.1 Eingebaute Datentypen................................ 156
4.4.2 Deklaration von Datenobjekten................... 158
4.4.3 Arithmetische Operationen.......................... 168
4.4.4 Operationen mit Zeichenketten 173
4.4.5 Strukturen... 179
4.4.6 Interne Tabellen ... 186
4.4.7 Globale Datentypen 220

4.5 Kontrollstrukturen ... 225
4.5.1 Bedingte Verzweigungen 225
4.5.2 Programmschleifen 228
4.5.3 Logische Ausdrücke 232

4.6 Lesen von Daten aus Datenbanktabellen................ 234
4.6.1 Die „SELECT-Anweisung“ als Schleife..... 235
4.6.2 Einzelsatzzugriff mit der „Select single-

Anweisung“.. 242
4.6.3 Array-Fetch – Laden einer internen Tabelle

mit Daten aus einer Datenbanktabelle......... 243
4.6.4 Der Selektionsbildschirm 247

5 Spezielle Techniken der Listenerstellung 259

5.1 Zielstellung des Kapitels... 259
5.2 Modularisierung durch Unterprogramme............... 260

5.2.1 Anlegen eines Includes 270
5.2.2 Anlegen und Einbinden eines

Unterprogrammes .. 275
5.3 Ikonen in Listen... 281
5.4 Verzweigungslisten... 285

5.4.1 Anlegen von Verzweigungslisten................ 286
5.5 Die Programmoberfläche.. 297
5.6 Dynamische Auswahl von Datensätzen der

Ausgabeliste .. 308
5.7 Dynamisches Sortieren der Ausgabeliste 314
5.8 Ein Freund des Programmierers – Der Debugger . 323

5.8.1 Start des Debuggers 323
5.8.2 Programm debuggen.................................... 325

Inhaltsverzeichnis IX■

■

■

5.9 Ausgabe von Meldungen (Messages)331
5.10 Modularisierung mit Funktionsbausteinen..............339

6 Grundlagen der Dynproprogrammierung.....................351

6.1 Zielstellung des Kapitels..351
6.2 Dynpros und ihre Komponenten355
6.3 Statischer und dynamischer Dynproaufruf..............357
6.4 Dateneingabe und –ausgabe mit Dynpros...............359

6.4.1 Dynproelemente..361
6.4.2 Dynproelemente zur Ausgabe362
6.4.3 Dynproelemente zur Ein-/Ausgabe..............368

6.5 Programmierung der Ablauflogik382
6.5.1 Module und Modulaufruf382
6.5.2 Benutzeraktionen auswerten388

6.6 GUI-Status und GUI-Titel des Dynpros396
6.7 Eigenschaften der Dynproelemente dynamisch

ändern...399
6.8 Eingabeprüfungen mit der FIELD-Anweisung.......406
6.9 Bedingtes bzw. vorrangiges Ausführen von

Modulen ...414

7 Subscreens, Listen und Tabellen in Dynpros427

7.1 Zielstellung des Kapitels..427
7.2 Subscreenbereiche und Subscreendynpros430
7.3 Ausgabe von Listen auf einem Dynpro...................437
7.4 Datenausgabe mit Table Controls445

7.4.1 Anlegen eines Table Controls446
7.4.2 Datentransport zum Table Control und

zurück..450

8 Tabstrips ..471

8.1 Zielstellung des Kapitels..471
8.2 Allgemeine Eigenschaften Einsatzbedingungen.....472
8.3 Tabstrip-Elemente..473
8.4 Blättern im Tabstrip ...474

8.4.1 Tabstrip mit statischer Blätterfunktion.........474
8.4.2 Tabstrip mit dynamischer Blätterfunktion ...475

8.5 Tabstrip anlegen...476

9 Datenbankänderungen programmieren491

9.1 Zielstellung des Kapitels..491
9.2 Datenbankändernde Anweisungen..........................493

Inhaltsverzeichnis ■

■

■

X

9.2.1 Die INSERT-Anweisung............................. 494
9.2.2 Die UPDATE-Anweisung........................... 496
9.2.3 Die MODIFY-Anweisung........................... 501
9.2.4 Die DELETE-Anweisung............................ 502

9.3 Datenbankänderungen organisieren 508
9.3.1 Das LUW-Konzept 508
9.3.2 Bündelung durch Unterprogramme............. 512
9.3.3 Bündelung durch Verbucherbausteine 515

9.4 Das SAP-Sperrkonzept ... 520
9.4.1 Prinzip des SAP-Sperrkonzepts................... 521
9.4.2 Grundsätzliche Arbeitsweise beim Sperren

und Freigeben... 522
9.4.3 Technische Realisierung.............................. 522
9.4.4 Die Sperrtabelle ... 530

9.5 Nummernkreise ... 532

10 Ausblick: ABAP Objects ... 563

10.1 Zielstellung des Kapitels... 563
10.2 Ein Wort zu ABAP-Objects.................................... 564
10.3 Objekte, Attribute, Methoden und Klassen 565
10.4 Klassen in ABAP Objects....................................... 567
10.5 Instanz- und statische Methoden, Instanz- und

statische Attribute.. 570
10.6 Methoden in ABAP Objects 571
10.7 Anlegen von Objekten .. 572
10.8 Methodenaufrufe... 573

10.8.1 Aufruf einer Instanzmethode....................... 573
10.8.2 Aufruf einer Klassenmethode...................... 574

10.9 Externer Zugriff auf öffentliche Attribute 575
10.10 Funktionale Methoden .. 576
10.11 Der Konstruktor, eine besondere Methode............. 579
10.12 Objekte löschen... 581
10.13 Referenzen in internen Tabellen speichern 581
10.14 Globale Klassen .. 584
10.15 Vererbung und Polymorphie................................... 588
10.16 Kurzer Überblick über GUI-Controls am Beispiel

des ALV-Grid-Controls .. 594

Anlage.. 605

Installation des Übungsszenarios....................................... 605

Index ... 611

1.1 Komponenten eines SAP-R/3-Systems ■

■

■

1

1 Projektmanagement

1.1
Komponenten eines SAP-R/3-Systems

Ein SAP-R/3-System basiert, wie die meisten Leser sicher wissen,
auf einer Client-Server-Architektur. Dieser Begriff lässt sich sowohl
aus software- als auch aus hardwareorientierter Sicht betrachten.

Softwareorientierte Sicht
Unter „Service“ ist ein Dienst zu verstehen, der von einer Software-
komponente angeboten wird. Solche Softwarekomponenten können
aus einem einzelnen Prozess oder aus mehreren Prozessen (Prozess-
gruppe) bestehen und werden dann „Server“ (Diener) genannt. Soft-
warekomponenten, die einen „Service“ nutzen, werden als „Clients“
(Kunden) bezeichnet.

Aus softwareorientierter Sichtweise besteht ein R/3-System immer
aus drei Komponenten, die oft auch als „Schichten“ bezeichnet wer-
den:

Datenbankschicht

Die Datenbankschicht übernimmt die Datenhaltung. Sie speichert
alle Anwendungstabellen und Programme im darunterliegenden
Datenbanksystem und stellt sie der Anwendungsschicht zur Verfü-
gung.

Client-Server-
Architektur

Abb. 1.1
Softwareorien-
tierte Sicht

Datenbank-
schicht

1 Projektmanagement 2 ■

■

■

Anwendungsschicht

Diese Schicht ist verantwortlich für alle Abläufe und Funktionen der
R/3-Anwendung. Hier laufen alle System- und ABAP/4-Pro-
gramme.

Präsentationsschicht

Die Präsentationsschicht hat folgende Hauptaufgaben:

Entgegennehmen und Weiterleiten von Benutzeraktionen
(Maus, Tastatureingaben),

Entgegennehmen, Aufbereiten und Darstellen der Anwen-
dungsdaten.

Hardwareorientierte Sicht
In der hardwareorientierten Sicht wird unter „Server“ ein Rechner
verstanden, der bestimmte „Services“ (Dienste) anbietet. Der
„Client“ ist bei dieser Betrachtungsweise ein Rechner, der Dienste
des Servers in Anspruch nimmt.

Anwendungs-
schicht

Präsentations-
schicht

Abb. 1.2
Schichtenmodell
eines SAP-R/3-

Systems

1.2 Datenstruktur eines R/3-Systems ■

■

■

3

Der Vorteil der Client-Server-Architektur besteht darin, dass ver-
schiedene Dienste (softwareorientierte Sicht) auf verschiedene Hard-
warekomponenten aufgeteilt werden können. Zwei mögliche Vertei-
lungen (Konfigurationen) eines R/3-Systems zeigt die folgende
Abbildung:

Theoretisch können alle Softwarekomponenten eines R/3-Systems
auch in einem einzigen Rechner installiert werden. Das ist dann eine
einstufige Konfiguration, die in der Praxis jedoch eher selten vor-
kommt.

1.2
Datenstruktur eines R/3-Systems

Jedes SAP-R/3-System besitzt genau eine Datenbank. In dieser kön-
nen verschiedene organisatorische Bereiche, die als Mandanten be-
zeichnet werden, angelegt werden. Jedem dieser Mandanten ist ein

Abb. 1.3
Hardwareorien-
tierte Sicht

Abb. 1.4
R/3-Konfigura-
tionsmöglich-
keiten

1 Projektmanagement 4 ■

■

■

„mandantenabhängiger“ Speicherbereich zugeordnet, auf dessen
Datenobjekte

Anwendungsdaten,

Customizingdaten,

Userdaten,

nur der jeweilige Mandant zugreifen kann.
Zusätzlich gibt es noch zwei „mandantenunabhängige“ Speicher-

bereiche für

Mandantenunabhängige Customizingdaten,

Repositorydaten,

auf deren Datenobjekte alle Mandanten zugreifen.

Mandant

Organisatorischer Bereich in der Datenbank, der Customizingdaten,
Anwendungsdaten und Benutzerdaten kapselt.

Standardmandanten:

Mandant 000 (SAP-R/3-Auslieferungsmandant)

Mandant 001 (SAP-R/3-Entwicklungs- oder Customizingman-
dant)

Mandant 066 (SAP-R/3-Mandant zur Durchführung der Fern-
wartung im Rahmen des SAP-Services EarlyWatch)

Abb. 1.5
Datenstruktur

des R/3-Systems

Mandant

1.2 Datenstruktur eines R/3-Systems ■

■

■

5

Customizingdaten

Customizing ist das Anpassen des R/3-Systems an die konkreten
Bedingungen im Kundenunternehmen ohne Programmierung. Dabei
werden Unternehmensdaten, wie z.B. Buchungskreise, Kostenstel-
len, Werke usw., in Customizingtabellen eingetragen. Jede Customi-
zingtabelle existiert einmal pro Mandant.

Anwendungsdaten

Anwendungsdaten sind z.B. Dokumente, Materialstammsätze und
Lieferantenstammsätze. Solche Anwendungsdaten sind nur in ihrer
jeweiligen Customizing-Umgebung betriebswirtschaftlich sinnvoll.
Beispiel: Material (Anwendungsdaten) wird einem Lager (Customi-
zingdaten) zugeordnet, ein Lieferant (Anwendungsdaten) wird ei-
nem Buchungskreis zugeordnet (Customizingdaten).

Benutzerdaten

Für jeden R/3-Benutzer wird vom Systemadministrator ein Benut-
zerstammsatz angelegt. Darin stehen z.B.

der Benutzername,

das Kennwort,

die Benutzerrechte.

Diese Daten sind mandantenabhängig, deshalb kann sich jeder Be-
nutzer mit seinen Daten (Benutzername und Kennwort) nur an den
Mandanten anmelden, in denen ein entsprechender Benutzerstamm-
satz angelegt wurde.

Mandantenunabhängiges Customizing

Neben dem mandantenabhängigen Customizing gibt es auch das
mandantenunabhängige. Die hier bearbeiteten Customizingdaten
stehen dann für alle Mandanten zur Verfügung. Beispiele dafür sind:

die Druckereinstellungen und

der Werktagskalender

R/3 Repository

Das Repository ist ein Teil der zentralen Datenbank, in dem alle
Objekte, die in der ABAP Workbench angelegt wurden, gespeichert
sind. Zu diesen Daten gehören:

Programme

Funktionsbausteine

Klassen

Mandanten-
abhängige
Customizing-
daten

Anwendungs-
daten

Benutzerdaten

Mandanten-
unabhängiges
Customizing

R/3 Repository

1 Projektmanagement 6 ■

■

■

Tabellen

Views

Datenelemente

Domänen

Suchhilfen

Sperrobjekte

1.3
Änderungen an R/3-Datenobjekten

1.3.1
Änderungsebenen

Änderungen können sowohl an mandantenabhängigen als auch an
mandantenunabhängigen Datenobjekten durchgeführt werden. Im
folgenden Kapitel sollen unterschiedliche Methoden zur Änderung
von R/3-Datenobjekten gezeigt werden.

Kundenentwicklungen

Der Kunde entwickelt selbst neue Repository-Objekte (Programme,
Tabellen, Views, ...).

Erweiterungen

Abb. 1.6
Ebenen von

Datenbankän-
derungen und
Anpassungen

Kundenent-
wicklungen

Erweiterungen

1.3 Änderungen an R/3-Datenobjekten ■

■

■

7

Der Kunde nutzt von der SAP vorgedachte Programmschnittstellen,
um die Funktionalität der Standardprogramme zu erweitern. Diese
Schnittstellen werden auch als „Exits“ bezeichnet.
Prinzipdarstellung:

Wie an der Prinzipdarstellung zu erkennen ist, muss der SAP-
Programmierer einen Exit in das SAP-Programm eingearbeitet ha-
ben. In diesem Fall sorgt ein „Funktionsbaustein-Exit“ für den Auf-
ruf eines Funktionsbausteins im Kundennamensbereich. Es gibt
folgende Exits:

Funktionsbausteinexit
Vom SAP-Programm wird ein Funktionsbaustein im Kunden-
namensbereich aufgerufen.

Dynproexit
Im Dynpro ist ein Subscreenbereich, der ein Subscreen im
Kundennamensbereich aufruft, implementiert.

Menüexits
Im Menü (GUI-Oberfläche) der SAP-Anwendung befindet
sich ein Menüpunkt, der einen Funktionsbausteinexit aufruft.

Modifikationen

Modifikationen sind Änderungen, die der Kunde direkt am SAP-
Programm durchführt. Modifikationen sollten nach Möglichkeit
nicht angewendet werden, weil sie zu Komplikationen bzw. Mehr-
aufwand beim Update führen.

Abb. 1.7
Ebenen von
Datenbankän-
derungen und
Anpassungen

Funktions-
bausteinexit

Dynproexit

Menüexit

Modifikationen

SAP-Quellprogramm

call function... .
call customer-function xTest
 exporting
 …
 importing

Function xTest
(im Kunden-
namensraum)

1 Projektmanagement 8 ■

■

■

1.3.2
Änderungsstrategien

Das Durchführen von Änderungen erfordert bei so umfangreichen
Systemen, wie es das SAP-R/3 darstellt, einen hohen administrati-
ven Aufwand. Folgende Hauptanforderungen sollten durch techni-
sche und administratorische Maßnahmen gewährleistet sein:

Die Tests der Änderungen und Anpassungen sollten immer auf
einem genau definierten Stand basieren.

Test- und Entwicklungsarbeiten sollten parallel erfolgen kön-
nen.

Nicht getestete Änderungen dürfen nicht praxiswirksam wer-
den.

Um diese Anforderungen zu erfüllen, bedarf es unterschiedlicher
Voraussetzungen bei Änderungen an mandantenunabhängigen und
mandantenabhängigen Daten.

Änderungsstrategie für mandantenabhängige Daten
Die Änderungen an mandantenabhängigen Daten (Customizing)
werden im Entwicklungsmandanten (Mandant 001), der zunächst
eine 1:1 Kopie des Auslieferungsmandanten (Mandant 000) ist,
durchgeführt.

Zu einem bestimmten Zeitpunkt werden alle mandantenabhängi-
gen Änderungen in einen dritten Mandanten (Testmandant) trans-
portiert und dort getestet. Während der Testphase können die Ent-
wicklungsarbeiten im Entwicklungsmandanten weitergeführt
werden, ohne dass sie sich auf den Test auswirken.

Durch den Test entdeckte Fehler werden im Entwicklungsman-
danten korrigiert und erneut in den Testmandanten transportiert. Am
Ende enthält der Entwicklungsmandant alle (ausreichend getesteten)
mandantenabhängigen Einstellungen. In Abb. 1.8 ist die Änderungs-
strategie für mandantenabhängige Daten grafisch dargestellt.

1.3 Änderungen an R/3-Datenobjekten ■

■

■

9

Änderungsstrategie für mandantenunabhängige Daten
Änderungen an mandantenunabhängigen Datenobjekten wirken sich
sofort auf alle Mandanten eines SAP-R/3-Systems aus. Daraus erge-
ben sich folgende Konsequenzen:

Es ist nicht möglich, innerhalb eines SAP-R/3-Systems Test-
und Entwicklungsarbeiten an mandantenunabhängigen Daten-
objekten parallel durchzuführen.

Der Mandant, auf dem der Produktivbetrieb läuft, und der
Entwicklungsmandant sind in verschiedenen R/3-Systemen zu
installieren. Änderungen an mandantenunabhängigen Daten-
objekten würden sich sonst sofort, d.h. ohne getestet worden
zu sein, auf die Produktivumgebung auswirken.

Sollen also Änderungen an Repository-Objekten oder an Objekten
des mandantenunabhängigen Customizings vorgenommen werden,
müssen im Unternehmen mindestens zwei SAP-R/3-System betrie-
ben werden – ein Entwicklungssystem und ein Produktivsystem.

Abb. 1.8
Änderungen an
mandantenab-
hängigen Daten

1 Projektmanagement 10 ■

■

■

1.4
Die Drei-System-Landschaft

Unter einer Systemlandschaft sind alle miteinander durch Trans-
portwege verbundenen SAP-R/3-Systeme mit den darin angelegten
Mandanten zu verstehen.

Im Abschnitt „Änderungsstrategie für mandantenunabhängige Da-
ten“ (Seite 9) wurde die Notwendigkeit begründet, mindestens zwei
R/3-Systeme zu betreiben. Die dort beschriebene Systemlandschaft
(Entwicklungssystem und Produktivsystem) hat jedoch den Nach-
teil, dass Entwicklung und Test nicht parallel erfolgen können. Des-
halb empfiehlt SAP, diese Zwei-System-Landschaft um ein R/3-
System, das Qualitätssicherungssystem (QAS), zur Drei-System-
Landschaft zu erweitern.

Abb. 1.9
Änderungen an

mandanten-
unabhängigen

Daten

Systemland-
schaft

1.4 Die Drei-System-Landschaft ■

■

■

11

Grundsätzlich erfolgen alle Entwicklungsarbeiten im Entwicklungs-
system (Mandant 001). Die geänderten Datenobjekte werden nach
Abschluss der Entwicklungsarbeiten in das Qualitätssicherungssys-
tem transportiert und unabhängig von weiteren Entwicklungsarbei-
ten getestet. Alle in das Qualitätssicherungssystem transportierten
Objekte lassen sich automatisch in das Produktivsystem überneh-
men.

R/3-System Mandant Aktivitäten

001 Entwicklung

TEST Testen der mandantenabhängigen Ein-
stellungen

Entwick-
lungssystem

SAND Experimentieren mit den Customizing-
werkzeugen

QTST Customizingeinstellungen und Pro-
grammentwicklungen werden in einer
realitätsnahen Umgebung getestet

Qualitäts-
sicherungs-
system

TRNG Schulung der Endanwender

Produktions-
system

PROD produktive Arbeit

Abb. 1.10
Drei-System-
Landschaft

Tabelle 1.1
Mandantenrollen

1 Projektmanagement 12 ■

■

■

1.5
Transporte durchführen

1.5.1
Transporte innerhalb eines R/3-Systems

1.5.1.1
Voraussetzungen und Durchführung
Um geänderte mandantenabhängige Daten unabhängig von weiteren
Änderungen an den Customizingtabellen testen zu können, werden
sie in den Testmandanten des Entwicklungssystems transportiert.
Dazu müssen vorher folgende Voraussetzungen geschaffen worden
sein:

der Testmandant ist angelegt (siehe Seite 12),

der Projektleiter hat für alle Entwickler einen Customizing-
auftrag angelegt (siehe Seite 16),

im Entwicklungsmandanten (001) ist die Eigenschaft „automa-
tische Aufzeichnung von Änderungen“ aktiviert (siehe Seite
18).

Die Datenänderungen und der Transport der geänderten Daten er-
folgt in folgenden Schritten:

Die Daten werden mit den Customizingwerkzeugen gepflegt.
Beim Sichern der Änderungen werden diese in einen speziel-
len Abschnitt des Customizingauftrages, der dem jeweiligen
Entwickler zugeordnet ist, eingetragen. Dieser spezielle Ab-
schnitt wird als „Aufgabe“ bezeichnet (siehe Seite 17).

Hat der Entwickler seine Customizingaufgaben abgeschlossen,
gibt er seine Aufgabe frei (siehe Seite 27).

Hat jeder Entwickler seine Aufgabe freigegeben, gibt der Pro-
jektleiter den gesamten Auftrag frei (siehe Seite 27).

Zum Schluss werden vom Projektleiter alle im Customizin-
gauftrag gekapselten Änderungen in den Zielmandanten trans-
portiert (siehe Seite 30).

1.5.1.2
Anlegen des Testmandanten
Der Testmandant wird durch Kopieren des Mandanten 000 (Auslie-
ferungsmandant) erzeugt. Die Kopie wird in zwei Schritten erstellt:

Voraussetzun-
gen für das

Customizing

Schritte zum
Transport von

Änderungen
innerhalb eines

R/3-Systems

1.5 Transporte durchführen ■

■

■

13

Erster Schritt: Deklaration des Testmandanten

Alle Mandanten eines Systems werden in die Tabelle T000 einge-
tragen.

Vorgehensweise: Mandantendeklaration

Die Mandantendeklaration wird mit SCC4 vorgenommen.
(Werkzege Administration Verwaltung Mandantenverwal-
tung SCC4 Mandantenpflege)
Das Einstiegsbild Sicht „Mandanten“ ändern: Übersicht zeigt alle
Mandanten des R/3-Systems an dem Sie angemeldet sind.

Im Bild Neue Einträge: Detail Hinzugefügte werden die Eigenschaf-
ten des neuen Mandanten festgelegt (siehe Abb. 1.11).

Zweiter Schritt: Mandantenkopie durchführen

Nachdem der Testmandant deklariert ist, müssen die Customizing-
tabellen vom Quellmandanten (000) in den Testmandanten (002)
kopiert werden.

Abb. 1.11
Sicht „Mandan-
ten“ ändern:
Übersicht
(Anzeige der
Datensätze der
Tabelle T000)

Abb. 1.12
Deklaration ei-
nes neuen Man-
danten in der
Tabelle T000

1 Projektmanagement 14 ■

■

■

Achtung: Bei der Mandantenkopie werden mehrere Tausend Tabel-
len kopiert. Das erfordert erhebliche Systemressourcen. Außerdem
wird für die Zeit der Ausführung der Mandantenkopie der Quell-
mandant für weitere Anmeldungen gesperrt. Sollten Sie beabsichti-
gen, die Mandantenkopie wirklich auszuführen, sprechen Sie mit
Ihrem Systemadministrator – am besten vorher, damit kein Frust
aufkommt.

Vorgehensweise: Mandantenkopie

Wichtig: Sie müssen sich am Testmandanten (Zielmandant) anmel-
den. Weil im Testmandanten jedoch noch keine Benutzerstammda-
ten angelegt sind, benutzen Sie folgende Login-Daten:

Mandant: 002 (Nr. des Zielmandanten)
Benutzer: SAP*
Kennwort: Pass

Im Testmandanten starten Sie die Mandantenkopie über die Trans-
aktion SCCL (Werkzeuge Administration Verwaltung

 Mandantenverwaltung Mandantenkopie SCCL lokale Ko-
pie)

Gehen Sie wie folgt vor:

Kontrollieren Sie, ob der richtige Zielmandant (002) eingetra-
gen ist.

Wählen Sie im Feld „Selektiertes Profil“ ein Profil aus.
Über das Profil steuern Sie, welche Daten vom Quellmandan-

Abb. 1.13
Mandantenkopie
– Kopieren eines

Mandanten

1.5 Transporte durchführen ■

■

■

15

ten in den Zielmandanten transportiert werden. Ihnen stehen
folgende Selektions- Standardprofile zur Verfügung:

Profil Daten

SAP_ALL Alle mandantenabhängigen Daten

SAP_APPL Customizing- und Anwendungsdaten

SAP_CUST Customizingdaten

SAP_CUSV Customizingdaten und Reportvarianten

SAP_UAPP Benutzerstämme, Reportvarianten,
Anwendungsdaten

SAP_UCSV Customizingdaten, Reportvarianten
und Benutzerstämme

SAP_UCUS Customizingdaten und Benutzerstämme

SAP_USER Benutzerstämme und Berechtigungsprofile

Hinweis: Die Customizingtabellen sind einmal pro Mandant
vorhanden. Sie werden beim Anlegen des Mandanten vom
Quell- in den Zielmandanten kopiert. Tabellen für Anwen-
dungsdaten, z.B. die Debitorenstammtabelle existiert nur ein-
mal pro R/3-System. Die Mandantenabhängigkeit wird da-
durch erreicht, dass die Mandantennummer Bestandteil des
Datensatzes ist. Die Tabellen für die Anwendungsdaten wer-
den also nicht kopiert, sondern die Datensätze dieser Tabellen
werden mit der Nummer des Zielmandanten neu angelegt.

Geben Sie im Feld „Quellmandant“ den Quellmandanten (000)
an.

Geben Sie im Feld „Quellmandant Benutzerstämme“ einen
Mandanten an, der die Benutzerstammsätze enthält, die im
Zielmandanten benötigt werden. Das könnte zum Beispiel der
Mandant 001 (Entwicklungsmandant) sein, weil in dieser Pha-
se der Entwickler seine Änderungen meist selbst testet.

Starten Sie die Mandantenkopie über eine der folgenden
Schaltflächen:

„Als Hintergrundjob einplanen“ oder

„Sofort starten“.

Während der Mandantenkopie dürfen weder am Quellmandanten
noch am Zielmandanten Daten geändert werden.

Tabelle 1.2
Selektionsprofile

1 Projektmanagement 16 ■

■

■

1.5.1.3
Anlegen eines Customizingauftrages
Das Customizing ist im Allgemeinen projektorientiert, d.h. unter-
schiedliche Aufgabenkomplexe werden von verschiedenen Projekt-
teams bearbeitet. Der Transport-Organizer unterstützt diese Ar-
beitsweise. Auf der Grundlage eines Customizingauftrages werden
folgende administratorischen Aufgaben der Projektarbeit gelöst:

Zuordnung von Änderungen zum jeweiligen Entwickler

Kapselung aller Änderungen die ein Projektteam durchführt.

Sicherstellen, dass alle zu einem Projekt gehörenden Änderun-
gen zum richtigen Zeitpunkt transportiert werden.

Prüfen, ob alle Entwickler ihre Aufgaben beendet haben.

Vorgehensweise: Customizingauftrag anlegen

Customizingaufträge werden im Transport-Organizer (SE10) ange-
legt (Werkzeuge AcceleratedSAP Customizing SE10
Transport Organizer). Füllen Sie das Einstiegsbild des Transport-
Organizers wie in Abb. 1.14 aus. Klicken Sie dann die Schaltfläche
„Anlegen“.

Abb. 1.14
Einstiegsbild

Transport-
Organizer

1.5 Transporte durchführen ■

■

■

17

Geben Sie in das Eingabefeld „Kurzbeschreibung“ einen Titel für
Ihren Customizingauftrag ein. Wenn Sie in der komfortablen Lage
sind, die anfallenden Customizingarbeiten auf andere Teammitarbei-
ter delegieren zu können, tragen Sie in die Datengruppe Aufgaben
deren Benutzernamen ein. Ihr eigener Benutzername wird vom Sys-
tem in diese Datengruppe übernommen.

Ist die Systemlandschaft bereits angelegt ist, wird im Feld „Ziel“
das R/3-System angegeben, in welches die Änderungen nach Ab-
schluss der Entwicklungsarbeiten transportiert werden sollen. Bei
einer Drei-System-Landschaft ist das das Qualitätssicherungssystem
QAS.

Abb. 1.15
Auftrag anlegen

Abb. 1.16
Auftrag anzei-
gen

1 Projektmanagement 18 ■

■

■

In diesem Fenster ist zu erkennen:

Für jeden Auftrag wird vom System automatisch eine Auf-
tragsnummer ermittelt. Diese setzt sich zusammen aus dem
Systemnamen (hier: MBS), einer Konstanten „K9“ und einer
5-stelligen laufenden Nummer (hier „00033“).

Für jeden Entwickler, der beim Anlegen des Auftrages in die
Datengruppe „Aufgaben“ eingetragen wurde (siehe Abb.
1.14), ist automatisch eine „Aufgabe“ angelegt worden. Beim
Sichern der Änderungen wählt der Entwickler den Customi-
zingauftrag aus. Das System ermittelt den Benutzernamen des
Entwicklers und trägt die Änderungen in die entsprechende
Aufgabe des Customizingauftrages ein.

Ist die Systemlandschaft angelegt, wird das Zielsystem (hier
das Qualitätssicherungssystem QAS) in die Auftragshierarchie
eingetragen. Dadurch kann man die Änderungen später auch in
das Zielsystem transportieren.

1.5.1.4
Automatische Aufzeichnung von Änderungen
Die automatische Aufzeichnung von Änderungen bewirkt, dass der
Entwickler beim Sichern seiner Änderungen vom System nach der
Auftragsnummer gefragt wird. Die Zuordnung der Änderungen zu
einem Auftrag erfolgt nur, wenn diese Eigenschaft des Mandanten
aktiviert ist. Durch die „automatische Aufzeichnung von Änderun-
gen“ werden die geänderten Objekte an das Korrektur- und Trans-
portwesen (CTW) des R/3-Systems angeschlossen. Damit ist sicher-
gestellt, dass keine Änderungen beim Transport in den
Zielmandanten bzw. in das Zielsystem „vergessen“ werden – ein
Highlight des R/3-Systems.

Vorgehensweise: Automatische Aufzeichnung von Änderungen akti-
vieren

Die Eigenschaften der Mandanten eines R/3-Systems werden mit der
Transaktion SCC4 (Werkzeuge Administration Verwaltung

 Mandantenverwaltung SCC4 Mandantenpflege) geändert.
Stellen Sie im Bild Sicht „Mandanten“ ändern: Übersicht (Abb.
1.17) durch Anklicken der Schaltfläche (Ändern Anzeigen)
den Änderungsmodus ein und wählen Sie danach durch Doppelklick
den Entwicklungsmandanten aus.

1.5 Transporte durchführen ■

■

■

19

1.5.1.5
Ausflug ins Customizing
Das Customizing ist die Anpassung der Standardsoftware R/3 an die
konkreten Bedingungen des Anwenderunternehmens. Dieser Teil
der Kundenanpassung wird ohne ABAP-Programmierung ausge-
führt. Beispiele dafür sind:

das Festlegen allgemeiner Einstellungen (z.B. im Unternehmen
gebräuchliche Maßeinheiten)

die Abbildung der Unternehmensstruktur im R/3-System.

Die allgemeinen Einstellungen bzw. die Struktureinheiten, wie Bu-
chungskreise, Kostenstellen, Werke, Lager, werden mit speziellen
R/3-Werkzeugen in die entsprechenden Customizingtabellen einge-
tragen.

Ausgangspunkt des Customizings ist der Referenz-Einführungs-
leitfaden, auch Referenz-IMG genannt

Abb. 1.17
Sicht Mandan-
ten ändern:
Übersicht

Abb. 1.18
Sicht Mandanten
ändern: Detail

Referenz-IMG

1 Projektmanagement 20 ■

■

■

(IMG Implementation Guide). Der Referenz-IMG enthält

alle Customizingaufgaben und

die notwendigen Customizingwerkzeuge.

Daraus wird der Projekt-Einführungsleitfaden, auch als Projekt-IMG
bezeichnet, abgeleitet. Der Projekt-IMG enthält

alle Customizingaufgaben für ein Projektteam,

alle notwendigen Customizingwerkzeuge,

Tools zur Verwaltung des Projektes.

Vorgehensweise: Projekt-IMG anlegen

Der Projekt-IMG wird mit der Transaktion SPRO_ADMIN (Werk-
zeuge AcceleratedSAP Customizing SPRO_ADMIN-Pro-
jektverwaltung) angelegt.

Um den Referenz-IMG anzuzeigen, klicken Sie auf die Schaltfläche
SAP Referenz-IMG. Einen neuen Projekt-IMG erzeugen Sie über die
Schaltfläche „Anlegen“.

Legen Sie einen Projektnamen fest und drücken Sie dann die
ENTER-Taste. Sie gelangen in das Fenster Projekt anlegen. Alle
Registerkarten dieses Werkzeuges hier zu erläutern würde den „Aus-
flug ins Customizing“ in eine eher knochige Bergtour verwandeln.
Deshalb beschränkt sich dieses Buch auf die Registerkarten „Allge-

Projekt-IMG

Abb. 1.19
Customizing:

Projekt-
verwaltung

Abb. 1.20
Projekt anlegen

mit Vorlage

1.5 Transporte durchführen ■

■

■

21

meine Daten“ und „Umfang“. Am Beispielprojekt „Einführung
Fi/Co (Allgemeine Einstellungen)“ soll das Customizing gezeigt
werden.

In der Registerkarte „Umfang“ werden die Customizingaufgaben
festgelegt, die im jeweiligen Projekt bearbeitet werden sollen.

Im Beispiel soll für die physikalische Größe „Zeit“ das „Semester“
als Maßeinheit eingeführt werden.

Abb. 1.21
Projekt anlegen

Beispielaufgabe
Customizing

Abb. 1.22
Umfang
festlegen

1 Projektmanagement 22 ■

■

■

Nach Anklicken der Schaltfläche „Umfang festlegen“ zeigt das Sys-
tem alle Customizingaufgaben aus dem Referenz-IMG an.

Stellen Sie den Cursor in die Customizingaufgabe, die Sie aus-
wählen wollen (hier: Maßeinheiten überprüfen) und klicken Sie
dann auf die Schaltfläche „Markieren“ auf der Symbolleiste des
Fensters.

Wenn Sie mehrere Aufgaben auswählen wollen, wiederholen Sie
diesen Vorgang solange, bis alle Aufgaben markiert sind. Markieren
Sie einen Knoten, wenn alle untergeordneten Hierarchiestufen aus-
gewählt werden sollen. Drücken Sie anschließend die ENTER-
Taste.

Das Fenster „Projekt anlegen“ wird wieder angezeigt. Das Projekt
muss jetzt generiert werden.

Abb. 1.23
Auswahl der

Customizing-
aufgaben

Abb. 1.24
Customizingpro-

jekt generieren

1.5 Transporte durchführen ■

■

■

23

Zum Generieren des Projektes klicken Sie auf die Schaltfläche „Pro-
jekt-IMG generieren“ und bestätigen alle folgenden System-aus-
schriften mit der ENTER-Taste.

Kehren Sie in die Projektverwaltung zurück (F3). Ihr Customi-
zingprojekt wird jetzt angezeigt.

Vorgehensweise: Customizing durchführen

Ausgangspunkt ist die Transaktion SPRO_ADMIN (Werkzeuge
 AcceleratedSAP Customizing SPRO_ADMIN Projektver-

waltung).
Starten Sie im Fenster „Customizing: Projektverwaltung“ (siehe

Abb. 1.26) Ihren Projekt-IMG durch Doppelklick.

Durch Anklicken der Schaltfläche „Projekt-IMG“ gelangen Sie in
die Baumstruktur Ihres Projekt-IMGs.

Abb. 1.25
Das neue
Customizing-
projekt wird
angezeigt

Abb. 1.26
Projekt-IMG
starten

1 Projektmanagement 24 ■

■

■

Klicken Sie auf die Schaltfläche „IMG-Aktivität“. Damit rufen Sie
das Customizingwerkzeug „Maßeinheiten überprüfen“ auf.

Abb. 1.27
Baumstruktur

des Projekt-
IMGs

Abb. 1.28
Dimension für

die neue
Maßeinheit
auswählen

1.5 Transporte durchführen ■

■

■

25

Legen Sie im folgenden Fenster die Eigenschaften der neuen Maß-
einheit „Semester“ fest.

Beim Sichern der Maßeinheit müssen die Änderungen dem im Kapi-
tel 1.5.1.3 „Anlegen eines Customizingauftrages“ (Seite 16) ange-
legten Customizingauftrag (MSBK900033) zugeordnet werden. Im
folgenden Fenster können Sie diesen Auftrag über die Schaltfläche
„Eigene Aufträge“ auswählen.

Abb. 1.29
Anzeige
der bereits
deklarierten
Maßeinheiten

Abb. 1.30
Eigenschaften
der neuen Maß-
einheit festlegen

1 Projektmanagement 26 ■

■

■

Über die Transaktion SE10 können Sie den Transport-Organizer
aufrufen.

Ihnen werden alle Customizingaufträge angezeigt, an denen Sie
beteiligt sind (siehe Abb. 1.33). Alle Änderungen, die Sie während
des Customizings bearbeitet haben, sind Ihrer Aufgabe (siehe Abb.
1.15, Seite 17) zugeordnet worden. Im Beispiel sind in der Aufgabe
„Thomas“ des Customizingauftrages MBSK900033 Änderungen an
den folgenden Tabellen aufgezeichnet:

Tabelle Kurzbeschreibung

T006 Maßeinheiten

T006A Zuordnung interne – sprachabhängige Maßeinhei-
ten

T006B Zuordnung externe kaufmännische zu interner
Maßeinheit

T006C Zuordnung externe technische zu interner Maßein-
heit

Abb. 1.31
Zuordnung der

Änderungen
zum Customi-

zingauftrag

Abb. 1.32
Anzeige der

eigenen Trans-
portaufträge

Tabelle 1.3
Geänderte

Customizing-
tabellen

1.5 Transporte durchführen ■

■

■

27

Durch die „automatische Aufzeichnung von Änderungen“ werden
die Änderungen an den verschiedenen Customizingtabellen in den
Customizingauftrag eingetragen. Das Customizing ist dadurch ohne
Kenntnisse der R/3-Tabellenstruktur durchführbar.

1.5.1.6
Freigabe der Customizingaufgabe und des Customizin-
gauftrages
Bevor der Transport der im Customizing durchgeführten Änderun-
gen, d.h. der Transport der neuen Maßeinheit „Semester“ die im
vorigen Kapitel angelegt wurde, durchgeführt werden kann, muss
jedes Teammitglied seine Customizingaufgabe freigeben. Die Frei-
gabe durch den jeweiligen Bearbeiter bestätigt den qualitätsgerech-
ten Abschluss der Änderungen. Durch das R/3-Berechtigungssystem
ist gesichert, dass kein anderer Bearbeiter außer dem Inhaber der
Aufgabe selbst, diese freigeben kann. Voraussetzung dafür ist die
Vergabe der Berechtigungsprofile entsprechend der folgenden Ta-
belle:

Abb. 1.33
Aufriss des
Customizin-
gauftrages

1 Projektmanagement 28 ■

■

■

Profil Benutzertyp Rechte im Transport-
Organizer

S_A.SYSTEM Systemverwalter Systemverwalter

S_A.ADMIN Operator Nur Anzeige

S_A.CUSTOMIZ Customizer Projektverantwortlicher

S_A.DEVELOP Entwickler Entwickler

Sind alle Customizingaufgaben freigegeben, gibt der Projektleiter
den Customizingauftrag frei. Freigegebene Aufgaben/Aufträge kön-
nen nicht mehr geändert werden. Die Freigabe kann nicht zurückge-
nommen werden.

Vorgehensweise: Freigabe der Aufgabe und des Auftrages

Die Freigabe der Customizingaufgaben und -aufträge erfolgt im
Transport-Organizer (Transaktionscode SE10). Rufen Sie die Auf-
träge, in denen Ihnen über Ihren Benutzernamen eine Aufgabe zuge-
ordnet ist auf (siehe Seite 26).

Stellen Sie den Cursor in die freizugebende Aufgabe und klicken Sie
die Schaltfläche „Direkt freigeben“ an.

Tabelle 1.4
Berechtigungs-

profile des
Customizings

Abb. 1.34
Freigabe der
Customizing-

aufgabe

1.5 Transporte durchführen ■

■

■

29

Die SAP empfiehlt, folgende Informationen zu dokumentieren:

Verantwortliche Personen und Ansprechpartner

Verweise auf zusätzliche interne Dokumentationen oder inner-
betriebliche Anweisungen

Details zur Implementierung

Abhängigkeiten von anderen Entwicklungsprojekten

Damit ist die Freigabe der Customizingaufgabe beendet. Sind alle
Aufgaben, denen Änderungen zugeordnet sind, freigegeben, erfolgt,
ebenfalls im Transport-Organizer, die Freigabe des Auftrages durch
den Projektleiter.

Am Freigabekennzeichen ist zu erkennen, dass die Projektmitarbei-
ter Max und Thomas die von ihnen durchgeführten Änderungen
ebenfalls zum Transport freigegeben haben. Max hat nach der Auf-
gabenfreigabe weitere Änderungen vorgenommen. Für ihn wurde
deshalb automatisch eine neue Aufgabe angelegt, die er dann eben-

Abb. 1.35
Kommentar
zur Freigabe
der Aufgabe
eingeben

Abb. 1.36
Freigabe des
Customizig-
auftrages

1 Projektmanagement 30 ■

■

■

falls freigegeben hat. Nach der Freigabe des Auftrages wird ein Pro-
tokollbildschirm angezeigt.

Durch die Freigabe des Auftrages MBSK900033 werden zwei Da-
teien erzeugt:

R00033.MBS (enthält die zu ändernden Daten)

K00033.MBS (enthält Transportsteuerdaten)

Zusätzlich werden Steuerinformationen in einen Pufferspeicher des
Qualitätssicherungssystems transportiert – Vorraussetzungen für den
Transport der Änderungen in das Qualitätssicherungssystem (Kapi-
tel „Transporte in andere R/3-Systeme“ (Seite 39).

Dem freigegebenen Customizingauftrag können keine Änderungen
mehr zugeordnet werden. Um weitere Änderungen durchführen zu
können, ist ein neuer Customizingauftrag anzulegen.

1.5.1.7
Transport der Änderungen in den Testmandanten
Die im freigegebenen Customizingauftrag gekapselten Änderungen
sollen jetzt in den Testmandanten (002) transportiert werden.

Vorgehensweise: Transport in einen Mandanten des gleichen R/3-
Systems

Melden Sie sich am Testmandanten an. Sollte für Sie im Testman-
danten noch kein Benutzerstammsatz angelegt sein, benutzen Sie
folgende Login-Daten:

Mandant: 002
Benutzer: SAP*
Kennwort: Pass

Abb. 1.37
Protokollbild-

schirm

1.5 Transporte durchführen ■

■

■

31

Starten Sie die Transaktion SCC1 (Werkzge Administration
 Verwaltung Mandantenverwaltung Sonderfunktionen
 SCC1 Trsp-Auftrg kopieren).

Tragen Sie den Quellmandanten und die Auftragsnummer in die
entsprechenden Eingabefelder ein und wählen Sie „Sofort starten“
oder „Als Hintergrundjob einplanen“.
Über das Menü Springen Protokollanzeige können Sie den Erfolg
des Transports kontrollieren.

Mit der Kontrolle des Transportprotokolls ist der Transport der Än-
derungen in den Testmandanten abgeschlossen.

Abb. 1.38
Transportauftrag
ausführen

Abb. 1.39
Aufruf der Pro-
tokollanzeige

Abb.1.40
Anzeige aller
Transportproto-
kolle

1 Projektmanagement 32 ■

■

■

1.5.1.8
Übungsaufgaben
A 1. Ermitteln Sie, welche Mandanten in Ihrem System angelegt
sind.

A 2. Deklarieren Sie einen neuen Mandanten.
Mandant: 010 Testmandant (sollte dieser Mandant bereits angelegt

sein, wählen Sie eine andere Mandan-
tennummer)

Mandantenrolle: Testmandant
Änderungen ohne automatische Aufzeichnung

Stellen Sie fest, wie viele Dateien bei der Mandantenkopie vom
Quellmandanten 000 in den Zielmandanten 010 kopiert werden
würden.

Achtung: Für die folgenden Übungen reicht es, den neuen Mandan-
ten zu deklarieren. Beim zweiten Schritt, der Mandantenkopie, wer-
den mehrere Tausend Tabellen kopiert. Das erfordert erhebliche
Systemressourcen. Sollten Sie Beabsichtigen, die Mandantenkopie
wirklich auszuführen, sprechen Sie vorher mit dem Systemadminist-
rator.

A 3. Legen Sie einen Customizingauftrag mit der Kurzbezeich-
nung „Länder-Regionen“ an.

A 4. Legen Sie einen Projekt-IMG „Regionen“ an. Nehmen Sie
den Knoten „Allgemeine Einstellungen“ in den Umfang Ihres Pro-
jekt-IMGs auf.

A 5. Legen Sie für das Land Deutschland (DE) die Region 17
Berlin-Brandenburg an.

A 6. Überprüfen Sie in Ihrem Customizingauftrag welche Tabellen
Änderungen enthalten, die durch das Anlegen der Region Berlin-
Brandenburg erzeugt wurden und geben Sie den Auftrag frei.

A 7. Melden Sie sich an dem in Aufgabe 2 angelegten Mandanten
an.

A 8. Kontrollieren Sie im Customizing, ob die Region Berlin-
Brandenburg vorhanden ist.

1.5 Transporte durchführen ■

■

■

33

A 9. Führen Sie den Transport (Auftragskopie) durch und kontrol-
lieren Sie, ob die Region Berlin-Brandenburg jetzt vorhanden ist.

A 10. Löschen Sie den neuen Mandanten wieder.

1.5.1.9
Lösungen

A 1. Ermitteln Sie, welche Mandanten in Ihrem System angelegt sind.

Starten Sie die Transaktion SCC4 (Werkzeuge Administration
 Verwaltung Mandantenverwaltung SCC4 Mandantenpfle-

ge). Im Folgebild „Sicht Mandanten anzeigen: Übersicht“ sehen Sie
alle im System angelegten Mandanten.

A 2. Deklarieren Sie einen neuen Mandanten.

1. Transaktion SCC4 (Werkzeuge Administration Verwal-
tung Mandantenverwaltung SCC4 Mandantenpflege) star-
ten.

2. „anzeigen ändern“.

3. „Neue Einträge“.

4. Attribute des Mandanten entsprechend der Aufgabenstellung
eingeben.

5. Sichern Sie die Eingabe.

Stellen Sie fest, wie viele Dateien bei der Mandantenkopie vom Quellmandanten 000
in den Zielmandanten 010 kopiert werden würden.

6. Am Zielmandanten anmelden
Mandant: 010
Benutzer: SAP*
Kennwort: PASS

7. Transaktion SCCL starten (Werkzeuge Administration
 Verwaltung Mandantenverwaltung Mandantenkopie
 SCCL Lokale Kopie)

8. Im Folgebild „Mandantenkopie – Kopieren eines Mandanten“
- Selektionsprofil „SAP_CUST“
- Quellmandanten „000“
auswählen.

9. Kontrollkästchen „Testlauf“ aktivieren

10. Mandantenkopie („Sofort starten“) starten

11. Im Folgebild „Verifikation“ die Schaltfläche „Fortfahren“ an-
klicken

1 Projektmanagement 34 ■

■

■

12. Im Folgebild „Mandantenkopie Verifikation“ den Schalter „Re-
sourcencheck“ anklicken

Nach dem „Ressourcencheck“ befinden Sie sich wieder im Haupt-
menü „Easy Access“.

13. Transaktion SCCL erneut aufrufen

14. Im Folgebild Quellmandanten 000 eintragen

15. Menü „Springen Protokollanzeige“ auswählen

16. Im Folgebild den Protokolleintrag anklicken

Ergebnis:

1.5 Transporte durchführen ■

■

■

35

A 3. Legen Sie einen Customizingauftrag mit der Kurzbeschreibung „Länder-
Regionen“ an.

1. Transaktion SE10 starten (Werkzeuge AcceleratedSAP
 Customizing SE10 Transport Organizer).

2. Im Folgebild die Kontrollkästchen „Customizing-Aufträge“ und
„Änderbar“ aktivieren.

3. Schaltfläche „Anlegen (F7)“ anklicken.

4. Im Folgebild „Auftrag anlegen“ Kurzbeschreibung „Länder-
Regionen“ und eventuell Teammitarbeiter eintragen.

5. Sichern (ENTER-Taste).

A 4. Legen Sie einen Projekt-IMG „Regionen“ an. Nehmen Sie den Knoten
„Allgemeine Einstellungen“ in den Umfang Ihres Projekt-IMGs auf.

6. Transaktion SPRO_ADMIN starten (Werkzeuge Accelera-
tedSAP Customizing SPRO_ADMIN Projektverwaltung)

7. Im Folgebild „Customizing: Projektverwaltung“ Schaltfläche
„Anlegen“ anklicken.

8. Im Folgebild „Projekt anlegen ...“ Projektname „Regionen“ ein-
geben/ENTER.

9. Im Folgebild „Projekt anlegen“ Bezeichnung des Projektes (z.B.
Länderregionen) eingeben.

10. Registerkarte „Allgemeine Daten“ mit sinnvollen Daten ausfül-
len.

11. In der Registerkarte „Umfang“ Auswahlknopf „Projektumfang
durch manuelle Auswahl im Referenz-IMG festlegen“ aktivie-
ren.

12. Sichern.

13. Schaltfläche „Umfang festlegen“ anklicken.

14. Im Folgebild „IMG-Knoten auswählen“ Cursor in den Knoten
„Allgemeine Einstellungen“ stellen.

15. Schaltfläche „Markieren F9“ anklicken.

16. ENTER-Taste drücken.

17. Im Bildschirm „Projekt anlegen“ Schaltfläche „Projekt-IMG
generieren“ anklicken.

18. Informationen mit ENTER-Taste bestätigen.

19. Im Folgebild „Projekt-IMG generieren“ gewünschte Arbeits-
weise einstellen („Hintergrundjob“ oder „Sofort“) .

20. ENTER-Taste drücken.

1 Projektmanagement 36 ■

■

■

A 5. Legen Sie für das Land Deutschland (DE) die Region 17 Berlin-
Brandenburg an.

1. Transaktion SPRO_ADMIN starten (Werkzeuge Accelera-
tedSAP Customizing SPRO_ADMIN Projektverwaltung).

2. Im Folgebild „Customizing: Projektverwaltung“ das Projekt
„Regionen“ durch Doppelklick starten.

3. Im Folgebild „Ändern: Projekt Regionen: Länderregionen“
Schaltfläche „Projekt-IMG“ anklicken.

4. IMG-Aktivität „Regionen einfügen“ entsprechend der Abbil-
dung auswählen.

5. Im Folgebild „Sicht Regionen ändern: Übersicht“ Schaltfläche
„Neue Einträge“ anklicken.

6. Folgebild „Neue Einträge ...“ Region Berlin-Brandenburg ent-
sprechend Abbildung anlegen.

7. Sichern und Customizingauftrag aus Aufgabe 3 (Länder-
Regionen) zuweisen.

A 6. Überprüfen Sie in Ihrem Customizingauftrag welche Tabellen Änderun-
gen enthalten, die durch das Anlegen der Region Berlin-Brandenburg erzeugt wurde

1. Transaktion SE10 starten (Werkzeuge AcceleratedSAP
 Customizing SE10 Transport Organizer).

2. Im Folgebild die Kontrollkästchen „Customizing-Aufträge“ und
„Änderbar“ aktivieren.

1.5 Transporte durchführen ■

■

■

37

3. Schaltfläche „Anzeigen“ anklicken Im Folgebild „Transport
Organizer: Aufträge“ Customizingauftrag „Länder-Regionen“
entsprechend Abbildung aufreißen.

4. Stellen Sie den Cursor in die Aufgabe und geben Sie diese frei
(Schaltfläche „direkt freigeben“).

5. Stellen Sie den Cursor in den Auftrag und geben Sie diesen frei
(Schaltfläche „direkt freigeben“).

A 7. Melden Sie sich an dem in Aufgabe 2 angelegten Mandanten an.

Start „SAPLogon“ Logon
Logondaten:
Mandant: 010
Benutzer: SAP*
Kennwort: PASS

A 8. Kontrollieren Sie im Customizing, ob die Region Berlin-Brandenburg
vorhanden ist.

Die folgenden Handlungen sind im Mandanten 010 (Mandant aus
Aufgabe 2) auszuführen.

1. Transaktion SPRO_ADMIN starten (Werkzeuge Accelera-
tedSAP Customizing SPRO_ADMIN Projektverwaltung).

2. Im Folgebild „Customizing: Projektverwaltung“ das Projekt
„Regionen“ durch Doppelklick starten.

3. Im Folgebild „Ändern: Projekt Regionen: Länderregionen“
Schaltfläche „Projekt-IMG“ anklicken.

4. IMG-Aktivität „Regionen einfügen“ entsprechend der Abbil-
dung auswählen.

1 Projektmanagement 38 ■

■

■

5. Suchen Sie im Folgebild „Sicht Regionen ändern: Übersicht“
für Deutschland (DE) die Region 17.

Ergebnis: Die Region DE 17 Berlin-Brandenburg ist nicht vorhan-
den.
Begründung: Die Ländereinstellungen gehören zum mandantenab-
hängigen Customizing. Sie müssen erst in den Testmandanten (010)
transportiert werden.

A 9. Führen Sie den Transport (Auftragskopie) durch und kontrollieren Sie, ob
die Region Berlin-Brandenburg jetzt vorhanden ist.

Die folgenden Handlungen sind im Mandanten 010 (Mandant aus
Aufgabe 2) auszuführen.

1. Transaktion „SCC1 Trsp-Auftrag kopieren“ starten (Werkzeuge
 Administration Verwaltung Mandantenverwaltung

Sonderfunktionen SCC1 Trsp-Auftrag kopieren).

2. Geben Sie im Folgebild „Kopie gemäß Transportauftrag“ fol-
gende Daten ein:
Quellmandant: <Mandant indem die Region angelegt wurde>
Transportauftrag: <Customizing-Auftragsnr. aus Aufgabe 3>

3. „Sofort starten“ oder „Als Hintergrundjob einplanen“ anklicken.

Kontrollieren Sie analog zur Aufgabe 8, ob die Region jetzt vorhan-
den ist.

A 10. Löschen Sie den neuen Mandanten wieder.

Die folgenden Handlungen sind im Mandanten 010 (Mandant aus
Aufgabe 2) auszuführen.

1. Transaktion „SCC5 Mandant löschen“ starten (Werkzeuge
 Administration Verwaltung Mandantenverwaltung
 Sonderfunktionen SCC1 Trsp-Auftrag kopieren). Im Fol-

gebild „Mandanten löschen“ ist im Anzeigefeld „zu löschende
Mandanten“ der aktuelle Mandant eingetragen (010).

2. Kontrollkästchen „Lösche Eintrag aus T000“ aktivieren.

3. Wählen Sie „Online löschen“ oder „Hintergrund“.

1.5 Transporte durchführen ■

■

■

39

Es werden alle mandantenabhängigen Tabellen des Mandanten 010
und der Datensatz des Mandanten 010 in der Tabelle T000 gelöscht.
Hinweis: Das manuelle Löschen des Mandanten in der Mandanten-
übersicht (SCC4) löscht die mandantenabhängigen Tabellen des
Mandanten nicht.

1.5.2
Transporte in andere R/3-Systeme

1.5.2.1
Grundlagen
Bei der Installation eines R/3-Systems wird auf der Betriebssystem-
ebene ein Transportverzeichnis angelegt. Alle R/3-Systeme einer
Systemlandschaft nutzen ein gemeinsames Transportverzeichnis.

Zum Zeitpunkt t1 (Freigabe des Auftrages) werden die zu transportie-
renden Daten in das Unterverzeichnis „data“ des gemeinsamen
Transportverzeichnisses „trans“ geschrieben. Gleichzeitig werden
für den Transport wichtige Steuerdaten im Verzeichnis „cofiles“
gespeichert.

Zum Zeitpunkt t2 (Import der Daten in das System QAS) werden
die Daten in das Qualitätssicherungssystem transportiert und dort

Abb. 1.40
Nutzung des
gemeinsamen
Transportver-
zeichnisses

1 Projektmanagement 40 ■

■

■

getestet. Korrekturen werden im Entwicklungssystem durchgeführt
und anschließend in das Qualitätssicherungssystem transportiert.

Zum Zeitpunkt t3 (Import der Daten in das System PRD) werden
die Daten aller Änderungsaufträge in das Produktivsystem über-
nommen. Die Reihenfolge der Änderungen wird dabei exakt ein-
gehalten, damit neue Versionen nicht durch alte überschrieben wer-
den.

Vorgänge bei der Freigabe des Auftrages

Nach der Freigabe des Auftrages MBSK900033 wird die Datei
R900033.MBS mit den zu transportierenden Daten erzeugt und in
das Unterverzeichnis „data“ kopiert. Zusätzlich wird die Datei
K900033.MBS mit Steuerinformationen angelegt und im Transport-
unterverzeichnis „cofiles“ abgelegt.

Die QAS-Importdatei und Importqueue werden ebenfalls mit
Steuerinformationen versorgt.

Abb. 1.41
Daten- und In-
formationsfluß

bei der Freigabe

Datenfluß

Informationsfluß

1.5 Transporte durchführen ■

■

■

41

Die Dateien K900033.MBS, R900033.MBS und QAS können auch
von den R/3-Arbeitsstationen angezeigt werden. Mit der Transaktion
AL11 können Sie die Verzeichnisse des Servers auf dem Bildschirm
Ihrer Arbeitsstation abbilden. Doppelklicken Sie in das Verzeichnis
DIR_TRANS data, DIR_TRANS cofiles bzw. DIR_TRANS

 buffer. Den Inhalt der Dateien können Sie sich von dort aus eben-
falls mit Doppelklick anschauen.

Vorgänge beim Import

 „Damit ein SAP-System durch die Versorgung mit Änderungsauf-
trägen immer in einem konsistenten Zustand bleibt, ist es notwendig,
Termine festzulegen, zu denen die Entwickler ihre Änderungsauf-
träge freigeben müssen. Um zu verhindern, dass Aufträge, die nach

Abb. 1.42
Daten- und In-
formationsfluß
beim Import in
das QAS

Wirkungsweise
der Import-
queues

Datenfluß

Informationsfluß

1 Projektmanagement 42 ■

■

■

diesem Zeitpunkt freigegeben werden, auch noch importiert werden,
kann die Importqueue geschlossen werden.

Änderungsaufträge, die dann freigegeben werden, werden nach
einer Endemarkierung in die Queue geschrieben und damit erst für
den übernächsten Import vorgemerkt. Beim nächsten Import, der
durch das Schließen der Importqueue auch zu einem späteren Zeit-
punkt erfolgen kann, werden nur die Aufträge vor der Endemarkie-
rung importiert (SAP R/3 Online-Hilfe).

Hinweis: Im Normalfall wird die Importqueue zu festgelegten und
veröffentlichten Terminen geschlossen damit die Projektleiter über
die Wahl des Freigabezeitpunktes festlegen können, wann die Ent-
wicklungen in die Folgesysteme importiert werden.

Beim Import der Aufträge in das QAS werden Steuerinformatio-
nen in den PRD-Importpuffer und die PRD-Importqueue geschrie-
ben.

Im letzten Schritt erfolgt der Import der Aufträge in das Produkti-
onssystem PRD. Die Einträge der PRD-Importqueue bestimmen,
welche Aufträge in das Produktivsystem transportiert werden. Der
Import erfolgt analog zum Import in das QAS, nur dass kein Import-
puffer und keine Importqueue beliefert werden müssen.

Abb. 1.43
Daten- und In-
formationsfluß
beim Import in

das PRD

1.5 Transporte durchführen ■

■

■

43

1.5.2.2
Voraussetzungen und Durchführung
Es gibt verschieden Methoden, Transporte in andere R/3-Systeme zu
realisieren. Hier soll speziell auf das Transport-Management-System
(TMS) eingegangen werden. Mit dem TMS steht ein komfortables
Werkzeug zur Verfügung mit dem alle Transporte organisiert und
zuverlässig ausgeführt werden können. Benutzeraktionen auf Be-
triebssystemebene sind bei der Verwendung des MTS nicht mehr
notwendig, da alle benötigten Informationen und Funktionen im
SAP-System abgebildet werden.

Um Änderungen mit dem TMS zu transportieren, sind folgende
Voraussetzungen zu erfüllen:

Die Systemlandschaft ist eingerichtet.

Für die Änderungen an mandantenabhängigen Daten ist ein
Customizingauftrag angelegt.

Für die Änderungen an mandantenunabhängigen Daten ist eine
Entwicklungsklasse und ein Workbenchauftrag angelegt.

Die automatische Aufzeichnung von Änderungen ist einge-
schaltet.

Die Datenänderungen und der Transport der geänderten Daten in ein
anderes R/3-System erfolgt in folgenden Schritten:

Die mandantenabhängigen Daten werden mit den Customi-
zingwerkzeugen gepflegt und beim Sichern in den Customi-
zingauftrag eingetragen (siehe Kapitel 1.5.1 „Transporte in-
nerhalb eines R/3-Systems“).

Mandantenunabhängige Daten werden beim Anlegen einer
Entwicklungsklasse und einem Workbenchauftrag zugeordnet.
Die Entwicklungsklasse enthält Angaben zum Zielsystem in
welches die Änderungen transportiert werden sollen. Analog
zum Customizingauftrag erfüllt der Workbenchauftrag folgen-
de Hauptaufgaben:

Zuordnung der Änderungen an mandantenunabhängigen
Daten zum jeweiligen Entwickler

Kapselung aller Änderungen, die zu einem Projekt gehö-
ren

Kennzeichnung der erledigten Entwicklungsaufgaben

Nach dem Abschluss der Entwicklungsarbeiten erfolgt die
Freigabe der Customizing- und Workbenchaufträge. Bei der
Freigabe werden die Änderungsaufträge und die dazugehöri-

1 Projektmanagement 44 ■

■

■

gen Steuerinformationen in das gemeinsame Transportver-
zeichnis geschrieben (siehe Abb. 1.41, Seite 40).

Zum Schluss wird im Transport-Management-System der
Transport der Änderung in das Zielsystem ausgeführt.

1.5.2.3
Einrichten der Systemlandschaft
In diesem Kapitel wird das Anlegen einer „Drei-System-Land-
schaft“ gezeigt. Als Entwicklungssystem dient das System MBS
(Mini-Basis-System). Für das Qualitätssicherungssystem (QAS) und
das Produktionssystem (PRD) werden zwei virtuelle Systeme ange-
legt. In der Praxis werden virtuelle Systeme immer dann benutzt,
wenn die Zielsysteme (in der Regel QAS und PRD) physisch noch
nicht vorhanden sind und das Transport-Management-System zu
Testzwecken initialisiert werden soll.

Um die Systemlandschaft zu konfigurieren, müssen Sie am Domain
Controller angemeldet sein. Der Domain Controller ist ein System
der Systemlandschaft, das dazu bestimmt wurde, Änderungen an der
Systemlandschaft aufzunehmen und in die anderen Systeme zu ver-
teilen. Wie der Domain Controller konfiguriert wird, entnehmen Sie
bitte der Online-Dokumentation.

Nach Auslösen des Transportvorganges wird dieser vom TMS
selbstständig ausgeführt. Dazu benötigt das TMS Angaben über die
R/3-Systeme der Systemlandschaft und die Transportwege über die
die Entwicklungsobjekte transportiert werden sollen.

Alle benötigten Informationen werden direkt im TMS angelegt.

R/3-Systeme der Systemlandschaft im TMS anlegen

Vorgehensweise: R/3-Systeme anlegen

Starten Sie das TMS über die Transaktion STMS (Werkzeuge
 Administration Transporte STMS Transport-Management-

System),
und wählen Sie die Menüfolge „Übersicht Systeme“.

Domain
Controller

1.5 Transporte durchführen ■

■

■

45

Abb. 1.44
Einstiegsbild
des TMS

Abb. 1.45
Anlegen eines
R/3-Systems
im TMS

1 Projektmanagement 46 ■

■

■

Wählen Sie das Menü „SAP-System Anlegen Virtuelles Sys-
tem“ und belegen Sie die Eingabefelder im folgenden Dialogfenster
entsprechend Abb. 1.46. Sichern Sie in diesem Dialogfenster Ihre
Eingaben. Als Ergebnis wird in der Systemübersicht das neue Sys-
tem angezeigt.

Legen Sie im TMS ein virtuelles System „PRD“ (Produktionssys-
tem) an.

Vorgehensweise: Transportwege anlegen

Ausgangspunkt ist das Einstiegsbild des TMS (Transaktion STMS).
Wählen Sie die Menüfolge „Übersicht Transportwege“. Es wird
ein grafischer Editor zur Pflege der Systemlandschaft angezeigt.
Wechseln Sie in den Änderungsmodus.
Unter der Drucktastenleiste sehen Sie die R/3-Systeme, die in die
Systemlandschaft integriert werden können. Klicken Sie mit der
Maustaste auf das Entwicklungssystem (MBS). Stellvertretend für
das ausgewählte System wird im Arbeitsbereich ein rotes Rechteck
angezeigt, das Sie mit der Maus an eine geeignete Stelle schieben
können. Zum Positionieren des Systems drücken Sie die linke Maus-
taste.

Positionieren Sie die Systeme QAS und PRD entsprechend der Ab-
bildung im Arbeitsbereich des grafischen Editors.

Die Systeme der anzulegenden Transportlandschaft werden durch
Transportwege miteinander verbunden. Es werden zwei Arten von
Transportwegen unterschieden:

Abb. 1.46
Systeme im

grafischen Edi-
tor des TMS
positionieren

1.5 Transporte durchführen ■

■

■

47

Konsolidierungswege

Ein Konsolidierungssystem ist ein System der Systemlandschaft, in
das stabile Entwicklungsstände aus dem Entwicklungssystem per
Transport übernommen und getestet werden.
Der Transportweg vom Entwicklungssystem zum Konsolidierungs-
system wird als Konsolidierungsweg bezeichnet Ein Konsolidie-
rungsweg setzt eine Transportschicht voraus.

Belieferungswege.

Ein Belieferungssystem ist ein System der Systemlandschaft, das aus
einem Konsolidierungssystem automatisch beliefert wird. Der
Transportweg von einem Konsolidierungssystem in ein Beliefe-
rungssystem wird als Belieferungsweg bezeichnet. Belieferungswe-
ge benötigen keine Transportschicht.

Vorgehensweise: Konsolidierungsweg anlegen

Zum Anlegen eines Konsolidierungsweges wird eine Transport-
schicht benötigt.
Pro SAP-System und Transportschicht können Sie nur einen Konso-
lidierungsweg einrichten.

Legen Sie über die Menüfolge „Bearbeiten Transportschicht
 Anlegen“ eine Transportschicht an.

Der Name der Transportschicht muss im Kundennamensbereich
liegen (Anfangsbuchstabe „z“ oder „y“).

Mit dieser Transportschicht soll jetzt ein Konsolidierungsweg zwi-
schen dem Entwicklungssystem (MBS) und dem Qualitäts-siche-
rungssystem (QAS) angelegt werden. Wählen Sie dazu im Fenster
„Transportwege ändern“ die Menüfolge „Bearbeiten Transport-
weg Transportweg einfügen“.

Abb. 1.47
Anlegen einer
Transportschicht

1 Projektmanagement 48 ■

■

■

Daraufhin nimmt der Cursor die Form eines Bleistiftes an. Ziehen
Sie mit gedrückter linker Maustaste eine Linie (Kante) vom Mittel-
punkt des Entwicklungssystems (MBS) zum Qualitätssicherungssys-
tem (QAS) und lassen Sie die Maustaste wieder los. Aktivieren Sie
im folgenden Dialogfenster den Auswahlknopf „Konsolidierungs-
weg“, wählen Sie die von Ihnen angelegte Transportschicht aus und
drücken Sie dann die ENTER-Taste. Der Konsolidierungsweg ist
angelegt (Vergleiche Abb. 1.48).

Die am Domain Controller konfigurierte Systemlandschaft muss
jetzt gesichert, verteilt und aktiviert werden. Klicken Sie die Schalt-
fläche „Sichern“ an, geben Sie der Konfiguration einen Namen und
verteilen Sie im folgenden Dialogfenster Ihre Konfiguration.

Abb. 1.48
Transportweg

anlegen

1.5 Transporte durchführen ■

■

■

49

Legen Sie zwischen den Qualitätssicherungssystem (QAS) und
dem Produktionssystem (PRD) einen Belieferungsweg an.
Hinweis: Der Belieferungsweg benötigt im Gegensatz zum Konso-
lidierungssystem keine Transportschicht.

1.5.2.4
Der Workbenchauftrag
Jedes mandantenunabhängige Objekt das angelegt oder geändert
werden soll, ist vom Entwickler einem Workbenchauftrag zuzuord-
nen.

Abb. 1.49
Konfiguration
sichern, verteilen
und aktivieren

Abb. 1.50
Wirkung der
Objektsperre
im Work-
benchauftrag

1 Projektmanagement 50 ■

■

■

Dadurch wird das Objekt gesperrt und kann nur von Benutzern, die
im Workbenchauftrag eingetragen sind, bearbeitet werden. Jeder
Bearbeiter des Objektes wird in eine Objektliste eingetragen. Damit
ist jederzeit eine Zuordnung der Bearbeiter zum geänderten Objekt
möglich. Erst mit der Freigabe des Workbenchauftrages wird die
Sperre wieder aufgehoben und das Objekt steht wieder allen Ent-
wicklern für weitere Änderungen zur Verfügung.

Vorgehensweise: Anlegen eines Workbenchauftrages

Workbenchaufträge werden mit der Transaktion SE09 (Werkzeuge
 ABAP Workbench Übersicht SE09 Transport Organizer)

angelegt.

Äußerlich unterscheidet sich der Workbenchauftrag nicht vom
Customizingauftrag (siehe Kapitel 1.5.1.3 „Anlegen eines Customi-
zingauftrages“, Seite 16).

Abb. 1.51
Anlegen eines

Workben-
chauftrages

Abb. 1.52
Neu angelegter

Workben-
chauftrag

1.5 Transporte durchführen ■

■

■

51

In diesem Fenster kann man folgendes erkennen:

Für jeden Auftrag wird vom System automatisch eine Auf-
tragsnummer ermittelt. Diese setzt sich zusammen aus

dem Systemnamen (hier: MBS)

einer Konstanten „K9“ und einer

5-stelligen laufenden Nummer (hier „00038“).

Für jeden Entwickler, der beim Anlegen des Auftrages in die
Datengruppe „Aufgaben“ eingetragen wurde (siehe Abb.
1.14), ist automatisch eine „Aufgabe“ angelegt worden. Beim
Sichern der Änderungen wählt der Entwickler den Workben-
chauftrag aus. Das System ermittelt den Benutzernamen des
Entwicklers und trägt die Änderungen in die entsprechende
Aufgabe des Customizingauftrages ein.

1.5.2.5
Die Entwicklungsklasse
Jedes Entwicklungsobjekt, das in andere R/3-Systeme transpor
tiert werden soll, bekommt eine Entwicklungsklasse zugeordnet.
Die Entwicklungsklasse stellt die obere Hierarchiestufe logisch zu-
sammenhängender Entwicklungsobjekte dar. Für größere Entwick-
lungsprojekte sollten immer eine eigene Entwicklungsklasse an-
gelegt werden. So sind zum Beispiel alle Entwicklungsobjekte
(Programme, Tabellen, Nachrichtenklasse etc.) die im Zusam-
menhang mit diesem Buch stehen, beim Autor der Entwicklungs-
klasse „Y_ABAP_TRAINING_TW“ zugeordnet.
Ist die Entwicklungsklasse eines Projektes bekannt, können alle
Entwicklungsobjekte, die zu diesem Projekt gehören, mit dem Ob-
ject Navigator angezeigt werden.

1 Projektmanagement 52 ■

■

■

Vorgehensweise: Anlegen einer Entwicklungsklasse

Entwicklungsklassen werden mit SE80 (Werkzeuge ABAP
Workbench Übersicht SE80 Object Navigator) angelegt.

Dieses Werkzeug ist die integrierte Entwicklungsumgebung des
R/3-Systems. Von hier aus lassen sich alle Entwicklungsobjekte
anlegen und ändern. Um eine Entwicklungsklasse anzulegen, kli-
cken Sie auf die Schaltfläche „Objekt bearbeiten“.

Abb. 1.53
Entwicklungs-

objekte der
Entwicklungs-
klasse yBuch

Abb. 1.54
Object Navigator

1.5 Transporte durchführen ■

■

■

53

Tragen Sie in diesem Bildschirm den Namen der Entwicklungsklas-
se ein. Der Name muss sich im Kundennamensbereich befinden, d.h.
mit den Buchstaben „z“ oder „y“ beginnen. Groß- und Kleinschrei-
bung spielen dabei keine Rolle.

Neben der Kurzbeschreibung wird in diesem Bildschirm die Trans-
portschicht angegeben. Das Eingabefeld ist immer mit der Standard-
transportschicht vorbelegt. Beim Sichern wird die Entwicklungs-
klasse dem im Kapitel 1.5.2.4 „Der Workbenchauftrag“ (Seite 49)
angelegten Workbenchauftrag zugeordnet.

Abb. 1.55
Anlegen einer
Entwicklungs-
klasse

Abb.1.57
Eigenschaften
der Entwick-
lungsklasse

1 Projektmanagement 54 ■

■

■

1.5.2.6
Das erstes ABAP-Programm
In diesem Kapitel soll nun das Zusammenwirken zwischen Work-
benchauftrag, Entwicklungsklasse und Entwicklungsobjekt am Bei-
spiel eines ABAP-Programmes gezeigt werden. Der Wirkungsme-
chanismus ist übertragbar auf alle anderen Entwicklungsobjekte wie
z.B. Tabellen, Funktionsbausteine, Sperrobjekte, Datenelemente etc.

Vorgehensweise: ABAP-Programm anlegen

ABAP-Programme können mit zwei verschiedenen Werkzeugen,
dem eigentlichen ABAP-Editor (SE38) und dem „Object Navigator“
(SE80) angelegt werden.

Wählen Sie als Entwicklungsobjekt „Programm“ aus, geben Sie in
das zweite Eingabefeld den Namen des neuen Programmes ein
(Achtung: Kundennamensbereich beachten, Programmname mit „z“
oder „y“ beginnend) und drücken Sie die ENTER-Taste.

Deaktivieren Sie das Kontrollkästchen „Mit TOP-Include“. Auf
diese Funktion werden wir an späterer Stelle eingehen.

Abb. 1.56
Zuweisung des

Workbench-
auftrages

Abb. 1.57
ABAP-

Programm
anlegen

Abb. 1.58

1.5 Transporte durchführen ■

■

■

55

Wählen Sie als Programmtyp „Ausführbares Programm“ und si-
chern Sie dann Ihre Eingabe.

Jedes Entwicklungsobjekt bekommt beim Anlegen eine Entwick-
lungsklasse zugeordnet. Im Beispiel wird das Programm „zWill-
kommen“ in die Entwicklungsklasse YABAP_BUCH gelegt.

Abb. 1.59
Programmtyp
auswählen

Abb. 1.60
Zuordnung der
Entwicklungs-
klasse

Abb. 1.61
Zuordnung des
Workbench-
auftrages

1 Projektmanagement 56 ■

■

■

Als letzten administrativen Schritt wird nun das Entwicklungsobjekt
in den Workbenchauftrag gestellt und damit für Nichtmitglieder des
Workbenchauftrages gesperrt. Vergewissern Sie sich, dass im Ein-
gabefeld „Auftrag“ der richtige Workbenchauftrag eingetragen ist

Zusammenfassung:
Jedem Entwicklungsobjekt wird beim Anlegen eine Entwicklungs-
klasse zugeordnet. Die Entwicklungsklasse wiederum enthält die
Transportschicht, mit der der Transportweg zum Zielsystem verbun-
den ist.

Damit entscheidet die Entwicklungsklasse, in welches Zielsystem
die ihr zugeordneten Entwicklungsobjekte transportiert werden.

Hinweis:
Eine Transportschicht kann nicht mehreren Transportwegen, die auf
verschiedene Zielsysteme zeigen, zugeordnet werden. Es ist daher
nicht möglich, ein Entwicklungsobjekt gleichzeitig in mehrere Im-
portqueues zu stellen.

Nachdem das Programm „zWillkommen“ einem Workbenchauftrag
zugewiesen wurde, kann die Programmentwicklung beginnen.

Ohne den späteren Kapiteln die Spannung zu stehlen, soll an dieser
Stelle schon das erste einfache ABAP-Programm geschrieben wer-
den. Der Object Navigator ist das integrierte Werkzeug zum Anle-

Abb. 1.62
Object Navigator

Entwick-
lungsobjekt

Entwick-
lungsklasse

Transport-
schicht

Trans-
portweg

Zielsys-
tem

1.5 Transporte durchführen ■

■

■

57

gen von Entwicklungsobjekten. Im Navigationsbereich wählen Sie
das Entwicklungsobjekt aus (Doppelklick auf Programmname). Im
Arbeitsbereich wird daraufhin der ABAP-Editor bereitgestellt.
Wechseln Sie in den Arbeitsbereich und stellen Sie in den Ände-
rungsmodus her (Schaltfläche „Anzeigen Ändern“). Geben Sie
folgenden Quelltext ein:

WRITE 'Herzlichen Glückwunsch'.
WRITE / 'Das Kapitel Administration ist fast
 geschafft.'.

Beachten Sie:

WRITE ist das Schlüsselwort für eine Datenausgabe.

Jede Anweisung wird mit einem Punkt abgeschlossen (hier ist
der Punkt am Ende jeder Zeile Eingabezeile gemeint).

Jede Zeichenkette beginnt und endet mit einem Hochkomma
(„ ' “).

Der Aufbau eines ABAP-Programmes und die Syntax der An-
weisungen wird in einem späteren Kapitel ausführlich behandelt.

Sichern Sie Ihr Programm. Über die Schaltfläche (Testen) können
Sie das Programm starten.

Kehren Sie in den Object Navigator zurück. Klicken Sie mit der
rechten Maustaste auf den Programmnamen in der Baumstruktur im
Navigationsbereich und Aktivieren Sie Ihr Programm. Das ist die
Voraussetzung zur Freigabe der Aufgabe im Workbenchauftrag.

Abb. 1.63
Ausführung des
Programms
„zWillkommen“

1 Projektmanagement 58 ■

■

■

1.5.2.7
Freigabe des Workbenchauftrages
Die Freigabe des Workbenchauftrages (MBSK00038) hat folgende
Wirkungen:

Die Sperrung der einzelnen Entwicklungsobjekte wird aufgeho-
ben.

Die Steuerdatei K00038 wird angelegt und in das Transportun-
terverzeichnis COFILES geschrieben.

Die Datei R00038 mit den zu transportierenden Entwicklungs-
objekten wird angelegt und Transportunterverzeichnis DATA
gestellt.

Die Pufferdatei des Zielsystems (QAS) im gemeinsamen Trans-
portverzeichnis (Unterverzeichnis BUFFER) wird aktualisiert.

Ist die Importqueue des Zielsystems (QAS-Importqueue) geöff-
net, wird der Workbenchauftrag hineingestellt (siehe auch Abb.
1.41 Seite 40).

Vorgehensweise: Freigabe des Workbenchauftrages

Die Freigabe der Workbenchaufträge erfolgt mit der Transaktion
SE09 oder SE10 (Werkzeuge ABAP Workbench Übersicht

 SE09 Transport Organizer).

Abb. 1.64
Aktivieren des

Programms

1.5 Transporte durchführen ■

■

■

59

Alle vom Entwickler Thomas innerhalb des Auftrages angelegten
oder geänderten Entwicklungsobjekte (im Beispiel die Entwick-
lungsklasse und das ABAP-Programm „zWillkommen“) sind einer
Aufgabe (Inhaber Thomas) zugeordnet. Die Entwicklungsarbeiten
an diesen Objekten gelten als beendet, wenn die Aufgabe freigege-
ben ist.

Zur Freigabe der Aufgabe stellen Sie den Cursor in die Aufgabe und
klicken die Schaltfläche „Direkt freigeben“ an.

Abb. 1.65
Workbench-
aufträge
anzeigen

Abb. 1.66
Freigabe der
Aufgabe

1 Projektmanagement 60 ■

■

■

Die SAP empfiehlt, folgende Informationen zu dokumentieren:

Verantwortliche Personen und Ansprechpartner

Verweise auf zusätzliche interne Dokumentationen oder inner-
betriebliche Anweisungen

Details zur Implementierung

Abhängigkeiten von anderen Entwicklungsprojekten

Damit ist die Freigabe der Workbenchaufgabe beendet. Sind alle
Aufgaben, denen Änderungen zugeordnet sind, freigegeben, erfolgt
die Freigabe des Auftrages durch den Projektleiter. Die Freigabe des
Auftrages wird ebenfalls im Transportorganizer durchgeführt.

Nach der Freigabe des Auftrages wird ein Protokoll zur Auftrags-
freigabe angezeigt.

Abb. 1.67
Kommentieren

der Aufgabe

Abb. 1.68
Freigabe des

Auftrages

1.5 Transporte durchführen ■

■

■

61

1.5.2.8
Transport durchführen
Vorgehensweise: Transport der freigegebenen Aufträge

Starten Sie das TMS über die Transaktion STMS (Werkzeuge
 Administration Transporte STMS Transport-Management-

System). Wählen Sie im Einstiegsbild des TMS das Menü „Über-
sicht Importe“.

Wählen Sie das Zielsystem aus.

Schließen Sie die Importqueue des Zielsystems. Damit sichern Sie,
dass Aufträge, die während des Imports freigegeben werden, nicht
im aktuellen Transportlauf in das Zielsystem gelangen.

Wie Sie in Abb. 1.71 sehen, finden Sie in der QAS-Importqueue
sowohl den Workbenchauftrag WBSK900038 als auch den im Kapi-
tel 1.5.1.5 „Ausflug ins Customizing“ (Seite 19) angelegten Custo-
mizingauftrag MBSK900033. Die Aufgaben der Aufträge können
Sie mit Doppelklick auf die Auftragsnummer anzeigen.

Abb. 1.69
Protokoll der
Freigabe

Abb. 1.70
Auswahl des
Zielsystems

1 Projektmanagement 62 ■

■

■

Jetzt kann der Import ausgeführt werden. Sie können alle Aufträge
die in der Importqueue stehen oder einen einzelnen Auftrag impor-
tieren.

Abb. 1.71
Schließen der
Importqueue

des Zielsystems

Abb. 1.72
links: Import der

gesamten Im-
portqueue

Abb. 1.73
rechts: Import

eines einzelnen
Auftrages

1.5 Transporte durchführen ■

■

■

63

1.5.2.9
Übungsaufgaben
A 1. Legen Sie einen Workbenchauftrag mit der Kurzbeschrei-
bung „Transporte“ an. Achten Sie darauf, dass im Eingabefeld
„Ziel“ das System QAS aus Kapitel 1.5.2.3 „Einrichten der System-
landschaft“ angegeben ist.

A 2. Legen Sie eine Entwicklungsklasse „ZK1“, Kurzbeschrei-
bung „Transporte“, an. Achten Sie darauf, dass im Eingabefeld
„Transportschicht“ die Transportschicht „ZQAS“ aus dem Kapitel
„Einrichten der Systemlandschaft“ eingetragen ist. Weisen Sie beim
Sichern der Entwicklungsklasse den in Aufgabe 1 angelegten Work-
benchauftrag „Transporte“ zu.

A 3. Legen Sie ein ABAP-Programm „zTest“ ohne Top-Include
an.

Programmtyp: „Ausführbares Programm“
Entwicklungsklasse: „ZK1“ aus Aufgabe 2
Auftrag: Transporte (aus Aufgabe 1)

REPORT zTest.
WRITE ’Transporttest’.

Sichern und aktivieren Sie Ihr Programm.

A 4. Geben Sie im Transport-Organizer Ihren Workbenchauftrag
frei.

A 5. Kontrollieren Sie im Transport-Management-System (TMS)
ob Ihr Workbenchauftrag in der Importqueue des Systems QAS zu
finden ist.

A 6. Wie wird der Transport ausgelöst?

Legen Sie für die Übungen der nächsten Kapitel eine Entwick-
lungsklasse „YABAP-TR“ (Kurzbeschreibung: „ABAP-Training“)
und einen Workbenchauftrag mit der gleichen Kurzbeschreibung
an. Diese Entwicklungsklasse und der Workbenchauftrag werden
im weiteren als „Ihre Entwicklungsklasse“ und „Ihr Workben-
chauftrag“ bezeichnet.

1 Projektmanagement 64 ■

■

■

1.5.2.10
Lösungen

A 1. Legen Sie einen Workbenchauftrag mit der Kurzbezeichnung „Transpor-
te“ an.

1. Transaktion SE09 starten (Werkzeuge ABAP Workbench
Übersicht SE09 Transport Organizer).

2. Im Folgebild die Kontrollkästchen „Workbench-Aufträge“ und
„Änderbar“ aktivieren.

3. Schaltfläche „Anlegen (F7)“ anklicken.

4. Im Folgebild „Auftrag anlegen“ Kurzbeschreibung „Transporte“
und eventuell Teammitarbeiter eintragen.

5. Sichern (ENTER-Taste).

A 2. Legen Sie eine Entwicklungsklasse „ZK1“ an.

1. Transaktion SE80 (Werkzeuge ABAP-Workbench Üb-
ersicht SE80 Object Navigator).

2. Im Folgebild „Object Navigator“ Schaltfläche „Objekt bearbei-
ten“ anklicken.

3. Im Folgebild „Objektauswahl“ Registerkarte „Weitere“ auswäh-
len.

4. Auswahlknopf „Entwicklungsklasse“ aktivieren.

5. In das Eingabefeld den Namen der Entwicklungsklasse eintra-
gen (zk1).

6. Schaltfläche „anlegen“ am unteren Rand des Fensters anklicken.

7. Im Folgebildschirm „Entwicklungsklasse anlegen“ Kurzbe-
schreibung „Transporte“ und Transportschicht „ZQAS“ einge-
ben.

8. Sichern.

9. Im Folgebild „Abfrage transportierbarer Workbench-Auftrag“
den in Aufgabe 1 angelegten Workbench-Auftrag „Transporte“
angeben.

A 3. Legen Sie ein ABAP-Programm „zTest“ ohne Top-Include an.

1. Transaktion SE80 (Werkzeuge ABAP Workbench Über-
sicht SE80 Object Navigator).

2. Ausfüllen der Eingabefelder entsprechend Abbildung.

1.5 Transporte durchführen ■

■

■

65

3. ENTER-Taste drücken

4. Im Folgebild „Objekt anlegen“ Schaltfläche „Ja“ anklicken

5. Im Folgebild Kontrollkästchen „Mit TOP-Include“ deaktivieren.

6. ENTER-Taste drücken.

7. Im Folgebild „ABAP: Programmeigenschaften ...“ Programm-
attribute eintragen.

8. Sichern.

9. Im Folgebild „Objektkatalogeintrag anlegen“ die Entwicklungs-
klasse „zk1“ angeben.

10. Sichern.

11. Im Folgebild „Abfrage transportierbarer Workbench-Auftrag“
den in Aufgabe 1 angelegten Workbench-Auftrag „Transporte“
zuordnen.

12. Doppelklicken Sie auf den Objektnamen „ZTEST“.

13. In die Arbeitsfläche des Object Navigators ist jetzt der ABAP-
Editor geladen. Klicken Sie auf die Schaltfläche „Anzei-
gen Ändern“ und geben Sie den Quelltext aus der Aufgaben-
stellung ein.

14. Sichern.

15. Aktivieren.

1 Projektmanagement 66 ■

■

■

A 4. Geben Sie im Transport-Organizer Ihren Workbenchauftrag frei.

1. Transaktion SE09 starten (Werkzeuge ABAP-Workbench
 Übersicht SE09 Transport Organizer).

2. Im Folgebild die Kontrollkästchen „Workbench-Aufträge“ und
„Änderbar“ aktivieren.

3. Schaltfläche „Anzeigen“ anklicken.

4. Im Folgebild „Transport Organizer: Aufträge“ Aufgabe und
Auftrag freigeben Stellen Sie zuerst den Cursor in die Aufgabe
und geben diese mit der Schaltfläche „Direkt freigeben F9“ frei.
Im Folgebild können Sie einen Kommentar eingeben. Sichern
Sie den Kommentar. Stellen Sie danach den Cursor in den Auf-
trag und geben Sie diesen ebenfalls über die Schaltfläche „Di-
rekt freigeben F9“ frei.

A 5. Kontrollieren Sie im Transport-Management-System (TMS) ob Ihr Work-
benchauftrag in der Importqueue des Systems QAS zu finden ist.

1. Transaktion STMS starten (Werkzeuge Administration
 Transporte STMS Transport Management System).

2. Menü „Übersicht Importe“ auswählen.

3. Im Folgebild „Importübersicht ...“ Doppelklick auf die Zeile
„Qualitätssicherungessystem“.

1.5 Transporte durchführen ■

■

■

67

Im Folgebild „Importqueue: System QAS“ finden Sie Ihren Trans-
portauftrag „Transporte“

A 6. Wie wird der Transport ausgelöst?

1. Transaktion STMS starten (Werkzeuge Administration
 Transporte STMS Transport Management System).

2. Menü „Übersicht Importe“ auswählen.

3. Im Folgebild „Importübersicht ...“ Doppelklick auf die Zeile
„Qualitätssicherungessystem“.

4. Im Folgebild „Importqueue: System QAS“ Cursor in den Auf-
trag „Transporte“ stellen.

5. Menü „Auftrag Importieren“ auswählen.

Hinweis: Sollen alle Aufträge der Importqueue importiert werden,
wählen Sie das Menü „Queue Import starten“.

2.1 Projektbeschreibung ■

■

■

69

2 Wegweiser

2.1
Projektbeschreibung

In den folgenden Kapiteln werden von Ihnen für die fiktive Biblio-
thek „East-Side-Library“ verschiedene Datenbanktabellen und Pro-
gramme entwickelt werden. Dabei bauen die Entwicklungsaufgaben
der einzelnen Kapitel aufeinander auf. Wenn Sie alle Aufgaben der
einzelnen Kapitel nacheinander bearbeiten, können Sie also immer
auf Ihre eigenen Entwicklungsobjekte zurückgreifen. Die Namen der
Entwicklungsobjekte in den Aufgabenstellungen beziehen sich auf
die von Ihnen entwickelten Objekte.

Damit Sie selbst bestimmen können, welche Kapitel bzw. welche
Aufgaben sie bearbeiten, sind die einzelnen Entwicklungsstände der
Programme auf der mitgelieferten CD enthalten. Über einen Trans-
portvorgang können Sie alle Entwicklungsobjekte der CD in Ihr
R/3-System laden. Die konkrete Vorgehensweise ist in der Anlage
beschrieben.

Sie sollten alle Ihre Entwicklungsobjekte, die Sie im Zusammen-
hang mit dem Bibliotheksprojekt anlegen, der Entwicklungsklasse
YABAP-TR zuordnen, die in Kapitel 1 (Projektmanagement) ange-
legt wurde. Dort ist auch ein Workbenchauftrag „ABAP-Training“
angelegt worden, dem Sie Ihre Entwicklungen zuweisen können. In
den Aufgabenstellungen und Vorgehensweisen der späteren Kapitel
wird auf diese Zuordnungen nicht mehr eingegangen.

Alternativ zu dieser Arbeitsweise können Sie Ihre Entwicklungs-
objekte auch als lokale Objekte speichern. Sie benötigen dann keine
Entwicklungsklasse und keinen Workbenchauftrag. Allerdings kön-
nen Sie dann Ihre Entwicklungen nicht transportieren.

Dieses Kapitel soll Ihnen helfen, das Kapitel auszuwählen, mit
dem Sie Ihr ABAP-Training beginnen. Außerdem enthält es Anga-
ben zu den Entwicklungsobjekten der Buch-CD.

2 Wegweiser 70 ■

■

■

Kapitel 3

Kurzbeschreibung:
Die Tabellen

ZBESTAND

ZAUTOREN

ZKUNDEN

ZKATEGORIE

ZAUSLEIHE

werden angelegt. Mit dem Programm YDATEN_TW werden diese
Tabellen mit Daten versorgt.

Entwicklungsobjekte der Buch-CD

Alle in diesem Kapitel anzulegenden Datenobjekte und -deklaratio-
nen befinden sich auch auf der Buch-CD. Als Unterscheidungsmerk-
mal zu den von Ihnen angelegten Objekten, wurde an die der CD die
Zeichenkette '_TW' angehängt.

Beispiele:

Objekt Name des Objektes
aus Aufgabenstellung

Name des Objektes auf
der CD

Domäne YRVP_ANZ
YRVP_BESTAND
YRVP_NAME
...

YRVP_ANZ_TW
YRVP_BESTAND_TW
YRVP_NAME_TW
...

Datenelement YRVP_KNR
YRVP_ISBN
YRVP_BESTAND
...

YRVP_KNR
YRVP_ISBN
YRVP_BESTAND
...

Tabelle ZBESTAND
ZAUTOREN
ZKUNDEN
ZKATEGORIE
ZAUSLEIHE

ZBESTAND_TW
ZAUTOREN_TW
ZKUNDEN_TW
ZKATEGORIE_TW
ZAUSLEIHE_TW

Suchhilfen ZAUTOREN
ZISBN
ZKATEGORIE
ZKUNDEN

ZAUTOREN_TW
ZISBN_TW
ZKATEGORIE_TW
ZKUNDEN_TW

Tabelle 2.1

2.1 Projektbeschreibung ■

■

■

71■

■

■

71

Überspringen des Kapitels 3

Soll Kapitel 3 übersprungen werden, sind die folgende Handlungen
notwendig:

Kopieren der Tabellen. Dieser Schritt ist optional. Wenn Sie ihn
ausführen, können Sie so weiterarbeiten, als hätten Sie Kapitel 3
bearbeitet. Kopieren Sie diese Objekte nicht, sind beim Bearbei-
ten der Aufgaben anderer Kapitel die von der Buch-CD über-
nommenen Objekte zu verwenden.

Objekt Name des Originals Name der Kopie

Tabelle ZBESTAND_TW
ZAUTOREN_TW
ZKUNDEN_TW
ZKATEGORIE_TW
ZAUSLEIHE_TW

ZBESTAND
ZAUTOREN
ZKUNDEN
ZKATEGORIE
ZAUSLEIHE

Ausführen des Programmes YDATEN_TW. Das Programm
versorgt die Tabellen die von der BUCH-CD in Ihr R/3-System
transportiert wurden und deren Kopien, sofern Sie sich an die
vereinbarten Namen gehalten haben, mit Daten.

Kapitel 4

Voraussetzung

Vor der Bearbeitung der Aufgaben aus Kapitel 4 sollten die
verwendeten Tabellen über das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe „Überspringen des Kapi-
tels 3“, Seite 71).

Kurzbeschreibung

In diesem Kapitel wird das ABAP-Programm YK04DBAS für die
„East-Side-Library“ entwickelt. Dabei werden grundlegende Pro-
grammiertechniken, wie z.B.

der Grundaufbau eines ABAP-Programmes.

die Ausgabe von Texten und Variablen.

die Deklaration elementarer und strukturierter Datenobjekte,

die Arbeit mit internen Tabellen.

das Lesen von Datenbanktabellen und

das Anlegen von Selektionsbildschirmen

behandelt.

Tabelle 2.2

2 Wegweiser 72 ■

■

■

Entwicklungsobjekte der Buch-CD

Das Programm wird in 10 Entwicklungsschritten (Aufgaben) zu
einem Literaturrechercheprogramm ausgebaut. Die Programme, die
bei der Bearbeitung der einzelnen Aufgaben entstehen, finden Sie
auf der Buch-CD unter folgenden Namen:

1. Entwicklungsschritt YK04DABAS_1
2. Entwicklungsschritt YK04DABAS_2
...
10. Entwicklungsschritt YK04DABAS_10

Überspringen des Kapitels 4

Das Überspringen dieses Kapitels erfordert keine Aktivitäten.

Kapitel 5

Voraussetzungen

Vor der Bearbeitung der Aufgaben aus Kapitel 5 sollten die
verwendeten Tabellen über das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe „Überspringen des Kapi-
tels 3“, Seite 71).

Kurzbeschreibung

Das Literaturrechercheprogramm YK04DBAS aus Kapitel 4 wird
nach YK05DBAS kopiert und weiterentwickelt. Es werden folgende
Schwerpunkte behandelt:

Modularisierung durch Unterprogramme und Includes,

Benutzen von Ikonen in Listen,

Programmierung von Menüleiste, Drucktastenleiste und Titel-
zeile,

Anzeige von Zusatzinformationen in Verzweigungslisten (inter-
aktive Listen),

Mehrfachauswahl von Zeilen einer Liste,

Dynamisches Sortieren von Listen,

Arbeit mit Funktionsgruppen und Funktionsbausteinen.

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

2.1 Projektbeschreibung ■

■

■

73■

■

■

73

1. Aufgabe YK05DABAS_1
2. Aufgabe YK05DABAS_2
...
14. Aufgabe YK05DABAS_14

Überspringen des Kapitels 5

Das Überspringen dieses Kapitels erfordert keine Aktivitäten.

Kapitel 6

Voraussetzungen

Vor der Bearbeitung der Aufgaben aus Kapitel 6 sollten die
verwendeten Tabellen über das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe „Überspringen des Kapi-
tels 3“, Seite 71).

Kurzbeschreibung

Im Kapitel 6 beginnt die Dialogprogrammierung. Das Recherche-
programm der „East-Side-Library“ erhält ein zeitgemäßes Design
auf der Basis von Dynpros. Dazu wird ein neues Programm
SAPMYK06 angelegt. An diesem Programm werden

die Bestandteile eines Dynpros,

das Anlegen eines Dynpros,

Dynproelemente zur Datenausgabe (Textfelder, Statusikonen
und Gruppenrahmen) und

Dynproelemente zur Ein- und Ausgabe (Ein- und Ausgabefel-
der, Ankreuzfelder, Auswahlknopfgruppen und Drucktasten)

gezeigt und die theoretischen Grundlagen der Dynproprogrammie-
rung erkärt.

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

1. Aufgabe SAPMYK06_1
2. Aufgabe SAPMYK06_2
...
10. Aufgabe SAPMYK06_10

Überspringen des Kapitels 6

Das Überspringen dieses Kapitels erfordert keine Aktivitäten.

2 Wegweiser 74 ■

■

■

Kapitel 7

Voraussetzungen

Vor der Bearbeitung der Aufgaben aus Kapitel 7 sollten die
verwendeten Tabellen über das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe „Überspringen des Kapi-
tels 3“, Seite 71).

Kurzbeschreibung

Im Kapitel 6 werden anspruchsvollere Dynproprogrammiertechni-
ken erarbeitet. Schwerpunkte werden auf

die Anzeige von Dynpros in einem Trägerdynpro (Subscreen-
technik),

das Anzeigen von Listen in Dynpros und

die Darstellung von Daten in Table Controls

gelegt.

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

1. Aufgabe SAPMYK07_1
2. Aufgabe SAPMYK07_2
...
5. Aufgabe SAPMYK07_5

Überspringen des Kapitels 7

Das Überspringen dieses Kapitels erfordert keine Aktivitäten.

Kapitel 8

Voraussetzungen

Vor der Bearbeitung der Aufgaben aus Kapitel 8 sollten die
verwendeten Tabellen über das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe „Überspringen des Kapi-
tels 3“, Seite 71).

Kurzbeschreibung

Die bisher auf verschiedene Dynpros der Anwendungsprogramme
verteilte Funktionalität des Programmes wird in einem Tabstrip mit
Blätterfunktion komprimiert.

2.1 Projektbeschreibung ■

■

■

75■

■

■

75

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

1. Aufgabe SAPMYK08_1

Überspringen des Kapitels 8

Das Überspringen dieses Kapitels erfordert keine Aktivitäten.

Kapitel 9

Voraussetzungen

Vor der Bearbeitung der Aufgaben aus Kapitel 9 sollten die
verwendeten Tabellen über das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe „Überspringen des Kapi-
tels 3“, Seite 71).

Kurzbeschreibung

Auf der Grundlage des Programmes SAPMYK09_Bestand_1, das
sich ebenfalls auf der Buch-CD befindet, werden

Datenbankändernde Anweisungen,

das SAP-LUW und DB-LUW-Konzept als Grundlage für die
korrekte Organisation der Datenbankänderungen,

das SAP-Sperrkonzept und

die automatische Vergabe von Nummern über Nummernkreis-
objekte

erklärt.

Außerdem werden von Ihnen zwei neue Programme für das „East-
Side-Library-Projekt“ entwickelt – das Programm zur Bearbeitung
von Ausleih- und Rückgabevorgängen SAPMYK09_Ausleihe und
das Kundenverwaltungsprogramm SAPMYK09_Kunden. Als Hilfe-
stellung wird eine Step by Step-Anleitung gegeben. Zielstellung
dieses Kapitels ist neben der Vermittlung der für die Datenbankän-
derungen notwendigen Programmiertechniken auch die Festigung
des bisherigen Stoffes in der praktischen Arbeit.

Entwicklungsobjekte der Buch-CD

Ausgangspunkt für die Arbeit in diesem Kapitel ist das Bestands-
pflegeprogramm SAPMYK09_Bestand_1. Außerdem sind noch
folgende Entwicklungsobjekte auf der CD:

2 Wegweiser 76 ■

■

■

Objektart Name Inhalt

SAPMYK09_Bestand_2
SAPMYK09_Bestand_3
SAPMYK09_Bestand_4

Entwicklungsstände des
Bestandspflegepro-
gramms

SAPMYK09_Ausleihe_TW Ausleih- und Rück-
gabeprogramm

Programm

SAPMYK09_Kunden_TW Kundenverwaltungs-
programm

Sperrobjekte EZZAUSLEIHE_TW
EZZAUTOREN_TW
EZZKUNDEN_TW
EZZBESTAND_TW

Nummern-
kreisobjekt

ZKNR_TW Zur automatischen Ver-
gabe von Kundennum-
mern

Suchhilfen ZISBN_AUSLEIHE_TW Suchehilfe für ISBN
und Kundennummern.
Diese Suchhilfe greift
auf die Tabelle
ZAUSLEIHE_TW zu.

 ZAUTOREN_TW Suchhilfe für Autoren-
nummern.. Greift auf die
Tabelle
ZAUTOREN_TW zu

ZISBN_TW Suchhilfe für die ISBN
in der Bestandstabelle.
Greift auf
ZBESTAND_TW zu

 ZKATEGORIE_TW Suchhilfe für das Feld
Kategorie. Greift auf
Tabelle
ZKATEGORIE_TW zu

ZKUNDEN_TW Suchhilfe für das Feld
Kundennummer. Greift
auf Tabelle
ZKUNDEN_TW zu.

Überspringen des Kapitels 9

Das Überspringen dieses Kapitels erfordert keine Aktivitäten.

Tabelle 2.3

2.1 Projektbeschreibung ■

■

■

77■

■

■

77

Kapitel 10

Voraussetzungen

Vor der Bearbeitung der Aufgaben aus Kapitel 10 sollten die
verwendeten Tabellen über das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe „Überspringen des Kapi-
tels 3“, Seite 71).

Kurzbeschreibung

In Kapitel 10 wird ein Ausblick auf die objektorientierte Program-
mierung mit ABAP Objects gegeben.

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

1. Aufgabe YK10_1
2. Aufgabe YK10_2
3. Aufgabe YK10_3
4. Aufgabe YK10_4, Klasse: ZCL_BUCH_TW
5. Aufgabe SAPMYK10_1

Demonstration Vererbung und Morphologie: YK10_VERERBUNG

3.1 Einführung ■

■

■

79

3 Das ABAP-Dictionary

3.1
Einführung

Das ABAP-Dictionary ist der Teil der Entwicklungsumgebung in
dem alle globalen Datendefinitionen des R/3-Systems angelegt und
verwaltet werden. Gehören zu den Datendefinitionen Datenobjekte
auf der Datenbank, werden diese vom ABAP-Dictionary angelegt.
Das ABAP-Dictionary „kennt“ somit

die logische Struktur der Objekte und

deren Abbildung auf der Datenbank.

Die Abbildung eines Datenobjektes auf der Datenbank ist abhängig
vom eingesetzten relationalen Datenbankmanagementsystem
(RDMS), während die logische Struktur des Datenobjektes system-
unabhängig ist.

Das ABAP-Dictionary kann demzufolge als Schnittstelle zwischen
der R/3-Entwicklungsumgebung und dem vom RDMS verwalteten
Datenbestand aufgefasst werden.

Abb. 3.1
Das ABAP-
Dictionary als
Schnittstelle zur
Datenbank

3 Das ABAP-Dictionary ■

■

■

80

Die Programme des R/3-Systems greifen über die Datendefinitionen
des ABAP-Dictionarys (genauer über deren Laufzeitobjekte) und die
Datenbankschnittstelle auf die Datenobjekte zu.

Das ABAP-Dictionary bildet somit die eigentliche Grundlage für
eine datenbankunabhängige Programmierung mit ABAP/4. Die Pro-
grammiersprache enthält SQL-ähnliche Anweisungen für die Bear-
beitung der R/3-Tabellen die sich nicht auf die Tabellendefinitionen
der Datenbank, sondern auf die Definitionen des ABAP-Dictionarys
beziehen. Diese Anweisungen gehören zum Sprachumfang des von
der SAP entwickelten „Open SQL“ und werden in der Datenbank-
schnittstelle in datenbankabhängige Standard-SQL-Anweisungen
übersetzt.

Weitere Highlights des ABAP-Dictionarys:

Auch die Dokumentation (F1-Hilfe) und die Eingabehilfe (F4-
Hilfe) zu einem Feld auf einer Eingabemaske stammen aus
dem ABAP-Dictionary.

Über Fremdschlüsselbeziehungen werden im ABAP-Dictiona-
ry Beziehungen, die zwischen den Tabellen des R/3-Systems
bestehen, hinterlegt.

Änderungen an Dictionary-Objekten werden nach ihrer Akti-
vierung in allen Komponenten die die geänderten Objekte nut-
zen, sofort wirksam. Damit ist sichergestellt, dass Dynpro- und
ABAP-Interpreter, Eingabehilfe, Datenbankschnittstelle und
Entwicklungswerkzeuge stets auf aktuelle Informationen zugrei-
fen.

Open SQL

Abb. 3.2
Das ABAP-

Dictionary als
Vorraussetzung

für datenbank-
unabhängiges

Programmieren

3.1 Einführung ■

■

■

81

Beispiel:
Das folgende Programm gibt den Buchbestand der „East Side Libra-
ry“ aus.

REPORT ZBESTANDSAUSGABE .
**
*Anlegen einer Struktur mit Bezug zum *
*ABAP-Dictionary zur Aufnahme eines Daten- *
*satzes aus der Tabelle zBestand_tw *
**
DATA: wa_zbestand type zbestand_tw.
**
*Open-SQL-Anweisung Select...Endselect *
*zur Selection der Datensätze *
**
select * from zbestand_tw into wa_zbestand.
*Ausgabe ausgewählter Felder der Struktur
*wa_zbestand
 write: / wa_zbestand-ISBN,
 wa_zbestand-Auflage,
 wa_zbestand-Titel,
 wa_zbestand-Bestand,
 wa_zbestand-Ausgeliehen.
endselect.

Im Programm wird nur die Struktur „wa_zbestand“ deklariert
(DATA-Anweisung). Alle Informationen zu dieser Struktur, z.B.
Feldnamen, Datentypen und Feldlängen, werden aus der im ABAP-
Dictionary definierten Tabelle ZBESTAND_TW übernommen. Die-
se Informationen zur Tabelle ZBESTAND werden beim Generieren
des Programms aus dem ABAP-Dictionary abgerufen.

Damit muss bei einer Änderung der Tabelle ZBESTAND_TW,
zum Beispiel bei der Veränderung der Länge eines Tabellenfeldes,
der Quelltext des Programms nicht angepasst werden. Beim nächs-
ten Aufruf des Programms wird über den sogenannten Zeitstempel,
festgestellt, dass sich die Struktur der Tabelle ZBESTAND_TW ver-
ändert hat. Das Programm wird automatisch neu generiert und arbei-
tet dann mit der geänderten Tabelle ZBESTAND_TW.

Kurzbeschreibung der Dictionary-Datenobjekte

Alle Dictionary-Objekte werden im Repository, einem besonderen
Bereich der Datenbank, gespeichert. Sie werden deshalb gelegent-
lich auch als Repository-Objekte bezeichnet.

Beispiel zur
Nutzung des
ABAP-
Dictionarys
innerhalb eines
ABAP-
Programmes

3 Das ABAP-Dictionary ■

■

■

82

Datenbanktabelle

Datenobjekt, in das zusammengehörige Daten gespeichert werden.

Beispiel:

Mandant ISBN Titel Jahr Autorennr.

001 4825212815 Easy-Web-
Transactions
programmieren

1993 123

001 4897212722 HTML-Business 1997 123

001 4934358222 ABAP Objects 2003 456

Terminologie:
Eine Spalte der Tabelle wird als „Feld“ oder „Tabellenfeld“ (z.B.
Feld Mandant, Feld ISBN), eine Zeile als „Datensatz“ bezeichnet.
Jedes Feld erhält einen eindeutigen Feldnamen (im Beispiel „Man-
dant“, „ISBN“, „Titel“ und „Jahr“) über den es vom ABAP-Pro-
gramm angesprochen werden kann.

Die Struktur der Datenbanktabelle wird im Repository gespei-
chert. Für die Daten dieser Tabelle wird auf der Datenbank Speicher
reserviert.

Domäne

In der Domäne werden die physikalischen Eigenschaften der Tabel-
lenfelder (z.B. Datumsfeld), und ggf. ein Wertebereich (z.B.
01.01.2004–31.12.2004) hinterlegt. Eine Domäne kann mehreren
Datenelementen zugeordnet werden.

Datenelement

Das Datenelement wird direkt einem oder mehreren Datenbankfel-
dern zugeordnet. Es enthält eine Domäne (d.h. die physikalischen
Eigenschaften), den Feldbezeichner und ggf. eine Suchhilfe für das
ihm zugeordnete Tabellenfeld.

View

Hauptsächlich werden Views benutzt, um Daten die in verschie-
denen Tabellen stehen, zusammenzufassen.

Datenbank-
tabelle

Domäne

Datenelement

View

3.1 Einführung ■

■

■

83

Beispiel:

Struktur

Ebenso wie eine Datenbanktabelle besteht eine Struktur aus mehre-
ren, inhaltlich zusammengehörigen, Feldern. Für sie wird jedoch
kein Speicherbereich auf der Datenbank reserviert. Somit können in
Datenobjekten dieses Typs keine Daten dauerhaft gespeichert wer-
den. Sie dienen dem Programmierer zum temporären Speichern von
Daten, oftmals eines Datensatzes aus einer Datenbanktabelle.

Tabellentyp

Dieses Datenobjekt dient zum Anlegen interner Tabellen im ABAP-
Programm. Dem Tabellentyp wird, ebenso wie der Struktur, kein
Speicher in der Datenbank zugeordnet.

Suchhilfe

Datenobjekt, indem festgelegt wird, welche Felder einer Tabelle o-
der eines Views in der F4-Hilfe angezeigt werden sollen.

Abb. 3.3
View mit 2
Tabellen

Struktur

Tabellentyp

Suchhilfe

3 Das ABAP-Dictionary ■

■

■

84

Beispiel:

Sperrobjekt

Gleichzeitiges Bearbeiten eines Datensatzes durch mehrere Benutzer
kann zu Inkonsistenzen in der Datenbank führen. Sollen z.B.
Stammdaten eines Kunden in der Tabelle ZKUNDEN des Biblio-
theksprojektes geändert werden, muss das ändernde Programm si-
cherstellen, dass andere Anwender nicht zur gleichen Zeit den
gleichen Datensatz bearbeiten können. Nach der Änderung ist der
Datensatz für die Bearbeitung durch andere Benutzer wieder frei-
zugeben.

Das Sperrobjekt ist Teil des Sperrkonzeptes des R/3-Systems.
Beim Anlegen eines Sperrobjektes wird festgelegt, in welchen Ta-
bellen Datensätze von der jeweiligen Anwendung gesperrt werden.
Beim Aktivieren des Sperrobjektes im ABAP-Dictionary werden da-
für zwei Funktionsbausteine (Enqueue- und Dequeuefunktions-
baustein) angelegt, die, eingebunden in das jeweilige Anwendungs-
programm, den entsprechenden Datensatz sperren und zu gegebener
Zeit auch wieder freigeben.

Sperrobjekt

3.2 Domäne, Datenelement, Datenbankfeld ■

■

■

85

3.2
Domäne, Datenelement, Datenbankfeld

die Domäne legt die physikalischen Eigenschaften des ihr zuge-
ordneten Feldes fest. Zusätzlich kann in der Domäne noch der
gültige Wertebereich des Datenbankfeldes angegeben werden.

Die Domäne wird dem Feld nicht direkt, sondern über ein Da-
tenelement zugeordnet. Dabei kann eine Domäne mehreren
Datenelementen zugeordnet werden. In Abb. 3.4 wurde die
Domäne „zNR“ den Datenelementen „zISBN“ und „zAutor“
zugeordnet, weil diese Datenelemente wiederum Feldern zu-
geordnet sind, die gleiche physikalische Eigenschaften haben
sollen (Ziffernfeld, 10-stellig).

Die Datenelemente enthalten neben der Domäne den Feldbe-
zeichner (nicht zu verwechseln mit dem Feldnamen) ggf. eine
Suchhilfe und eine Feldhilfe (F1-Hilfe). Ein Datenelement
kann mehreren Feldern zugewiesen werden. In Abb. 3.4 ist das
Datenelement „zAutor“ den Feldern „Autor1“, „Autor2“ und
„Autor3“ zugeordnet, weil alle 3 Felder mit der gleichen Such-
hilfe („zAutoren“) der gleichen Feldhilfe und dem gleichen
Bezeichner arbeiten sollen.

Dem Feld wird das Datenelement zugeordnet. Damit sind die
physikalischen Eigenschaften (über die Domäne) und semanti-
schen Eigenschaften (F4- und F1-Hilfe) des Feldes festgelegt.

Abb. 3.4
Domänen-
konzept

3 Das ABAP-Dictionary ■

■

■

86

3.2.1
Domänen anlegen

Das Bibliotheksprojekt (RVP) benötigt die folgenden Domänen:

Domänenname Datentyp Zahl der Stellen Ausgabelänge

YRVP_ANZ NUMC 4 4

YRVP_BESTAND NUMC 5 5

YRVP_BEREICH CHAR 10 10

YRVP_DAT DATS 8 10

YRVP_JAHR NUMC 4 4

YRVP_MAIL CHAR 20 20

YRVP_NAME CHAR 35 35

YRVP_NR NUMC 10 10

YRVP_POSITION CHAR 10 10

YRVP_INHALT CHAR 35 35

YRVP_TEL NUMC 15 15

YRVP_TITEL CHAR 65 65

YRVP_KAT CHR 10 10

YRVP_PLZ NUMC 5 5

Der Domänenname muss sich im Kundennamensbereich befinden,
d.h. er beginnt mit „z“ oder „y“.

Hinweis: Domänen werden im ABAP-Dictionary angelegt und ste-
hen damit global, d.h. im gesamten R/3-System zur Verfügung. Die
Domänennamen des Bibliotheksprojektes sind so gewählt, dass es
mit hoher Wahrscheinlichkeit nicht zu Namenskonflikten mit bereits
angelegten Domänen kommt. Sollte in Ausnahmefällen der Domä-
nenname doch schon vergeben sein, wählen Sie einen anderen.

Vorgehensweise: Domäne anlegen

Domänen werden im ABAP-Dictionary angelegt. Starten Sie die
Transaktion SE11 (Werkzeuge Entwicklung SE11 Dictiona-
ry).

Aktivieren Sie im Einstiegsbild den Auswahlknopf „Domäne“
und tragen Sie im dazugehörigen Eingabefeld den Namen der Do-
mäne ein.

Tabelle 3.1
benötigte
Domänen

3.2 Domäne, Datenelement, Datenbankfeld ■

■

■

87

Pflegen Sie die Eingabefelder im Nachfolgebild „Dictionary: Do-
mäne pflegen“ entsprechend der Abb. 3.6 und wählen Sie dann die
Schaltfläche „Aktivieren“.

Durch das Aktivieren der Domäne wird diese in das Repository
gespeichert. Erst danach steht die Domäne wirklich zur Verfügung.

Hinweis: Beachten Sie die Statusangabe rechts neben dem Eingabe-
feld für den Domänennamen. Nach dem erfolgreichen Aktivieren
der Domäne ist der Status „aktiv“ gesetzt.

Abb. 3.5
Einstiegsbild
Anlegen einer
Domäne

Abb. 3.6
Anlegen einer
Domäne, Eigen-
schaften pflegen
und aktivieren

3 Das ABAP-Dictionary ■

■

■

88

Geben Sie im Folgebild „Abfrage transportierbarer Workbench-
Auftrag“ Ihren Workbenchauftrag ein.

Aufgabe:
Legen Sie die Domänen des Bibliotheksprojektes entsprechend der
Tabelle 3.1 (Seite 86) an.

Abb. 3.7
Zuordnen der
Entwicklungs-

klasse

Abb. 3.8
Zuordnen des

Workbench-
auftrages

3.2 Domäne, Datenelement, Datenbankfeld ■

■

■

89

3.2.2
Datenelemente anlegen

Das Bibliotheksprojekt (RVP) benötigt folgende Datenelemente:

Datenelement Domäne Feldbezeichner

YRVP_ADATUM YRVP_DAT Ausleihe

YRVP_ANR YRVP_NR Autorennr.

YRVP_ANZ YRVP_ANZ Anzahl

YRVP_AUFLAGE YR VP_ANZ Auflage

YRVP_AUS YRVP_BESTAND verliehen

YRVP_BESTAND YRVP_BESTAND Bestand

YRVP_BEREICH YRVP_BEREICH Bereich

YRVP_EINTRITT YRVP_EINTRITT Eintritt

YRVP_EJAHR YRVP_JAHR Ersch. Jahr

YRVP_GDAT YRVP_DAT Geb.Dat.

YRVP_ISBN YRVP_NR ISBN

YRVP_KATEGORIE YRVP_KAT Kategorie

YRVP_KNR YRVP_NR Kundennr

YRVP_LAND LAND1 Land

YRVP_MAIL YRVP_MAIL e-Mail

YRVP_NAME YRVP_NAME Name

YRVP_ORT YRVP_NAME Ort

YRVP_PLZ YRVP_PLZ Plz

YRVP_POSITION YRVP_POSITION Lagerpos.

YRVP_RDATUM YRVP_DAT Rückgabe

YRVP_SCHLAGWORT YRVP_INHALT Inhalt

YRVP_STRASSE YRVP_NAME Straße

YRVP_TEL YRVP_TEL Telefon

YRVP_TITEL YRVP_TITEL Titel

YRVP_VERLAG YRVP_NAME Verlag

YRVP_VNAME1 YRVP_NAME Vorname 1

YRVP_VNAME2 YRVP_NAME Vorname 2

YRVP_BESCHR YRVP_INHALT Beschreibung

Tabelle 3.2
benötigte Da-
tenelemente

3 Das ABAP-Dictionary ■

■

■

90

Vorgehensweise: Datenelemente anlegen

Datenelemente werden im ABAP-Dictionary angelegt. Starten Sie
SE11 (Werkzeuge Entwicklung SE11 Dictionary).

Aktivieren Sie im Einstiegsbild den Auswahlknopf „Datentyp“
und tragen Sie im dazugehörigen Eingabefeld den Namen des Da-
tenelementes ein.

Im Folgebild „Dictionary: Datenelement pflegen“ geben Sie in der
Registerkarte „Definition“ die zugehörige Domäne an.

Abb. 3.9
Datenelement

anlegen

Abb. 3.10
Auswahl des

anzuanlegenden
Datenobjektes

3.2 Domäne, Datenelement, Datenbankfeld ■

■

■

91

Wählen Sie dann die Registerkarte „Feldbezeichner“ und tragen Sie
in die Eingabefelder „kurz“, „mittel“, „lang“ und „Überschrift“ aus-
sagekräftige Feldbezeichner für Ihr Datenelement ein. Die Feldbe-
zeichner werden Ihnen später beim Anlegen der Programm-
oberfläche (Dynproprogrammierung) das Leben erleichtern.
Aktivieren Sie anschließend das Datenelement.

Abb. 3.11
Zuordnen der
Domäne

Abb. 3.12
Feldbezeichner
pflegen,
Aktivieren

3 Das ABAP-Dictionary ■

■

■

92

Ordnen Sie die Domäne Ihrer Entwicklungsklasse zu.

Geben Sie im Folgebild „Abfrage transportierbarer Workbench-
Auftrag“ Ihren Workbenchauftrag ein.

Aufgabe:
Legen Sie in analoger Art und Weise die Datenelemente des Biblio-
theksprojektes entsprechend der Tabelle 3.2 (siehe Seite 89) an.

3.3
Eigenschaften von Tabellen

3.3.1
Tabellenarten

Über die Tabellenart wird festgelegt, wie die im ABAP-Dictionary
erfolgte logische Beschreibung einer Tabelle (bzw. mehrerer Tabel-
len) auf der Datenbank abgebildet wird. Es werden die folgenden
Tabellenarten unterschieden:

Transparente Tabellen

Pooltabellen

Clustertabellen

Strukturen

Append-Strukturen

Abb. 3.13
Entwicklungs-

klasse zuordnen

3.3 Eigenschaften von Tabellen ■

■

■

93

Hinweis:
Der ABAP/4-Quellcode bezieht sich immer auf die logische Be-
schreibung der Tabelle im ABAP-Dictionary. Der Quellcode zur
Bearbeitung von Tabellen ist deshalb unabhängig von der Tabellen-
art.

Beschreibung der Tabellenarten

Transparente Tabellen

Bei transparenten Tabellen entspricht jedem Feld der im ABAP-
Dictionary angelegten logischen Beschreibung genau einem Feld auf
der Datenbank.

Beim Aktivieren der transparenten Tabelle im ABAP-
Dictionary wird diese auf der Datenbank angelegt und Platz für
die Daten der Tabelle reserviert. Die Größe des reservierten
Speicherbereiches richtet sich nach der Größenklasse der Tabel-
le, die ebenfalls im ABAP-Dictionary festgelegt wird.

Tabellenname und Feldnamen der physischen Tabellendefiniti-
on sind namensgleich zu den entsprechenden Namen der logi-
schen Tabellendefinition.

Datentypen der logischen Tabellendefinition werden automa-
tisch in korrespondierende Datentypen des jeweiligen Daten-
banksystems umgewandelt. Damit ist das Anlegen von Tabellen
unabhängig von der verwendeten Datenbank.

Die Reihenfolge der Felder in der Datenbank kann von der Rei-
henfolge der Felder in der logischen Tabellendefinition abwei-
chen. Dadurch können Felder in die Tabelle eingefügt werden,
ohne dass die Tabelle umgesetzt (siehe Kapitel 3.3.7 „Änderun-
gen an Tabellen“ Seite 108) werden muss.

3 Das ABAP-Dictionary ■

■

■

94

Pooltabellen

Eine Pooltabelle wird auf der Datenbankebene in einem ihr zuge-
ordneten Tabellenpool gespeichert. Dabei können mehrere Poolta-
bellen einen gemeinsamen Tabellenpool nutzen.
Ein Tabellenpool hat folgende 4 Felder:

Feld Datentyp Bedeutung

Tabname CHAR(10) Name der Pooltabelle

Varkey CHAR(n) Enthält als String die Einträge aller
Schlüsselfelder des Satzes der Poolta-
belle, max. Länge für n ist 110

Dataln INT2 Länge des in Vardata stehenden Strings

Vardata RAW Enthält die Einträge aller Datenfelder
des Satzes der Pooltabelle.

Abb. 3.14
Abbildung der

logischen Tabel-
lendefinition

(ABAP-
Dictionary) auf
der Datenbank

Tabelle 3.3
Felder eines

Tabellenpools

3.3 Eigenschaften von Tabellen ■

■

■

95

Abb. 3.15 zeigt, wie die Speicherung der Daten im Tabellenpool or-
ganisiert ist. Es ist zu erkennen, dass die Zuordnung der Feldinhalte
in den Datenfeldern VARKEY und VARDATA zu den jeweiligen
Feldern der Pooltabellen nur noch mit Hilfe der Informationen aus
dem ABAP-Dictionary möglich ist.

In jedem Datenbanksystem ist die Anzahl der zu verwaltenden
Tabellen begrenzt. Der Vorteil dieser Speichermethode ist es, dass
weniger Tabellen auf der Datenbank angelegt werden müssen als bei
der Nutzung transparenter Tabellen.

Dieser Vorteil wird durch längere Zeiten zur Bereitstellung der
benötigten Daten erkauft, was zu einer Verschlechterung der Per-
formance führt. Große Datenbestände wie z.B. betriebswirtschaftli-
che Daten des Unternehmens, werden deshalb niemals in
Pooltabellen sondern immer in transparenten Tabellen gespeichert.

Nutzen Sie Tabellenpools nur zur Ablage interner Steuerinforma-
tionen (Dynprofolgen, Programmparameter, temporäre Daten).

Clustertabellen

In einem Tabellencluster (Datenbankebene) können mehrere Daten-
sätze aus verschiedenen, voneinander abhängigen Clustertabellen
(ABAP-Dictionary-Ebene) in einem physischen Satz gespeichert
werden.

Abb. 3.15
Tabellenpool

3 Das ABAP-Dictionary ■

■

■

96

Das Tabellencluster hat folgende Felder:

Feld Datentyp Bedeutung

CLKEY1 * Erstes Schlüsselfeld

CLKEY2 * Zweites Schlüsselfeld

CLKEYn * n-tes Schlüsselfeld

Pageno INT2(5) Nummer des Fortsetzungssatzes

Timestmp CHAR(14) Zeitstempel

Pagelg INT2(5) Länge des in Vardata stehenden Strings

Vardata RAW (n) Enthält als Zeichenkette die Einträge der
Datenfelder der zugeordneten Clusterta-
bellen

Abb. 3.16 zeigt das Prinzip eines Tabellencluster. Die Datensätze
aus den Clustertabellen TABA und TABB, die in den Schlüsselfel-
dern FELD_1A und FELD_2A gleiche Feldinhalte besitzen, sollen
in einen Datensatz des Tabellenclusters CLUSTER_AB geschrieben
werden. Beim Erzeugen des Tabellenclusters wurden für diese bei-
den Felder Schlüsselfelder (CLKEY1 und CLKEY2) angelegt.

Tabelle. 3.4

Felder eines
Tabellenclusters

Abb. 3.16
Tabellencluster

3.3 Eigenschaften von Tabellen ■

■

■

97

Hinweis:
Verwechseln Sie Tabellencluster nicht mit Views. Diese werden auf
der logischen Ebene, also im ABAP-Dictionary, definiert während
Tabellencluster die physische Datenspeicherung betreffen.

Durch die Verwendung von Tabellenclustern wird, genau wie bei
der Verwendung von Tabellenpools auch, die Anzahl der vom Da-
tenbanksystem zu verwaltenden Tabellen verringert. Die Zuordnung
der Inhalte des Feldes VARDATA des Tabellenclusters zu den Fel-
dern der Clustertabelle ist nur über das ABAP-Dictionary möglich.
Tabellencluster sollten daher nicht zur Speicherung betriebswirt-
schaftlicher Daten verwendet werden (schlechte Performance).

Strukturen

Strukturen bestehen, ebenso wie Tabellen, aus Feldern. Im Gegen-
satz zu Tabellen wird ihnen jedoch beim Aktivieren kein Speicher-
platz auf der Datenbank bereitgestellt. Strukturen werden haupt-
sächlich als Schnittstellen zu Programmen, Funktionsbausteinen und
Dynpros eingesetzt.

Append-Strukturen

Eine Append-Struktur ist eine Struktur, die genau einer Tabelle zu-
geordnet ist. Sie wird hauptsächlich benötigt, um Erweiterungen an
Tabellen vorzunehmen, die nicht im eigenen Namensbereich liegen,
wie z.B. SAP-Standardtabellen.

Abb. 3.17
Struktur

3 Das ABAP-Dictionary ■

■

■

98

Beim Aktivieren der Tabelle im ABAP-Dictionary werden vom Sys-
tem alle zu dieser Tabelle gehörenden Append-Strukturen gesucht.
Die Felder der Append-Struktur werden an die Tabelle angehängt.
Die „Gesamttabelle“ (Tabellenfelder + Append-Strukturfelder) wird
auf der Datenbank abgebildet.

Namenskonventionen:
Append-Strukturen werden im Kundennamensbereich angelegt. Sie
beginnen daher mit „z“ oder mit „y“. Damit Namenskonflikte zwi-
schen den Feldern der Tabelle und denen der Append-Struktur ver-
hindert werden, beginnt der Kundennamensbereich für Felder der
Append-Struktur mit „zz“ oder mit „yy“.

3.3.2
Schlüsselfelder und Primärindex

Die kleinstmögliche Kombination von Feldern, die einen Datensatz
in einer Tabelle eindeutig identifizieren kann, heißt Schlüssel. Jede
R/3-Tabelle besitzt einen solchen Schlüssel. Mit den Schlüsselfel-
dern wird beim Aktivieren der Tabelle automatisch eine „Hilfstabel-
le“, die Primärschlüssel oder Primärindex genannt wird, erzeugt. Der
Primärindex liegt sortiert nach Schlüsselfeldern auf der Datenbank.
Zusätzlich zu den Schlüsselfeldern enthält er noch einen Zeiger
(Pointer) auf den zugehörigen Datensatz der Tabelle.

Der Primärindex ermöglicht einen schnellen Zugriff auf einzelne
Sätze der Tabelle. Die Sortierung des Primärindexes gestattet es, an-
dere Suchalgorithmen (z.B. binäre Suche) einzusetzen als bei der
Suche in der nichtsortierten Tabelle (sequentielle Suche).

Die Alternative zum Primärindex wäre das Sortieren der Gesamt-
tabelle, was jedoch im Vergleich zur Sortierung der wenigen Felder
des Primärindexes sehr zeitaufwendig ist.

Änderungen in den Schlüsselfeldern der Tabelle führen zu einem so-
fortigen Aktualisieren des Primärindexes.

In Abb. 3.18 wird über die Syntax

Select single * from zBestand client specified
where Mandant = '000' and ISBN = '3877917410'.

in der Tabelle ZBESTAND auf den Datensatz mit der ISBN
3877917410 zugegriffen.

3.3 Eigenschaften von Tabellen ■

■

■

99

Der Zugriff auf diesen Datensatz über den Primärindex erfolgt nach
dem Prinzip der binären Suche. In diesem Fall sind 2 Datenbank-
zugriffe nötig:

1. Halbieren der Gesamtmenge der Datensätze
(Ergebnis: 11/2 5)
Zugriff auf Satz Nr. 5, Vergleich ISBN(5) mit 3877917410
(Ergebnis: ISBN > 3877917410)

2. Halbieren der Menge der Datensätze mit ISBN < ISBN des
Satzes 5 (4/2 2)
Zugriff auf Satz Nr. 2, Vergleich ISBN(5) mit 3877917410
(Ergebnis: ISBN = 3877917410)

Die Suche in der unsortierten Tabelle ZBESTAND hätte 10 Daten-
bankzugriffe erfordert.

Abb. 3.18
Datenbank-
zugriff über den
Primärschlüssel

3 Das ABAP-Dictionary ■

■

■

100

3.3.3
Sekundärindizes

Sekundärindizes sind Hilfsdateien, die immer dann von Nutzen sind,
wenn der Zugriff auf die Daten einer Tabelle häufig über ein be-
stimmtes Feld bzw. über eine bestimmte Feldkombination erfolgt.
Der Sekundärindex enthält in sortierter Reihenfolge alle Feldinhalte
des Feldes bzw. der Feldkombination und einen Zeiger auf den ent-
sprechenden Tabellensatz.

Beispiel:
Der Zugriff auf den Datenbestand der Buchbestandstabelle
ZBESTAND erfolgt oft über das Feld AUTOR1 (Autorennummer).

Abbildung 3.19 zeigt das Auffinden eines Datensatzes über einen
Sekundärindex zum Feld AUTOR1.

Durch die binäre Suche im Sekundärindex wird das Auffinden des
gesuchten Datensatzes mit erheblich weniger Datenbankzugriffen

Abb. 3.19
Datenbank-
zugriff über
Sekundär-
schlüssel

3.3 Eigenschaften von Tabellen ■

■

■

101

als bei der sequentiellen Suche in der Tabelle ZBESTAND erreicht,
was zu einer deutlichen Verbesserung der Performance führt.

3.3.4
Fremdschlüssel

Im ABAP-Dictionary können Verbindungen zwischen R/3-Tabellen
definiert werden. Dazu werden Felder, die Beziehungen zu einer an-
deren Tabelle haben, über einen Fremdschlüssel mit dieser anderen
Tabelle abgeglichen.

Zum Beispiel kann die Autorennummer in der Buchbestandsdatei
(ZBESTAND) mit den Autorennummern der Autorenstammdatei
(ZAUTOREN) abgeglichen werden. Damit wird gesichert, dass in
die Tabelle ZBESTAND keine Autorennummern eingetragen wer-
den können, für die in der Tabelle ZAUTOREN kein Stammdaten-
satz existiert.

Ein Fremdschlüssel ist eine Kombinationen von Feldern einer Tabel-
le (Fremdschlüsseltabelle), die mit dem Primärschlüssel einer
„fremden“ Tabelle (Prüftabelle) abgeglichen wird.

In Abb. 3.20 wird zum Feld AUTOR1 der Tabelle ZBESTAND
ein Fremdschlüssel zur Tabelle ZAUTOREN definiert.

Jedem Schlüsselfeld der Prüftabelle muss ein Fremdschlüsselfeld
zugeordnet sein. Es reicht also im obigen Beispiel nicht aus, nur den

Abb. 3.20
Begriffe bei
Fremdschlüs-
selbeziehungen

3 Das ABAP-Dictionary ■

■

■

102

Inhalt des Feldes AUTOR1 an die Prüftabelle zu übergeben, auch
das Feld MANDANT wird benötigt.

Den internen Abgleich kann man sich entsprechend der folgenden
Select-Anweisung vorstellen:

SELECT SINGLE * FROM ZAUTOREN CLIENT SPECIFIED
WHERE MANDANT = ZBESTAND-MANDANT AND
 AUTORENNR = ZBESTAND-AUTOR1.

Die SELECT SINGLE-Anweisung sucht einen Datensatz in der Ta-
belle ZAUTOREN in dem das Feld MANDANT inhaltsgleich mit
dem Fremdschlüsselfeld MANDANT und das Feld AUTORENNR
inhaltsgleich mit dem Fremdschlüsselfeld „AUTOR1“ ist. Wird kein
entsprechender Datensatz gefunden, gibt das System eine Fehler-
meldung aus.

In eher seltenen Fällen ist eine Prüfung gegen alle Schlüsselfelder
der Prüftabelle nicht sinnvoll. In diesen Fällen können generische
Fremdschlüssel definiert werden. Durch Setzen eines Flags werden
dabei die Schlüsselfelder der Prüftabelle die nicht in die Prüfung
einbezogen werden sollen, gekennzeichnet.

Voraussetzungen für Fremdschlüsselbeziehungen:

Prüffeld und referierendes Schlüsselfeld benutzen die gleiche
Domäne.

Die anderen Fremdschlüsselfelder haben den gleichen Daten-
typ und die gleiche Feldlänge wie die referierenden Schlüssel-
felder.

3.3.5
Pufferungsarten

Puffern bedeutet, dass Datensätze der Datenbanktabelle vom Mas-
senspeicher in einen Speicherbereich des Arbeitsspeichers des Ap-
plikationsservers, den Tabellenpuffer, geschrieben werden.

Erfolgt ein Zugriff auf eine gepufferte Datenbanktabelle, prüft die
Datenbankschnittstelle, ob sich die jeweiligen Daten im lokalen Puf-
fer des Applikationsservers befinden. Ist das der Fall, werden die
Daten aus dem Puffer gelesen. Anderenfalls werden sie direkt aus
der Datenbank geholt und dabei in den Puffer geschrieben, wo sie
dann für den nächsten (schnellen) Zugriff zur Verfügung stehen.

3.3 Eigenschaften von Tabellen ■

■

■

103

Die Verwaltung der Puffer wird vom R/3-System übernommen.
Dazu gehört auch die Synchronisation der Puffer bei der Verwen-
dung mehrerer Applikationsserver (siehe 3.3.6 Synchronisation von
Puffern Seite 107).

Durch die erheblich kürzeren Zugriffszeiten auf die Daten des Ar-
beitsspeichers kann durch die Pufferung die Systemperformance
deutlich verbessert werden.

Über die Pufferungsartart wird festgelegt, welche Datensätze ei-
ner Tabelle in den Pufferspeicher des Applikationsservers geschrie-
ben werden.

Nicht in jedem Fall bringt die Pufferung aller Datensätze einer
Tabelle den größten Performancegewinn, in ungünstigen Fällen
kann gar eine Verschlechterung eintreten.

Bei der Wahl der Pufferungsart sind folgende Kriterien zu be-
rücksichtigen:

Welche Speicherkapazität ist für die zu puffernde Tabelle von
Nöten?

Wie groß ist die Anzahl der lesenden Zugriffe?
Bei einer geringen Anzahl lesender Zugriffe ist in der Regel ei-
ne Pufferung nicht sinnvoll.

Wie groß ist die Anzahl der schreibenden Zugriffe?
Bei Änderungen wird vom R/3-System der Puffer und die Da-
tenbank aktualisiert. Das Aktualisieren der Puffer wird beson-
ders dann prekär, wenn die betreffende Tabelle in mehreren
Servern gepuffert ist.
Übersteigt die Anzahl schreibender Zugriffe die Anzahl der le-
senden führt eine Pufferung aller Datensätze einer Tabelle in der
Regel nicht zu einer Verbesserung der Performance.

Erfolgt der Zugriff auf die Datensätze im Allgemeinen über die
Schlüsselfelder?
Die Datensätze im Puffer sind nach dem Primärschlüssel der
gepufferten Tabelle sortiert. Bei Zugriffen bei denen das erste
Schlüsselfeld nicht angegeben ist, wird der Puffer sequentiell
(d.h. Satz für Satz) gelesen. Diese Zugriffsmethode wird „Full
Table Scan“ genannt. Schon dieser Name assoziiert lange
Zugriffszeiten!
Bei häufigen Anfragen ohne das erste Schlüsselfeld, sollten Sie
prüfen, ob ein Zugriff über einen geeigneten Sekundärindex
nicht schneller zum Ziel führt.

Kann die Anzahl der zu puffernden Datensätze eingeschränkt
werden?

3 Das ABAP-Dictionary ■

■

■

104

Nachfolgen werden die zur Verfügung stehenden Pufferarten

Vollständige Pufferung

generische Pufferung

Einzelsatzpufferung

beschrieben. Die Auswahl der geeigneten Pufferungsart ist eine
wichtige Entscheidung. Die Abb. 3.21 soll Ihnen helfen, die richtige
zu treffen.

Abb. 3.21
Entscheidungs-

baum zur
Pufferung

3.3 Eigenschaften von Tabellen ■

■

■

105

Vollständige Pufferung
Bei der vollständigen Pufferung werden beim ersten Zugriff auf die
Tabelle alle Datensätze in den Puffer geschrieben. Je kleiner die zu
puffernde Tabelle ist, je häufiger sie gelesen wird, je seltener die Da-
ten geändert werden umso bedenkenloser können Sie die vollständi-
ge Pufferung anwenden.

Generische Pufferung
Unter einem generischen Schlüssel versteht man einen linksbündi-
gen Teil des Primärschlüssels einer Tabelle. Wie viele Schlüsselfel-
der zum generischen Schlüssel gehören, wird beim Festlegen der
Pufferart angegeben.

Beim Zugriff auf einen Satz einer generisch gepufferten Tabelle
werden alle mit diesem Datensatz im generischen Schlüssel überein-
stimmenden Datensätze in den Puffer geschrieben.

generischer
Schlüssel

Abb. 3.22
generische
Pufferung

3 Das ABAP-Dictionary ■

■

■

106

Mandantenunabhängige, vollständig gepufferte Tabellen, werden
automatisch generisch gepuffert. Der generische Schüssel ist dabei
das Feld MANDANT.

Einzelsatzpufferung
Bei Einzelsatzpufferung werden nur die Datensätze der Tabelle in
den Pufferspeicher geladen, auf die tatsächlich zugegriffen wurde.

Beispiel:
Ein Programm greift mit der Anweisung

select single from ZAUSLEIHE client specified
where Mandant = '000' and
 ISBN = '3827316464' and
 KUNDENNR = '323'.

auf genau einen Datensatz zu.
Dieser eine Datensatz wird dabei in den Pufferspeicher geschrie-

ben. Existiert der Datensatz nicht, so werden die Feldinhalte der Se-
lect-Anweisung (im Beispiel Mandant = '000', ISBN = '3827316464'
und Kundennr = '323') mit dem Status "Nicht existent" in den Puffer
eingetragen. Dadurch ist beim wiederholten Zugriff auf diesen Da-
tensatz kein Datenbankzugriff erforderlich.

Vorteil:
Es wird weniger Speicherplatz benötigt wird, als bei den anderen
Pufferungsarten.

Nachteile:
Es ist ein höherer Verwaltungsaufwand im Puffer notwendig.

Zum Laden der Datensätze in den Puffer sind wesentlich mehr
Datenbankzugriffe notwendig als bei der vollständigen oder der ge-
nerischen Pufferung.

Bei kleineren Tabellen ist in der Regel die vollständige Pufferung
günstiger.

Die Einzelsatzpufferung ist besonders bei großen Tabellen, auf
die häufig über "Select single" zugriffen wird, zu empfehlen.

Alle "Nicht-Select-Single-Zugriffe" gehen am Puffer vorbei di-
rekt auf die Datenbank.

3.3 Eigenschaften von Tabellen ■

■

■

107

3.3.6
Synchronisation von Puffern

Jeder Applikationsserver besitzt seinen eigenen Pufferbereich. Der
Puffer wird beim ersten Zugriff auf eine zu puffernde Tabelle mit
Daten gefüllt. Greifen zwei Applikationsserver (Server1 und Ser-
ver2) auf die gleiche Tabelle (T1) zu, werden in die Pufferbereiche
jeweils die gleichen Daten geschrieben. Bei einer Änderung an Ta-
belle T1 durch Server1 werden folgende Vorgänge ausgelöst:

Ändern des Datensatzes in der Datenbanktabelle.

Aktualisieren des Puffers auf Server 1.

Aktualisieren des Puffers auf Server 2.

Die Aktualisierung (Synchronisierung) des Puffers auf Server2
erfolgt dabei nicht sofort sondern in festen Zeitintervallen, deren
Länge über den Parameter rdisp/bufreftime festgelegt wird. Dieser
Parameter ist in der Datei Default.PFL zu finden, mit der das R/3-
System beim Start konfiguriert wird. Theoretisch können dafür Wer-
te im Bereich von 60 bis 3600 Sekunden ausgewählt werden. Emp-
fohlen wird eine Intervalllänge zwischen 60 und 240 Sekunden.

Das Prinzip der Pufferung und der Synchronisation der Puffer
veranschaulicht Abb. 3.23 am Beispiel eines R/3-Systems mit 2 Ap-
plikationsservern. Eine Tabelle T1 wird vollständig in die Puffer der
Server 1 und 2 geladen.

Von Server1 wird ein Datensatz der Tabelle T1 gelöscht.

Wie in Abb. 3.23 leicht zu erkennen ist, greift der Server 2 zum
Zeitpunkt t9 auf veraltete Daten des Puffers 2 zu. Die Tabelle T1 im
Puffer 2 wird erst nach der Synchronisation (Zeitpunkt t10) für ungül-
tig erklärt und beim nächsten Zugriff des Servers2 auf T1 neu in den
Puffer geschrieben. Prüfen Sie also für jede zu puffernde Tabelle, ob
solche temporäre Inkonsistenzen akzeptiert werden können (siehe
dazu auch Abb. 3.21 Entscheidungsbaum zur Pufferung).

temporäre
Inkonsistenzen
beim Puffern
von Tabellen

3 Das ABAP-Dictionary ■

■

■

108

3.3.7
Änderungen an Tabellen

Soll eine aktives Dictionary-Objekt geändert werden, legt das R/3-
System zusätzlich eine überarbeitete Version dieses Objektes an, in
das dann die Änderungen eingearbeitet werden. Anschließend wird
die überarbeitete Version aktiviert und damit die bisher aktive Ver-
sion überschrieben. Das R/3-Laufzeitsystem greift grundsätzlich nur
auf die aktive Version eines Datenobjektes zu.

Abb. 3.23
Synchonisation

von Puffern

3.3 Eigenschaften von Tabellen ■

■

■

109

Beim Aktivieren eines Objektes wird sowohl die Änderung selbst
als auch die Auswirkung der Änderung auf andere, vom geänderten
Objekt abhängige, Objekte geprüft. Die Aktivierung wird nur dann
durchgeführt, wenn bei diesen Prüfungen keine Inkonsistenzen fest-
gestellt wurden.

Sind von der Änderung Datenbanktabellen betroffen, muss die Da-
tenbankstruktur der Tabelle an die Definition der Tabelle im ABAP-
Dictionary angepasst werden. Für diese Anpassung stehen die fol-
genden Methoden zur Verfügung:

Löschen und Neuanlegen:
Bei dieser Methode wird die auf der Datenbank vorhandene Ta-
belle gelöscht. Danach wird die überarbeitete Version der Tabel-
le im ABAP Dictionary aktiviert und auf der Datenbank erneut
angelegt. In der Tabelle vorhandene Daten gehen verloren.

Änderung des Datenbank-Katalogs (ALTER TABLE).
Es wird lediglich die Definition der Tabelle auf der Datenbank
geändert. In der Tabelle vorhandene Daten bleiben erhalten. In-
dizes zur Tabelle müssen aber unter Umständen neu aufgebaut
werden. Bei Strukturänderungen durch Änderungen des Daten-
bank-Katalogs können bei einigen Datenbanksystemen aufwen-
dige interne Reorganisationen der Daten ablaufen.

Abb. 3.24
Aktive und
überarbeitete
Version

Abb. 3.25
Beispiel für
abhängige
Objekte

3 Das ABAP-Dictionary ■

■

■

110

Umsetzung der Tabelle:
Die Datenbanktabelle (Beispielname:: TAB1) wird umbenannt
in QCMTAB1. Danach wird die überarbeitete Version der Ta-
belle TAB1 im ABAP Dictionary aktiviert und auf der Daten-
bank angelegt. Anschließend werden die Daten aus der Tabelle
QCMTAB1 in die geänderte Tabelle TAB1 zurückgeschrieben.
Die Indizes zur Tabelle TAB1 werden neu aufgebaut. Die Ta-
belle QCMTAB1 wird gelöscht. Hinsichtlich der benötigten Re-
sourcen ist die Umsetzung die aufwendigste Methode, die
Datenbankstruktur der Dictionarystruktur anzupassen.

Welche dieser Methoden vom System zur Anwendung gebracht
wird ist von folgenden Bedingungen abhängig:

der Art der Strukturänderung

dem verwendeten Datenbank-System

der Frage, ob schon Daten in der Tabelle vorhanden sind.

Enthält die Tabelle keine Daten, so wird die vorhandene Tabelle
auf der Datenbank gelöscht und neu angelegt. Sind Daten in der
Tabelle vorhanden, so wird versucht die Strukturänderung durch
ein ALTER TABLE durchzuführen. Falls das verwendete Da-
tenbanksystem die Strukturänderung nicht durch ein ALTER
TABLE abbilden kann, wird eine Umsetzung durchgeführt.

Bei bestimmten Änderungen an der Tabellenstruktur im ABAP-
Dictionary ist keine Änderung der Datenbankstruktur notwendig,
z.B. bei der Änderung der Reihenfolge der Tabellenfelder, wenn
keine Schlüsselfelder betroffen sind

Hinweis
Eine Anpassung der Datenbankstruktur sollte nicht während des
Produktivbetriebs durchgeführt werden. Zumindest sollten alle Ap-
plikationen, die auf die Tabelle zugreifen, während der Strukturan-
passung deaktiviert sein. Da der Datenbestand einer Tabelle
während der Strukturanpassung (insbesondere bei Umsetzungen)
nicht konsistent ist, können sich Programme beim Zugriff auf diesen
Datenbestand fehlerhaft verhalten!

3.3 Eigenschaften von Tabellen ■

■

■

111

3.3.8
Anlegen der Tabellen für das Bibliotheksprojekt

Für das Bibliotheksprojekt sind 6 Tabellen anzulegen. Es ist zweck-
mäßig in folgenden Schritten vorzugehen:

1. Domänen anlegen

2. Datenelemente anlegen

3. Tabellen anlegen

Die notwendigen Domänen und Datenelemente sind schon in den
Kapiteln „Domänen anlegen“ (Seite 86) und „Datenelemente anle-
gen“ (Seite 89) bereitgestellt worden.

Man kann auch zuerst die Tabellen anlegen und Domänen und
Datenelemente in der Vorwärtsnavigation erstellen. Dabei geht aber
schnell die Übersicht verloren und es kommt leicht eine gewisse
Missstimmung auf und schneller ist diese Methode auch nicht.

Vorgehensweise: Tabellen anlegen

Tabellen werden im ABAP-Dictionary angelegt. Starten Sie die
Transaktion SE11 (Werkzeuge Entwicklung SE11 Dictionary).

Aktivieren Sie im Einstiegsbild den Auswahlknopf „Datenbank-
tabelle“ und tragen Sie im dazugehörigen Eingabefeld den Namen
der Datenbanktabelle ein.

Füllen Sie in der Registerkarte „Eigenschaften“ des Folgebildes die
Eingabefelder „Kurzbeschreibung“ und „Auslieferungsklasse“ ent-
sprechend der Abb. 3.27 aus.

Abb. 3.26
Anlegen eine
Tabelle

3 Das ABAP-Dictionary ■

■

■

112

Wählen Sie dann die Registerkarte „Felder“ aus und tragen Sie dort
die Feldnamen und die dazugehörigen Datenelemente ein. Wenn die
Spalten „Felder“, „Key“ und „Feldtyp“ ausgefüllt sind, drücken Sie
die ENTER-Taste.

Abb. 3.27
Kurzbeschrei-

bung und Aus-
lieferungsklasse

eintragen

Abb. 3.28
Felder und

Datenelemente
eintragen

3.3 Eigenschaften von Tabellen ■

■

■

113

Sichern Sie Ihre Tabelle. Weisen Sie der Tabelle Ihre Entwicklungs-
klasse und Ihren Workbenchauftrag zu.

Hinweis: Über die Schaltfläche „Datenelement/Direkter Typ“ kann
zwischen dem Anlegen von Feldern unter Verwendung von Daten-
elementen und der direkten Eingabe des Datentyps umgeschaltet
werden. Die direkte Eingabe kann jedoch nicht für Schlüsselfelder
und Prüffelder benutzt werden.

Zum Schluss sind noch die technischen Eigenschaften der Tabelle
festzulegen. Wählen Sie dazu das Menü „Springen technische
Einstellungen“.

Durch die Auswahl der Datenart wird der Speicherort der Tabelle in
der Datenbank bestimmt. Die Größenkategorie legt fest, wie viel
Speicherplatz bereitgestellt wird.

Sichern Sie jetzt die technischen Einstellungen der Tabelle. Ver-
zweigen Sie mit der Schaltfläche „zurück“ in den Bildschirm „Dicti-
onary: Tabelle pflegen“. Aktivieren Sie dort Ihre Tabelle.

Direkte Eingabe
des Datentyps

Abb. 3.29
Festlegen der
technischen
Einstellungen

Abb. 3.30
Aktivieren der
Tabelle

3 Das ABAP-Dictionary ■

■

■

114

Aufgabe:
Legen Sie die Tabellen für das Bibliotheksprojekt an!

Tabelle ZBESTAND (Bestandsstammdaten)
Auslieferungsklasse: A
Datenart: APPL0; Größenklasse: 0; Pufferung nicht erlaubt

Tabelle ZAUTOREN (Autorenstammdaten)
Auslieferungsklasse: A
Datenart: APPL0; Größenklasse: 0; Pufferung nicht erlaubt

a In den Tabellen sind die Datenelementnamen aus der Übung des Ka-
pitels „Datenelemente anlegen“ (Seite 89) angegeben. Alternativ kön-
nen Sie auch die Datenelemente der Buch-CD benutzen. Hängen Sie
dazu die Zeichenkette _tw an die Datenelementnamen an.
b Die Angabe der Prüftabelle wird zum Anlegen der Fremdschlüssel-
beziehungen, das nach dem Anlegen der Tabellen gezeigt wird, benö-
tigt.

Tabelle 3.5
Datenbank-

tabelle
ZBESTAND

Feld Key Datenelement a Prüftabelle b

MANDANT MANDT T000

ISBN YRVP_ISBN

AUFLAGE YRVP_AUFLAGE

TITEL YRVP_TITEL

ERSCHEINUNGS
JAHR

 YRVP_EJAHR

VERLAG YRVP_VERLAG

BESTAND YRVP_BESTAND

AUSGELIEHEN YRVP_AUS

KATEGORIE YRVP_KATEGORIE ZKATEGORIE

BEREICH YRVP_NAME

AUTOR1 YRVP_ANR ZAUTOREN

AUTOR2 YRVP_ANR ZAUTOREN
(Kardinalität:
C:CN)

AUTOR3 YRVP_ANR ZAUTOREN
(Kardinalität:
C:CN)

3.3 Eigenschaften von Tabellen ■

■

■

115

Feld Key Datenelement Prüftabelle

MANDANT MANDT T000

AUTORENNR YRVP_ANR

NAME YRVP_NAME

VORNAME1 YRVP_VNAME1

VORNAME2 YRVP_VNAME2

GEBDAT YRVP_GDAT

LAND YRVP_LAND T005

Tabelle ZKUNDEN (Kundenstammdaten)
Auslieferungsklasse: A
Datenart: APPL0; Größenklasse: 0; Pufferung nicht erlaubt

Feld Key Datenelement Prüftabelle

MANDANT MANDT T000

KUNDENNR YRVP_KNR

NAME YRVP_NAME

VORNAME1 YRVP_VNAME1

VORNAME2 YRVP_VNAME2

EINTRITTSDATUM YRVP_EINTRITT

LAND YRVP_LAND T005

PLZ YRVP_PLZ

WOHNORT YRVP_ORT

STRASSE YRVP_STRASSE

TELEFON YRVP_TEL

E_MAIL YRVP_MAIL

Tabelle ZAUSLEIHE (Ausleihdaten)
Auslieferungsklasse: A
Datenart: APPL1; Größenklasse: 0; Pufferung nicht erlaubt

Tabelle 3.6
Tabelle
ZAUTOREN

Tabelle 3.7
Tabelle
ZKUNDEN

3 Das ABAP-Dictionary ■

■

■

116

Feld Key Datenelement Prüftabelle

MANDANT MANDT T000

KUNDENNR YRVP_KNR ZKUNDEN

ISBN YRVP_ISBN ZBESTAND

AUSLEIHDAT YRVP_ADATUM

RUECKGABEDAT YRVP_RDATUM

ANZAHL YRVP_ANZ

Tabelle ZKATEGORIE (Gültige Katalogeinträge)
Auslieferungsklasse: A
Datenart: APPL0; Größenklasse: 0; Pufferung nicht erlaubt

Feld Key Datenelement Prüftabelle

MANDANT MANDT T000

KATEGORIE YRVP_KATEGORI
E

BESCHREIBUNG YRVP_BESCHR

Vorgehensweise: Anlegen der Fremdschlüsselbeziehungen

Mit Fremdschlüsseln können Verbindungen zwischen R/3-Tabellen
im ABAP-Dictionary hinterlegt werden.

Starten Sie die Transaktion SE11 (Werkzeuge ABAP-Work-
bench Entwicklung SE11 ABAP Dictionary) und rufen Sie die
Tabelle, in die eine Fremdschlüsselbeziehung eingetragen werden
soll (Fremdschlüsseltabelle), zum Ändern auf.

Stellen Sie den Cursor in das Prüffeld und klicken Sie die Schalt-
fläche „Fremdschlüssel“ an.

Tabelle 3.8
Tabelle

ZAusleihe

Tabelle 3.9
Tabelle

ZKATEGORIE

3.3 Eigenschaften von Tabellen ■

■

■

117

Abb. 3.31
Anlegen einer
Fremdschlüs-
selbeziehung

Abb. 3.32
Details der
Fremdschlüs-
selbeziehung
festlegen

3 Das ABAP-Dictionary ■

■

■

118

Legen Sie in ähnlicher Art und Weise die Fremdschlüsselbeziehun-
gen zu den Datenbanktabellen des Bibliotheksprojektes an. Sie fin-
den die Prüffelder und die zuzuordnenden Prüftabellen in den
Tabellen 3.5 bis 3.9.

3.3.9
Anlegen und Einbinden von Suchhilfen

Suchhilfen werden benötigt, um dem Anwender über die F4-Hilfe
zusätzliche Informationen zu einem Eingabefeld zu übergeben. Ge-
gebenenfalls werden der Suchhilfe Eingabewerte, die der Benutzer
bereits in seine Eingabemaske eingetragen hat, übergeben. Diese
werden dann von der Suchhilfe bei der Auswahl der Suchhilfedaten
berücksichtigt. Suchhilfen können verbunden werden

mit einer Tabelle
Die Suchhilfe wird angezeigt, wenn der Benutzer die F4-Hilfe
zu einem Feld anfordert, dem die Tabelle mit der Suchhilfe als
Prüftabelle zugeordnet ist.

mit einem Datenelement
Die Suchhilfe wird angezeigt, wenn der Benutzer die F4-Hilfe
zu einem Feld anfordert, das mit dem Datenelement, dem die
Suchhilfe zugeordnet ist, angelegt wurde.

Abb. 3.33
Die Prüftabelle

ist festgelegt

3.3 Eigenschaften von Tabellen ■

■

■

119

mit einem Tabellenfeld:
Die Suchhilfe wird angezeigt, wenn die F4-Hilfe zu diesem Feld
angefordert wird.

Vorgehensweise: Suchhilfe anlegen

Starten Sie die Transaktion SE11 (Werkzeuge ABAP Workbench
 Entwicklung SE11 ABAP Dictionary). Aktivieren Sie im Ein-

stiegsbild den Auswahlknopf „Suchhilfe“ und legen Sie den Namen
der Suchhilfe fest. Dieser muss sich im Kundennamensbereich be-
finden („z“ oder „y“ als ersten Buchstaben).

Abb. 3.34
Beispiel für eine
Suchhilfe, die an
die Tabelle
ZAUTOREN an-
gebunden wurde

Abb. 3.35
Suchhilfenamen
festlegen

3 Das ABAP-Dictionary ■

■

■

120

Aktivieren Sie im Folgebild den Auswahlknopf „Elementare Such-
hilfe“ (über „Sammelsuchhilfen können mehrere elementare Such-
hilfen zusammengefasst werden)

Im Bild „Dictionary: Suchhilfe pflegen“ werden die Eigenschaften
der Suchhilfe festgelegt.

Importparameter
Der Inhalt des Suchhilfeparameters in der Eingabemaske wird
von der Suchhilfe importiert und bei der Auswahl der Daten-
sätze für die F4-Hilfe berücksichtigt.

Exportparameter
Der Inhalt der vom Benutzer in der F4-Hilfe ausgewählten
Eintrages wird von der Suchhilfe an das entsprechende Einga-
befeld exportiert.

Lpos (Listenposition)
Position desSuchhilfeparameters in der F4-Ausgabeliste.

Spos (Position im Selektionsbildschirm)
Position des Suchhilfeparameters in der Registerkarte „Ein-
schränkungen“ der Suchhilfe.

Abb. 3.36
Auswahl der
Suchhilfeart

Abb. 3.37
Festlegen der
Eigenschaften
der Suchhilfe

3.3 Eigenschaften von Tabellen ■

■

■

121

Legen Sie folgende Suchhilfen an:

1. Suchhilfe ZAUTOREN.

Selektionsmethode: ZAUTOREN

Parameter

Suchhilfeparameter Import Export LPos SPos

AUTORENNR 1 1

NAME 2 2

VORNAME1 3 3

VORNAME2 4 4

2. Suchhilfe ZKATEGORIE

Selektionsmethode: ZKATEGORIE

Parameter

Suchhilfeparameter Import Export LPos SPos

KATEGORIE 1 2

LANGTEXT 2 1

3. Suchhilfe ZISBN

Selektionsmethode: ZBESTAND

Parameter

Suchhilfeparameter Import Export LPos SPos

ISBN 1 1

TITEL 2 2

Lösung: ZAUTOREN_TW
 ZKATEGORIE_TW
 ZISBN_TW

Vorgehensweise: Anbinden der Suchhilfe an eine Tabelle

Die Suchhilfe ZAUTOREN_TW soll an die Prüftabelle ZAUTOR-
EN_TW angebunden werden. Die Suchhilfe wird dann für die Fel-
der angezeigt, denen die Prüftabelle zugeordnet ist (z.B.
ZBESTAND-Autor1 ... ZBESTAND-Autor3).

1. Starten Sie das ABAP-Dictionary (Werkzeuge ABAP Work-
bench Entwicklung SE11 ABAP Dictionary) mit der Ta-
belle ZAUTOREN_TW.

2. Wählen Sie das Menü „Springen Suchhilfe Zum Feld“.

3 Das ABAP-Dictionary ■

■

■

122

3. Tragen Sie im Bild „Suchhilfe zur Tabelle ...“ den Namen der
zuzuordnenden Suchhilfe ein.

4. Lassen Sie sich gegebenenfalls einen Vorschlag erzeugen und
übernehmen Sie die Suchhilfe.

5. Aktivieren Sie danach die Tabelle

Vorgehensweise: Anbinden der Suchhilfe an ein Datenelement

Die Suchhilfe „ZISBN_TW“ soll an das Datenelement YRVP_-
ISBN_TW angebunden werden. Die Suchhilfe wird dann für alle
Felder, die dieses Datenelement nutzen, bereitgestellt. Sie können
wie folgt vorgehen:

1. ABAP-Dictionary (Werkzeuge ABAP Workbench Ent-
wicklung SE11 ABAP Dictionary) starten,

2. Auswahlknopf DATENTYP aktivieren, Name des Datenele-
mentes in das Eingabefeld DATENTYP schreiben,

3.3 Eigenschaften von Tabellen ■

■

■

123

3. Drucktaste ÄNDERN drücken,

4. Suchhilfe und Parameter entsprechend nachfolgender Abbil-
dung eintragen,

5. Datenelement aktivieren.

Vorgehensweise: Anbinden der Suchhilfe an ein Feld

Die Suchhilfe „ZISBN_TW“ das Tabellenfeld ISBN der Tabelle
ZBESTAND_TW angebunden werden. Die Suchhilfe wird dann ge-
nau für dieses Feld bereitgestellt.

1. Starten Sie das ABAP-Dictionary (Werkzeuge ABAP Work-
bench Entwicklung SE11 ABAP Dictionary) mit der Ta-
belle ZBESTAND_TW.

2. Stellen Sie im Folgebild „Dictionary: Tabelle pflegen“ den Cur-
sor in das Feld, an das die Suchhilfe angebunden werden soll.
Wählen Sie das Menü Springen Suchhilfe Zum Feld.

3 Das ABAP-Dictionary ■

■

■

124

3. Tragen Sie im Bild „Suchhilfe zum Feld ...“ den Namen der
zuzuordnenden Suchhilfe ein.

4. Lassen Sie sich gegebenenfalls einen Vorschlag erzeugen und
übernehmen Sie die Suchhilfe.

5. Aktivieren Sie danach die Tabelle

3.3.10
Tabellen mit Werten laden

Um nun in die von Ihnen angelegten Tabellen

zBestand

zAutoren

zKunden

zAusleihe

zKategorie

Binden Sie die in der vorherigen Übung angelegten Suchhilfen ent-
sprechend der Tabelle an:

Suchhilfe Anbindung
ZISBN Datenelement YRVP_ISBN
ZAUTOREN Tabelle ZAUTOREN
ZKATEGORIE Tabelle ZKATEGORIE

3.3 Eigenschaften von Tabellen ■

■

■

125

einige Testdaten zu laden, Starten Sie das Programm YDATEN_-
TW. Dieses Programm füllt auch die Mustertabellen

zBestand_tw,

zAutoren_tw,

zKunden_tw,

zAusleihe_tw und

zKategorie_tw.

des Bibliotheksprojektes mit Daten.

3.3.11
Übungsaufgaben

Hinsichtlich der Zugriffe auf die Datensätze der Tabellen des Biblio-
theksprojektes gelten die Angaben aus Tabelle 3.11.

Datenbank-
tabelle

häufigster
Zugriff

häufige
Zugriffe

Anzahl zu erwar-
tender Datensätze

zBestand ISBN Titel
Kategorie
Autor1,2,3

>> 1000

zAutoren Autorennr Name >> 1000

zAusleihe Kundennr ISBN
Rueckgabedat

>> 1000

zKategorie Kategorie < 50

zKunden Kundennr >> 1000

Schreibende Zugriffe:
Auf die Tabelle zBestand erfolgt pro Ausleih- und Rückgabevor-
gang je ein schreibender Zugriff um das Feld „ausgeliehen“ zu aktu-
alisieren. Dieses Feld enthält die Anzahl der ausgeliehenen Bücher
zu einer ISBN.

In der Tabelle zAusleihe wird bei jedem Ausleihvorgang ein neuer
Datensatz erzeugt. Bei jedem Rückgabevorgang wird ein Datensatz
gelöscht.

Die Tabellen zAutoren, zKategorie, und zKunden werden nur selten
geändert.

Tabelle 3.11
Zugriffe auf die
Datenbank-
tabellen

3 Das ABAP-Dictionary ■

■

■

126

Lesende Zugriffe:
Lesende Zugriffe auf die Tabellen erfolgen durch die Recherche-
funktion. Am häufigsten werden folgende Recherchen durchgeführt:

1. Recherche nach Autoren
Der Rechercheur gibt den Namen eines Autors ein. Das Pro-
gramm ermittelt in der Tabelle zAutoren die Autorennummer
und liest dann in der Tabelle zBestand alle Datensätze, in de-
nen in den Feldern Autor1, Autor2 oder Autor3 diese Auto-
rennummer eingetragen ist.

2. Titel und Autor.
In der Tabelle zBestand werden alle Bücher mit dem gesuch-
ten Titel ermittel. Danach werden die Felder Autor1 Autor2
und Autor3 in der Tabelle zAutoren überprüft

Durchschnittlich erfolgen durch die Recherche in der Tabelle
zBestand pro Ausleihvorgang 12 lesende Zugriffe (6 über das Feld
ISBN, 3 über das Feld Titel und 3 über das Feld Autor1, Autor2 oder
Autor3).

Die Tabelle zKategorie dient als Prüftabelle für das Feld „Katego-
rie“ der Tabelle zBestand. Der Zugriff auf zKategorie erfolgt dem-
zufolge ausschließlich über den Primärindex.

A 1. Welche Tabellen könnten gepuffert werden?

Datenbank-
tabelle

keine
Pufferung

Vollständige
Pufferung

generische
Pufferung

Einzelsatz-
pufferung

zBestand

zAutoren

zAusleihe

zKategorie

zKunden

A 2. Zu welchen Tabellen könnten zur Verbesserung der Zugriffs-
zeiten Sekundärindizes angelegt werden?

3.3 Eigenschaften von Tabellen ■

■

■

127

Datenbanktabelle Sekundär-index zum Tabellenfeld

zBestand

zAutoren

zAusleihe

zKategorie

zKunden

A 3. Stellen Sie die Pufferung für die Tabelle zKategorie entspre-
chend der Lösung für Aufgabe 1 ein.

A 4. Legen Sie zu den Tabelle zBestand, zAutoren und zAusleihe
Sekundärindizes entsprechend der Lösung zu Aufgabe 2 an.

A 5. Die Struktur einer Tabelle, die bereits Daten enthält, wurde
im ABAP-Dictionary geändert. Welche der folgenden Aussagen ist
richtig:

Die Struktur der Tabelle auf Datenbankebene muss generell
nicht an die Struktur der Tabelle im ABAP-Dictionary ange-
passt werden. Die Datenbank greift immer über das ABAP-
Dictionary auf die Daten zu.

Die Anpassung erfolgt durch Löschen und Neuanlegen der Da-
tenbanktabelle

Die Anpassung erfolgt durch eine Änderung im Datenbankka-
talog (ALTER TABLE), wenn die Datenbank die Strukturände-
rung über ALTER TABLE durchführen kann.

Ist die Anpassung über eine Änderung des Datenbankkataloges
nicht möglich, muss eine Umsetzung vorgenommen werden.

A 6. Was ist im SAP-Sprachgebrauch unter einer Prüftabelle zu
verstehen?

Eine Wertetabelle, die in der Domäne eines Feldes angelegt
wurde

Die Tabelle, für die ein Fremdschlüssel definiert wurde

Die Tabelle, auf die sich der Fremdschlüssel bezieht

Die Tabelle, die einem oder mehreren Feldern einer Fremd-
schlüsseltabelle zur Prüfung von Eingabewerten zugeordnet ist.

3 Das ABAP-Dictionary ■

■

■

128

A 7. Welche Aussage hinsichtlich der Pufferung ist richtig?

Einzelsatzpufferung ist nur sinnvoll, wenn häufig mit der An-
weisung „Select single ...“ auf einen bestimmten Datensatz zu-
gegriffen wird.

Wenn auf eine Datenbanktabelle mehr schreibende als lesende
Zugriffe erfolgen, sollte diese gepuffert werden.

Bei Zugriffen auf gepufferte Tabellen erfolgt immer dann ein
„Full Table Scan“, wenn der Zugriff über „Nicht-
Schlüsselfelder“ erfolgt oder das linke Schlüsselfeld nicht ange-
geben ist.

A 8. Welche Aussagen treffen zu?

Das Prüffeld ist das Feld der Fremdschlüsseltabelle, an das eine
Prüftabelle angebunden ist, d.h. dessen Inhalt mit der Prüftabelle
abgeglichen werden soll.

Der Fremdschlüssel enthält in der Regel alle Schlüsselfelder der
Prüftabelle. Fremdschlüsselfelder können auch „Nicht-
Schlüsselfelder“ der Fremdschlüsseltabelle sein.

Fremdschlüsselfelder sind Felder der Fremdschlüsseltabelle, die
in der Prüftabelle mit dem Primärindex abgeglichen werden.

Die Kardinalität 1:CN bei Fremdschlüsselbeziehungen gibt an,
dass

das Prüffeld nicht leer sein darf (1:CN).

die Fremdschlüsseltabelle beliebig viele abhängige Daten-
sätze enthalten kann (1:CN).

Abhängige Datensätze haben in den Fremdschlüsselfeldern die
gleichen Inhalte wie die Schlüsselfelder der Prüftabelle.

In einer Struktur können dauerhaft (d.h. auf der Datenbank) Da-
ten gespeichert werden.

Der Primärindex einer Tabelle wird durch die Felder, die beim
Anlegen der Tabelle als Schlüsselfelder deklariert wurden, ge-
bildet.

Der Primärindex wird automatisch angelegt.

Sekundärindizes müssen manuell im ABAP-Dictionary angelegt
werden. Sie können die Performance erheblich verbessern.

3.3 Eigenschaften von Tabellen ■

■

■

129

3.3.12
Lösungen

A 1. Welche Tabellen könnten gepuffert werden?

Datenbank-
tabelle

keine
Pufferung

Vollständige
Pufferung

generische
Pufferung

Einzelsatz-
pufferung

zBestand X

zAutoren X

zAusleihe X

zKategorie X

zKunden X

Begründungen

Keine Pufferung der Tabelle zBestand
Zur Tabelle zBestand wurde kein Puffer angelegt. Die Tabelle ist re-
lativ groß (>> 1000 Datensätze). Der Zugriff erfolgt in den meisten
Fällen über den Primärindex. Durch die binäre Suche ist dieser
Zugriff wahrscheinlich auch ohne Pufferung schnell genug. Sollten
dennoch Performanceprobleme auftreten, kann eine vollständige
Pufferung in Erwägung gezogen werden.

Ebenfalls häufig wird über die Felder Titel, Autor1, Autor2 und
Autor3 auf die Datensätze zugegriffen. Da diese Felder aber nicht
Bestandteil des Primärindexes sind, müsste hier vom System ein
„Full Table Scan“ durchgeführt werden. Bei der Größe der Tabelle
ist es sicher besser, entsprechende Sekundärindizes anzulegen.

Keine Pufferung der Tabelle zAutoren
Mit der gleichen Begründung wie für Tabelle zBestand wurde auch
für diese Tabelle kein Puffer angelegt.

Keine Pufferung der Tabelle zAusleihe
Die Anzahl schreibender Zugriffe auf diese Tabelle ist höher als die
der lesenden Zugriffe. Damit ist eine Pufferung nicht sinnvoll.

Vollständige Pufferung der Tabelle zKategorie
Bei der Tabelle zKategorie handelt es sich um eine sehr kleine Ta-
belle (< 50 Datensätze). Hier bringt die vollständige Pufferung si-
cher einen Performancegewinn.

3 Das ABAP-Dictionary ■

■

■

130

Keine Pufferung der Tabelle zKunden
Die Tabelle zKunden wird nicht gepuffert. Auf diese Tabelle wird
nur beim Ausleihvorgang zurückgegriffen, um das Feld „Kundennr“
zu prüfen. Dafür wird der Zugriff auch ohne Pufferung schnell ge-
nug sein. Sollte es dennoch zu Performanceproblemen kommen,
kann die vollständige Pufferung eingeschaltet werden.

A 2. Zu welchen Tabellen könnten zur Verbesserung der Zugriffszeiten Sekun-
därindizes angelegt werden?

Tabelle Sekundärindex zum Tabellenfeld

ZBestand Titel, Autor1, Autor2, Autor3, Kategorie

ZAutoren Name

zAusleihe Rueckgabedat, ISBN

A 3. Stellen Sie die Pufferung für die Tabellen zKategorie und zSchlagworte
entsprechend der Lösung für Aufgabe 1 ein.

Vorgehensweise: Pufferung einschalten

Starten Sie die Transaktion SE11 (ABAP-Dictionary) und rufen Sie
die Tabelle, zu der die Pufferung eingeschaltet werden soll, zum
Ändern auf. Klicken Sie im Bild „Dictionary: Tabelle pflegen“ die
Schaltfläche „Technische Einstellungen“.

Im Folgebild „Dictionary: Technische Einstellungen pflegen“ kön-
nen Sie die verschiedenen Pufferungsarten einstellen. Sichern Sie
dann die Änderungen und Aktivieren Sie die Tabelle.

3.3 Eigenschaften von Tabellen ■

■

■

131

A 4. Legen Sie zu den Tabelle zBestand, zAutoren und zAusleihe Sekundärin-
dizes entsprechend der Lösung zu Aufgabe 2 an.

Vorgehensweise: Sekundärindex anlegen

Starten Sie die Transaktion SE11 (ABAP-Dictionary) und rufen Sie
die Tabelle, zu der ein Sekundärindex angelegt werden soll, zum
Ändern auf.

Im Folgebild „Index anlegen“ vergeben Sie für den anzulegenden
Index eine 3-stellige Indexkennung, z.B. „001“. Die Kennung „0“ ist

3 Das ABAP-Dictionary ■

■

■

132

für den Primärindex vergeben und darf nicht benutzt werden. Der
Indexname auf der Datenbank setzt sich aus dem Tabellennamen
und der Indexkennung zusammen. Im Beispiel lautet der Indexname
ZSCHLAGWORTE_TW~001.

Im Folgebild „Dictionary: Index pflegen“ geben Sie einen Kurztext
ein, legen die Eigenschaften des Sekundärindizes fest und wählen
ein oder mehrere Felder aus, zu denen der Sekundärindex angelegt
werden soll.

Non-Unique-Index
Der Non-Unique-Index lässt zu, das mehrere Datensätze ange-
legt werden können, die in allen Schlüsselfeldern des Sekundär-
indizes gleiche Feldinhalte haben. Diesen Index können Sie auf
allen Datenbanksystemen oder auf ausgewählten Datenbanksys-
temen anlegen. Zudem besteht die Möglichkeit den Index nicht
auf der Datenbank zu speichern.

3.3 Eigenschaften von Tabellen ■

■

■

133

Unique-Index
Der Unique-Index erlaubt nicht, dass mehrere Datensätze ange-
legt werden, die in allen Feldern des Sekundärindizes die glei-
chen Feldinhalte haben. Der Unique-Index muss zwingend auf
der Datenbank angelegt werden.

A 5. Die Struktur einer Tabelle, die bereits Daten enthält, wurde im ABAP-
Dictionary geändert. Welche der folgenden Aussagen ist richtig:

Die Struktur der Tabelle auf Datenbankebene muss generell
nicht an die Struktur der Tabelle im ABAP-Dictionary ange-
passt werden. Die Datenbank greift immer über das ABAP-
Dictionary auf die Daten zu.

Die Anpassung erfolgt durch Löschen und Neuanlegen der Da-
tenbanktabelle

Die Anpassung erfolgt durch eine Änderung im Datenbankka-
talog (ALTER TABLE), wenn die Datenbank die Strukturände-
rung über ALTER TABLE durchführen kann.

Ist die Anpassung über eine Änderung des Datenbankkataloges
nicht möglich, muss eine Umsetzung vorgenommen werden.

A 6. Was ist im SAP-Sprachgebrauch unter einer Prüftabelle zu
verstehen?

Eine Wertetabelle, die in der Domäne eines Feldes angelegt
wurde.

Die Tabelle, für die ein Fremdschlüssel definiert wurde.

Die Tabelle, auf die sich der Fremdschlüssel bezieht.

Die Tabelle, die einem oder mehreren Feldern einer Fremd-
schlüsseltabelle zur Prüfung von Eingabewerten zugeordnet ist.

A 7. Welche Aussage hinsichtlich der Pufferung ist richtig?

Einzelsatzpufferung ist nur sinnvoll, wenn häufig mit der An-
weisung „Select single ...“ auf einen bestimmten Datensatz zu-
gegriffen wird.

Wenn auf eine Datenbanktabelle mehr schreibende als lesende
Zugriffe erfolgen, sollte diese gepuffert werden.

Bei Zugriffen auf gepufferte Tabellen erfolgt immer dann ein
„Full Table Scan“, wenn der Zugriff über „Nicht-Schlüssel-
felder“ erfolgt oder das linke Schlüsselfeld nicht angegeben ist.

3 Das ABAP-Dictionary ■

■

■

134

A 8. Welche Aussagen treffen zu?

Das Prüffeld ist das Feld der Fremdschlüsseltabelle, an das eine
Prüftabelle angebunden ist, d.h. dessen Inhalt mit der Prüftabelle
abgeglichen werden soll.

Der Fremdschlüssel enthält in der Regel alle Schlüsselfelder der
Prüftabelle. Fremdschlüsselfelder können auch „Nicht-Schlüs-
selfelder“ der Fremdschlüsseltabelle sein.

Fremdschlüsselfelder sind Felder der Fremdschlüsseltabelle, die
in der Prüftabelle mit dem Primärindex abgeglichen werden.

Die Kardinalität 1:CN bei Fremdschlüsselbeziehungen gibt an,
dass

das Prüffeld nicht leer sein darf (1:CN).

die Fremdschlüsseltabelle beliebig viele abhängige Daten-
sätze enthalten kann (1:CN).

Abhängige Datensätze haben in den Fremdschlüsselfeldern die
gleichen Inhalte wie die Schlüsselfelder der Prüftabelle.

In einer Struktur können dauerhaft (d.h. auf der Datenbank) Da-
ten gespeichert werden.

Der Primärindex einer Tabelle wird durch die Felder, die beim
Anlegen der Tabelle als Schlüsselfelder deklariert wurden, ge-
bildet.

Der Primärindex wird automatisch angelegt.

Sekundärindizes müssen manuell im ABAP-Dictionary angelegt
werden. Sie können die Performance erheblich verbessern.

4.1 Zielstellung des Kapitels ■

■

■

135

4 Grundlegende Techniken der
Listenprogrammierung

4.1
Zielstellung des Kapitels

Im Kapitel „Grundlegende Techniken der Listenprogrammierung“
sollen die Themen

Ausgabe von Texten und Variablen,

Deklaration elementarer und strukturierter Variablen,

Arbeit mit internen Tabellen,

Datenbeschaffung aus Datenbanktabellen und

Anlegen von Selektionsbildschirmen

behandelt werden. Das Projekt „East Side Library“, für das im vori-
gen Kapitel die benötigten Tabellen angelegt wurden, soll jetzt das
erste ABAP/4-Programm erhalten. Über ein Selektionsbild sollen
über die Felder ISBN, Titel, Autor und Kategorie bestimmte Bücher
ausgewählt und angezeigt werden.

Abb. 4.1
Selektionsbild
des Literatur-
Recherche-
Programmes der
East Side
Library

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

136

Die Ausgabeliste soll folgendes Layout erhalten:

4.2
Grundaufbau eines ABAP-Programmes

Ein ABAP-Programm besteht zunächst, wie jedes andere Programm
auch, aus einer Abfolge von Anweisungen, die vom ABAP-
Laufzeitsystem nacheinander abgearbeitet werden. Diese Anweisun-
gen werden im ABAP-Editor in den sogenannten Quelltext des Pro-
grammes geschrieben. ABAP-Anweisungen haben folgende Syntax:

Schlüsselwort [Parameter].

Das Schlüsselwort gibt an, welche Aktion vom Laufzeitsystem aus-
geführt werden soll (z.B. Ausgabe von Daten, Lesen von Daten,
Schreiben in die Datenbank, Ändern der Ausgabefarben etc). Die
meisten Schlüsselworte benötigen Parameter, die angeben, mit wel-
chen Daten die Aktion ausgeführt werden soll. Der Punkt schließt
die Anweisung ab.

Beispiele:
Anweisung zur Ausgabe des Textes „Das ist eine Textausgabe“.

WRITE 'Das ist eine Textausgabe'.

Schlüsselwort
zur Datenausgabe

Parameter
was wird ausgegeben

Abb. 4.2
Ausgabeliste
des Literatur-

Recherche-
Programmes

ABAP-
Anweisungen

ABAP-
Laufzeitsystem

4.2 Grundaufbau eines ABAP-Programmes 137■

■

■

Anweisung für das Erzeugen von zwei Leerzeilen.

SKIP 2.

Schlüsselwort
zum Erzeugen
von Leerzeilen

Parameter: Anzahl
der zu erzeugenden
Leerzeilen

Anweisung für eine Unterstreichung ab Position 1 mit einer Länge
von 20 Zeichen

ULINE 1(20).

Schlüsselwort zum
Erzeugen einer
Unterstreichung

Parameter: Position und Länge
der Unterstreichung

Jedes ABAP-Programm besteht aus den zwei Teilen:

globaler Deklarationsteil

prozeduraler Teil.

Im globalen Deklarationsteil werden die Datenobjekte angelegt, die
im Programm benötigt werden (z.B. eine Variable, die die Anzahl
der verfügbaren Bücher aufnimmt). Wird ein Programm gestartet, so
werden als erstes alle globalen, also für das gesamte Programm zur
Verfügung stehenden Datenobjekte, angelegt. Dabei sucht das
ABAP-Laufzeitsystem die globalen Datendeklarationen im gesam-
ten Quelltet. Im Interesse der besseren Lesbarkeit der Programme ist
es jedoch üblich, Datendeklarationen am Anfang des Quelltextes zu
platzieren.

Der prozedurale Teil enthält die Anweisungen zur Verarbeitung der
Daten, für die im globalen Deklarationsteil Datenobjekte angelegt
wurden. Bei der Listenprogrammierung besteht der prozedurale Teil
aus zwei Arten von Verarbeitungsblöcken:

Ereignisblöcke
Ein Ereignisblock wird vom ABAP-Laufzeitsystem aufgeru-
fen, wenn ein bestimmtes Ereignis aufgetreten ist (z.B. Verlas-
sen des Selektionsbildschirmes, Doppelklick auf eine Zeile der
Ausgabeliste etc). Ein Ereignisblock beginnt mit einem
Schlüsselwort (z.B. Start-of-Selection, At Selection-Screen
etc.) und endet am Schlüsselwort des nächsten Verarbeitungs-
blockes.

Aufbau eines
ABAP-
Programmes

Verarbeitungs-
blöcke

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

138

Unterprogramme
Unterprogramme werden durch die ABAP-Anweisung „PER-
FORM“ aufgerufen. Sie beginnen mit dem Schlüsselwort
FORM und enden mit ENDFORM.

Der Benutzer startet in der Präsentationsebene ein ausführba-
res Programm (z.B. YK04DBAS_TW). Das ABAP-Lauf-

Abb. 4.3
Struktur eines

ABAP-
Programmes

Abb. 4.4
Ablauf eines

ABAP-
Pogrammes

4.2 Grundaufbau eines ABAP-Programmes 139■

■

■

zeitsystem durchsucht das Programm (genauer das Laufzeitob-
jekt des Programmes) nach globalen Datendeklarationen und
reserviert für diese entsprechende Speicherstellen. Die Felder,
die das Selektionsbild bereitstellen soll, sind letztlich ebenfalls
globale Datendeklarationen. Danach wird vom Laufzeitsystem
das Selektionsbild an die Präsentationsebene übermittelt.

Der Benutzer füllt das Selektionsbild aus und führt das Pro-
gramm aus (Schaltfläche „Ausführen“). Durch dieses Ereignis
löst das Laufzeitsystem den Ereignisblock „Start-of-Selection“
aus. Dieser lädt die Datenobjekte mit Daten aus der Daten-
bank. Sind alle Anweisungen des Ereignisblockes „Start-of-
Selection“ abgearbeitet, wird vom Laufzeitsystem der Ereig-
nisblock „End-of-Selection aufgerufen.

Danach erfolgt die Ausgabe des Listenpuffers.
Hinweis:
Ist der Ereignisblock „End-of-Selection“ im Programm nicht
vorhanden, wird nach Beenden des Blockes „Start-of-Selection“
der Listenpuffer ausgegeben.

Ereignisblock Auslösendes Ereignis

Load-of-Program Wird vom ABAP-Laufzeitsystem gestartet,
bevor das Selektionsbild auf dem Bildschirm
angezeigt wird. Er kann zur Vorbelegung von
Feldern des Selektionsbildes benutzt werden.

At Selection-
Screen

Wird vom ABAP-Laufzeitsystem ausgelöst,
wenn der Anwender das Selektionsbild über
die Schaltfläche „Ausführen“ verlassen will.

Start-of-Selection Wird vom ABAP-Laufzeitsystem ausgelöst,
wenn das Selektionsbild verlassen wurde. Bei
der Listenprogrammierung werden in diesem
Block die Ausgabedaten ermittelt. In den meis-
ten Fällen wird in diesem Block auch der Lis-
tenpuffer gefüllt.

End-of-Selection Wird vom ABAP-Laufzeitsystem ausgelöst,
wenn der Ereignisblock Start-of-Selection be-
endet wird. Dieser Block kann z.B. benutzt
werden, um Daten in den Listenpuffer zu
schreiben (z.B. einen Listenfußtext).

At User-Command Wird vom ABAP-Laufzeitsystem ausgelöst,
nachdem der Benutzer eine Aktion ausgelöst
hat, z.B. Auswahl eines Menüpunktes, Ankli-
cken einer Schaltfläche etc.). In diesem Block

Tabelle 4.1
Ereignisse der
Listen-
programmierung

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

140

Ereignisblock Auslösendes Ereignis
muss die vom Benutzer gewünschte Atkivität
ermittelt und ausgelöst werden.

At Line-Selection Dieser Ereignisblock wird nach einem Dop-
pelklick auf eine Zeile der Ausgabeliste ausge-
löst. Er wird zur Breitstellung von zusätzlichen
Informationen in Verzweigungslisten benötigt.

Top-of-Page Wird vom ABAP-Laufzeitsystem ausgelöst,
wenn eine neue Seite begonnen werden muss.
Dieser Block ist die geeignete Stelle, um z.B.
Seitenüberschriften auszugeben.

End-of-Page Wird ausgelöst, wenn das Seitenende erreicht
ist.

Top-of-Page dur-
ing Line-Selection

Wird ausgelöst, wenn in einer Verzweigungs-
liste eine neue Seite begonnen werden muss.

4.3
Ausgabe von Texten

Nach diesen theoretischen Betrachtungen, die durchaus Auswirkun-
gen auf Ihren Programmierstil haben werden, soll nun mit der Pro-
grammierung zum Projekt „East Side Library“ begonnen werden.
Beginnen wir mit der Ausgabe der konstanten Texte der in Abb. 4.2
abgebideten Ausgabeliste. Diese Liste enthält folgende Textausga-
ben:
Zeile 1: „Ausgabeliste“
Zeile 2: „ISBN“, „Titel“, „Autor“, „Kategorie“, „verfügbar“.

Legen Sie in Ihrer Entwicklungsklasse YABAP_TR ein ausführba-
res ABAP-Programm YK04DBAS, ohne TOP-Include mit dem Ti-
tel „East-Side-Library: Literatur-Rechercheprogramm“ an und wei-
sen Sie das Programm Ihrem Workbenchauftrag „ABAP-Training"
zu. Starten Sie dann den ABAP-Editor.
Hinweis:
Das Anlegen eines ABAP Programmes ist in Kapitel 1.5.2.6 (Das
erste ABAP-Programm) beschrieben

Sie sollten sich jetzt im „ABAP Editor:Report YK04DBAS anzei-
gen“ befinden.

4.3 Ausgabe von Texten 141■

■

■

Wenn Sie das Programm über die Transaktion SE80 (Object Navi-
gator) angelegt haben, wird in der linken Hälfte des Bildschirmes ein
Navigationsbaum mit den Komponenten des Programmes, ange-
zeigt. Beim aktuellen Entwicklungsstand ist hier lediglich der Pro-
grammname zu finden. Der rechte Teil des Bildschirmes enthält
immer das Werkzeug, mit dem die jeweilige Komponente bearbeitet
werden kann. In unserem Beispiel also den ABAP-Editor. Die wich-
tigsten Funktionen können über die Symbole in der Drucktastenleis-
te ausgeführt werden.

Symbol Beschreibung

Voriges Objekt: Sie wechseln zu dem Objekt, das Sie
zuvor bearbeitet haben, usw, usw..

Nächstes Objekt: Mit diesem Symbol gelangen Sie wie-
der in das Objekt, dass sie vor dem Benutzen des Sym-
bols „Voriges Objekt“ bearbeitet haben.

Anzeigen<->Ändern:Mit diesem Symbol wechseln Sie
vom Anzeigemodus in den Änderungsmodus und um-
gekehrt.

Anderes Objekt: Sie können andere Werkzeuge der
ABAP-Workbench starten (z.B. Dictionary, Funktion-
builder)

Hilfe zu: Sie verzweigen in eine kontextsensitive Hilfe

Prüfen: Sie können die Syntax Ihres Programmes testen

Testen: Über diese Symbol kann sowohl die aktive als
auch die inaktive Version des Programmes gestartet
werden.

Aktivieren: Ein Programm ist erst systemweit sichtbar,
wenn es aktiviert worden ist. Sobald Sie Änderungen an

Abb. 4.5
ABAP-Editor

Tabelle 4.2
Hauptfunktionen
des ABAP-
Editors

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

142

Symbol Beschreibung
einem aktiven Programm ausführen, wird eine inaktive
Version zu diesem Programm angelegt. Beim Aktivie-
ren wird dann die bisherige aktive Version mit der bis-
her inaktiven Version überschrieben. Die inaktive Ver-
sion existiert nach der Aktivierung nicht mehr.

Aktiv <-> Inaktiv: Mit diesem Symbol können Sie zwi-
schen der Anzeige des Quelltextes der aktiven und der
inaktiven Version umschalten.

Verwendungsnachweis: Wenn Sie in Ihrem Programm
Komponenten benutzen, die im ABAP-Dictionary an-
gelegt wurden, können Sie über diese Schaltfläche fest-
stellen, in welchen Programmen diese Komponenten
noch eingesetzt werden.

Objektliste anzeigen: Wenn der ABAP-Editor direkt
über die Transaktion SE38 aufgerufen wurde, kann über
dieseSchaltfläche der Navigationsbereich eingeschaltet
werden.

Navigationsfenster anzeigen: Im unteren rechten Bild-
schirmbereich werden alle Objekte angezeigt, die Sie in
der aktuellen Sitzung bearbeitet haben. Durch Ankli-
cken des jeweiligen Objektes können Sie die Bearbei-
tung des Objektes fortsetzen

Breakpoint setzen/löschen: Erreicht das Programm die
Anweisung, auf die Sie einen Breakpoint gesetzt haben,
wird die Abarbeitung des Programmes im Debugging-
modus fortgesetzt.

Mit dieser Funktion lassen sich Muster von ABAP-
Anweisungen (z.B. Call Function, Message, Write) in
den Quelltext laden. Der Programmierer muss dann nur
die richtigen Parameter einsetzen. Diese Funktion hilft,
Fehler die oft schwer zu finden sind, zu vermeiden. Ü-
bertreiben sollten Sie die Anwendung dieser Funktion
allerdings auch nicht.

Wie unübersichtlich Ihr Quellprogramm auch ist, der
Pretty Printer bereitet es so auf, das Sie von Ihrem
Quellprogramm begeistert sein werden. Allerdings soll-
ten Sie die Einstellungen des Werkzeuges kontrollieren
(Hilfsmittel Einstellungen, Registerkarte Pretty Prin-
ter. Empfehlenswert: Einrücken, Schlüsselwort groß)

4.3 Ausgabe von Texten 143■

■

■

Wechseln Sie jetzt vom Anzeige- in den Änderungsmodus (Symbol
„Anzeigen <-> Ändern“. Die erste Zeile des Programmes

REPORT YK04DBAS.
hat der ABAP-Editor automatisch angelegt. Diese Zeile kennzeich-
net das Programm als ausführbares Programm.

In der Listenprogrammierung erfolgen alle Ausgaben über die
WRITE-Anweisung.

Allgemeine Syntax:
WRITE [/][<Position>][(<Länge>)] Ausgabedaten [Optionen].

Hinweis:
Lassen Sie nur an den Stellen Leerzeichen, an denen auch in der
Syntaxbeschreibung Leerzeichen vorhanden sind.

Die in [] eingeschlossenen Parameter sind optional, d.h. sie können
bei Bedarf verwendet werden, für die in < > stehenden Parameter
müssen konkrete Werte angegeben werden. Die Klammern gehören
dabei nicht zur eigentlichen Sysntax.

Parameter Wirkung

/ Wird dieser Parameter angegeben, erfolgt die Ausgabe
auf einer neuen Zeile

Position Position, ab der die Ausgabe erfolgt.
Beispiel: WRITE 10 'Ausgabeliste'.
Die Ausgabe des Textes erfolgt auf der aktuellen Zei-
le, beginnend auf der Position 10.
Ausgabe: Ausgabeliste
Wird die Position nicht angegeben, erfolgt die Ausga-
be an der aktuellen Cursorposition.

Länge Mit diesem Parameter können Sie die Ausgabelänge
begrenzen.
Beispiel: WRITE 10(7) 'Ausgabeliste'.
Die Ausgabe des Textes erfolgt auf der aktuellen Zei-
le, beginnend auf der Position 10 mit einer Ausgabe-
länge von 7 Zeichen.
Ausgabe: Ausgabe
Wird die Länge nicht angegeben, erfolgt die Ausgabe
der gesamten Zeichenkette.

Ausgabe-
daten

Das sind die Daten, die von der WRITE-Anweisung
ausgegeben werden sollen. Texte sind in Hochkom-
mata einzuschließen. Die Ausgabe von Datenobjekten

WRITE

Vereinbarungen
zur Beschrei-
bung der Syntax
von Anweisun-
gen

Tabelle 4.3
Parameter der
WRITE-
Anweisung

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

144

erfolgt hingegen ohne Hochkommata.
Beispiel: Textausgabe
WRITE 10 'Ausgabeliste'
Ausgabe: Ausgabeliste
Beispiel: Ausgabe des Inhaltes einer Variablen
ERGEBNIS. Die Variable ERGEBNIS muss vor ih-
rem Gebrauch im ABAP-Progamm deklariert worden
sein.
ERGEBNIS = 10 * 2.
WRITE 10 ERGEBNIS.

Ausgabe: 20.

Optionen Es können Ausgabeoptionen eingestellt werden, z.B

■ Format der Datumsaufbereitung,

■ Aufbereitung eines Währungsfeldes entsprechend
der Währung,

■ linksbündige Ausgabe,

■ zentrierte Ausgabe,

■ rechtsbündige Ausgabe,

■ Farbe der Ausgabe.

Beispiel: WRITE 'Ausgabeliste' color
COL_HEADING.
Ausgabe:
Das Wort Ausgabe wird schwarz, auf blauem Hinter-
grund ausgegeben.
Ausgabeliste

Die WRITE-Anweisung ist eine umfangreiche Anweisung. Es gibt
viele Parameter, die in Tabelle 4.3 nicht aufgeführt werden konnten.
Eine vollständige Dokumentation zu WRITE bekommen Sie über
die Funktion „Hilfe zu“ (Schlüsselwortdokumentation).

Abb. 4.6
Aufruf der Hilfe
zum Schlüssel-

wort „Write“

4.3 Ausgabe von Texten 145■

■

■

Geben Sie im Programm die folgenden Texte aus:
Zeile 1: „Ausgabeliste“
Zeile 2: „ISBN“, „Titel“, „Autor“, „Kategorie“ „verfügbar“.

Die Texte der 2. Zeile sollen an folgende Positionen geschrieben
werden:

Position Text

1 ISBN

12 Titel

79 Autor

101 Kategorie

111 verfügbar

Prüfen Sie die Syntax Ihres Programmes

Testen Sie anschließend Ihr Programm

Lösung: YK04DBAS_1

Abb. 4.7
Eingabe des
Schlüsselwortes

Abb. 4.8
Einstiegsbild zur
Schlüssel-
worthilfe

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

146

Sie sollten in Ihrem Programm YK04DBAS folgende Ergänzungen
vorgenommen haben:

REPORT yk04dbas .
WRITE 'Ausgabeliste'.
*Ausgabe auf der nächsten Zeile, '/' in der
*WRITE-Anweisung
WRITE /1 'ISBN'.
WRITE 12 'Titel'. "Ausgabe ab Position 12
WRITE 79 'Autor'.
WRITE 101 'Kategorie'.
WRITE 111 'verfügbar'.

Kommentare, wie in Zeile 3 und 6 des Beispielprogrammes, sollen
kompliziertern Programmcode kurz erläutern.
Sie dienen dazu, Quelltexte verständlicher zu gestalten. Sparen Sie
nicht mit Kommentaren. Sie werden sonst erstaunt sein, nach welch
kurzer Zeit Sie Schwierigkeiten haben werden, Ihr eigenes Pro-
gramm zu verstehen.

Syntax von Kommentaren:

*<Kommentarzeile> Mit * beginnende Zeilen sind Kommentar-
zeilen und werden bei der Abarbeitung des
Programmes ignoriert

"<Kommentar> " leitet einen Kommentar an eine beliebigen
Stelle der Programmzeile ein. Er endet am
Zeilenende.

Hinweis: Wollen Sie beim Testen eines Programmes bestimmte
Anweisungen vom Test ausschließen, können Sie diese Zeilen
kommentieren. Markieren Sie dazu die auszuschließenden Pro-
grammzeilen mit der linken, gedrückten Maustaste und rufen Sie
dann über die rechte Maustaste das Kontextmenü auf. Dort finden
Sie das Menü „Kommentieren“. Wählen Sie diesen Menüpunkt aus,
um alle markierten Zeilen zu kommentieren.
Sollen die kommentierten Zeilen wieder aktiviert werden, gehen Sie
in der gleichen Weise vor, wählen jedoch im Kontextmenü den
Menüpunkt „Dekommentieren“.

Im Programm YK04DBAS werden über WRITE-Anweisungen 6
Texte ausgegeben. Das bisherig Verfahren wird bei der Program-
mierung größerer Ausgaben leicht lästig, muss doch für jede Ausga-
be eine neue Anweisung geschrieben werden. Der Ausweg aus die-

Quellecode des
Programmes

YK04DBAS

Kommentare

Ketten-
anweisungen

4.3 Ausgabe von Texten 147■

■

■

ser, für jeden Programmierer unbefriedigenden Methode, sind die
Kettenanweisungen. Damit können aufeinanderfolgende Einzelan-
weisungen zum gleichen Schlüsselwort zusammengefasst werden.
Syntax von Kettenanweisungen
<Schlüsselwort>: <Parameter der 1. Einzelanweisung>,
 <Parameter der 2. Einzelanweisung>,
 .
 .
 .
 <Parameter der n. Einzelanweisung>.

Zur Kennzeichnung der Kettenanweisung wird hinter das Schlüs-
selwort ein Doppelpunkt geschrieben. Es folgen die Parameter, für
die sonst je eine Einzelanweisung geschrieben werden müsste, ge-
trennt durch Kommata. Die Kettenanweisung wird durch einen
Punkt abgeschlossen.

Fassen Sie die WRITE-Anweisungen im Programm YK04DBAS zu
einer Kettenanweisung zusammen. Kommentieren Sie Ihr Pro-
gramm.

Lösung: YK04DBAS_2

Ihr Programm sollte nach dieser kurzen Übung wie folgt aussehen:

REPORT yk04dbas .
WRITE: 'Ausgabeliste',
 /1 'ISBN',12 'Titel',79 'Autor',
 101 'Kategorie',111 'verfügbar'.

An welchen Stellen Sie eine neue Zeile im Quelltext beginnen, ist
Ihre Entscheidung. In Zeichenketten (z.B. 'ISBN') sollten Sie jedoch
keinen Zeilenumbruch benutzen. Die Ausgabe entspricht dann nicht
mehr Ihren Erwartungen.

Unser bisheriges Programm hat einen entscheitenden Nachteil. Soll
das Programm in anderen Sprachen abgearbeitet werden, z.B. in
Englisch, kann für die Texte keine Übersetzung angefertigt werden.
Übersetzungen im Quelltext sind nicht praktikabel, weil für jede
Sprache eine andere Version des Programmes aufgerufen werden
müsste.

Die Lösung des Problems liegt in der Verwendung sogenannter
Textsymbole. Das sind Texte die außerhalb Ihres Programms in
sprachabhängigen Textpools gespeichert werden. Ihr Programm

Verwendung
von Text-
symbolen

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

148

greift dann automatisch auf die Texte im Textpool zu, die für die
entsprechende Anmeldesprache des Benutzers vorhanden sind.

Syntax zur Verwendung von Textsymbolen

Textsymbole können über folgende Syntax angesprochen werden:

Text-<id>
Der Parameter id ist dabei eine 3-stellige Zeichenkette, die als
Kennung für Ihr Textsymbol dient. Innerhalb eines Program-
mes muss jedes Textsymbol eine eindeutige Kennung haben.

 Beispiele Text-001
Text-AAA
Text-A02

 Diese Syntax ist für die Lesbarkeit des Programmes nicht un-
bedingt von Vorteil, weil nicht sofort ersichtlich ist, welcher
Text dem Textsymbol zugeordnet ist.

'<Literal>'(<id>).
Auch in diesem Fall ist der Parameter id eine 3-stellige Zei-
chenkette, die als Kennung für das Textsymbol dient.
Im <Literal> kann ein beliebiger Text stehen.

 Beispiele 'Ausgabeliste'(001)
'ISBN'(AAA)
'Titel'(A02)

Vorgehensweise: Anlegen eines Textsymbols

Am bequemsten ist das Anlegen eines Textsymbols über die Vor-
wärtsnavigation. Vorwärtsnavigation bedeutet, dass Sie im ABAP-
Programm zunächst den Aufruf des Textsymbols programmieren.

REPORT yk04dbas .
WRITE: 'Ausgabeliste'(001).

Doppelklicken Sie dann auf die Kennung des Textsymbols. Ist das
Textsymbol noch nicht angelegt, erscheint die folgende Abfrage,
anderenfalls wird das Textsymbol angezeigt.

Abb. 4.9
Abfrage bei der

Vorwärts-
navigation

4.3 Ausgabe von Texten 149■

■

■

Im Folgebild „ABAP Textelemente: Textsymbole ändern Sprache
Deutsch“ sind die Felder für den Text und den Namen des Symbols,
die Werte aus dem Textsymbolaufruf des ABAP-Programmes einge-
tragen. In der Spalte dLen steht die Länge des deutschen Textes, Im
Feld mLen die maximal zulässige Länge des Textes. Diese Längen-
begrenzung gilt dann auch für eventuelle Übersetzungen.

Aktivieren Sie das Textsymbol.

Hinweis:
Wenn Sie nicht die Vorwärtsnavigation anwenden wollen, können
Sie Textsymbole über das Menü des ABAP-Editors „Springen

 Textelemente Textsymbole“ anlegen. Diese Methode ist em-
pfehlenswert, wenn Sie die Textsymbole anlegen wollen, bevor Sie
Ihr Programm schreiben.

Vorgehensweise: Textsymbole übersetzen

Wählen Sie im ABAP-Editor das Menü „Springen Übersetzung“
auf. Im Folgebild wählen Sie die Zielsprache (Englisch). Im Über-
setzungsbildschirm tragen Sie die Übersetzung des Textsymbols ein
und sichern sie.

Abb. 4.10
Textsymbole
ändern

Abb. 4.11
Übersetzung ei-
nes Textsym-
bols

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

150

Ändern Sie Ihr Programm YK04DBAS so, dass die Texte nicht di-
rekt, sondern über Textsymbole ausgegeben werden. Vergessen Sie
nicht, das Programm zu aktivieren.
Legen Sie eine Übersetzung der Textsymbole an
Melden Sie sich mit der Sprache „EN“ neu am R/3-System an und
führen Sie das Programm YK04DBAS aus. Erscheinen jetzt die
Übersetzungen der Textsymbole in der Ausgabe?

Lösung: YK04DBAS_2a

Nach der Übung sollte Ihr Programm folgende Anweisungen enthal-
ten:

REPORT yk04dbas .
WRITE: 'Ausgabeliste'(001),
 /1 'ISBN'(002),
 12 'Titel'(003),
 79 'Autor'(004),
 101 'Kategorie'(005),
 111 'verfügbar'(006).

Im Bildschirm ABAP Textelemente sollten folgende Textsymbole
definiert sein:

Hinweis: Es ist zweckmäßig, die maximale Länge des Textsymbols
„Autor“ auf 6 zu erhöhen, damit später die englische Übersetzung
(Author) ohne zusätzlichen Aufwand eingetragen werden kann.

YK04DBAS
Gegenwärtiger
Entwicklungs-

stand

Abb. 4.12
Anlegen der

Textsymbole

4.3 Ausgabe von Texten 151■

■

■

Im Übersetzungswerkzeug sind die Textsymbole zu Übersetzen
(Originalsprache: Deutsch, Zielsprache: Englisch).

In Abhängigkeit von der Anmeldesprache wird entweder der deut-
sche Text oder die englische Übersetzung angezeigt.

Im nächsten Schritt soll die Ausgabe farbig gestaltet werden. Die
Farbe der gesamten Ausgabe wird mit der FORMAT-Anweisung,
die einer einzelnen Ausgabe in der WRITE-Anweisung, festgelegt.

Syntax der Format-Anweisung
FORMAT [Zusatz].

Die FORMAT-Anweisung wirkt ab der nächsten Ausgabeanwei-
sung.

Abb. 4.13
Übersetzungen
der Textsymbole

Abb. 4.14
Ausgabe der
Textsymbole in
der Anmelde-
sprache

Farben in Listen

FORMAT

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

152

Zusatz Wirkung

COLOR n ON/OFF FORMAT COLOR n ON.
Die Ausgabe erfolgt mit der Hintergrund-
farbe n (siehe Hinweis)
FORMAT COLOR n OFF.
Die Ausgabe erfolgt mit Standardhinter-
grundfarbe.

INTENSIFIED
ON/OFF

FORMAT INTENSIFIED ON.
Die Ausgabe erfolgt mit der intensiven Ver-
sion der Hintergrundfarbe
FORMAT INTENSIFIED OFF.

Die Ausgabe erfolgt mit der normalen Hin-
tergrundfarbe

INVERSE ON/OFF FORMAT INVERSE ON.
Die Ausgabe erfolgt invers, d.h. der Ausga-
betext wird mit der Hintergrundfarbe ausge-
geben. Die Hintergurundfarbe ist grau.
FORMAT INVERSE OFF.

Die inverse Darstellung wird wieder ausge-
schaltet.

HOTSPOT
ON/OFF

FORMAT HOTSPOT ON.
Der Cursor nimmt die Form einer Hand mit
ausgestrecktem Zeigefinger an. Das Maus-
verhalten wird verändert. Der Einfach-
Mausklick dieser Darstellung hat die gleiche
Wirkung wie der Doppelklick in der norma-
len Darstellung.
FORMAT HOTSPOT OFF. stellt den
Normalzustand wieder her.

INPUT ON/OFF Der Inhalt von Listenteilen, die mit
FORMAT INPUT ON. ausgeben wurde,
kann vom Anwender geändert werden (Ein-
gabefeld).

RESET Zurücksetzen aller Formate (Farbe, Intensiv,
Invers, Hotspot und Input).
Die Wirkung entspricht dem Befehl:
FORMAT COLOR OFF INTENSIFIED
OFF INVERSE OFF HOTSPOT OFF
INPUT OFF.

Tabelle 4.4
Zusätze zur

FORMAT-
Anweisung

4.3 Ausgabe von Texten 153■

■

■

Hinweis: Die „Liste der Farben“ erhalten Sie über die Schlüssel-
wortdokumentation zum Schlüsselwort „FORMAT“ (Wählen Sie
das Symbol „Hilfe zu ...“ und geben Sie als ABAP-Begriff „Format“
ein).

Wie Sie in Abb. 4.15 sehen können, ist jede Farbe durch eine Farb-
nummer (Spalte 1) oder durch den Farbnamen (Farbe) definiert. Die
Farbnamen sind so gewählt, dass erkennbar ist, für welchen Ver-
wendungszweck sie bestimmt sind. Sie sollten sich an diesen Ver-
wendungszweck halten, damit sich der Anwender nicht bei jedem
Programm an andere Farben und deren Bedeutung gewöhnen muss.
In der Formatanweisung sollten Sie an Stelle der Farbnummer den
Farbnamen benutzen.
Also, z.B. die Anweisung FORMAT COLOR COL_HEADING. be-
nutzen und nicht FORMAT COLOR 2. Das Programm ist dadurch
besser lesbar. Außerdem garantiert die SAP, dass die Farbnamen
nicht geändert werden.

Hinweis: Die Zusätze der FORMAT-Anweisung sind auch für die
WRITE-Anweisung erlaubt.

Beispiel:

REPORT ydemo .
*Einschalten der Farbe COL_HEADING für die
*gesamte weitere Ausgabe bzw. bis zur nächsten
*FORMAT-Anweisung
FORMAT COLOR COL_HEADING INTENSIFIED OFF.

*Einschalten der Farbe COL_KEY für eine
*einzelne WRITE-Anweisung
WRITE:1 'ISBN' COLOR COL_KEY INTENSIFIED ON,
 12 'Titel',120 ''.

Abb. 4.15
Aufbau der
Farbliste

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

154

Dieses Programm erzeugt folgende Ausgabe:

Ergänzen Sie Ihr Programm ZK04DBAS so, dass die Texte mit fol-
genden Farben ausgegeben werden:

Text Farbe
Ausgabeliste COL_HEADING INTENSIFIED ON
ISBN COL_KEY INTENSIFIED ON
alle anderen Texte COL_HEADING

Formatieren Sie Ihr Programm mit dem Pretty Printer

Lösung: YK04DBAS_3

Ihr Programm könnte jetzt so oder Ähnlich aussehen:

Möglichkeit 1:

REPORT yk04dbas .

FORMAT COLOR COL_HEADING INTENSIFIED ON.
WRITE: 'Ausgabeliste'(001).
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: /1 'ISBN'(002) COLOR COL_KEY
 intensified on,
 12 'Titel'(003),
 79 'Autor'(004),
 101 'Kategorie'(005),
 111 'verfügbar'(006).

Möglichkeit 2:

REPORT yk04dbas .

FORMAT COLOR COL_HEADING INTENSIFIED ON.
WRITE: 'Ausgabeliste'(001).

Abb. 4.16
Ausgabeliste

des Beispieles

4.4 Datentypen und Datenobjekte 155■

■

■

FORMAT COLOR COL_KEY INTENSIFIED ON.
WRITE: /1 'ISBN'(002).
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: 12 'Titel'(003),
 79 'Autor'(004),
 101 'Kategorie'(005),
 111 'verfügbar'(006).

4.4
Datentypen und Datenobjekte

In der Regel arbeitet jedes Programm mit Datenobjekten, es sei
denn, das Programm gibt lediglich feste Texte aus. Unter einem Da-
tenobjekt versteht man eine Speicherstelle, die das Programm für
sich reserviert. Für diese Speicherstelle wird im Programm ein Na-
me vergeben (deklariert), über den Daten in diese Speicherstelle ge-
schrieben, und auch wieder gelesen werden können.

Es erscheint in Abb. 4.17 zunächst recht einsichtig, dass das Pro-
gramm die Bitfolge 01001000 als die dezimale Zahl 72 interpretiert

Abb. 4.17
Datenobjekt,
Programm,
Speicher

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

156

(01001000 dual = 72 dezimal). Wenn Sie aber bedenken, dass Buch-
staben über den ASCII-Code in Bitfolgen umgewandelt werden, er-
gibt sich hier doch ein gewisses Problem. 72 ist auch die ASCII-
Codierung für den Buchstaben „H“. Woher weiß also das Pro-
gramm, dass die Bitfolge als 72, nicht aber als Buchstabe „H“ zu in-
terpretieren ist?

In der Deklaration wird dem Datenobjekt nicht nur ein Name , son-
dern auch ein Datentyp zugeordnet. Dieser enthält die technischen
Eigenschaften des Datenobjektes, wie z.B.

die Länge des Datenobjektes im Speicher,

die Datenart (Zeichen, Zahlen, Datum).

Aufgrund dieser Angaben wird das Programm in die Lage versetzt,
das aus der jeweiligen Speicherstelle gelesene Bitmuster, richtig zu
interpretieren.

4.4.1
Eingebaute Datentypen

ABAP/4 stellt sogenannte eingebaute Datentypen bereit, mit denen
Datenobjekte im Programm deklariert werden. Diese sind in den Ta-
bellen 4.5 und 4.6 dargestellt. Die eingebauten Datentypen können
in folgende zwei Gruppen eingeteilt werden:

Vollständige Datentypen
Diese Datentypen beschreiben die technischen Eigenschaften
eines Datenobjektes ohne zusätzliche Parameter.

Unvollständige Datentypen
Diese Datentypen benötigen zur Beschreibung der technischen
Eigenschaften der mit Ihnen deklarierten Datenobjekte, zusätz-
liche Parameter.

Datentyp

4.4 Datentypen und Datenobjekte 157■

■

■

Daten-
typ

Beschreibung Länge des
Datenob-
jektes in
Byte

Initialwert Ausgabe-
länge in
Zeichen

d Datum (Date) Format
YYYYMMDD

8 '00000000' 10

t Zeitpunkt (Time)
Format HHMMSS

6 '0000000' 6

i ganze Zahl (integer)
Wertebereich:
-2 *109 ... 2 *109

4 0 11
rechts-
bündig

f Gleitpunktzahl
(Floating Point)
Wertebereich:
2,2* 10-308...1,8*10308

(positv und negativ)

8 '0.0' 24
rechts-
bündig

string Zeichenfolge, Länge
variabel)

beliebige
Länge

String mit
der Länge 0

Länge der
Zeichen-
kette, links-
bündig

xstring Bytefolge (Hexa-
dedimal), Länge va-
riabel

beliebige
Länge

String mit
der Länge

Länge der
Zeichen-
kette, links-
bündig

Länge des Datenobjektes:
Anzahl der vom Datenobjekt reservierten Byte im Speicher.

Initialwert:
Das ist der Wert, der beim Anlegen des Datenobjektes in die-
ses eingetragen wird

Ausgabelänge
Das ist die Länge, mit der das Datenobjekt ausgegeben wird.
Ein Datenobjekt das auf dem Datentyp „i“ basiert, wird mit ei-
ner Länge von 11 Zeichen, linksbündig ausgegeben.

1 2 3

Ausgabelänge rechtsbündig

Tabelle 4.5
vollständige
eingebaute
Datentypen

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

158

Länge des
Datenobjektes

Initial-
wert

Ausgbe-
länge in
Zeichen

Typ Beschreibung

Stan-
dard

Max.
Länge

c Zeichenkette (Cha-
rakter), die Länge
der Zeichenkette ist
zu ergänzen

1 65.530 Leer-
zeichen

Länge der
Zeichenket-
te, links-
bündig

n Numerisches Zei-
chen (numerical
Charakter), die
Länge der Zei-
chenkette ist zu er-
gänzen

1 65.553 Leer-
zeichen

Länge der
Zeichenket-
te,
rechtsbün-
dig

p gepackte Zahl (Pa-
cked Number) zur
Darstellung von
Festkommazahlen.
Die Anzahl der
Dezimalstellen
(max. 14) und die
Länge ist zusätz-
lich anzugeben

8 16 0 2*Länge+1
rechtsbün-
dig

x Byte (Hexadezi-
mal), die Länge der
Hexadezimalzahl
ist zu ergänzen

1 65.553 X'0...0' Länge der
Zeichenket-
te, links-
bündig

Weitere Datentypen können Sie im Programm oder im ABAP-
Dictionay definieren. Die im Programm angelegten Datentypen ste-
hen nur dem Programm zur Verfügung, in dem sie definiert wurden
(programmlokale Definition). Auf die im ABAP-Dictionary ange-
legten Datentypen kann jedes Programm zugreifen (globale Defini-
tion).

4.4.2
Deklaration von Datenobjekten

Datenobjekte werden im Programm über die DATA-Anweisung de-
klariert. Erst durch die Deklaration eines Datenobjektes wird ein

Tabelle 4.6
unvollständige

eingebaute Da-
tentypen

4.4 Datentypen und Datenobjekte 159■

■

■

Speicherbereich im Arbeitsspeicher des SAP-Servers, auf dem das
Programm läuft, reserviert (siehe Abb. 4.16). Bei der Deklaration
von Datenobjekten im ABAP-Programm kann auf folgende Daten-
typen zurückgegriffen werden:

elementare, eingebaute Datentypen,

programmlokale, mit der TYPES-Anweisung definierte Daten-
typen und

globale, im ABAP-Dictionary definierte Datentypen.

Programmlokale und globale Typen sind immer vollständig defi-
niert.

Die mit der DATA-Anweisung deklarierten Datenobjekte werden
auch als Variablen bezeichnet, weil deren Inhalt durch Anweisungen
des ABAP-Programmes geändert werden kann.
Andere ABAP/4-Anweisungen, mit denen Variablen angelegt wer-
den können, sind:

PARAMETERS

SELECT-OPTIONS und

STATICS.

Abb. 4.18
Datentypen

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

160

Syntax der DATA-Anweisung

Für vollständige Datentypen
DATA <Datenobjektname> TYPE <Datentyp>
[VALUE <Wert>].

Für Datentypen ohne implizite Längenangabe
DATA <Datenobjektname>(<Länge>) TYPE <Datentyp>
[VALUE <Wert>].
Alternative:
Mit der TYPES-Anweisung wird ein Datentyp mit der benö-
tigten Länge angelegt. Die DATA-Anweisung wird dann mit
diesem neuen Datentyp geschrieben.
TYPES <Name desDatentyps>(<Länge>) TYPE <Datentyp>.
DATA <Datenobjekt> TYPE <Name des Datentyps>.
Beispiel:
TYPES zk_5(5) TYPE c.
DATA zeichekette TYPE zk_5.

Für den eingebauten Datenyp „p“
DATA <Datenobjektname>(<Länge>) TYPE p
DECIMALS <Anzahl Nachkommastellen> [VALUE <Wert>].
Alternative
Mit der TYPES-Anweisung kann ein Datentyp mit der benö-
tigten Länge und Anzahl Nachkommastellen angelegt werden,
der dann in der DATA-Anweisung benutzt werden kann.
Beispiel:
TYPES geld(10) TYPE p DECIMALS 2
DATA preis TYPE geld.

Hinweise:
Mit dem optionalen Parameter VALUE wird der Variable ein
Initialwert zugewiesen, der im Programmverlauf geändert
werden kann.

Syntax der
DATA-

Anweisung

Die TYPES-
Anweisung

Abb. 4.19
Speicherung

einer Variablen
vom Typ p

4.4 Datentypen und Datenobjekte 161■

■

■

Für fehlende Parameter werden Standardparameter eingesetzt:
Länge: 1
Decimals: 0
Type: C.

4.4.2.1
Beispiele für Datenobjektdeklarationen

Typ Deklarationsbeispiel

d Deklariert werden die Datenobjekte „begin“ und „begin1“
vom Typ „Datum“.

Initialwert: „11.12.2003“
DATA begin TYPE d VALUE '20031211'.

Der Initialwert für ein Datum wird als Zeichenliteral in
der Form YYYYMMDD angegeben. Die Ausgabe erfolgt
über
WRITE begin DD/MM/YYYY.
Initialwert: aktuelles Datum
DATA begin1 TYPE sy-datum.
begin1 = sy-datum.
Soll das Datenobjekt vom Typ „Datum“ mit dem aktuellen
Datum initialisiert werden, ist dem Datenobjekt die Sys-
temvariable sy-datum zuzuweisen. Die Ausgabe erfolgt,
ohne weitere Anweisungen, in dem Datumsformat, das in
den Benutzervorgaben ausgewählt ist, wenn Sie als Daten-
typ die Systemvariable sy-datum angeben.

t Deklariert werden die Datenobjekte „zeit“ und „zeit1“ vom
Type „Zeitpunkt“ mit unterschiedlichen Initialwerten.

Initialwert: „12:10:15“ (hh:mm:ss)
DATA zeit TYPE t VALUE '121015'.

Der Initialwert ist als Zeichenliteral anzugeben.
Initialwert: aktuelles Zeit
DATA zeit1 TYPE sy-uzeit.
zeit1 = sy-uzeit.
Soll das Datenobjekt vom Typ „Zeitpunkt“ mit der aktuel-
len Zeit initialisiert werden, ist dem Datenobjekt die Sys-
temvariable sy-uzeit zuzuweisen. Wird die Systemvariable
sy-uzeit als Datentyp eingesetzt, erfolgt die Ausgabe in
dem Zeitformat, das in den Benutzervorgaben ausgewählt
ist.

Tabelle 4.7

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

162

Typ Deklarationsbeispiel
i Deklariert werden die Datenobjekte „gz“ und „gz1“ vom

Typ „ganze Zahl“. Die Initialwerte können als Zeichenliteral
oder als Zahlenliteral angegeben werden:

Initialwert als Literal angegeben
DATA gz TYPE i VALUE '123'.

Initialwert als Zahlenliteral
DATA gz1 TYPE i VALUE 123.

f Die Datenobjekte „fpz“, „fpz1“ und „fpz2“ sind vom Typ
„Fließpunktzahl“. Die Initialwerte können in verschiedener
Form als Zeichenliteral angegeben werden, z.B.

Literal „herkömmliche“ Schreibweise
'1' 1

'-765E-04' -765*10-4

'1234E5' 1234*105

'+12E+34' 12*1034

'+12.3E-4' 12,3*10-4

'1E160' 1*10160

Initialwert 12*1034l
DATA fpz TYPE f VALUE '12E34'.

Initialwert -765*10-4

DATA fpz1 TYPE f VALUE '-765E10-4'.

Initialwert -12,34567
DATA fpz2 TYPE f Value '12.34567'.

Achtung: Dezimaltrenner ist immer ein Punkt.
string Es wird ein Datenobjekt „zk“ vom Typ „Zeichenkette“ dekla-

riert und mit „Alle Programmierer sind Pedanten“ initialisiert.

DATA zk TYPE string.
zk = 'Alle Programmierer sind Pedanten'.

Hinweis: Der Type „string“ darf nicht über „VALUE“ initiali-
siert werden. Der Wert wird über den Zuweisungsoperator
„ = “ in das Datenobjekt eingetragen.

x Im Gegensatz zum Typ „xstring“ ist bei Typ „x“ die Länge des
anzulegenden Datenobjektes anzugeben.
Es wird ein Datenobjekt „xc“ vom Typ x angelegt
und initialisiert.

DATA xc(2) TYPE x VALUE '1A'.

4.4 Datentypen und Datenobjekte 163■

■

■

xstring Es wird ein Datenobjekt „xzk“ bis „xzk4“ vom Typ „Byte-
folge“ deklariert.

Initialwert: „7273“.
DATA xzk TYPE xstring.
xzk = '7273'.

Initialwert:
„AB” DATA xzk3
TYPE xstring.
xzk3 = 'AB'.

Initialwert: „727“.
DATA xzk1 TYPE xstring.
xzk1 = '727'.

Initialwert:
„AX1” DATA xzk4
TYPE xstring.
xzk4 = 'AX1'.

■ Initialwert: „ABC”
DATA xzk2 TYPE xstring.
xzk2 = 'ABC'.

Hinweis: Der Type „xstring“ darf nicht über „VALUE“
initialisiert werden. Der Wert wird über den Zuweisungs-
operator „ = “ in das Datenobjekt eingetragen.

c Im Unterschied zum Typ „string“ ist beim Typ „c“ die
Länge des Datenobjektes festzulegen. Es wird das Daten-
objekt „chr“ vom Datentyp „Zeichen“ mit einer Länge von
3 Zeichen und dem Initialwert „THW“ angelegt:

DATA chr(3) TYPE C VALUE 'THW'.

Hinweis: In diesem Datenobjekt lassen sich nur 3 Zeichen
speichern. Weisen Sie dem Datenobjekt „chr“ mehr als 3
Zeichen zu, gehen die Zeichen ab Position 4 verloren.

n Es wird das Datenobjekt „plz“ vom Datentyp „numeri-
sches Zeichen“ mit einer Länge von 5 Zeichen und dem I-
nitialwert „03362“ angelegt:

DATA plz(5) TYPE n VALUE '03362'.

Hinweis: In diesem Datenobjekt lassen sich nur 5 Ziffern
speichern. Weisen Sie dem Datenobjekt „plz“ mehr als 5
Ziffern zu, gehen die Zeichen ab Position 6 verloren.

p Es wird ein Datenobjekt „betrag“ vom Typ „gepackte
Zahl“ angelegt und mit dem Wert „12,85“ initialisiert. Be-
achten Sie, dass der Dezimaltrenner immer ein Punkt ist.
DATA betrag(5) TYPE p DECIMALS 2 VALUE '12.85'.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

164

REPORT ydemo_04_1 .
*Datendeklarationen entsprechen der Tabelle 4.7
*Datentyp d (Datum)
DATA: begin TYPE d VALUE '20031211',
 begin2 TYPE sy-datum.
 begin2 = sy-datum.
*Datentyp t (Zeitpunkt)
DATA: zeit TYPE t VALUE '121015',
 zeit1 TYPE sy-uzeit.
 zeit1 = sy-uzeit.
*Datentyp i (integer)
DATA: gz TYPE i VALUE '123',
 gz1 TYPE i VALUE 123.
*Datentyp f (Fließpunktzahl)
DATA: fpz TYPE f VALUE '12E34',
 fpz1 TYPE f VALUE '-765E4',
 fpz2 TYPE f Value '12.34567'.
*Datentyp string (Zeichenkette)
DATA: zk TYPE string,
 xzk TYPE xstring,
 xzk1 TYPE xstring,
 xzk2 TYPE xstring,
 xzk3 TYPE xstring,
 xzk4 TYPE xstring.
*Datentyp c (Zeichen)
DATA chr(3) TYPE C VALUE 'THW'.
*Datentyp n (numerische Zeichen)
DATA plz(5) TYPE n VALUE '03362'.
*Datentyp p (gepackte Zahl)
DATA betrag(5) TYPE p DECIMALS 2 VALUE '12.85'.
*Datentyp x (Byte)
DATA xc(2) TYPE x VALUE '1A'.
*Zuweisung der Werte für die Typen string und
xstring
zk = 'Alle Programmierer sind Pedanten'.
xzk = '7273'.
xzk1 = '727'.
xzk2 = 'ABC'.
xzk3 = 'AB'.
xzk4 = 'AX1'.

Sie finden dieses Programm auf der Buch-CD
(Programmname: YDEMO_04_1).

Programm zur
Deklaration der

Datenobjekte
aus Tabelle 4.7

4.4 Datentypen und Datenobjekte 165■

■

■

Durch die folgende WRITE-Anweisung werden die Datenobjekte
ausgegeben:

WRITE:
/ '"Datum"' color COL_HEADING,
/ 'begin:',20 begin DD/MM/YYYY,
/ 'begin2:',20 begin2,

/ '"Zeitpunkt"' color COL_HEADING,
/ 'zeit:',20 zeit,/ 'zeit1',20 zeit1,
/ '"integer"' color COL_HEADING,
/ 'gz:',20 gz, / 'gz1',20 gz1,

/ '"Fließpunktzahl"' color COL_HEADING,
/ 'fpz:',20 fpz,/ 'fpz1:',20 fpz1,
/ 'fpz2:',20 fpz2,

/ '"Zeichenkette"' color COL_HEADING,
/ 'zk:',20 zk,

/ '"Bytefolge"' color COL_HEADING,
/ 'xzk:',20 xzk,/ 'xzk1:',20 xzk1,
/ 'xzk2:',20 xzk2,/ 'xzk3:',20 xzk3,
/ 'xzk4:',20 xzk4,

/ '"Zeichen"' color COL_HEADING,
/ 'chr:',20 chr(3),

/ '"numerische Zeichen"' color COL_HEADING,
/ 'plz:',plz,

/ '"gepackte Zahl"' color COL_HEADING,
/ 'betrag:',betrag,

/ '"Byte"' color COL_HEADING,
/ 'xc:',20 xc.

Sie finden dieses Programm auf der Buch-CD
(Programmname: YDEMO_04_1)_

Programm zur
Ausgabe der
Datenobjekte
der Tabelle 4.7

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

166

Die WRITE-Anweisung erzeugt folgende Ausgabe:

4.4.2.2
Konstanten
Kostanten erhalten bei ihrer Deklaration einen Wert zugeordnet.
Dieser Wert kann im Programmablauf nicht mehr geändert werden.

Die Deklaration von Konstanten wird über das Schlüsselwort
„CONSTANTS“ vorgenommen. Die Syntax ist die gleiche wie bei
der DATA-Anweisung, allerdings ist die Wertzuweisung über die
VALUE-Klausel zwingend vorgeschrieben.

Beispiel:
CONSTANTS Pi(3) TYPE p DECIMALS 2 VALUE '3.14'.

Abb. 4.20
Ausgabe der
Datenobjekte

4.4 Datentypen und Datenobjekte 167■

■

■

4.4.2.3
Feldsymbole
Ein Feldsymbol ist ein Zeiger, der auf Datenobjekte gerichtet wer-
den kann. Besonders hilfreich sind Feldsymbole beim Einsatz von
Strukturen und internen Tabellen. Dabei können Sie einen Zeiger
mit den Komponenten einer Struktur oder einer Tabelle verbinden
und sehr kompakten und laufzeitgünstigen Quellcode schreiben. Um
ein Feldsymbol zu benutzen, müssen Sie es definieren und mit ei-
nem Datenobjekt verbinden.

Definition eines Feldsymbols:
Syntax:
FIELD-SYMBOLS <Feldsymbols> TYPE <Datenobjekt>.

Hinweis:
Der Name eines Feldsymbols beginnt und endet mit einer spitzen
Klammer, z.B. <zeiger_i>.
Als Datentyp ist der Datentyp des Datenobjektes anzugeben, mit
dem der Zeiger verbunden werden soll.

Verbinden des Feldsymbols mit einem Datenobjekt:
Syntax:
ASSIGN <Feldsymbols> TO <Name des Datenobjektes>.

Beispiel:
Im folgenden Programm wird ein Feldsymbol <zeiger_i> definiert
und mit der Variablen y (TYPE i) verbunden. Dann wird der Variab-
len über das Feldsymbol ein Wert zugewiesen. Die Ausgabe des
Wertes erfolgt über das Feldsymbol erfolgen.

REPORT zfeldsymbole.
DATA: y TYPE i.
*Deklaration des Feldsymbols
field-symbols: <zeiger_i> type i.
*Verbinden des Feldsymbols mit y
ASSIGN y TO <zeiger_i>.
*Zuweisung eines Wertes an die Variable y
*über das Feldsymbol.
<zeiger_i> = 5 * 20.
*Ausgabe des Wertes der Variablen y über
*das Feldsymbol
WRITE: <zeiger_i>. "Ausgabe: 100
*direkte Ausgabe der Variablen
WRITE: / y. "Ausgabe: 100

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

168

4.4.3
Arithmetische Operationen

ABAP/4 stellt für die Deklaration von Datenobjekten, in denen Zah-
len gespeichert werden sollen, 3 eingebaute Datentypen zur Verfü-
gung:

Datentyp Beschreibung Verwendung

i integer
Ganzzahl

für Berechnungen mit ganzen Zahlen
Wertebereich: -2 *109 ... 2 *109

p Packed Number
gepackte Zahl

Berechnungen mit Festkommazahlen.
Benutzen Sie diesen Datentyp immer
dann, wenn „auf den Pfennig“ genau
gerechnet werden soll.

f Floating Point
Gleitpunktzahl

Dieser Datentyp erlaubt das Rechnen
mit sehr großen Zahlen
Wertebereich:
2,2* 10-308...1,8*10308 (positv und nega-
tiv)
Durch die interne Darstellung der
Zahlen als Dualsummen, sind Berch-
nungen mit Datenobjekten, die mit
diesem Datentyp angelegt wurden,
eher ungenau.

4.4.3.1
Arithmetische Operatoren
Für Datenobjekte, die mit den Datentypen „i“, „p“ oder „f“ angelegt
wurden, können Sie für die Formulierung arithmetischer Anweisun-
gen die Operatoren der Tabelle 4.8 benutzen. Operatoren sind grund-
sätzlich in Leerzeichen einzuschließen.

4.4 Datentypen und Datenobjekte 169■

■

■

Ope-
rator

Beschrei-
bung

Beispiel

 + Addition DATA: summand1 type i,
 summand2 type i,
 summe type i.
summand1 = 5.
summand2 = 6.
summe = summand1 + summand2.
*summe: 11

 - Subtraktion DATA: minuend type f,
 subtrahend type f,
 differenz type f.
minuend = '1.23E03'.
subtrahend = '5.91E02'.
differenz = minuend – subtrahend.
*differenz: '6.39E+02'

 * Multiplikation DATA:
faktor1(3) type p decimals 2,
faktor2(3) type p decimals 2,
produkt(6) type p decimals 2.
faktor1 = '123.45'.
faktor2 = '678.90'.
produkt = faktor1 * faktor2.
*produkt: '83810,21'

 ** Potenz DATA:basis type i,
 potenz type i,
 ergebnis type i.
basis = 2.
potenz = 3.
ergebnis = basis ** potenz.
*ergebnis: 8

 = Zuweisung Der rechts neben dem Operator stehende Teil
eines Ausdrucks wird dem links stehenden
Teil zugewiesen. Verwechseln Sie den Zu-
weisungsoperator nicht mit dem mathemati-
schen Gleichheitszeichen.

DATA: n type i.
n = 5.
n = n + 1.
*n: 6

Wirkung der Anweisung n = n + 1:
Im ersten Schritt wird n um 1 erhöht (5 + 1).
Das Ergebnis wird wiederum dem Datenob-
jekt n zugewiesen.

 (Klammer auf ergebnis = (a + b) * c.

) Klammer zu ergebnis = (a + b) * c.

Tabelle 4.8
Arithmetische
Operatoren

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

170

4.4.3.2
Ganzzahlarithmetik
Bei der Ganzzahlarithmetik wird das Ergebnis gerundet.

Beispiel:
Data: a type i,
 b type i,
 c type i.
a = 4. b = 10.
ergebnis = a / b.
*ergebnis = 0.

a = 5. b = 10.
ergebnis = a / b.
*ergebnis = 1.

Zusätzlich stehen für die Ganzzahlarithmetik die Funktionen DIV
(ganzahlige Division) und MOD (Rest ganzzahlige Division) zur
Verfügung.

7 / 2 = 3 Rest 1

Syntax:
Data: a TYPE i VALUE 7,
 b TYPE i VALUE 2,
 c TYPE i.
c = a MOD b.
* c = 1

c = a DIV b.
* c = 3.

4.4.3.3
Festpunktarithmetik
Berechnungen mit gepackten Zahlen (Datentyp p) erfolgen über die
Festpunktarithmetik. Diese Arithmetik ist die einzige, die Sie für be-
triebswirtschaftliche Berechnungen nutzen können. Die Festpunkt-
arithmetik nutzt die gleichen Prinzipien, wie sie auch bei Berech-
nungen mit „Papier und Bleistift“ angewendet werden. Die Ergeb-

Abb. 4.21
Die Funktion

DIV und MOD

Wird durch MOD
ermittelt

Wird durch DIV
ermittelt

4.4 Datentypen und Datenobjekte 171■

■

■

nisse werden korrekt auf die in der Datendeklaration angegebenen
Dezimalstellen gerundet.

DATA: fpz1 TYPE p DECIMALS 2 VALUE '5',
 fpz2 TYPE p DECIMALS 2 VALUE '3',
 ergebnis TYPE p DECIMALS 2.
ergebnis = fpz1 / fpz2. " (5/2=1,666666)
*ergebnis: 1,67

Die Ausgabeaufbereitung erfolgt entsprechend der Einstellungen im
Benutzerstammsatz.

4.4.3.4
Gleitpunktarithmetik
Die Gleitpunktaritmetik kommt bei Berechnungen mit Fließpunkt-
zahlen (Datentyp f) zum Einsatz. Aufgrund der Zerlegung der an der
Berechnung beteiligten Zahlen in Dualbruchsummen und der Ar-
beitsweise der Gleitpunktprozessoren sind die Ergebnisse der Gleit-
punktarithmetik eher ungenau. Die Gleitpunktarithmetik ist für be-
triebswirtschaftliche Berechnungen nicht anwendbar.

Beispiel:

Mit Gleitpunktarithmetik Mit Festpunktarithmetik
DATA:
 a TYPE f.,
 b TYPE f,
 f TYPE f,
 c type p decimals 2.
a = '8150'.
b = '0.2957'.
f = a * b.
c = f.
write: / 'c:', c,
 'f:', f.

DATA:
 a TYPE p decimals 2,
 b TYPE p decimals 4,
 c TYPE p decimals 2.

a = '8150'.
b = '0.2957'.
c = a * b.

write: / 'c:', c.

f: 2,409954999999999E+03

c: 2.409,95 c: 2.409,96

Genaues Ergebnis c: 2409,95500

Tabelle 4.9

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

172

4.4.3.5
Typkonvertierungen
Typkonvertierungen sind notwendig, wenn an einer numerischen
Operation Operanden mit unterschiedlichen Datentypen beteiligt
sind. Vor der Ausführung einer solchen Operation konvertiert
ABAP Zahlen in den höchsten vorkommenden Datentyp und führt
dann die Operation mit den konvertierten Zahlen aus. Dabei wird die
Datentyprangfolge i p f zugrunde gelegt. Nach Ausführung
der Operation wird das Ergebnis dem Ergebnisfeld zugewiesen. Ist
das Ergebnis nicht vom gleichen Typ wie das Ergebnisfeld, erfolgt
eine Konvertierung des Ergebnisses in das Format des Ergebnisfel-
des.

Beispiel:
Die Konvertierung soll an der numerischen Operation

x = a / b + c
gezeigt werden. Für die Berechnungen gilt:
a = 300, b = 301, c = '10.25'

Tabelle 4.10 Konvertierungsbeispiele

Datentyp

x a b c

Berechnung des
Zwischenergebnisses

Konvertierung in
den Ergebnistyp

i i i i keine Konvertierung
300/301+10

 1 +10

keine Konv.

11
i i p

dec..
3

i Konvertierung der Variablen a, b und c
in den Typ p decimals 3
300.000/301.000 + 10.25

 0,997 + 10,250 = 11,247

Konvertierung
von p nach i

11
i i p

dec.
2

i Konvertierung der Variablen a, b und c
in den Typ p decimals 2
300.000/301.000 + 10.25

 1 + 10,25 = 11,25

Konvertierung
von p nach i

11
p
dec.
3

i f n Konvertierung der Variablen a, b, und c
in den Typ f
3,0000E+02 / 3,0100E+02 + 1,0250E+01

 9,966777E-01 + 1,0250E+01
= 1,12466777E+01

Konvertierung
von f nach p

11,247

4.4 Datentypen und Datenobjekte 173■

■

■

An den Konvertierungsbeispielen der Tabelle können Sie die fol-
genden Grundsätze erkennen:

Die Ganzzahlarithmetik kommt dann zum Einsatz, wenn alle
beteiligten Komponenten Ganzzahltypen sind (1. Beispiel).

Die Gleitpunktarithmetik wird für numerische Operationen be-
nutzt, wenn mindestens eine beteiligte Komponente vom Typ
Fließpunktzahl ist (3. Beispiel).

Die Festpunktarithmetik wird in allen anderen Fällen angewen-
det.

Ist mindestens eine der beteiligten Komponenten ein Zahlentyp,
kann der Ausdruck auch zeichenartige Komponenten enthalten
(Beispiel 4). Die Zeichenkette wird dann in das Format des
höchsten vorkommenden Zahlendatentyps konvertiert. Kann die
Zeichenkette nicht als Zahl interpretiert werden, wird ein Lauf-
zeitfehler ausgelöst.

4.4.4
Operationen mit Zeichenketten

Tabelle 4.10 zeigt eingebaute zeichenartige Datentypen.

Datentyp Beschreibung Verwendung
t time

Zeit
Zeitberechnungen '
Format: 6 Ziffern HHMMSS
HH – Stunde (hour)
MM – Minute (minute)
SS – Sekunde (second)
Für Zeitberechnungen wird die Zeit-
arithmetik angewendet.

d Date
Datum

Datumsberechnungen
Format: 8 Ziffern YYYYMMDD
YYYY – Jahr (year)
MM – Monat (month)
DD – Tag (day)
Für Datumsberechnungen wird die
Datumsarithmetik angewendet.

c Character
Zeichen

Zeichenkette fester Länge.
1...65535 Zeichen

n numerische
Zeichen

Zeichenkette fester Länge.
1...65535 Ziffern

string string
Zeichenkette

Zeichenkette beliebiger Länge. Dy-
namische Speicherverwaltung.

Tabelle 4.11
eingebaute
zeichenartige
Datentypen

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

174

Zeitarithmetik
Über die Zeitpunktarithmetik kann eine Zeitdifferenz (in Sekunden)
oder ein neuer Zeitpunkt berechnet werden.

Beispiel:
Berechnung einer Zeitdifferenz:

REPORT Zeitarithmetik.
DATA: differenz type i,
 time1 type t value '091000',
 time2 type t value '101000'.
*Berechnung der Zeitdifferenz:
differenz = time2 - time1.
write: 'Zeitdifferenz [Sekunden]:',differenz.
*Ausgabe: Zeitdifferenz [Sekunden]: 3.600

Berechnung eines neuen Zeitpunktes:

REPORT Zeitarithmetik.
DATA: differenz type i value 3600,
 time1 type sy-uzeit value '091000',
 time2 type sy-uzeit.
*Berechnung des neuen Zeitpunktes:
time2 = time1 + differenz.
write: 'Neuer Zeitpunkt:',time2,'Uhr'.
*Ausgabe: Neuer Zeitpunkt: 10:10:00 Uhr

Datumsarithmetik
Über die Datumsarithmetik kann eine Datumsdifferenz (in Tagen)
oder ein neues Datum berechnet werden.

Beispiel:
Berechnung einer Datumsdifferenz:

REPORT Datumsarithmetik.
DATA: differenz type i,
 datum1 type sy-datum value '20030225',
 datum2 type sy-datum value '20030325'.
*Berechnung der Differenz:
differenz = datum2 - datum1.
write: 'Datumsdifferenz [Tage]:',differenz.
*Ausgabe: Datumsdifferenz [Tage]: 28

Zeitarithmetik

4.4 Datentypen und Datenobjekte 175■

■

■

Berechnung eines neuen Datums:

REPORT Datumsarithmetik.
DATA: differenz type i value 28,
 datum1 type sy-datum value '20030225',
 datum2 type sy-datum.
*Berechnung des neuen Datums:
datum2 = datum1 + differenz.
write: 'Neues Datum:',datum2.
*Ausgabe: Neues Datum: 25.03.2003

4.4.4.1
Zeichenkettenverarbeitung
SEARCH

Beschreibung:
SEARCH f FOR g.
Die Zeichenfolge g wird in der Zeichenkette f gesucht.
sy-subrc = 0 f enthält g
sy-fdpos = x. x ist die Position, an der g in f beginnt. Die Zählung
beginnt bei 0.

Beispiel:
REPORT ZKV.
data: f(4) value 'ABAP',
 g(2) value 'BA'.
search f for g.
write: 'sy-subrc:',sy-subrc,
 / 'sy-fdpos:',sy-fdpos.
*Ausgabe: sy-subrc: 0
*sy-fdpos: 1

REPLACE

Beschreibung:
REPLACE a with g into f.
Ersetzen des ersten Auftretens der Zeichenfolge a mit der Zeichen-
folge g in der Zeichenkette f.
sy-subrc = 0 a wurde durch g ersetzt.

Beispiel:
REPORT zkv.
DATA: a VALUE 'P',
 f(6) VALUE 'ABAP',
 g(3) VALUE 'P/4'.
REPLACE a WITH g INTO f.

SEARCH

REPLACE

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

176

IF sy-subrc = 0.
 WRITE: f.
ENDIF.
*Ausgabe: ABAP/4

TRANSLATE

Beschreibung:
1. TRANSLATE f TO LOWER CASE.
2. TRANSLATE f TO UPPER CASE.
In der ersten Variante werden alle Großbuchstaben in Kleinbuchsta-
be, in der 2. Variante alle Kleinbuchstaben in Großbuchstaben über-
setzt. Weitere Informationen finden Sie in der Schlüsselwortdoku-
mentation.

Beispiel:
REPORT zkv.
DATA: f(4) VALUE 'ABAP'.
TRANSLATE f TO LOWER CASE.
WRITE: f.
*Ausgabe: abap

SHIFT

Beschreibung:
SHIFT f [Zusatz] [BY <n> PLACES].
Zusätze: RIGHT
 LEFT
 CIRCULAR
Die Zeichen der Zeichenkette f werden um n Stellen nach rechts
(Zusatz RIGHT) bzw. links (Zusatz LEFT) verschoben. Durch das
Hinzufügen von Leerzeichen bleibt die Länge der Zeichenkette f er-
halten.
Beim Zusatz CIRCULAR werden die n linken Zeichen entfernt und
an die rechte Seite von f angehangen.
Weitere Anwendungsmöglichkeiten finden Sie in der Schlüssel-
wortdokumentation.

Beispiel:
Zusatz 'LEFT' (Standard)

REPORT zkv.
DATA: f(6) VALUE '123456'.
SHIFT f LEFT BY 2 PLACES.
WRITE: '"' NO-GAP,f NO-GAP,'"'.
*Ausgabe: "3456 " .

TRANSLATE

SHIFT

4.4 Datentypen und Datenobjekte 177■

■

■

Zusatz „RIGHT“

REPORT zkv.
DATA: f(6) VALUE '123456'.
SHIFT f RIGHT BY 2 PLACES.
WRITE: '"' NO-GAP,f NO-GAP,'"'.
*Ausgabe: " 1234"

Zusatz CIRCULAR

REPORT zkv.
DATA: f(6) VALUE '123456'.
SHIFT f CIRCULAR BY 2 PLACES.
WRITE: '"' NO-GAP,f NO-GAP,'"'.
*Ausgabe: "345612"

Zusätze RIGHT CIRCULAR

REPORT zkv.
DATA: f(6) VALUE '123456'.
SHIFT f RIGHT CIRCULAR BY 2 PLACES.
WRITE: '"' NO-GAP,f NO-GAP,'"'.
*Ausgabe: "561234"

CONDENSE

Beschreibung:
CONDENSE f.
Mehrere hintereinander auftretende Leerzeichen werden durch ge-
nau ein Leerzeichen ersetzt. Die entfernten Leerzeichen werden am
Ende der Zeichenkette eingefügt.
Beispiel
REPORT zkv.
DATA: f(14) VALUE '12 3456'.
CONDENSE f.
WRITE: '"' NO-GAP,f NO-GAP,'"'.
*Ausgabe: "12 3456 "

OVERLAY

Beschreibung:
OVERLAY f with g
Leerzeichen der Zeichenkette f werden mit den an der gleichen Posi-
tion stehenden Zeichen der Zeichenkette g ersetzt.

CONDENSE

OVERLAY

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

178

Beispiel
REPORT zkv.
DATA: f(14) VALUE '12 3456',
 g(14) VALUE 'abcdefghijklmn'.
OVERLAY f with g.
WRITE: f NO-GAP.
*Ausgabe: "12cdefghij3456"

CONCATENATE

Beschreibung:
CONCATENATE f g into f2.
Die Zeichenkette f wird mit der Zeichenkette g verknüpft. Die dar-
aus resultierende Zeichenkette wird auf f2 geschrieben. Leerzeichen
am Ende der Zeichenketten werden ignoriert, es sei denn, Sie be-
nutzen den Datentyp „string“. (Achtung: Länge f2 = Länge f + Län-
ge g).
sy-subrc = 0 Länge von f2 ausreichend.

Beispiel
REPORT zkv.
DATA: schlagworte type string,
 S1(3) value 'EDV',
 S2(8) value 'Internet',
 s3(15) value 'Programmierung'.
Concatenate s1 s2 s3 into schlagworte separated
by ';'.
write: schlagworte.
*Ausgabe: EDV;Internet;Programmierung

SPLIT

Beschreibung:
SPLIT f at g into s1 s2…sn.
Die Zeichenkette f wird an den Stellen, an denen das in der Variab-
len g stehende Zeichen steht, getrennt. Die dadurch entstehenden
Teile der Zeichenkette werden in die Variablen s1...sn geschrieben.

Beispiel:
REPORT zkv.
DATA: schlagworte type string,
 S1(3),S2(8),s3(15).
schlagworte = 'EDV;Internet;Programmierung'
SPLIT schlagworte at ';' into s1 s2 s3.
write: s1, s2, s3.
*Ausgabe: EDV Internet Programmierung

CONCATENATE

SPLIT

4.4 Datentypen und Datenobjekte 179■

■

■

4.4.5
Strukturen

Unter einer Struktur ist ein zusammengehöriger einzeiliger Spei-
cherbereich zu verstehen, der mehrere, einzeln adressierbare Kom-
ponenten besitzt.

Beispiel:

Alle Komponenten der Struktur können gemeinsam über den Struk-
turnamen, jede Komponente über Strukturnamen plus Komponen-
tennamen angesprochen werden. Strukturen werden häufig genutzt,
um Daten eines Datensatzes einer Datenbanktabelle aufzunehmen
(siehe Kapitel 4.6 „Lesen von Daten aus Datenbanktabellen“).

4.4.5.1
Anlegen von Strukturen
Wie auch elementare Datentypen können Strukturen auf verschiede-
nen Wegen erzeugt werden.

Mit lokalem Strukturtyp,

Mit implizitem Strukturtyp

Mit einer globalen Struktur aus dem ABAP-Dictionary

Struktur mit lokalem Strukturtyp
Zunächst wird in einer TYPES-Anweisung der Strukturtyp definiert.
Syntax:

TYPES: BEGIN OF <Strukturname>,
 <Komponentenname1> Type <Datentyp>,
 <Komponentenname2> Type <Datentyp>,
 …

Abb. 4.22
Beispiel einer
Struktur

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

180

 <Komponentennamen> Type <Datentyp>,
 END OF <Strukturname>.

Beispiel
REPORT zstrukturen.
TYPES: BEGIN OF kundenadresse,
 kunnr(8) TYPE n,
 kundename(25),
 kundenvorname(25),
 plz(5) TYPE n,
 ort(25),
 END OF kundenadresse.

Danach wird die Struktur in der DATA-Anweisung deklariert, d.h.
es wird ein Datenobjekt vom Typ „Struktur“ angelegt.
Syntax:
DATA: <Datenobjekte> TYPE <Strukturname>.

Beispiel:
DATA: wa_kundenadresse TYPE kundenadresse.

Hinweis:
Strukturen werden häufig auch als „Arbeitsbereiche“ (work area)
bezeichnet. Es hat sich deshalb eingebürgert, dass Strukturnamen
mit „wa_“ beginnen.

Struktur mit implizitem Strukturtyp
Alternativ zum oben beschriebenen Weg kann der Strukturtyp (im-
plizit) in der DATA-Anweisung angelegt werden.

Syntax:
DATA: BEGIN OF <Datenobjekt>
 <Komponentenname1> Type <Datentyp>,
 <Komponentenname2> Type <Datentyp>,
 …
 <Komponentennamen> Type <Datentyp>,
 END OF <Datenobjekt>.

Im folgenden Programmausschnitt wird die Struktur aus Abb. 4.22
über die implizite Datentypkonstruktion angelegt.

REPORT zstrukturen.
DATA: BEGIN OF wa_kundenadresse,
 kunnr(8) TYPE n,
 kundename(25),

4.4 Datentypen und Datenobjekte 181■

■

■

 kundenvorname(25),
 plz(5) TYPE n,
 ort(25),
 END OF wa_kundenadresse.

Hinweis:
Strukturen können geschachtelt werden, d.h. eine Struktur kann wie-
derum Komponente einer Struktur sein.

4.4.5.2
Strukturen im Programm benutzen
Nachdem nun klar ist, wie eine Struktur angelegt wird, wollen wir,
am Beispiel der vorher deklarierten Struktur wa_kundenadresse, Da-
ten in die Struktur einbringen und auch wieder ausgeben.

Eine Komponente einer Struktur wird über folgende allgemeine
Syntax angesprochen:
<Strukturname>-<Komponentenname>.

Laden der Struktur wa_kundenadresse mit Daten:
wa_kundenadresse-kunnr = '1234'.
wa_kundenadresse-kundename = 'Gottschalk'.
wa_kundenadresse-kundenvorname = 'Thomas'.
wa_kundenadresse-plz = '01030'.
wa_kundenadresse-ort = 'Berlin'.

Lesen der Daten der Struktur wa_kundenadresse:
write: / wa_kundenadresse-kunnr,
 / wa_kundenadresse-kundename,
 / wa_kundenadresse-kundenvorname,
 / wa_kundenadresse-plz,
 / wa_kundenadresse-ort.

1. Legen Sie in Ihrem Programm YK04DBAS eine Struktur
wa_zbestand mit den folgenden Komponenten an:

■ isbn TYPE zbestand-isbn,

■ titel TYPE zbestand-titel,

■ autor1 TYPE zbestand-autor1,

■ kategorie TYPE zbestand-kategorie,

■ bestand TYPE zbestand-bestand,

■ ausgeliehen TYPE zbestand-ausgeliehen,

■ verfuegbar TYPE i.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

182

2. Legen Sie den Ereignisblock „Start-of-Selection“ an und laden
Sie die Struktur wa_zbestand mit sinnvollen Daten. Die Kom-
ponente „verfuegbar“ soll aus den Komponenten „bestand“ und
„ausgeliehen“ berechnet werden.

3. Geben Sie den Inhalt der Struktur entsprechend des Listenfor-
mates aus.

4. Ergänzen Sie in der Listenüberschrift, die z.Z. lediglich aus
dem Wort „Ausgabeliste“ besteht, Datum und Uhrzeit der Lis-
tenerstellung.

5. Sorgen Sie dafür, dass die Überschrift im Ereignisblock
„Top-of-Page“ ausgegeben wird.

Lösung: YK04DBAS_4

Lösung

REPORT yk04dbas.
*Definition des Strukturtyps st_zbestand
TYPES: BEGIN OF st_zbestand,
 isbn TYPE zbestand-isbn,
 titel TYPE zbestand-titel,
 autor1 TYPE zbestand-autor1,
 kategorie TYPE zbestand-kategorie,
 bestand TYPE zbestand-bestand,
 ausgeliehen
 TYPE zbestand-ausgeliehen,
 verfuegbar(4) TYPE n,
 END OF st_zbestand.
*Deklaration der Struktur wa_zbestand mit dem
*Datentyp st_zbestand und Deklaration der
*Variablen ausgabedatum und ausgabezeit
DATA: wa_zbestand TYPE st_zbestand,
 ausgabedatum TYPE sy-datum,
 ausgabezeit TYPE sy-uzeit.
START-OF-SELECTION.
*Systemdatum und -zeit eintragen
 ausgabedatum = sy-datum.
 ausgabezeit = sy-uzeit.
*Strukturkomponenten mit sinnvollen Werten laden
 wa_zbestand-isbn = '3898421473'.
 wa_zbestand-titel = 'ABAP Objects'.
 wa_zbestand-autor1 = '101' .

4.4 Datentypen und Datenobjekte 183■

■

■

 wa_zbestand-kategorie = 'EDV' .
 wa_zbestand-bestand = 30 .
 wa_zbestand-ausgeliehen = 10 .
*Berechnung der Anzahl verfügbarer Bücher
wa_zbestand-verfuegbar = wa_zbestand-bestand
 - wa_zbestand-ausgeliehen.
*Ausgabe der Struktur wa_zbestand.
 WRITE:
*Mit UNDER kann die Ausgabe unter der
*Spaltenüberschrift positioniert werden
*(siehe Schlüsselwortdokumentation "Write")
 / wa_zbestand-isbn UNDER 'ISBN'(002),
 wa_zbestand-titel UNDER 'Titel'(003),
 wa_zbestand-autor1 UNDER 'Autor'(004),
 (10) wa_zbestand-kategorie
 UNDER 'Kategorie'(005),
 wa_zbestand-verfuegbar
 UNDER 'verfügbar'(006).
TOP-OF-PAGE.
*Dieser Ereignisblock wird vom Laufzeitsystem
*aufgerufen, wenn eine neue Ausgabeseite begon-
*nen wird
 FORMAT COLOR COL_HEADING INTENSIFIED ON.
 WRITE:
 'Ausgabeliste'(001),
 'Ausgabedatum'(007), ausgabedatum,
 'Ausgabezeit'(008),ausgabezeit,119 ''.
 FORMAT COLOR COL_HEADING INTENSIFIED OFF.
 WRITE: /1 'ISBN'(002) COLOR COL_KEY
 INTENSIFIED ON,
 12 'Titel'(003),
 79 'Autor'(004),
 101 'Kategorie'(005),
 111 'verfügbar'(006).

4.4.5.3
Zuweisungen von Strukturen und Zeichenketten
Mit der MOVE-Anweisung oder dem Zuweisungsoperator kann der
Inhalt einer Struktur oder einer Zeichenkette einer Struktur zugewie-
sen werden. Dabei werden die Zeichen der Zeichenkette bzw. der
Quellstruktur linksbündig in die Zielstruktur kopiert. Eine Typkon-
vertierung findet dabei nicht statt.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

184

Zuweisung einer Struktur an eine Struktur
DATA: BEGIN OF wa_partner,
 name(10),
 vorname(10),
 END OF wa_partner,
 BEGIN OF wa_kunden,
 kundenname(10),
 kundenvorname(10),
 Umsatz(10) TYPE p DECIMALS 2,
 END OF wa_kunden.
wa_partner-name = 'Meier'.
wa_partner-vorname = 'Horst'.

MOVE wa_partner TO wa_kunden.
*oder
wa_kunden = wa_partner.

Im Beispiel wird der Inhalt der Struktur wa_partner in die Struktur
wa_kunden kopiert. Dabei wird Zeichen für Zeichen der Struktur
wa_partner linksbündig in wa_kunden eingetragen.

Das Ändern der Komponentenreihenfolge in der Struktur
wa_kunden (z.B. Kundenname, Umsatz, Kundenvorname) hat bei
der Zuweisung der Struktur wa_partner zur Folge, dass der Inhalt
der Komponente Vorname in die Komponente Umsatz geschrieben
wird. Bei der Ausgabe der Komponente Umsatz wird der Vorname
als gepackte Zahl interpretiert, was schnell zu Fehleinschätzungen
des Kundenumsatzes führt.

Abb. 4.23
fehlerfreie

Zuweisung einer
Struktur an eine

Struktur

4.4 Datentypen und Datenobjekte 185■

■

■

Dieses Problem tritt nicht auf, wenn Sie an Stelle der einfachen Zu-
weisung die Anweisung „MOVE-CORRESSPONDING“ benutzen.
Diese Anweisung kopiert nur die Inhalte namensgleicher Felder. Die
Komponentennamen des Beispielprogrammes sind deshalb ebenfalls
zu ändern.:

DATA: BEGIN OF wa_partner,
 name(10),
 vorname(10),
 END OF wa_partner,
 BEGIN OF wa_kunden,
 name(10),
 umsatz(10) TYPE p DECIMALS 2,
 vorname(10),
 END OF wa_kunden.
wa_partner-name = 'Meier'.
wa_partner-vorname = 'Horst'.
MOVE-CORRESPONDING wa_partner to wa_kunden.

Zuweisung einer Zeichenkette an eine Struktur
REPORT zDatumsaufbereitung.
DATA: BEGIN OF wa_datum,
 yyyy(4),
 mm(2),

Abb. 4.24
fehlerhafte Zu-
weisung einer
Struktur an eine
Struktur

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

186

 dd(2),
 END OF wa_datum,
 datum TYPE sy-datum VALUE '20031112'.
MOVE datum TO wa_datum.
WRITE: 'wa_datum-yyyy:',16 wa_datum-yyyy,
 / 'wa_datum-mm:',16 wa_datum-mm,
 / 'wa_datum-dd: ',16 wa_datum-dd.

4.4.6
Interne Tabellen

Interne Tabellen sind Datenobjekte, mit denen Datenmengen fester
Struktur im Arbeitsspeicher des SAP-Servers gehalten werden. Eine
interne Tabelle besteht aus Zeilen und Spalten. Die Spalten besitzen
einen Spaltennamen und einen Datentyp. Alle Spalten werden als
Zeilentyp bezeichnet.

Abb. 4.25
Zuweisung einer
Zeichenkette an

eine Struktur

4.4 Datentypen und Datenobjekte 187■

■

■

■ Interne Tabellen sind dynamische Datenobjekte, d. h. die benö-
tigte Speicherkapazität wird während der Laufzeit ermittelt und
bereitgestellt.

■ Es gibt keine durch ABAP/4 gesetzten Beschränkungen hin-
sichtlich der Anzahl der Spalten und Zeilen.

■ Jede Spalte kann beliebig definiert werden, sie kann elementare
oder strukturierte Datentypen enthalten.

■ Für interne Tabelle kann ein Tabellenschlüssel definiert werden.

4.4.6.1
Tabellenarten
In ABAP/4 können Sie drei Tabellenarten einsetzen:

■ Standard Tabelle (standard table)

■ Sortierte Tabelle (sorted table)

■ Hashed Tabelle (hashed table)

Eigenschaften der Standardtabelle
■ Die Zeilen der Tabelle sind nicht sortiert.

■ Durch die Anweisung „SORT“ kann die Tabelle beliebig sor-
tiert werden.

■ Die Zeilennummern und ein Verweis auf die Datenzeile werden
im sogenannten Index gehalten. Über diesen Index kann das
ABAP-Programm auf eine bestimmte Zeile zugreifen (Index-
Zugriff).

■ Eine Standardtabelle besitzt immer einen non-unique-Schlüssel.
Das ist ein Schlüssel, der erlaubt, dass mehrere Zeilen mit den
gleichen Schlüsselwerten angelegt werden können. Über den

Abb. 4.26
interne Tabelle

Standardtabelle

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

188

Tabellenschlüssel kann das ABAP-Programm ebenfalls auf eine
Zeile der Tabelle zugreifen.

■ Wird beim Anlegen der Tabelle kein Schlüssel definiert, erzeugt
das Laufzeitsystem einen Standardschlüssel, der aus allen zei-
chenartigen Feldern der Tabelle besteht.

■ Die Standardtabelle wird eingesetzt, wenn der Zugriff auf die
Zeilen der Tabelle vorwiegend über den Index erfolgt.

Eigenschaften der sortierten Tabelle
■ Die Zeilen sortierter Tabellen liegen sortiert nach dem Tabellen-

schlüssel, der beim Anlegen der Tabelle definiert wird, im Ar-
beitsspeicher.

■ Sortierte Tabellen besitzen, wie auch die Standardtabellen, ei-
nen Index der die Zeilennummer und einen Verweis auf die Da-
tenzeile enthält. Über den Index kann das ABAP-Programm auf
eine bestimmte Datenzeile zugreifen (Index-Zugriff)

■ Sortierte Tabelle können über einen non-unique- oder einen
unique-Schlüssel verfügen. Im Gegensatz zum non-unique-
Schlüssel lässt der unique-Schlüssel nicht zu, dass mehrere Zei-
len mit den gleichen Einträgen in den Schlüsselfeldern, angelegt
werden können.

■ Die sortierte Tabelle wird eingesetzt, wenn der Zugriff auf die
Zeilen der Tabelle vorwiegend über den Schlüssel erfolgt.
Durch die Sortierung kann hier ein schnellerer Suchalgorithmus
angewendet werden (binäre Suche).

Eigenschaften der Hashed-Tabelle
■ Die Hashed-Tabelle besitzt keinen Index.

■ Es kann lediglich ein unique-Schlüssel angelegt werden.

■ Auf die Zeilen der Tabelle kann nur über den Schlüssel zuge-
griffen werden.

■ Der Zugriff auf die Zeilen der Tabelle erfolgt über einen spe-
ziellen Algorithmus. Dieser erreicht minimale Zugriffszeiten,
wenn beim Zugriff auf eine Zeile alle Schlüsselfelder einbezo-
gen werden. Die Zugriffszeiten sind dabei unabhängig von der
Anzahl der Zeilen.

■ Hashed-Tabellen sollten nur dann eingesetzt werden, wenn
beim Zugriff auf eine Zeile vorwiegend alle Schlüsselfelder ein-
bezogen werden.

sortierte Tabelle

Hashed-Tabelle

4.4 Datentypen und Datenobjekte 189■

■

■

4.4.6.2
Anlegen interner Tabellen
Interne Tabellen können über folgende Wege angelegt werden:

■ Mit lokalem Tabellentyp

■ Mit impliziten Tabellentyp

■ Mit Bezug zum ABAP-Dictionary

Internen Tabelle mit lokalem Tabellentyp
In je einer TYPES-Anweisung wird

■ eine Strukturtyp für den Zeilentyp der internen Tabelle,

■ der Typ der internen Tabelle

definiert. Für die Definition der internen Tabelle ist die folgende
Syntax zu benutzen:

TYPES <Name des Tabellentyps> TYPE <Tabellenart> TABLE
OF <Zeilentyp>
[WITH <Schlüsselart> KEY <Schlüsselfelder>]
[INITIAL SIZE <Anzahl Zeilen>].

Parameter Parameterwerte

Name des Ta-
bellentyps

beliebige Zeichenkette

Tabellenart standard = Standardtabelle
sorted = Sortierte Tabelle
hashed = Hashed-Tabelle

Zeilentyp Ein Strukturtyp mit den Spalteneigenschaften

Schlüssel-
felder

Die Schlüsselfelder der Tabelle werden an dieser
Stelle angegeben. Mehrere Schlüsselfelder sind-
durch Leerzeichen voneinander zu trennen

Anzahl
Zeilen

optional kann die Anzahl der Zeilen der internen
Tabelle festgelegt werden. Wird die Anzahl der Da-
tensätze nicht festgelegt, wird bei der Deklaration
der Tabelle standardmäßig ein 8 kB-Block resert-
viert, der dann bei Bedarf wiederum um einen 8 kB-
Block erweitert wird, usw.

Beispiel
Im folgenden Programmausschnitt wird ein Tabellentyp für die in-
terne Tabelle aus Abb. 4.26 definiert.

Internen Tabelle
mit lokalem
Tabellentyp

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

190

REPORT zinterne_tabelle.
TYPES: BEGIN OF st_bestand, "Zeilentyp
 isbn(10) TYPE n,
 titel(65) TYPE c,
 bestand TYPE i,
 autor TYPE n,
 END OF st_bestand.
*Definition des Tabellentyps
TYPES: int_bestand TYPE SORTED TABLE
 OF st_bestand
 WITH UNIQUE KEY isbn.

Eigenschaften des Tabellentyps:

■ sortierte Tabelle (sorted Table)

■ Zeilentyp: st_bestand

■ Tabellenschüssel (unique key): isbn.

Mit dem in der TYPES-Anweisung definierten Tabellentyp wird in
einer DATA-Anweisung die interne Tabelle deklariert.

Syntax:
DATA <Name der int. Tabelle> TYPE <Tabellentyp>.

Für das Beispiel sieht die Deklaration der internen Tabelle so aus:

DATA it_bestand TYPE int_bestand.

Internen Tabelle mit implizitem Tabellentyp
Die interne Tabelle kann auch (implizit) bei der Deklaration defi-
niert werden. Dabei wird anstelle des Schlüsselwortes TYPES das
Schlüsselwort DATA benutzt

DATA <Name der int. Tab.> TYPE/LIKE <Tabellenart> TABLE
OF <Zeilentyp> [initial size <n>].
[WITH <Schlüsselart> KEY <Schlüsselfelder>]
[INITIAL SIZE <Anzahl Zeilen>].

Interne Tabelle
mit implizitem

Tabellentyp

4.4 Datentypen und Datenobjekte 191■

■

■

Parameter Parameterwerte

Name der int. Tab beliebige Zeichenkette für den Namen der
internen Tabelle

Tabellenart standard = Standardtabelle
sorted = Sortierte Tabelle
hashed = Hashed-Tabelle

Zeilentyp Ein Strukturtyp oder eine Struktur (Datenob-
jekt). Der Strukturtyp bzw. die Struktur ent-
hält die Eigenschaften der Spalten. Benutzen
Sie eine Struktur, müssen Sie bei der Dekla-
ration der internen Tabelle „LIKE“ einset-
zen.

Schlüsselfelder Die Schlüsselfelder der Tabelle werden an
dieser Stelle angegeben. Werden mehrere
Schlüsselfelder angegeben, sind diese durch
Leerzeichen voneinander zu trennen

Anzahl Zeilen Optional kann die Anzahl der Zeilen der in-
ternen Tabelle festgelegt werden. Wird die
Anzahl der Datensätze nicht festgelegt, wird
bei der Deklaration der Tabelle standardmä-
ßig ein 8 kB-Block resertviert, der dann bei
Bedarf wiederum um einen 8 kB-Block er-
weitert wird, usw.

Beispiel
Im folgenden Programmausschnitt wird die interne Tabelle aus Abb.
4.26 mit implizitem Tabellentyp erzeugt. Als Zeilentyp wird eine
Struktur benutzt.

TYPES: BEGIN OF st_bestand,
 isbn(10) TYPE n,
 titel(65) TYPE c,
 bestand TYPE i,
 autor TYPE n,
 END OF st_bestand.
DATA: wa_bestand type st_bestand.
DATA: it_bestand LIKE SORTED TABLE
 OF wa_bestand
 WITH UNIQUE KEY isbn.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

192

interne Tabelle mit Bezug zum ABAP-Dictionary
Beim Anlegen interner Tabellen kann auf globale Tabellentypen zu-
gegriffen werden. Diese sind im ABAP-Dictionary abgelegt.

Syntax:
DATA <Name der int. Tab.> TYPE <Dictionary-Tabellentyp> .

Tabellenart und Tabellenschlüssel sind im globalen Tabellentyp hin-
terlegt. Außerdem kann über die Syntax

DATA <Name der int. Tab.> TYPE <Tabellenart> TABLE
OF <Datenbanktabelle>
[WITH KEY <Schlüsselfelder>]
[INITIAL SIZE <Anzahl Zeilen>].

eine interne Tabelle deklariert werden. Als Zeilentyp dient dabei die
Struktur der Datenbanktabelle.

Beispiel:
DATA: it_bestand TYPE SORTED TABLE
 OF zbestand WITH UNIQUE KEY isbn.

4.4.6.3
Zeilenoperationen
Die folgenden Anweisungen beziehen sich auf einzelne oder mehre-
re Zeilen der internen Tabelle:

■ APPEND
(Anfügen einer Zeile an das Ende der Tabelle)

■ INSERT
(Einfügen einer Zeile)

■ READ
(Lesen einer Zeile)

■ MODIFY
(Ändern einer Zeile der internen Tabelle)

■ DELETE
(Löschen einer Zeile)

■ LOOP...ENDLOOP
(Sequentielles Bearbeiten von Zeilen)

Für diese Anweisungen werden Strukturen verwendet, die den glei-
chen Aufbau haben, wie der Zeilentyp der internen Tabelle. Diese
Strukturen werden auch als „Arbeitsbereich“ oder „Workarea“ (wa)
bezeichnet.

Arbeitsbereich
Workarray

4.4 Datentypen und Datenobjekte 193■

■

■

Nachfolgend sind die gebräuchlichsten Formen dieser Anweisungen
an Hand eines Beispiels beschrieben. Weitere mögliche Formen die-
ser Anweisungen finden Sie in der Schlüsselwortdokumentation.

Die APPEND-Anweisung
Mit der APPEND-Anweisung wird eine neue Zeile am Ende einer
interne Tabelle angefügt. Wenden Sie diese Anweisung nur bei
Standardtabellen an.

SYNTAX
APPEND <Arbeitsbereich> TO <int. Tabelle>.

Eine Struktur wird mit den Daten geladen, die in die interne Tabelle
eingefügt werden sollen. Mit APPEND werden diese Daten am En-
de der internen Tabelle eingefügt.

Beispiel:

REPORT zAppend.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE TABLE OF st_kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
Perform fill
*Laden der Struktur wa_kunden
wa_kunden-kunnr = '123245'.
wa_kunden-kundenname = 'Pflaume'.
*Einfügen der Daten der Struktur
*in die interne Tabelle it_kunden
APPEND wa_kunden TO it_kunden.

Abb. 4.27
APPEND
Anfügen einer
Zeile an die in-
terne Tabelle.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

194

Die INSERT-Anweisung
Mit der INSERT-Anweisung kann eine neue Zeile in die interne Ta-
belle eingefügt werden.

SYNTAX
INSERT <Arbeitsbereich> INTO TABLE<int. Tabelle>.

Bei sortierten Tabellen (sorted table) wird die Zeile entsprechend der
Sortierfolge eingeordnet, bei Standardtabellen entspricht die Anwei-
sung der APPEND-Anweisung.

sy-subrc = 0 Die Zeile wurde an die n-te Position eingefügt

sy-subrc = 4 Tritt bei Tabellen mit eindeutigem Schlüssel (uni-
que-key) auf. Zeile wurde nicht eingefügt, weil be-
reits eine Zeile mit gleichen Schlüsselwerten vor-
handen ist.

Beispiel:

REPORT zInsert.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA:
wa_kunden TYPE st_kunden,
it_kunden TYPE SORTED TABLE OF st_kunden
 WITH NON-UNIQUE KEY kundenname.
*Int. Tabelle im Unterprogramm 'Fill'laden
PERFORM fill.
*Laden der Struktur wa_kunden
wa_kunden-kunnr = '123245'.

Tabelle 4.12

Abb. 4.28
INSERT

Einfügen einer
Zeile in die in-
terne Tabelle.

4.4 Datentypen und Datenobjekte 195■

■

■

wa_kunden-kundenname = 'Pflaume'.
INSERT wa_kunden INTO TABLE it_kunden.

Die READ-Anweisung
Die READ-Anweisung greift auf eine Tabellenzeile zu, über

■ die Zeilennummer (Index),

■ Feldinhalte der Tabellenschlüsselspalten (Tabellenschlüssel),

■ Feldinhalte beliebiger Spalten.

Die READ-Anweisung belegt folgende Systemvariablen:

sy-subrc Mit 0 belegt, wenn eine Tabellenzeile gefunden wurde,
die den Bedingungen der READ-Anweisung entspricht

sy-tabix enthält die Zeilennummer der gefundenen Zeile

Indexzugriff
Der Index wird bei internen Tabellen vom Typ „sorted“ und „stan-
dard“ automatisch angelegt und verwaltet. Bei Hashed-Tabellen gibt
es keinen Index, demzufolge auch keinen Indexzugriff.

Syntax:
READ TABLE <it> INTO <wa> INDEX <n>.

it Interne Tabelle in der eine Zeile gelesen werden soll

wa Arbeitsbereich, der die Felder der Tabellenzeile aufnimmt.

n Nummer der Zeile, die gelesen werden soll.

Beispiel

Tabelle 4.13

Tabelle 4.14

Abb. 4.29
Indexzugriff

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

196

REPORT zreadindex.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE TABLE OF st_kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Lesen der 2. Zeile der Tabelle it_kunden
READ TABLE it_kunden INTO wa_kunden INDEX 2.
WRITE: wa_kunden-kunnr,wa_kunden-Kundenname.

Indexzugriff über Feldsymbole
Das Nutzen von Feldsymbolen (Zeigern) beim Lesen von Zeilen in-
terner Tabellen ist für die Performance Ihrer Programme günstiger
als der oben beschriebene Umweg über eine Struktur.
Das Feldsymbol wird mit der zu lesenden Zeile verbunden. Sie lesen
die Daten also direkt aus der internen Tabelle. Eine Struktur wird bei
dieser Methode nicht benötigt.

Syntax:
READ TABLE <it> INDEX <n> ASSIGNING <fs>.

it Interne Tabelle in der eine Zeile gelesen werden soll

fs Feldsymbol

n Nummer der Zeile, die gelesen werden soll.

Beispiel:

REPORT zfeldsymbole.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA:
it_kunden TYPE TABLE OF st_kunden.

Abb. 4.30
Indexzugriff

Verbinden der
zu lesenden

Zeile mit einem
Feldsymbol

4.4 Datentypen und Datenobjekte 197■

■

■

*Mit FIELD-SYMBOLS ...LIKE LINE OF it_kunden
*wird ein Feldsymbol angelegt, das mit einer
*Zeile der Tabelle it_kunden verbunden werden
*kann
FIELD-SYMBOLS: <zl> LIKE LINE OF it_kunden.
*Int. Tabelle im Unterprogramm 'Fill'laden
PERFORM fill.
READ TABLE it_kunden INDEX 2 ASSIGNING <zl>.
*Durch den Zusatz ASSIGNING <zl> wird das
*Feldsymbol <zl> mit der durch die INDEX-
*Klausel ausgewählten Zeile der Tabelle
*verbunden. Durch die Typisierung mit 'LIKE
*LINE OF in der Feldsymboldeklaration kann auf
*die Komponenten der Zeile der internen Tabelle
*zugegriffen werden.
WRITE: / <zl>-kunnr, <zl>-kundenname.

Tabellenschlüsselzugriff
Bei sortierten Tabellen liegen die Zeilen der Tabelle sortiert nach
dem Tabellenschlüssel vor, der beim Anlegen der internen Tabelle
definiert wird. Beim Zugriff auf eine Tabellenzeile über die Felder
dieses Schlüssels, wird bei sortierten und bei Hashed-Tabellen ein
schneller Algorithmus, z.B. die binäre Suche, zum Auffinden der
benötigten Tabellenzeile angewendet. Bei häufigen Zugriffen über
die Schlüsselfelder sollten Sie deshalb diese Tabellenarten einsetzen.
Bei unsortierten Tabellen findet immer ein „Full-Table-Scan“ statt.

Syntax 1:
READ TABLE <it> INTO <wa> WITH TABLE KEY <f1> = <i1>
 <f2> = <i2>
 <fn> = <in>.

it Interne Tabelle in der eine Zeile gelesen werden soll

wa Arbeitsbereich, der die Felder der Tabellenzeile aufnimmt.

f1...fn Felder des Tabellenschlüssels

i1...in Inhalt der Schlüsselfelder in der zu lesenden Zeile

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

198

Beispiel:

REPORT zreadtabschl.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE SORTED TABLE OF st_kunden
 WITH UNIQUE KEY kunnr.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Lesen der Zeile in der kunnr = '123245' ist
READ TABLE it_kunden INTO wa_kunden
WITH TABLE KEY kunnr = '123245'.
WRITE: wa_kunden-kunnr,wa_kunden-kundenname.

Syntax 2:
Alternativ zur Angabe der Schlüsselfelder und den Schlüsselfeldin-
halten der zu lesenden Tabellenzeile in der READ-Anweisung, kann
eine Struktur mit den Schlüsselfeldinhalten geladen werden. Diese
Struktur wird von der READ-Anweisung genutzt, um die Datenzeile
zu suchen, in der die gleiche Belegung der Schlüsselfelder auftritt
wie in der vorher geladenen Struktur.

READ TABLE <it> INTO <wa> FROM <wa1>.

it Interne Tabelle in der eine Zeile gelesen werden soll

wa Arbeitsbereich, der die Felder der Tabellenzeile aufnimmt.

wa1 Arbeitsbereich, der mit den Feldinhalten der Schlüsselfelder
der zu lesenden Zeile geladen wird

Hinweis: Für wa und wa1 kann die gleiche Struktur benutzt werden.

Abb. 4.31
Tabellen-

schlüsselzugriff

Laden des Ar-
beitsbereiches
mit dem Inhalt

der zu lesenden
Zeile

4.4 Datentypen und Datenobjekte 199■

■

■

Beispiel

REPORT zreadtabschl.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE SORTED TABLE OF st_kunden
 WITH UNIQUE KEY kunnr.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Struktur mit dem Inhalt der Schlüsselfelder
*der zu lesenden Tabellenzeile laden
wa_kunden-kunnr = '123245'.
*Lesen der Zeile in der kunnr = '123245' ist
READ TABLE it_kunden INTO wa_kunden
FROM wa_kunden.
WRITE: wa_kunden-kunnr,wa_kunden-kundenname.

Tabellenschlüsselzugriff über Feldsymbole
Das Nutzen von Feldsymbolen (Zeigern) beim Lesen von Zeilen in-
terner Tabellen ist für die Performance Ihrer Programme günstiger
als der Umweg über eine Struktur. Das Feldsymbol wird über den
Tabellenschlüssel mit der zu lesenden Zeile verbunden. Die Feldin-
halte der Tabellenzeile werden dann direkt aus der Tabelle gelesen.
Eine Struktur wird bei dieser Methode nicht benötigt.

Syntax:
READ TABLE <it> WITH TABLE KEY <f1> = <i1>
 <f2> = <i2>
 <fn> = <in>
ASSIGNING <fs>.

Abb. 4.32
Tabellenschlüs-
selzugriff über
den Arbeitsbe-
reich

Laden des Ar-
beitsbereiches
mit dem Inhalt
der zu lesenden
Zeile

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

200

it Interne Tabelle in der eine Zeile gelesen werden soll

fs Feldsymbol

f1...fn Felder des Tabellenschlüssels

i1...in Inhalt der Schlüsselfelder in der zu lesenden Zeile

Beispiel

REPORT zreadtabschl.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: it_kunden TYPE SORTED TABLE OF
 st_kunden WITH KEY kunnr.
*Anlegen des Feldsymbols mit Bezug zum
*Zeilentyp der int. Tabelle it_kunden
FIELD-SYMBOLS: <zl> LIKE LINE OF it_kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Feldsymbol mit der zu lesenden Zeile ver-
*binden
READ TABLE it_kunden WITH TABLE KEY
kunnr = '123245' ASSIGNING <zl>.
WRITE: / <zl>-kunnr, <zl>-kundenname.

Zugriff über Feldinhalte beliebiger Spalten
Wird über beliebige Felder auf eine Tabellenzeile zugegriffen, fin-
det, unabhängig von der Tabellenart, immer „Full-Table-Scan“ statt.

Syntax 1:
READ TABLE <it> INTO <wa> WITH KEY <f1> = <i1>
 <f2> = <i2>
 <fn> = <in>.

Tabelle 4.15

Abb. 4.33
Tabellenschlüs-

selzugriff

Verbinden der
zu lesenden

Zeile mit einem
Feldsymbol

4.4 Datentypen und Datenobjekte 201■

■

■

it Interne Tabelle in der eine Zeile gelesen werden soll

wa Arbeitsbereich, die die Felder der Tabellenzeile aufnimmt.

f1...fn Beliebige Felder der internen Tabelle

i1...in Inhalt der Felder in der zu lesenden Zeile

Gibt es in der Tabelle mehrere Tabellenzeile, die die Bedingungen
der READ-Anweisung erfüllen, wird die erste Tabellezeile ausgege-
ben, die die READ-Anweisung identifiziert hat.

Beispiel

REPORT zreadbeliebig.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE TABLE OF st_kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Lesen der Zeile in der
Kundenname = 'Pflaume' ist
READ TABLE it_kunden INTO wa_kunden
WITH KEY kundenname = 'Pflaume'.
WRITE: wa_kunden-kunnr,wa_kunden-kundenname.

Zugriff über Feldinhalte beliebiger Spalten mit Feldsymbolen

Syntax:
READ TABLE <it> WITH KEY <f1> = <i1>
 <f2> = <i2>
 <fn> = <in>
ASSIGNING <fs>.

Tabelle 4.16

Abb. 4.34
Zugriff auf eine
beliebige Zeile

Laden des Ar-
beitsbereiches
mit dem Inhalt
der zu lesenden
Zeile

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

202

it Interne Tabelle in der eine Zeile gelesen werden soll

fs Feldsymbol

f1...fn Beliebige Felder der Tabelle

i1...in Inhalt der Felder in der zu lesenden Zeile

Beispiel

REPORT zreadbeliebig.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: it_kunden TYPE TABLE OF st_kunden.
*Anlegen des Feldsymbols mit Bezug zum Zei-
*lentyp der int. Tabelle it_kunden
FIELD-SYMBOLS: <zl> LIKE LINE OF it_kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Feldsymbol mit der zu lesenden Zeile ver-
*binden
READ TABLE it_kunden WITH KEY
kundenname = 'Pflaume' ASSIGNING <zl>.
WRITE: / <zl>-kunnr, <zl>-kundenname.

Die MODIFY-Anweisung
Mit der MODIFY-Anweisung können Feldinhalte innerhalb einer
oder mehrerer Zeilen der internen Tabelle geändert werden. Die Än-
derungen können über eine Struktur oder über ein Feldsymbol in die
interne Tabelle eingetragen werden.

Ändern interner Tabellen mittels Struktur
Die Tabellenzeile, in der Feldinhalte geändert werden sollen, wird
zunächst ausgewählt (z.B. mit einer READ-Anweisung) und in eine
Struktur geschrieben. In der Struktur werden die Änderungen durch-
geführt. Durch die MODIFY-Anweisung wird die ausgewählte Ta-
bellenzeile mit der Struktur überschrieben.

Tabelle 4.17

Abb. 4.35
Zugriff auf eine
beliebige Zeile

Verbinden der
zu lesenden

Zeile mit einem
Feldsymbol

4.4 Datentypen und Datenobjekte 203■

■

■

Hinweis: Die Struktur muss den gleichen Aufbau haben wie der
Zeilentyp der internen Tabelle, in der Änderungen ausgefürht wer-
den sollen.

Syntax 1:
MODIFY TABLE <it> FROM <wa>.

it Name der internen Tabelle in der Daten geändert werden

wa Arbeitsbereich, der die Schlüsselwerte der zu ändernden Ta-
bellenzeile und die Inhalte der zu ändernden Felder enthält.
Das Laufzeitsystem ermittelt die Tabellenzeile über die in der
Struktur eingetragenen Schlüsselwerte und überschreibt die zu
ändernden Felder mit denen aus der Struktur. Schlüsselfelder
können über diese Methode nicht geändert werden

Beispiel

Syntax 2:
MODIFY <it> FROM <wa> INDEX <n>.

it Name der internen Tabelle in der Daten geändert werden

n Tabellenzeile, in die die Änderungen eingetragen werden

wa Arbeitsbereich, der die Inhalte der zu ändernden Felder der
Tabellenzeile n enthält.

Tabelle 4.18

Abb. 4.36
MODIFY
Ändern einer
Zeile der inter-
nen Tabelle
über den Ar-
beitsbereich

Tabelle 4.19

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

204

Beispiel

Ändern interner Tabellen mittels Feldsymbol
Über Feldsymbole kann direkt, ohne die Nutzung einer Struktur, in
der internen Tabelle geändert werden. Dazu wird das Feldsymbol
mit der zu ändernden Tabellenzeile verbunden (READ-Anweisung).
Danach können die gewünschten Änderungen über das Feldsymbol
in die Datenzeile eingetragen werden.

Syntax:
READ TABLE <it> WITH TABLE KEY <f1> = <i1>
 <f2> = <i2>
 <fn> = <in>
ASSIGNING <fs>.

<fs>-<Komponente> = <neuer Inhalt>.

<fs> Feldsymbol, das mit der zu ändernden Tabellenzeile verbun-
den wird. Es muss im Programm über FIELD-SYMBOLS
vereinbart werden.

Hinweis:
Anstelle der Klausel „WITH TABLE KEY“ in der READ-
Anweisung, können auch die Klauseln „WITH KEY“ und „INDEX
<n>“ verwendet werden (siehe Seite 196 und 201).

Abb. 4.37
MODIFY

Ändern einer
Zeile der inter-

nen Tabelle
über den Tabel-

lenindex

4.4 Datentypen und Datenobjekte 205■

■

■

Beispiel

REPORT zmodifyfs.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: it_kunden TYPE TABLE OF st_kunden
 WITH KEY kunnr.
*Anlegen des Feldsymbols mit Bezug zum Zei-
*lentyp der int. Tabelle it_kunden
FIELD-SYMBOLS: <zl> LIKE LINE OF it_kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Feldsymbol mit zu ändernder Zeile verbinden
READ TABLE it_kunden WITH KEY
kundenname = 'Pflaume' ASSIGNING <zl>.
*Änderung der Komponente „Kundenname“
<zl>-kundenname = 'Birne'.
WRITE: / <zl>-kunnr, <zl>-kundenname.
*Ausgabe: 123245 Birne

Ändern interner Tabellen über eine Bedingung
Einen oder mehrere Zeilen einer internen Tabelle können Sie auch
über die Angabe einer logischen Bedingung ändern.

Syntax:
MODIFY <it> FROM <wa> TRANSPORTING f1 fn
WHERE <log. Bed.>.

it Tabelle, in der mehrere Zeilen geändert werden sollen.

wa Arbeitsbereich, der die Inhalte der zu ändernden Felder
enthält

f1...fn Felder der internen Tabelle, die geändert werden sollen.

log.
Bed.

Logische Bedingung, die für jede zu ändernde Zeile der in-
ternen Tabelle erfüllt sein muss.

Abb. 4.38
MODIFY Ändern
einer Zeile der
internen Tabelle
über ein Feld-
symbol

Tabelle 4.20

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

206

Belegung der Systemvariablen sy-subrc

sy-subrc = 0 Es wurde mindestens eine Änderung durchgeführt

sy-subrc = 4 Es wurde keine Änderung durchgeführt

Beispiel

REPORT zmodifywhere.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: it_kunden TYPE SORTED TABLE OF st_kunden
 WITH UNIQUE KEY kunnr,
 wa_kunden type st_kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
wa_kunden-kundenname = 'Müller'.
*Änderungen in allen Zeilen, für die die log.
*Bedingung kunnr <= '123245' gilt, durchführen
MODIFY it_kunden FROM wa_kunden
TRANSPORTING kundenname
WHERE kunnr <= '123245'.
LOOP AT it_kunden INTO wa_kunden.
 WRITE: / wa_kunden-kunnr,
 wa_kunden-kundenname.
ENDLOOP.

Die DELETE-Anweisung
Mit der DELETE-Anweisungen können eine oder mehrere Zeilen
einer internen Tabelle gelöscht werden. Das Löschen erfolgt über

■ die Zeilennummer (Index),

■ Feldinhalte der Tabellenschlüsselspalten (Tabelleschlüssel),

■ einen logischen Ausdruck.

Abb. 4.39
Ändern mehre-
rer Zeilen über

eine logische
Bedingung

4.4 Datentypen und Datenobjekte 207■

■

■

Belegung der Systemvariablen sy-subrc

sy-subrc = 0 Es wurde mindestens eine Zeile gelöscht.

sy-subrc = 4 Es wurde keine keine Zeile gelöscht.

Löschen über den Zeilenindex
Diese Möglichkeit Zeilen einer internen Tabelle zu löschen, steht
nur für Indextabellen (standard und sorted table) zur Verfügung.

Syntax:
DELETE <it> INDEX <n>.

it Interne Tabelle in der eine Zeile gelöscht werden soll

n Nummer der Zeile, die gelesen werden soll.

Beispiel

REPORT zdeleteindex.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE TABLE OF st_kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Lesen der Zeile, in der Kundenname = 'Pflaume'
*ist. Dabei wird sy-tabix mit der Zeilennummer
*der gelesenen Zeile geladen
READ TABLE it_kunden WITH KEY
kundenname = 'Pflaume' INTO wa_kunden.
*Prüfen, ob entsprechende Zeile gefunden wurde.
IF sy-subrc = 0.
 DELETE it_kunden INDEX sy-tabix.
ENDIF.
*Ausgabe der Tabelle über eine Loop-Schleife

Abb. 4.40
Löschen
einer Zeile der
internen Tabelle
über den
Zeilenindex

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

208

LOOP AT it_kunden INTO wa_kunden.
 WRITE:/ wa_kunden-kunnr,wa_kunden-kundenname.
ENDLOOP.

Löschen über den Tabellenschlüssel

Syntax 1:
DELETE TABLE <it> WITH TABLE KEY .<f1> = <i1>
 <f2> = <i2>
 <fn> = <in>.

it Interne Tabelle, in der eine Zeile gelöscht werden soll

f1...fn Tabellenschlüsselfeld 1...Tabellenschlüsselfeld 3

i1...in Inhalt der Schlüsselfelder in der zu löschenden Zeile

Beispiel

REPORT zdeleteschl.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE TABLE OF st_kunden
 WITH KEY kunnr.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
DELETE TABLE it_kunden
WITH TABLE KEY kunnr = '123245'.
*Ausgabe der Tabellenzeilen über eine
*Loop-Schleife
LOOP AT it_kunden INTO wa_kunden.
WRITE: / wa_kunden-kunnr,
 wa_kunden-kundenname.
ENDLOOP.

Abb. 4.41
Löschen

einer Zeile der
internen Tabelle
über den Tabel-

lenschlüssel

4.4 Datentypen und Datenobjekte 209■

■

■

Syntax 2:
DELETE TABLE <it> FROM <wa>.

it Interne Tabelle, in der eine Zeile gelöscht werden soll

f1...fn Tabellenschlüsselfeld 1...Tabellenschlüsselfeld 3

i1...in Inhalt der Schlüsselfelder in der zu löschenden Zeile

Beispiel

REPORT zdeleteschl.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE TABLE OF st_kunden
 WITH KEY kunnr.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*wa_kunden mit dem Inhalt des Schlüssel-
*feldes der zu löschenden Zeile laden
wa_kunden-kunnr = '123245'.
*Löschen der Zeile in der kunnr = '123245' ist
DELETE TABLE it_kunden FROM wa_kunden.
*Ausgabe der Tabellenzeilen über eine
*Loop-Schleife
LOOP AT it_kunden INTO wa_kunden.
 WRITE: / wa_kunden-kunnr,
 wa_kunden-kundenname.
ENDLOOP.

Löschen über einen logischen Ausdruck
Über einen logischen Ausdruck können mehrere Zeilen einer inter-
nen Tabelle gelöscht werden.

Abb. 4.42
Löschen einer
Zeile der inter-
nen Tabelle
über den
Arbeitsbereich

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

210

Syntax 1:
DELETE <it> WHERE <logischer Ausdruck>.

it Interne Tabelle, in der eine Zeile gelöscht werden soll

<logischer
Ausdruck>

Alle Zeilen, für die der logische Ausdruck gilt, werden
gelöscht.

Beispiel

REPORT zdeleteausdr.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE TABLE OF st_kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Löschen der Zeilen in denen
*kunnr >= '123245' und kunnr <= '234567' ist.
DELETE it_kunden WHERE
kunnr >= '123245' AND kunnr <= '234567'.
*Ausgabe der Tabellenzeilen über eine
*Loop-Schleife
LOOP AT it_kunden INTO wa_kunden.
 WRITE: / wa_kunden-kunnr,
 wa_kunden-kundenname.
ENDLOOP.

Sequentielles Bearbeiten von Tabellenzeilen
Mit der LOOP-Schleife können Sie die Zeilen der internen Tabelle
sequentiell bearbeiten.

Abb. 4.43
Löschen

mehrerer Zeilen
der internen Ta-

belle über eine
logische Bedin-

gung

4.4 Datentypen und Datenobjekte 211■

■

■

Syntax
LOOP AT <it> INTO <wa> [FROM n1 TO n2]

 [WHERE <logischer Ausdruck].

*Bearbeitung der Tabellenzeile

ENDLOOP.

it Interne Tabelle, die sequentiell bearbeitet werden soll

n1...n2 Bei Verwendung der FROM-Klausel werden nur die
Tabellenzeilen verarbeitet, deren Zeilennummern im
Intervall n1<=Zeilnnummer<=n2 liegen

logischer
Ausdruck

Bei Verwendung der WHERE-Klausel werden nur die
Tabellenzeilen bearbeitet, für die der logische Aus-
druck zutrifft

Die Systemvariable sy-tabix enthält den aktuellen Schleifenzähler.
Sie können diese Systemvariable nur innerhalb der Schleife benut-
zen. Nach dem Verlassen der Schleife wird sie wieder auf 0 gesetzt.

Prinzip der LOOP-Schleifenverarbeitung

Hinweis: Die hervorgehobenen Zeilen des Struktogrammes müssen
vom Programmierer in ABAP-Quellcode umgesetzt werden. Die
anderen Einträge dienen zum Verständnis der LOOP-Schleife und
werden automatisch ausgeführt.

Abb. 4.44
Wirkungsweise
der LOOP-
Schleife

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

212

Beispiel:
Im Beispiel werden alle Tabellenzeilen der internen Tabelle
it_kunden ausgegeben.

REPORT zloop.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(25),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden TYPE TABLE OF st_kunden
 WITH KEY kunnr.

START-OF-SELECTION.
*Int. Tabelle im Unterprogramm 'Fill' laden
 PERFORM fill.
*Ausgabe der Tabellenzeilen über eine
*Loop-Schleife
 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
 LOOP AT it_kunden INTO wa_kunden.
 WRITE: /(3) sy-tabix UNDER 'Position',
 wa_kunden-kunnr
 NO-ZERO UNDER 'Kundennummer',
 wa_kunden-kundenname
 UNDER 'Kundenname'.
 ENDLOOP.

TOP-OF-PAGE.
*Ausgabe der Spaltenüberschriften
 FORMAT COLOR COL_NORMAL INTENSIFIED ON.
 WRITE: 'Position',10 'Kundennummer',
 23 'Kundenname',47 '',/.

Ausgabe:

4.4.6.4
Tabellenoperationen
Operationen, die die gesamte interne Tabelle bearbeiten, sind:

4.4 Datentypen und Datenobjekte 213■

■

■

■ MOVE
(Zeilenweise kopieren der internen Tabelle),

■ REFRESH
(Löschen des Inhaltes der internen Tabelle ohne Freigabe des al-
lokierten (reservierten) Speicherbereiches),

■ FREE
(Löschen der internen Tabelle mit Freigabe des Speicherberei-
ches),

■ SORT
 (Sortieren der internen Tabelle),

■ DESCRIBE TABLE
(Ermitteln der Tabelleneigenschaften).

Weiterhin können Sie zwei interne Tabelle mit den mathematischen
Operatoren (=, >= ;<=, <, >, <>) miteinander vergleichen. Dabei
wird zuerst die Zeilenanzahl und danach (bei gleicher Zeilenanzahl)
die Zeileninhalte miteinander verglichen.

Die MOVE-Anweisung
Mit der MOVE-Anweisung wird eine interne Tabelle kopiert.

Syntax 1:
MOVE <it-Quelle> TO <it-Ziel>.

Syntax 2.
<it-Ziel> = <it-Quelle>.

Prinzip der MOVE-Anweisung

Die Zeilentypen der Quell- und der Zieltabelle sollten dabei gleich
sein.

Abb. 4.45
Wirkungsweise
der MOVE-An-
weisung bei in-
ternen Tabellen

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

214

Grundsätze der MOVE-Anweisung:

■ Die Zuordnung der zu kopierenden Felder der Quelltabelle zu
den Feldern der Zieltabelle erfolgt durch ihre physische Anord-
nung, nicht durch Namensgleichheit.

■ Sind die Typen der Quell- und Zielfelder unterschiedlich, er-
folgt eine automatische Typkonvertierung.

Die REFRESH-Anweisung
Die REFRESH-Anweisung löscht alle Zeilen der internen Tabelle.
Der von der Tabelle allokierte, d.h. reservierte Platz im Hauptspei-
cher bleibt erhalten.

Syntax:
REFRESH <it>.

Die FREE-Anweisung
Die FREE-Anweisung löscht alle Zeilen der internen Tabelle und
gibt den von der Tabelle allokierten Hauptspeicherbereich frei.

Syntax
FREE <it>.

Die SORT-Anweisung
Durch diese Anweisung können interne Tabellen nach beliebigen
Feldern sortiert werden.

Syntax
SORT <it> BY <feld1>[ascending/descending]
 <feld2>[ascending/descending]
 <feldn>[ascending/descending].

it Zu sortierende interne Tabelle

feld1…feldn Sortierfelder

ascending Sortierung aufsteigend (Standard)

descending Sortierung absteigend

Beispiel:
Im folgenden Programm wird eine interne Tabelle it_kunden mit
den Feldern „kunnr“, „kundenname“ und „kundenvorname“ nach
„kundenname“ und „kundenvorname“ aufsteigend sortiert und aus-
gegeben.

REFRESH

Free

Sort

4.4 Datentypen und Datenobjekte 215■

■

■

REPORT zsortierung.
...
SORT it_kunden BY kundenname kundenvorname.
LOOP AT it_kunden INTO wa_kunden.
 WRITE: /(3) sy-tabix,
 wa_kunden-kunnr NO-ZERO,
 wa_kunden-kundenname,
 wa_kunden-kundenvorname.
ENDLOOP.

Ausgabe

Die DESCRIBE-Anweisung
Mit Hilfe der DESCRIBE-Anweisung können folgende Eigenschaf-
ten einer internen Tabelle ermittelt werden:

■ aktuelle Anzahl der Zeilen,

■ Anzahl der initial reservierten Tabellenzeilen,

■ Tabellenart.

Prinzip:
Legen Sie für die zu ermittelnden Eigenschaften je eine Variable
entsprechend der folgenden Tabell an.

TYPE Verwendung Rückgabewert der
DESCRIBE-Anweisung

i Anzahl Zeilen Anzahl der Tabellenzeilen

i Anzahl Initialzeilen Mit dem optionalen Zusatz
„initial size“ angegebener Wert
für für die initial zu reservieren-
den Tabellenzeilen.

c
(Länge 1)

Tabellentyp T – Standard Table
S – Sorted Table
H – Hashed Table

DESCRIBE

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

216

Syntax:
DESCRIBE TABLE <it>
 LINES <Anzahl Zeilen>
 OCCURS <Anzahl Initialzeilen>
 KIND <Tabellenart>.

Beispiel
REPORT zdescribe.
TYPES: BEGIN OF st_kunden,
 kunnr(8) TYPE n,kundenname(10),
 END OF st_kunden.
DATA: wa_kunden TYPE st_kunden,
 it_kunden
 TYPE sorted TABLE OF st_kunden
 WITH unique KEY kunnr
 initial size 5,

 zeilen TYPE i,
 initialzeilen TYPE i,
 tabellenart.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
describe table it_kunden
lines zeilen
occurs initialzeilen
kind tabellenart.
write: / 'aktuelle Anzahl Tabellenzeilen',
 30 zeilen,
 / 'Tabellenart',39 tabellenart,
 / 'Initialzeilen',30 initialzeilen.

Ausgabe:

Wir wollen jetzt unser Bibliotheksprogramm YK04DBAS um eine
interne Tabelle ergänzen. In diese sollen 3 Buchbestandsdatensätze
geschrieben werden. Die Einträge werden zunächst als Texteingaben
im Programm vorgenommen, später werden wir diesen Teil des
Programmes ersetzen und die Buchbestandsdaten direkt aus der Da-
tenbanktabelle ZBESTAND holen.

4.4 Datentypen und Datenobjekte 217■

■

■

1. Legen Sie einen internen Tabellentyp int_zbestand mit folgen-
den Eigenschaften an:

■ Tabellentyp: sorted table

■ Tabellenschlüsselart: unique key

■ Tabellenschlüsselfeld: isbn.

2. Deklarieren Sie eine interne Tabelle it_zbestand mit dem unter
1. definierten Tabellentyp int_zbestand.

3. Füllen Sie die interne Tabelle it_zbestand über die bereits be-
stehende Struktur wa_zbestand mit 3 Zeilen, die Buchstamm-
daten enthalten. Denken Sie sich dafür sinvolle Werte für die
einzelnen Felder aus.

4. Geben Sie über eine LOOP-Schleife den Inhalt der Tabelle
it_zbestand aus. Die bisherige Ausgabe soll dabei um eine lau-
fende Nummer an der ersten Ausgabeposition ergänzt werden.

5. Stellen Sie über die DESCRIBE-Anweisung die Anzahl der
Tabellenzeilen fest und geben Sie diese nach der LOOP-
Schleife aus.

Lösung: YK04DBAS_5

Ihr Programm sollte folgende Ergänzungen bekommen haben (Die
Ergänzungen sind im Quelltext so hervorgehoben).

REPORT yk04dbas.
*Definition des Strukturtyps st_zbestand
TYPES: BEGIN OF st_zbestand,
 isbn TYPE zbestand-isbn,
 titel TYPE zbestand-titel,
 autor1 TYPE zbestand-autor1,
 kategorie TYPE zbestand-kategorie,
 bestand TYPE zbestand-bestand,
 ausgeliehen
 TYPE zbestand-ausgeliehen,
 verfuegbar(4) TYPE n,
 END OF st_zbestand.
*Definition des internen Tabellentyps
TYPES: int_zbestand
 TYPE SORTED TABLE OF st_zbestand
 WITH UNIQUE KEY isbn.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

218

DATA: it_zbestand TYPE int_zbestand,
 wa_zbestand TYPE st_zbestand,
 ausgabedatum TYPE sy-datum,
 ausgabezeit TYPE sy-uzeit,
 zeilen TYPE i.

START-OF-SELECTION.
*Systemdatum und -zeit in die Variablen
*eintragen
 ausgabedatum = sy-datum.
 ausgabezeit = sy-uzeit.
*Struktur mit sinnvollen Werten laden
 wa_zbestand-isbn = '3898421473'.
 wa_zbestand-titel = 'ABAP Objects'.
 wa_zbestand-autor1 = '101' .
 wa_zbestand-kategorie = 'EDV' .
 wa_zbestand-bestand = 30 .
 wa_zbestand-ausgeliehen = 10 .
*Berechnung der Anzahl verfügbarer Bücher
 wa_zbestand-verfuegbar =
 wa_zbestand-bestand
 - wa_zbestand-ausgeliehen.
*Struktur in die interne Tabelle einfügen
 INSERT wa_zbestand INTO TABLE it_zbestand.

*Struktur mit sinnvollen Werten laden
 wa_zbestand-isbn = '3540523979'.
 wa_zbestand-titel = 'EDV-orientierte BWL'.
 wa_zbestand-autor1 = '100' .
 wa_zbestand-kategorie = 'EDV;BWL' .
 wa_zbestand-bestand = 95 .
 wa_zbestand-ausgeliehen = 8 .
*Berechnung der Anzahl verfügbarer Bücher
 wa_zbestand-verfuegbar =
 wa_zbestand-bestand
 - wa_zbestand-ausgeliehen.
*Struktur in die interne Tabelle einfügen
 INSERT wa_zbestand INTO TABLE it_zbestand.
*Struktur mit sinnvollen Werten *laden
 wa_zbestand-isbn = '3827317894'.
 wa_zbestand-titel = 'ABAP-Übungsbuch'.
 wa_zbestand-autor1 = '116' .
 wa_zbestand-kategorie = 'EDV' .
 wa_zbestand-bestand = 20 .

4.4 Datentypen und Datenobjekte 219■

■

■

 wa_zbestand-ausgeliehen = 5 .
*Berechnung der Anzahl verfügbarer Bücher
 wa_zbestand-verfuegbar =
 wa_zbestand-bestand
 - wa_zbestand-ausgeliehen.
*Struktur in die interne Tabelle einfügen
 INSERT wa_zbestand INTO TABLE it_zbestand.

*Ausgabe der internen Tabelle
 LOOP AT it_zbestand INTO wa_zbestand.
 WRITE:
 /(3) sy-tabix,
 wa_zbestand-isbn UNDER 'ISBN'(002),
 wa_zbestand-titel UNDER 'Titel'(003),
 wa_zbestand-autor1 UNDER 'Autor'(004),
 (10) wa_zbestand-kategorie
 UNDER 'Kategorie'(005),
 wa_zbestand-verfuegbar
 UNDER verfügbar'(006).
 ENDLOOP.
 DESCRIBE TABLE it_zbestand
 LINES zeilen.
 WRITE: /,'Anzahl Bücher'(010),(3) zeilen.

TOP-OF-PAGE.
*Dieser Ereignisblock wird vom Laufzeitsystem
*aufgerufen, wenn eine neue Ausgabeseite
*begonnen wird
 FORMAT COLOR COL_HEADING INTENSIFIED ON.
 WRITE:'Ausgabeliste'(001),
 20 'Ausgabedatum'(007),
 ausgabedatum,
 'Ausgabezeit'(008),
 ausgabezeit,125 ''.
 FORMAT COLOR COL_HEADING INTENSIFIED OFF.
 WRITE: / 'Lfdnr'(009),
 7 'ISBN'(002) COLOR COL_KEY
 INTENSIFIED ON,
 18 'Titel'(003),
 85 'Autor'(004),
 107 'Kategorie'(005),
 117 'verfügbar'(006).

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

220

4.4.7
Globale Datentypen

In den vorigen Kapiteln wurden Datentypen über die TYPES-
Anweisung angelegt. Ihr Geltungsbereich ist beschränkt auf das
Programm, in dem sie definiert wurden. Sie werden deshalb auch als
programmlokale Datentypen bezeichnet. Im Gegensatz dazu können
globale Datentypen von jedem Programm benutzt werden. Sie wer-
den im ABAP-Dictionary definiert. Tabelle 4.21 zeigt die globalen
Datentypen und die Bestandteile ihrer Definition.

globaler
Datentyp

Bestandteile der Definition Bemerkung

Daten-
element

■ technische Beschreibung

■ Feldbezeichner

■ Text für F1-Hilfe

■ Suchhilfeanbindung

siehe Kapitel 3.2
„Domäne,
Datenelement,
Datenbankfeld“

Struktur-
typ

■ Komponenten der Struktur
einschl. Komponententyp

■ Suchhilfeanbindung

interner
Tabellen-
typ

■ Zeilentyp

■ Tabellenart

■ Schlüssel

Vorgehensweise: Anlegen eines globalen Strukturtyps

Starten Sie das ABAP-Dictionary (Werkzeuge ABAP Work-
bench Entwicklung SE11 Dictionary). Aktivieren Sie den
Auswahlknopf „Datentyp“ und geben Sie den Namen des Struktur-
typs ein (im Beispiel „zst_zbestand)

Tabelle 4.21
globale Daten-

typen

Abb. 4.46
ABAP-

Dictonary:
Einstieg zum

Anlegen eines
Strukturtyps

4.4 Datentypen und Datenobjekte 221■

■

■

Aktivieren Sie im Folgebild den Auswahlknopf „Struktur“.

Geben Sie im Folgebild „Dictionary: Struktur pflegen“ einen Kurz-
text ein. Als Komponenten der anzulegenden Struktur sollen Felder
aus der Datenbanktabelle ZBESTAND sowie eine neue Komponen-
te „VERFUEGBAR“ verwendet werden. Wählen Sie, um Felder aus
der Tabelle ZBESTAND in den Strukturtyp zu übernehmen, das
Menü „Bearbeiten Felder übernehmen“.

Im Folgebild „Komponenten übernehmen“ geben Sie den Namen
der Datenbanktabelle (ZBESTAND) ein.

Wählen Sie im Bild „Feldauswahl aus Tabelle ZBESTAND“ die
Felder ensprechend der Abb. 4.50 aus, klicken Sie dann die Druck-
taste „Übernehmen“.

Abb. 4.47
Auswahl des

anzulegenden
Datentyps

Abb. 4.48
Übernahme von

Feldern einer
Datenbank-

tabelle

Abb. 4.49
Alle oder nur ei-
nige Felder
auswählen

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

222

Um die ausgewählten Felder zu übernehmen, klicken Sie im Folge-
bild die Schaltfläche „Einfügen“.

Zum Anlegen der Komponente „VERFUEGBAR“ tragen Sie den
Komponentennamen in die Spalte „Komponente“ ein und klicken
dann die Drucktaste „Eingebauter Typ“. Pflegen Sie die technischen
Eigenschaften entsprechend der Abb. 4.52. Alternativ können Sie
auch den Komponententyp „YRVP_BESTAND“ verwenden.

Abb. 4.50
Auswahl der zu

übernehmenden
Felder

Abb. 4.51
Übernehmen

der ausgewähl-
ten Felder

4.4 Datentypen und Datenobjekte 223■

■

■

Aktivieren Sie Ihren Strukturtyp und weisen Sie ihm dabei eine
Entwicklungsklasse und einen Workbenchauftrag zu.

Vorgehensweise: Anlegen eines globalen internen Tabellentyps

Starten Sie das ABAP-Dictionary (Werkzeuge ABAP Work-
bench Entwicklung SE11 Dictionary), aktivieren Sie den
Auswahlknopf „Datentyp“ und geben Sie den Namen des Tabellen-
typs ein.

Aktivieren Sie im Folgebild den Auswahlknopf „Tabellentyp“.

Im Folgebild „Dictionary: Tabellentyp pflegen“ ist eine Kurzbe-
schreibung,, der benötigten Zeilentyp (im Beispiel zst_zbestand aus

Abb. 4.52
Anlegen einer
neuen Kompo-
nente

Abb. 4.53
ABAP-
Dictonary:
Einstieg zum
Anlegen eines
Tabellentyps

Abb. 4.54
Auswahl des
anzulegenden
Datentyps

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

224

der Vorgehensweise „Anlegen eines globalen Strukturtyps“) und die
Tabellenart einzutragen.

Wechseln Sie in die Registerkarte „Schlüssel“ und wählen Sie dort
die Angaben zum Tabellenschlüssel aus.

Aktivieren Sie Ihren Tabellentyp und weisen Sie ihm dabei eine
Entwicklungsklasse und einen Workbenchauftrag zu.

Ersetzen Sie in Ihrem Programm YK04DBAS alle programmloka-
len durch globale Typdefinitionen.

1. Legen Sie einen globalen Strukturtyp zst_zbestand an. Er soll
die gleichen Komponenten besitzen wie der bisher verwende-
tet programmlokale Strukturtyp st_zbestand.

Abb. 4.55
Auswahl des

Zeilentyps und
der Tabellenart

Abb. 4.56
Auswahl der

Komponenten
des Tabellen-

schlüssels

4.5 Kontrollstrukturen 225■

■

■

2. Legen Sie einen globalen internen Tabellentyp zint_zbestand
an. Verwenden Sie als Zeilentyp den vorher angelegten Struk-
turtyp zst_bestand. Als Zugriffsart wählen Sie „Sortierte Ta-
belle“ aus. Sorgen Sie dafür, dass ein Tabellenschlüssel vom
Typ „unique key“ mit dem Schlüsselfeld „ISBN“ angelegt
wird.

3. Löschen Sie in Ihrem Programm YK04DBAS die TYPES-
Anweisungen.

4. Ersetzen Sie in den DATA-Anweisungen die programmloka-
len Datentypen st_zbestand und int_zbestand durch die globa-
len Datentypen zst_zbestand bzw. zint_zbestand.

Lösung: YK04DBAS_6

Ihre mit den globalen Datentypen zst_zbestand und zint_zbestand
vorgenommenen Datendeklarationen sollten wie folgt aussehen:

REPORT YK04DBAS
DATA: it_zbestand TYPE zint_zbestand,
 wa_zbestand TYPE zst_zbestand,...

4.5
Kontrollstrukturen

Kontrollstrukturen werden eingesetzt, um den Ablauf eines Pro-
grammes zu steuern. So können z.B. Anweisungen in Abhängigkeit
eines logischen Ausdruckes einmalig oder mehrfach ausgeführt
werden. Es können zwei Arten von Kontrollstrukturen unterschieden
werden:

1. Bedingte Verzweigungen

2. Schleifen.

4.5.1
Bedingte Verzweigungen

Die IF-Anweisung
Die IF-Anweisung wird benötigt, um Anweisungen in Abhängigkeit
von logischen Ausdrücken auszuführen. Die folgende Abbildung
soll die Wirkungsweise der IF-Anweisung und ihre Syntax veran-
schaulichen.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

226

Beispiel
DATA: BEGIN OF wa,
 jahr(4),monat(2),tag(2),
 END OF wa.
wa = sy-datum.
IF wa-monat <= '06'.
 WRITE: '1. Halbjahr'.
ELSEIF wa-monat <= '12'.
 WRITE: '2. Halbjahr'.
ELSE.
 WRITE: 'ungültiges Datum'.
ENDIF.

IF-Anweisungen können beliebig geschachtelt werden, d.h. inner-
halb eines Anweisungsblockes können wiederum IF-Anweisungen
programmiert werden.

Die CASE-Anweisung
Die CASE-Anweisung stellt ebenfalls eine bedingte Programmver-
zweigung dar. Bei dieser Anweisung wird der Inhalt zweier Daten-

Abb. 4.57
Wirkungsweise
und Syntax der

IF-Anweisung

4.5 Kontrollstrukturen 227■

■

■

objekte verglichen. Die folgende Abbildung veranschaulicht die
Wirkungsweise der CASE-Anweisung und ihre Syntax.

Beispiel
DATA: BEGIN OF wa,
 jahr(4),monat(2),tag(2),
 END OF wa.
wa = sy-datum.
CASE wa-monat.
 WHEN '01'.
 WRITE: 'Januar'.
 WHEN '02'.
 WRITE: 'Februar'.
 WHEN '03'.
 WRITE: 'März'.
 WHEN OTHERS.
 WRITE:'Monat liegt nicht im I. Quartal'.
ENDCASE.

CASE-Anweisungen können beliebig geschachtelt werden.

Abb. 4.58
Wirkungsweise
und Syntax der
CASE- Anwei-
sung

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

228

4.5.2
Programmschleifen

Schleifen werden benötigt, um Anweisungenblöcke mehrmals hin-
tereinander ausführen zu können, ohne sie wiederholt zu implemen-
tieren. In ABAP/4 gibt es folgende Schleifen:

■ DO-Schleifen, WHILE-Schleifen,

■ LOOP-Schleifen,
(siehe ...)

■ SELECT-Schleife zur Bearbeitung von Datenbanktabellen

Die DO-Schleife
Syntax 1:

Die Systemvariable sy-index enthält während der Schleifenverarbei-
tung die Anzahl der bisherigen Schleifendurchläufe.

Abb. 4.59
Wirkungsweise
von Programm-

schleifen

Abb. 4.60
Wirkungsweise
und Syntax der

DO-Schleife

4.5 Kontrollstrukturen 229■

■

■

Achtung: Wird die EXIT-Anweisung nicht erreicht, haben Sie eine
sogenannte Endlosschleife programmiert.

Beispiel:
REPORT zdo1.
DATA:
zins%(3) TYPE p DECIMALS 2 VALUE '12.5',
anfangskap TYPE p DECIMALS 2 VALUE '1000',
wunschkap TYPE p DECIMALS 2 VALUE '2000',
kap TYPE p DECIMALS 2.

START-OF-SELECTION.
 kap = anfangskap.
DO.

 kap = kap + kap * zins% / 100.
 WRITE: /(2) sy-index UNDER 'Jahr',
 kap UNDER 'Wert'.
 IF kap >= wunschkap.
 EXIT.
 ENDIF.
 ENDDO.

TOP-OF-PAGE.
 WRITE:'Wertentwicklung: Anfangskapital =',
 (8) anfangskap,
 /'Zinssatz = ',zins%,'%',/,
 /'Jahr',10 'Wert'.

Das Beispiel berechnet in einer DO-Schleife die Wertentwicklung
einer Kapitalanlage. Vor dem Eintritt in die Schleifenverarbeitung
wird die Variable „kap“, die in der Schleife kummuliert wird, auf
den Anfangswert (Inhalt der Variablen „anfangskap“) geladen. Ab-
gebrochen wird die Schleifenverarbeitung, wenn die Geldanlage den
gewünschten Endwert („wunschkap“) erreicht hat.

Hinweis: Bei der Abbruchbedingung sollten Sie nicht auf Gleichheit
prüfen. Insbesondere bei Berechnungen ist die Wahrscheinlichkeit
hoch, dass das Ergebnis nicht 100%ig mit dem Vergleichswert über-
einstimmt.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

230

Ausgabe:

Syntax 2:

Bei dieser Schleife wird die Anzahl der Schleifendurchläufe als Lite-
ral oder als Variable im Schleifenkopf angegeben. Die im Struk-
togramm angegebene Abfrage „Anzahl der Schleifendurchläufe er-
reicht?“ dient nur zum Verdeutlichen der Arbeitsweise dieser Schlei-
fe. Die Schleife wird automatisch beendet, eine Abfrage im Pro-
gramm ist nicht notwendig.

Beispiel:
REPORT zdo2.
DATA:
zins%(3) TYPE p DECIMALS 2 VALUE '12.5',
anfangskap TYPE p DECIMALS 2 VALUE '1000',
laufzeit TYPE n VALUE '5',
kap TYPE p DECIMALS 2.

START-OF-SELECTION.
 kap = anfangskap.
 DO laufzeit TIMES.
 kap = kap + kap * zins% / 100.

Abb. 4.61
Wirkungsweise
und Syntax der

DO n TIMES-
Schleife

4.5 Kontrollstrukturen 231■

■

■

 WRITE: /(2) sy-index UNDER 'Jahr',
 kap UNDER 'Wert'.
 ENDDO.

TOP-OF-PAGE.
 WRITE:'Wertentwicklung: Anfangskapital =',
 (8) anfangskap,
 /'Zinssatz = ',zins%,'%',/,
 /'Jahr',10 'Wert'.

In diesem Beispiel wird die Wertentwicklung einer Kapitalanlage
über eine vorgegeben Laufzeit berechnet. Pro Jahr muss die Schleife
einmal durchlaufen werden. Vor dem Eintritt in die Schleifenverar-
beitung wird die Variable „kap“, die in der Schleife kummuliert
wird, auf den Anfangswert (Inhalt der Variablen „anfangskap“) ge-
laden. Abgebrochen wird die Schleifenverarbeitung nach 5 Schlei-
fendurchläufen.

Ausgabe:

Die WHILE-Schleife
Syntax

Abb. 4.62
Wirkungsweise
und Syntax der
WHILE-Schleife

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

232

Die Schleife wird durchlaufen, wenn der im Schleifenkopf angege-
bene logische Ausdruck wahr ist. Die im Struktogramm angegebene
Abfrage „logischer Ausdruck wahr?“ dient nur zum Verdeutlichen
der Arbeitsweise dieser Schleife.

Beispiel:
REPORT zwhile.
DATA:
zins%(3) TYPE p DECIMALS 2 VALUE '12.5',
anfangskap TYPE p DECIMALS 2 VALUE '1000',
wunschkap TYPE p DECIMALS 2 VALUE '2000',
kap TYPE p DECIMALS 2.

START-OF-SELECTION.
 kap = anfangskap.
 WHILE kap <= wunschkap.
 kap = kap + kap * zins% / 100.
 WRITE: /(2) sy-index UNDER 'Jahr',
 kap UNDER 'Wert'.
 ENDWHILE.

TOP-OF-PAGE.
 WRITE:'Wertentwicklung: Anfangskapital =',
 (8) anfangskap,
 /'Zinssatz = ',zins%,'%',/,
 /'Jahr',10 'Wert'.

Im Beispiel wird die Wertentwicklung einer Kapitalanlage in einer
WHILE-Schleife berechnet. Vor dem Eintritt in die Schleifenver-
arbeitung wird die Variable „kap“, die in der Schleife kummuliert
wird, auf den Anfangswert (Variable „anfangskap“) geladen. Die
Schleife wird solange durchlaufen, wie der Wert der Kapitalanlage
kleiner oder gleich dem „Wunschkapital“ ist (kap <= wunschkap).

4.5.3
Logische Ausdrücke

In ABAP/4 stehen Ihnen folgende Operatoren für logische Ausdrü-
cke zur Verfügung:

4.5 Kontrollstrukturen 233■

■

■

Operatoren Bezeichnug

Variante 1 Var. 2

Beispiel / Erklärung

Gleich
(equal)

EQ = do1 = do2.
do1 EQ '123'.

Ungleich
(not equal)

NE <> do1 <> do2.
do1 NE '123'.

größer als
(greater than)

GT > do1 > do2.
do1 GT '123'.

größer/gleich
(greater /
equal)

GE >= do1 >= do2.
do1 GE '123'.
do1 GE do2.

Kleiner
(less than)

LT < do1 < do2.
do1 LT '123'.

kleiner/gleich
(less / equal)

LE <= do1 <= do2.
do1 LE do2.

Zwischen
(between)

BETWEEN
AND

 do1 BETWEEN do2 AND
do3

Initialwert
(initial)

IS INITIAL do1 IS INITIAL.
Der Ausdruck ist wahr, wenn
do1 mit seinem Initialwert
geladen ist.

UND-
Verbindung
(and)

AND do1 = do2 AND do3 > do4.
Der Ausdruck ist wahr, wenn
beide Teilausdrücke wahr
sind.

ODER-
Verbindung
(or)

OR do1 = do2 OR do3 > do4.
Der Ausdruck ist wahr, wenn
einer der beide Teilausdrücke
wahr ist.

Negation
(not)

NOT do1 NOT IS INITIAL.
Der Ausdruck ist wahr, wenn
do1 nicht mit seinem Initial-
wert geladen ist.

Verknüpfungsregeln bei AND, OR und NOT

■ NOT bindet stärker als AND

■ AND bindet stärker als OR.

Der logische Ausdruck
NOT do1 < do2 OR do2 > do3 AND do2 = do5.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

234

entspricht dem logischen Ausdruck
NOT (do1 < do2 OR (do2 > do3 AND do2 = do5).

Hinweise:

■ Setzen Sie aus Gründen der Übersichtlichkeit und der Fehler-
vermeidung auch dann Klammern, wenn das nicht unbedingt
notwendig ist.

■ Beachten Sie, dass vor und nach Operatoren je ein Leerzeichen
stehen muss. Auch Klammern sind Operatoren.

4.6
Lesen von Daten aus Datenbanktabellen

Der größte Teil aller Daten des SAP-Systems ist im relationalen Da-
tenbanksystem gespeichert. Der Zugriff auf die Daten erfolgt über
die Abfragesprache SQL (Structured Query Language). SQL weist,
trotz Standardisierung, herstellerspezifische Eigenschaften auf. Pro-
gramme, in denen SQL-Anweisungen direkt verwenden werden,
sind deshalb abhängig vom eingesetzten Datenbanksystem. Damit
ABAP/4-Programme datenbankunabhängig entwickelt werden kön-
nen, stellt das R/3-System eine eigene Abfragesprache namens
„Open-SQL“ und eine Datenbankschnittstelle zur Verfügung.

Die Datenbankschnittstelle setzt Open-SQL-Anweisungen in (da-
tenbankabhängige) SQL-Anweisungen um. SQL-Anweisungen kön-
nen auch direkt im ABAP-Programm eingesetzt werden. Die da-
durch erreichbare geringe Performanceverbesserung wiegt in der
Regel den Nachteil der Datenbankabhängigkeit nicht auf.

Abb. 4.63
Datenbankab-

fragen über SQL
und OPEN-SQL

4.6 Lesen von Daten aus Datenbanktabellen 235■

■

■

Hinweis: SQL-Anweisungen werden in diesem Buch nicht behan-
delt.

4.6.1
Die „SELECT-Anweisung“ als Schleife

Die SELECT-Anweisung liest Datensätze einer Datenbanktabelle.
In Ihrer Grundform arbeitet diese Anweisung als Schleife.

Syntax

Die SELECT-Anweisung belegt folgende Systemvariablen:

sy-subrc Mit 0 belegt, wenn durch die SELECT-Anweisung Da-
tensätze der ausgewählten Datenbanktabelle identifiziert
wurden. Wurden keine Datensätze gefunden, wird sy-
subrc mit 4 geladen.

sy-dbcnt enthält die Nummer des aktuell bearbeiteten Datensatzes.
Diese Variable steht auch nach dem Verlassen der
SELECT-Schleife zur Verfügung. Sie enthält dann die
Anzahl der identifizierten Datensätze.

Die Select-Anweisung besteht aus einer Reihe von Klauseln. Die
wichtigsten werden nachfolgend beschrieben:

Die SELECT-Klausel
Mit der SELECT-Klausel wird angegeben, welche Felder aus wel-
cher Datenbanktabelle gelesen werden sollen.

Abb. 4.64
Wirkungsweise
der SELECT-
Anweisung als
Schleife

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

236

Syntax:
SELECT <Feldliste> FROM <Datenbanktabelle>
[CLIENT SPECIFIED].

Als Feldliste werden, durch Leerzeichen getrennt, die zu lesenden
Felder der Datenbanktabelle angegeben. Sollen alle Felder gelesen
werden, kann das durch die Angabe eines * angewiesen werden.

Durch den optionalen Zusatz „CLIENT SPECIFIED“ können Da-
tensätze beliebiger Mandanten in die Ergebnismenge geschrieben
werden. Ohne diesen Zusatz werden von der SELECT-Anweisung
nur Datensätze des aktuellen Mandanten identifiziert.

Beispiel 1:

Aus der Datenbanktabelle ZBESTAND sollen die Felder ISBN,
TITEL und AUTOR1 gelesen werden.

SELECT isbn titel autor1 FROM zbestand.
* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbcnt
ENDSELECT.

Beispiel 2:
Es sollen alle Felder der Tabelle ZBESTAND gelesen werden:

SELECT * FROM zbestand.
* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbcnt
ENDSELECT.

Die INTO-Klausel
Die INTO-Klausel gibt an, wohin die mit der SELECT-Klausel ge-
lesenen Daten, geschrieben werden. In der Regel wird hier eine

Abb. 4.65
Wirkungsweise

der Feldliste

4.6 Lesen von Daten aus Datenbanktabellen 237■

■

■

Struktur angegeben. Die Komponenten der Struktur müssen in der
gleichen Reihenfolge angelegt sein, wie die Feldliste der SELECT-
Klausel.

Syntax:
SELECT <Feldliste> FROM <Datenbanktabelle>
INTO <Struktur>.
* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbcnt
ENDSELECT.

Beispiel:

REPORT zselectinto.
DATA: BEGIN OF wa_zbestand,
 zisbn TYPE zbestand-isbn,
 ztitel TYPE zbestand-titel,
 zautor1 TYPE zbestand-autor1,
 END OF wa_zbestand.

START-OF-SELECTION.
 SELECT isbn titel autor1 FROM zbestand
INTO wa_zbestand.

 WRITE: / wa_zbestand-zisbn,
 wa_zbestand-zautor1,
 wa_zbestand-ztitel.
ENDSELECT.

 IF sy-subrc <> 0.
 WRITE: 'Keine Datensätze gefunden'.
 ENDIF.

Abb. 4.66
Wirkungsweise
der INTO-
Klausel

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

238

Wollen Sie alle Felder der Datenbanktabelle lesen (SELECT *
FROM...) gibt es die Möglichkeit, mit der TABLES-Anweisung ei-
ne Standardstruktur mit allen Feldern der Datenbanktabelle zu er-
zeugen. Die Standardstruktur hat den gleichen Namen wie die Da-
tenbanktabelle.

Hinweis:
Diese Vorgehensweise wird von der SAP nicht mehr empfohlen.
Die TABLES-Anweisung soll nur noch als Schnittstelle zu Dynpros
benutzt werden.

Syntax der TABLES-Anweisung:
TABLES <datenbanktabelle>.

Wenn Sie als Zielstruktur die mit TABLES angelegte Standardstruk-
tur benutzen, können Sie auf die INTO-Klausel verzichten.

Beispiel:
REPORT zselect.
TABLES: zbestand.
START-OF-SELECTION.

SELECT * FROM zbestand.
 WRITE: / zbestand-isbn, zbestand-autor1,
 zbestand-titel.

ENDSELECT.
 IF sy-subrc <> 0.
 WRITE: 'Keine Datensätze gefunden'.
 ENDIF.

Alternative:
REPORT zselect.
DATA: wa_zbestand type zbestand.
START-OF-SELECTION.
 SELECT * FROM zbestand
 INTO wa_zbestand.
 WRITE: / wa_zbestand-isbn,
 wa_zbestand-autor1,
 wa_zbestand-titel.
 ENDSELECT.
 IF sy-subrc <> 0.
 WRITE: 'Keine Datensätze gefunden'.
 ENDIF.

4.6 Lesen von Daten aus Datenbanktabellen 239■

■

■

Die INTO CORRESPONDING FIELDS OF-Klausel
Der Zusatz INTO CORRESPONDING FIELDS OF bewirkt, dass
die Zuordnung der Felder der Feldliste zu den Feldern der Zielstruk-
tur nicht über ihre übereinstimmende Reihenfolge sondern durch ih-
re Namensgleichheit erfolgt.

Syntax:
SELECT <Feldliste> FROM <Datenbanktabelle>
INTO CORRESPONDING FIELDS OF <Struktur>.
* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbcnt
ENDSELECT.

Beispiel:

REPORT zselect.
DATA: BEGIN OF wa_zbestand,
 autor1 TYPE zbestand-autor1,
 isbn TYPE zbestand-isbn,
 verfuegbare_Anzahl TYPE i,
 titel TYPE zbestand-titel,
 END OF wa_zbestand.

START-OF-SELECTION.
 SELECT isbn titel autor1 FROM zbestand
 INTO CORRESPONDING FIELDS OF wa_zbestand.
 WRITE: / wa_zbestand-isbn,
 wa_zbestand-autor1,
 wa_zbestand-titel.
 ENDSELECT.

Abb. 4.67
Wirkungsweise
der INTO COR-
RESPONDING
FIELDS OF-
Klausel

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

240

 IF sy-subrc <> 0.
 WRITE: 'Keine Datensätze gefunden'.
 ENDIF.

Die WHERE-Klausel
Die WHERE-Klausel wählt die Datensätze der Datenbanktabelle
aus, die verarbeitet werden sollen.

Syntax:
SELECT <Feldliste> FROM <Datenbanktabelle>
INTO…
WHERE <Feld1> <Operator> <Vergleichswert1>
[<log. Operator> <Feld2> <Operator> <Vergleichswert2>
[<log. Operator> <Feldn> <Operator> <Vergleichswertn>].
* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbcnt
ENDSELECT.

Beispiel

REPORT zselect.
DATA:
BEGIN OF wa_zbestand,
 autor1 TYPE zbestand-autor1,
 isbn TYPE zbestand-isbn,
 titel TYPE zbestand-titel,
END OF wa_zbestand,
v_autor1 TYPE zbestand_tw-autor1 VALUE 116',
v_kat TYPE zbestand-kategorie VALUE 'EDV'.

START-OF-SELECTION.
SELECT isbn titel autor1 FROM zbestand

Abb. 4.68
Wirkungsweise

der WHERE-
Klausel

4.6 Lesen von Daten aus Datenbanktabellen 241■

■

■

 INTO CORRESPONDING FIELDS OF wa_zbestand
 WHERE autor1 = v_autor1
 AND kategorie = v_kat.
 WRITE: / wa_zbestand-isbn,
 wa_zbestand-autor1,
 wa_zbestand-titel.
ENDSELECT.

Die ORDER BY-Klausel
Die Ergebnismenge einer Select-Anweisung kann durch die ORDER
BY-Klausel sortiert werden.

Syntax 1:
SELECT <Feldliste> FROM <Datenbanktabelle>
INTO...
WHERE...
ORDER BY <Feld1> [ASCENDING/DESCENDING]
 <Feld2> [ASCENDING/DESCENDING]
 <Feldn> [ASCENDING/DESCENDING]
* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbcnt
ENDSELECT.

Durch die Angabe der optionalen Parameter erfolgt die Sortierung
der Ergebnismenge aufsteigend (ASCENDING) oder absteigend
(DESCENDING). Ohne die Angabe dieser Parameter erfolgt eine
aufsteigende Sortierung.

Hinweis:
Ist zu der Feldkombination <Feld1> <Feld2> <Feldn> kein Sekun-
därindex angelegt, wird die Sortierung der Ergebnismenge zur Lauf-
zeit des Programmes auf dem Datenbankserver vorgenommen. Es ist
in diesem Fall laufzeitgünstiger, die Ergebnismenge in eine interne
Tabelle zu schreiben und diese dann mit der SORT-Anweisung zu
sortieren.

Syntax 2:
SELECT <Feldliste> FROM <Datenbanktabelle>
INTO...
WHERE...
ORDER BY PRIMARY KEY.

Die Angabe „PRIMAR KEY“ in der ORDER BY-Klausel bewirkt
eine Sortierung der Ergebnismenge entsprechend des Primärschlüs-
sels.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

242

Hinweis:
Die in der ORDER BY-Klausel angegebenen Felder müssen in der
Feldliste der SELECT-Klausel enthalten sein.

4.6.2
Einzelsatzzugriff mit der „Select single-
Anweisung“

Werden in der WHERE-Klausel alle Schlüsselfelder der Datenbank-
tabelle spezifiziert, besteht die Ergebnismenge der SELECT-
Anweisung aus genau einem Datensatz. In diesem Fall kann die
SELECT-Anweisung mit dem Zusatz „SINGLE“ ergänzt werden.
Dadurch arbeitet die SELECT-Anweisung nicht mehr als Schleife
sondern greift genau auf den Datensatz, der durch die WHERE-
Klausel identifiziert wird, zu.

Syntax:
SELECT SINGLE <Feldliste>
INTO…
WHERE <log.Ausdruck, der alle Schlüsselfelder spezifiziert>.

Hinweise:

■ Da diese Anweisung nicht als Schleife arbeitet, entfällt die
ENDSELECT-Anweisung.

■ Durch die SELECT-Anweisung werden nur Datensätze des ak-
tuellen Mandanten bearbeitet. Der Mandant darf deshalb nicht
als Parameter der WHERE-Klausel angegeben werden. Sollen
durch die SELECT-Anweisung Datensätze anderer Mandanten
identifiziert werden, ist der Zusatz „CLIENT SPECIFIED“ ein-
zusetzen. Weitere Informationen dazu finden Sie in der Schlüs-
selwortdokumentation zu „FROM“.

Beispiel:

Abb. 4.69
SELECT
SINGLE

4.6 Lesen von Daten aus Datenbanktabellen 243■

■

■

REPORT zselect.
DATA: wa_zbestand TYPE zbestand_tw,
 v_isbn TYPE zbestand_tw-isbn
 VALUE '3827317886'.

START-OF-SELECTION.
SELECT SINGLE * FROM zbestand_tw

 INTO wa_zbestand
 WHERE isbn = v_isbn.

 IF sy-subrc <> 0.
 WRITE: 'Keine Datensätze gefunden'.
 ELSE.
 WRITE: / wa_zbestand-isbn,
 wa_zbestand-autor1,
 wa_zbestand-titel.
 ENDIF.

4.6.3
Array-Fetch – Laden einer internen Tabelle mit
Daten aus einer Datenbanktabelle

Der Array-Fetch ist die performancegünstigste Möglichkeit, eine
Menge von Datensätzen der Datenbanktabelle in eine interne Tabel-
le zu schreiben. Die Datensätze werden dabei nicht sequentiell, d.h.
einzeln, sondern als Block in die interne Tabelle übertragen.

Syntax:
SELECT <Feldliste> FROM <Datenbanktabelle>
INTO [CORRESPONDING FIELDS OF] TABLE <int. Tabelle>
WHERE….

Hinweis:

■ Da beim Array-Fetch die Daten „in einem Block“ von der Da-
tenbanktabelle in die interne Tabelle geschrieben werden und
die SELECT-Anweisung somit nicht als Schleife arbeitet, ent-
fällt die ENDSELECT-Anweisung.

■ Die Klausel „CORRESPONDING FIELDS OF“ bewirkt, dass
der Inhalt namensgleicher Felder von der Datenbanktabelle in
die interne Tabelle transportiert wird. Ohne diesen Zusatz er-
folgt die Zuordnung der Felder über die (übereinstimmende)
Reihenfolge der Felder der Feldliste und dem Zeilentyp der in-
ternen Tabelle.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

244

Beispiel:

REPORT zselect.
DATA: BEGIN OF wa_zbestand,
 isbn TYPE zbestand-isbn,
 autor1 TYPE zbestand-autor1,
 titel TYPE zbestand-titel,
 END OF wa_zbestand,

 it_zbestand LIKE TABLE OF
 wa_zbestand,

 v_autor1 TYPE zbestand-autor1
 VALUE '116'.

START-OF-SELECTION.
SELECT isbn autor1 titel FROM zbestand
 INTO CORRESPONDING FIELDS OF TABLE it_zbestand
 WHERE autor1 = v_autor1.

 IF sy-subrc <> 0.
 WRITE: 'Keine Datensätze gefunden'.
 ELSE.
 LOOP AT it_zbestand INTO wa_zbestand.
 WRITE: / wa_zbestand-isbn,
 wa_zbestand-autor1,
 wa_zbestand-titel.
 ENDLOOP.
 ENDIF.

Abb. 4.70
ARRAY-Fetch

4.6 Lesen von Daten aus Datenbanktabellen 245■

■

■

Das Programm YK04DBAS soll nun so geändert werden, dass die
interne Tabelle über einen Array-Fetch aus der Tabelle ZBESTAND
geladen wird. Die Ergebnismenge soll alle Bücher des Autors mit
der Autorennummer 116 (AUTOR1 = '116') enthalten.

1. Löschen Sie die Stellen im Quelltext, in denen die interne Ta-
belle IT_ZBESTAND mit fiktiven Daten geladen wird.

2. Fügen Sie eine SELECT-Anweisung ein, die die interne Ta-
belle mit den gewünschten Daten füllt.

3. Füllen Sie die interne Tabelle it_zbestand durch einen Array-
Fetch über die Datenbanktabelle ZBESTAND.

4. Legen Sie eine Struktur WA_ZAUTOREN mit Bezug zur Da-
tenbanktabelle ZAUTOREN an. Fügen Sie in die LOOP-
Schleife zur Datenausgabe eine SELECT SINGLE-Anweisung
zur Datenbanktabelle ZAUTOREN ein. Diese Anweisung soll
über die Autorennummer den jeweiligen Autorenstammsatz
selektieren und in die Struktur WA_ZAUTOREN schreiben.
(AUTORENNR = ZBESTAND-AUTOR1)

5. Geben Sie an Stelle der Autorennummer (WA_ZBESTAND-
AUTOR1) den Namen des Autors aus (WA_ZAUTOREN-
NAME).

6. Die Ausgabezeilen sollen abwechselnd im Format
FORMAT COLOR COL_NORMAL INTENSIFIED ON und
FORMAT COLOR COL_NORMAL INTENSIFIED OFF er-
folgen. Legen Sie dazu eine Variable FARBE vom Type C mit
der Länge 1 an. Über folgende Syntax könnte dann das alter-
nierende Format eingestellt werden:
IF farbe = '1'.
 FORMAT COLOR COL_NORMAL INTENSIFIED ON.
 farbe = '0'.
ELSE.
 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
 farbe = '1'.
ENDIF.

Lösung: YK04DBAS_7

Ihr Programm sollte jetzt folgende Änderungen bzw. Ergänzungen
enthalten:

REPORT yk04dbas.
DATA: it_zbestand TYPE zint_zbestand,

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

246

 wa_zbestand TYPE zst_zbestand,
 wa_zautoren TYPE zautoren,
 ausgabedatum TYPE sy-datum,
 ausgabezeit TYPE sy-uzeit,
 zeilen TYPE i,farbe.

START-OF-SELECTION.
 ausgabedatum = sy-datum.
 ausgabezeit = sy-uzeit.
*it_zbestand über Arra-Fetch laden
 SELECT * FROM zbestand
 INTO CORRESPONDING FIELDS OF TABLE it_zbestand
 WHERE autor1 = '116'.

*Ausgabe der internen Tabelle
 LOOP AT it_zbestand INTO wa_zbestand.
*IF-Anweisung zur Einstellung der Farbe
 IF farbe = '1'.
 FORMAT COLOR COL_NORMAL INTENSIFIED ON.
 farbe = '0'.
 ELSE.
 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
 farbe = '1'.
 ENDIF.
*Berechnung der Anzahl verfügbarer Exemplare
 wa_zbestand-verfuegbar =
wa_zbestand-bestand
 - wa_zbestand-ausgeliehen.
*Selektion des *Autorenstammsatzes
 SELECT SINGLE * FROM zautoren_tw
 INTO wa_zautoren
 WHERE autorennr = wa_zbestand-autor1.
 WRITE:
 /(3) sy-tabix,
 wa_zbestand-isbn UNDER 'ISBN'(002),
 wa_zbestand-titel UNDER 'Titel'(003),
 wa_zautoren-name UNDER 'Autor'(004),
 (10) wa_zbestand-kategorie
 UNDER 'Kategorie'(005),
 wa_zbestand-verfuegbar
 UNDER 'verfügbar'(006),
 125 ' '.
ENDLOOP.

4.6 Lesen von Daten aus Datenbanktabellen 247■

■

■

 DESCRIBE TABLE it_zbestand
 LINES zeilen.
 WRITE: /,'Anzahl Bücher'(010),(3) zeilen.

TOP-OF-PAGE.
*Dieser Ereignisblock wird vom Laufzeitsystem
*aufgerufen, wenn
*eine neue Ausgabeseite begonnen wird
 FORMAT COLOR COL_HEADING INTENSIFIED ON.
 WRITE:'Ausgabeliste'(001),
 20 'Ausgabedatum'(007),
 ausgabedatum,
 'Ausgabezeit'(008),
 ausgabezeit,125 ''.
 FORMAT COLOR COL_HEADING INTENSIFIED OFF.
 WRITE: / 'Lfdnr'(009),
 7 'ISBN'(002) COLOR COL_KEY
 INTENSIFIED ON,
 18 'Titel'(003),
 85 'Autor'(004),
 107 'Kategorie'(005),
 117 'verfügbar'(006).

4.6.4
Der Selektionsbildschirm

Wie Sie sicher erkannt haben werden, weist unser Programm
YK04DBAS noch einen entscheidenden Nachteil auf. Die für die
WHERE-Klausel der SELECT-Anweisung benötigten Selektionspa-
rameter können bisher vom Benutzer nicht zur Laufzeit des Pro-
grammes eingegeben werden. Ändert sich ein Selektionsparameter,
muss das Quellprogramm geändert werden – ein Zustand, der durch
die Anweisungen

■ PARAMETERS und

■ SELECT-OPTIONS

beseitigt werden kann.

Die Parameters-Anweisung
Die PARAMETERS-Anweisung erzeugt ein Eingabefeld auf einem
Selektionsbildschirm. Existiert dieser Selektionsbildschirm im Pro-
gramm noch nicht, wird er durch die PARAMETERS-Anweisung
automatisch erzeugt.

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

248

Syntax:
PARAMETERS <Name des Parameters>

TYPE <Datentyp> [Zusätze].

Hinweise:

■ Der Name des Parameters darf maximal 8 Zeichen lang sein.

■ Über das Menü Springen Textelemente Selektionstexte
im ABAP-Editor können Sie für die Parameter Texte hinterleg-
ten.

■ Bezieht sich die PARAMETERS-Anweisung auf eine im
ABAP-Dictionary angelegte Komponente der eine Suchhilfe
zugeordnet ist, wird die Suchhilfe auf dem Selektionsbildschirm
automatisch zur Verfügung gestellt.

■ Über Zusätze können Sie z.B. anweisen, dass die Eingabe in das
PARAMERS-Feld obligatorisch (Mussfeld) ist oder als An-
kreuzfeld dargestellt wird. Über den Zusatz MATCHCODE
<Suchhilfe> können Sie an das PARAMETERS-Feld eine
Suchhilfe anbinden. Weitere Zusätze finden Sie in der Schlüs-
selwortdokumentation zum Schlüsselwort PARAMETERS.

Beispiel:
PARAMETERS:
 betrag(5) TYPE p DECIMALS 2,
 mwst%(2) TYPE n,
 autor TYPE zautoren-autorennr.

Diese Anweisungen erzeugen den folgenden Selektionsbildschirm:

4.6 Lesen von Daten aus Datenbanktabellen 249■

■

■

Im Programm YK04DBAS soll die Autorennummer, die zur Selek-
tion der auszugebenden Datensätze benötigt wird, durch eine
PARAMETERS-Anweisung zur Laufzeit des Programmes eingege-
ben werden können.

1. Fügen Sie in das Programm YK04DBAS eine
PARAMETERS-Anweisung für die Eingabe der Autoren-
nummer ein.
Namensvorschlag für den Eingabeparameter: p_autor
TYPE: zautoren-autorennr

Hinweis:
Im Kapitel „Das ABAP-Dictionary“ wurde der Tabelle
ZAUTOREN eine Suchhilfe zugeordne, die jetzt für das Einga-
befeld zur Verfügung steht.

2. Ersetzen Sie in der WHERE-Klausel der SELECT-Anweisung
den fest programmierten Selektionswert ('116') durch den Para-
meter p_autor.

Lösung: YK04DBAS_8

Abb. 4.71
Selektionsbild-
schirm,
erzeugt mit
PARAMETERS

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

250

Ihr Programm sollte jetzt folgende Änderungen und Ergänzungen
enthalten:

REPORT yk04dbas.
DATA: it_zbestand TYPE zint_zbestand,
 wa_zbestand TYPE zst_zbestand,
 wa_zautoren TYPE zautoren,
 ausgabedatum TYPE sy-datum,
 ausgabezeit TYPE sy-uzeit,
 zeilen TYPE i,farbe.
parameters: p_autor type zautoren-autorennr.

START-OF-SELECTION.
 ausgabedatum = sy-datum.
 ausgabezeit = sy-uzeit.
*it_zbestand über Array-Fetch
 SELECT * FROM zbestand
 INTO CORRESPONDING FIELDS OF TABLE it_zbestand
 WHERE autor1 = p_autor.

Die Select-Options-Anweisung
Die SELECT-OPTIONS-Anweisung erzeugt, wie auch die PARA-
METERS-Anweisung, Eingabefelder auf einem Selektionsbild-
schirm. Existiert dieser Selektionsbildschirm im Programm noch
nicht, wird er durch die SELECT-OPTIONS-Anweisung automa-
tisch erzeugt.

Syntax:
SELECT-OPTIONS <Name> FOR <Bezugsfeld> [Zusätze].

Beispiel:
DATA:
 betrag_bezugsfeld(5) TYPE p DECIMALS 2,
 mwst%_bezugsfeld(2) TYPE n,
 wa_zautoren TYPE zautoren.
SELECT-OPTIONS:
 betrag FOR betrag_bezugsfeld,
 mwst% FOR mwst%_bezugsfeld,
 autor FOR wa_zautoren-autorennr.

4.6 Lesen von Daten aus Datenbanktabellen 251■

■

■

Diese Anweisungen erzeugen den folgenden Selektionsbildschirm:

Eigenschaften der SELECT-OPTIONS-Anweisung:

■ Für jede SELECT-OPTIONS-Anweisung werden auf dem Se-
lektionsbildschirm zwei Eingabefelder (von, bis) angelegt. Wird
die SELECT-OPTIONS-Anweisung in Kombination mit der
WHERE-Klausel einer SELECT-Anweisung benutzt, wird die
Ergebnismenge wie folgt gebildet:

von bis Ergebnismenge

INH_V leer Alle Datensätze, in denen das Bezugsfeld
den Wert INH_V hat.

INH_V INH_B Alle Datensätze, in denen das Bezugsfeld
einen Wert hat, der zwischen INH_V und
INH_B liegt.
(INH_V<=Inhalt Bezugsfeld<=INH_B)

leer INH_B Alle Datensätze, in denen der Inhalt des
Bezugsfeldes kleiner / gleich INH_B ist.

leer leer Alle Datensätze.

■ Die Mehrfachauswahl bietet die Möglichkeit, mehrere Einzel-
werte oder Intervalle in die Ergebnismenge einzubeziehen bzw.
von der Ergebnismenge auszuschließen.

Abb. 4.72
Selektionsbild-
schirm, erzeugt
mit SELECT-
OPTIONS

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

252

■ Die Anweisung SELECT-OPTIONS <Name> FOR ...
erzeugt eine interne Tabelle <Name> mit Kopfzeile1 die fol-
genden Komponenten besitzt:

Kompo-
nente

Inhalt

SIGN I (included) : Intervall bzw. Einzelwert ist in die
Ergebnismenge zu übernehmen
E (excluded) Intervall bzw. Einzelwert ist nicht in
die Ergebnismenge zu übernehmen

OPTION Ausgewählte Selektionsoption
(= ; > ; >= ; < ; <=)
Die Selektionsoption kann vom Benutzer zur Lauf-
zeit ausgewählt werden (Siehe Abb. 4.72)

LOW Wert des Eingabefeldes “von“

HIGH Wert des Eingabefeldes “bis”

■ Da mit der SELECT-OPTIONS-Anweisung eine interne Tabel-
le erzeugt wird, muss in der WHERE-Klausel der SELECT-
Anweisung der IN-Operator benutzt werden

Beispiel:
SELECT-OPTIONS so_autor FOR wa_zautoren-autorennr.

SELECT * FROM zbestand INTO TABLE it_zbestand
WHERE autor1 IN so_autor.

1 Informationen zu internen Tabellen mit Kopfzeile finden Sie unter

Hilfe SAP-Bibliothek;Basis ABAP-ProgrammierungundLaufzeitumgebung ABAP-

Programmierung; ABAP-Programmiersprache Bearbeitung großer Datenmengen In-

terne Tabellen Interne Tabellen anlegen Interne Tabellenobjekte.

4.6 Lesen von Daten aus Datenbanktabellen 253■

■

■

Das Programm YK04DBAS soll jetzt so geändert werden, dass ein
Selektionsbildschirm mit Eingabemöglichkeiten für

■ die ISBN (Namensvorschlag so_isbn)

■ den Titel (Namensvorschlag so_title)

■ den Autor (Namensvorschlag so_autor) und

■ die Kategorie (Namensvorschlag so_kat).

1. Legen Sie eine Struktur wa_kategorie mit Bezug zur Daten-
banktabelle ZKATEGORIE an.

2. Löschen Sie die PARAMETERS-Anweisung

3. Ergänzen Sie für jedes Eingabefeld eine SELECT-OPTIONS-
Anweisung. Beziehen Sie sich bei den Eingabefeldern ISBN
und Titel auf die entsprechenden Komponenten der Struktur
wa_zbestand, beim Eingabefeld Autor auf die entsprechende
Komponente der Struktur wa_zautoren und beim Eingabefeld
für die Kategorie auf die entsprechende Komponente der
Struktur wa_zkategorie.

4. Für die Eingabefelder ISBN, Titel und Autor soll die Anzeige
des zweiten Eingabefeldes unterbunden werden (keine Inter-
vallangaben). Machen Sie sich dazu in der Schlüsselwortdo-
kumentation mit den Zusätzen der SELECT-OPTIONS-
Anweisung vertraut. Außerdem soll das Eingabefeld Titel und
Kategorie mit dem Zusatz „LOWER CASE“ versehen werden.

5. Ergänzen Sie die WHERE-Klausel der SELECT-Anweisung
so, dass alle Eingaben des Benutzers bei der Ermittlung der
Ergebnismenge berücksichtigt werden. Die Autorennummer
(Eingabefeld Autor) soll dabei in den Feldern AUTOR1,
AUTOR2 und AUTOR3 geprüft werden. Unabhängig davon,
ob das Feld AUTOR1, AUTOR2 oder AUTOR3 mit dem In-
halt des Eingabefeldes Autor übereinstimmt, soll in der Aus-
gabeliste weiterhin der Name des Autors1 ausgegeben werden.

Lösung: YK04DBAS_9

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

254

Das Programm YK04DBAS wurde um folgende Anweisungen er-
gänzt:

REPORT yk04dbas.
DATA: it_zbestand TYPE zint_zbestand,
 wa_zbestand TYPE zst_zbestand,
 wa_zautoren TYPE zautoren,
 wa_zkategorie TYPE zkategorie,
 ausgabedatum TYPE sy-datum,
 ausgabezeit TYPE sy-uzeit,
 zeilen TYPE i,farbe.
SELECT-OPTIONS:
so_isbn FOR wa_zbestand-isbn NO INTERVALS,
so_titel FOR wa_zbestand-titel LOWER CASE
 NO INTERVALS,
so_autor FOR wa_zautoren-autorennr
 NO INTERVALS,
so_kat FOR wa_zkategorie-kategorie LOWER CASE.

START-OF-SELECTION.
*Systemdatum und -zeit in die Variablen ein-
*tragen
 ausgabedatum = sy-datum.
 ausgabezeit = sy-uzeit.

* it_zbestand über Array-Fetch
SELECT * FROM zbestand_tw
 INTO CORRESPONDING FIELDS OF TABLE it_zbestand
 WHERE isbn IN so_isbn AND
 titel IN so_titel AND
 (autor1 IN so_autor OR
 (autor2 IN so_autor and autor2 > 0) OR
 (autor3 IN so_autor and autor3 > 0)) AND
 kategorie IN so_kat.

Der Zusatz...autor2 > 0 und ...autor3 > 0 in der WHERE-Klausel ist
notwendig, um bei den Selektionsoptionen „größer als“ und „un-
gleich“ keine Datensätze zu selektieren, die im Feld Autor2 und Au-
tor3 keinen Eintrag besitzen.

Selektionstexte hinzufügen
Unser Programm YK04DBAS hat sich zu einem gebrauchsfähigen
Rechercheprogramm entwickelt. Störend und unpraktisch für eine

4.6 Lesen von Daten aus Datenbanktabellen 255■

■

■

spätere Übersetzung sind die Ausschriften auf dem Selektionsbild,
wie z.B. so_isbn, so_autor. Diese sollen jetzt durch Selektionstexte
ersetzt werden.

Vorgehensweise: Selektionstexte erstellen

Ausgangspunkt zum Erstellen der Selektionstexte ist der ABAP-
Editor. Laden Sie also das Programm, zu dem Selektionstexte ange-
legt werden sollen und aktivieren Sie es gegebenenfalls. Wählen Sie
dann das Menü „Springen Textelemente Selektionstexte“.
Tragen im Folgebild einen Text für den Selektionsparameter ein.
Bezieht sich der Selektionsparameter auf ein Datenelement können
Sie das Kontrollkästchen „Dictionary Referenz“ aktivieren. In die-
sem Fall wird der Bezeichner des Datenelementes als Selektionstext
eingesetzt.

Aktivieren Sie anschließend die Selektionstexte.

Beim Start des Programmes erhalten Sie dann folgenden Selektions-
bildschirm:

Abb. 4.73
Selektionstexte
pflegen

Abb. 4.74
Selektionsbild-
schirm mit Se-
lektionstexten

4 Grundlegende Techniken der Listenprogrammierung ■

■

■

256

Die Anweisung SELECTION-SCREEN BEGIN OF
SCREEN <scr>.
Die Anweisungen PARAMETERS und SELECT-OPTIONS in ihrer
bisherigen Anwendung, werden vom Laufzeitsystem im Ereignis-
block INITIALIZATION gesucht und beim Start des Programmes
auf dem Bildschirm abgebildet. Mit der Konstruktion

SELECTION-SCREEN BEGIN OF SCREEN<scr>.
*Anweisungen zur Gestaltung des Selektionsbildes
SELECTION-SCREEN END OF <scr>.

haben Sie die Möglichkeit, ein Selektionsbild zu definieren und mit
der Anweisung CALL SELECTION-SCREEN <scr>. zu einem be-
liebigen Zeitpunkt aufzurufen.
Für <scr> setzen Sie Zahlen größer 1000 ein.

Für nicht ausführbare Programme ist diese Verfahrensweise zwin-
gend. Weitere Erklärungen finden Sie in der Schlüsselwortdokumen-
tation zum Schlüsselwort „SELECTION-SCREEN“.

Anweisungen zur Gestaltung des Selektionsbildes
Zum Schluss soll um die Eingabefelder des Selektionsbildes ein
Rahmen gezogen werden. Dazu werden die Anweisungen, die zu ei-
nem Block zusammengefasst werden sollen in die Anweisungen
SELECTION-SCREEN BEGIN OF BLOCK und SELECTION-
SCREEN END OF BLOCK eingeschlossen.

Syntax:
SELECTION-SCREEN BEGIN OF BLOCK <Blockname>
WITH FRAME TITLE <Titel>.
* Parameters- bzw. Select-Options-Anweisungen
SELECTION-SCREEN END OF BLOCK <Blockname>

Hinweis: Sie sollten für den Titel ein Textsymbol verwenden. Da
die Länge des Titels auf 8 Zeichen begrenzt ist, muss das Textsym-
bol über folgende Syntax angelegt werden:

SELECTION-SCREEN BEGIN OF BLOCK <Blockname>
WITH FRAME TITLE text-<nnn>.

Doppelklicken Sie auf text-<nnn> und legen Sie in der Vorwärtsna-
vigation den Rahmentitel an.

4.6 Lesen von Daten aus Datenbanktabellen 257■

■

■

Geben Sie jetzt Ihrem Programm YK04DBAS den letzten Schliff
und legen Sie für Ihre Eingabefelder passende Selektionstexte an.
Programmieren Sie dann einen Rahmen um die Eingabefelder.

Lösung: YK04DBAS_10

Ihr Programm sollte jetzt die folgende Ergänzung bekommen haben:

SELECTION-SCREEN BEGIN OF BLOCK recherche
WITH FRAME TITLE text-011.
 SELECT-OPTIONS:
 so_isbn FOR wa_zbestand-isbn NO INTERVALS,
 so_titel FOR wa_zbestand-titel LOWER CASE
 NO INTERVALS,
 so_autor FOR wa_zautoren-autorennr
 NO INTERVALS,
 so_kat FOR wa_zkategorie-kategorie
 LOWER CASE.
SELECTION-SCREEN END OF BLOCK recherche.

5.1 Zielstellung des Kapitels ■

■

■

259

5 Spezielle Techniken der
Listenerstellung

5.1
Zielstellung des Kapitels

In diesem Kapitel werden die folgenden Themen behandelt:

Modularisierung durch Unterprogramme und Includes,

Benutzen von Ikonen in Listen,

Programmierung der Oberfläche (Menüleiste, Drucktastenleiste
Kontextmenüs und Titelzeile),

Anzeige von Zusatzinformationen in Verzweigungslisten,

Mehrfachauswahl von Zeilen und dyn. Sortierung der Liste,

Arbeiten mit Funktionsbausteinen.

Die im vorigen Kapitel programmierte Ausgabeliste soll in ihrem
Aussehen und ihrer Funktionalität erweitert werden.

Abb. 5.1
Liste der Reche-
rcheergebnisse
mit Ikonen,
Kontrollkästchen
und einer funkti-
onal erweiterten
Oberfläche

260 ■

■

■

5 Spezielle Techniken der Listenerstellung

Durch Doppelklick auf eine Listenzeile oder durch Menüauswahl
wird eine Verzweigungsliste mit zusätzlichen Informationen abge-
bildet.

Die Ergebnisliste kann auf Zeilen mit aktivierten Kontrollkästchen
verdichtet werden. Außerdem kann der Benutzer die Liste nach ver-
schiedenen Spalten sortieren.

5.2
Modularisierung durch Unterprogramme

Wie Sie in Kapitel 4.2 „Grundaufbau eines ABAP-Programmes“ ge-
sehen haben, ist ein ABAP-Programm durch seine Ereignisblöcke in
verschiede Abschnitte unterteilt. Die Aufteilung des Quellcodes in
verschiedene Abschnitte wird als Modularisierung bezeichnet. Nun
kann der Quellcode nicht nur auf verschiedene Ereignisblöcke, son-
dern auch auf Abschnitte, die der Entwickler selbst definieren kann,
aufgeteilt werden. Diese Abschnitte sind in der prozeduralen Pro-
grammierung die Unterprogramme und Funktionsbausteine.

In Unterprogrammen und Funktionsbausteinen wird in der Regel
Quelltext gekapselt, der eine bestimmte Funktionalität, z.B. Ausgabe
einer Liste oder Listzeile, besitzt. Unterprogramme und Funktions-

Abb. 5.2
Abbilden von

Zusatzinforma-
tionen zu einer
ausgewählten

Zeile

Abb. 5.3
Verdichtete

Ergebnisliste

5.2 Modularisierung durch Unterprogramme ■

■

■

261

bausteine können von verschiedenen Stellen des Programmes aus
aufgerufen werden. Diese Technik bietet folgende Vorteile:

Die Lesbarkeit des Programmes wird erhöht, weil für das Ge-
samtverständnis des Programmes unnötige Details, in Unterpro-
gramme oder Funktionsbausteine ausgelagert werden können.

Ein modular aufgebautes Programm ist „pflegeleichter“ als ein
Programm, dessen Quellcode „in einem Stück“ programmiert
wurde. Im Idealfall wird eine Funktionalität (z.B. Ausgabe einer
Liste oder einer Listzeile) in einem Unterprogramm gekapselt
und von verschiedenen Stellen des Programmes aufgerufen. Der
Quellcode für diese Funktionalität ist also nur einmal, nämlich
im Unterprogramm bzw. dem Funktionsbaustein, vorhanden.
Soll nun die Funktionalität geändert werden, ist lediglich das
Unterprogramm oder der Funktionsbaustein anzupassen.

Datenobjekte können so angelegt werden, dass sie nur zur Lauf-
zeit des Unterprogrammes vorhanden sind. Das spart Speicher-
platz.

Außerdem unterstützt die Modularisierung die Programment-
wicklung, weil sich der Entwickler zunächst auf den Ablauf
des Programmes konzentrieren kann. Die Details werden spä-
ter im den Unterprogramme programmiert (Top-Down-
Methode).

Abb. 5.4
Modularisierung
mit Unterpro-
grammen
(Prinzip)

262 ■

■

■

5 Spezielle Techniken der Listenerstellung

Definition des Unterprogrammes:
Syntax:
FORM <Name desUnterprogrammes> [Parameterschnittstelle].
* ABAP-Anweisungen
ENDFORM.

Aufruf des Unterprogrammes:
Syntax:
PERFORM <Name des Unterprogrammes> [Parameterschnittstelle].

Beispiel:

REPORT zdemo_up.

START-OF-SELECTION.
 PERFORM up1.
 PERFORM up2.

FORM up1.
 WRITE: / 'Unterprogramm 1'.
ENDFORM.

FORM up2.
 WRITE: / 'Unterprogramm 2'.
ENDFORM.

Hinweise:

Ein Ereignisblock ist an der Stelle beendet, an der ein neuer
Verarbeitungsblock beginnt. Ein Unterprogramm ist ein sol-

Abb. 5.5
Ergebnisbild-

schirm des
Beispiels:

5.2 Modularisierung durch Unterprogramme ■

■

■

263

cher Verarbeitungsblock. FORM UP1 beendet also im Bei-
spielprogramm den Ereignisblock „START-OF-SELECTION“.

Im Beispiel erfolgt die Definition der Unterprogramme im
gleichen Programm wie der Unterprogrammaufruf. Im Allge-
meinen werden Unterprogramme jedoch in INCLUDE-
Programme geschrieben. Diese Technik wird zu einem späte-
ren Zeitpunkt in diesem Kapitel behandelt.

Die Parameterschnittstelle
Um in Unterprogrammen allgemeine Algorithmen ablegen zu kön-
nen, ist die Übergabe von Parametern, mit denen das Unterpro-
gramm arbeiten soll, ein wichtiges Hilfsmittel. Könnte man z.B. dem
Unterprogramm UP1 aus dem Beispiel auf Seite 262 einen Parame-
ter übergeben, der den auszugebenden Text enthält, würde das Un-
terprogramm UP2 nicht mehr gebraucht. Alle Textausgaben könnte
UP1 übernehmen. Im einfachsten Fall wird der Parameter mit dem
Schlüsselwort USING übergeben und vom Unterprogramm, eben-
falls mit USING, übernommen.

Beispiel:

REPORT zdemo_up.

START-OF-SELECTION.
PERFORM up1
USING '"Alle Kreter lügen", sagt ein Kreter.'.
PERFORM up1 USING 'Das stimmt aber nicht,'.
PERFORM up1 USING 'weil alle Kreter lügen.'.

FORM up1 using p_text.
 WRITE: / p_text.
ENDFORM.

Abb. 5.6
Ergebnisbild-

schirm des
Beispiels

264 ■

■

■

5 Spezielle Techniken der Listenerstellung

Der vom aufrufenden Programm übergebene Parameter, im Beispiel
ein Text, wird als Aktualparameter, der im Unterprogramm ver-
wendete Parameter, im Beispiel p_text, als Formalparameter, be-
zeichnet. Werden mehrere Parameter übergeben, erfolgt die Zuord-
nung des Aktualparameters zum Formalparameter über die
Reihenfolge der Aktual- bzw. Formalparameter.

PERFORM up1 USING ap1 ap2 ap3.

FORM up1 USING fp1 fp2 fp3.
…
ENDFORM.

Arten der Parameterübergabe
Die Art der Parameterübergabe legt fest, wie das Unterprogramm
mit den übergebenen Parametern arbeitet. In ABAP/4 gibt es fol-
gende Möglichkeiten der Parameterübergabe:

Wertübergabe (call-by-value)

Adressübergabe (Call-by-reference)

Wertübergabe mit Rückgabe (call-by-value-and-result)

Wertübergabe
Syntax:
Definition des Unterprogrammes
FORM <Name> USING VALUE(p1) VALUE(p2)...VALUE(pn).
Aufruf des Unterprogrammes:
PERFORM <Name> USING a1 a2 an.

Abb. 5.7
Prinzip der
Wertübergabe

5.2 Modularisierung durch Unterprogramme ■

■

■

265

Benutzen Sie die Wertübergabe immer dann, wenn die übergebenen
Datenobjekte im Unterprogramm geändert werden, die Aktualpara-
meter ihren Wert behalten sollen.

Adressübergabe
Syntax: 1
Definition des Unterprogrammes
FORM <Name> USING p1 p2...pn.
Aufruf des Unterprogrammes:
PERFORM <Name> USING a1 a2 an.

Um die Übersichtlichkeit Ihres Programmes zu erhöhen, sollten Sie
diese Syntax Syntax verwenden, wenn die Formalparameter im Un-
terprogramm nicht geändert werden.

Syntax: 2
Definition des Unterprogrammes
FORM <Name> CHANGING p1 p2...pn. .

Aufruf des Unterprogrammes:
PERFORM <Name> CHANGING a1 a2 an.

Verwenden Sie diese Syntax, wenn die Formalparameter geändert
werden.

Die Adressübergabe sollten Sie nur anwenden, wenn die Datenob-
jekte im Unterprogramm nicht geändert werden oder wenn Sie grö-
ßere interne Tabellen an das Unterprogramm übergeben.

Abb. 5.8
Prinzip der

Wertübergabe

266 ■

■

■

5 Spezielle Techniken der Listenerstellung

Wertübergabe mit Rückgabe
Syntax:
Definition des Unterprogrammes
FORM <Name> CHANGING
 VALUE(p1) VALUE(p2) VALUE(pn).
Aufruf des Unterprogrammes:
PERFORM <Name> USING a1 a2 an.

Benutzen Sie die Wertübergabe mit Rückgabe immer dann, wenn
die übergebenen Datenobjekte im Unterprogramm geändert werden,
und die Änderungen auch im aufrufenden Programm zur Verfügung
stehen sollen.

Vorteil gegenüber der Adressübergabe:
Wird das Unterprogramm nicht ordnungsgemäß beendet, z.B. durch
die Ausgabe einer Fehlernachricht, werden die Datenobjekte des
aufrufenden Programmes nicht geändert, d.h. im aufrufenden Pro-
gramm herrschen die ursprünglichen (definierten) Verhältnisse. Bei
der Adressübergabe ist das nicht so, weil vor dem Abbruch des Un-
terprogrammes bereits Datenobjekte geändert worden sein können.
Es herrschen dann im aufrufenden Programm keine definierten Ver-
hältnisse mehr.

Verschiedene Arten der Parameterübergabe in einem
Unterprogramm
Beispiel:
PERFORM UP1 USING ak1 ak2
 CHANGING ak3 ak4.

Abb. 5.9
Prinzip der

Wertübergabe
mit Rückgabe

5.2 Modularisierung durch Unterprogramme ■

■

■

267

FORM UP1 USING VALUE(p1) p2
 CHANGING VALUE(p3) p4. .

Parameter Art der Übergabe

ak1 p1 Wertübergabe

ak2 p2 Adressübergabe

ak3 p3 Wertübergabe mit Rückgabe

ak4 p4 Adressübergabe

Sichtbarkeit und Lebensdauer von Datenobjekten
Auf Datenobjekte, die im globalen Deklarationsteil des ABAP-Prog-
rammes (siehe Kapitel 4.2 „Grundaufbau eines ABAP-Program-
mes“) vereinbart wurden, können Sie auch im Unterprogramm
zugreifen. Sie sind im gesamten Programm sichtbar. Die Lebens-
dauer dieser Objekte ist identisch mit der Laufzeit des Programmes.

Auf ein im Unterprogramm deklariertes Datenobjekt kann nur das
Unterprogramm zugreifen, in dem es angelegt wurde. Die Sichtbar-
keit ist auf das jeweilige Unterprogramm begrenzt. Die Lebensdauer
dieser Datenobjekte ist identisch mit der Laufzeit des Un-
terprogrammes.

Typisierung von Formalparametern
Die Formalparameter können in der Parameterschnittstelle einem
bestimmten Datentyp zugeordnet werden.

Syntax:
FORM up1 USING/CHANGING

VALUE(p1)|p1 TYPE|LIKE<Datentyp|Datenobjekt>.

TYPE <Datentyp> Mit TYPE können Sie alle an dieser Stelle
sichtbaren programmlokalen und globalen
Datentypen für die Typisierung einsetzen.

LIKE <Datenobjekt> Mit LIKE können Sie alle an dieser Stelle
sichtbaren programmlokalen und globalen
Datenobjekte für die Typisierung einsetzen.

Die Typisierung hat den Vorteil, dass dem Unterprogramm die tech-
nischen Eigenschaften der übergebenen Parameter bereits zur Kom-
pilierungszeit bekannt sind. Dadurch werden falsche Parameterüber-
gaben bereits durch den Syntaxcheck herausgefunden. Somit ist die
Typübergabe eine gute Methode, Laufzeitfehler zu vermeiden. Die

268 ■

■

■

5 Spezielle Techniken der Listenerstellung

Typisierung ist bei elementaren Datentypen optional, bei Strukturen
und internen Tabellen jedoch zwingend erforderlich.

Um den Verallgemeinerungsgrad eines Unterprogrammes zu erhö-
hen, können die Datentypen im Unterprogramm unvollständig, d.h.
generisch, angegeben werden. So muss z.B. in die Schnittstelle eines
Unterprogrammes, dem eine interne Tabelle übergeben wird, nicht
deren konkreter Tabellentyp eingetragen werden. Für eine positive
Syntaxprüfung reicht es in vielen Fällen aus, lediglich anzugeben,
dass es sich beim Übergabeparameter um eine interne Tabelle han-
delt. Tabelle 5.1) enthält generische Übergabeparameter.

Generischer Typ Bedeutung
ANY Vollständig generische Übergabe des Parame-

ters.
ANY TABLE Der Formalparameter ist eine interne Tabelle.
INDEX TABLE Der Formalparameter ist eine interne Tabelle

mit Index (standard table oder sorted table).
[STANDARD]
TABLE

Der Formalparameter ist eine Standardtabelle
(standard table).

SORTED TABLE Der Formalparameter ist eine sortierte Tabelle
(sorted table).

HASHED TABLE Der Formalparameter ist eine Hashedtabelle
(hashed table).

c, n, x, p Eingebaute Datentypen ohne Längenangabe.

Beispiel:
Generische Typisierung für eine Indextabelle:
FORM up1 USING it_tab TYPE INDEX TABLE.

Hinweise:

Ein in der Parameterschnittstelle nicht typisierter Parameter
wird im Unterprogramm wie ein mit ANY typisierter Parame-
ter behandelt.

Beim Syntaxcheck wird überprüft, ob die übergebenen Parame-
ter mit dem (typisierten) Formalparameter kompatibel sind.

Sie sollten alle Formalparameter typisieren. Das erhöht die
Lesbarkeit Ihres Programmes und führt zu robusteren Pro-
grammen.

Tabelle 5.1
Generische
Angabe des

Datentyps

5.2 Modularisierung durch Unterprogramme ■

■

■

269

Includes
Includes sind Programme, die in andere Programme eingebunden
werden können. Includes verbessern die Lesbarkeit des Ge-
samtprogrammes (Rahmenprogramm) und vereinfachen die Wie-
derverwendung von Programmkomponenten. Für umfangreiche
Programme sollte jeweils ein Include für globale Datendeklaratio-
nen, Ereignisse und Unterprogramme angelegt werden. Für diese
Includes sollten Sie folgende Namenskonventionen einhalten:

Name Inhalt

<progr>TOP Für die globalen Deklarationen

<progr>F01 Für die Definition der Unterprogramme

<progr>E01 Für Ereignisse

Hinweis:
An die Stelle <progr> soll der Programmname, dem das Include zu-
geordnet werden soll, geschrieben werden.

Das Einbinden des Quellcodes der Includes erfolgt über die
INCLUDE-Anweisung.

Syntax:
INCLUDE <Name des Includes>.

270 ■

■

■

5 Spezielle Techniken der Listenerstellung

Beispiel:

5.2.1
Anlegen eines Includes

Vorgehensweise: Anlegen eines Includes

Starten Sie den Object Navigator (SE80), laden Sie das Programm,
zu dem ein Include angelegt werden soll und wählen Sie
über die rechte Maustaste das Kontextmenü entsprechend Abb. 5.11.

Abb. 5.10
Einbinden

von Includes

5.2 Modularisierung durch Unterprogramme ■

■

■

271

Tragen Sie im Folgebild den Namen des anzulegenden Includes ein.

Sichern Sie dann Ihr Include. Nachdem Sie die Entwicklungsklasse
und den Workbenchauftrag zugewiesen haben, wird vom System die
INCLUDE-Anweisung an das Ende Ihres Programmes eingefügt.

Abb. 5.11
Menü: Anlegen
eines Includes

Abb. 5.12
Anlegen eines
Includes

Abb. 5.13
INCLUDE-
Anweisung
automatisch
eingefügt

272 ■

■

■

5 Spezielle Techniken der Listenerstellung

Der Navigationsteil des SE80 wurde um den Knoten Includes er-
gänzt. Unter diesen Knoten finden Sie das neu angelegte Include. In
das Rahmenprogramm wurde die INCLUDE-Anweisung für das
neue Include geschrieben.

Für die Übungen in diesem Kapitel soll das Programm
YK04DBAS aus dem vorigen Kapitel kopiert werden. Sollten Sie
erst in diesem Kapitel mit Ihrem ABAP-Training beginnen, kopie-
ren Sie bitte das Programm YK04DBAS_10. Der neue Programm-
name soll YK05DBAS sein.

1. Anlegen des Programmes YK05DBAS durch Kopieren von
YK04DABS bzw. YK04DBAS_10.

Starten Sie den Object Navigator (SE80) und laden Sie das
zu kopierende Programm YK04DBAS bzw. YK04DBAS-
_10. Achten Sie darauf, dass das Programm aktiviert ist.

Klicken Sie im Navigationsteil des Object Navigators mit
der rechten Maustaste auf den Knoten des Rahmenpro-
grammes (YK04DBAS bzw. YK04DBAS_10) und wählen
Sie aus dem Kontextmenü den Menüpunkt „Kopieren“ aus.
Im Folgebildschirm „Programm YK04DBAS kopieren“
geben Sie den Namen des Zielprogrammes YK05DABAS
ein. Bestätigen Sie im Folgebild „Programm YK04DBAS
kopieren nach YK05DBAS“ die Angaben. Ordnen Sie dann
der Kopie, wie gewohnt, Ihre Entwicklungsklasse
YABAP_TR und Ihren Workbenchauftrag „ABAP-
Training“ zu.

Abb. 5.14
Object Navigator

nach dem
Anlegen des
INCLUDES

5.2 Modularisierung durch Unterprogramme ■

■

■

273

2. Legen Sie die folgenden Includes an.

YK05DBAS_TOP,

YK05DBAS_E01,

YK05DBAS_F01.

Achten Sie darauf, dass die Include-Anweisung

„INCLUDE yk05dbastop“ als erste Includeanweisung steht.

3. Kopieren Sie alle Datendeklarationen (DATA-Anweisungen
und den Selectionsbildschirm) in das TOP-Include und löschen
Sie diese Anweisungen im Rahmenprogramm.

4. Kopieren Sie die beiden Ereignisblöcke „START-OF-
SELECTION“ und „TOP-OF-PAGE“ in das Ereignis-Include
YK05DBASE01.

5. Aktivieren Sie über das Kontextmenü (rechte Maustaste im
Knoten des Rahmenprogrammes YK05DBAS) alle Programm-
komponenten.

6. Starten Sie Ihr Progamm (am besten ebenfalls über das Kon-
textmenü). Es muss jetzt ein Selektionsbild angezeigt werden
und danach eine Ausgabeliste.

Lösung: YK05DBAS_1

Ihr Programm sollte jetzt folgende Änderungen aufweisen:

Abb. 5.15
Das Rahmen-
programm nach
den Änderungen

274 ■

■

■

5 Spezielle Techniken der Listenerstellung

Im Rahmenprogramm YK05DBAS sind nur noch die INCLUDE-
Anweisungen zu finden. In Navigationsteil sind die Includes zu se-
hen, für die im Rahmenprogramm eine INCLUDE-Anweisung exis-
tiert.
Das TOP-Include YK05DBAS_TOP enthält alle Datendeklaratio-
nen.

Die Ereignisblöcke START-OF-SELECTION und TOP-OF-PAGE
befinden sich jetzt im Ereignisinclude YK05DBAS_E01.

Abb. 5.16
Das TOP-

Include nach
den Änderungen

Abb. 5.17
Das EREIGNIS-

Include nach
den Änderungen

5.2 Modularisierung durch Unterprogramme ■

■

■

275

5.2.2
Anlegen und Einbinden eines Unterprogrammes

Vorgehensweise: Anlegen eines Unterprogrammes

Starten Sie den Object Navigator (SE80), laden Sie das Programm,
zu dem ein Unterprogramm angelegt werden soll und wählen Sie
über die rechte Maustaste das Kontextmenü entsprechend Abb. 5.18.

Geben Sie im Folgebild den Namen des Unterprogrammes an und
wählen Sie das Include, in welches das Unterprogramm geschrieben
werden soll aus.

Hinweis:
Das Unterprogramm ist an das Rahmenprogramm angebuden. Der
Unterprogrammname muss also nur im jeweiligen Rahmenpro-
gramm eindeutig sein.

Abb. 5.18
Menü: Unter-
programm
anlegen

Abb. 5.19
Angabe des
Unterprogram-
mnamens und
Auswahl des
Includes

276 ■

■

■

5 Spezielle Techniken der Listenerstellung

Im Folgebild wird Ihnen der Quelltext des ausgewählten Includes
bereitgestellt. Die FORM- und ENDFORM-Anweisung Ihres Un-
terprogrammes sind bereits eingetragen. Sie müssen gegebenenfalls
noch die Parameterschnittstelle definieren und den Quelltext des Un-
terprogrammes schreiben.

Aktivieren Sie zum Schluss Ihr Unterprogramm.

Hinweis:
Achten Sie immer darauf, dass alle Programmkomponenten aktiv
sind. Sie können an der blauen Textfarbe im Navigationsteil des Ob-
ject Navigators erkennen, dass es inaktive bzw. überarbeitete Pro-
grammkomponenten in Ihrem Rahmenprogramm gibt. Alle blau
dargestellten Komponenten sind nicht aktiviert.

Vorgehensweise: Einbinden eines Unterprogrammes

Selbstverständlich können Sie Ihre PERFORM-Anweisung „manu-
ell“ in das Quellprogramm eintragen. Es ist aber auch möglich, den
Unterprogrammaufruf per „Drag and Drop“ aus dem Navigationsteil
des Object Navigators in den Quellcode zu ziehen.

Abb. 5.20
Parameter-

schnittstelle und
Quelltext des

UP anlegen

5.2 Modularisierung durch Unterprogramme ■

■

■

277

Abb. 5.21
Unterpro-
grammaufruf mit
Drag and Drop
erzeugen

Die in dieser Übung im Programm YK05DBAS anzulegenden Un-
terprogramme sind im Include YK05DBAS_F01 zu kapseln.

1. Legen Sie ein Unterprogramm „Display_Grundliste“ an und
kopieren Sie den Quelltext zum Erstellen der Grundliste im
Ereignisblock „START-OF-SELECTION“ hinein. Übergeben
Sie die Tabelle it_zbestand und die Struktur wa_zbestand per
Adressübergabe. Programmieren Sie an die Stelle des ur-
sprünglichen Quelltextes den Unterprogrammaufruf.

2. Legen Sie ein Unterprogramm „Display_Listzeile“ an. Kopie-
ren Sie aus dem UP „Display_Grundliste“ den Quelltext zum
Erzeugen einer Ausgabezeile in das neue Unterprogramm.
Übergeben Sie die Struktur wa_zbestand per Wertübergabe.
Fügen Sie im Unterprogramm „Display_Grundliste“ eine ent-
sprechende PERFORM-Anweisung ein.

3. Die Überschriften, die z.Z. im Ereignisblock „TOP-OF-
PAGE“ angelegt werden, sollen im Unterprogramm „Display_
Ueberschrift“ gekapselt werden. Legen Sie dieses Unterpro-
gramm und einen entsprechenden Unterprogrammaufruf an.

4. Welche der im TOP-Include deklarierten Variablen könnten
besser in den Unterprogrammen angelegt werden?

Lösung: YK05DBAS_2

278 ■

■

■

5 Spezielle Techniken der Listenerstellung

Das Programm YK05DBAS besteht jetzt aus folgenden Komponen-
ten:

Komponente Bedeutung

YK05DBAS Rahmenprogramm des Literatur-
Rechercheprogrammes der East-Side-Library

DISPLAY_
Grundliste

Unterprogramm zur Ausgabe der Recherche-
ergebnisse

DISPLAY_
Listzeile

Unterprogramm zur Ausgabe einer Zeile der
Rechercheergebnisse

DISPLAY_
Ueberschrift

Unterprogramm zur Ausgabe der Seiten- und
Spaltenüberschriften

YK05DBAS_TOP Include, das alle globalen Datendefinitionen
und Datendeklarationen enthält

YK05DBAS_F01 Include, das alle Unterprogramme enthält

YK05DBAS_E01 Include, das den Quellcode der Ereignisblöcke
enthält

Diese Komponenten sollten jetzt folgende Änderungen enthalten:

--
* INCLUDE YK05DBAS_TOP *
--
DATA: it_zbestand TYPE zint_zbestand_tw,
 wa_zbestand TYPE zst_zbestand_tw,
 wa_zkategorie TYPE zkategorie_tw,
 farbe.
* wa_zautoren TYPE zautoren_tw,
* ausgabedatum TYPE sy-datum,
* ausgabezeit TYPE sy-uzeit,
* zeilen TYPE i,
SELECTION-SCREEN BEGIN OF BLOCK recherche
WITH FRAME TITLE text-011.
SELECT-OPTIONS:
 so_isbn FOR wa_zbestand-isbn NO INTERVALS,
 so_titel FOR wa_zbestand-titel
 LOWER CASE
 NO INTERVALS,
* so_autor FOR wa_zautoren-autorennr
* NO INTERVALS,
 so_autor FOR wa_zbestand-autor1

5.2 Modularisierung durch Unterprogramme ■

■

■

279

 NO INTERVALS,
 so_kat FOR wa_zkategorie-kategorie.
SELECTION-SCREEN END OF BLOCK recherche.

Die im TOP-Include auskommentierten Datendeklarationen wurden
in die Unterprogramme verlagert. Das spart Speicherplatz, weil die
im Unterprogramm deklarierten Variablen nur zur Laufzeit des Un-
terprogrammes existieren. Da die Struktur wa_zautoren keine globa-
le Variable mehr ist, kann sie in der SELECT-OPTIONS-
Anweisung nicht mehr verwendet werden. Deswegen wurde als Be-
zugsfeld für so_autor die Komponente autor1 der Struktur
wa_zbestand eingesetzt.

START-OF-SELECTION.
*Array-Fetch zum laden der internen Tabelle
*it_zbestand
 SELECT * FROM zbestand_tw INTO
 CORRESPONDING FIELDS OF TABLE it_zbestand
 WHERE isbn IN so_isbn AND
 titel IN so_titel AND
 (autor1 IN so_autor OR
 (autor2 IN so_autor and autor2 > 0) OR
 (autor3 IN so_autor and autor3 > 0))
 AND kategorie IN so_kat.

PERFORM display_grundliste
 USING it_zbestand wa_zbestand.

TOP-OF-PAGE.
PERFORM display_ueberschrift.

Anstelle der ursprünglichen Quelltexte stehen jetzt Unterprogramm-
aufrufe. Das ist einfacher zu lesen, oder?

--
*& Form Display_Grundliste *
--
FORM display_grundliste
USING it TYPE ANY TABLE
 wa TYPE zst_zbestand.
 DATA: zeilen TYPE i.
 LOOP AT it INTO wa.

PERFORM display_listzeile USING wa.
 ENDLOOP.

280 ■

■

■

5 Spezielle Techniken der Listenerstellung

 DESCRIBE TABLE it
 LINES zeilen.
 WRITE: /,'Anzahl Bücher'(010),zeilen.
ENDFORM. " Display_Grundliste

Die Variable zeile (ursprünglich global deklariert) wird nur in die-
sem Unterprogramm benötigt. Es ist deshalb günstig, sie als lokale
Variable anzulegen. Die Ausgabe der Listzeile erfolgt im Unterpro-
gramm DISPLAY_Listzeile, weil in einer späteren Aufgabe Listzei-
len einzeln ausgegeben werden sollen. Außerdem ist dadurch Über-
sichtlichkeit des Programmes besser.

--
*& Form Display_Listzeile *
--
FORM display_listzeile USING wa
 TYPE zst_zbestand.

DATA: wa_zautoren TYPE zautoren.
 IF farbe = '1'.
 FORMAT COLOR COL_NORMAL INTENSIFIED ON.
 farbe = '0'.
 ELSE.
 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
 farbe = '1'.
 ENDIF.
*Berechnung der Anzahl verfügbarer Exemplare
wa-verfuegbar = wa-bestand

 - wa-ausgeliehen.
*Selektion des Autorenstammsatzes
 SELECT SINGLE * FROM zautoren
 INTO wa_zautoren
 WHERE autorennr = wa-autor1.

 WRITE:
 /(3) sy-tabix,

wa-isbn UNDER 'ISBN'(002),
wa-titel UNDER 'Titel'(003),
wa_zautoren-name UNDER 'Autor'(004),

 (10) wa-kategorie
 UNDER 'Kategorie'(005),

wa-verfuegbar
 UNDER 'verfügbar'(006),
 125 ' '.
ENDFORM. " Display_Listzeile

5.3 Ikonen in Listen ■

■

■

281

5.3
Ikonen in Listen

Ikonen können dazu beitragen, Listen übersichtlicher und aussage-
kräftiger zu gestalten. Übertreibt man Ihren Einsatz nicht, sehen die
Listen auch interessanter aus. In diesem Kapitel soll die Ausgabelis-
te des Literatur-Rechercheprogrammes durch zwei Ikonen etwas
aufgepeppt werden.

Ikonen werden über die WRITE-Anweisung in die Ausgabeliste ge-
schrieben.

Syntax:
WRITE <icon-name | icon-ID> AS ICON.

icon-name Feld der Datenbanktabelle ICON, das den Namen
der Ikone enthält

icon-id Schlüsselfeld der Datenbanktabelle ICON, das eine
4-stellige Zeichenkette enthält, die die Ikone ein-
deutig definiert.

Voraussetzung:
Um Ikonen in Ihrem Programm zu verwenden, muss das Include <i-
con> in Ihr Programm eingebunden werden. Achtung: Die spitzen
Klammern gehören hier ausnahmsweise mit zum Includenamen.

Vorgehensweise: Verwenden von Ikonen

1. Binden Sie das Include <icon> in Ihr Programm ein.
INCLUDE <icon>.

2. Da in der Regel auf einer Listenposition verschiedene Ikonen
abgebildet werden, ist es zweckmäßig, eine Variable für die
Ikone zu deklarieren. Diese kann mit icon-id typisiert werden.
DATA: icon_status TYPE icon-id.

3. Laden Sie dann diese Variable mit der id oder dem Namen der
Ikone, die in der Liste abgebildet werden soll. Sie finden diese
Angaben über die Schlüsselwortdokumentation zu ICON, dort
finden Sie einen Link zur „Liste der Ikonen“. Doppelklicken
Sie in dieser Liste auf die gewünschte Ikone. Sie erhalten ei-
nen Bildschirm mit den Eigenschaften der Ikone.
icon_status = '@BI@'. oder
icon_status = ICON_POSITION_HR.

282 ■

■

■

5 Spezielle Techniken der Listenerstellung

4. Programmieren Sie die WRITE_Anweisung
WRITE: icon_status AS ICON.

In der folgenden Übung soll durch eine Ikone gekennzeichnet wer-
den, ob ein Buch von einem oder von mehreren Autoren geschrie-
ben wurde. Bei einem Autor soll vor die Ausgabe des Autors die
Ikone ICON_POSITION_HR , bei mehreren Autoren die Ikone

ICON_SHARED_POSITION gesetzt werden.

1. Fügen Sie in das Rahmenprogramm das Include <icon> ein.

2. Deklarieren Sie im Unterprogramm DISPLAY_Listzeile eine
Variable icon_autoren vom Typ icon-id.

3. Laden Sie im Unterprogramm DISPLAY_Listzeile die Variable
icon_autoren mit der Ikone ICON_POSITION_HR, wenn für
die auszugebende Listzeile die Komponenten autor2 und
autor3 leer sind (IS INITIAL), anderenfalls mit der Ikone
ICON_SHARED_POSITION.

4. Ändern Sie die Ausgabe der Listzeile und die Spaltenüber-
schriften. Die Ausgabe soll wie folgt formatiert werden:

ab Position Ausgabe
6 ISBN

17 Titel
icon_autoren

85 Autor
110 Kategorie
120 verfügbar

5.3 Ikonen in Listen ■

■

■

283

Erweitern Sie das Programm so, dass ab Ausgabeposition 2 eine
Ikone ausgegeben wird, die Auskunft über die Verfügbarkeit eines
Buches gibt. Dabei sollen folgende Ikonen zum Einsatz kommen:

Verfügbarkeit Ikonenname
0 % icon_red_light
>0% und <= 5% icon_yellow_light
> 5% icon_green_light

Namensvorschläge für Variable:

Name Inhalt
icon_verfuegbar ID der auszugebenden Ikone
verfuegbar% Berechnung der prozentualen Verfügbarkeit
> 5% icon_green_light

Da die Ikonen die Verfügbarkeit hinreichend genau anzeigen, soll
die Anzahl der verfügbaren Bücher nicht mehr ausgegeben werden.

Lösung: YK05DBAS_3

Vergleichen Sie Ihre Änderungen mit dem folgenden Quelltextaus-
zügen:

&---
*& Report YK05DBAS_3 *
&---
REPORT yk05dbas.
INCLUDE <icon>.
INCLUDE YK05DBAS_3_TOP.
INCLUDE YK05DBAS_3_E01.
INCLUDE YK05DBAS_3_F01.

&---
*& Form Display_Listzeile *
&---
FORM display_listzeile USING wa
 TYPE zst_zbestand.
 DATA: wa_zautoren TYPE zautoren,
 icon_autoren TYPE icon-id,
 icon_verfuegbar TYPE icon-id,
 verfuegbar% TYPE p DECIMALS 2,
 zeilen TYPE i.
*IF-Anweisung zur Einstellung der Farbe
.*************nicht geänderter Quelltext********************

284 ■

■

■

5 Spezielle Techniken der Listenerstellung

*Auswahl der Ikone für die Anzahl Autoren
 IF wa-autor2 IS INITIAL
 AND wa-autor3 IS INITIAL .
 icon_autoren = icon_position_hr.
 ELSE.
 icon_autoren = icon_shared_position.
 ENDIF.
*Berechnung der Anzahl verfügbarer Exemplare
 wa-verfuegbar = wa-bestand
 - wa-ausgeliehen.
*Berechnung der Verfügbarkeit in %
 verfuegbar% = wa-verfuegbar
 / wa-bestand * 100.
 IF wa-verfuegbar <= 0.
 icon_verfuegbar = icon_red_light.
 ELSEIF verfuegbar% < 5.
 icon_verfuegbar = icon_yellow_light.
 ELSE.
 icon_verfuegbar = icon_green_light.
 ENDIF.
*SELECT SINGLE-Anweisung zur Selektion des
*Autorenstammsatzes
.*************nicht geänderter Quelltext********************

 WRITE:
 /2 icon_verfuegbar AS ICON,
 wa-isbn UNDER 'ISBN'(002),
 wa-titel UNDER 'Titel'(003),
 icon_autoren AS ICON,
 wa_zautoren-name UNDER 'Autor'(004),
 (10) wa-kategorie UNDER 'Kategorie'(005),
 128 ' '.
ENDFORM. " Display_Listzeile

&---
*& Form Display_ Ueberschrift *
&---
FORM display_ueberschrift.
.*************nicht geänderter Quelltext********************

 WRITE: /6 'ISBN'(002) COLOR COL_KEY
 INTENSIFIED ON,
 17 'Titel'(003),
 85 'Autor'(004),
 110 'Kategorie'(005),
 128 ''.
ENDFORM. " Display_ Ueberschrift

5.4 Verzweigungslisten ■

■

■

285

5.4
Verzweigungslisten

Verzweigungslisten sind Listen, die angezeigt werden, wenn der
Benutzer z.B. einen Doppelklick auf eine Listzeile ausführt. Der Ge-
samtumfang an Informationen, die ein Programm liefern soll, kann
so auf mehrere Listen verteilt werden. Damit ist auch ein Perfor-
mance-Gewinn verbunden, denn Zusatzinformationen werden nur
dann ermittelt, wenn sie der Benutzer auch wirklich sehen will.

Abb. 5.22
Das Listen-
system

286 ■

■

■

5 Spezielle Techniken der Listenerstellung

Prinzipien des Listensystems:

Zusätzlich zur Grundliste können Sie maximal 20 Verzwei-
gungslisten anlegen.

Jede Liste wird in einem eigenen Listenpuffer gehalten. Vor
dem Anzeigen der Liste wird der Systemvariablen sy-lsind ent-
sprechend Abb. 5.22 der Listenindex zugeordnet.

Die Funktionen „Zurück“ und „Abbruch“ geben den Listenpuf-
fer wieder frei (d,h. die Liste wird gelöscht). Danach wird die
vorherige Liste wieder angezeigt.

5.4.1
Anlegen von Verzweigungslisten

Während Grundlisten in den Ereignisblöcken

START-OF-SELECTION,

END-OF-SELECTION,

TOP-OF-PAGE,

END-OF-PAGE

GET

angelegt werden können, gibt es für die Verzweigungslisten die in
Tabelle 5.2 beschriebenen Ereignisblöcke

Ereignisblock Beschreibung
AT LINE-SELECTION Wird nach dem Ereignis „Doppelklick“

ausgelöst. Außerdem löst der Funkti-
onscode PICK diesen Verarbeitungs-
block aus. Funktioscodes werden Me-
nüpunkten bzw. Drucktasten zuge-
ordnet (siehe Kapitel 6).

AT USER-COMMAND Wird nach einer Benutzeraktion, z.B.
drücken einer Drucktaste ausgelöst.
Ausnahme: Drucktaste mit dem Funk-
tionscode PICK (siehe Kapitel 6).

TOP-OF-PAGE
DURING
LINESELECTION

Wird ausgelöst, bevor eine neue Seite
der Verzweigungsliste aufgebaut wird.

Tabelle 5.2
Ereignisblöcke
für Verzwei-
gungslisten

5.4 Verzweigungslisten ■

■

■

287

1. Legen Sie im Include YK05DBAS_E01 den Ereignisblock AT
LINE-SELECTION an. In diesem Ereignisblock soll das Un-
terprogramm DETAILANZEIGE aufgerufen werden.

2. Legen Sie im Include YK05DBAS_F01 das Unterprogramm
DETAILANZEIGE an. Zunächst soll hier nur der Inhalt der
Systemvariablen sy-lsind ausgegeben werden (WRITE: 'Ver-
zweigungsliste', sy-lsind.).

3. Starten Sie das Programm YK05DBAS und lassen Sie sich die
Grundliste anzeigen. Doppelklicken Sie dann auf eine Listzeile
– die Verzweigungsliste wird angezeigt.

4. Doppelklicken Sie auf die Zeile der Verzweigungsliste. Was
passiert?

Das neue Programm hat folgende Änderungen erhalten:

--
* INCLUDE YK05DBAS_E01 *
--
AT LINE-SELECTION.
 PERFORM detailanzeige.

--
*& Form Detailanzeige *
--
FORM detailanzeige.
 WRITE: 'Verzweigungsliste',sy-lsind.
ENDFORM. " Detailanzeige

Ergebnis:
Beim Doppelklick auf die Zeile „Verzweigungsliste 1“ der Ver-
zweigungsliste wird die „Verzweigungsliste 2“ angezeigt usw. Nach
dem Doppelklick auf „Verzweigungsliste 20“ wird der Laufzeit-
fehler „LIST_TOO_MANY_LEVELS“ ausgelöst. Um das zu ver-
hindern und immer die richtige Verzweigungsliste aufzubauen,
ist im Ereignisblock AT LINE-SELECTION die Systemvariable
SY-LSIND (siehe Abb. 5.22 Seite 285) wie folgt auszuwerten:

AT LINE-SELECTION.
 CASE sy-lsind.
 WHEN 1.
* Aufbau der 1. Verzweigungsliste
 WHEN 2.
* Aufbau der 2. Verzweigungsliste
 ENDCASE.

288 ■

■

■

5 Spezielle Techniken der Listenerstellung

1. Ergänzen Sie im Programm YK05DBAS im Ereignisblock AT
LINE-SELECTION die CASE-Anweisung zur Auswertung der
Variablen sy-lsind.

2. Programmieren Sie im Unterprogramm DETAILANZEIGE ei-
ne Verzweigungsliste mit dem abgebildeten Layout.

Hinweise:
Die bisherige Struktur wa_zbestand enthält nicht alle benö-
tigten Komponenten. Legen Sie deshalb eine Struktur
wa_bestand1 mit Bezug zur Datenbanktabelle zbestand an
und laden Sie diese über die Select-Anweisung

 SELECT SINGLE * FROM zbestand
 INTO wa_zbestand1
 WHERE isbn = wa_zbestand-isbn.

Zur Ermittlung aller Buchautoren kann eine interne Tabelle
it wie folgt geladen werden:

 SELECT * FROM zautoren INTO TABLE it
 WHERE autorennr = wa_bestand1-autor1 OR
 autorennr = wa_bestand1-autor2 OR
 autorennr = wa_bestand1-autor3.

Benutzen Sie zur Formatierung der Autorenausgabe die
Anweisungen CONCATENATE und CONDENSE.

Starten Sie Ihr Programm und doppelklicken Sie in eine
Zeile der Grundliste. Wird die Verzweigungsliste ange-
zeigt? Werden in der Verzweigungsliste die richtigen Da-
ten angezeigt?

5.4 Verzweigungslisten ■

■

■

289

Lösung: YK05DBAS_4

Eine mögliche Lösung:
--
* INCLUDE YK05DBAS_4_E01 *
--
AT LINE-SELECTION.
 CASE sy-lsind.
 WHEN 1.
 PERFORM detailanzeige.
 ENDCASE.

--
*& Form Detailanzeige *
--

FORM detailanzeige.
 DATA: wa_zbestand1 TYPE zbestand,
 wa_zautoren TYPE zautoren,
 it_zautoren TYPE TABLE OF zautoren,
 name TYPE string,
 anzahl_autoren type i,
 pos TYPE i VALUE 20.
*Die in der Grundliste ausgewählte Zeile
*enthält die ISBN im Feld wa_zbestand-isbn.
*Um auch die, in der Grundliste nicht vor-
*handenen Felder(Auflage, Erscheinungsjahr,
*Verlag)ausgeben zu können, wird die Struktur
*wa_zbestand1 geladen
 SELECT SINGLE * FROM zbestand_tw
 INTO wa_zbestand1
 WHERE isbn = wa_zbestand-isbn.

 FORMAT COLOR COL_NORMAL INTENSIFIED ON.
 WRITE:
 'ISBN:',20 wa_zbestand1-isbn,85 '',
 / 'Titel:',20 wa_zbestand1-titel,85 '',
 / 'Auflage:',20 wa_zbestand1-auflage,85 '',
 / 'Erscheinungsjahr:',
 20 wa_zbestand1-erscheinungsjahr,85 '',
 / 'Verlag:',20 wa_zbestand1-verlag,85 '',
 / 'Gesamtbestand:',
 20 wa_zbestand1-bestand,85 '',

290 ■

■

■

5 Spezielle Techniken der Listenerstellung

 / 'davon ausgeliehen:',
 20 wa_zbestand1-ausgeliehen,85 ''.

*Laden der internen Tabelle it_zautoren
*mit den Buchautoren des Buches aus der
*ausgewählten Zeile der Grundliste
 SELECT * FROM zautoren
 INTO TABLE it_zautoren
 WHERE autorennr = wa_zbestand1-autor1 OR
 autorennr = wa_zbestand1-autor2 OR
 autorennr = wa_zbestand1-autor3.

 DESCRIBE TABLE it_zautoren
 LINES anzahl_autoren.

 FORMAT COLOR COL_HEADING INTENSIFIED ON.
 IF anzahl_autoren > 1.
 WRITE: / 'Autoren:'.

pos = 10.
 ELSE.
 WRITE: / 'Autor:'.

pos = 8.
 ENDIF.
 LOOP AT it_zautoren INTO wa_zautoren.
 CONCATENATE wa_zautoren-vorname1
 wa_zautoren-vorname2
 wa_zautoren-name
 INTO name SEPARATED BY space.
*Hat der Autor keinen 2. Vornamen, stehen
*in „name“ zwei Leerzeichen hinterienander.
*Diese sollten mit CONDENSE beseitigt werden
 CONDENSE name.
*Der Zusatz "AT" der WHERE-Anweisung gestattet
*die Verwendung von Variablen für die Angabe der
*Ausgabeposition und -länge.
 WRITE: AT pos name,AT pos1 ''.
 NEW-LINE.
 ENDLOOP.
ENDFORM. " Detailanzeige

Dieses Programm baut die Verzweigungsliste mit dem geforderten
Layout auf. Es werden jedoch, unabhängig von der ausgewählten
Zeile, immer die Zusatzangaben zur letzten Zeile der Grundliste an-
gezeigt. Das kommt daher, dass beim Aufbau der Grundliste die

5.4 Verzweigungslisten ■

■

■

291

Struktur (im Beispielprogramm wa_zbestand) in der LOOP-Schleife
des Unterprogrammes DISPLAY_GRUNDLISTE jeweils mit den
Daten der aktuellen Zeile der internen Tabelle (im Beispiel
it_zbestand) geladen wird – im letzten Schleifendurchlauf mit den
Daten der letzten Zeile. Die Frage ist, wie die Struktur die Daten der
ausgewählten Zeile bekommt. Um die Antwort zu finden, müssen
wir uns mit dem HIDE-Bereich und der HIDE-Anweisung beschäf-
tigen.

Der HIDE-Bereich
Der HIDE-Bereich ist ein Speicherbereich, in dem für jede Zeile der
Ausgabeliste die Werte ausgewählter Variablen gespeichert werden.
Mit Hilfe der Cursorposition werden beim Auftreten der Ereignisse

AT LINE-SELECTION und

AT USER-COMMAND

diese Variablen aus dem HIDE-Bereich mit den Werten der ausge-
wählten Zeile geladen. Die folgenden beiden Grafiken sollen das
veranschaulichen:

Die HIDE-Anweisung bewirkt das Speichern der Variablen im
HIDE-Bereich. Wie Sie in Abb. 5.23 sehen, stehen nur Angaben zu
Zeilen im HIDE-Bereich, zu denen auch eine HIDE-Anweisung aus-
geführt wurde. Die Zeilen 1 und 2 sind darin also nicht zu finden.

Abb. 5.23
Laden des
HIDE-Bereiches

292 ■

■

■

5 Spezielle Techniken der Listenerstellung

Syntax:
HIDE <Variable>.

Hinweise:

Die <Variable > kann auch eine Struktur sein.

Es ist nicht erforderlich, das die <Variable> vorher durch die
WRITE-Anweisung in den Listenpuffer geschrieben wurde.

Laden des HIDE-Bereiches

Achtung: wa-kategorie

behält den alten Wert,

weil diese Variable nicht
in den HIDE-Bereich ein-
getragen wurde.

Wie Sie sehen, kann unser Programm YK05DBAS durch eine einzi-
ge Anweisung dazu gebracht werden, in der Verzweigungsliste die
richtigen Daten anzuzeigen.

Ergänzen Sie im Unterprogramm DISPLAY_Listzeile, nach der
letzten WRITE-Anweisung, die HIDE-Anweisung.

Hinweis:
Es ist ausreichend, die Komponente WA-ISBN in den HIDE-
Bereich zu speichern, weil in der Verzweigungsliste der Datensatz
über die SELECT-Anweisung neu gelesen wird. Dazu wird nur die
ISBN benötigt (Schlüsselfeld).

Lösung: YK05DBAS_4

Lösung:
&---
*& Form Display_Listzeile *
&---

Abb. 5.24
Laden der Vari-
ablen aus dem
HIDE-Bereich

5.4 Verzweigungslisten ■

■

■

293

.*************nicht geänderter Quelltext********************

 WRITE:
 /2 icon_verfuegbar,
 wa-isbn UNDER 'ISBN'(002),
 wa-titel UNDER 'Titel'(003),
 icon_autoren AS ICON,
 wa_zautoren-name UNDER 'Autor'(004),
 (10) wa-kategorie
 UNDER 'Kategorie'(005),
 128 ' '.
HIDE: wa-isbn.

ENDFORM. " Display_Listzeile

Ein Problem gibt es mit unserer Verzweigungsliste noch: doppelkli-
cken Sie in eine ungültige Zeile (z.B. die Überschrift) wird die Ver-
zweigungsliste zur letzten Zeile angezeigt. Um das zu verhindern,
nutzen wir den Umstand, dass im HIDE-Bereich nur Zeilen gespei-
chert sind, zu denen eine HIDE-Anweisung existiert. Diese Zeilen
werden als „gültige Zeilen“ bezeichnet. Die Überschrift ist demzu-
folge eine ungültige Zeile.

Bei der Auswahl einer ungültigen Zeile, werden die Variablen dem-
zufolge nicht aus dem HIDE-Bereich geladen, sondern behalten ihre
Werte. Setzt man, nach der Ausgabe der Grundliste, eine der im
HIDE-Bereich stehenden Variablen auf einen ungültigen Wert
(Prüfwert), z.B. ISBN = '0', kann vor dem Aufbau der Verzwei-
gungsliste überprüft werden, ob eine gültige Zeile ausgewählt wurde
(IF isbn <> '0').

Beachten Sie bei dieser Methode, dass beim „Rücksprung“ in die
vorige Liste der Listenhierarchie, der Programmcode zu deren Er-
zeugung nicht erneut durchlaufen wird. Auf dem Bildschirm wird
lediglich der (alte) Inhalt des Listenpuffers dieser Liste angezeigt.
Dadurch wird auch Ihre Prüfvariable, z.B. ISBN, nicht wieder auf
den Prüfwert gesetzt. Doppelklicken Sie jetzt auf eine ungültige Zei-
le, wird die Verzweigungsliste trotzdem aufgebaut, mit den Daten
der vorher ausgewählten gültigen Zeile. Um das zu verhindern, ist,
nach dem Aufbau der Listenstufe „n“, die Prüfvariable (z.B. ISBN)
der Listenstufe „n-1“ mit ihren Prüfwert zu laden.

1. Setzen Sie im Unterprogramm DISPLAY_Listzeile, nach der
HIDE-Anweisung, die Komponente WA-ISBN auf ihren Initi-
alwert zurück. (CLEAR wa-isbn.).

294 ■

■

■

5 Spezielle Techniken der Listenerstellung

2. Fügen Sie in das Unterprogramm DETAILANZEIGE eine
IF- oder eine CHECK-Anweisung ein, die verhindert, dass die
Verzweigungsliste aufgebaut wird, wenn die Komponente WA-
ISBN mit ihrem Initialwert geladen ist.

3. Laden Sie nach dem Aufbau der Verzweigungsliste WA-ISBN
wieder mit dem Initialwert.

4. Testen Sie Ihr Programm. Wird die Verzweigungsliste nur dann
aufgebaut, wenn eine gültige Zeile ausgewählt wurde?

Lösung: YK05DBAS_5

Lösung:

&---
*& Form Display_Listzeile *
&---
FORM display_listzeile USING wa_zbestand
 TYPE zst_zbestand.
.*************nicht geänderter Quelltext********************

 HIDE: wa_zbestand-isbn.
*wa_zbestand-isbn auf den Initialwert
*('000000000') setzen
 CLEAR wa_zbestand-isbn.
ENDFORM. " Display_Listzeile

&---
*& Form Detailanzeige *
&---
FORM detailanzeige.
 DATA: wa_zbestand1 TYPE zbestand,
 wa_zautoren TYPE zautoren,
 it_zautoren TYPE TABLE OF zautoren_,
 name TYPE string,
 anzahl_autoren TYPE i,
 pos TYPE i VALUE 20,
 pos1 TYPE i VALUE 85.
 CHECK NOT wa_zbestand-isbn IS INITIAL.
*Der folgende Programmabschnitt wird nur
*durchlaufen, wenn wa_zbestand-isbn nicht
*mit dem Initialwert '00000000' geladen ist.
*Das ist der Fall, wenn der Benutzer eine
*gültige Zeile ausgewählt hat. WA_zbestand-*isbn

5.4 Verzweigungslisten ■

■

■

295

ist dann aus dem HIDE-Bereich mit der *isbn der
ausgewählten Zeile geladen.
 SELECT SINGLE * FROM zbestand
 INTO wa_zbestand1
 WHERE isbn = wa_zbestand-isbn.
.*************nicht geänderter Quelltext********************

*wa_zbestand-isbn für den nächsten Aufruf *der
Verzweigungsliste auf den Initialwert *setzen.
 CLEAR wa_zbestand-isbn.
ENDFORM. " Detailanzeige

Verzweigungsliste in einer modalen Dialogbox anzeigen
Die Anzeige der Verzweigungsliste im Vollbildmodus ist für viele
Anwendungen nicht ideal, weil Informationen der vorigen Liste
verdeckt werden. Durch die WINDOW-Anweisung kann die Ver-
zweigungsliste auch in einer modalen Dialogbox angezeigt werden.

Syntax
WINDOW STARTING AT x1 y1 [ENDING AT x2 y2].

x1 linke Begrenzungsspalte der Dialogbox

y1 obere Begrenzungszeile der Dialogbox

x2 rechte Begrenzungsspalte

y2 untere Begrenzungszeile

Hinweise:
Für x1, y1, x2 und y2 können auch Variable eingesetzt werden.

Vom System werden Systemvariable zur Berechnung von x1,
y1, x2 und y2, in Abhängigkeit zur Position der ausgewählten
Zeile und Spalte der Grundliste, bereitgestellt. Sie finden diese
Systemvariablen in der Schlüsselwortdokumentation (Schlüs-
selwort „Systemfelder für Listen“).

Für x1 und y1 müssen Werte größer 0 eingesetzt werden.

Die Dialogbox wird immer vollständig, d.h. mit Titel (obere
Zeile) und Drucktastenleiste (untere Zeile) abgebildet. Laufleis-
ten werden bei Bedarf automatisch angelegt. Ist y2 größer als
die darstellbare Zeilenanzahl, wird der untere Rand der Dialog-
box nach oben geschoben, so dass die Drucktastenleiste der Dia-
logbox am unteren Bildrand abgebildet wird. Ist x2 größer als
die max. Spaltenanzahl verhält sich die Dialogbox analog.

296 ■

■

■

5 Spezielle Techniken der Listenerstellung

Die Verzweigungsliste, die im Programm YK05DBAS aufgebaut
wird, soll als modale Dialogbox angezeigt werden.

Die Dialogbox soll auf der ausgewählten Zeile der Grund-
liste in der Spalte 40 beginnen (Systemvariable sy-curow).

Die Breite der Verzweigungsliste beträgt 65 Zeichen.

Y2 soll mit der Anzahl der Zeilen der Verzweigungsliste
geladen werden (Systemvariable sy-linno).

Fügen Sie die notwendigen Programmänderung in das Unterpro-
gramm DETAILANZEIGE ein.

Lösung: YK05DBAS_6

Lösung:

&---
*& Form Detailanzeige *
&---
FORM detailanzeige.
 DATA: wa_zbestand1 TYPE zbestand,
 wa_zautoren TYPE zautoren,
 it_zautoren TYPE TABLE OF zautoren,
 name TYPE string,
 anzahl_autoren TYPE i,
 pos TYPE i VALUE 20,
 pos1 TYPE i VALUE 85,
 x1 type i VALUE 40,
 y1 type i,
 x2 type i,
 y2 type i.
.*************nicht geänderter Quelltext********************

 y1 = sy-curow.
 x2 = x1 + 65.
 y2 = y1 + sy-linno.
 WINDOW STARTING AT x1 y1 ENDING AT x2 y2.
ENDFORM. " Detailanzeige

5.5 Die Programmoberfläche ■

■

■

297

5.5
Die Programmoberfläche

Für jedes Bildschirmbild wird ein GUI-Titel und ein GUI-Status an-
gelegt. Die Menge aller GUI-Titel und Status bilden die Oberfläche
des Programmes.

Vorgehensweise: Anlegen und Einbinden eines GUI-Titels

Wählen Sie entsprechend der Abb. 5.26 aus dem Kontextmenü den
Menüpunkt GUI-Titel.

Abb. 5.25
Bestandteile
der Programm-
oberfläche

Abb. 5.26
Menüauswahl
GUI-Titel

298 ■

■

■

5 Spezielle Techniken der Listenerstellung

Geben Sie im Folgebild „Titel anlegen“ einen Titelcode und den Ti-
tel ein. Den Titelcode benötigen Sie später, um den GUI-Titel einem
Bildschirmbild zuordnen zu können. Der Titel erscheint in der Titel-
zeile des Bildschirmbildes.

Hinweis:
Um der Titelzeile zur Laufzeit des Programmes noch Daten zu über-
geben, können Sie im Titel bis zu 9 Platzhalter (&1...&9) verwen-
den.

Der GUI-Titel ist fertig angelegt. Er muss jetzt in den Programmteil,
in dem das betreffende Bildschirmbild erzeugt wird, eingebunden
werden.

Syntax:
SET TITLEBAR <Titelcode> [with <&1>…<&9>].
Beispiel:
name = 'Umlauff'.
...
SET TITLEBAR 'GRUNDLISTE' with 'Autor:' name.

Achtung:
Der Titelcode (im Beispiel 'GRUNDLISTE') ist unbedingt mit Groß-
buchstaben zu schreiben.

Das Beispiel liefert das folgende Ergebnis:

Aktivieren Sie jetzt das Programm und den GUI-Titel.

Abb. 5.27
 Titelcode und
Titel eingeben

Abb. 5.28
Titel-Beispiel mit

Platzhaltern

5.5 Die Programmoberfläche ■

■

■

299

1. Legen Sie für die Grundliste des Literatur-Rechercheprogram-
mes YK05DBAS einen GUI-Titel an:

Titelcode: GRUNDLISTE

Titel: Rechercheergebnisse

und binden Sie ihn in das Unterprogramm DISPLAY-
Grundliste ein.

2. Legen Sie für die Verzweigungsliste einen zweiten GUI-Titel
an:

Titelcode: VERZWEIGUNGSLISTE

Titel: Detailangabe zum Titel &1

und binden Sie ihn in das Unterprogramm DETAILANZEIGE
ein. Übergeben Sie dem GUI-Titel den Titel des in der Ver-
zweigungsliste angezeigten Buches.

Lösung YK05DBAS_7

Lösung:

&---
*& Form Detailanzeige *
&---
FORM detailanzeige.
.*************nicht geänderter Quelltext********************

 SELECT SINGLE * FROM zbestand_tw
 INTO wa_zbestand1
 WHERE isbn = wa_zbestand-isbn.

 condense wa_zbestand1-titel.
 SET TITLEBAR 'VERZWEIGUNGSLISTE'
 with wa_zbestand1-titel.

Funktionsprinzip des GUI-Status
1. Beim Anlegen eines GUI-Status (siehe Abb. 5.25) wird je-

dem GUI-Status-Element (Menüpunkt, Symbol, Drucktas-
te, Funktionstaste) ein Funktionscode zugeordnet.

2. Beim Auswählen eines GUI-Status-Elements durch den
Benutzer, wird

die Systemvariable sy-ucomm mit dem Funktionscode des
ausgewählten GUI-Status-Elements geladen,

300 ■

■

■

5 Spezielle Techniken der Listenerstellung

das Programm mit den Ereignisblöcken

AT LINE-SELECTION oder AT USER-COMMAND

oder mit einer Systemfunktion

fortgesetzt.

Um ein Programm mit einem GUI-Status auszurüsten, sind folgende
Schritte notwendig:

1. Anlegen des GUI-Status,

2. Einbinden des GUI-Status in das Bildschirmbild,

3. Reagieren auf die Benutzeraktion.

Vorgehensweise: GUI-Status Anlegen und Einbinden

Die Vorgehensweise zum Anlegen eines GUI-Status soll an einem
Beispiel gezeigt werden. Die Verzweigungsliste soll nicht nur über
den Doppelklick auf eine Zeile der Grundliste angezeigt werden,
sondern soll auch über die Menüleiste, die Drucktastenleiste und das
Kontextmenü aufgerufen werden können.

Wählen Sie entsprechend der Abb. 5.29 aus dem Kontextmenü den
Menüpunkt GUI-Status.

Im Folgebild legen Sie den Namen des Status und den Statustyp fest.
Außerdem ist noch ein Kurztext einzugeben. Den Namen des Status
brauchen Sie, um den Status dem jeweiligen Bildschirmbild zuzu-
ordnen.

Abb. 5.29
Menüauswahl

GUI-Status

5.5 Die Programmoberfläche ■

■

■

301

Der Menü Painter startet. Sie können jetzt die Menüleiste, die
Drucktastenleiste und die Funktionstasten programmieren.

Abb. 5.30
Status, Status-
typ und Kurztext
festlegen

Abb. 5.31
Menü Painter

Abb. 5.32
Menü Painter
mit aufgerisse-
ner Arbeitsflä-
che zum Anle-
gen der Menü-
leiste, Druck-
tastenleiste und
Funktionstas-
tenbelegung

302 ■

■

■

5 Spezielle Techniken der Listenerstellung

Abbildung 5.32 zeigt die Arbeitsoberfläche zum Anlegen der Menü-
leiste, der Drucktastenleiste und der Funktionstastenbelegung (ein-
schließlich der Symbolleiste).
Laden Sie zuerst die Standardoberfläche Ihrer Liste. Wählen Sie da-
zu „Zusätze Vorlage abgleichen“ und aktivieren Sie im Folgebild
„Vorlagestatus abgleichen“ den Auswahlknopf „Liststatus“.

Die Standardoberfläche für eine Liste ist fertig.

Abb. 5.33
Standardober-

fläche laden

Abb. 5.34
Oberfläche mit

Standardfunkti-
onen einer Liste

5.5 Die Programmoberfläche ■

■

■

303

Nach einer Benutzeraktion (z.B. anklicken einer Symbols in der
Symbolleiste) wird der für diese Aktion vorgesehene Funktionscode
ausgelöst. Daraufhin wird ein Ereignisblock oder eine Systemfunk-
tion aufgerufen:

Funktionscode Wirkung

PICK Der Ereignisblock AT LINE-SELECTION
wird ausgeführt

%PRI Systemfunktion: Drucken der Liste

%SC Systemfunktion: Suchen innerhalb der Liste

%SC+ Systemfunktion: Weitersuchen

RW Systemfunktion: Abbrechen

BACK Systemfunktion: Zurück

%EX Systemfunktion: Beenden

P-- Systemfunktion: Blättern, erste Seite

P- Systemfunktion: Blättern, vorige Seite

P+ Systemfunktion: Blättern, nächste Seite

P++ Systemfunktion: Blättern, letzte Seite

alle anderen
Funktionscodes

Lösen den Ereignisblock AT USER-
COMMAND aus.

Um die Verzweigungsliste auch über die Menüleiste aufrufen zu
können, tragen Sie an eine geeignete Stelle in der Menüleiste einen
Funktionscode (frei wählbar) und einen Text ein.

Danach kann mit dem gleichen Funktionscode eine Drucktaste und
eine Funktionstaste angelegt bzw. belegt werden.

Tabelle 5.3
Funktionscodes
und ihre Wir-
kung

Abb. 5.35
Menüleiste
erweitern

304 ■

■

■

5 Spezielle Techniken der Listenerstellung

Im Anschluss legen Sie die Eigenschaften der Funktion VLISTE
fest. Doppelklicken Sie dazu auf den Funktionscode.

Statische Funk-
tionstexte

Beschreibung

Ikonenname Sie können eine Ikone auswählen, die in der
Drucktastenleiste anstelle der Drucktaste ange-
zeigt wird.

Ikonentext Wenn dieses Eingabefeld ausgefüllt ist, wird ei-
ne Drucktaste mit der ausgewählten Ikone und
dem
Ikonentext angezeigt

Infotext Der Infotext wird als Quick-Info angezeigt

Direktwahl Alt-<Direktwahl> löst die Funktion aus

Abb. 5.36
Funktionstaste

auswählen

Abb. 5.37
Eigenschaften

der Funktion
festlegen

5.5 Die Programmoberfläche ■

■

■

305

Sichern und Aktivieren Sie anschließend den GUI-Status. Das Akti-
vieren kann auch später, zusammen mit dem Aktivieren des Pro-
grammes erfolgen.

Der GUI-Status für die Grundliste ist jetzt vollständig angelegt. Er
muss in das Programm, welches die Grundliste erzeugt, eingebunden
werden. Im Programm YK05DBAS ist das das Unterprogramm
DISPLAY_Grundliste. Das Einbinden erfolgt über die

Syntax:
SET PF-STATUS <Name des GUI-Status>.

Beispiel:
FORM display_grundliste
USING it TYPE ANY TABLE
 wa TYPE zst_zbestand_tw.
 DATA: zeilen TYPE i.
 SET TITLEBAR 'GRUNDLISTE'.
 SET PF-STATUS 'GRUNDLISTE'.

Die Grundliste hat jetzt ihren eigenen GUI-Status.

Reagieren auf Benutzeraktionen
Die Auswahl des gerade angelegten Menüpunktes „Detail anzei-
gen“, der gleichnamigen Drucktaste oder der zugeordneten Funkti-
onstaste F5 durch den Benutzer bewirkt, dass die Systemvariable
SY-UCOMM mit dem den Menüpunkt zugeordneten Funktionscode
VLISTE (siehe Abb. 5.35 Seite 303) geladen und das Programm mit
dem Ereignisblock AT USER-COMMAND fortgesetzt wird. In die-
sem Ereignisblock wird die Systemvariable SY-UCOMM untersucht

Abb. 5.38
Grundliste mit
GUI-Titel und
GUI-Status

306 ■

■

■

5 Spezielle Techniken der Listenerstellung

und die gewünschte Funktionalität (im Beispiel: „Aufbau der Ver-
zweigungsliste“) aufgerufen.

Beispiel:

AT USER-COMMAND.
 CASE sy-ucomm.
 WHEN 'VLISTE'.
* Aufruf des Unterprogrammes, das
* die Verzweigungsliste erzeugt
 PERFORM detailanzeige.
 ENDCASE.

1. Legen Sie einen GUI-Status „GRUNDLISTE“ (Statustyp „Di-
alogstatus“) an. Ordnen Sie ihm die Standardfunktionalität ei-
ner Liste (Springen Vorlage abgleichen / Liststatus) und ei-
nen zusätzlichen Menüpunkt „Springen Detail anzeigen“
(Vorschlag für den Funktionscode: VLISTE) zu. Legen Sie
zusätzlich eine Drucktaste „Detail anzeigen“ mit dem gleichen
Funktionscode an. Verbinden Sie diese Drucktastaste mit der
Funktionstaste F5.

2. Binden Sie den neuen GUI-Status in Ihr Programm ein (Un-
terprogramm DISPLAY_GRUNDLISTE) ein.

3. Ergänzen Sie im Ereignisinclude YK05DBAS_E01 den Ereig-
nisblock AT USER-COMMAND und sorgen Sie dafür, dass
beim Auslösen des Funktionscodes VLISTE die Verzwei-
gungsliste angezeigt wird.

4. Starten Sie das Programm und zeigen Sie die Verzweigungs-
liste an. Welcher GUI-Status ist dort aktiv?

5. Wie aus Aufgabe 4 zu erkennen ist, ist der GUI-Status der
Grundliste auch in der Verzweigungsliste aktiv. In der Ver-
zweigungsliste wird die Zusatzfunktionalität „Detail anzeigen“
nicht benötigt. Legen Sie deshalb eine weiteren GUI-Status
„VERZWEIGUNGSLISTE“ an, der nur mit der Standardfunk-
tionalität ausgerüstet ist. Ordnen Sie diesen GUI-Status der
Verzweigungsliste zu.

Lösung YK05DBAS_8

Lösung:
Nachdem Sie die GUI-Status „GRUNDLISTE“ und
„VERZWEIGUNGSLISTE“ angelegt haben, sind folgende Pro-
grammergänzungen zu programmieren:

5.5 Die Programmoberfläche ■

■

■

307

--
* INCLUDE YK05DBAS_8_E01 *
--
AT user-command.
 CASE sy-ucomm.
 WHEN 'VLISTE'.
 PERFORM detailanzeige.
 ENDCASE.

--
*& Form Display_Grundliste *
--
FORM display_grundliste
USING it TYPE ANY TABLE
 wa TYPE zst_zbestand_tw.
 DATA: zeilen TYPE i.
 SET TITLEBAR 'GRUNDLISTE'.
 SET PF-STATUS 'GRUNDLISTE'.
.*************nicht geänderter Quelltext********************

--
*& Form Detailanzeige *
--
FORM detailanzeige.
 DATA: wa_zbestand1 TYPE zbestand_tw,
 wa_zautoren TYPE zautoren_tw,
 it_zautoren TYPE TABLE OF zautoren_tw,
 name TYPE string,
 anzahl_autoren TYPE i,
 pos TYPE i VALUE 20,
 pos1 TYPE i VALUE 85,
 x1 TYPE i VALUE 40,
 y1 TYPE i,
 x2 TYPE i,
 y2 TYPE i.

 CHECK NOT wa_zbestand-isbn IS INITIAL.
*Der folgende Programmabschnitt wird nur
*durchlaufen, wenn wa_zbestand-isbn nicht
*mit dem Initialwert '0' geladen ist.
 SET PF-STATUS 'VERZWEIGUNGSLISTE'.
.*************nicht geänderter Quelltext********************

308 ■

■

■

5 Spezielle Techniken der Listenerstellung

5.6
Dynamische Auswahl von Datensätzen
der Ausgabeliste

In diesem Kapitel soll die Ausgabeliste um ein Kontrollkästchen er-
gänzt werden, mit dem der Benutzer ihn interessierende Einträge in
der Liste markieren kann. Durch eine Erweiterung des GUI-Status
und ein zusätzliches Unterprogramm soll die Liste zur Laufzeit des
Programmes so geändert werden, dass nur noch die Zeilen mit akti-
vem Kontrollkästchen angezeigt werden.

Im ersten Schritt sollen in der Ausgabeliste die Kontrollkästchen
ausgegeben und der GUI-Status ergänzt werden.

1. Legen Sie im Top-Include eine Variable chkbox vom Typ ‚C’
mit der Länge 1 an.

2. Ergänzen Sie im Unterprogramm Display_Listzeile die Ausga-
be der Checkbox. Verwenden Sie dabei folgende Syntax:
WRITE: chkbox AS CHECKBOX.

3. Fügen Sie in den GUI-Status „Grundliste“ in die Menüleiste ei-
nen neuen Menüpunkt „Bearbeiten->Ausgewählte anzeigen“
(Vorschlag für den Funktionscode: DISP_SEL) und eine dazu-
gehörige Drucktaste (Icon: ICON_SUMMARIZE) ein.

4. Ändern Sie den Ereignisblock „AT USER-COMMAND“ so,
dass bei der Auswahl des Funktionscodes DISP-SEL ein Unter-
programm Change_Grundliste aufgerufen wird. Legen Sie die-
ses Unterprogramm zunächst ohne Quelltext an.

Lösung: YK05DBAS_9

Abb. 5.39
Aufgabenbe-

schreibung

5.6 Dynamische Auswahl von Datensätzen der Ausgabeliste ■

■

■

309

Lösung:

--
* INCLUDE YK05DBAS_TOP *
--
DATA: it_zbestand TYPE zint_zbestand_tw,
wa_zbestand TYPE zst_zbestand_tw,
wa_zkategorie TYPE zkategorie_tw,
farbe,chkbox.
--
* INCLUDE YK05DBAS_E01 *
--
AT USER-COMMAND.
CASE sy-ucomm.
WHEN 'VLISTE'.
* Aufruf des Unterprogrammes, das
* die Verzweigungsliste erzeugt
PERFORM detailanzeige.
WHEN 'DISP_SEL'.
PERFORM change_grundliste USING 'SEL'.
ENDCASE.
--
* FORM change_grundliste *
--
FORM change_grundliste.
ENDFORM.

Lesen im Listenpuffer
Den Kern des Unterprogrammes „Change_Grundliste“ bildet die
Anweisung „Read Line“. Mit dieser Anweisung kann eine Zeile der
Liste im Listenpuffer gelesen werden. Gleichzeitig werden die Wer-
te, die zu dieser Zeile im HIDE-Bereich gespeichert sind, in die Ur-
sprungsvariablen zurückgestellt.

Hinweis:
Die Änderung des Kontrollkästchens führt zu einer Änderung der
Variablen chkbox im Listenpuffer.

Syntax der READ LINE-Anweisung:

RAED LINE <n> FIELD VALUE <f1> [INTO <g1>]
 <f2> [INTO <g2>]
 <fn> [INTO <fn>].

310 ■

■

■

5 Spezielle Techniken der Listenerstellung

Belegung der Systemvariablen sy-subrc durch die READ LINE-
Anweisung:

sy-subrc = 0 Die Zeile n konnte gelesen werden

sy-subrc = 4 Die Zeile n konnte nicht gelesen werden (n > An-
zahl der Zeilen im Listenpuffer).

Erklärung:
Die Ausgabezeile n wird gelesen. Der Inhalt der (in dieser Zeile vor-
kommenden) Variablen f1 wird auf die Variable g1 geschrieben, der
Inhalt von f2 auf g2 und der Inhalt von fn auf gn. Enthält die Zeile n
keine Variable f1 (f2, fn), bleibt g1 (g2, gn) leer. Wird g1 (g2, gn)
nicht angegeben, wird der Wert f1 (f2, fn) der Listenzeile n auf die
Variablen f1 (f2, fn) geschrieben. Dabei ist zu beachten, dass alle
aus dem Listenpuffer gelesenen Werte vom Typ „C“ sind.

Weiter Varianten der READ LINE-Anweisung finden Sie in der
Schlüsselwortdokumentation.

Sollen alle Zeilen des aktuellen Listenpuffers gelesen und ausgewer-
tet werden, wird die READ LINE-Anweisung innerhalb einer DO-
Schleife benutzt.

Beispiel (Unterprogramm Change_Grundliste“)

DO.
*Lesen der Zeile sy-index (sy-index ist der
*Schleifenzähler der DO-Schleife)
 READ LINE sy-index FIELD VALUE chkbox.
*Prüfen, ob die Zeile gelesen werden konnte
*Wenn nicht, DO-Schleife verlassen
 IF sy-subrc <> 0.
 EXIT.
 ENDIF.
*Durch die READ LINE-Anweisung wurde die
*Variable chkbox mit dem aktuellen Wert chkbox
*der gelesenen Zeile geladen. Ist das Kontroll-
*kästchen aktiv, hat chkbox den Wert 'X'.
 IF NOT chkbox IS INITIAL.
*Aufbau der Listzeile sy-index.
 ENDIF.
ENDDO.

5.6 Dynamische Auswahl von Datensätzen der Ausgabeliste ■

■

■

311

1. Schreiben Sie das Unterprogramm „Change_Grundliste“. Wenn
in einer Listenzeile das Kontrollkästchen aktiviert wurde, soll
zu dieser Zeile das Unterprogramm „Display_Listzeile“ aufge-
rufen werden. Diesem Unterprogramm wird beim Aufruf die
Struktur wa_zbestand übergeben. Diese muss vorher mit den
Daten der ausgewählten Zeile geladen werden. Da READ
LINE- alle Werte der gelesenen Zeile aus dem HIDE-Bereich
in die Ursprungsvariablen zurückstellt, kann das über die An-
weisung
SELECT SINGLE * FROM zbestand
INTO CORRESPONDING FIELDS OF wa_zbestand
WHERE isbn = wa_zbestand-isbn
erfolgen.
Hinweis: Die HIDE-Anweisung finden Sie im Unterprogramm
„Display_Listzeile“ – falls Sie noch mal nach ihr sehen wollen.

2. Damit keine neue Verzweigungsliste aufgebaut, sondern die
Grundliste geändert wird, ist nach der Datenausgabe die Sys-
temvariable SY-LSIND auf den Wert „0“ zu setzen. Dadurch
wird die neue Liste in den Listenpuffer der Grundliste geladen.
Testen Sie das Programm einmal mit dieser Zuweisung und
einmal ohne sie.

Lösung: YK05DBAS_10

Eine Lösung für das Unterprogramm „Change_Grundliste“:

--
*& Form change_grundliste *
--
FORM change_grundliste.
DO.
*Listenzeile sy-index lesen
 READ LINE sy-index FIELD VALUE chkbox.
*nach der READ LINE-Anweisung haben die
*Variablen chkbox und wa_zbestand-isbn die
*Werte der gerade gelesenen Zeile.
*sy-subrc ist <> 0, wenn alle Zeilen gelesen
*wurden
 IF sy-subrc <> 0.
 EXIT.
 ENDIF.
 CHECK NOT chkbox IS INITIAL.
*Durch die CHECK-Anweisung kommt das
*Programm nur an diese Stelle, wenn das Kon-

312 ■

■

■

5 Spezielle Techniken der Listenerstellung

*trollkästchen (chkbox) der aktuellen Zeile
*aktiviert ist.
 selected = 'J'.
 SELECT SINGLE * FROM zbestand_tw
 INTO CORRESPONDING FIELDS OF wa_zbestand
 WHERE isbn = wa_zbestand-isbn.
 chkbox = ''.
 PERFORM display_listzeile
 USING wa_zbestand.
 ENDDO.
 sy-lsind = 0.
ENDFORM. " change_grundliste

Ändern des Listenpuffers
Nicht nur das Lesen sondern auch das Ändern von Variablen in der
Liste ist möglich. Dazu steht die Anweisung „MODIFY LINE“ zur
Verfügung. Zu dieser Anweisung gibt es viele Syntaxformen und
Zusätze. Hier soll nur eine der gebräuchlichste Formen dieser An-
weisung behandelt werden. Ein Blick in die Schlüsselwortdokumen-
tation zu „Modify Line“ lohnt sich daher.

Syntax der MODIFY CURRENT LINE-Anweisung:

MODIFY CURRENT LINE FIELD VALUE <f1> FROM <g1>
 <f2> FROM <g2>
 <fn> FROM <gn>.

Erklärung:
Mit dieser Form der Anweisung ändern Sie die zuletzt mit READ
LINE gelesene Listenzeile. Die Variable f1 (f2, fn) der vorher mit
READ LINE gelesenen Listenzeile wird mit dem Inhalt der Variab-
len g1 (g2, gn) überschrieben.

Durch die folgende Übung soll es dem Benutzer des Literatur-
Rechercheprogrammes ermöglicht werden, durch Auswahl einer
Menüfunktion bzw. Drucktaste, alle Kontrollkästchen der Ausgabe-
liste zu aktivieren bzw. zu deaktivieren. Außerdem soll die voll-
ständige Liste wiederhergestellt werden können.

1. Erweitern Sie dazu den PF-Status „Grundliste“ um folgende
Menüpunkte und Drucktasten.

5.6 Dynamische Auswahl von Datensätzen der Ausgabeliste ■

■

■

313

Menü Fkt.code Wirkung
Bearbeiten alle aktivieren
Icon für Drucktaste:
ICON_SELECT_ALL

AKT_ALL Aufruf Unter-
programm
AKT_ALL

Bearbeiten alle deaktivieren
Icon für Drucktaste:
ICON_DESELECT_ALL

DAKT_ALL Aufruf Un-
terprogramm-
DAKT_ALL

Bearbeiten alle anzeigen
Icon für Drucktaste:
ICON_TOGGLE_DISPLAY

DISP_ALL Aufruf Unter-
programm
DISP_ALL

2. Legen Sie die Unterprogramme AKT_ALL, DAKT_ALL und
DISP_ALL an und sorgen Sie dafür, dass diese Unterprogram-
me bei Auswahl des entsprechenden Menüpunktes bzw. Druck-
taste aufgerufen werden.

3. Schreiben Sie das Unterprogramm AKT_ALL. Es besteht aus
einer DO-Schleife in der über eine READ LINE-Anweisung je-
de Listenzeile gelesen wird und einer MODIFY CURRENT
LINE-Anweisung, die den Inhalt der Variablen chkbox in der
Listenzeile mit ‚X’ überschreibt.

4. Programmieren Sie in ähnlicher Form das Unterprogramm
DAKT_ALL.

5. Rufen Sie im Unterprogramm DISP_ALL das Unterprogramm
DISPLAY_GRUNDLISTE auf.

Lösung: YK05DBAS_11

Lösung:

--
* INCLUDE YK05DBAS_11_E01 *
--
AT USER-COMMAND.
 CASE sy-ucomm.
 WHEN 'VLISTE'. PERFORM detailanzeige.
 WHEN 'DISP_SEL'.PERFORM change_grundliste.
 WHEN 'AKT_ALL'. PERFORM akt_all.
 WHEN 'DAKT_ALL'.PERFORM dakt_all.
 WHEN 'DISP_ALL'.PERFORM disp_all.
 ENDCASE.
--
*& Form akt_all *
--
 DO.

314 ■

■

■

5 Spezielle Techniken der Listenerstellung

 READ LINE sy-index.
 IF sy-subrc <> 0.
 EXIT.
 ENDIF.
 MODIFY CURRENT LINE
 FIELD VALUE chkbox FROM 'X'.
 ENDDO.
 sy-lsind = 0.
ENDFORM. " akt_all

--
*& Form dakt_all *
--
FORM dakt_all.
 DO.
 READ LINE sy-index.
 IF sy-subrc <> 0.
 EXIT.
 ENDIF.
 MODIFY CURRENT LINE
 FIELD VALUE chkbox FROM ''.
 ENDDO.
 sy-lsind = 0.
ENDFORM. " dakt_all

--
*& Form disp_all *
--
FORM disp_all.
 PERFORM display_grundliste
 USING
 it_zbestand
 wa_zbestand.
ENDFORM. " disp_all

5.7
Dynamisches Sortieren der Ausgabeliste

Dynamisches Sortieren der Ausgabeliste bedeutet, dass der Benutzer
die Liste zur Laufzeit des Programmes nach verschiedenen Spalten
aufsteigend oder absteigend sortieren kann. Dazu stellt der Benutzer
den Cursor in die Spalte der Ausgabeliste nach der sortiert werden
soll und klickt auf eine entsprechende Drucktaste. Dabei darf die ak-

5.7 Dynamisches Sortieren der Ausgabeliste ■

■

■

315

tuelle Buchauswahl, die der Benutzer durch die Funktion „ausge-
wählte anzeigen“ eventuell eingeschränkt hat und der Status der
Kontrollkästchen (ausgewählt bzw. nicht ausgewählt) nicht verloren
gehen.

Um diese Aufgabenstellung programmtechnisch umzusetzen, brau-
chen wir eine Möglichkeit, den Spaltennamen der Ausgabespalte zu
ermitteln, in die der Benutzer den Cursor gestellt hat. Dazu nutzen
wir die GET CURSOR-Anweisung.

Syntax:
GET CURSOR FIELD <f>.

Der Name des Feldes, auf dem der Cursor positioniert ist, wird in
die Zeichenvariable <f> übertragen.

Belegung der Systemvariablen sy-subrc durch die Anweisung:

sy-subrc = 0 Cursor stand in einem Feld

sy-subrc = 4 Cursor stand nicht in einem Feld

Hinweis:
Die Zeichenvariable <f> wird nur dann mit dem Namen des Feldes,
auf dem der Cursor positioniert ist geladen, wenn das Feld global
angelegt wurde. Lokale Felder, also Felder, die im Unterprogramm
deklariert wurden, werden wie Felder ohne Namen behandelt, d.h.
die Variable <f> wird auf ihren Initialwert gesetzt. Das gilt auch für
Literale, Feldsymbole und Parameter. Dabei wird sy-subrc trotzdem
mit 0 geladen.

Beispiel:
Eine LOOP-Schleife
LOOP AT it_zbestand INTO wa_zbestand.
 WRITE: / wa_zbestand-isbn,
 wa_zbestand-titel,
 wa_zbestand-autor1.
endloop.
erzeugt folgende Ausgabeliste:

316 ■

■

■

5 Spezielle Techniken der Listenerstellung

Der Benutzer hat den Cursor in die Spalte gestellt, die mit
wa_zbestand-titel angelegt wurde.

Das folgende Programm ermittelt mit GET CURSOR die ausge-
wählte Spalte und bereitet das ermittelte Feld so auf, dass damit die
interne Tabelle it_zbestand dynamisch sortiert werden kann.

DATA: spalte(30).
GET CURSOR FIELD spalte.
*Inhalt der Variablen spalte:
*'wa_zbestand-titel'
*Zum sortieren über die SORT-Anweisung wird
*jedoch nur der Komponentenname 'titel'
*benötigt.
spalte = spalte+13.
*+13 ist der sogenannte Offset. Der Variab-
*len spalte wird die Zeichenkette 'titel'
*zugewiesen (13. Stelle der Zeichenkette
*'wa_zbestand-titel' bis zum Ende)

sort it_zbestand by (spalte).
*Das Sortierkriterium kann der SORT-Anweisung
*auch als Variable übergeben werde. Die
*Variable, die das Sortierfeld enthält, wird in
*runde Klammern geschrieben. Diese Methode heißt
*'dynamisches sortieren'.

Dynamisches Sortieren einer internen Tabelle
Der SORT-Anweisung können über die Syntax

SORT <itab> BY <f1> <f2>...<fn>.

Beispiel:
sort it_zbestand by kategorie titel.

5.7 Dynamisches Sortieren der Ausgabeliste ■

■

■

317

in den Variablen <f1>…<fn> die Sortierfelder übergeben werden.
Stehen die Felder, nach denen die interne Tabelle sortiert werden
soll, in Zeichenkettenvariablen, werden diese in runde Klammern
(ohne Leerzeichen) übergeben. Man spricht dann von „dynami-
scher“ Sortierung, weil erst zur Laufzeit des Programmes festgelegt
wird, nach welchen Feldern die interne Tabelle sortiert werden soll.

Beispiel:
DATA: f1(20), f2(20).
f1 = 'kategorie'.
f2 = 'titel'.
sort it_zbestand by (f1) (f2).

Zusätzlich kann über die Klauseln „ascending“ und „descending“
aufsteigend oder absteigend sortiert werden. Dabei steht „ascending“
für aufsteigend (Standard) und „descending“ für absteigend. Die
Anweisung
sort it_zbestand by (f1) descending.
 (f2) ascending.
bewirkt eine absteigende Sortierung nach Kategorie und eine auf-
steigende nach Titel (innerhalb einer Kategorie).

In dieser Übung soll die Ausgabeliste so verbessert werden, dass
der Benutzer, wie eingangs beschrieben, die Ausgabe dynamisch
auf- oder absteigend sortieren kann. Dabei können Sie so vorgehen:

1. Legen Sie im GUI-Status „Grundliste“ entsprechend der nach-
folgenden Tabelle zwei Menüpunkte und Drucktasten an.

Menü Fkt.code Wirkung
Bearbeiten Sortieren (aufst.)
Icon für Drucktaste:
ICON_SORT_UP

SORTUP Aufruf UP
SORT

Bearbeiten Sortieren (abst.)
Icon für Drucktaste:
ICON_SORT_DOWN

SORTDOWN Aufruf UP
SORT

2. Legen Sie das Unterprogramm SORT an (zunächst ohne Quell-
text) und sorgen Sie im Ereignisblock „AT USER-
COMMAND“ dafür, dass es beim Auslösen der Funktionsco-
des SORTUP und SORTDOWN aufgerufen wird. Übergeben
Sie dem Unterprogramm beim Aufruf über den Funktionscode
SORTUP die Zeichenkette ‚UP’ und beim Aufruf über den
Funktionscode SORTDOWN die Zeichenkette ‚DN’. Über die-
se Parameter soll im Unterprogramm die auf- bzw. absteigende
Sortierung ausgewählt werden.

318 ■

■

■

5 Spezielle Techniken der Listenerstellung

3. Die Ausgabeliste soll u.a. auch nach dem Namen des Autors
sortiert werden können. Diese Ausgabe wird z.Z. über die loka-
le Variable wa_zautoren-name1 erzeugt. Da für den Einsatz der
GET CURSOR FIELD-Anweisung globale Variablen benötigt
werden, kopieren Sie die die entsprechende DATA-Anweisung
vom Unterprogramm „DISPLAY_LISTZEILE“ in das Top-
Include.

4. Um die Ausgabeliste zu sortieren, benötigen Sie eine interne
Tabelle mit allen Spalten der Ausgabeliste, nach denen sortiert
werden soll. Legen Sie im Unterprogramm SORT dazu zu-
nächst eine Struktur (Namensvorschlag: wa_listzeile) mit den
folgenden Komponenten an:

Alle Komponenten der Struktur wa_zbestand
ctrlkaestchen (Type C mit der Länge 1) zur Speicherung
des Status des Kontrollkästchens chkbox
name like wa_zautoren-name

Hinweis: Um Schreibarbeit zu sparen, können Sie sich in der
Schlüsselwortdokumentation „INCLUDE STRUCTURE“ mit
der Syntax zum Includieren von Strukturen bekannt machen.
Ignorieren Sie die Hinweise, dass diese Methode veraltet ist.
Für die dynamische Sortierung können Sie diese Methode gut
verwenden.

5. Legen Sie mit dieser Struktur eine Standardtabelle (Namens-
vorschlag it_listzeile) an.

6. Deklarieren Sie die Variablen
spalte(50)

offset type i.

7. Laden Sie über die GET CURSOR FIELD-Anweisung die Va-
riable spalte mit dem Namen des Feldes, in das der Benutzer
den Cursor gestellt hat.

8. Steht der Cursor in einer gültigen Zeile (sy-subrc = 0 AND
NOT spalte IS INITIAL) kann über eine SEARCH-Anweisung
der Offset ermittelt werden. Dabei können Sie davon ausgehen,
dass der Komponentenname hinter dem Zeichen „-“
(Bindestrich) steht. Ermitteln Sie den Komponentennamen wie
folgt:

5.7 Dynamisches Sortieren der Ausgabeliste ■

■

■

319

SEARCH spalte FOR '-'.
IF sy-subrc = 0.
 offset = sy-fdpos + 1.
 spalte = spalte+offset.

DO.
 *Gültige Listenzeilen mit der READ
 *LINE-Anweisung lesen. Siehe Punkt 9.

*interne Tabelle it-listzeile mit
 *den Werten der gültigen Listenzeilen
 *füllen Siehe Punkt 10.

ENDDO.
 ...
ENDIF.

9. In der im Punkt 8 angelegten DO-Schleife werden zunächst alle
Zeilen der Ausgabeliste gelesen. Nutzen Sie dazu die READ
LINE-Anweisung. Zur Wiederholung: Diese Anweisung liest
eine Zeile der Ausgabeliste, stellt ausgewählte Feldinhalte in ih-
re Ursprungsvariablen zurück. Zusätzlich werden die im HIDE-
Bereich stehenden Variablen zur gelesenen Zeile ebenfalls in
ihre Ursprungsvariablen geladen. Sie können dazu die folgende
Syntax benutzen:

CLEAR wa_zbestand-isbn.
READ LINE sy-index FIELD VALUE chkbox
wa_zautoren-name.
IF sy-subrc <> 0.
EXIT.
ENDIF.
*Nur gültige Zeilen bearbeiten
IF NOT wa_zbestand-isbn IS INITIAL.
*interne Tabelle it-listzeile mit
*den Werten der gültigen Listenzeilen
*füllen Siehe Punkt 11.
ENDIF.

10. Füllen Sie jetzt (zeilenweise) die interne Tabelle mit den Wer-
ten zur im Punkt 9 gelesenen Zeile. Die SELECT SINGLE-
Anweisung über die Tabelle zbestand füllt die Struktur
wa_listzeile mit den aus dieser Tabelle stammenden Feldinhal-
ten. Die Komponenten wa_listzeile-name und wa_listzeile-
ctrlkaestchen müssen durch zusätzliche Anweisungen geladen
werden. Sie können sich an dieser Syntax orientieren:

SELECT SINGLE * FROM zbestand_tw
INTO CORRESPONDING FIELDS OF wa_listzeile

320 ■

■

■

5 Spezielle Techniken der Listenerstellung

WHERE isbn = wa_zbestand-isbn.

wa_listzeile-ctrlkaestchen = chkbox.
wa_listzeile-name = wa_zautoren-name.
*die später zu sortierende Tabelle
*it_listzeile laden
APPEND wa_listzeile TO it_listzeile.

11. Sortieren Sie jetzt die interne Tabelle it_listzeile nach dem in
der Variablen spalte stehenden Feld. Sortieren Sie absteigend,
wenn dem Unterprogramm der Parameter 'UP' übegeben wurde,
andernfalls sortieren Sie aufsteigend.

12. Im letzten Schritt ist die Liste neu auszugeben. Programmieren
Sie eine LOOP-Schleife über die interne Tabelle it_listzeile.
Laden Sie in dieser Schleife die Struktur wa_zbestand mit den
korrespondierenden Feldern der Struktur wa_listzeile. Laden
Sie die Variable chkbox mit wa_listzeile-ctrlkaestchen und ru-
fen Sie dann, ebenfalls innerhalb der Schleife, das Unterpro-
gramm DISPLAY_LISTZEILE auf. Überschreiben Sie nach
der ENDLOOP-Anweisung den Listenpuffer der Grundliste mit
der sortierten Liste. Auch hier eine Hilfestellung hinsichtlich
der Codierung:
LOOP AT it_listzeile INTO wa_listzeile.
MOVE-CORRESPONDING wa_listzeile TO
 wa_zbestand.
chkbox = wa_listzeile-ctrlkaestchen.
PERFORM display_listzeile
USING wa_zbestand.
ENDLOOP.
sy-lsind = 0.

Lösung: YK05DBAS_12

Das war schon eine ganz anspruchsvolle Programmieraufgabe, fin-
den Sie das nicht auch? Hier nun eine funktionierende Lösung:

--
* INCLUDE YK05DBAS_6_TOP *
--
DATA: it_zbestand TYPE zint_zbestand_tw,
 wa_zbestand TYPE zst_zbestand_tw,
 wa_zkategorie TYPE zkategorie_tw,
 wa_zautoren TYPE zautoren_tw,
 farbe,chkbox.

5.7 Dynamisches Sortieren der Ausgabeliste ■

■

■

321

--
* INCLUDE YK05DBAS_8_E01 *
--
AT USER-COMMAND.
 CASE sy-ucomm.
 WHEN 'VLISTE'. PERFORM detailanzeige.
 WHEN 'DISP_SEL'.PERFORM change_grundliste.
 WHEN 'AKT_ALL'. PERFORM akt_all.
 WHEN 'DAKT_ALL'.PERFORM dakt_all.
 WHEN 'DISP_ALL'.PERFORM disp_all.
 WHEN 'SORTUP'. PERFORM sort USING 'UP'.
 WHEN 'SORTDOWN'.PERFORM sort USING 'DN'.
 ENDCASE.

--
*& Form sort *
--
FORM sort USING p_sort.

*Deklarieren einer Struktur, die alle
*Komponenten der Struktur wa_zbestand
*und zusätzlich die Komponente
*'ctrkaestchen' enthält.

DATA: BEGIN OF wa_listzeile.
 INCLUDE STRUCTURE wa_zbestand.
DATA: ctrlkaestchen,
 name like wa_zautoren-name.
DATA: END OF wa_listzeile.

DATA:
 it_listzeile LIKE TABLE OF wa_listzeile,
 spalte(50),
 offset TYPE i.
GET CURSOR FIELD spalte.
*spalte enthält jetzt den Namen des Feldes, in
*dem der Cursor steht (z.B. 'wa_zbestand-titel'

IF sy-subrc <> 0 OR spalte IS INITIAL .
 WRITE: 'Keine sortierbare Spalte'.
 EXIT.
ENDIF.
SEARCH spalte FOR '-'.

322 ■

■

■

5 Spezielle Techniken der Listenerstellung

*Zeichen '-' gefunden sy-subrc = 0, sy-fdpos
*= Position des Zeichens in spalte (im Bsp: 12)

IF sy-subrc <> 0. EXIT. ENDIF.
offset = sy-fdpos + 1.
spalte = spalte+offset.
DO.
 CLEAR wa_zbestand-isbn.

*Read Line liest die Listenzeile sy-index
*(Schleifenzähler), schreibt den Inhalt des
*Feldes chkbox der akt. Listenzeile in die Va-
*riable chkbox, wa_zbestand-isbn wird aus dem
*HIDE-Ber. mit dem Wert der akt. Zeile geladen

 READ LINE sy-index FIELD VALUE chkbox
 wa_zautoren-name.
 IF sy-subrc <> 0.EXIT. ENDIF.

*Nur gültige Zeilen bearbeiten
 IF NOT wa_zbestand-isbn IS INITIAL.

*wa_zbestand aus der Tabelle zbestand neu laden
 SELECT SINGLE * FROM zbestand
 INTO CORRESPONDING FIELDS OF wa_listzeile
 WHERE isbn = wa_zbestand-isbn.

*Status des Kontrollkästchens, Autorrennamen in
*die Struktur wa_listzeile schreiben
 wa_listzeile-ctrlkaestchen = chkbox.
 wa_listzeile-name = wa_zautoren-name.

*die später zu sortierende Tabelle
*it_listzeile laden
 APPEND wa_listzeile TO it_listzeile.
 ENDIF.
ENDDO.

*Dynamische Sortierung der internen Tabelle
*it_listzeile. Die Variable spalte enthält den
*Namen der Tabellenspalte, nach der die Tabelle
*sortiert werden soll
IF p_sort = 'UP'.
 SORT it_listzeile BY (spalte).

5.8 Ein Freund des Programmierers –
Der Debugger ■

■

■

323

ELSE.
 SORT it_listzeile BY (spalte)DESCENDING.
ENDIF.

*Aufbau der sortierten Liste
LOOP AT it_listzeile INTO wa_listzeile.
 MOVE-CORRESPONDING
 wa_listzeile TO wa_zbestand.
 chkbox = wa_listzeile-ctrlkaestchen.
 PERFORM display_listzeile USING wa_zbestand.
ENDLOOP.
sy-lsind = 0.
ENDFORM. " sort

5.8
Ein Freund des Programmierers –
Der Debugger

Der Debugger hilft Ihnen, Ihr Programm zu analysieren. Sie können
damit sowohl den Programmablauf verfolgen als auch den Inhalt
von Datenobjekten (elementare Datenobjekte, Strukturen, interne
Tabellen ...) anzeigen. In diesem Kapitel soll der Einsatz des De-
buggers am Beispiel des Programmes aus Abschnitt 5.7 „Dynami-
sches Sortieren der Ausgabeliste“ Seite 314 gezeigt werden. Laden
Sie dazu das Programm YK05DBAS_12 in den ABAP-Editor.

Hinweis:
Das zu debuggende Programm muss aktiviert sein.

5.8.1
Start des Debuggers

Es gibt verschiedene Möglichkeiten, den Debugger einzuschalten.

Start des Debuggers über /h im Kommandofeld
Starten Sie das Programm YK05DBAS_12 und lassen Sie sich die
Grundliste anzeigen. Geben Sie in das Kommandofeld die Zeichen-
kette /h ein und Drücken Sie die Entertaste.

324 ■

■

■

5 Spezielle Techniken der Listenerstellung

Stellen Sie jetzt den Cursor in eine sortierbare Spalte der Ausgabe-
liste und wählen Sie das Symbol „Sortieren (aufst.)“. Sie verzweigen
in den Debugger. Die Möglichkeiten, die Ihnen dieses Werkzeug
bietet, werden weiter unten in diesem Kapitel behandelt. Beenden
Sie den Debugger über das Menü „Debugging Debugging aus“.

Start des Debuggers über einen Breakpoint
Es ist für den Programmierer häufig praktischer, den Debugger über
einen Breakpoint, der im ABAP-Editor gesetzt wird, zu starten. Das
Programm verzweigt erst dann in den Debuggingmodus, wenn im
Programmablauf dieser Breakpoint erreicht ist.
Um einen Breakpoint zu setzen, laden Sie das zu debuggende Pro-
gramm in den ABAP-Editor, setzen den Cursor in die Anweisung,
vor deren Ausführung der Debuggingmodus eingeschaltet werden
soll und klicken das Symbol „Breakpoint setzen /löschen“.

Abb. 5.40
Debugging
einschalten

Abb. 5.41
Debugging aus-

schalten

5.8 Ein Freund des Programmierers –
Der Debugger ■

■

■

325

Starten Sie dann das Programm. Unmittelbar vor der Ausführung der
Anweisung auf die der Breakpoint gesetzt ist, wird der Debugger
eingeschaltet. Sie können diesen Modus, wie in Abb. 5.41 gezeigt,
wieder ausschalten. Den Breakpoint löschen Sie auf die gleiche Art,
wie Sie Ihn gesetzt haben (Cursor in die Zeile mit dem Breakpoint
setzen und Symbol „Breakpoint setzen / löschen wählen).

5.8.2
Programm debuggen

Abb. 5.42
Breakpoint
setzen

Abb. 5.43
Anzeigemodus
„Felder“ des
Debuggers

326 ■

■

■

5 Spezielle Techniken der Listenerstellung

Nach dem Verzweigen in den Debuggingmodus wird der in Abb.
5.45 dargestellte Anzeigemodus „Felder“ bereitgestellt. In der
Quellcodeanzeige des zu debuggenden Programmes ist die Anwei-
sung, die als nächstes ausgeführt wird, durch ein schwarzes Dreieck
am linken Zeilenrand gekennzeichnet.
Im Quelltext können Sie mit den Bildtasten blättern. Über die
Schaltfläche „Aktuelle Anweisung anzeigen“ springen Sie zurück
zur nächsten auszuführenden Anweisung.
Durch Doppelklick auf den Namen eines Datenobjektes (Feld,
Struktur, interne Tabelle) wird dieses mit seinem aktuellen Inhalt in
den unteren Bildschirmbereich gestellt. Bei elementaren Feldern
können Sie hier auch den Inhalt ändern. Überschreiben Sie dazu ein-
fach den alten Inhalt und drücken Sie dann das Bleistiftsymbol am
rechten Rand des Eingabefeldes.

Über die Symbolgruppe „Ausführungsmodi“ können Sie das De-
bugging steuern. Diese Symbole sind in der folgenden Tabelle er-
klärt.

5.8 Ein Freund des Programmierers –
Der Debugger ■

■

■

327

Symbolname Funktion

Einzelschritt Mit dieser Option wird das Programm An-
weisung für Anweisung ausgeführt. Spe-
ziell bietet diese Art der Ausführung die
Möglichkeit, in Unterprogramme und
Funktionsbausteine zu verzweigen, so dass
auch diese Anweisung für Anweisung ab-
gearbeitet werden können. Nach der Abar-
beitung der Unterprogramme und Funkti-
onsbausteine gelangen Sie zu der
Anweisung im Programm, die der aufru-
fenden Anweisung folgt.

Ausführen Mit der Option wird ein Programm zeilen-
weise abgearbeitet. Alle Arbeitsschritte, die
zu der aktuellen Zeile gehören, werden zu-
sammengefasst. Wenn Sie sich in einer Zei-
le befinden, die ein Unterprogramm aufruft,
und hier Ausführen wählen, führt der De-
bugger das Unterprogramm aus und geht zu
der Zeile über, die dem Unterprogrammauf-
ruf direkt folgt. Auf diese Weise übersprin-
gen Sie die Anweisungen innerhalb des Un-
terprogramms.

Return Der Debugger kehrt an die Position zu-
rück, an der ein aufrufendes Programm
wieder die Steuerung übernimmt. Sie wäh-
len diese Option, wenn Sie sich in einem
Unterprogramm, Funktionsbaustein oder
einem gerufenen Programm befinden und
wieder zum rufenden Programm zurück-
kehren wollen.

Weiter (bis zum Cur-
sor)

Mit dieser Option wird das Programm bis
zum nächsten Breakpoint oder bis zur
Cursor-Position abgearbeitet. Sind im
nachfolgenden Quelltext keine (weiteren)
Breakpoints vorhanden und wurde kein
Cursor gesetzt, so wird der Debuggingmo-
dus beendet und das Programm ausgeführt.

328 ■

■

■

5 Spezielle Techniken der Listenerstellung

1. Setzen Sie im Unterprogramm SORT des Programmes
YK05DBAS_12 einen Breakpoint auf die Anweisung „GET
CURSOR FIELD spalte“ und starten Sie das Programm.

2. Doppelklicken Sie im Debugger auf den Feldnamen „spalte“
der Anweisung „GET CURSOR FIELD spalte“.

3. Klicken Sie auf das Symbol Einzelschritt“. Die Anweisung
„GET CURSOR FIELD spalte“ wird ausgeführt.

Strukturen im Debugger

1. Blättern Sie im Quellcode des Unterprogrammes SORT bis zur
Anweisung. Sie können dazu die Bild-Tasten benutzen.

2. Setzen Sie den Cursor in diese Anweisung und wählen Sie das
Symbol „Weiter (bis zum Cursor)“.

3. Doppelklicken Sie auf den Namen der Struktur (wa_listzeile).

Abb. 5.44
Stand des De-

buggers
nach der

Anweisung
GET

CURSOR...

5.8 Ein Freund des Programmierers –
Der Debugger ■

■

■

329

Abb. 5.45
Struktur im De-
bugger (Anzei-
gemodus Fel-
der)

Abb. 5.46
Struktur im
Debugger
(Anzeige der
Komponenten)

330 ■

■

■

5 Spezielle Techniken der Listenerstellung

Interne Tabellen im Debugger

1. Doppelklicken Sie in der Quelltextanzeige des Debugger auf
den Namen der internen Tabelle it_listzeile (Abb. 5.48).

2. Doppelklicken Sie in der Spalte Feldnamen auf den Namen der
internen Tabelle. Sie gelangen in die Tabellenanzeige Abb.
5.49).

3. Doppelklicken Sie in die erste Anweisung nch der DO-Schleife.
Sie setzen damit einen Breakpoint.

4. Stellen Sie den Cursor in die ENDDO-Anweisung und klicken
Sie die Schaltfläche „Weiter (bis Cursor)“ so oft an, bis die in-
terne Tabelle gefüllt ist (Abb. 5.49).

5. Doppelklicken Sie in der Debuggeranzeige ein Element der in-
ternen Tabelle. Sie gelangen in einen Bildschirm, in dem Sie
dieses ändern können.

Abb. 5.47
Struktur im De-
bugger (Ändern

einer Kompo-
nente)

Abb. 5.48
Interne Tabelle

im Debugger
(Anzeigemodus:

Felder)

5.9 Ausgabe von Meldungen (Messages) ■

■

■

331

5.9
Ausgabe von Meldungen (Messages)

Unser Literatur-Rechercheprogramm für die East-Side-Library hat
jetzt fast den in der Aufgabenstellung beschriebenen Stand erreicht.

Einige Dinge sollten jedoch noch verbessert werden. Meldungen des
Programmes (z.B. „Keine sortierbare Spalte“) werden zum Beispiel

Abb. 5.49
Interne Tabelle
im Debugger
(Anzeigemodus:
Tabelle)

Abb. 5.50
Interne Tabelle
im Debugger
(Änderung einer
Zelle)

332 ■

■

■

5 Spezielle Techniken der Listenerstellung

über WRITE-Anweisungen ausgegeben. Das geht natürlich, wirkt
aber nicht unbedingt professionell.
Außerdem ist es nicht besonders originell, dem Benutzer des Pro-
grammes erst durch die Anzeige einer leeren Ausgabeliste darauf
hinzuweisen, dass seine Recherche nicht zum gewünschten Ergebnis
geführt hat. Der Anwender hat in dieser Situation ein Recht auf eine
mitfühlendere Reaktion des Programmes.

Programmausgaben dieser Art sollten im R/3 nicht über WRITE-
Anweisungen sondern über Nachrichten, sogenannte Messages, er-
zeugt werden. Nachrichten geben nicht nur Informationen auf den
Bildschirm aus sondern können darüber hinaus zur Steuerung des
Programmablauf eingesetzt werden – eine Eigenschaft die oftmals
den Programmieraufwand erheblich verringert. Die Ausgabe der
Meldungen erfolgt entweder auf der Statuszeile (Standard) oder in
einem modalen Dialogfenster.

In der Abb. 5.51 wird eine Nachricht ausgelöst, weil in der Daten-
bank der East-Side-Library kein Buch gefunden wurde, das den Ein-
gaben der Suchmaske entspricht. Diese Nachricht bewirkt, dass der
Anwender nicht in den listenerzeugenden Programmteil (Dis-
play_Grundliste) verzweigt, sondern im Selektionsbild verbleibt und
die Suchkriterien ändern kann. Somit steuert also die Nachricht den
weiteren Programmablauf.

Verwaltung von Nachrichten
Jede Nachricht muss einer Nachrichtenklasse zugeordnet werden.
Die Nachrichtenklasse erhält beim Anlegen einen maximal 20-
stelligen alphanumerischen Bezeichner im Kundennamensraum.

Abb. 5.51
Message mit

Langtext

5.9 Ausgabe von Meldungen (Messages) ■

■

■

333

Dieser Bezeichner ist im R/3-System eindeutig. Für die Nachricht
selbst wird ein maximal 3-stelliger freiwählbarer alphanumerischer
Bezeichner vergeben. Dieser ist für jede Nachrichtenklasse eindeu-
tig.

Nachrichtenklassen und Nachrichten werden in der Tabelle T100
gespeichert. Über die Transaktion SE91 (Werkzeuge ABAP
Workbench Entwicklung Programmierumfeld SE91 Nach-
richt) werden sie verwaltet.

Vorgehensweise: Anlegen einer Nachrichtenklasse / Nachricht

Zweckmäßigerweise legen Sie Nachrichtenklassen und Nachrichten
über den ABAP-Editor an.

Starten Sie über den Object Navigator den ABAP-Editor. Wählen
Sie dort „Programm Anderes Objekt“ oder klicken Sie die ent-
sprechende Drucktaste. Lassen Sie sich die Registerkarte „Weitere“
anzeigen. Aktivieren Sie den Auswahlknopf „Nachrichtennummer“
und geben Sie einen Bezeichner für Nachrichtenklasse (ZLIB) und
Nachricht (001) an. Klicken Sie dann die Schaltfläche „anlegen“.
Orientieren Sie sich dabei an Abb. 5.52.

Im Folgebild „Nachrichtenpflege: Nachrichtenklasse ändern“ geben
Sie einen Kurztext ein und sichern die Nachrichtenklasse. Danach
gehen Sie in die Registerkarte „Nachrichten“.

Abb. 5.52
Eingabe der Be-
zeichner für
Nachrichten-
klasse und
Nachricht

334 ■

■

■

5 Spezielle Techniken der Listenerstellung

In der Registerkarte „Nachrichten“ legen Sie den Nachrichtenkurz-
text an. Ist dieser Kurztext selbsterklärend, aktivieren Sie das Kon-
trollkästchen „Selbsterklärend“. Das modale Fenster, in dem die
Nachricht angezeigt wird, enthält dann keine Drucktaste „Hilfe“. Si-
chern Sie Ihre Nachricht. Wollen Sie einen Hilfetext zu Ihrer Nach-
richt verfassen, stellen Sie den Cursor in die Nachrichtennummer
und klicken die Drucktaste „Langtext“.

Abb. 5.53
Anlegen der

Nachrichten-
klasse

Abb. 5.54
Anlegen des
Nachrichten-

textes

5.9 Ausgabe von Meldungen (Messages) ■

■

■

335

Auslösen von Nachrichten
Nachrichten werden über das Schlüsselwort MESSAGE ausgelöst.

Syntax 1
MESSAGE ID <Klasse> TYPE <Nachrichtentyp>
NUMBER <Nachrichtennummer>.

Syntax 2
MESSAGE <Nachrichtentyp><Nachrichtennummer>(<Klasse>).

Der Nachrichtentyp ist, zusammen mit dem Ereignisblock, in dem
die Nachricht ausgelöst wird, für die Steuerung des Programmablau-
fes verantwortlich. Tabelle 5.3 gibt Auskunft über die verschiedenen
Nachrichtentypen:

Abb. 5.55
Anlegen eines
Hilfetextes zur
Nachricht

336 ■

■

■

5 Spezielle Techniken der Listenerstellung

Typ Kurz-
beschr.

Programmreaktion

A Abbruch-
meldung
(Abend)

Das Programm wird nach Anzeige der Nachricht
in einem Dialogfenster abgebrochen. Das Sys-
tem verzweigt nach Bestätigung durch den Be-
nutzer in das vorhergehende Bereichsmenü.

E Fehler-
meldung
(Error)

Das Programm wird nach Anzeige der Nachricht
je nach auslösenden Ereignisblock entweder
abgebrochen oder mit einem Fehlerdialog fort-
gesetzt.

I Info Das Programm wird nach Anzeige der Nachricht
in einem Dialogfenster und Bestätigung durch
den Benutzer nach der MESSAGE-Anweisung
fortgesetzt.

S Status-
meldung

Das Programm wird nach der MESSAGE-
Anweisung normal fortgesetzt und die Nachricht
wird in der Statuszeile des folgenden Bild-
schirmbilds angezeigt.

W Warn-
meldung
(Warning)

Das Programm wird nach Anzeige der Nachricht
je nach auslösenden Ereignisblock entweder
abgebrochen oder es wird ein Fehlerdialog ge-
führt.

X Exit mit
Kurzdump

Das Programm wird ohne Anzeige der Nachricht
mit einem Kurzdump abgebrochen. Programm-
abbrüche mit Kurzdumps treten in der Regel nur
bei Laufzeitfehlern auf. Der Nachrichtentyp X
erlaubt das bewußte Auslösen solcher Abbrüche.
Der Kurzdump enthält die Nachrichtenkennung.

Beispiel:
Auslösen der Nachricht „001“ der Nachrichtenklasse „ZLIB“:

MESSAGE ID zlib TYPE e NUMBER '001'.
oder
MESSAGE e001(zlib).

Steuerung des Programmablaufes über Nachrichten
Wie bereits beim „Auslösen von Nachrichten“ erwähnt, sind Nach-
richtentyp und auslösender Ereignisblock für das Programmverhal-
ten ausschlaggebend. Die Nachrichtenklasse und die Nachricht
selbst haben keinen Einfluss auf das Verhalten des Programmes.

5.9 Ausgabe von Meldungen (Messages) ■

■

■

337

E (Error) W (Warning)

Initialization

Start-of-Selection
End-of-Selection
AT User-
Command
Top-of-Page

End-of-Page

Load-of-Program

AT Selection-
Screen

AT Line-Selection

Top-of-Page
During Line-
Selection

Im Rechercheprogramm YK05DBAS soll jetzt die fehlende Einga-
beprüfung ergänzt werden. Programmieren Sie diese so, dass die
Ausgabeliste nur dann erzeugt wird, wenn die SELECT-Anweisung
in der Tabelle ZBESTAND Daten findet. Andernfalls soll das Se-
lektionsbild wieder angezeigt werden.

Tabelle 5.4

Programmablauf
in Abhängigkeit
des Nachrich-
tentyps und des
auslösenden
Ereignisblockes

338 ■

■

■

5 Spezielle Techniken der Listenerstellung

1. Legen Sie eine Nachrichtenklasse (ZLIB) und eine Nachricht
(001) mit einem aussagekräftigen Kurz- und Langtext an.

2. Programmieren Sie den Ereignisblock AT SELECTION-
SCREEN und verschieben Sie die SELECT-Anweisung aus
START-OF-SELECTION dorthin.

3. Ergänzen Sie zur SELECT-Anweisung die Auswertung des
Rückkehrcodes. Lösen Sie die unter 1. angelegte Nachricht als
Error-Nachricht aus, wenn der Rückkehrcode sy-subrc der Se-
lect-Anweisung ungleich 0 ist.

4. Ersetzen Sie auch die WRITE-Anweisung WRITE: 'keine sor-
tierbare Spalte' im Unterprogramm SORT durch eine Nachricht
vom Typ I.

 Hinweis: Sie können Nachrichten auch in der Vorwärtsnaviga
 tion anlegen.

5. Lassen Sie sich die Schlüsselwortdokumentation zu
„REPORT“ anzeigen. Sorgen Sie dafür, das der Standardsei-
tenkopf unterdrückt wird.

Lösung: YK05DBAS_13

Lösung:

&---
* INCLUDE YK05DBAS_8_E01 *
&---
AT SELECTION-SCREEN.
 SELECT * FROM zbestand INTO CORRESPONDING
 FIELDS OF TABLE it_zbestand
 WHERE isbn IN so_isbn AND
 titel IN so_titel AND
 (autor1 IN so_autor OR
 (autor2 IN so_autor AND autor2 > 0) OR
 (autor3 IN so_autor AND autor3 > 0)) AND
 kategorie IN so_kat.
 IF sy-subrc <> 0.
 MESSAGE e001(zlib_tw).
 ENDIF.
&---
*& Form sort *
&---
FORM sort USING p_sort.
.*************nicht geänderter Quelltext********************

5.10 Modularisierung mit Funktionsbausteinen ■

■

■

339

 GET CURSOR FIELD spalte.
 IF sy-subrc <> 0 OR spalte IS INITIAL.
 MESSAGE i002(zlib).
 EXIT.
 ENDIF.
.*************nicht geänderter Quelltext********************

&---
*& Report YK05DBAS_13 *
&---
REPORT yk05dbas_13 NO STANDARD PAGE HEADING.

INCLUDE <icon>.
INCLUDE YK05DBAS_13_TOP.
INCLUDE YK05DBAS_13_E01.
INCLUDE YK05DBAS_13_F01.

5.10
Modularisierung mit Funktionsbausteinen

Bisher haben wir öfter benötigte Programmfunktionen, wie z.B.
Aufbau und Ausgabe der Listenzeile, in Unterprogrammen gekap-
selt. Unterprogramme können an verschiedenen Stellen des Pro-
grammes aufgerufen und über ihre Schnittstellen mit den zu verar-
beitenden Daten versorgt werden. Unterprogramme stellen somit
wiederverwendbare Softwarekomponenten innerhalb eines Anwen-
dungsprogrammes dar. Sie sind durch die folgenden Haupteigen-
schaften gekennzeichnet:

Unterprogramme sind an ein Rahmenprogramm gebunden,

sie besitzen eine Schnittstelle, über die der Datenaustausch zwi-
schen Rahmenprogramm und Unterprogramm organisiert wird,

in ihnen deklarierte Datenobjekte sind nur innerhalb des Un-
terprogrammes sichtbar,

enthalten den Quelltext der gewünschten Funktionalität.

Für anwendungsübergreifende, wiederverwendbare Softwarekom-
ponenten werden keine Unterprogramme, sondern Funktionsbau-
steine benutzt. Diese werden im Function Builder angelegt und stel-
len eigenständige Repository-Objekte dar. Dadurch können alle
ABAP-Programme auf diese Funktionsbausteine zugreifen. Wir
können uns die Funktionsbausteine letztlich als zentral abgelegte
Unterprogramme vorstellen.

340 ■

■

■

5 Spezielle Techniken der Listenerstellung

Eigenschaften von Funktionsbausteinen:
Ein Funktionsbaustein hat einen systemweit eindeutigen Na-
men,

er wird als eigenständiges Objekt im Repository abgelegt,

läuft innerhalb eines Rahmenprogrammes, das als Funktions-
gruppe bezeichnet wird,

besitzt eine für alle Programme zugängliche Schnittstelle,

in ihm deklarierte Datenobjekte sind nur innerhalb des Funkti-
onsbausteins sichtbar,

enthält den Quelltext einer häufig benötigten Funktionalität,

mittels Remote Function Call (RFC) kann ein Funktionsbaustein
auch von anderen SAP-Systemen (R/3- und R/2-Systeme) und
sogar von Fremdsystemen aufgerufen werden.

Jeder Funktionsbaustein ist Teil einer Funktionsgruppe, die

mehrere Funktionsbausteine,

einen globalen Deklarationsteil und

alle üblichen Verarbeitungsblöcke (außer den Ereignisblöcken
INITIALIZATION, START-OF-SELECTION, GET table,
GET table LATE und END-OF-SELECTION)

enthalten kann.

Hinweis:
Wird ein Funktionsbaustein von einem Programm aufgerufen, wird
immer die gesamte Funktionsgruppe in den internen Modus des auf-
rufenden Programmes geladen. Sie sollten deshalb nur inhaltlich zu-
sammengehörige Funktionsbausteine in einer Funktionsgruppe kap-
seln.

Vorgehensweise: Funktionsgruppe anlegen

Jeder Funktionsbaustein ist einer Funktionsgruppe zuzuordnen. E-
xistiert diese noch nicht, so muss sie angelegt werden. Starten Sie
den Object Navigator (SE80). Wählen Sie als Objekt „Funktions-
gruppe“ aus, und vergeben Sie einen Namen im Kundennamensbe-
reich. Nachdem Drücken der ENTER-Taste können Sie die Funkti-
onsgruppe in der Vorwärtsnavigation anlegen.

5.10 Modularisierung mit Funktionsbausteinen ■

■

■

341

Geben Sie im Folgebild einen Kurztext für die Funktionsgruppe ein.

Ordnen Sie dann die Funktionsgruppe Ihrer Entwicklungsklasse und
Ihrem Workbenchauftrag zu. Laden Sie dann die Funktionsgruppe in
den Object Navigator und aktivieren Sie sie.

Abb. 5.56
Funktionsgruppe
anlegen, Einstieg

Abb. 5.57
Kurztext
vergeben und
sichern

Abb. 5.58
Aktivieren der
Funktionsgruppe

342 ■

■

■

5 Spezielle Techniken der Listenerstellung

Vorgehensweise: Funktionsbaustein anlegen

Die Vorgehensweise wird an einem Beispiel erläutert. Die Funktio-
nalität, die bis jetzt im Unterprogramm DISPLAY_LISTZEILE ge-
kapselt war, soll jetzt durch den Funktionsbaustein
YDISPLAY_ZEILE bereitgestellt werden.

Laden Sie die Funktionsgruppe, in der der Funktionsbaustein ange-
legt werden soll, in den Object Navigator (SE80). Stellen Sie den
Cursor in die Funktionsgruppe (im Beispiel YLIB) und wählen Sie
über das Kontextmenü „Anlegen Funktionsbaustein“.

Geben Sie im Folgebild den Namen für den Funktionsbaustein und
einen Kurztext ein. Der Kundennamensbereich für den Funktions-
baustein beginnt mi „Z_“ oder „Y_“.

Danach startet der Function Builder (SE37)

Abb. 5.59
Funktionsbau-
stein anlegen,

Einstieg

Abb. 5.60
Funktions-

bausteinname
und Kurztext

festlegen

5.10 Modularisierung mit Funktionsbausteinen ■

■

■

343

Werfen Sie im Function Builder zunächst einen Blick auf die Regis-
terkarte „Eigenschaften“. In der Datengruppe „Ablaufart“ sind die
Möglichen Funktionsbausteinarten auswählbar:

Ablaufart Erklärung
Normaler
Funktionsbaustein

Wird zur externen Modularisierung benötigt.

Remotefähiger
Baustein (RFC)

Ein Funktionsbaustein mit dieser Eigenschaft
kann von anderen SAP-Systemen (R/2 u. R/3)
und sogar über Fremdanwendungsprogramme
gestartet werden.

Verbucherbaustein Diese Funktionsbausteine werden benötigt,
um über den Verbucherworkprozess die Da-
tenbank zu aktualisieren.

Die Registerkarten „Import“, „Export“, „Changing“ und „Tabellen“
beschreiben die Schnittstelle zwischen aufrufenden Programm und
Funktionsbaustein. Tabelle 5.5 gibt zu den einzelnen Registerkarten
eine kurze Erklärung.

Abb. 5.61
Funktions-
bausteinname
und Kurztext
festlegen

344 ■

■

■

5 Spezielle Techniken der Listenerstellung

Name Bedeutung

Import Werte, die vom aufrufenden Programm an den Funk-
tionsbaustein übergeben werden.

Export Werte, die vom Funktionsbaustein an das aufrufende
Programm übergegeben werden.

Changing Werte, die gleichzeitig als Import- und Exportparame-
ter fungieren. Der Originalwert eines Changing-
Parameters wird vom aufrufenden Programm an den
Funktionsbaustein übergeben. Der Funktionsbaustein
kann diesen Wert ändern und ihn dann an das aufru-
fende Programm zurückgeben.

Tabellen Interne Tabellen, die sowohl importiert als auch ex-
portiert werden können. Der Inhalt interner Tabellen
wird vom aufrufenden Programm an den Funktions-
baustein übergeben. Der Funktionsbaustein kann den
Inhalt der internen Tabelle ändern und dann an das
aufrufende Programm zurückgeben. Die Übergabe er-
folgt hier immer als Adressübergabe.

Ausnahmen Fehlersituationen, die bei einem Funktionsbaustein
auftreten können. Das aufrufende Programm fragt ü-
ber Ausnahmen ab, ob Fehler im Funktionsbaustein
aufgetreten sind und kann danach geeignet verfahren.

In der Registerkarte „Quelltext“ wird der Quellcode des Funktions-
bausteins angelegt.
In der Registerkarte „Import“ werden die an den Funktionsbaustein
zu übergebende Datenobjekte festgelegt. Als Bezugstype ist ein ein-
gebauter Datentyp oder ein Dictionary-Datentyp einzutragen.

Abb. 5.62
Importparameter

5.10 Modularisierung mit Funktionsbausteinen ■

■

■

345

Die Variable CHKBOX wird vom Funktionsbaustein lediglich in ei-
ner WRITE-Anweisung ausgegeben. Sie wird deshalb im Funkti-
onsbaustein als Importparameter deklariert. Zusätzliche (optionale)
Importparameter werden für die Ausgabepositionen angelegt.

Einzelne Komponenten der Struktur, die die Ausgabedaten enthält,
und die Variable FARBE werden im Funktionsbaustein geändert
und müssen deshalb vom aufrufenden Programm als Changingpa-
rameter exportiert werden.

Wird eine Struktur an den Funktionsbaustein übergeben, die keine
Autorennummer (AUTOR1) enthält, soll eine Ausnahme
„NO_AUTOR“ ausgelöst werden. Diese ist in der Registerkarte
„Ausnahmen“ zu definieren.

Jetzt kann der Quelltext angelegt werden. Er wird im Vergleich zum
Quelltext des ursprünglichen Unterprogrammes nur unwesentlich
geändert. Die Änderungen sind hervorgehoben.

Abb. 5.63
Changing-
parameter

Abb. 5.64
Ausnahmen

346 ■

■

■

5 Spezielle Techniken der Listenerstellung

FUNCTION y_display_zeile.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" REFERENCE(CHKBOX) TYPE C
*" REFERENCE(SPALTE_ISBN) TYPE I DEFAULT 6
*" REFERENCE(SPALTE_TITEL) TYPE I DEFAULT 17
*" REFERENCE(SPALTE_AUTOR) TYPE I DEFAULT 85
*" REFERENCE(SPALTE_KAT) TYPE I DEFAULT 110
*" CHANGING
*" REFERENCE(WA) TYPE ZST_ZBESTAND_TW
*" REFERENCE(FARBE) TYPE C
*" EXCEPTIONS
*" NO_AUTOR
*"--
 INCLUDE <icon>.
 DATA: icon_autoren TYPE icon-id,
 icon_verfuegbar TYPE icon-id,
 verfuegbar% TYPE p DECIMALS 2,
 zeilen TYPE i,
 wa_zautoren TYPE zautoren_tw.
*IF-Anweisung zur Einstellung der Farbe
 IF farbe = '1'.
 FORMAT COLOR COL_NORMAL INTENSIFIED ON.
 farbe = '0'.
 ELSE.
 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
 farbe = '1'.
 ENDIF.
*Auslösen der Ausnahme NO_AUTOR wenn
*wa-autor1 leer ist.
 IF wa-autor1 IS INITIAL.
 RAISE no_autor.
 ENDIF.
*Auswahl der Ikone für die Anzahl Autoren
 IF wa-autor2 IS INITIAL
 AND wa-autor3 IS INITIAL .
 icon_autoren = icon_position_hr.
 ELSE.
 icon_autoren = icon_shared_position.
 ENDIF.
*Berechnung der Anzahl verfügbarer Exemplare
 wa-verfuegbar = wa-bestand
 - wa-ausgeliehen.

5.10 Modularisierung mit Funktionsbausteinen ■

■

■

347

*Berechnung der Verfügbarkeit in %
 verfuegbar% = wa-verfuegbar
 / wa-bestand * 100.
 IF wa-verfuegbar <= 0.
 icon_verfuegbar = icon_red_light.
 ELSEIF verfuegbar% < 5.
 icon_verfuegbar = icon_yellow_light.
 ELSE.
 icon_verfuegbar = icon_green_light.
 ENDIF.
*SELECT SINGLE-Anweisung zur Selektion des
*Autorenstammsatzes
 SELECT SINGLE * FROM zautoren_tw
 INTO wa_zautoren
 WHERE autorennr = wa-autor1.
 WRITE:
 /2 icon_verfuegbar,
 AT spalte_isbn wa-isbn,
 AT spalte_titel wa-titel,
 icon_autoren AS ICON,
 AT spalte_autor wa_zautoren-name,
 AT spalte_kat(10) wa-kategorie.
 IF chkbox <> 'Kein Ankreuzfeld'.
 WRITE chkbox AS CHECKBOX.
 ENDIF.
 WRITE 128 ' '.
 HIDE: wa-isbn.
 CLEAR wa-isbn.
ENDFUNCTION.

Aktivieren Sie die Funktionsgruppe (siehe Abb. 5.58).

Damit ist der Funktionsbaustein vollständig angelegt. Er muss jetzt
noch in das Programm YK05DBAS eingebunden werden.

Vorgehensweise: Funktionsbaustein aufrufen

Der Funktionsbaustein wird über den Funktionsbausteinnamen auf-
gerufen. Es ist nicht sinnvoll, die Syntax für den Aufruf „per Hand“
in das Quellprogramm einzutragen. Das ist zu fehleranfällig. Außer-
dem müssten Sie vorher erst alle Parameternamen ermitteln.
Laden Sie das Programm, in dem der Funktionsbaustein aufgerufen
werden, in den ABAP-Editor und stellen Sie den Cursor an die Auf-
rufstelle. Klicken Sie dann die Schaltfläche „Muster“ an.

348 ■

■

■

5 Spezielle Techniken der Listenerstellung

Im Folgebild „Muster einfügen“ ist der Name des einzufügenden
Funktionsbausteins anzugeben und der Auswahlknopf „CALL
FUNCTION“ auszuwählen.

Nachdem Drücken der ENTER-Taste wird die Syntax zum Aufruf
des Funktionsbausteines in das Quellprogramm eingefügt.

Abb. 5.65
Aufruf eines

Funktionsbau-
steins über

„Muster“
einfügen

Abb. 5.66
Muster „CALL

FUNCTION“
einfügen

5.10 Modularisierung mit Funktionsbausteinen ■

■

■

349

&---
*& Form Display_Listzeile *
&---
FORM display_listzeile USING wa
 TYPE zst_zbestand_tw.
 CALL FUNCTION 'Y_DISPLAY_ZEILE'
 EXPORTING
 chkbox =
* SPALTE_ISBN = 6
* SPALTE_TITEL = 17
* SPALTE_AUTOR = 85
* SPALTE_KAT = 110
 changing
 wa =
 farbe =
* EXCEPTIONS
* NO_AUTOR = 1
* OTHERS = 2
 .
 IF sy-subrc <> 0.
* MESSAGE ID SY-MSGID TYPE SY-MSGTY ...
ENDIF.
ENDFORM. " Display_Listzeile

Erklärung:

Funktionsbausteine werden über die Anweisung CALL
FUNCTION aufgerufen.

Auf der linken Seite der Zuweisungen des Abschnittes
EXPORTING stehen die in der Registerkarte „IMPORT“ des
Funktionsbausteins definierten Datenobjekte. Die rechte Seite
der Zuweisungen sind mit den zu exportierenden Datenobjekten
zu ergänzen. Die auskommentierten Zeilen enthalten optional zu
übergebende Datenobjekte.

Der Abschnitt CHANGING enthält die in der Registerkarte
„CHANGING“ des Funktionsbausteins definierten Datenobjek-
te. Dieser Abschnitt ist ebenso wie der Abschnitt EXPORTING
zu behandeln.

Die EXCEPTIONS enthalten die Zuordnung der Ausnahmen
zum Inhalt der Systemvariablen SY-SUBRC. Die angegebenen
Werte sind Vorschlagswerte, die Sie überschreiben könnten. Im
Beispiel würde beim Auslösen der Ausnahme NO_AUTOR
durch den Funktionsbaustein die Systemvariable SY-SUBRC
mit dem Wert 1 geladen.

Abb. 5.67
Eingefügter
Funktionsbau-
steinaufruf

350 ■

■

■

5 Spezielle Techniken der Listenerstellung

&---
*& Form Display_Listzeile *
&---
FORM display_listzeile USING wa
 TYPE zst_zbestand_tw.
 CALL FUNCTION 'Y_DISPLAY_ZEILE'
 EXPORTING
 chkbox = chkbox
* SPALTE_ISBN = 6
* SPALTE_TITEL = 17
* SPALTE_AUTOR = 85
* SPALTE_KAT = 110
 changing
 wa = wa
 farbe = farbe
 exceptions
 no_autor = 1
 OTHERS = 2
 .
 IF sy-subrc <> 0.
 WRITE: / 'Fehler im DS, Autor fehlt'
 endif.
ENDFORM. " Display_Listzeile

1. Legen Sie eine Funktionsgruppe YLIB an.

2. Legen Sie einen Funktionsbaustein Y_DISPLAY_ZEILE an.
Dieser soll die Aufgabe, die bisher vom Unterprogramm
DISPLAY_LISTZEILE ausgeführt wurde, übernehmen. Orien-
tieren Sie sich dabei an den Erklärungen in der Vorgehensweise
„Funktionsbaustein anlegen“.

3. Programmieren Sie den Aufruf des Funktionsbausteines im Un-
terprogramm DISPLAY_ZEILE. Auch hier ist die Lösung in
der Vorgehensweise „Funktionsbaustein anlegen“ beschrieben.

Lösung: YK05DBAS_14
Funktionsgruppe: YLIB_TW
Funktionsbaustein: Y_DISPLAY_ZEILE_TW

Abb. 5.68
Bearbeiteter

Funktionsbau-
steinaufruf

6.1 Zielstellung des Kapitels ■

■

■

351

6 Grundlagen der
Dynproprogrammierung

6.1
Zielstellung des Kapitels

Dieses Kapitel legt die Grundlagen der Programmierung von An-
wendungsprogrammen mit Dynpros. Am Beispiel des Recher-
cheprogrammes der der East-Side-Library werden folgende Themen
behandelt:

Bestandteile eines Dynpros,

Anlegen eines Dynpros,

Dynproelemente zur Datenausgabe,

Textfelder,

Statusikonen,

Gruppenrahmen,

Dynproelemente zur Ein- und Ausgabe,

Ein- / Ausgabefelder,

Ankreuzfelder,

Auswahlknopfgruppen,

Drucktasten.

Darüber hinaus werden die Eigenschaften der Dynproelemente zur
Laufzeit des Programmes geändert und eine Eingabeprüfung pro-
grammiert. Abb. 6.1 und 6.2 zeigen die Ausgabebildschirme des in
diesem Kapitel zu erstellenden Programmes.

6 Grundlagen der Dynproprogrammierung ■

■

■

352

Vorbereitende Aufgabe
Für die einzelnen Übungsaufgaben soll das Programm SAPMYK06
vom Typ Modulpool benutzt werden.

1. Legen Sie einen Modulpool SAPMYK06 mit TOP-Include an.
Der Name eines Modulpools sollte immer mit der Zeichenkette
SAPM beginnen. Der Folgebuchstabe kennzeichnet den Kun-
dennamensbereich (Z oder Y). Bei Einhaltung dieser Konventi-
on werden die Include-Namen automatisch vorgeschlagen bzw.
ausgewählt.

Abb. 6.1
Einstiegsbild

des Recherche-
programmes

Abb. 6.2
Ausgabebild des

Recherche-
programmes

6.1 Zielstellung des Kapitels 353■

■

■

2. Bestätigen Sie den vorgeschlagenen Namen für das TOP-
Include.

3. Im Bildschirm ABAP-Prorammeigenschaften im Feld TYP der
Modulpool schon als Vorschlagswert eingetragen

4. Ordnen Sie Entwicklungsklasse und Workbenchauftrag zu.

Lösung: SAPMYK06_1

Programme vom Typ Modulpool können nicht direkt, sondern nur
über einen Transaktionscode ausgeführt werden.

Vorgehensweise: Transaktionscode anlegen

Laden Sie das Programm, zu dem der Transaktionscode angelegt
werden soll, in den Object Navigator (SE80), stellen Sie den Cursor
in den Programmnamen, wählen Sie „Anlegen Transaktion“.

6 Grundlagen der Dynproprogrammierung ■

■

■

354

Vergeben Sie einen Transaktionscode im Kundennamensbereich
(mit Z oder Y beginnend). Aktivieren Sie „Programm und Dynpro“.

Geben Sie zum Schluss einen Transaktionstext („East-Side-Lib.:
Recherchepr“) und das Startdynpro (100) ein. Das Startdynpro ist
das Dynpro, das von der Transaktion im Programm gesucht und ge-
startet wird. Sichern Sie den Transakionscode.

Abb. 6.3
Transaktions-
code anlegen

(Einstieg)

Abb. 6.4
Transaktions-

code vergeben

Abb. 6.5
Startdynpro

festlegen

6.2 Dynpros und ihre Komponenten 355■

■

■

Legen Sie für das Programm SAPMYK06 den Transaktionscode
ZK06_1 an.

Lösung: SAPMYK06_2

6.2
Dynpros und ihre Komponenten

Der Name „Dynpro“ ist die Abkürzung für „dynamisches Pro-
gramm“. Dynpros rufen sich, wie später gezeigt werden wird, ent-
sprechend der Benutzereingaben selbst auf. Es entscheidet sich also
erst zur Laufzeit des Programmes, d.h. dynamisch, welches Dynpro
tatsächlich ausgeführt (prozessiert) wird. Ein Dynpro besteht aus
folgenden Komponenten:

Ablauflogik
Die Ablauflogik umfasst 4 Ereignisse, die auch als Zeitpunkte
bezeichnet werden:

PBO – Process Before Output,

PAI – Process After Input,

POH – Process On Helprequest (POH wird ausgeführt,
wenn der Benutzer die Feldhilfe F1 aufruft),

POV – Process On Value Request (POV wird ausgeführt,
wenn der Benutzer eine F4-Hilfe anfordert).

Der PBO-Teil muss, die anderen Komponenten können, im
Dynpro vorhanden sein. POV und POH werden in diesem Buch
nicht behandelt.

Abb. 6.6
Programmstart
aus dem Object
Navigator

6 Grundlagen der Dynproprogrammierung ■

■

■

356

Layout mit Dynproelementen (Ein-/Ausgabefeldern, Drucktas-
ten, Textfeldern etc).

Process Before Output
Der PBO-Teil der Ablauflogik wird vom Dynpro ausgeführt, bevor
das Layout auf dem Bildschirm angezeigt wird. Er dient dazu,

Inhalte von Variablen in die Dynproelemente zu transportieren,

gegebenenfalls Eigenschaften der Dynproelemente festzulegen,

GUI-Status und GUI-Titel zu laden.

Nach dem Durchlaufen dieses Teils der Ablauflogik des Dynpros
wird das Layout, das aus einer Menge von Dynproelementen be-
steht, angezeigt. Jetzt wartet das Dynpro auf Benutzeraktionen. Lässt
sich nun der Benutzer dazu hinreißen, eine Menüauswahl vorzu-
nehmen, eine Drucktaste zu klicken oder auch nur die ENTER-Taste
zu drücken, führt das Dynpro den PAI-Teil der Ablauflogik aus.

Process After Input
Im PAI wird

analysiert, welche Aktion der Benutzer ausgeführt hat.

Eine entsprechende Reaktion wird ausgelöst (z.B. Aufruf eines
anderen Dynpros, Ausführen eines Unterprogrammes).

Layout
Das Layout enthält Dynproelemente mit deren Hilfe Daten auf dem
Dynpro ein- und ausgegeben und der Bildschirm übersichtlich ge-
staltet werden kann. Zu den klassischen Dynproelementen gehören:

Textfelder,

Gruppenrahmen,

Statusikonen,

Subscreenbereiche,

Ein- / Ausgabefelder,

Ankreuzfelder,

Auswahlknöpfe (bzw. Auswahlknopfgruppen),

Drucktasten,

Table Controls zur Ein- u. Ausgabe von Daten in Tabellenform,

Tabstrips zur Ein- und Ausgabe von Daten auf verschiedenen
Registerkarten.

6.3 Statischer und dynamischer Dynproaufruf 357■

■

■

Dynpros sind an ein konkretes Programm gebunden. Dieses
muss nicht unbedingt vom Typ Modulpool sein, ihm kann auch ein
anderer Programmtyp (z.B. ausführbares Programm) zu Grunde lie-
gen. Der Modulpool wird für umfangreiche Programme verwendet.

6.3
Statischer und dynamischer Dynproaufruf

In den Eigenschaften eines Dynpros kann ein sogenanntes statisches
Folgedynpro angegeben werden. Das dort angegebene Dynpro wird
prozessiert, wenn zur Laufzeit in der Ablauflogik (PAI) kein anderes
Dynpro aufgerufen wird (dynamischer Dynproaufruf). In der Regel
ist als statisches Folgedynpro die Nummer des aktuellen Dynpros
eingetragen. Dadurch wird erreicht, dass nur bei entsprechenden Be-
nutzeraktionen das Dynpro verlassen wird, nicht etwa durch das
Drücken der ENTER-Taste. Der dynamische Dynproaufruf hat im-
mer Vorrang vor dem statischen Aufruf.

Abb. 6.7
Bestandteile
eines Dynpros

6 Grundlagen der Dynproprogrammierung ■

■

■

358

Dynprofolgen
Wenn sich die Dynpros gegenseitig aufrufen, spricht man auch von
Dynprofolgen oder Dynproketten. Ob der (dynamische) Aufruf eines
Dynpros eine bestehende Dynprokette abschließt oder eine zusätzli-
che erzeugt, ist von der Programmierung dieses Aufrufes abhängig.
Der Aufruf eines Dynpros mit „CALL SCREEN <dynpronr>“ er-
zeugt eine neue Dynprokette. Diese wird mit der Anweisung
„LEAVE TO SCREEN 0“ beendet. Das Programm wird mit der
Anweisung, die auf „CALL SCREEN <dynpronr>“ folgt, fortge-
setzt. Wie in Abb. 6.9 zu sehen ist, können Dynpros auch mit der
Anweisung LEAVE TO SCREEN <dynpronr> aufgerufen werden.
Bei diesem Aufruf wird keine neue Dynprokette erzeugt.

Abb. 6.8
statischer und

dynamischer
Dynproaufruf

Abb. 6.9
Aufruf von

Dynprofolgen

6.4 Dateneingabe und –ausgabe mit Dynpros 359■

■

■

6.4
Dateneingabe und –ausgabe mit Dynpros

Die Ein- bzw. Ausgabe von Daten ist nach folgendem Prinzipien or-
ganisiert:

Im Dynpro werden für alle Ein- bzw. Ausgaben Dynproelemen-
te angelegt.

Jedem Dynproelement, das Benutzerdaten entgegennimmt oder
zur Programmlaufzeit ermittelte Daten ausgibt, wird genau ein
Datenobjekt zugeordnet, über das der Datentransport Dynproe-
lement ABAP-Programm erfolgt. Dieses Datenobjekt, im
weiteren auch als korrespondierendes Datenobjekt bezeichnet,
ist im ABAP-Programm (TOP-Include) namensgleich zu „sei-
nem“ Dynproelement zu deklarieren.

Die korrespondierenden Datenobjekte werden durch das Pro-
gramm (im Allgemeinen zu PBO) mit den auszugebenden Wer-
ten geladen. Vor der Layoutanzeige transportiert das Laufzeit-
system diese Werte in die zugehörigen Dynproelemente.

Alle Benutzereingaben werden zunächst in den Dynproele-
menten gehalten. Zu PAI wird vom Laufzeitsystem der Daten-
transport vom Dynproelement in das korrespondierende Da-
tenobjekt vorgenommen.

Vorgehensweise: Dynpro anlegen

Starten Sie den Object Navigator (SE80) mit dem Programm, zu
dem ein Dynpro angelegt werden soll. Stellen Sie den Cursor in den
Namen des Rahmenprogrammes, wählen Sie „Anlegen Dynpro“.

Abb. 6.10
Dynpro anlegen

6 Grundlagen der Dynproprogrammierung ■

■

■

360

Geben Sie im Folgebild eine Nummer für Ihr Dynpro ein. Üblicher-
weise beginnt die Zählung mit 100.

Der Screen-Painter, ein grafisches Werkzeug zum Anlegen des
Dynpros und aller Dynproelemente, startet.

In der Registerkarte „Eigenschaften“ werden die allgemeinen Eigen-
schaften des Dynpros, wie z.B.

Kurzbeschreibung,

Dynprotyp,

Einstellungen,

statisches Folgedynpro und

Kontextmenü

festgelegt. Tragen Sie eine Kurzbeschreibung und das Folgedynpro
ein. Im Eingabefeld „Folgedynpro“ ist als statisches Folgedynpro
immer die aktuelle Dynpronummer vorgeschlagen. In den meisten
Fällen ist das auch richtig. Sie würden sonst mit jeder PAI auslösen-
den Benutzeraktion, die kein dynamisches Folgedynpro setzt (z. B.
drücken der ENTER-Taste), das aktuelle Dynpro verlassen.

Abb. 6.11
Dynpronummer

eingeben

Abb. 6.12
Eigenschaften

des Dynpros
festlegen

6.4 Dateneingabe und –ausgabe mit Dynpros 361■

■

■

Überprüfen Sie jetzt, ob der „Grafische Layout Editor“ aktiviert ist.
Wählen Sie dazu das Menü „Hilfsmittel Einstellungen“. Aktivie-
ren Sie gegebenenfalls in der Registerkarte „Screen Painter“ das ent-
sprechende Kontrollkästchen.

Sichern Sie zum Schluss das Dynpro.

6.4.1
Dynproelemente

In diesem Kapitel werden die Dynproelemente

Textfelder,

Gruppenrahmen,

Ein- / Ausgabefelder,

Auswahlknopfgruppen,

Ankreuzfelder,

Drucktasten und

Statusikonen

behandelt. Alle Dynproelemente besitzen statische und dynamische
Eigenschaften. Die statischen werden im Layouteditor festgelegt.
Die dynamischen Eigenschaften können zur Laufzeit über die inter-
ne Tabelle SCREEN geändert werden (siehe dynamische Bildmodi-
fikationen).

Der Layouteditor
Alle Dynproelemente werden im Layouteditor angelegt. Rufen Sie
zum Start dieses Werkzeuges den Screen Painter mit dem zu bear-
beitende Dynpro auf. Klicken Sie dann die Schaltfläche „Layout“
(Abb. 6.12).

Hinweis: Solange der Layouteditor geöffnet ist, kann in keinem an-
deren Modus gearbeitet werden.

6 Grundlagen der Dynproprogrammierung ■

■

■

362

6.4.2
Dynproelemente zur Ausgabe

Textfelder
Textfelder werden eingesetzt, um einen feststehenden Text auf dem
Dynpro auszugeben. Als Text dient häufig der Kurz- Mittel oder
Langbezeichner von Datenelementen aus dem ABAP-Dictionary.
Sie können die Texte aber auch im Layouteditor „manuell“ anlegen.
In beiden Fällen ist die zusätzliche Ausgabe einer Ikone möglich.

Zur Laufzeit des Programmes können folgende Eigenschaften der
Textfelder geändert werden (siehe dynamische Bildmodifikationen):

Helligkeit (intensiv / nicht intensiv),

Länge,

Sichtbarkeit (sichtbar oder unsichtbar).

Der Ausgabetext und die Ikone können zur Laufzeit nicht geändert
werden.

Vorgehensweise: Textfeld anlegen

Ausgangspunkt ist der Layouteditor.

Gehen Sie wie folgt vor:

1. Klicken Sie das Symbol „Textfeld“ in der Werkzeugleiste an.

2. Schieben Sie den Mauszeiger an die Stelle der Arbeitsfläche
des Layouteditors, an der das Textfeld positioniert werden soll
(dabei darf keine Maustaste gedrückt sein).

Abb. 6.13
Grafischer

Layout Editor

6.4 Dateneingabe und –ausgabe mit Dynpros 363■

■

■

3. Drücken Sie die linke Maustaste. Der Beginn des Textfeldes
ist nun durch ein kleines rotes Rechteck gekennzeichnet.

4. Doppelklicken Sie in dieses rote Rechteck. Das Fenster
„Screen Painter: Attribute“ öffnet sich.

5. Füllen Sie dieses Fenster entsprechend Abb. 6.14 bzw. 6.15
aus und sichern Sie das Dynpro.

Um den Bezeichner eines Datenelementes als Text zu benutzen, ist
der Name des Textfeldes namensgleich zum Datenelement zu wäh-
len. Aktivieren Sie das Ankreuzfeld „Aus Dict.“ und gehen Sie ent-
sprechend Abb. 6.15 vor.

Gruppenrahmen
Mit Gruppenrahmen werden zusammengehörige Dynproelemente
(z.B. eine Gruppe von Ein-/Ausgabefeldern) optisch zusammenge-
fasst. Gruppenrahmen haben folgende allg. Eigenschaften:

Abb. 6.14
Textfeld ohne
Bezug zu einem
Datenelement
anlegen

Abb. 6.15
Textfeld mit
Bezug zum
Datenelement
zbestand_tw_
verlag anlegen

6 Grundlagen der Dynproprogrammierung ■

■

■

364

Wird einem Gruppenrahmen ein Kontextmenü1 zugeordnet,
wird dieses für alle im Gruppenrahmen befindlichen Dynproe-
lemente angezeigt, sofern diese keine eigenen Kontextmenüs
besitzen.
Enthält ein Gruppenrahme nur unsichtbare Dynproelemente und
ist das Dynproattribut „Laufzeitkomprimierung“ aktiviert
(Screen Painter, Registerkarte „Eigenschaften“), wird der Grup-
penrahmen auch nicht angezeigt.

Ein Gruppenrahmen kann eine Rahmenüberschrift besitzen.

Zur Laufzeit des Programmes können folgende Eigenschaften der
Gruppenrahmen geändert werden (siehe dynamische Bildmodifika-
tionen):

Rahmenüberschrift
Um die Rahmenüberschrift dynamisch zu ändern, aktivieren Sie
das Attribut „Ausgabefeld“ des Gruppenrahmens und legen eine
zum Gruppenrahmen namensgleiche Textvariable im ABAP-
Programm an (korrespondierendes Datenobjekt). Laden Sie die-
se vor der Layoutanzeige mit der Rahmenüberschrift.

Sichtbarkeit.

Vorgehensweise: Gruppenrahmen anlegen

Ausgangspunkt ist der Layouteditor.

1. Klicken Sie im Layouteditor das Werkzeug „Rahmen“ an,

2. schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu drücken, an die linke obere Ecke des künftigen Rah-
mens,

3. fixieren Sie den Minirahmen durch drücken der linken Maus-
taste,

4. ziehen Sie den Minirahmen, mit gedrückter linker Maustaste,
bis zum unteren rechten Rand des künftigen Rahmens,

5. lassen Sie die Maustaste wieder los,

6. doppelklicken Sie genau auf die Rahmenbegrenzung, damit
sich das Fenster „Screen Painter: Attribute“ öffnet,

7. bearbeiten Sie das Attribute-Fenster wie in Abb. 6.16. Das Att-
ribut „Ausgabefeld“ finden Sie im unteren Teil dieses Fensters
in der Registerkarte „Programm“.

6.4 Dateneingabe und –ausgabe mit Dynpros 365■

■

■

Ergebnis:

Statusikonen
Statusikonen sind Ausgabefelder mit denen eine Ikone zur Anzeige
gebracht werden kann. Das Besondere an diesem Ausgabefeld ist,

Abb. 6.16
Gruppenrahmen
anlegen

Abb. 6.16a
Ein-/Ausgabe-
felder mit Grup-
penrahmen

6 Grundlagen der Dynproprogrammierung ■

■

■

366

dass die anzuzeigende Ikone erst zur Programmlaufzeit geladen
wird. Sie können mit diesem Dynproelement, je nach Programm-
kontext, verschiedene Ikonen ausgeben. Ein Textfeld, mit dem eben-
falls Ikonen ausgegeben werden können, leistet das nicht.

Zur Laufzeit des Programmes können folgende Eigenschaften der
Statusikonen geändert werden (siehe dynamische Bildmodifikatio-
nen):

Helligkeit (intensiv / nicht intensiv),

Länge (Länge des Info-Textes + Länge der Ikone),

Sichtbarkeit (sichtbar oder unsichtbar).

Vorgehensweise: Statusikone anlegen

1. Legen Sie im ABAP-Programm eine zum Dynproelement na-
mensgleiche Variable an (korrespondierendes Datenobjekt).
Verwenden Sie dazu das Feld TEXT der Struktur ICONS.
DATA ikone TYPE icons-text.

2. Klicken Sie das Symbol „Status-Icon“ in der Werkzeugleiste
des Layouteditors an.

3. Schieben Sie den Mauszeiger an die Stelle der Arbeitsfläche
des Layouteditors, an der Statusikone positioniert werden soll
(dabei darf keine Maustaste gedrückt sein).

4. Drücken Sie die linke Maustaste. Die Statusikone wird als
kleines rotes Rechteck mit einem Platzhalter dargestellt.

5. Doppelklicken Sie in dieses rote Rechteck. Das Fenster
„Screen Painter: Attribute“ öffnet sich.

6. Füllen Sie dieses Fenster entsprechend Abb. 6.17 aus und si-
chern Sie das Dynpro.

6.4 Dateneingabe und –ausgabe mit Dynpros 367■

■

■

Füllen der Statusikone
Die Auswahl der anzuzeigende Ikone erfolgt programmgesteuert.
Vor der Layoutanzeige ist über den Funktionsbaustein
'ICON_CREATE der technische Name der Ikone zu ermitteln und
ein Quick-Infotext zuzuordnen. Beides wird dann, durch den Funk-
tionsbaustein, dem korrespondierenden Datenobjekt übergeben.

Beispiel: (siehe auch „Programmierung der Ablauflogik“, Seite 382)
&---
*& Include MYK06_TOP *
&---
INCLUDE <icon>.
DATA: ikone TYPE icons-text, bereich.
&---
*& Module ikone_0100 OUTPUT *
&---
MODULE ikone_0100 OUTPUT.
 IF bereich = '1'.
 CALL FUNCTION 'ICON_CREATE'
 EXPORTING
 name = icon_flight
 text = 'Nutzung des Firmen-Flugzeuges'
 IMPORTING
 result = ikone.
 ELSE.

Abb. 6.17
Statusikone
anlegen

6 Grundlagen der Dynproprogrammierung ■

■

■

368

 CALL FUNCTION 'ICON_CREATE'
 EXPORTING
 name = icon_railway
 text = 'Nutzung des der Firmen-Bahncard'
 IMPORTING
 result = ikone.
 ENDIF.
ENDMODULE. " ikone_0100 OUTPUT

Ergebnis:

Bereich = '1'. Bereich <> 1

6.4.3
Dynproelemente zur Ein-/Ausgabe

Ein- / Ausgabefelder
Ein- / Ausgabefelder werden zur Dateneingabe durch den Benutzer
bzw. zur Datenausgabe durch das Programm benötigt. Sie haben
folgende allgemeine Eigenschaften:

Sie können mit Bezug zu Dictionary- oder programmlokal de-
klarierten Datenobjekten angelegt werden.

Es erfolgt immer eine automatische Eingabeprüfung hinsichtlich
der datentypgerechten Eingabe (z.B. gültiges Datumsformat bei
Datumsfeldern)

Bei Eingabefeldern mit Bezug zum ABAP-Dictionary erfolgen
zusätzliche Prüfungen (z.B. Fremdschlüsselprüfungen, Wertebe-
reichsprüfungen)

Bei Ausgabefeldern mit Bezug zum Dictionary erfolgt die Aus-
gabe gegebenenfalls entsprechend der im Dictionary festgeleg-
ten Ausgabekonvertierung.

F1- und F4-Hilfe werden gegebenenfalls aus dem Dictionary
übernommen.

Abb. 6.18
Dynpro mit

Statusikone

6.4 Dateneingabe und –ausgabe mit Dynpros 369■

■

■

Zur Laufzeit des Programmes können folgende Eigenschaften der
Ein- / Ausgabefelder geändert werden (siehe dynamische Bildmodi-
fikationen):

Größe,

Eingabefähigkeit,

Musseingabe,

Helligkeit,

Sichtbarkeit,

2D- oder 3D-Darstellung.

Vorgehensweise: Ein-/Ausgabefeld ohne Bezug zum ABAP-
Dictionary anlegen

Voraussetzung: Für das anzulegende Feld ist eine gleichnamige
Variable im ABAP-Programm deklariert. Der Programmteil, indem
die Variable angelegt wurde, ist aktiv.

Wirkungsweise:
Der Datentransport von und zu den Ein-/Ausgabefeldern des
Dynpros erfolgt über namensgleiche (korrespondierende) Datenob-
jekte. Die Inhalte der Datenobjekte werden vor der Layoutanzeige in
die namensgleichen Ein-/Ausgabefelder gestellt. Zu PAI werden die
Inhalte der Ein-/Ausgabefelder in ihre korrespondierenten Datenob-
jekte zurückgeladen.

Starten Sie den Layouteditor. Drücken Sie die Drucktaste
„Dict./Programmfelder-Fenster.

Abb. 6.19
Dict./Programm-
felder-Fenster
öffnen

Abb. 6.20
Auswahl
der Felder

6 Grundlagen der Dynproprogrammierung ■

■

■

370

Im „Dict./Programmfelder-Fenster“ gehen Sie wie folgt vor:

1. Variablenname eintragen (* für alle Felder),

2. Drucktaste „Holen aus Programm“ anklicken,

3. benötigte Felder markieren,

4. ENTER drücken.

Das Drücken der ENTER-Taste schließt das Dict./ Programmfelder-
Fenster. Sie befinden sich wieder im Layouteditor. Positionieren Sie
die Felder entsprechend Abb. 6.21.

Abb. 6.21
Felder

positionieren

6.4 Dateneingabe und –ausgabe mit Dynpros 371■

■

■

Nachdem sich nun die Felder an der richtigen Stelle im Layout be-
finden, werden deren Eigenschaften festgelegt. Doppelklicken Sie
dazu in das Ein-/Ausgabefeld. Das Fenster „Screen Painter: Attribu-
te“ wird geöffnet. In diesem Fenster können Sie z.B. die Anzeigeei-
genschaften des Feldes ändern.

Alternativ können die Feldeigenschaften auch in der Elementliste ge-
pflegt werden. Das ist vor allem dann ganz praktisch, wenn die Ei-
genschaften mehrerer Felder geändert werden sollen. In die Element-
liste gelangen Sie vom Layouteditor über die Drucktaste Elementlis-
te. Sie können auch den Layouteditor schließen und im Einstiegsbild
des Screen Painters die Registerkarte „Elementliste“ auswählen.

Abb. 6.22
Feldeigenschaf-
ten im Attribute-
Fenster ändern

Abb. 6.23
Feldeigenschaf-
ten in der Ele-
mentliste ändern

6 Grundlagen der Dynproprogrammierung ■

■

■

372

Vorgehensweise: Ein-/Ausgabefeld mit Bezug zu einer Datenbankta-
belle

Voraussetzung: Im ABAP-Programm (TOP-Include) existiert eine
TABLES-Anweisung zur Datenbanktabelle, deren Felder im Dynpro
abgebildet werden sollen.

Syntax:
TABLES <Datenbanktabelle>.

Durch die TABLES-Anweisung wird eine programmlokale Struktur
mit den Feldern der Datenbanktabelle angelegt. Diese Struktur wird
auch als Standardstruktur bezeichnet, hat den gleichen Namen wie
die Datenbanktabelle und wird in einem besonderen Bereich des Ar-
beitspeichers angelegt.

Wirkungsweise:
Der Datentransport von und zu den Ein-/Ausgabefeldern des
Dynpros erfolgt über die (namensgleichen) Komponenten der Stan-
dardstruktur. Die Inhalte der Standardstruktur-Komponenten werden
vor der Layoutanzeige in die korrespondierenden Ein-/Aus-
gabefelder gestellt. Zu PAI werden die Inhalte der Ein-/Aus-
gabefelder in die Standardstruktur zurückgeladen.

Starten Sie den Layouteditor. Drücken Sie die Drucktaste
„Dict./Programmfelder-Fenster.

Abb. 6.24
Dict./Programm-

felder-Fenster
öffnen

6.4 Dateneingabe und –ausgabe mit Dynpros 373■

■

■

Im „Dict./Programmfelder-Fenster“ gehen Sie wie folgt vor:

1. Name der Datenbanktabelle eintragen,

2. Drucktaste „Holen aus Dict.“ anklicken,

3. benötigte Felder markieren,

4. gewünschten Bezeichner auswählen,

5. ENTER drücken.

Schieben Sie dann den Mauszeiger an die Stelle der Arbeitsfläche
des Layouteditors, an der die Felder positioniert werden sollen. Zum
Fixieren der Felder drücken Sie die linke Maustaste. Die Positionie-
rung der Ein-/Ausgabefelder ist in Abb. 6.21 (Seite 370) gezeigt.

Ergebnis:

Auswahlknopfgruppen
Auswahlknopfgruppen enthalten mehrere Auswahlknöpfe (Radio-
button). Der Benutzer kann aus der Auswahlknopfgruppe genau ei-
nen Auswahlknopf aktivieren.

Abb. 6.25
Auswahl der
Tabellenfelder

Abb. 6.26
Dynpro mit
E/A-Feldern

6 Grundlagen der Dynproprogrammierung ■

■

■

374

Zur Laufzeit des Programmes können folgende Eigenschaften der
Auswahlknopfgruppen geändert werden (siehe dynamische Bildmo-
difikationen):

Ein- und Ausgabefähigkeit,

Sichtbarkeit.

Vorgehensweise: Auswahlknopfgruppe anlegen

Für jeden Auswahlknopf ist im ABAP-Programm (TOP-Include) ein
Datenopjekt vom Typ C mit der Länge 1 anzulegen. Datenobjekt
und Auswahlknopf müssen namensgleich sein.

Wirkungsweise:
Vor der Anzeige des Layouts erhält der Auswahlknopf, dessen kor-
respondierendes Datenobjekt mit 'X' geladen ist, den Status „aktiv“.
Zu PAI werden die Werte der Auswahlknöpfe in die namensglei-
chen Datenobjekte zurückgeladen.
Als Datenobjekt wird häufig eine Struktur verwendet. Die einzelnen
Auswahlknöpfe müssen dann namensgleich zur jeweiligen Kompo-
nente der Struktur sein.

DATA:
wa_rbg, rb1 value 'X', rb2, end of wa_rbg.

Legen Sie dann im Layouteditor die Auswahlknöpfe an.

1. Klicken Sie das Werkzeug „Auswahlknopf“ an.

2. Schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu drücken, an die Stelle, an die der Auswahlknopf posi-
tioniert werden soll.

Abb. 6.27
Anlegen eines

Auswahlknopfes

6.4 Dateneingabe und –ausgabe mit Dynpros 375■

■

■

3. Fixieren Sie den Minirahmen durch drücken der linken Maus-
taste.

4. Doppelklicken Sie in den neu entstandenen (roten) Auswahl-
knopf. Das Fenster „Screen Painter: Attribute“ öffnet sich.

5. Füllen Sie dieses Fenster entsprechend der Abbildung aus.
Achten Sie auf die Namensgleichheit von Datenobjekt und
Auswahlknopf.

6. Legen Sie alle Auswahlknöpfe der Auswahlknopfgruppe an.

Im nächsten Schritt werden die Auswahlknöpfe zu einer Auswahl-
knopfgruppe zusammengefasst.

1. Markieren Sie alle zur Auswahlknopfgruppe gehörenden
Auswahlknöpfe (Klicken Sie jeden Knopf bei gedrückter
Shift-Taste an oder ziehen Sie mit gedrückter linker Maustaste
ein Lasso um die Gruppe).

2. Wählen Sie das Menü „Bearbeiten Gruppierung Aus-
wahlknopfgruppe Definieren.

Soll das Anklicken eines Auswahlknopfes durch den Benutzer PAI
auslösen, ist der Auswahlknopfgruppe ein Funktionscode zuzuord-
nen.

Abb. 6.28
Anlegen einer
Auswahlknopf-
gruppe
(Einstieg)

6 Grundlagen der Dynproprogrammierung ■

■

■

376

Doppelklicken Sie in einen Auswahlknopf der Auswahlknopfgrup-
pe. Das „Screen Painter: Attribute“-Fenster öffnet sich. Tragen Sie
dort in das Feld FktCode eine beliebige Zeichenkette ein. Beim akti-
vieren eines Auswahlknopfes wird PAI ausgelöst und diese Zei-
chenkette in die Systemvariable sy-ucomm und das OK-Feld einge-
tragen.
Soll beim Anklicken eines Auswahlknopfes kein PAI ausgelöst wer-
den, vergeben Sie einfach keinen Funktionscode für die Auswahl-
knopfgruppe.

Die Auswertung, welcher Auswahlknopf aktiv ist, wird zweckmäßig
über folgende CASE-Anweisung vorgenommen:

CASE 'X'.
 when wa_rbg-rb1.
 "wa_rbg-rb1 ist aktiv
 when wa_rbg-rb2.
 "wa_rbg-rb1 ist aktiv
ENDCASE.

Ankreuzfelder
Über Ankreuzfelder kann der Benutzer verschiedene Optionen auf
dem Dynpro auswählen.

Abb. 6.29
Auswahlknopf-

gruppe anlegen
(Einstieg)

6.4 Dateneingabe und –ausgabe mit Dynpros 377■

■

■

Zur Laufzeit des Programmes können folgende Eigenschaften der
Ankreuzfelder geändert werden (siehe dynamische Bildmodifikatio-
nen):

Ein- und Ausgabefähigkeit,

Sichtbarkeit.

Vorgehensweise: Ankreuzfelder anlegen

Für jedes Ankreuzfeld ist im ABAP-Programm (TOP-Include) ein
Datenopjekt vom Typ C mit der Länge 1 anzulegen. Datenobjekt
und Ankreuzfeld müssen namensgleich sein.

DATA: chk1, chk2.

Wirkungsweise:
Vor der Anzeige des Layouts erhalten die Ankreuzfelder, deren kor-
respondierende Datenobjekte mit 'X' geladen sind, den Status „ak-
tiv“. Zu PAI werden die Werte der Ankreuzfelder in die namens-
gleichen Datenobjekte zurückgeladen.

1. Klicken Sie das Werkzeug „Ankreuzfeld“ an.

2. Schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu drücken, an die Stelle, an der das Ankreuzfeld positio-
niert werden soll.

3. Fixieren Sie den Minirahmen durch drücken der linken Maus-
taste.

4. Doppelklicken Sie in das neu entstandene Ankreuzfeld. Füllen
Sie das sich daraufhin öffnende Fenster „Screen Painter: Attri-
bute“ entsprechend der Abbildung aus. Soll beim Anklicken
des Ankreuzfeldes PAI durchlaufen werden, vergeben Sie im

Abb. 6.30
Ankreuzfeld
anlegen

6 Grundlagen der Dynproprogrammierung ■

■

■

378

Feld FktCode einen frei wählbaren Funktionscode. Dieser wird
beim Auslösen der PAI-Ablauflogik in das Systemfeld
sy-ucomm und in das OK-Feld geschrieben.

Da, anders als bei der Auswahlknopfgruppe, jedes Ankreuzfeld aktiv
sein kann, ist die Ermittlung, ob ein Ankreuzfeld aktiv oder inaktiv
ist, nur über eine IF-Anweisung für jedes Ankreuzfeld möglich.

IF NOT chk1 IS INITIAL.
 "Ankreuzfeld chk1 ist aktiv
ELSE.
 "Ankreuzfeld chk1 ist inaktiv
ENDIF.
IF NOT chk2 IS INITIAL.
 "Ankreuzfeld chk2 ist aktiv
ELSE.
 "Ankreuzfeld chk2 ist inaktiv
ENDIF.

Drucktasten
Drucktasten werden benutzt, um oft benötigte Funktionen schnell
aufrufen zu können und das Bildschirmlayout übersichtlich zu ges-
talten. Richtig angewendet, können sie die Bedienung des Program-
mes erheblich vereinfachen. Einige Empfehlungen zum Einsatz von
Drucktasten:

Platzieren Sie Drucktasten, die sich auf ein Feld oder eine Feld-
gruppe beziehen, rechts neben dem Feld bzw. Feldgruppe.

Benutzen Sie Gruppenrahmen, um den Zusammenhang zwi-
schen Drucktaste und Feldgruppe sichtbar zu machen.

Drucktasten, die sich auf eine Tabellendarstellung im Dynpro
beziehen, sollten unterhalb der Tabelle angeordnet werden.

Alle über Drucktasten auswählbaren Funktionen sollten auch im
Menü einen entsprechenden Eintrag haben.

Drucktasten können einen Text und / oder eine Ikone ausgeben.

Zur Programmlaufzeit können folgende Eigenschaften der Drucktas-
ten geändert werden (siehe dynamische Bildmodifikationen):

Text/Ikone
Um den Text, der auf der Drucktaste abgebildet wird, dyna-
misch zu ändern, aktivieren Sie das Attribut „Ausgabefeld“ der
Drucktaste und legen eine zur Drucktaste namensgleiche Text-
variable im ABAP-Programm (TOP-Include) an. Laden Sie die-
se vor der Layoutanzeige mit dem Drucktastentext.

6.4 Dateneingabe und –ausgabe mit Dynpros 379■

■

■

Wird als Schaltertext eine Ikone mit Text verwendet, ist in die-
sem Fall eine Statusikone einzusetzen. Ikonenname und Ikonen-
text sind über die Funktion ICON_CREATE vor der Layoutan-
zeige zu laden.

Sichtbarkeit.

Vorgehensweise: Drucktasten anlegen

Für die dynamische Textausgabe ist im ABAP-Programm (TOP-
Include) eine zur Drucktaste namengleiche Variable anzulegen.

Drucktaste mit Variablenname Variablentyp Länge

Text C Länge des
max. Aus-
gabetextes

Text + Ikone icons-text

Ikone

Namensgleich mit
dem Namen der
Drucktaste

icons-text

Die Ikone oder Ikone + Text wird mit der Funktion
'ICON_CREATE' erzeugt (siehe Statusikonen).

Beispiel: (Programm: YK06DBAS_DSchalter)

Wirkungsweise:
Zu PBO wird die Drucktaste mit dem in der namensgleichen Variab-
le stehenden Text und/oder der Ikone geladen, sofern es sich um ei-
ne ausgabefähige Drucktaste handelt.

Jeder Drucktaste muss ein Funktionscode zugeordnet werden. Beim
Anklicken der Drucktaste wird dieser Funktionscode in das OK-Feld
und in die Systemvariable sy-ucomm geschrieben und PAI ausge-
löst. Der Funktionscode wird in einem PAI-Modul ausgewertet.

Abb. 6.31
Beispiel für
dynamisches
Setzen des
Drucktasten-
textes

6 Grundlagen der Dynproprogrammierung ■

■

■

380

Legen Sie im Programm SAPMYK06 ein Dynpro (Dynpronr. 100)
an. Löschen Sie in den Dynproeigenschaften das statische Folge-
dynpro um das Dynpro mit der ENTER-Taste schließen zu können.

Legen Sie die Dynproelemente entsprechend der nachfolgenden Ab-
bildung an.

Abb. 6.32
Drucktastentext

dynamisch
setzen

Abb. 6.33
Drucktasten-

attribut
„Ausgabefeld“

aktivieren

6.4 Dateneingabe und –ausgabe mit Dynpros 381■

■

■

Textfeld mit Ikone
Text: „Programmstart“,
Ikone: ICON_TIME

Ein-/Ausgabefelder
Wählen Sie aus der Tabelle ZBESTAND die Felder ISBN, Titel und
Autor1 aus. Für die Felder ISBN und Titel soll der Bezeichner nicht
in das Dynpro übernommen werden.
Denken Sie an die TABLES-Anweisung im TOP-Include.

Auswahlknopfgruppe „Angaben zum Buch“
Legen Sie für den Datentransport zu den Auswahlknöpfen eine
Struktur an.

Strukturname wa_rbg1
Komponeten isbn mit 'X' vorbelegt

titel

Vergeben Sie für die Auswahlknopfgruppe den Funktionscode
RBG1.

Auswahlknopfgruppe „Angaben zum Suchbereich“
Legen Sie auch für diese Auswahlknopfgruppe eine Struktur für den
Datentransport an.

Strukturname wa_rbg2
Komponten ges mit 'X' vorbelegt

ver
nver

6 Grundlagen der Dynproprogrammierung ■

■

■

382

Diese Auswahlknopfgruppe soll kein PAI auslösen. Es wird daher
kein Funktionscode vergeben.

Ankreuzfelder
Deklarieren Sie für die Ankreuzfelder zwei korrespondierende Vari-
ablen.

Variablenname TYPE
chk_protected C, Länge 1
chk_public C, Länge 1 mit 'X' vorbelegt

Verwenden Sie die Icons ICON_LOCKED und ICON_UNLOCKED.
ls Quick-Info können Sie eintragen: „Besondere Rechte erforder-
lich“ und „Jedermannsbereich“ eintragen.

Drucktasten
Legen Sie die beiden Drucktasten „Recherche“ und „Programm be-
enden“ an.

Dynproele-
mentname

Text Ikonen FktCode

B1 (optional) Recherche ICON_SEARCH RECHERCHE
B2 (optional) Programm

beenden
ICON_CANCEL CANCEL

Häufigste Fehler
Namensgleichheit nicht beachtet,
Nicht alle Auswahlknöpfe gruppiert,
Nicht alle Programmteile aktiviert.

Lösung: SAPMYK06_3

6.5
Programmierung der Ablauflogik

6.5.1
Module und Modulaufruf

Die Ablauflogik wird vom Dynpro-Prozessor abgearbeitet, der keine
ABAP/4-Anweisungen verarbeiten kann. Die Ablauflogik selbst
kann somit keinen ABAP/4-Code enthalten. Sie wird in der Dynpro-
sprache programmiert. In ihr werden lediglich Module aufgerufen,
das sind Programmteile, die eine gewisse Ähnlichkeit mit Unterpro-

6.5 Programmierung der Ablauflogik 383■

■

■

grammen ohne Schnittstelle aufweisen. Diese Module werden vom
ABAP-Prozessor abgearbeitet und enthalten ABAP/4-Anweisungen.
Das Prinzip dieser Arbeitsweise ist in Abb. 6.34 dargestellt.

Module werden ausschließlich in der Ablauflogik von Dynpros auf-
gerufen.
Es ist üblich, die Module der Ablaufsteuerung in folgenden Includes
zu kapseln:

Module der PBO-Ablauflogik <programmname>O01

Module der PAI-Ablauflogik <programmname>I01

6 Grundlagen der Dynproprogrammierung ■

■

■

384

Syntax: Modulaufruf
MODULE <name>.

Abb. 6.34
Ablauflogik und
ABAP-
Prozessor

6.5 Programmierung der Ablauflogik 385■

■

■

Syntax: Moduldefinition

Module der PBO-Ablauflogik Module der PAI-Ablauflogik

MODULE <name> OUTPUT
 ABAP-Anweisungen
ENDMODULE

MODULE <name> INPUT
 ABAP-Anweisungen
ENDMODULE

Vorgehensweise: Modul anlegen

Starten Sie den Screen Painter mit dem Dynpro, dessen Ablauflogik
programmiert werden soll. Wählen Sie die Registerkarte „Ablauflo-
gik“. Programmieren Sie im PBO bzw. PAI-Teil der Ablauflogik
den Modulaufruf. Der Modulname ist frei wählbar, sollte aber die
Dynpronummer enthalten.

Legen Sie das Modul in der Vorwärtsnavigation (Doppelklick auf
Modulnamen) an. Tragen Sie im Folgebildschirm „PBO-Modul an-
legen“ (bzw. „PAI-Modul anlegen“) in die obere freie Zeile den
Namen des Includes ein, in dem das Modul angelegt werden soll
(<programmname>O01 bzw. <programmname>I01). Vergessen Sie
dabei nicht, die obere Zeile zu markieren. Existiert das Include be-
reits, ist nur die entsprechende Zeile zu markieren. Bei Programmen
vom Typ „Modulpool“ sind die Eingabefelder bereits mit Vor-
schlagswerten geladen.

Abb. 6.35
Modulaufruf in

der Ablauflogik

6 Grundlagen der Dynproprogrammierung ■

■

■

386

Nach der Zuordnung Ihrer Entwicklungsklasse und Ihres Workben-
chauftrages gelangen Sie in den ABAP-Editor. Legen Sie dort den
Quelltext für das Module an.

Das Modul ist jetzt fertig angelegt. Aktivieren Sie zum Schluss alle
Programmbestandteile.

1. Deklarieren Sie im TOP-Include des Programmes SAPMYK06
eine Variable „startdatum“ vom Type d und eine Vaiable „start-
zeit“ vom Typ t. Aktivieren Sie das TOP-Include.

2. Legen Sie im Dynpro 100 des Programmes über das
„Dict./Programmfelder-Fenster“ je ein Ein-/Ausgabefeld für die
Ausgabe des Startdatums und der Uhrzeit an. Für beide Felder
soll die Eigenschaft „Nur Ausgabefeld“ aktiviert werden.

3. Legen Sie in der Ablauflogik PBO des Dynpros 100 ein Modul
„laden_0100“ an, in dem die Variablen geladen werden.

Abb. 6.36
Include für Ab-

lauflogik-Module
anlegen

Abb. 6.37
Modul im

ABAP-Editor
anlegen

6.5 Programmierung der Ablauflogik 387■

■

■

Speichern Sie dieses Modul im Include MYK06_O01.
Hinweis: Die Systemvariable sy-datum enthält das Systemda-
tum und sy-uzeit ist mit der Systemzeit geladen.

Lösung: SAPMYK06_4

Das Programm sollte nun Startdatum und Startzeit ausgeben.

Schwerpunkte der Lösung:

Die Eigenschaft „Nur Ausgabefeld” bewirkt, dass die Ausgabefelder
wie Textfelder aussehen. Die Eigenschaft kann entweder im Layout-
editor (Screen Painter: Attribute-Fenster) oder in der Elementliste
gesetzt werden (Abb. 6.40).

Abb. 6.38
Layouteditor

Abb. 6.39
Elementliste
(allg. Attrib.)

Abb. 6.40
Elementliste
(Texte u.
E/A-Schabl.)

6 Grundlagen der Dynproprogrammierung ■

■

■

388

6.5.2
Benutzeraktionen auswerten

Die vom Benutzer ausgewählte Funktion kann nur dann ausgewertet
werden, wenn durch sie PAI ausgelöst wird. Der PAI-auslösende
Funktionscode wird, wie in der Listenprogrammierung auch, in die
Systemvariable sy-ucomm geschrieben.

Abb. 6.41
Ablauflogik des

Dynpros

Abb. 6.42
Modul „la-

den_0100“

6.5 Programmierung der Ablauflogik 389■

■

■

PAI-auslösende
Aktion

Bedingung sy-ucomm und
OK-Feld

Auswahl eines
Menüpunktes

löst immer PAI aus. Funktionscode
des Menüpunktes

Anklicken einer
Drucktaste

löst immer PAI aus. Funktionscode
der Drucktaste

Aktivieren bzw.
Deaktivieren
eines Ankreuz-
feldes

Dem Ankreuzfeld muss ein
Funktionscode zugeordnet
sein. Sonst wird kein PAI
ausgelöst.

Funktionscode
des Ankreuzfeldes

Aktivieren eines
Auswahlknopfes

Der Auswahlknopfgruppe
muss ein Funktionscode
zugeordnet sein. Sonst wird
kein PAI ausgelöst

Funktionscode der
Auswahlknopf-
gruppe

ENTER löst immer PAI aus. sy-ucomm und das
OK-Feld werden
nicht geändert, d.h.
sie behalten den
vorherigen Funkti-
onscode.

Der Inhalt dieser Systemvariablen bleibt solange erhalten, bis der
Benutzer wiederum ein Dynproelement auswählt, das einen eigenen
Funktionscode besitzt und PAI auslöst. In diesem Verhalten lauert
die Programmierfalle. Diese soll am folgenden Beispiel gezeigt wer-
den:

Annahme 1:
Sie befinden sich im Dynpro 200 eines Anwendungsprogrammes
und lösen dort den Funktionscode „BACK“ aus. Im Dynpro 200 ist
dieser mit der Anweisung LEAVE TO SCREEN 100, im Dynpro
100 mit LEAVE TO SCREEN 0 verknüpft.

Wirkung:
Sy-ucomm wird mit dem Wert 'BACK' geladen. PAI des Dynpros
200 wird ausgelöst und die Anweisung LEAVE TO SCREEN 100
ausgeführt. Sie gelangen in das Dynpro 100, sy-ucomm behält den
Funktionscode 'BACK'.

Annahme 2:
Im Dynpro 100 drücken Sie (versehentlich) die ENTER-Taste.

6 Grundlagen der Dynproprogrammierung ■

■

■

390

Wirkung:
PAI des Dynpros 100 wird ausgelöst und die Anweisung LEAVE
TO SCREEN 0 ausgeführt weil sy.ucomm noch mit dem Funktions-
code 'BACK' geladen ist. Das Programm wird beendet.

Schlussfolgerung:

Die Variable, die den Funktionscode der PAI-auslösenden Be-
nutzeraktion enthält, sollte unmittelbar nach ihrer Auswertung
initialisiert werden.
Die Systemvariable sy-ucomm sollte zur Auswertung des Funk-
tionscodes nicht genutzt werden, weil von der SAP empfohlen
wird, Systemvariablen nur in Ausnahmefällen im Programm zu
überschreiben.

Glücklicherweise wird der PAI-auslösende Funktionscode zusätzlich
vom System in ein Dynprofeld, das sogenannte OK-Feld, geschrie-
ben. Dieses OK-Feld muss in die Elementliste des Dynpros einge-
tragen werden. Es ist üblich, dafür den Namen ok_code zu verwen-
den. Zur Auswertung des OK-Feldes ist im ABAP-Programm (TOP-
Include) eine namensgleiche Variable vom Typ sy-ucomm anzule-
gen.

Vorgehensweise: Ausgelösten Funktionscode zu PAI ermitteln

1. Deklarieren Sie im TOP-Include die Variable ok_code und
ok_save:.

DATA:ok_code TYPE sy-ucomm.
DATA:ok_save TYPE sy-ucomm.

2. Starten Sie den Screen Painter mit dem Dynpro, zu dem die
Ablauflogik programmiert werden soll. Tragen Sie in die Ele-
mentliste den Variablennamen ok_code ein.

3. Dekommentieren Sie den im PAI vorbereiteten Modulaufruf

MODULE user_command_<dynpronr>.

4. Legen Sie in der Vorwärtsnavigation diese Modul im
Include ...I01 an.

6.5 Programmierung der Ablauflogik 391■

■

■

Abb. 6.43
Deklaration der
Variablen
ok_code und
ok_save

Abb. 6.44
ok_code in die
Elementliste
eintragen

6 Grundlagen der Dynproprogrammierung ■

■

■

392

Hinweise zum MODULE user_command_0100 INPUT

Dieses Modul wird für die Auswertung der Benutzereingaben
benutzt und ist von der SAP deshalb auch schon in die Ablauf-
logik eingetragen. Sie müssen den Modulaufruf nur noch de-
kommentieren und das Modul anlegen (Vorwärtsnavigation).

Der Funktionscode der ausgewählten Funktion wird vom Lauf-
zeitsystem in das OK-Feld geschrieben, welches der Variablen
ok_code zugeordnet wurde (Abb. 6.45). Damit enthält letztend-
lich diese Variable den ausgewählten Funktionscode.

Abb. 6.45
PAI-Module

USER_
COMMAND

aufrufen

Abb. 6.46
Im Modul

USER_
COMMAND auf
Benutzeraktion

reagieren

6.5 Programmierung der Ablauflogik 393■

■

■

Wie wir in der Einleitung dieses Kapitels erfahren haben, soll
die Variable, die den Funktionscode erhält, zum nächstmögli-
chen Zeitpunkt initialisiert werden. Dazu wird der Funktionsco-
de in die Variable ok_save geschrieben und die Variable
ok_code wird mit CLEAR ok_code zurückgesetzt.

In der CASE-Anweisung wird die Variable ok_save untersucht
und die für die ausgewählte Funktion richtige Programmreak-
tion ausgelöst.

In der folgenden Aufgabe wird das Programm SAPMYK06 so er-
weitert, dass die Auswahl der Drucktasten eine entsprechende Pro-
grammreaktion auslöst und das Programm nur noch über die Druck-
taste „Programm beenden“ verlassen werden kann.

1. Legen Sie im TOP-Include des Programmes die Variablen
ok_code und ok_save mit Bezug zur Systemvariablen sy-
ucomm an.

2. Ordnen Sie in der Elementliste des Dynpros 100 dem OK-Feld
die Variable ok_code zu.

3. Dekommentieren Sie in der PAI-Ablauflogik des Dynpros 100
den Modulaufruf des Moduls „user_command_0100“ und le-
gen Sie dieses über die Vorwärtsnavigation im Include
MYK06I01 an.

4. Vergewissern Sie sich im Layout, dass die Funktionscodes
„RECHERCHE“ bzw „CANCEL“ in das Feld FktCode der
Drucktasten eingetragen sind.

5. Schreiben Sie den Quelltext zum Modul „user_command_
0100“. Die Drucktaste „Programm beenden“ soll über die An-
weisung „LEAVE TO SCREEN 0“ das Programm beenden.
Die Drucktaste „Recherche“ gibt die Nachricht „Hier wird
später das Dynpro 200 aufgerufen“ aus. Legen Sie diese Nach-
richt in der Nachrichtenklasse ZLIB an.

6. Tragen Sie in der Registerkarte „Eigenschaften“ des Dynpros
100 als Folgedynpro die Nummer 100 ein. Damit ruft sich das
Dynpro nach PAI immer wieder selbst auf, es sei denn, Sie
drücken die Drucktaste „Programm beenden“. Diese setzt, bei
fehlerfreier Programmierung, dynamisch das Folgedynpro 0.

7. Kontrollieren Sie, ob alle Auswahlknöpfe und Kontrollkäst-
chen aktiviert werden können und ob die Auswahlknopfgruppe
„Angaben zum Buch“ wirklich PAI auslöst. Setzen Sie dazu
einen Breakpoint in das Modul „user_command_0100“.

6 Grundlagen der Dynproprogrammierung ■

■

■

394

Häufigste Fehler

In der Elementliste des Dynpros wurde der ok_code nicht ein-
getragen.

In der CASE-Anweisung des Moduls „user_command...“ wur-
de nicht ok_save sondern ok_code untersucht. Diese Variable
ist aber nach CLEAR ok-code leer.

Der in der CASE-Anweisung wurde ein anderer Funktionsco-
de abgefragt als der für das Dynproelement vergebene oder er
wurde nicht in Großbuchstaben geschrieben.

Es wurden nicht alle Programmteile aktiviert

Es wurden nicht alle Auswahlknöpfe einer Auswahlknopf-
gruppe zugeordnet.

Lösung: SAPMYK06_5

Lösung:

&---
*& Include MYK06_5TOP *
&---
PROGRAM sapmyk06_5.
DATA: startdatum type d,
 startzeit type t.
DATA: ok_code type sy-ucomm,
 ok_save type sy-ucomm.

DATA: begin of wa_rbg1,
 isbn value 'X',
 titel,
 end of wa_rbg1,

 begin of wa_rbg2,
 ges value 'X',
 ver,
 nver,
 end of wa_rbg2,

 chk_protected, chk_public value 'X'.
tables: zbestand_tw.

6.5 Programmierung der Ablauflogik 395■

■

■

&---
*& Module user_command_0100 INPUT *
&---
MODULE user_command_0100 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
*Achtung: FktCode in Großbuchstaben
 WHEN 'RECHERCHE'.
 MESSAGE i003(zlib_tw).
 WHEN 'CANCEL'.
 LEAVE TO SCREEN 0.
 ENDCASE.
ENDMODULE. " user_command_0100 INPUT

Abb. 6.47
Elementliste des
Dynpros 100 der
Übungsaufgabe

Abb. 6.48
Ablauflogik des
Dynpros 100 der
Übungsaufgabe

6 Grundlagen der Dynproprogrammierung ■

■

■

396

6.6
GUI-Status und GUI-Titel des Dynpros

GUI-Status und GUI-Titel, werden in der Ablauflogik PBO geladen.
Zum Zeitpunkt PAI wird dann die vom Benutzer ausgelöste Aktivi-
tät ermittelt und auf sie reagiert.

Vorgehensweise: GUI-Status und GUI-Titel in die PBO-Ablauflogik
einbinden

Voraussetzung: Das Dynprofeld OK-Code ist mit der korrespondie-
renden Variable (ok_code) des Dynpros verbunden. Siehe dazu 6.5.2
„Benutzeraktionen auswerten“ Seite 388.

Starten Sie den Screen Painter mit dem Dynpro, zu dem GUI-Status
und GUI-Titel eingebunden werden sollen. Wählen Sie die Regis-
terkarte „Ablauflogik“. Dekommentieren Sie den Eintrag
„MODULE status_<dynpronr>.“. Legen Sie in der Vorwärtsnaviga-
tion dieses Modul im Include <programmname>O01 an.

Abb. 6.49
Aufruf des

Moduls „sta-
tus_0100“

Abb. 6.50
Modul mit Aufruf
des GUI-Status

und GUI-Titls

6.6 GUI-Status und GUI-Titel des Dynpros 397■

■

■

1. Legen Sie im Programm YK06DBAS einen GUI-Status ent-
sprechend der nachfolgenden Abbildung an.

2. Sorgen Sie mit einem entsprechenden GUI-Titel dafür, dass in
die Titelzeile des Dynpros „East-Side-Library: Recherchepro-
gramm“ geschrieben wird

3. Dekommentieren Sie in der Ablauflogik des Dynpros den Auf-
ruf des Moduls „Status_0100“ und legen Sie dieses Modul in
der Vorwärtsnavigation an.

4. Binden Sie GUI-Stautus und GUI-Titel in das Modul „Sta-
tus_0100“ ein und sorgen Sie in „User_command _0100“ da-
für, dass das Programm auf die Menüauswahl reagiert. Bei al-
len 3 Menüpunkten soll das Programm beendet werden.

5. Falls noch nicht geschehen, setzen Sie für das Dynpro 100 in
der Registerkarte „Eigenschaften“ des Screen Painters das
Folgedynpro 100.

Hinweis: Denken Sie daran, alle Programmteile zu aktivieren.

Lösung: SAPMYK06_6

6 Grundlagen der Dynproprogrammierung ■

■

■

398

Lösung:

&---
*& Module STATUS_0100 OUTPUT *
&---
MODULE status_0100 OUTPUT.
 SET PF-STATUS 'DYNPRO_0100'.
 SET TITLEBAR 'DYNPRO_0100'.
ENDMODULE. " STATUS_0100 OUTPUT

&---
*& Module user_command_0100 INPUT *
&---
MODULE user_command_0100 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
 WHEN 'RECHERCHE'.
 MESSAGE i003(zlib_tw).
 WHEN 'CANCEL' OR 'EXIT' OR 'BACK'.
 LEAVE TO SCREEN 0.
 ENDCASE.
ENDMODULE. " user_command_0100 INPUT

Abb. 6.51
Ablauflogik

Dynpro 100

PBO-Modul
„status_0100”

PBO-Modul
„status_0100”

6.7 Eigenschaften der Dynproelemente dynamisch ändern 399■

■

■

6.7
Eigenschaften der Dynproelemente
dynamisch ändern

Bestimmte Eigenschaften von Dynproelementen kann man dyna-
misch, d.h. zur Programmlaufzeit, ändern. So ist es z.B. möglich,
Eingabebereitschaft oder Sichtbarkeit bestimmter Dynproelemente
ein- bzw. auszuschalten.

Der dynamischen Änderung von Dynproelementattributen liegt fol-
gende Technologie zu Grunde:

1. Das Laufzeitsystem initialisiert zu Beginn der PBO-
Ablauflogik die Systemtabelle SCREEN mit den, im Layout-
editor festgelegten, statischen Eigenschaften der Dynproele-
mente des anzuzeigenden Dynpros. Für jedes Dynproelement
wird in SCREEN eine Zeile erzeugt.

2. Nach dem Laden dieser Tabelle erfolgt der Aufruf der PBO-
Module. Diese haben Zugriff auf die Systemtabelle SCREEN
und übernehmen die dort eingetragenen Eigenschaften.

3. Auf der Grundlage der aktuellen Daten der Systemtabelle
SCREEN erfolgt jetzt die Anzeige des Layouts.

Abb. 6.52
Dynamische
Änderung der
Dynproelemente

6 Grundlagen der Dynproprogrammierung ■

■

■

400

Tabelle 6.1 Zuordnung statischer Eigenschaften zu Feldern der
Systemtabelle SCREEN

Screen Painter: Attribute Feldname in der
internen Tabelle
SCREEN

Verwendung

NAME Name des Dynproelements

LENGTH

Sichtbare Länge des Dynproe-
lements

screen-length = <Länge in
Zeichen>.

GROUP1
GROUP2
GROUP3
GROUP4

Über diese Felder können
Dynpro-elemente zusammen-
gefasst werden, deren Eigen-
schaften den gleichen Ände-
rungen unterliegen sollen.

INTENSIFIED

Intensive Darstellung:
 screen-intensified = 1.
Normale Darstellung:
 screen-intensified = 0.

INVISIBLE Siehe Tabelle 6.1

DISPLAY-3D

3D-Darstellung:
 screen-display-3d = 1.
2D-Darstellung:
 screen-display-3d = 0.

INPUT Siehe Tabelle 6.1

OUTPUT Siehe Tabelle 6.1

REQUIRED

Mussfeld:
 screen-required = 1.
kein Mussfeld:
 screen-required = 0.

ACTIVE

Dieses Feld hat keine Ent-
sprechung im Screen Painter.
Es dient der Vereinfachung
der Änderungen
siehe Tabelle 6.1

6.7 Eigenschaften der Dynproelemente dynamisch ändern 401■

■

■

Die Felder active, input, output und invisible
Wie in Tabelle 6.1 zeigt, ist das Feld ACTIVE keinem statischen
Dynproattribut direkt zugeordnet. Es wird eingesetzt, um mit einer
einzigen Anweisung die Sichtbarkeit eines Dynproelementes dyna-
misch zu ändern. Zu Beginn der PBO-Ablauflogik wird dieses Feld
für alle Dynproelemente mit dem Wert „1“ geladen.

Das Setzen von ACTIVE = 0 bewirkt, dass die Felder INPUT = 0,
OUTPUT = 0 und INVISIBLE = 1 automatisch für diese Tabellen-
zeile gesetzt werden. Damit ist das betreffende Dynproelement un-
sichtbar. Umgedreht bewirkt das Setzen von INPUT = 0,
OUTPUT = 0 und INVISIBLE = 1 auch dass Setzen von
ACTIVE = 0. Andere Zuweisungen an diese Felder werden igno-
riert.

Wird das Feld ACTIVE nicht auf „0“ gesetzt, bestimmen die Felder
INPUT, OUTPUT, und INVISIBLE über die Sichtbarkeit eines
Dynproelements. Verschiedene Varianten der Sichtbarkeit enthält
Tabelle 6.2.

ACT. INP. OUT. INV. Beschreibung der Sichtbarkeit

1 0 0 0 Das Dynproelement
wird angezeigt, wenn nicht sta-
tisch mit der Eigenschaft „Nur
Ausgabefeld“ angelegt,

ist nicht eingabebereit,

zeigt keine Ausgabedaten an.

1 0 0 1 Diese Belegung gibt es nicht. Bei
INPUT = 0, OUTPUT = 0 und
INVISIBLE = 0 wird ACTIVE auto-
matisch auf 0 gesetzt

1 0 1 0 Das Dynproelement
wird angezeigt,

gibt den Inhalt des korrespondie-
renden Datenobjektes aus,

ist nicht eingabebereit.

1 0 1 1 Das Dynproelement
ist inaktiv (unsichtbar).

Tabelle 6.2
Sichtbarkeits-
varianten

6 Grundlagen der Dynproprogrammierung ■

■

■

402

ACT. INP. OUT. INV. Beschreibung der Sichtbarkeit

1 1 0 0 Das Dynproelement
wird angezeigt, wenn nicht sta-
tisch mit der Eigenschaft „Nur
Ausgabefeld“ angelegt,

ist eingabebereit,

zeigt keine Ausgabedaten an.

1 1 0 1 Das Dynproelement
wird angezeigt, wenn nicht sta-
tisch mit der Eigenschaft „Nur
Ausgabefeld“ angelegt,

Ausgabe durch Sterne (*) mas-
kiert,

Eingabebereit, Benutzereingabe
durch * maskiert.

1 1 1 0 Das Dynproelement
wird angezeigt,

gibt den Inhalt des korrespondie-
renden Datenobjektes aus,

ist eingabebereit, wenn nicht sta-
tisch mit der Eigenschaft „Nur
Ausgabefeld“ angelegt.

1 1 1 1 Das Dynproelement
wird angezeigt, wenn es nicht sta-
tisch mit der Eigenschaft „Nur
Ausgabefeld“ angelegt ist,

zeigt keine Ausgabedaten an,

Eingabebereit, Benutzereingabe
durch * maskiert.

Das Setzen von INPUT = 1 wird für Felder, die statisch als Nur
Ausgabe gekennzeichnet sind, ignoriert. Für solche Felder gilt im-
mer INPUT = 0. Das Unsichtbarmachen von Benutzereingaben
durch Sterne (*) kann für die Eingabe von Passwörtern verwendet
werden.

6.7 Eigenschaften der Dynproelemente dynamisch ändern 403■

■

■

Programmtechnische Umsetzung
Um Dynproelementattribute zur Laufzeit zu ändern, ist in der PBO-
Ablauflogik eine Schleife über die interne Tabelle SCREEN zu pro-
grammieren. In dieser Schleife wird genau die Zeile des zu ändern-
den Dynproelements geändert.

Beispiel:
Die Ankreuzfelder CHK_PROTECTED und CHK_PUBLIC sollen
auf dem Dynpro 100 nicht angezeigt werden. Das wäre zum Beispiel
dann sinnvoll, wenn dem Benutzer keine Rechte für den geschützten
Bibliotheksbereich eingeräumt wurden.

1. In der PBO-Ablauflogik ist ein Modul (z.B. „Attribu-
te_setzen_0100“) aufzurufen, in dem die dynamische Ände-
rung der Dynproattriubute programmiert wird.

2. Im Modul „Attribute_setzen_0100“ wird die Tabelle SCREEN
in einer LOOP-Schleife geändert. Bei der SCREEN-Tabelle
handelt es sich um eine interne Tabelle mit Kopfzeile, d.h. die
sonst zur Bearbeitung einer internen Tabelle notwendige
Struktur (Arbeitsbereich) ist in die Tabelle (als sogenannte
Kopfzeile) integriert. Die Kopfzeile sprechen Sie über den
Namen der internen Tabelle an. Das Feld ACTIVE z.B. würde
über SCREEN-ACTIVE adressiert werden.

MODULE attribute_setzen_0100 OUTPUT.
*Die INTO-Klausel der LOOP-Anw. entfällt bei
*int. Tabellen mit Kopfzeile. Für jedes

6 Grundlagen der Dynproprogrammierung ■

■

■

404

*Dynproelement ein Schleifendurchlauf.
 LOOP AT SCREEN.
*Auswahl der zu ändernden Dynproelemente
*über eine if-Anweisung.
 IF screen-name = 'CHK_PROTECTED' OR
 screen-name = 'CHK_PUBLIC'.
*Änderung der Kopfzeile
 screen-active = 0.
*geänderte Kopfzeile in Tabelle eintragen
 MODIFY SCREEN.
 ENDIF.
 ENDLOOP.
ENDMODULE. " attribute_setzen_0100 OUTPUT

Die Eingabemöglichkeiten im Programm SAPMYK06 sind noch
unvollkommen. Gibt man die ISBN an, sind Angaben zu Titel und
Autor nicht notwendig, weil ein Buch eindeutig durch die ISBN
identifiziert wird. Die Datengruppe „Angaben zum Buch“ soll des-
halb so programmiert werden, dass entweder das Eingabefeld
„ISBN“ oder die Eingabefelder „Titel“ und „Autorennummer“ ein-
gabefähig sind. Welche dieser beiden Eingabemöglichkeiten genutzt
werden kann, steuert die Auswahlknopfgruppe ISBN / Titel.

1. Ordnen Sie dem E/A-Feld ZBESTAND-ISBN in der Gruppe1
die Zeichenkette „AI“, den anderen die Zeichenkette „AT“ zu.

2. Deaktivieren Sie für ZBESTAND-TITEL und ZBESTAND-
AUTOR1 die statische Eigenschaft „Eingabefeld“.

6.7 Eigenschaften der Dynproelemente dynamisch ändern 405■

■

■

3. Programmieren Sie in der PBO-Ablauflogik den Aufruf des
Moduls, in dem die Änderungen der Dynproelementattribute
erfolgen sollen (Namensvorschlag: „attribute_setzen_0100“)

4. Programmieren Sie dieses Modul entsprechend der Aufgaben-
stellung.

Lösung: SAPMYK06_7

Lösung:

&---
*& Module attribute_setzen_0100 OUTPUT
&---
MODULE attribute_setzen_0100 OUTPUT.
 LOOP AT SCREEN.
*Ermittlung des aktiven Auswahlknopfes
*in der CASE-Anweisung
 CASE 'X'.
 WHEN wa_rbg1-isbn.
 IF screen-group1 = 'AI'.
*Kopfzeile für Dynproelemente der
*Gruppe1 = 'AI' ändern
 screen-input = 1.
 ELSEIF screen-group1 = 'AT'.
*Kopfzeile für Dynproelemente der
*Gruppe1 = 'AT' ändern
 screen-input = 0.
 ENDIF.
 MODIFY SCREEN.
 WHEN wa_rbg1-titel.
 IF screen-group1 = 'AI'.
 screen-input = 0.
 ELSEIF screen-group1 = 'AT'.
 screen-input = 1.
 ENDIF.
*Änderungen in die Systemtabelle SCREEN
*eintragen
 MODIFY SCREEN.
 ENDCASE.
 ENDLOOP.
ENDMODULE. " attribute_setzen_0100 OUTPUT

6 Grundlagen der Dynproprogrammierung ■

■

■

406

Der Modulaufruf wurde in der PBO-Ablauflogik ergänzt.

PROCESS BEFORE OUTPUT.
 MODULE status_0100.
 MODULE laden_0100.
 MODULE attribute_setzen_0100.

PROCESS AFTER INPUT.
 MODULE user_command_0100.

6.8
Eingabeprüfungen mit der FIELD-
Anweisung

Einzelfelder überprüfen
Zum Überprüfen der in das Dynpro eingegebenen Daten können
Module in der PAI-Ablauflogik über die Field-Anweisung aufgeru-
fen werden.

Syntax
FIELD <Ein-/Ausgabefeld> MODULE <Modulname>.

Wirkung:

1. Der Inhalt des <Ein-/Ausgabefeldes> wird an das gleichnami-
ge Datenobjekt übergeben.

2. Das Modul <Modulname> wird ausgeführt.

3. Eine Message vom Typ „E“ oder „W“, ausgegeben im Modul
<Modulname>, beendet die Abarbeitung der PAI-Ablauflogik.
Das Dynpro wird, ohne das PBO durchlaufen wird, erneut an-
gezeigt. Dabei ist nur das <Ein-/Ausgabefeld> eingabebereit.

Beispiel:
Im Programm SAPMYK06 soll verhindert werden, dass bei der Re-
cherche nach Titel und Autor der Suchvorgang ausgelöst wird, wenn
der Benutzer keinen Buchtitel eingegeben hat.

Dazu wird zu PAI über die Field-Anweisung das Modul
„PRUEFEN_0100“ mit dem Ein-/Ausgabefeld ZBEZUG-TITEL
aufgerufen.

6.8 Eingabeprüfungen mit der FIELD-Anweisung 407■

■

■

Die Programmierung des Moduls PRUEFEN_0100 sieht so aus:

&---
*& Module Pruefen_0100 INPUT
&---
MODULE pruefen_0100 INPUT.

*Die Fehlernachricht e004 darf nicht ausgegeben
*werden, wenn der Benutzer gerade den
*Auswahlknopf ISBN oder TITEL aktiviert hat, er
*hätte sonst keine Gelegenheit mehr, vor der
*Fehlerprüfung, Titel bzw. ISBN einzugeben.
*Deshalb wird die Fehlermeldung nur dann
*ausgegeben, wenn PAI nicht durch den
*Funktionscode RBG1, der diesen Auswahlknöpfen
*über die Auswahlknopfgruppe zugeordnet ist,
*ausgelöst wird.
*Hinweis: Der Funktionscode steht in OK_CODE

 IF wa_rbg1-titel = 'X'
 AND ok_code <> 'RBG1'.
 IF zbestand-titel IS INITIAL.
 CLEAR ok_code.
 MESSAGE e004(zlib_tw).
 ENDIF.
 ENDIF.
ENDMODULE. " Pruefen_0100 INPUT

Abb. 6.53
FIELD-
Anweisung mit-
Modulaufruf

6 Grundlagen der Dynproprogrammierung ■

■

■

408

Das Programm zeigt jetzt das folgende Verhalten:

Der Benutzer aktiviert den Auswahlknopf „Titel“ und klickt, ohne
einen Titel einzugeben, auf eine beliebige Schaltfläche. PAI wird
ausgelöst und das Modul PRUEFEN_0100 aufgerufen. Nach der
Bestätigung der entsprechenden Fehlermeldung wird das Dynpro er-
neut angezeigt. Es ist nur das Feld „ZBESTAND_TITEL“ eingabe-
bereit.

Optimal ist das Verhalten des Programmes noch nicht. Es treten
zwei Bedienungsprobleme auf:

6.8 Eingabeprüfungen mit der FIELD-Anweisung 409■

■

■

1. Es kann sein, dass der Auswahlknopf WA_RBG1-TITEL ver-
sehentlich aktiviert wurde. Um den Eingabefehler zu korrigie-
ren, muss zunächst mindestens ein Zeichen in das Ein-
/Ausgabefeld WA_ZBESTAND-TITEL eingegeben und PAI
erneut ausgelöst werden (z.B. durch drücken der ENTER-
Taste).

2. Auch die Drucktaste „Programm beenden“ kann im Fehlerfall
vom Anwender nicht so benutzt werden, wie er sich das
wünscht. Bevor er das Programm schließen kann, muss er den
Fehler korrigieren.

In unserem Beispiel müssten also, um ein optimales Programmver-
halten zu erreichen, die Dynproelemente

WA_RBG1-ISBN (Auswahlknopf),

WA_RBG1-TITEL (Auswahlknopf) und

ZBESTAND-TITEL (Ein-/Ausgabefeld)

nach einer fehlerhaften Anwendereingabe eingabebereit geschaltet
werden. Das ist mit der FIELD-Anweisung in der bisher behandelten
Form nicht erreichbar, weil immer nur ein Dynproelement angege-
ben werden kann.

Mehrere Felder überprüfen
Um mehrere voneinander abhängige Felder zu überprüfen oder/und
diese Felder nach einer fehlerhaften Benutzereingabe zur Korrektur
bereitzustellen, werden die FIELD-Anweisungen in einer Verarbei-
tungskette zusammengefasst.

Syntax:
CHAIN.
 FIELD: f1, f2, f3 MODULE <Modulname1>.
 [FIELD: f4, f5 MODULE <Modulname2>.]
ENDCHAIN.

Wirkung:

1. Die erste FIELD-Anweisung wird abgearbeitet und die Inhalte
der Dynproelemente f1, f2 und f3 werden in die namensglei-
chen Datenobjekten transportiert.

2. Das Modul <Modulname1> wird ausgeführt.

3. Löst dieses Modul eine Nachricht vom Typ „E“ oder „W“ aus,
wird PAI beendet und das Dynpro ohne PBO-Durchlauf erneut

6 Grundlagen der Dynproprogrammierung ■

■

■

410

angezeigt. Alle Felder der Verarbeitungskette (f1, f2, f3, f4,
f5) sind eingabebereit.

4. Die zweite FIELD-Anweisung wird abgearbeitet und die In-
halte der Dynproelemente f4 und f5 werden in die namensglei-
chen Datenobjekten transportiert.

5. Das Module <Modulname2> wird ausgeführt.

6. Löst dieses Modul eine Nachricht vom Typ „E“ oder „W“ aus,
wird PAI beendet und das Dynpro ohne PBO-Durchlauf ange-
zeigt. Alle Felder der Verarbeitungskette (f1, f2, f3, f4, f5)
sind eingabebereit.

Beispiel:
Im Programm YK06DBAS soll verhindert werden, dass bei der Re-
cherche nach Titel und Autor der Suchvorgang ausgelöst wird, wenn
kein Buchtitel eingegeben wurde. Der Benutzer soll jedoch die Mög-
lichkeit erhalten, auf eine entsprechende Fehlermeldung mit dem
Aktivieren des Auswahlknopfes WA_RBG1-ISBN zu reagieren.

Dazu wird zu PAI eine Verarbeitungskette programmiert, die die In-
halte der Dynproelemente

WA_RBG1-ISBN,

WA_RBG1-TITEL und

ZBESTAND-TITEL

an die namensgleichen Datenobjekte übergibt und das Modul
PRUEFEN_0100 aufruft. Ist das Ein-/Ausgabefeld ZBESTAND-
TITEL nicht ausgefüllt, gibt das Modul eine Nachricht vom Typ „E“
aus.

6.8 Eingabeprüfungen mit der FIELD-Anweisung 411■

■

■

Das Module PRUEFEN_0100 wurde nicht geändert. Seinen Quell-
text können Sie auf Seite 411 analysieren.

Das Programm zeigt jetzt dieses Verhalten:

Der Benutzer aktiviert den Auswahlknopf „Titel“ und klickt, ohne
einen Titel einzugeben, auf eine beliebige Schaltfläche. PAI wird
ausgelöst und das Modul PRUEFEN_0100 aufgerufen Nach der
Bestätigung der entsprechenden Fehlermeldung wird das Dynpro er-
neut angezeigt. Die Dynproelemente ZBESTAND_TITEL,
WA_RBG1-ISBN und WA_RBG1-TITEL sind eingabebereit.

Abb. 6.54
Verarbeitungs-
kette

6 Grundlagen der Dynproprogrammierung ■

■

■

412

Programmieren Sie im Programm SAPMYK06 folgende Eingabe-
prüfungen:

Ist der Auswahlknopf WA_RBG1-ISBN aktiviert, soll die Re-
cherche nur ausgeführt werden, wenn der Benutzer eine ISBN
eingegeben hat. Bei leerem Eingabefeld ZBESTAND-ISBN ist
eine Message vom Typ „E“ (Text: „Bitte eine ISBN angeben“)
auszugeben. Die Dynproelemente WA_RBG1-TITEL,
WA_RBG1-ISBN und ZBESTAND-ISBN sind eingabefähig
bereitzustellen.

Ist der Auswahlknopf WA_RBG1-TITEL aktiviert soll der An-
wender gezwungen werden, Titel und Autorennummer an-
zugeben. Hat der Benutzer nicht beide Ein-/Ausgabefelder aus-
gefüllt, soll ebenfalls eine Message vom Typ „E“ ausgegeben
werden (Text: „Bitte Titel und Autorennummer angeben“).
WA_RBG1-ISBN, WA_RBG-TITEL, ZBESTAND-TITEL
und ZBESTAND-AUTOR1 sind eingabefähig bereitzustellen.

Eine letzte Prüfung soll verhindern, dass die Recherche ausge-
führt wird, wenn keines der Ankreuzfelder (geschützter Be-
reich, öffentlicher Bereich) aktiv ist. Auch hier ist eine ent-
sprechende Message auszugeben. Die Ankreuzfelder sind ein-
gabefähig anzuzeigen.

Führen Sie die Prüfungen in 3 Modulen (PRUFUNG1_0100,
PRUEFUNG2_0100 und PRUEFUNG3_0100) durch.

Lösung: SAPMYK06_8

6.8 Eingabeprüfungen mit der FIELD-Anweisung 413■

■

■

Lösung:

PROCESS AFTER INPUT.
*Alle Inhalte der in den Verarbeitungsketten
*angegebenen Dynproelemente stehen im jweils
*aufgerufenen Modul zur Verfügung. Wird im
*Modul eine Message vom Typ "E" od. "W" aus-
*gelöst, stehen alle Dynproelemente der Ver-
*arbeitungskette auf dem Dynpro
*eingabebereit zur Verfügung
 CHAIN.
 FIELD: zbestand_tw-isbn,
 wa_rbg1-titel, wa_rbg1-isbn
 MODULE pruefen1_0100.
 ENDCHAIN.
 CHAIN.
 FIELD: zbestand_tw-titel,
 zbestand_tw-autor1,
 wa_rbg1-isbn, wa_rbg1-titel
 MODULE pruefen2_0100.
 ENDCHAIN.
 CHAIN.
 FIELD: chk_protected,
 chk_public
 MODULE pruefen3_0100.
 ENDCHAIN.
 MODULE user_command_0100.
&---
*& Module Pruefen1_0100 INPUT *
&---
MODULE pruefen1_0100 INPUT.
IF wa_rbg1-isbn = 'X' AND ok_code <> 'RBG1'.
 IF zbestand_tw-isbn IS INITIAL.
 CLEAR ok_code.
 MESSAGE e005(zlib_tw).
 ENDIF.
ENDIF.
ENDMODULE. " Pruefen1_0100 INPUT
Modul PRUEFEN2_
0100
&---
*& Module Pruefen2_0100 INPUT *
&---
MODULE pruefen2_0100 INPUT.

PAI-Ablauflogik

Modul
PRUEFEN1_
0100

6 Grundlagen der Dynproprogrammierung ■

■

■

414

IF wa_rbg1-titel = 'X' AND ok_code <> RBG1'.
 IF zbestand_tw-titel IS INITIAL OR
 zbestand_tw-autor1 IS INITIAL.
 CLEAR ok_code.
 MESSAGE e004(zlib_tw).
 ENDIF.
ENDIF.
ENDMODULE. " Pruefen2_0100 INPUT
&---
*& Module Pruefen3_0100 INPUT *
&---
MODULE pruefen3_0100 INPUT.
IF chk_protected IS INITIAL AND chk_public IS
INITIAL.
 CLEAR ok_code.
 MESSAGE e006(zlib_tw).
ENDIF.
ENDMODULE. " Pruefen3_0100 INPUT

6.9
Bedingtes bzw. vorrangiges Ausführen
von Modulen

Bisher haben wir beim Anlegen von Dynproelementen zwar einen
Funktionscode vergeben, dem Funktionstyp jedoch keine Beachtung
geschenkt. Der Funktionstyp informiert den Dynproprozessor beim
Auslösen eines Funktionscodes darüber, wie dieser zu interpretieren
ist. In speziellen Fällen entscheidet nicht der Funktionscode sondern
der Funktionstyp darüber, welches Modul abgearbeitet wird. Tabelle
6.3 zeigt die Funktionstypen und ihre Wirkung auf die Ablauflogik
des Dynpros.

Modul
PRUEFEN3_

0100

6.9 Bedingtes bzw. vorrangiges Ausführen von Modulen 415■

■

■

Funktionstyp Wirkung auf die Ablaufsteuerung

E
(Exitkommando)

Das Modul mit dem Zusatz AT EXIT
COMMAND wird ausgeführt.

H
(Help)

Module in der Ablauflogik POH (Process on
Help Request) wird ausgeführt.

S
(Systemfunktion)

Eine Systemfunktion wird aufgerufen. Die-
ser Funktionstyp wird in der Regel nur in
SAP-Programmen benutzt.

T
(Transaktion)

Eine Transaktion wird aufgerufen
Beispiel:
Funktionscode einer Drucktaste: SE80
Funktionstyp: T
Beim Anklicken der Drucktaste wird die
Transaktion SE80 ausgeführt.

P Lokales Blättern im Tabstrip

leer Standard, normale PAI-Abarbitung

Über Zusätze beim Aufruf eines Moduls kann erreicht werden, dass

Ein Modul, unabhängig von seiner Stellung in der Ablauflogik,
vorrangig aufgerufen wird, wenn der Anwender eine Drucktaste
oder einen Menüpunkt mit bestimmten Eigenschaften (Funkti-
onstyp „E“) ausgewählt hat,

ein Prüfmodul nur dann aufgerufen wird, wenn der Benutzer
Eingaben oder Änderungen in einem zu prüfenden Feld vorge-
nommen hat.

Tabelle 6.3
Funktionstypen

6 Grundlagen der Dynproprogrammierung ■

■

■

416

Zusatz Anwendung

AT EXIT-
COMMAND

MODULE flucht AT EXIT-COMMAND.
Eine Drucktaste bzw. ein Menüpunkt mit dem
Funktionstyp „E“ „springt“ genau das Modul
FLUCHT an.
Hinweise

Das Modul FLUCHT wird nur ausgeführt,
wenn es über eine Schaltfläche bzw. einem
Menüpunkt mit dem Funktionstyp „E“ auf-
gerufen wird. Bei anderen Funktionstypen
wird dieses Modul von der PAI-
Ablauflogik übersprungen.

Enthält das Modul FLUCHT keine Anwei-
sung zum Verlassen des aktuellen Dynpros,
werden nachfolgen die Prüfmodule und
dann die „normalen“ PAI-Module prozes-
siert.

ON INPUT FIELD xy MODULE pruef ON INPUT.
Nur wenn sich der Wert von XY von seinem
Initialwert unterscheidet, wird PRUEF ausge-
führt.

ON CHAIN-
INPUT

CHAIN.
 FIELD: ax, bx
 MODULE pruef ON CHAIN-INPUT.
ENDCHAIN.
Nur wenn sich der Wert für AX oder BX vom
Initialwerten unterscheidet, wird das Module
PRUEF prozessiert.

ON REQUEST FIELD x MODULE pruef ON REQUEST.
Nur wenn sich der Wert für X geändert hat,
wird PRUEF ausgeführt.

ON CHAIN-
REQUEST

CHAIN.
 FIELD: ax, bx
 MODULE pruef ON CHAIN-REQUEST.
ENDCHAIN.
Nur wenn sich der Wert für AX oder BX
geändert hat, wird das Module PRUEF prozes-
siert.

Tabelle 6.4
Zusätze zur

MODULE-
Anweisung

6.9 Bedingtes bzw. vorrangiges Ausführen von Modulen 417■

■

■

In dieser Aufgabe soll das Programmverhalten so geändert werden,
dass mit dem Funktionscode CANCEL das Programm beendet wird,
ohne das die Prüfmodule ausgeführt werden.

1. Legen Sie im Attributefenster der Drucktaste „Programm be-
enden“ und im GUI-Status „DYNPRO_0100“ für den Funkti-
onscode CANCEL den Funktionstyp „E“ (Exit) fest

2. Fügen Sie in die PAI-Ablauflogik die Anweisung
MODULE beenden AT EXIT-COMMAND ein.

3. Legen Sie das Modul BEENDEN per Vorwärtsnavigation an.

4. Beenden Sie im Modul BEENDEN das Programm mit der
Anweisung LEAVE TO SCREEN 0.

6 Grundlagen der Dynproprogrammierung ■

■

■

418

5. Führt der Funktionscode CANCEL direkt zum Modul
BEENDEN? Testen Sie Ihr Programm.

Lösung: SAPMYK06_9

Lösung:

PROCESS AFTER INPUT.

 MODULE beenden AT EXIT-COMMAND.
...

&---
*& Module beenden INPUT *
&---
MODULE beenden INPUT.
 LEAVE TO SCREEN 0.
ENDMODULE. " beenden INPUT

Zum Abschluss dieses Kapitels sollen nun die Daten des im Selekti-
onsdynpro ausgewählten Buches in einem zweiten Dynpro angezeigt
werden. Prinzipielles zum Aufruf von Dynpros und zu Dynproket-
ten ist schon in Kapitel 6.3 auf Seite 357 ausgeführt worden. Die
Abb. 6.55 zeigt für unser Beispielprogramm den Aufruf des
Dynpros 200 über die Anweisung CALL SCREEN 0200, die eine
neue Dynprokette aufruft, und den Rücksprung über die Anweisung
LEAVE TO SCREEN 0, die die neue Dynprokette beendet und zur
Aufrufstelle (zurück)verzweigt.

6.9 Bedingtes bzw. vorrangiges Ausführen von Modulen 419■

■

■

Abbilung 6.56 zeigt den Aufruf des Dynpros 200 über die Anwei-
sung LEAVE TO SCREEN 0200 und den Rücksprung vom Dynpro
200 in Dynpro 100, über die Anweisung LEAVE TO SCREEN
0100.

Abb. 6.55
Aufruf einer
Dnprokette über
CALL SCREEN.

Abb. 6.56
Dynproaufruf mit
LEAVE TO
SCREEN <scr>

6 Grundlagen der Dynproprogrammierung ■

■

■

420

Der gegenseitige Dynproaufruf über LEAVE TO SCREEN <scr> ist
sicher die geeignetere Methode für unser Beispielprogramm.

1. Legen Sie im Programm SAPMYK06 ein Dynpro mit der
Dynpronummer 200 an. In diesem Dynpro sollen Angaben
zum ausgewählten Buch und dessen Autor(en) angezeigt wer-
den. Orientieren Sie sich am folgenden Layout:

2. Legen Sie einen GUI-Status DYNPRO_200 an. Ordnen Sie in
der Symbolleiste die Funktinscodes BACK, EXIT und
CANCEL den entsprechenden Symbolen zu.

3. Legen Sie GUI-Titel DYNPRO_0200 an. Tragen Sie als Titel
„Angaben zu Buch und Autor“ ein.

4. Programmieren Sie in der PBO-Ablauflogik des Dynpros 200
einen Modulaufruf MODULE status_0200. Legen Sie dieses
Modul in der Vorwärtsnavigation an und rufen Sie dort GUI-
Status und GUI-Titel auf.

5. Programmieren Sie in der PAI-Ablauflogik des Dynpros 200
den Modulaufruf MODULE user_command_0200. Sorgen Sie
in diesem Modul dafür, dass für die Funktionscodes BACK
und EXIT das Dynpro 100 aufgerufen wird. Der Funktionsco-
de CANCEL soll das Programm beenden.

6. Programmieren Sie im Module USER_COMMAND_0100 des
Dynpros 100 den Aufruf des Dynpros 200. Aktivieren Sie alle
Programmteile und testen Sie Ihr Programm.

6.9 Bedingtes bzw. vorrangiges Ausführen von Modulen 421■

■

■

7. Legen Sie in der PBO-Ablauflogik des Dynpros 200 ein Mo-
dul LADEN_0200 an. Laden Sie dort die Standardstruktur
ZBESTAND mit den Daten des Buches, das durch die Einga-
ben in Dynpro 100 selektiert wurde. Berücksichtigen Sie da-
bei:

Die Ankreuzfelder (geschützter bzw. öffentlicher Bestand).
Welche Bücher zum „geschützten“ bzw „öffentlichen“ Be-
reich gehören, entscheidet sich im Feld „Bereich“ der Ta-
belle ZBESTAND. Dort gibt es die Einträge „öffentlich“
und „geschützt“.

Die Auswahlfelder (Gesamtbestand, verfügbarer / nicht ver-
fügbarer Bestand)

Hinweis: Lesen Sie dazu zuerst über eine SELECT SINGLE-
Anweisung den Datensatz aus der Datenbanktabelle
ZBESTAND. Untersuchen Sie danach, ob der Datensatz den
Bedingungen des Auswahl- und der Ankreuzfelder entspricht.

Laden Sie die Strukturen WA_AUTOR1, WA_AUTOR2 und
WA_AUTOR3 mit den entsprechenden Daten aus der Daten-
banktabelle ZAUTOREN.

5. Legen Sie in der PBO-Ablauflogik des Dynpros 200 ein weite-
res Modul „ATTRIBUTE_SETZEN_0200“ an. In diesem Mo-
dul soll die Statusikone in Abhängigkeit vom Feld BEREICH
der Datenbanktabelle ZBESTAND wie folgt geladen werden:

Bereich Ikone
öffentlich ICON_LED_GREEN
geschützt ICON_LED_RED

Sorgen Sie in diesem Modul auch dafür, dass die Ein-/Aus-
gabefelder für die Datengruppen Autor2 und Autor3 nur dann
sichtbar sind, wenn im Bestandsdatensatz des anzuzeigenden
Buches die Felder AUTOR2 bzw AUTOR3 nicht leer sind.

Lösung: YK06DBAS_10

Lösung:

&---
*& Include MYK06_10TOP *
&---
PROGRAM SAPMYK06_10 .

6 Grundlagen der Dynproprogrammierung ■

■

■

422

tables: zbestand_tw.
DATA: wa_autor1 type zautoren_tw,
 wa_autor2 type zautoren_tw,
 wa_autor3 type zautoren_tw,
 anzeige,
 anzahl type zbestand_tw-bestand,
 icon1 type icons-text.
DATA: startdatum type d, startzeit type t.
DATA: ok_code type sy-ucomm,
 ok_save type sy-ucomm.
DATA: begin of wa_rbg1,
 isbn value 'X',
 titel,
 end of wa_rbg1,
 begin of wa_rbg2,
 ges value 'X',
 ver,
 nver,
 end of wa_rbg2,
 chk_protected, chk_public value 'X'.

Dynpro 100
&---
*& Module user_command_0100 INPUT *
&---
MODULE user_command_0100 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
 WHEN 'RECHERCHE'.
 LEAVE TO SCREEN 0200.
 WHEN 'EXIT' OR 'BACK'.
 LEAVE TO SCREEN 0.
 ENDCASE.
ENDMODULE. " user_command_0100 INPUT

Dynpro 200
Hinweis: In Punkt 5 der Aufgabenstellung sollen die Ausgabefelder
für die Autoren 2 und 3 unsichtbar geschaltet werden, wenn Autor 2
bzw. Autor 3 nicht vorhanden ist. Es ist deshalb ganz praktisch, die
Felder in der Elementliste mit unterschiedlichen Einträgen in
„Gruppe 1“ zu versehen.

6.9 Bedingtes bzw. vorrangiges Ausführen von Modulen 423■

■

■

Ablauflogik Dynpro 200

PROCESS BEFORE OUTPUT.
 MODULE status_0200.
 MODULE laden_200.
 MODULE attribute_setzen_0200.

PROCESS AFTER INPUT.
 MODULE user_command_0200.
*Das Modul BEENDEN, ursprünglich angelegt im
*Dynpro 100, kann von jedem anderen Dynpro aus
*aufgerufen werden. Das gilt auch für andere
*Module
 MODULE beenden AT EXIT-COMMAND.

&---
*& Module STATUS_0200 OUTPUT *
&---
MODULE status_0200 OUTPUT.
 SET PF-STATUS 'DYNPRO_0200'.
 SET TITLEBAR 'DYNPRO_0200'.
ENDMODULE. " STATUS_0200 OUTPUT

6 Grundlagen der Dynproprogrammierung ■

■

■

424

&---
*& Module laden_200 OUTPUT *
&---
MODULE laden_200 OUTPUT.
 anzeige = '0'.
 IF NOT wa_rbg1-isbn IS INITIAL.
 SELECT SINGLE * FROM zbestand_tw
 INTO zbestand_tw
 WHERE isbn = zbestand_tw-isbn.
 IF sy-subrc = 0.anzeige = '1'.ENDIF.
 ELSE.
 SELECT SINGLE * FROM zbestand_tw
 INTO zbestand_tw
 WHERE titel = zbestand_tw-titel AND
 (autor1 = zbestand_tw-autor1 OR
 autor2 = zbestand_tw-autor1 OR
 autor3 = zbestand_tw-autor1).
 IF sy-subrc = 0.anzeige = '1'.ENDIF.
 ENDIF.

*ANZEIGE = 1: DBTab. enthält gesuchte Daten
 IF anzeige = '1'.
 anzahl = zbestand_tw-bestand -
 zbestand_tw-ausgeliehen.
 CASE 'X'.
 WHEN wa_rbg2-ver.
 IF anzahl <= 0.anzeige = '0'.ENDIF.
*Anzeige auf '0' gesetzt, wenn nur der ver-
*fügbare Datenbestand angezeigt werden soll,
*das Buch jedoch nicht verfügbar ist.
 WHEN wa_rbg2-nver."nicht verfüg. Best.
 IF anzahl > 0.anzeige = '0'.ENDIF.
*Anzeige auf '0' gesetzt, wenn nur der nicht
*verfügbare Datenbestand angezeigt werden soll,
*das Buch jedoch verfügbar ist.
 ENDCASE.
*Berücksichtigung der Ankreuzfelder
 IF chk_protected IS INITIAL AND
 zbestand_tw-bereich = 'geschützt'.
*Buch im nicht-anzuzeigenden (gesch) Bereich
 anzeige = '0'.
 ENDIF.
 IF chk_public IS INITIAL AND
 zbestand_tw-bereich = 'öffentlich'.

6.9 Bedingtes bzw. vorrangiges Ausführen von Modulen 425■

■

■

 anzeige = '0'.
*Buch im nicht-anzuzeigenden (öffentl) Ber.
 ENDIF.
 ENDIF.
 IF anzeige = '1'.
 CLEAR: wa_autor1, wa_autor2, wa_autor3.
 SELECT SINGLE * FROM zautoren_tw
 INTO wa_autor1
 WHERE autorennr = zbestand_tw-autor1.

 SELECT SINGLE * FROM zautoren_tw
 INTO wa_autor2
 WHERE autorennr = zbestand_tw-autor2.

 SELECT SINGLE * FROM zautoren_tw
 INTO wa_autor3
 WHERE autorennr = zbestand_tw-autor3.
 ELSE.
 MESSAGE i007(zlib_tw).
 LEAVE TO SCREEN 100.
 ENDIF.
ENDMODULE. " laden_200 OUTPUT
&---
*& Module attribute_setzen_0200 OUTPUT *
&---
MODULE attribute_setzen_0200 OUTPUT.
*Statusikone laden
 IF zbestand_tw-bereich = 'geschützt'.
 CALL FUNCTION 'ICON_CREATE'
 EXPORTING
 name = 'ICON_LED_RED'
 IMPORTING
 result = icon1.
 ELSE.
 CALL FUNCTION 'ICON_CREATE'
 EXPORTING
 name = 'ICON_LED_GREEN'
 IMPORTING
 result = icon1.
 ENDIF.
*Anzeigefelder für nicht vorhandene Autoren
*unsichtbar schalten
 LOOP AT SCREEN.
 IF screen-group1 = 'A2' AND

6 Grundlagen der Dynproprogrammierung ■

■

■

426

 wa_autor2-autorennr IS INITIAL.
 screen-invisible = 1.
 ENDIF.
 IF screen-group1 = 'A3' AND
 wa_autor3-autorennr IS INITIAL.
 screen-invisible = 1.
 ENDIF.
 MODIFY SCREEN.
 ENDLOOP.
ENDMODULE. " attribute_setzen_0200 OUTPUT

&---
*& Module USER_COMMAND_0200 INPUT *
&---
MODULE user_command_0200 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
 WHEN 'EXIT' OR 'BACK'.
 LEAVE TO SCREEN 0100.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0200 INPUT

7.1 Zielstellung des Kapitels ■

■

■

427

7 Subscreens, Listen und
Tabellen in Dynpros

7.1
Zielstellung des Kapitels

In diesem Kapitel werden folgende ABAP-Programmiertechniken
behandelt:

Anzeige von Dynpros in einem Trägerdynpro (Subscreentech-
nik),

Anzeige von Listen in Dynpros,

Anzeige von Daten in Table Controls.

Das Rechercheprogramm der East-Side-Library wird weiterentwi-
ckelt und sieht nach der Bearbeitung der Aufgaben dieses Kapitels
wie folgt aus:

Abb. 7.1
Dynpro 100 mit
Selektionsbild

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

428

Vorbereitende Aufgaben

Dieses Kapitel baut auf dem in Kapitel 6 entwickelten Modulpool
auf. Kopieren Sie Ihr Programm SAPMYK06 oder das Programm
SAPMYK06_10 der Buch-CD nach SAPMYK07 und legen Sie zu
diesem Programm den Transaktionscode ZK07_1 an.

Vorgehensweise: Programm kopieren

Laden Sie das zu kopierende Quellprogramm (SAPMYK06) in den
Object Navigator.
Achtung:
das Quellprogramm muss aktiv sein.

Wählen Sie im Kontextmenü des Rahmenprogrammes den Menü-
punkt „Kopieren“.

Abb. 7.2
Datenausgabe

in Listenform auf
einem Dynpro

Abb. 7.3
Datenausgabe

im Table
Control,

Detailangaben
im Subscreen-

dynpro

7.1 Zielstellung des Kapitels 429■

■

■

Im Folgebild „Programm <Quellprogramm> kopieren“ tragen Sie
den Namen des Zielprogrammes (SAPMYK07) ein.

Die Includes, die kopiert werden sollen, müssen im Folgebild aus-
gewählt werden. Wenn Sie sich an die Namenskonvention
(SAPM...) halten, sind die Felder bereits richtig vorbelegt.

Abb. 7.4
Modulpool
kopieren,
Einstieg

Abb. 7.5
Zielprogramm
angeben

Abb. 7.6
Zu kopierende
Programmkom-
ponenten aus-
wählen

Abb. 7.7
Includes
kopieren

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

430

Ordnen Sie anschließend der Kopie Entwicklungsklasse und Work-
benchauftrag zu.

7.2
Subscreenbereiche und
Subscreendynpros

Ein Subscreenbereich ist ein Bereich in einem Dynpros der für die
Anzeige von Subscreendynpros oder Selektionsbildern reserviert ist.
Ein Subscreendynpro ist ein Dynpro, das wie ein normales Dynpro
angelegt und verwaltet wird, jedoch nur innerhalb eines Subscreen-
bereiches eines anderen Dynpros (Trägerdynpro) abgebildet werden
kann.

Vorgehensweise: Subscreenbereich anlegen

Starten Sie den grafischen Layouteditor mit dem Dynpro, in dem der
Subscreenbereich angelegt werden soll.

1. Klicken Sie im Layouteditor das Werkzeug „Subscreen-
Bereich“ an.

2. Schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu drücken, an die linke obere Ecke des künftigen Sub-
screenbereiches.

3. Ziehen Sie den Minirahmen, mit gedrückter linker Maustaste,
bis zum unteren rechten Rand des künftigen Subscreenberei-
ches.

4. Lassen Sie die Maustaste wieder los. Doppelklicken Sie in den
Subscreenbereich. Tragen Sie in dem sich daraufhin öffnenden
Attributefenster einen Namen für den Subscreenbereich ein.

Abb. 7.8
Anlegen eines

Subscreen-
bereiches

7.2 Subscreenbereiche und Subscreendynpros 431■

■

■

Vorgehensweise: Subscreendynpro anlegen

Ein Subscreendynpro wird wie ein normales Dynpro angelegt. Akti-
vieren Sie in der Registerkarte „Eigenschaften“ den Auswahlknopf
„Subscreen“.

Einschränkungen für Subscreendynpros

Für Subscreendynpros bestehen folgende Einschränkungen:

Sie dürfen nicht zwischen LOOP / ENDLOOP und CHAIN
/ ENDCHAIN aufgerufen werden.

Ein Subscreendynpro darf kein OK-Feld besitzen (kein Ein-
trag im OK-Feld der Elementliste).

Objektnamen müssen über alle Subscreendynpros, die in
einem Trägerdynpro aufgerufen werden, eindeutig sein.

Ein Subscreendynpro darf kein Modul mit dem Zusatz „AT
EXIT-COMMAND“ enthalten.

Die Anweisungen SET SCREEN... und LEAVE
SCREEN... bzw. LEAVE TO SCREEN… sind nicht er-
laubt und führen zu Laufzeitfehlern.
(CALL SCREEN ... ist erlaubt).

Layout, Ablauflogik und Module eines Subscreendynpros werden,
unter Beachtung der Einschränkungen für Subscreendynpros, genau
so angelegt wie bei normalen Dynpros.

Abb. 7.9
Anlegen eines
Subscreen-
dynpros

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

432

Subscreendynpro in Subscreenbereich einbinden

Das Subscreendynpro bzw. das Selektionsbild, das in einem Sub-
screenbereich angezeigt werden soll, wird in der Ablaufsteuerung
des Trägerdynpros aufgerufen. PBO und PAI des Subscreens wer-
den ebenfalls von der Ablauflogik des Trägerdynpros ausgelöst.

Syntax:
Aufruf des Subscreens und Auslösen von PBO:
PROCESS BEFORE OUTPUT.
 CALL SUBSCREEN <sub>
 INCLUDING <programm> <dynpronummer>.

PAI des Subscreens auslösen:
PROCESS AFTER INPUT.
CALL SUBSCREEN <sub>.

sub Name des Subscreenbereiches im Trägerdynpro

programm Name des Programmes, indem das Subscreen-
dynpro angelegt ist. Es können auch Subscreen-
dynpros aus anderen Programmen in den Sub-
screenbereich des Trägerdynpros geladen werden.

dynpronummer Nummer des Subscreens. Kann statisch als Literal
(z.B. '200') oder dynamisch als Variable angege-
ben werden.

Statischer Aufruf eines Subscreens

Abb. 7.10
Statischer

Aufruf eines
Sybscreens

7.2 Subscreenbereiche und Subscreendynpros 433■

■

■

Dynamischer Aufruf eines Subscreens

Das anzuzeigende Subscreendynpro wird erst zur Programmlaufzeit
ausgewählt.

Selektionsbilder als Subscreens

In der Listenprogrammierung können über die Konstruktion

SELECTION-SCREEN BEGIN OF SCREEN <dynnr>.
* Anweisungen zur Gestaltung des Selektionsbildes
SELECTION-SCREEN END OF SCREEN <dynnr>.

Selektionsbilder als eigenständiges Dynpro programmiert werden.
Mit der Anweisung CALL SELECTION-SCREEN <dynnr>. wird
das so definierte Selektionsbild aufgerufen. Weitere Hinweise dazu
finden Sie in der Schlüsselwortdokumentation zu CALL
SELECTION-SCREEN.

Die Anweisung zur Definition des Selektionsbildes kann mit der
Klausel „AS SUBSCREEN“ erweitert werden. Sie können den Se-
lektionsbildschirm dann wie ein Subscreendynpro einsetzen. Dieses
Verfahren wird in der nächsten Aufgabe eingesetzt.

Abb. 7.11
Dynamischer
Aufruf eines
Subscreens

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

434

1. Legen Sie im Top-Include des Programmes SAPMYK07 ein
Selektionsbild 1100 als Subscreen an.

SELECTION-SCREEN BEGIN OF SCREEN 1100
AS SUBSCREEN.
SELECT-OPTIONS:
 so_isbn FOR zbestand-isbn NO INTERVALS,
 so_titel FOR zbestand-titel LOWER CASE
 NO INTERVALS,
 so_autor FOR zbestand-autor1 NO INTERVALS,
 so_kat FOR zbestand-kategorie LOWER CASE.
SELECTION-SCREEN END OF SCREEN 1100

Aktivieren Sie das TOP-Include und pflegen Sie die Selekti-
onstexte (Springen Textelemente Selektionstexte).

2. Durch den Einsatz des Selektionsbildschirmes 1100 im
Dynpro 100 ist eine Auswahl zwischen verschiedenen Selekti-
onsvarianten nicht mehr nötig. Löschen Sie deshalb im TOP-
Include die Struktur WA_RBG1.

3. Legen Sie im Dynpro 100 einen Subscreenbereich SUB1 an.

Legen Sie (mit gedrückter linker Maustaste) ein Lasso um
die Dynproelemente unterhalb des Rahmens „R1“ (Anga-
ben zum Buch) und verschieben Sie diese 3 cm nach un-
ten.

Ziehen Sie die untere Kante des Rahmens „R1“ so weit
wie möglich nach unten.

Legen Sie ein Lasso um die Dynproelemente innerhalb
des Rahmens „R1“ und löschen Sie diese mit der Entfer-
nungstaste auf der Tastatur.

Legen Sie in „R1“ den Subscreenbereich SUB1 an.

7.2 Subscreenbereiche und Subscreendynpros 435■

■

■

4. Löschen Sie in der PBO-Ablauflogik den Aufruf des Modules
ATTRIBUTE_SETZEN_0100.

5. Löschen Sie das Modul ATTRIBUTE_SETZEN_0100 (Quell-
text markieren, Löschen mit der Entfernungstaste).

6. Löschen Sie in der PAI-Ablauflogik die Verarbeitungskette

CHAIN.
 FIELD: zbestand_tw-isbn,
 wa_rbg1-titel,
 wa_rbg1-isbn
 MODULE pruefen1_0100.
ENDCHAIN.
CHAIN.
 FIELD: zbestand_tw-titel,
 zbestand_tw-autor1,
 wa_rbg1-isbn,
 wa_rbg1-titel
DULE pruefen2_0100.
ENDCHAIN.

und die Module PRUEFEN1_0100 und PRUEFEN2_0100.

7. Programmieren Sie den Aufruf des Selektionsbildes 1100 im
Subscreenbereich SUB1.

8. Kommentieren Sie die Anweisungen des Moduls
LADEN_0200 aus.

Lösung: SAPMYK07_1

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

436

Lösung:

&---
*& Include MYK07TOP
&---
PROGRAM sapmyk07 .
TABLES: zbestand.
SELECTION-SCREEN BEGIN OF SCREEN 1100
AS SUBSCREEN.
SELECT-OPTIONS:
 so_isbn FOR zbestand-isbn NO INTERVALS,
 so_titel FOR zbestand-titel LOWER CASE
 NO INTERVALS,
 so_autor FOR zbestand-autor1 NO INTERVALS,
 so_kat FOR zbestand-kategorie LOWER CASE.
SELECTION-SCREEN END OF SCREEN 1100.
.*************nicht geänderter Quelltext********************

&---
*& Ablauflogik Dynpro 100
&---
PROCESS BEFORE OUTPUT.
 CALL SUBSCREEN sub1
 INCLUDING sy-cprog '1100'.
 MODULE status_0100.
 MODULE laden_0100.

PROCESS AFTER INPUT.
 CALL SUBSCREEN sub1.
 MODULE beenden AT EXIT-COMMAND.
 CHAIN.
 FIELD: chk_protected, chk_public
 MODULE pruefen3_0100.
 ENDCHAIN.
 MODULE user_command_0100.

7.3 Ausgabe von Listen auf einem Dynpro 437■

■

■

Ergebnis:

Die Möglichkeiten des Selektionsbildes lassen Recherchen zu, die
mehr als einen Datensatz der Datenbanktabelle ZBESTAND identi-
fizieren. Zur Darstellung des Rechercheergebnisses auf einem
Dynpro gibt es 3 prinzipielle Möglichkeiten:

Ausgabe als Liste. Damit steht zwar die Funktionalität der
Standardliste zur Verfügung, eine Auszeichnung für mo-
dernes Design ist aber eher nicht zu erwarten.

Ausgabe als Tabelle mittels Table Control. Das ist etwas
aufwendiger als die Liste, entspricht aber eher den Vorstel-
lungen des WINDOWS gewöhnten Benutzers.

Ausgabe als Tabelle mittels ALV-GRID-CONTROL. Diese
Technik setzt das Beherrschen von ABAP-Objects, also ob-
jektorientiertes Programmieren, voraus. Grundlagen dazu
finden Sie in Kapitel 10.

7.3
Ausgabe von Listen auf einem Dynpro

Für die Listenausgabe auf Dynpros gelten folgende Grundsätze:

Die Anweisungen WRITE, SKIP, ULINE füllen, wie bei
der normalen Listenprogrammierung, einen Listenpuffer.

Für jede Dynprokette steht ein Listenpuffer zur Verfügung,
d.h. über eine CALL-Ebene hinweg, gibt es keinen gemein-
samen Listenpuffer.

Die Listenanzeige wird am Ende des Dynpros prozessiert,
in dessen Ablauflogik LEAVE TO LIST-PROCESSING

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

438

programmiert ist. Durch diese Anweisung wird ein Flag ge-
setzt, das sicherstellt, dass der Inhalt des Listenpuffers aus-
gegeben wird, sobald das Dynpro verarbeitet wurde.

Abbildung 7.12 veranschaulicht die Grundprinzipien der Listenaus-
gabe auf Dynpros. Im grafischen Beispiel ist zu erkennen:

Im Modul LISTE1 des Dynpros 100 wird durch den
WRITE-Befehl die Zeichenkette „Zeile 1“ in den Listen-
puffer der Dynprokette 1 geschrieben. Eine Ausgabe des
Listenpuffers erfolgt im Dynpro 100 nicht, weil weder im
PBO noch im PAI die Anweisung LEAVE TO LIST-
PROCESSING programmiert ist.

Im Modul LISTE2 des Dynpros 200 ist ebenfalls eine
WRITE-Anweisung programmiert. Diese bewirkt, dass in
den Listenpuffer der Dynprokette 1 die Zeichenkette „Zeile
2“ eingetragen wird.

Im Modul D300 des Dynpros 200 wird mit CALL
SCREEN 300 eine neue Dynprokette erzeugt.. Diese
Dynprokette hat ihren eigenen Listenpuffer. Das Modul
LISTE3 des Dynpros 300 trägt die Zeichenkette „Zeile 3 in

Abb. 7.12
Listenausgabe

auf Dynpros

7.3 Ausgabe von Listen auf einem Dynpro 439■

■

■

diesen Listenpuffer ein. Anschließend wird durch die An-
weisung LEAVE TO LIST-PROCESSING sichergestellt,
dass am Ende des Dynpros 300 der Inhalt des Listenpuffers
der Dynprokette 2 angezeigt wird.

Nachdem Dynpro 300 abgearbeitet ist, werden die restli-
chen Anweisungen des Dynpros 200 ausgeführt. Durch
LEAVE TO LIST-PROCESSING im Modul LISTE2 des
Dynpros 200 wird am Ende des Dynpros 200 der Listenpuf-
fer angezeigt.

Um Listen während der Dynproverarbeitung anzuzeigen, empfiehlt
die SAP, für jedes aufzurufende Listensystem ein eigenes Dynpro zu
definieren. Dieses Dynpro kapselt die Erstellung der Grundliste und
ihre Anzeige. Es kann durch CALL SCREEN von beliebiger Stelle
aus aufgerufen werden.

Das Bildschirmbild dieses Dynpros kann leer bleiben. Im einfachs-
ten Fall wird in der Ablauflogik nur ein PBO-Modul benötigt. In
diesem Modul wird die Grundliste des Listensystems definiert und
der Listenprozessor aufgerufen. Für eine bessere Übersichtlichkeit
sollten Sie aber mehrere Module anlegen.

Vorgehensweise: Listenausgabe auf Dynpros

Legen Sie für die auszugebende Liste ein leeres Dynpro an.

Setzen Sie im Modul STATUS_<scr> über die Anweisung
SET PF-STATUS SPACE den Standardlistenstatus oder
über SET PF-STATUS <status> einen eigenen Listenstatus.

Programmieren Sie (evtl. in einem eigenen Modul)

Abb. 7.13

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

440

LEAVE TO LIST-PROCESSING AND RETURN TO 0,
um am Ende des Dynpros zur Listenanzeige zu verzweigen
und nach Verlassen der Listenverarbeitung hinter die Auf-
rufstelle des Dynpros zurückzukehren und

SUPPRESS DIALOG um das Trägerdynpro nicht anzuzei-
gen (siehe Abb. 7.13).

Erzeugen Sie alle Komponenten Ihrer Liste (Grundliste,
Verzweigungsliste, Ereignisblöcke) wie in Kapitel 4 und 5
beschrieben.

Anweisungen zur Listenausgabe auf Dynpros

Anweisung Wirkung
LEAVE TO LIST-
PROCESSING.

Bewirkt, dass am Ende des Dynpros, in
dem diese Anweisung programmiert ist, der
Inhalt des Listenpuffers der jeweiligen
Dynprofolge angezeigt wird.

LEAVE-TO-LIST-
PROCESSING AND
RETURN TO
SCREEN 0.

Wird die Anzeige der Liste beendet (durch
 oder programmgesteuert durch

LEAVE LIST-PROCESSING) wird das
Programm eine Anweisung nach dem Auf-
ruf des Trägerdynpros fortgesetzt.

LEAVE-TO-LIST-
PROCESSING AND
RETURN TO <scr>.

Wird die Anzeige der Liste beendet (durch
 oder programmgesteuert durch

LEAVE LIST-PROCESSING) wird PBO
des Dynpros <scr> ausgeführt.

SET PF-STATUS
SPACE

Der Standardlistenstatus wird gesetzt.

SUPPRESS DIALOG Das Trägerdynpro wird nicht angezeigt.
LEAVE LIST-
PROCESSING

Anweisung zum programmgesteuerten
Verlassen der Listverarbeitung.

Die Ausgabe der Rechercheergebnisse des Programmes
SAPMYK07 wird jetzt an den Einsatz des Selektionsbildes ange-
passt. Die Suchergebnisse sollen mit Hilfe des Funktionsbausteines
Y_DISPLAY_ZEILE bzw. Y_DISPLAY_ZEILE_TW als Liste
ausgegeben werden.

1. Deklarieren Sie im TOP-Include folgende Datenobjekte:

7.3 Ausgabe von Listen auf einem Dynpro 441■

■

■

Datenobjekt Bezug Verwendung

IT_ZBESTAND

WA_
ZBESTAND

DBTabelle
ZBESTAND bzw.
ZBESTAND_TW

Die interne Ta-
belle wird später
mit den anzuzei-
genden Daten-
sätzen der Tabel-
le ZBESTAND
geladen werden

WA_
ZBESTAND_FB

globaler Strukturtyp
ZST_ZBESTAND
(aus Kap. 4) bzw
ZST_BESTAND_T
W

Schnittstelle zum
Funktionsbau-
stein

FARBE C (einstellig) Schnittstelle zum
Funktionsbau-
stein,
Auswahl der
Darstellungsart

2. Legen Sie für die Ausgabe der Ergebnisliste ein Dynpro mit
der Dynpronummer 110 (statisches Folgedynpro: 110) an.
Programmieren Sie die Ablauflogik.

Ablauflogik PBO:
Modul STATUS_0110
In diesem Modul wird über die Anweisung
SET PF-STATUS SPACE der Standardstatus einer Liste ge-
setzt.

Modul EINSTELLUNGEN_0110
In diesem Modul wird über die Anweisung
LEAVE TO LIST-PROCESSING AND RETURN TO
SCREEN 0.
der Listenprozessor eingeschaltet und mit SUPPRESS
DIALOG dafür gesorgt , dass das Dynpro 110 nicht angezeigt
wird.
Modul LADEN_INT_TAB
Das Modul lädt die interne Tabelle IT_ZBESTAND mit den
anzuzeigenden Datensätzen der Datenbanktabelle
ZBESTAND. Programmieren Sie eine Select-Anweisung als
Schleife, die die Datensätze der Datenbanktabelle entprechend
der Selektionskriterien liest.

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

442

SELECT * FROM zbestand INTO wa_zbestand
WHERE isbn IN so_isbn AND
titel IN so_titel AND
(autor1 IN so_autor OR
(autor2 IN so_autor AND autor2 > 0) OR
(autor3 IN so_autor AND autor3 > 0)) AND kategorie IN
so_kat.
...
ENDSELECT

Prüfen Sie innerhalb der SELECT-Schleife, ob der Datensatz
auch den Anforderungen der anderen Kriterien

Ankreuzfelder
CHK_PROTECTED (geschützter Bereich),
CHK_PUBLIC (öffentlicher Bereich).

Auswahlfelder
WA_RBG2-GES (Recherche im Gesamtbestand)
WA_RBG2-VER (Recherche im verfügbarer Bestand)
WA_RBG2-NVER (Rech. im nicht verfüg. Bestand)

genügt. Tragen Sie ihn gegebenenfalls in die interne Ta-
belle IT_ZBESTAND ein.

Ablauflogik PAI
Modul AUSGABE_0110
In diesem Modul wird der Inhalt der internen Tabelle
IT_ZBESTAND ausgegeben.

Programmieren Sie eine LOOP-Schleife über die interne
Tabelle IT_ZBESTAND
(LOOP at it_zbestand INTO wa_zbestand.).

Laden Sie innerhalb der Schleife mit der Anweisung
MOVE-CORRESPONDING die Struktur
WA_ZBESTAND_FB mit den korrespondierenden Kom-
ponenten der Struktur WA_ZBESTAND.

Berechnen Sie die Anzahl verfügbarer Exemplare und tra-
gen Sie diese in die Komponente WA_ZBESTAND_FB-
VERFUEGBAR ein.

Rufen Sie über die Drucktaste „Muster“ den Funktions-
baustein Y_DISPLAY_ZEILE bzw.
Y_DISPLAY_ZEILE_TW auf und übergeben Sie die
Struktur WA_ZBESTAND_FB und die Variable FARBE.

7.3 Ausgabe von Listen auf einem Dynpro 443■

■

■

Als Exportparameter für CHKBOX tragen Sie 'Kein An-
kreuzfeld' ein.

3. Ersetzen Sie im Modul USER_COMMAND_0100 den
Dynproaufruf LEAVE TO SCREEN 0200 durch die Anwei-
sung CALL SCREEN 110.

4. Testen Sie Ihr Programm

Lösung: SAPMYK07_2

Lösung:

&---
*& Include MYK07TOP
&---

PROGRAM sapmyk07 NO STANDARD PAGE HEADING.
TABLES: zbestand_tw.
DATA: it_zbestand TYPE TABLE OF zbestand,
 wa_zbestand TYPE zbestand,
 wa_zbestand_fb TYPE zst_zbestand,
 farbe, ds.
.*************nicht geänderter Quelltext********************

&---
*& Ablauflogik Dynpro 110
&---
PROCESS BEFORE OUTPUT.

 MODULE status_0110.

 MODULE einstellungen_0110.

 MODULE laden_int_tab.

PROCESS AFTER INPUT.
 MODULE ausgabe_0110.

&---
*& Module STATUS_0110 OUTPUT
&---
MODULE status_0110 OUTPUT.
 SET PF-STATUS space.

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

444

ENDMODULE. " STATUS_0110 OUTPUT
&---
*& Module einstellungen_0110 OUTPUT
&---
MODULE einstellungen_0110 OUTPUT.
 LEAVE TO LIST-PROCESSING AND
 RETURN TO SCREEN 0.
 SUPPRESS DIALOG.
ENDMODULE. " einstellungen_0110 OUTPUT
&---
*& Module laden_int_tab OUTPUT
&---
MODULE laden_int_tab OUTPUT.
 ds = '0'.
 REFRESH it_zbestand.
 SELECT * FROM zbestand INTO wa_zbestand
 WHERE isbn IN so_isbn AND titel IN so_titel
 AND
 (autor1 IN so_autor OR
 (autor2 IN so_autor AND autor2 > 0) OR
 (autor3 IN so_autor AND autor3 > 0))
 AND kategorie IN so_kat.
 anzeige = '1'.
 anzahl = wa_zbestand-bestand –
 wa_zbestand-ausgeliehen.
 CASE 'X'.
 WHEN wa_rbg2-ver.
 IF anzahl <= 0.anzeige = '0'.ENDIF.
*Anzeige auf '0' gesetzt, wenn nur der ver-
*fügbare Datenbestand angezeigt werden soll,
*das Buch jedoch nicht verfügbar ist.
 WHEN wa_rbg2-nver."nicht verfüg. Best.
 IF anzahl > 0.anzeige = '0'.ENDIF.
*Anzeige auf '0' gesetzt, wenn nur der nicht
*verfügbare Datenbestand angezeigt werden
*soll, das Buch jedoch verfügbar ist.
 ENDCASE.
*Berücksichtigung der Ankreuzfelder
 IF chk_protected IS INITIAL AND
 wa_zbestand-bereich = 'geschützt'.
*Buch im nicht-anzuzeigenden (gesch) Bereich
 anzeige = '0'.
 ENDIF.
 IF chk_public IS INITIAL AND

7.4 Datenausgabe mit Table Controls 445■

■

■

 wa_zbestand-bereich = 'öffentlich'.
 anzeige = '0'.
*Buch im nicht-anzuzeigenden (öffentl)
*Bereich
 ENDIF.
 IF anzeige = '1'.
 APPEND wa_zbestand TO it_zbestand.
 ds = '1'.
 ENDIF.
 ENDSELECT.
 IF ds = '0'.
 MESSAGE i007(zlib_tw).
 LEAVE TO SCREEN 100.
 ENDIF.
ENDMODULE. " laden_int_tab OUTPUT

&---
*& Module user_command_0100 INPUT
&---
MODULE user_command_0100 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
 WHEN 'RECHERCHE'.
 CALL SCREEN 110.
 WHEN 'EXIT' OR 'BACK'.
 LEAVE PROGRAM.
 ENDCASE.
ENDMODULE. " user_command_0100 INPUT

7.4
Datenausgabe mit Table Controls

Ein Table Control ist ein Bereich in einem Dynpro, indem große Da-
tenmengen in Tabellenform angezeigt werden. Innerhalb eines Table
Controls können

programmlokale Datenobjekte,

Dictionaryelemente,

Ankreuzfelder,

Auswahlknöpfe und Auswahlknopfgruppen und

Drucktasten

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

446

verwendet werden. Das Aussehen des Table Controls kann zur
Laufzeit konfiguriert und als Variante gespeichert werden.

7.4.1
Anlegen eines Table Controls

Um ein Table Control anzulegen, sind folgende Schritte nötig:

Table Control-Bereich anlegen,
Dieser Bereich, der als „Container“ das anzulegende Table
Control beherbergt, wird im Layout des Dynpros erzeugt.

Abb. 7.14
Mögliche

Aktivitäten im
Table Control

Abb. 7.15
Erstellen einer
Table Control-

Variante

7.4 Datenausgabe mit Table Controls 447■

■

■

Eigenschaften des Table Controls festlegen,
z.B. mit Trennlinien, mit Zeilenmarkierung, mit Spalten-
markierung etc.

Felder des Table Controls definieren,
in diesem Schritt wird festgelegt, welche Felder in den
Spalten des Table Controls anzeigt werden sollen.

Table Control deklarieren,
über eine CONTROLS-Anweisung wird ein Datenobjekt
vom Typ TABLEVIEW angelegt. Dieses Datenobjekt ent-
spricht dem im Dictionary definierten Typ
CXTAB_CONTROL (Typgruppe CXTAB) und enthält zu-
nächst die beim Anlegen des Table Controls statisch festge-
legten Eigenschaften.

Hinweis:
Die Komponenten, die zur Typgruppe CXTAB gehören, finden
Sie im Dictionary (SE11). Wählen Sie im Einstiegsbild des Dic-
tionaries das Menü „Hilfsmittel Weitere Dictionary-Elemen-
te“. Aktivieren Sie dann den Auswahlknopf „Typgruppe“, tra-
gen Sie im dazugehörigen Eingabefeld den Namen CXTAB ein
und klicken Sie auf das Symbol „Anzeigen“.

Vorgehensweise: Table Control anlegen

Starten Sie den grafischen Layouteditor mit dem Dynpro, in dem das
Table Control angelegt werden soll.

1. Klicken Sie im Layouteditor das Werkzeug „Table Control“
an.

2. Schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu drücken, an die linke obere Ecke des künftigen Table
Controls.

3. Ziehen Sie den Minirahmen, mit gedrückter linker Maustaste,
bis zum unteren rechten Rand des künftigen Table Controls.

4. Lassen Sie die Maustaste wieder los. Doppelklicken Sie in den
Table Control-Bereich. Tragen Sie in dem sich daraufhin öff-
nenden Attributefenster einen Namen für das Table Control
ein und legen Sie dessen Eigenschaften fest.

5. Jetzt sichern Sie das Layout, schließen den grafischen Layout-
editor und laden das TOP-Include in den ABAP-Editor. Pro-
grammieren Sie die CONTROLS-Anweisung und deklarieren
Sie gegebenenfalls eine mit dem Zeilenmarkierungselement
namensgleiche Variable vom Typ C (Länge 1) an.

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

448

Syntax der CONTROLS-Anweisung:

CONTROLS <Name des TC> TYPE TABLEVIEW USING
SCREEN '<Dynpronummer>'.

6. Kehren Sie in den Layouteditor zurück. Die Table-Control-
Felder werden über die Funktion „Dict/Programmfelder-
Fenster“ geladen. Geben Sie im Eingabefeld dieser Funktion
den Namen der Struktur an, mit deren Komponenten die Fel-
der des Table Controls angelegt werden sollen. Wählen Sie
dann „Holen aus Dict“ bzw „Holen aus Programm“. Die
Komponenten der gewählten Struktur werden angezeigt. Mar-
kieren Sie die benötigten Komponenten und drücken Sie dann
den Schalter „Übernehmen“.

Abb. 7.16
Anlegen eines
Table Controls

mit Markie-
rungsspalte

7.4 Datenausgabe mit Table Controls 449■

■

■

Klicken Sie dann mit der Maustaste in das Table Control. Für
jede ausgewählte Komponente wird eine Spalte eingerichtet.
Bei Strukturen, die aus dem Dictionary geholt werden, er-
scheint der Datenelementtext als Spaltenüberschrift.

Das Table Control ist fertig angelegt. Es muss jetzt zeilenweise mit
Daten gefüllt werden. Die Spalten können Sie per Drag and Drop
verschieben. Klicken Sie dazu in die erste Zeile nach der Spalten-
überschrift.

Abb. 7.17
Felder des
Table Controls
auswählen

Abb. 7.18
Felder im Table
Control positio-
nieren

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

450

7.4.2
Datentransport zum Table Control und zurück

Wie bei allen anderen Dynproelementen zur Ein- und Ausgabe auch,
wird der Transport der im Table Control anzuzeigenden Daten zum
Table Control und zurück zum ABAP-Programm über namensglei-
che Datenobjekte organisiert. Für jede Spalte des Table Controls
wird ein korrespondierendes, d.h. namensgleiches, Datenobjekt be-
nötigt. Sie müssen deshalb die Struktur, mit der das Table Control
angelegt wurde, im ABAP-Programm deklarieren. Über diese Struk-
tur wird der Datentransport vorgenommen. Dieser wird in je einer
Loop-Schleife zu PBO bzw. PAI programmiert. Abb. 7.19 verdeut-
licht das.

Abb. 7.19
Programmierung
des Datentrans-

ports (Prinzip)

7.4 Datenausgabe mit Table Controls 451■

■

■

Transport der Daten in das Table Control

Der Transport der Daten in das Table Control erfolgt über eine in-
terne Tabelle. Diese enthält idealerweise für jede aus ihr zu füllende
Spalte des Table Controls, eine namensgleiche Komponente. Über
eine LOOP-Schleife in der PBO-Ablauflogik des jeweiligen
Dynpros wird das Table Control zeilenweise geschrieben.

Der Transport der Daten vom korrespondierenden Datenobjekt
(Struktur ZST_BESTAND) zum Table Control (TC1) erfolgt nach
jedem Schleifendurchlauf. Der Datentransport zu den restlichen
Dynprofeldern erfolgt nach dem Füllen der Zeilen des Table
Controls.

Beachten Sie beim Programmieren folgende Grundsätze:

1. Dem Table Control muss die Zeilenanzahl der internen Tabelle
mitgeteilt werden. Diese wird über DESCRIBE in das Attribut
<TableControl>-LINES eingetragen.

DESCRIBE TABLE <it> LINES <Name des TC>-LINES.

2. Zu PBO und PAI wird je eine LOOP-Schleife benötigt.

Syntax der LOOP-Schleife zu PBO:

LOOP AT <int. Tabelle> INTO <Struktur>
WITH CONTROL <Name des Table Controls>.
* zeilenweise in Table Control ausgeben
ENDLOOP.

Syntax der LOOP-Schleife zu PBO:
LOOP AT <int. Tabelle>.
* zeilenweise int. Tabelle aktualisieren
ENDLOOP.

Abb. 7.20
Versorgung der
Table Control-
Zeilen zu PBO

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

452

Das in Abb. 7.20 dargestellte Beispiel könnte wie folgt program-
miert werden:

&---
*& Include MYTCTOP *
&---
PROGRAM sapmytc .
TABLES zst_zbestand."korrespond. Datenobjekt
TYPES: BEGIN OF st_tc,
 isbn TYPE zbestand-isbn,
 kategorie TYPE zbestand-kategorie,
 END OF st_tc.
CONTROLS tc1 TYPE TABLEVIEW
USING SCREEN '100'.
DATA: wa_tc TYPE st_tc,
 it_tc TYPE TABLE OF st_tc,
 mark. "für die Zeilenmarkierung
&---
*& Ablauflogik *
&---
PROCESS BEFORE OUTPUT.
 MODULE laden_interne_tabelle.
LOOP AT it_tc INTO wa_tc WITH CONTROL tc1.
MODULE tc_zeile_laden.

ENDLOOP.
PROCESS AFTER INPUT.
 LOOP AT it_tc. ENDLOOP.
&---
*& Module laden_interne_tabelle OUTPUT *
&---
MODULE laden_interne_tabelle OUTPUT.
SELECT * FROM zbestand

 INTO CORRESPONDING FIELDS OF TABLE it_tc
 WHERE isbn >= 3827316464.
DESCRIBE TABLE it_tc LINES tc1-lines.

ENDMODULE. " laden_interne_tabelle OUTPUT
&---
*& Module tc_zeile_laden OUTPUT *
&---
MODULE tc_zeile_laden OUTPUT.
 MOVE-CORRESPONDING wa_tc TO zst_zbestand.
ENDMODULE. " tc_zeile_laden OUTPUT

7.4 Datenausgabe mit Table Controls 453■

■

■

Transport der Daten vom Table Control in die interne
Tabelle

Ändert der Benutzer Daten im Table Control, müssen die Änderun-
gen in die interne Tabelle, mit der das Table Control geladen wurde,
eingetragen werden. Später kann mit der internen Tabelle die Daten-
banktabelle aktualisiert werden. Die Änderungen des Table Controls
werden in der PAI-Schleife zeilenweise in die interne Tabelle einge-
tragen. Abb. 7.21 veranschaulicht das Wirkungsprinzip.

Prinzip:

Zu PAI wird über das Table Control eine LOOP-Schleife
gelegt. Diese bewirkt, dass die Inhalte der Spalten des Table
Controls automatisch zeilenweise in die namensgleichen
Datenobjekte (im Beispiel in die Komponenten der Struktur
ZST_BESTAND) transportiert werden. Pro Schleifendurch-
lauf erfolgt der Datentransport zu einer Zeile des Table
Controls.

Im Schleifenkörper wird mit diesen Daten die interne Ta-
belle (im Beispiel IT_TC) aktualisiert. Hat die korrespon-
dierende Struktur (ZST_BESTAND) ein anderes Format als
die Struktur des Arbeitsbereiches der internen Tabelle, sind
die Daten über MOVE-CORRESPONDING in den Ar-
beitsbereich der internen Tabelle zu kopieren.

Abb. 7.21
Datentransport
Table Control

 ABAP-
Programm
(Prinzip)

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

454

Wenn Benutzereingaben in das Table Control zugelassen werden, ist
das Programm zu erweitern:

&---
*& Ablauflogik *
&---
PROCESS BEFORE OUTPUT.
 MODULE laden_interne_tabelle.
 LOOP AT it_tc INTO wa_tc WITH CONTROL tc1.
 MODULE tc_zeile_laden.
 ENDLOOP.

PROCESS AFTER INPUT.
 LOOP AT it_tc.
 MODULE aktualisieren_interne_tabelle.
 ENDLOOP.

&---
*&Module aktualisieren_interne_tabelle INPUT *
&---
MODULE aktualisieren_interne_tabelle INPUT.
*Felder der (automatisch geladenen) Struktur
*zst_bestand in den Arbeitsbereich der in
*ternen Tabelle kopieren.
 MOVE-CORRESPONDING zst_zbestand TO wa_tc.
*interne Tabelle mit den Daten aus dem
*Arbeitsbereich aktualisieren
*tc1-current_line enthält den aktuellen
*Schleifendurchlauf
 MODIFY it_tc FROM wa_tc
 INDEX tc1-current_line.
ENDMODULE. "aktualisieren_interne_tabelle

Diese Lösung hat den Nachteil, dass das Modul AKTUALI-
SIEREN_INTERNE_TABELLE für jede Zeile des Table Controls
durchlaufen wird. Alternativ könnte das Modul nur für die im Table
Control markierten Zeilen prozessiert werden. Es liegt auf der Hand,
das dieses Vorgehen einen positiven Einfluss auf die Performance
hat. Eine markierte Zeile ist daran zu erkennen, dass die Variable,
die mit Zeilenmarkierelement korrespondiert, nicht mehr mit ihrem
Initialwert geladen ist. Im Beispiel ist das die Variable MARK (sie-
he Abb. 7.16). Es ist also ein bedingter, vom Inhalt der Variablen
MARK abhängiger Modulaufruf zu programmieren.

7.4 Datenausgabe mit Table Controls 455■

■

■

&---
*& Ablauflogik *
&---
PROCESS BEFORE OUTPUT.
 MODULE laden_interne_tabelle.
 LOOP AT it_tc INTO wa_tc WITH CONTROL tc1.
 MODULE tc_zeile_laden.
 ENDLOOP.

PROCESS AFTER INPUT.
 LOOP AT it_tc.
 FIELD mark
 MODULE aktualisieren_interne_tabelle
 ON REQUEST.
 ENDLOOP.

Im Programm SAPMYK07 sollen die Rechercheergebnisse nicht
nur in Listenform, sondern auch in einem Table Control ausgege-
ben werden können. Eine neue Auswahlknopfgruppe soll dafür
sorgen, dass der Benutzer zwischen verschiedenen Anzeigeformen
wählen kann.

1. Ergänzen Sie im Layout des Dynpros 100 entsprechend der
folgenden Grafik eine Auswahlknopfgruppe.

Legen Sie dazu im TOP-Include eine Struktur WA_RBG3 mit
den Komponenten LISTE, TC und ALV an. Wird der Funkti-

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

456

onscode RECHERCHE ausgelöst, sollen in Abhängigkeit des
aktiven Auswahlknopfes verschiedene Dynpros prozessiert
werden:

aktiver Auswahlknopf Dynpro

WA_RBG3-LISTE Dynpro 110 (Listendarstellung)

WA_RBG3-TC Dynpro 120 (Table Control)

WA_RBG3-ALV (Dynpro 130) Da das ALV-GRID-
Control erst im Kapitel 10 behandelt
wird, geben Sie vorerst eine entspre-
chende Meldung aus.

2. Am einfachsten lässt sich ein Table Control programmieren,
wenn eine Dictionary-Struktur mit den im Table Control anzu-
zeigenden Feldern vorhanden ist. Legen Sie deshalb im Dicti-
onary eine Struktur ZST_TC1 mit

allen Feldern der Tabelle ZBESTAND,

dem Feld NAME der Tabelle ZAUTOREN und

dem Feld VERFUEGBAR (numc, 5)

an.

3. Legen Sie das Dynpro 120 an. Erzeugen Sie im Layout ein
Table Control TC1 mit den Feldern

ISBN,

TITEL,

NAME,

KATEGORIE und

VERFUEGBAR

der Struktur ZST_TC1. Das Table Control soll mit horizonta-
len und vertikalen Trennlinien und einfacher Zeilenmarkierung
versehen sein. Aktivieren Sie das Ankreuzfeld „mit Mark.Sp“
und benutzen Sie MARK als Namen für das Zeilenmarkier-
element.

7.4 Datenausgabe mit Table Controls 457■

■

■

4. Programmieren Sie die Ablauflogik für das Dynpro 120.

Ablauflogik PBO:

PROCESS BEFORE OUTPUT.
 MODULE status_0120.
 MODULE laden_int_tab.
 MODULE zeilenanzahl_setzen_0120.
 LOOP AT it_zbestand INTO wa_zbestand
 WITH CONTROL tc1.
 MODULE move_to_tc1.
 ENDLOOP.

Modul STATUS_0120

In diesem Modul wird der Status DYNPRO_120 gesetzt. Die-
ser Status ist dabei in der Vorwärtsnavigation anzulegen.

Beachten Sie, dass CANCEL mit dem Funktionstyp „E“ ange-
legt wird. Tragen Sie den ok_code in die Elementliste ein.

Modul laden_int_tab

Dieses Modul wurde in der vorigen Aufgabe für Dynpro 110
angelegt. Es lädt die interne Tabelle IT_ZBESTAND mit den
im anzuzeigenden Datensätzen der Tabelle ZBESTAND.

Modul zeilenanzahl_setzen_0120

Die Anzahl der Zeilen der Tabelle IT_ZBESTAND wird an
die Komponente TC1-LINES des Table Controls übergeben.
Nutzen Sie dazu die DESCRIBE TABLE-Anweisung.

Modul move_to_tc1

Dieses Modul wird für jede Zeile der internen Tabelle aufgeru-
fen. Für jede Zeile des Table Controls werden die namensglei-
chen Datenobjekte geladen. Dazu sind mit der MOVE-
CORRESPONDING-Anweisung die Inhalte der Komponenten
der Struktur WA_ZBESTAND in die Struktur ZST_TC1 zu
schreiben. Danach wird über eine SELECT SINGLE-
Anweisung der Name des Autors1 in ZST_TC1 geladen, die
verfügbare Anzahl Exemplare berechnet und in die Kompo-
nente ZST_TC1-VERFUEGBAR eingetragen.

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

458

Ablauflogik PAI:

PROCESS AFTER INPUT.
 LOOP.
 ENDLOOP

 MODULE user_command_0120.
 MODULE beenden AT EXIT-COMMAND.

Modul user_command_0120.

Beim Auslösen der Funktionscodes BACK und EXIT soll das
Dynpro 100 wieder angezeigt werden.

5. Ergänzen Sie im TOP-Include folgende Einträge:

TABLES: zst_tc1.
DATA: mark.
CONTROLS TC1 TYPE TABLEVIEW USING
 SCREEN 120.

Lösung: SAPMYK07_3

Lösung:

&---
*& Include MYK07TOP *
&---
PROGRAM sapmyk07 NO STANDARD PAGE HEADING.
TABLES: zbestand,zst_tc1.
DATA: BEGIN OF wa_rbg3,
 liste, tc, alv,
 END OF wa_rbg3.

CONTROLS TC1 TYPE TABLEVIEW USING
 SCREEN 120.

DATA: it_zbestand TYPE TABLE OF zbestand,
 wa_zbestand TYPE zbestand,
 wa_zbestand_fb TYPE zst_zbestand,
 farbe, ds, mark.
.*************nicht geänderter Quelltext********************

&---
*& Ablauflogik Dynpro 120 *
&---

7.4 Datenausgabe mit Table Controls 459■

■

■

PROCESS BEFORE OUTPUT.
 MODULE status_0120.
 MODULE laden_int_tab.
 MODULE zeilenanzahl_setzen_0120.
 LOOP AT it_zbestand INTO wa_zbestand
 WITH CONTROL tc1.
 MODULE move_to_tc1.
 ENDLOOP.

PROCESS AFTER INPUT.
 LOOP.ENDLOOP.
 MODULE user_command_0120.
 MODULE beenden AT EXIT-COMMAND.
&---
*& Module zeilenanzahl_setzen_0120 OUTPUT *
&---
MODULE zeilenanzahl_setzen_0120 OUTPUT.
 DESCRIBE TABLE it_zbestand LINES tc1-lines.
ENDMODULE.

&---
*& Module move_to_tc1 OUTPUT *
&---
MODULE move_to_tc1 OUTPUT.
 MOVE-CORRESPONDING wa_zbestand TO zst_tc1.

*Name des Autors aus ZAUTOREN laden
 SELECT SINGLE * FROM zautoren
 INTO CORRESPONDING FIELDS OF zst_tc1
 WHERE autorennr = zst_tc1-autor1.

*Berechnung der verfügbaren Exeplare
 zst_tc1_tw-verfuegbar = zst_tc1_tw-bestand
 - zst_tc1_tw-ausgeliehen.
ENDMODULE.

&---
*& Module laden_int_tab OUTPUT *
&---

In diesem Modul wurde nichts geändert. Siehe
Seite 444.

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

460

&---
*& Module user_command_0120 INPUT *
&---
MODULE user_command_0120 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
 WHEN 'EXIT' OR 'BACK'.
 LEAVE TO SCREEN 0100.
 ENDCASE.
ENDMODULE.

&---
*& Module user_command_0100 INPUT *
&---
MODULE user_command_0100 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
 WHEN 'RECHERCHE'.
 CASE 'X'.
 WHEN wa_rbg3-liste.
 CALL SCREEN 110.
 WHEN wa_rbg3-tc.
 CALL SCREEN 120.
 WHEN wa_rbg3-alv.
 MESSAGE i008(zlib_tw).
 ENDCASE.
 WHEN 'EXIT' OR 'BACK'.
 LEAVE PROGRAM.
 ENDCASE.
ENDMODULE.

In das Dynpro 120, in dem das Table Control abgebildet wird, soll
in einem Subscreenbereich das Dynpro 200 integriert werden. Das
Dynpro 200 wurde im Kapitel 6 angelegt und zeigt Detailangaben
zu einem ausgewählten Buch an.

7.4 Datenausgabe mit Table Controls 461■

■

■

Gewünschtes Programmverhalten:

Der Benutzer markiert eine Zeile im Table Control und drückt
zum Auslösen der PAI-Ablauflogik die ENTER-Taste. Da als
statisches Folgedynpro das Dynpro 110 selbst angegeben ist,
wird PBO des Dynpros 110 und des Subscreendynpros 200
durchlaufen und damit das Subscreendynpro mit den Detailan-
gaben des im Table Control markierten Buches aktualisiert.

6. Ermitteln Sie die ISBN der im Table Control markierten Zeile.

Deklarieren Sie im TOP-Include des Programmes
SAPMYK07 eine Variable TCISBN mit Bezug zum Feld
ZBESTAND-ISBN.

Programmieren Sie für das Dynpro 120 die LOOP-
Schleife der PAI-Ablauflogik. Für jede Zeile des Table
Controls findet ein Schleifendurchlauf statt. Wurde vom
Benutzer für die sich im Schleifendurchlauf befindliche
Zeile das Zeilenmarkierungselement MARK aktiviert, ist
das Modul MARKIEREN_0120 aufzurufen.

Legen Sie das Modul MARKIEREN_0120 in der Vor-
wärtsnavigation an und laden Sie dort die Variable
TCISBN mit der ISBN der ausgewählten Zeile
(ZST_TC1-ISBN).

7. Legen Sie im Dynpros 120 einen Subscreenbereich SUB2 an.

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

462

8.
Laden Sie den Subscreenbereich SUB2 mit Dynpro 200.

PROCESS BEFORE OUTPUT.
CALL SUBSCREEN sub2
INCLUDING sy-cprog '200'.
...
PROCESS AFTER INPUT.
CALL SUBSCREEN sub2.
LOOP AT it_zbestand.
 FIELD mark MODULE markierung ON REQUEST.
ENDLOOP.

9. Wandeln Sie das Dynpro 200 zum Subscreendynpro um´.

Zu löschende Komponente
im Dynpro 200

Begründung

OK-CODE in Elementliste Subscreendynpros dürfen kein
eigenes OK-Feld besitzen

Modul STATUS_0200 und
dessen Aufruf

Für Subscreendynpros kann kein
eigener PF-STATUS angelegt
werden

Modul
USER_COMMAND_0200
und dessen Aufruf,

Aufruf des Moduls
BEENDEN

Dieses Modul enthält lediglich
einen dynamischer Dynproaufruf
(LEAVE TO SCREEN 0). Die-
ser wird nicht mehr benötigt.
Außerdem sind dynamische
Dynproaufrufe in Subscreen-
dynpros nicht erlaubt.

Wählen Sie in der Registerkarte „Eigenschaften“ des Dynpros

7.4 Datenausgabe mit Table Controls 463■

■

■

200 als Dynprotyp „Subscreen“ aus.

10. Laden Sie die Felder des Subscreendynpros mit den Detailan-
gaben des markierten Buches.
Im Modul LADEN_0200 ist in einer SELECT SINGLE-
Anweisung die Struktur ZBESTAND (Standardstruktur, mit
der einige Felder des Dynpros 200 verbunden sind) mit dem
Datensatz der Tabelle ZBESTAND zu laden, der im Feld
ISBN mit der Variablen TCISBN übereinstimmt. Anschlie-
ßend sind die Stukturen WA_AUTOR1, WA_AUTOR2 und
WA_AUTOR3 zu laden.

Lösung: SAPMYK07_4

Lösung:

&---
*& Include MYK07TOP *
&---
PROGRAM sapmyk07_4 NO STANDARD PAGE HEADING .
TABLES: zbestand,zst_tc1.
DATA: tcisbn TYPE zbestand_tw-isbn.
.*************nicht geänderter Quelltext********************

&---
*& Ablauflogik Dynpro 120 *
&---
PROCESS BEFORE OUTPUT.
 CALL SUBSCREEN sub2
 INCLUDING sy-cprog '200'.

 MODULE status_0120.

 MODULE laden_int_tab.

 MODULE zeilenanzahl_setzen_0120.
 LOOP AT it_zbestand INTO wa_zbestand
 WITH CONTROL tc1.
 MODULE move_to_tc1.
 ENDLOOP.

PROCESS AFTER INPUT.
 CALL SUBSCREEN sub2.

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

464

LOOP AT it_zbestand.
 FIELD mark MODULE markieren_0120
 ON REQUEST.
 ENDLOOP.

 MODULE user_command_0120.
 MODULE beenden AT EXIT-COMMAND.

&---
*& Ablauflogik Dynpro 200 *
&---
PROCESS BEFORE OUTPUT.

 MODULE laden_200.

 MODULE attribute_setzen_0200.

PROCESS AFTER INPUT.

&---
*& Module laden_200 OUTPUT *
&---
MODULE laden_200 OUTPUT.
SELECT SINGLE * FROM zbestand
INTO zbestand
WHERE isbn = tcisbn.

CLEAR: wa_autor1, wa_autor2, wa_autor3.
SELECT SINGLE * FROM zautoren INTO wa_autor1
WHERE autorennr = zbestand-autor1.

SELECT SINGLE * FROM zautoren INTO wa_autor2
WHERE autorennr = zbestand-autor2.

SELECT SINGLE * FROM zautoren INTO wa_autor3
WHERE autorennr = zbestand-autor3.
ENDMODULE.

&---
*& Module attribute_setzen_0200 OUTPUT *
&---
MODULE attribute_setzen_0200 OUTPUT.
*Statusikone laden

7.4 Datenausgabe mit Table Controls 465■

■

■

 IF zbestand_tw-bereich = 'geschützt'.
 CALL FUNCTION 'ICON_CREATE'
 EXPORTING name = 'ICON_LED_RED'
 IMPORTING result = icon1.
 ELSE.
 CALL FUNCTION 'ICON_CREATE'
 EXPORTING name = 'ICON_LED_GREEN'
 IMPORTING result = icon1.
 ENDIF.
 LOOP AT SCREEN.
 IF screen-group1 = 'A2' AND
 wa_autor2-autorennr IS INITIAL.
 screen-invisible = 1.
 ENDIF.
 IF screen-group1 = 'A3' AND
 wa_autor3-autorennr IS INITIAL.
 screen-invisible = 1.
 ENDIF.
 MODIFY SCREEN.
 ENDLOOP.
ENDMODULE.

Das Programm SAPMYK07 weist noch eine kleine Unzulänglich-
keit auf. Ist bei der Table Control-Ansicht (Dynpro 120) keine Zei-
le des Table Controls markiert, wird trotzdem die Detailsicht (ohne
Werte) angezeigt. Das soll dadurch verhindert werden, dass im
Subscreenbereich SUB2 ein anderes Subscreendynpro angezeigt
wird, wenn die Variable TCISBN mit ihrem Initialwert geladen ist.

Abb. 7.22
Dynamisches
Laden eines
Subscreen-
bereiches

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

466

1. Legen Sie dazu ein Subscreendynpro (Dynpronr. 210) an. Ge-
ben Sie über ein Textfeld den Text „Sie können zu einem Buch
Detailangaben anzeigen. Markieren Sie in der Tabelle das
Buch. Drücken Sie dann die ENTER-Taste“ aus.

2. Deklarieren Sie im TOP-Include des Programmes
SAPMYK07 die Variable DYNNR mit Bezug zur Systemva-
riablen SY-DYNNR an.

3. Ergänzen Sie in der PBO-Ablauflogik des Dynpros 120 den
Aufruf des Moduls DYNPROAUSWAHL_0120.

PROCESS BEFORE OUTPUT.
 MODULE dynproauswahl_0120.
 CALL SUBSCREEN sub2 ...

4. Programmieren Sie das Modul DYNPROAUSWAHL. Steht in
der Variablen TCISBN der Initialwert, laden Sie die Variable
DYNNR mit der Zeichenkette '210', sonst mit '200'.

5. Ändern Sie den Aufruf des Subscreendynpros in

CALL SUBSCREEN sub2
INCLUDING sy-cprog dynnr.

6. Setzen Sie im Modul LADEN_0200 nach der SELECT-
Anweisung die Variable TCISBN auf ihren Initialwert
(CLEAR tcisbn).

Lösung: SAPMYK07_5

Lösung:

&---
*& Include MYK07TOP *
&---
PROGRAM sapmyk07_5 NO STANDARD PAGE HEADING.
TABLES: zbestand_tw,zst_tc1_tw.
DATA: dynnr TYPE sy-dynnr.
.*************nicht geänderter Quelltext********************

&---
*& Ablauflogik Dynpro 120 *
&---
PROCESS BEFORE OUTPUT.

7.4 Datenausgabe mit Table Controls 467■

■

■

 MODULE dynproauswahl_0120.

 CALL SUBSCREEN sub2
 INCLUDING sy-cprog dynnr.

 MODULE status_0120.

 MODULE laden_int_tab.

 MODULE zeilenanzahl_setzen_0120.
 LOOP AT it_zbestand INTO wa_zbestand
 WITH CONTROL tc1.
 MODULE move_to_tc1.
 ENDLOOP.

PROCESS AFTER INPUT.
 CALL SUBSCREEN sub2.
 LOOP AT it_zbestand.
 FIELD mark MODULE markieren_0120
 ON REQUEST.
 ENDLOOP.
 MODULE user_command_0120.
 MODULE beenden AT EXIT-COMMAND.

&---
*& Module dynproauswahl_0120 OUTPUT
&---
MODULE dynproauswahl_0120 OUTPUT.
 IF tcisbn IS INITIAL.
 dynnr = '210'.
 ELSE.
 dynnr = '200'.
 ENDIF.
ENDMODULE.

&---
*& Module laden_200 OUTPUT *
&---
MODULE laden_200 OUTPUT.
 SELECT SINGLE * FROM zbestand_tw
 INTO zbestand_tw
 WHERE isbn = tcisbn.
*tcisbn hat seine Aufgabe erfüllt. Die Vari-

7 Subscreens, Listen und Tabellen in Dynpros ■

■

■

468

*able wird auf ihren Initialwert zurück-
*gesetzt. Damit ist sie das Kriterium, ob der
*Benutzer eine Zeile des Table Controls
*aktiviert hat, denn sie wird im Modul
*MARKIEREN_0120 gesetzt. Dieses Modul wird
*nur durchlaufen, wenn der Benutzer eine Zeile
*im Table Control markiert hat.
*(FIELD mark MODULE markieren_0120
* on request)
 CLEAR tcisbn.
 CLEAR: wa_autor1, wa_autor2, wa_autor3.
 SELECT SINGLE * FROM zautoren_tw
 INTO wa_autor1
 WHERE autorennr = zbestand_tw-autor1.

 SELECT SINGLE * FROM zautoren_tw
 INTO wa_autor2
 WHERE autorennr = zbestand_tw-autor2.

 SELECT SINGLE * FROM zautoren_tw
 INTO wa_autor3
 WHERE autorennr = zbestand_tw-autor3.
ENDMODULE.

&---
*& Dynpro 210 *
&---

Abb. 7.23
Eigenschaften

des Subscreen-
dynpros

festlegen

7.4 Datenausgabe mit Table Controls 469■

■

■

Abb. 7.24
Layout des Sub-
screendynpros

8.1 Zielstellung des Kapitels ■

■

■

471

8 Tabstrips

8.1
Zielstellung des Kapitels

In diesem Kapitel wird der Einsatz von Tabstrips behandelt. Das Re-
chercheprogramm der East-Side-Library wird so geändert, dass die
Dynpros auf je einer Registerkarte eines Tabstrip abgebildet werden.

Abb. 8.1
Registerkarte
„Suchkriterien“

Abb. 8.2
Registerkarte
„Recherche-
ergebnisse“

8 Tabstrips ■

■

■

472

Vorbereitende Aufgaben
Kopieren Sie Ihr Programm SAPMYK07 oder das Programm
SAPMYK07_5 der Buch-CD nach SAPMYK08.

8.2
Allgemeine Eigenschaften
Einsatzbedingungen

■ Mit Tabstrips lassen sich verschiedene Teilobjekte einer An-
wendung, die auf verschiedene Dynpros verteilt sind, übersicht-
lich darstellen. Ihre intuitive Bedienbarkeit vermindert den
Lernaufwand des Anwenders,

■ Erleichtern die Navigation,

■ sind leicht zu programmieren und führen zu modernen Oberflä-
chen.

Tabstrips dürfen nicht eingesetzt werden, wenn

■ auf den einzelnen Registerkarten unterschiedliche Menüs, Titel,
Drucktaste erforderlich sind,

■ die Anzahl der Registerkarten nicht statisch angegeben werden
kann.

Abb. 8.3
Registerkarte

„Detailangaben“

8.3 Tabstrip-Elemente 473■

■

■

8.3
Tabstrip-Elemente

■ in Tabstrip besteht aus mehreren Registerkarten.

■ Jede Registerkarte besitzt einen einzeiligen Tab-Reiter.

■ Können beim Anlegen eines Tabstrips im Layouteditor aus
Platzgründen nicht alle Registerkarten angezeigt werden, wird
automatisch eine Blätterleiste erzeugt.

■ Laufleisten werden bei Bedarf automatisch angelegt.

Programmtechnische Sicht auf das Tabstrip
Aus programmtechnischer Sicht besteht eine Registerkarte des
Tabstrips aus einer Drucktaste, einem Subscreenbereich und einem
Subscreendynpro.

Abb. 8.4
Bestandteile der
Oberfläche ei-
nes Tabstrips

Abb. 8.5
Technische
Bestandteile
eines Tabstrips

8 Tabstrips ■

■

■

474

8.4
Blättern im Tabstrip

Blättern im Tabstrip bedeutet, durch Anklicken des Tab-Reiters, die
mit ihm verbundene Registerkarte zur Anzeige zu bringen. Der aus-
gewählte Tab-Reiter wird dabei als „aktiv“ gekennzeichnet (siehe
Abb. 8.4). Die Blätterfunktion kann über zwei verschiedene Metho-
den implementiert werden:

■ Statische Methode
Beim Auswählen eines Tab-Reiters wird PAI nicht durchlaufen.
Jede Registerkarte muss deshalb fest mit einem Subscreen-
dynpro verbunden sein. Die Anzeige wird beim Blättern nicht
aktualisiert. Diese Methode wird auch als „lokales Blättern“ be-
zeichnet.

■ Dynamische Methode
Bei dieser Methode wird beim Blättern PAI durchlaufen. Es
wird nur ein Subscreenbereich für das gesamte Tabstrip ange-
legt. In der Ablauflogik muss der Programmierer dafür Sorge
tragen, dass der Subscreenbereich mit dem für die jeweils aktive
Registerkarte vorgesehenen Subscreendynpro geladen wird.

8.4.1
Tabstrip mit statischer Blätterfunktion

Tabstrips mit statischer Blätterfunktion sind durch folgende Eigen-
schaften charakterisiert:

■ Jedem Tab-Reiter ist ein eigener Subscreenbereich zugeordnet.

■ Blättern löst kein PAI aus, es wird am Frontend ausgeführt. Das
bedeutet, dass beim Blättern keine Kommunikation zwischen
Präsentations- und der Applikationsebene stattfindet. Alle
Subscreendynpros des Tabstrips werden zu PBO des Träger-
dynpros an das Frontend übertragen.

■ Jede Aktion auf dem Trägerdynpro des Tabstrips, die PAI aus-
löst, führt zur Abarbeitung der PAI-Blöcke aller Subscreen-
dynpros des Tabstrips.

■ Die Tab-Reiter sind mit dem Funktionstyp P anzulegen. Dieser
löst kein PAI aus.

8.4 Blättern im Tabstrip 475■

■

■

8.4.2
Tabstrip mit dynamischer Blätterfunktion

Tabstrips mit dynamischer Blätterfunktion sind durch folgende Ei-
genschaften charakterisiert:

■ Alle Registerkarten benutzen den gleichen Subscreenbereich.

■ Die Auswahl eines Tab-Reiters löst PAI aus.

■ Zu PAI wird festgestellt, welcher Tab-Reiter ausgewählt wurde
und eine Variable mit dessen Funktionscode geladen.

■ Zu PBO wird der (einzige) Subscreenbereich des Tabstrips mit
dem Subscreendynpro geladen, das dem aktiven Tab-Reiter zu-
geordnet ist.

■ Am Ende der PBO-Verarbeitung erfolgt der Datentransport zum
(aktiven) Subscreendynpro.

■ Das zu PBO geladene Subscreendynpro wird im Tabstrip ange-
zeigt.

Abb. 8.6
Dynamisches
Blättern im Tab-
strip (Prinzip)

8 Tabstrips ■

■

■

476

Das Anlegen eines Tabstrips verläuft in 3 Etappen:

■ Layout anlegen und Eigenschaften für Tab-Reiter und Register-
karte definieren,

■ Deklaration des Tabstrips im TOP-Include des ABAP-
Programmes,

■ Programmierung der Ablauflogik des Trägerdynpros.

8.5
Tabstrip anlegen

Um ein Tabstrip anzulegen, sind folgende Schritte nötig:

■ Tabstrip im Layout des Trägerdynpros anlegen.

■ Eigenschaften des Tabstrips definieren (z.B. Anzahl der Tab-
Reiter).

■ Eigenschaften der Tab-Reiter festlegen (z.B. Funktionscode und
Funktionstyp).

■ Subscreenbereich(e) anlegen.

■ Tabstrip deklarieren.

Über eine CONTROLS-Anweisung wird ein Datenobjekt vom
Typ TABSTRIP angelegt. Dieses Datenobjekt entspricht dem
im Dictionary definierten Typ CXTAB_TABSTRIP (Typgrup-
pe CXTAB). Die Komponente ACTIVETAB dieser Struktur
enthält den Funktionscode des aktiven Tab-Reiters.

Hinweis:
Die Komponenten, die zur Typgruppe CXTAB gehören, finden
Sie im Dictionary (SE11). Wählen Sie im Einstiegsbild des Dic-
tionaries das Menü „Hilfsmittel Weitere Dictionary-Elemen-
te“. Aktivieren Sie dann den Auswahlknopf „Typgruppe“, tra-
gen Sie im dazugehörigen Eingabefeld den Namen CXTAB ein
und klicken Sie auf das Symbol „Anzeigen“.

■ Programmierung der Ablauflogik.

Die Subscreendynpros sind natürlich auch noch anzulegen.

Vorgehensweise: Tabstrip anlegen

Starten Sie den grafischen Layouteditor mit dem Dynpro, in dem der
Tabstrip angelegt werden soll.

1. Schieben Sie den Mauszeiger, ohne eine Maustaste zu drü-
cken, an die linke obere Ecke des künftigen Tabstrips.

8.5 Tabstrip anlegen 477■

■

■

2. Ziehen Sie den Minirahmen, mit gedrückter linker Maustaste,
bis zum unteren rechten Rand des künftigen Tabstrips.

3. Doppelklicken Sie in den Tabstrip. Tragen Sie in dem sich
daraufhin öffnenden Attributefenster den Namen des Tabstrips
ein und legen Sie die Anzahl der Tab-Reiter fest. Alternativ
können Sie auch das Werkzeug „Drucktaste“ der Werkzeug-
leiste aktivieren und mit der Maus an die Stelle der Tab-
Reiterleiste klicken, an der der Reiter positioniert werden soll.

4. Jetzt sichern Sie das Layout, schließen den grafischen Layout-
editor und laden das TOP-Include in den ABAP-Editor. Pro-
grammieren Sie die CONTROLS-Anweisung.

Syntax der CONTROLS-Anweisung:
CONTROLS <Name des Tabstrips> TYPE TABSTRIP

Diesen Punkt können Sie natürlich auch erst dann durchfüh-
ren, wenn Sie alle Arbeiten im Layouteditor erledigt haben.

5. Kehren Sie in den Layouteditor zurück. Die Eigenschaften der
Tab-Reiter und die Subscreenbereiche müssen jetzt festgelegt
werden. Hier bestehen Unterschiede beim Anlegen eines
Tabstrips mit statischer bzw. dynamischer Blätterfunktion.

Abb. 8.7
Anlegen eines
Tabstrips

8 Tabstrips ■

■

■

478

6. Legen Sie in der ersten Registerkarte einen Subscreenbereich
an.

7. Pflegen Sie die Eigenschaften des Tab-Reiters Tab1.

Bei der statischen Blätternfunktion ist als Funktionstyp der Typ
„P“ auszuwählen. Er unterbindet, dass der Tab-Reiter PAI aus-
löst.
Beim dynamischen Blättern ist SUB1 der Subscreenbereich, der
von allen Registerkarten gemeinsam genutzt wird.

8. Pflegen Sie die Eigenschaften der 2. Registerkarte.

Abb. 8.8
Anlegen eines
Subscreenbe-

reiches im
Tabstrip

Abb. 8.9
Eigenschaften

des Tab-Reiters
pflegen

8.5 Tabstrip anlegen 479■

■

■

9. Wiederholen Sie Schritt 8 für jede weitere Registerkarte.

Das Layout ist nun fertig angelegt. Fehlt noch die Programmierung
des Tabstrips.

Programmierung des Tabstrips mit statischer Blätter-
funktion
Bei Tabstrips mit lokaler Blätterfunktion ist die Programmierung der
Ablauflogik recht einfach. Sie müssen zur PBO des Trägerdynpros
nur dafür sorgen, dass die Subscreendynpros die Sie auf den Regis-
terkarten anzeigen wollen, den richtigen Subscreenbereichen zuge-
ordnet werden. Lösen Sie zu PAI des Trägerdynpros noch die PAI-
Vorgänge der Subscreendynpros aus, wird Ihr Tabstrip perfekt funk-
tionieren.

Abb. 8.10
Subscreen-
bereich mit
Tab-Reiter
verknüpfen

8 Tabstrips ■

■

■

480

Beispiel:
Der in der „Vorgehensweise: Tabstrip anlegen“ layoutete Tabstrip
MYTABSTRIP soll in der Registerkarte „Suchkriterien“ das Subsc-
reendynpro 100 und in der Registerkarte „Rechercheergebnisse“ das
Subscreendynpro 120 anzeigen. Dazu ist die Ablauflogik des
Dynpros 300 wie folgt zu programmieren:

Voraussetzungen:

■ Alle Tab-Reiter wurden mit dem Funktionstyp „P“ angelegt.

■ Jede Registerkarte hat ihren eigenen Subscreenbereich (sub1,
sub2).

■ Im Top-Include wurde der Tabstrip mit
CONTROLS mytabstrip TYPE TABSTRIP.
deklariert.

Programmierung des Tabstrips mit dynamischer Blätter-
funktion
Die Programmierung eines Tabstrips mit dynamischer Blätterfunkti-
on ist etwas aufwendiger. Das Prinzip ist in Abb. 8.6 auf Seite 475
dargestellt. Zu PAI wird ermittelt, welcher Tab-Reiter ausgewählt
wurde. Zu PBO wird dann das entsprechende Subscreendynpro in
den Subscreenbereich geladen.

Abb. 8.11
Ablauflogik für

Tabstrip mit
lokaler Blätter-

funktion

8.5 Tabstrip anlegen 481■

■

■

Beispiel:
Der in der „Vorgehensweise: Tabstrip anlegen“ angelegte Tabstrip
MYTABSTRIP soll in der Registerkarte „Suchkriterien“ das Sub-
screendynpro 100 und in der Registerkarte „Rechercheergebnisse“
das Dynpro 120 anzeigen. Die im Subscreendynpro 120 auszuge-
benden Rechercheergebnisse sind abhängig von den Eingaben im
Subscreendynpro 100, deshalb kann kein Tabstrip mit lokaler Blät-
terfunktion verwendet werden.

8 Tabstrips ■

■

■

482

Voraussetzungen:

■ Alle Tab-Reiter wurden mit dem Funktionstyp „leer “ angelegt.

■ Alle Registerkarten nutzen den gleichen Subscreenbereich
(SUB1).

■ Im Top-Include wurde der Tabstrip mit
CONTROLS mytabstrip TYPE TABSTRIP.
deklariert.

■ Im Top-Include wurde eine Variable deklariert, die mit einer
Dynpronummer geladen werden kann. Im Beispiel ist das die
Variable DYNNR.

Die Dynpros des Programmes SAPMYK08 (Kopie von
SAPMYK07_5 oder SAPMYK07) sollen in einem Tabstrip mit 3
Registerkarten angezeigt werden.

8.5 Tabstrip anlegen 483■

■

■

Die Ergebnisausgabe erfolgt nur noch als Table Control. Auf die
Ausgabe als Liste (z.Z. Dynpro 110) wird verzichtet.

Dazu sind folgende Programmierarbeiten auszuführen:

■ Dynpro 100 und 120 sind in Subscreendynpros umzuwandeln.

■ Das Trägerdynpro (Dynpronummer 300) für den Tabstrip und
der Tabstrip selbst ist anzulegen.

■ Die Ablauflogik (dynamische Blätterfunktion) ist zu pro-
grammieren.

1. Dynpro 100 in ein Subscreendynpro umwandeln.

Ort Aktivität Begründung

Anweisung
MODULE
status_0100.
löschen.

Subscreendynpros dürfen
keinen eigenen Status besit-
zen.

Anweisung
MODULE
beenden ...
löschen.

Das Modul enthält die An-
weisung LEAVE TO
SCREEN 0 die in Subscreens
nicht erlaubt ist.

Ablauf-
logik

Anweisung
MODULE
user_com-
mand_0100.
löschen.

Dieses Modul wird nicht
mehr benötigt. Die Funkti-
onsauswahl (z.B. RECHER-
CHE) erfolgt über die Aus-
wahl der Tab-Reiter.

Drucktaste
„RECHERCHE“
löschen.

Das Auslösen dieser Funkti-
on wird über die Auswahl
des entspr. Tab-Reiters aus-
gelöst.

Layout Auswahlknopf
„Anzeige als Liste“
(WA_RBG3-LISTE)
löschen.

Auf die Anzeige der Recher-
cheergebnisse als Liste wird
verzichtet, der Auswahlknopf
wird also nicht mehr benö-
tigt.

Element-
liste

OK-Feld löschen. Ein Subscreendynpro besitzt
kein eigenes OK-Feld.

Register
„Eigen-
schafen“

Auswahlknopf
„Subscreen“
aktivieren.

8 Tabstrips ■

■

■

484

2. Dynpro 120 in Subscreendynpro umwandeln.

Ort Aktivität Begründung

Anweisung
MODULE
status_0120.
löschen.

Dieses Modul entscheidet,
ob Dynpro 200 oder 210
angezeigt wird. Diese Ent-
scheidung muss aber im
Trägerdynpro des Tabstrips
erfolgen.

Anweisungen
CALL SUBSCREEN
sub2 INCLUDING
sycprog dynnr.

CALL SUBSCREEN
sub2. löschen.

Die Anzeige der bisher in
SUB2 abgebildeten
Dynpros 200 bzw. 210 er-
folgt künftig in einer eige-
nen Registerkarte. Der
Subscreenbereich SUB2
wird gelöscht.

Anweisung
MODULE
status_0120.
löschen.

Subscreendynpros dürfen
keinen eigenen Status be-
sitzen.

Anweisung
MODULE
user_com-
mand_0120.
löschen.

Bisher wird über dieses
Modul das Programm be-
endet. Das Beenden des
Programmes erfolgt künftig
nur über den Status des
Tabstrip-Trägerdynpros.

Ablauf-
logik

Anweisung
MODULE
beenden…
löschen.

Das Modul enthält die in
Subscreens nicht erlaubte
Anweisung LEAVE TO
SCREEN.

Layout

Subscreenbereich
SUB2 löschen.

Die Anzeige der bisher hier
abgebildeten Dynpros er-
folgt in einem eigenen Re-
gister.

Element-
liste

OK-Feld löschen. Ein Subscreendynpro be-
sitzt kein eigenes OK-Feld.

Register
„Eigen-
schafen“

Auswahlknopf „Sub-
screen“ aktivieren.

8.5 Tabstrip anlegen 485■

■

■

3. Legen Sie das Trägerdynpro des Tabstrips (Dynpronummer
300) an (Statisches Folgedynpro: 300, OK_CODE in Element-
liste eintragen).

4. Erstellen Sie im Layout des Dynpros 300 den Tabstrip. Wäh-
len Sie als Tabstripnamen TS1. Legen Sie innerhalb des
Tabstrips den Subscreenbereich SUBTS1 an und pflegen Sie
dann im Attributefenster die Eigenschaften der Tab-Reiter.
(FKTCODE entsprechend nachfolgender Tabelle,
REFERENZFELD ist für jeden Tab-Reiter der Subscreenbe-
reich SUBTS1).

Pos. der
Regis-
terkarte

Text des
Tab-Reiters
(Funktionscode)

anzuzei-
gendes
Dynpro

Bemerkung

1
Suchkriterien
(SELECT)

100

2 Recherche-
ergebnisse
(RESULT)

120
Nur anzeigen,
wenn Treffermen-
ge > 0.

3

Detailangaben
(DETAILS)

200/210 200 nur anzeigen,
wenn in Dynpro
120 ein Buch mar-
kiert wurde, sonst
210.

5. Programmieren Sie die Ablauflogik des Dynpros 300.

Hinweise:

■ Falls noch nicht geschehen, tragen Sie die Anweisung
CONTROLS TS1 TYPE TABSTRIP. in das TOP-Include
ein.

■ Legen Sie folgende Module an:

PBO:
■ STATUS_0300.

Verwenden Sie als Status des Dynpros 300 den Status
DYNPRO_0120 und als Titlebar DYNPRO_0100.

■ LADEN_DYNNR
Laden Sie in diesem Module die bereits deklarierte
Variable DYNNR mit der Nummer des im Sub-
screenbereich SUBTS1 anzuzeigenden Dynpros.

8 Tabstrips ■

■

■

486

PAI:

■ USER_COMMAND_0300
Laden Sie im Module USER_COMMAND_0300 die
Komponente ACTIVETAB der Struktur TS1, die über
die Anweisung CONTROLS: TS1 TYPE TABSTRIP
deklariert wurde, mit dem Funktionscode des ausge-
wählten Tab-Reiters.

■ Entsprechend der Aufgabenstellung soll die Registerkarte
„Rechercheergebnisse“ (Subscreendynpro 120) nur ange-
zeigt werden, wenn die Menge der anzuzeigenden Bücher
größer 0 ist. Es ist daher zweckmäßig, die interne Tabelle
IT_ZBESTAND unmittelbar vor der Auswahl des anzu-
zeigenden Dynpros zu laden. Programmieren Sie deshalb
den Modulaufruf MODULE LADEN_INT_TAB im PBO
des Dynpros 300 (vor LADEN_DYNNR) und löschen ihn
aus der Ablauflogik des Dynpros 120. An Hand der Bele-
gung der Variablen DS, die in diesem Modul geladen
wird, können Sie erkennen, ob Datensätze anzuzeigen sind
(DS = '1') oder nicht (DS = '0')

Löschen Sie Anweisung LEAVE TO SCREEN 100 im Modul
LADEN_INT_TAB.

■ Programmieren Sie nach dem Aufruf des Moduls
LADEN_DYNNR die Anweisung

CALL SUBSCREEN subts1 INCLUDING sy-cprog
dynnr.

und zu PAI die Anweisung

CALL SUBSCREEN subts1.

6. Legen Sie für das Programm SAPMYK08 den Transaktions-
code ZK08_1 (Startdynpro 300) an und testen Sie Ihr Pro-
gramm.

Lösung: SAPMYK08_1

Lösung:

&---
*& Ablauflogik Dynpro 100 *
&---
PROCESS BEFORE OUTPUT.
 CALL SUBSCREEN sub1
 INCLUDING sy-cprog '1100'.

8.5 Tabstrip anlegen 487■

■

■

* MODULE status_0100.
 MODULE laden_0100.
PROCESS AFTER INPUT.
 CALL SUBSCREEN sub1.
* MODULE beenden AT EXIT-COMMAND.
 CHAIN.
 FIELD: chk_protected,
 chk_public
 MODULE pruefen3_0100.
 ENDCHAIN.
* MODULE user_command_0100.

&---
*& Ablauflogik Dynpro 120 *
&---
 PROCESS BEFORE OUTPUT.
* MODULE dynproauswahl_0120.
* CALL SUBSCREEN sub2 INCLUDING sy-cprog
* dynnr.
* MODULE status_0120.
* MODULE laden_int_tab.
 MODULE zeilenanzahl_setzen_0120.
 LOOP AT it_zbestand INTO wa_zbestand
 WITH CONTROL tc1.
 MODULE move_to_tc1.
 ENDLOOP.
 PROCESS AFTER INPUT.
* CALL SUBSCREEN sub2.
 LOOP AT it_zbestand.
 FIELD mark MODULE markieren_0120
 ON REQUEST.
 ENDLOOP.
* MODULE user_command_0120.
* MODULE beenden AT EXIT-COMMAND.

&---
*& Ablauflogik Dynpro 300 *
&---
PROCESS BEFORE OUTPUT.
 MODULE status_0300.
 MODULE laden_int_tab.
 MODULE laden_dynnr.
 CALL SUBSCREEN subts1 INCLUDING sy-cprog
 dynnr.

8 Tabstrips ■

■

■

488

PROCESS AFTER INPUT.
 CALL SUBSCREEN subts1.
 MODULE user_command_0300.
 MODULE beenden AT EXIT-COMMAND.

&---
*& Module STATUS_0300 OUTPUT *
&---
MODULE status_0300 OUTPUT.
 SET PF-STATUS 'DYNPRO_0120'.
 SET TITLEBAR 'DYNPRO_0100'.
ENDMODULE.

&---
*& Module laden_int_tab OUTPUT *
&---
MODULE laden_int_tab OUTPUT.
.*************nicht geänderter Quelltext********************

 IF ds = '0'.
 MESSAGE i007(zlib_tw).
* LEAVE TO SCREEN 100.
 ENDIF.
ENDMODULE. " laden_int_tab OUTPUT

&---
*& Module laden_dynnr OUTPUT *
&---
MODULE laden_dynnr OUTPUT.
*im Module LADEN_INT_TAB wird ds geladen
*ds = 1 --> Es gibt Bücher, die den Such-
* kriterien entsprechen
*ds = 0 --> Es gibt keine Bücher, die den
* Suchkriterien entsprechen

 IF ds > 0.
 CASE ts1-activetab.
 WHEN 'SELECT'.
 dynnr = '0100'.
 WHEN 'RESULT'.
 dynnr = '0120'.
 WHEN 'DETAIL'.
*TCISBN enthält eine ISBN, falls der
*Benutzer eine Zeile des Table Controls
*markiert hat. Anderenfalls ist TCISBN mit

8.5 Tabstrip anlegen 489■

■

■

*dem Initialwert geladen.
 IF NOT tcisbn IS INITIAL.
 dynnr = '0200'.
 ELSE.
 dynnr = '0210'.
 ENDIF.
 WHEN OTHERS.
 ts1-activetab = 'SELECT'.
 dynnr = '0100'.
 ENDCASE.
 ELSE.
 ts1-activetab = 'SELECT'.
 dynnr = '0100'.
 ENDIF.
ENDMODULE.

&---
*& Module USER_COMMAND_0300 INPUT *
&---
MODULE user_command_0300 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
 WHEN 'SELECT' OR 'RESULT' OR 'DETAIL'.
 ts1-activetab = ok_save.
 WHEN 'EXIT' OR 'BACK'.
 LEAVE PROGRAM.
 ENDCASE.
ENDMODULE.

9.1 Zielstellung des Kapitels ■

■

■

491

9 Datenbankänderungen
programmieren

9.1
Zielstellung des Kapitels

Schwerpunkte dieses Kapitels sind:

■ Datenbankändernde Anweisungen,

■ Die Organisation von Datenbankänderungen und

■ Das SAP-Sperrkonzept:

Die Thematik wird am Programm SAPMYK09_Bestand_1 erarbei-
tet. Dieses Programm befindet sich auf der Buch-CD. Es besteht aus
den nachfolgend abgebildeten Dynpros und der in Abb. 9.3 darge-
stellten Ablauflogik, die im Verlaufe des Kapitels noch ergänzt wer-
den wird.

Abb. 9.1
SAPMYK09_
Bestand_1
(Dynpro 100
Bestandspflege)

9 Datenbankänderungen programmieren ■

■

■

492

Abb. 9.2
SAPMYK09_

Bestand_1
(Dynpro 100

Autorenpflege)

Abb. 9.3
Ablauflogik

(Prinzip)

9.2 Datenbankändernde Anweisungen 493■

■

■

Vorbereitende Aufgaben

1. Machen Sie sich mit dem Programm SAPMYK09_Bestand_1
vertraut. Als Hilfe zum Navigieren im Programm und zur Ana-
lyse des Quelltextes steht Ihnen der Programmablaufplan in
Abb. 9.3 zur Verfügung. Die dort hervorgehobenen Aufgaben
„Autorendaten in Datenbanktabelle ZAUTOREN eintragen“
und „Bestandsdaten in Datenbanktabelle ZBESTAND eintra-
gen“ sind noch nicht realisiert.

2. Wenn Sie mit Ihren eigenen Tabellen ZAUTOREN und
ZBESTAND arbeiten wollen, nehmen Sie bitte die zwei klei-
nen Änderungen, die im TOP-Include des Programmes
SAPMYK09_Bestand_1 beschrieben sind, vor.

9.2
Datenbankändernde Anweisungen

In diesem Buch werden die im Open-SQL-Sprachumfang enthalte-
nen datenbankändernden Anweisungen

■ INSERT,

■ UPDATE,

■ MODIFY und

■ DELETE

besprochen. Jede dieser Anweisungen kann, je nach verwendeter
Syntax, zur Bearbeitung eines Einzelsatzes (Einzelsatzzugriff) oder
einer Menge von Datensätzen (Mengenzugriff) benutzt werden.
Mengenzugriffe sind, gegenüber der gleichen Anzahl von Einzel-
zugriffen, immer performanter.

Alle diese Anweisungen laden die Systemvariablen SY-SUBRC
und SY-DBCNT. SY-SUBRC wird stets mit 0 geladen, wenn die
Aktion erfolgreich verlaufen ist. SY-DBCNT enthält die Anzahl Da-
tensätze, für die die gewünschte Datenbankoperation tatsächlich
durchgeführt wurde. Diese Information ist natürlich nur bei Men-
genzugriffen von Bedeutung. Details zur Belegung der Systemvari-
ablen SY-SUBRC werden in jeweiligen Abschnitten, in denen die
Anweisungen erklärt werden, gegeben.

Bei allen Anweisungen, mit Ausnahme von MODIFY, gibt es ei-
ne Syntaxvariante, bei der die zu bearbeitenden Datensätze über eine
WHERE-Klausel mit einer logischen Bedingung ausgewählt wer-
den. Dabei können über ... WHERE <feld> LIKE '<Suchmaske>'
auch Platzhalter verwendet werden ('_' für genau ein Zeichen, '%' für
eine Zeichenkette).

9 Datenbankänderungen programmieren ■

■

■

494

9.2.1
Die INSERT-Anweisung

Einzelsatz anlegen

Syntax:
INSERT INTO <datenbanktabelle> [CLIENT SPEZIFIED]
 VALUE <Struktur>.

Alternative:
INSERT <datenbanktabelle> [CLIENT SPECIFIED]
 FROM <struktur>.

Voraussetzung: Die Struktur hat den gleichen Zeilenaufbau wie die
Datenbanktabelle.

Die Klausel CLIENT SPECIFIED bewirkt, dass nicht nur Datensät-
ze im aktuellen Mandanten angelegt werden können, die Struktur
kann die Komponente MANDANT besitzen.

Abb. 9.4
INSERT

Einzelsatz
anlegen

9.2 Datenbankändernde Anweisungen 495■

■

■

Systemvariable Belegung Erklärung

0 Datensatz konnte eingefügt werden. SY-SUBRC

4 Datensatz konnte nicht eingefügt
werden (z.B. Weil ein anderer Daten-
satz mit gleiche Schlüsselfeldbele-
gung bereits vorhanden ist).

Menge von Datensätzen anlegen

Syntax:
INSERT <datenbanktabelle> [CLIENT SPECIFIED]
 FROM TABLE <interne Tabelle>
 [ACCEPTING DUPLICATE KEYS].

Voraussetzung: Die interne Tabelle hat den gleichen Zeilenaufbau
wie die Datenbanktabelle.

Die Klausel CLIENT SPECIFIED bewirkt, dass nicht nur Datensät-
ze im aktuellen Mandanten angelegt werden können. Die interne
Tabelle kann eine Spalte MANDANT haben.

Abb. 9.5
INSERT
mehrere Daten-
sätze anlegen

9 Datenbankänderungen programmieren ■

■

■

496

Kann mit einer Zeile der internen Tabelle kein Datensatz in der Da-
tenbanktabelle angelegt werden (weil z.B. in der Datenbanktabelle
bereits ein Datensatz mit gleicher Schlüsselfeldbelegung vorhanden
war), wird ein Laufzeitfehler ausgelöst. Dadurch erfolgt ein Daten-
bank-Rollback, d.h. die Datenbankänderungen, die der INSERT-
Befehl ausgeführt hat, werden zurückgesetzt. Dieses Verhalten kön-
nen Sie mit der Klausel ACCEPTING DUPLICATE KEYS ändern.
Bei Verwendung dieser Klausel

■ erfolgt kein Laufzeitfehler (kein Rücksetzen der Datenbank).

■ SY-SUBRC wird mit 4 geladen.

Systemvariable Belegung Erklärung

0 Alle Datensatz konnten eingefügt
werden

SY-SUBRC

4 Mindestens ein Datensatz konnte
nicht eingefügt werden (z.B. Weil ein
anderer Datensatz mit gleiche Schlüs-
selfeldbelegung bereits vorhanden
ist). Dazu muss die Klausel
ACCEPTING DUPLICATE KEYS
eingesetzt werden. Sonst wird ein
Laufzeitfehler ausgelöst.

SY-DBCNT Enthält die Anzahl der tatsächlich an-
gelegten Datensätze.

9.2.2
Die UPDATE-Anweisung

Zum Ändern eines Datensatzes bzw. einer Menge von Datensätzen
stehen jeweils zwei Methoden zur Verfügung. Einzelsätze können
über eine Struktur oder über eine logische Bedingung, eine Menge
von Datensätzen über eine interne Tabelle oder ebenfalls über eine
logische Bedingung, geändert werden.

9.2 Datenbankändernde Anweisungen 497■

■

■

Einzelsatz über Arbeitsbereich ändern

Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]
 FROM <struktur>.

Voraussetzung: Die Struktur hat den gleichen Zeilenaufbau wie die
Datenbanktabelle.

Die Klausel CLIENT SPECIFIED bewirkt, dass nicht nur Datensät-
ze des aktuellen Mandanten geändert werden können, die Struktur
kann die Komponente MANDANT besitzen, so dass auch Datensät-
ze mit anderen Mandantennummern geändert werden könnnen.

Systemvariable Belegung Erklärung

0 Datensatz konnte geändert werden. SY-SUBRC

4 Datensatz konnte nicht geändert wer-
den (z.B. Weil kein Datensatz mit
gleicher Schlüsselfeldbelegung exis-
tiert).

Abb. 9.6
UPDATE
Einzelsatz
ändern

9 Datenbankänderungen programmieren ■

■

■

498

Einzelsatz über log. Bedingung ändern

Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]
 SET <tab_feld1> = <inhalt1>
 <tab_feld2> = <inhalt2>
 ...
 <tab_feldn> = <inhaltn>
 WHERE <log. Bedingung mit allen Schlüsselfeldern>.

Über die logische Bedingung wird genau ein Datensatz in der Da-
tenbanktabelle identifiziert. Deshalb sind alle Schlüsselfelder, mit
Ausnahme des Mandanten, einzubeziehen. Den Mandanten können
Sie nur bei gesetzter CLIENT SPECIFIED-Klausel angeben. Wird
über die WHERE-Anweisung ein Datensatz spezifiziert, werden die
in der SET-Klausel angegebenen Felder mit dem, ebenfalls in der
SET-Klausel festgelegten, neuen Inhalt überschrieben.

Hinweis:
Als <inhalt> kann die SET-Klausel auch eine Berechnung enthalten.

UPDATE zbestand
 SET bestand = bestand + 10
 WHERE ...
Voraussetzung dafür ist, dass das so zu ändernde Feld ein numeri-
sches Feld ist.

Systemvariable Belegung Erklärung

0 Datensatz konnte geändert werden. SY-SUBRC

4 Datensatz konnte nicht geändert wer-
den (z.B. weil kein Datensatz mit glei-
cher Schlüsselfeldbelegung vorhan-
den ist).

Abb. 9.7
 UPDATE

Einzelsatz über
log. Bedingung

ändern

9.2 Datenbankändernde Anweisungen 499■

■

■

Menge von Datensätzen über eine interne Tabelle
ändern

Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]
 FROM TABLE <interne Tabelle>.

Die interne Tabelle wird durch den UPDATE-Befehl zeilenweise
abgearbeitet. Zuerst wird über die in der aktuellen Zeile der internen
Tabelle stehenden Schlüsselfelder der zu ändernde Datensatz in der
Datenbanktabelle gesucht. Konnte ein entsprechender Datensatz ge-
funden werden, wird dieser mit der aktuellen Zeile der internen Ta-
belle überschrieben.

Abb. 9.8
UPDATE
mehrere Daten-
sätze über
interne Tabelle
ändern

9 Datenbankänderungen programmieren ■

■

■

500

Systemvariable Belegung Erklärung

0 Alle in der internen Tabelle stehen-
den Datensätze konnten in der Daten-
banktabelle geändert werden.

SY-SUBRC

4 Mindestens ein Datensatz konnte
nicht geändert werden (z.B. Weil kein
Datensatz mit gleicher Schlüsselfeld-
belegung vorhanden ist).

SY-DBCNT Enthält die Anzahl der tatsächlich ge-
änderten Datensätze.

Menge von Datensätzen über eine logische Bedingung
ändern

Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]
 SET <tab_feld1> = <inhalt1>
 <tab_feld2> = <inhalt2>
 ...
 <tab_feldn> = <inhaltn>
 WHERE <log. Bedingung>.

Über die logische Bedingung wird eine Menge von Datensatzen in
der Datenbanktabelle identifiziert. In allen durch die WHERE-
Klausel spezifizierten Datensätzen werden die in der SET-Klausel
angegebenen Datenbankfelder mit den, ebenfalls in der SET-Klausel
festgelegten, Inhalten überschrieben.

Abb. 9.9
UPDATE

mehrere Daten-
sätze über log.

Bedingung
ändern

9.2 Datenbankändernde Anweisungen 501■

■

■

Hinweis:
Als <inhalt> kann in der SET-Klausel auch eine Berechnung stehen.

UPDATE zbestand
 SET bestand = bestand + 10
 WHERE ...
Voraussetzung dafür ist, dass das so zu ändernde Feld ein numeri-
sches Feld ist.

Systemvariable Belegung Erklärung

0 Mindestens ein Datensatz der Daten-
banktabelle wurde geändert.

SY-SUBRC

4 Es wurde kein Datensatz geändert.

SY-DBCNT Enthält die Anzahl der tatsächlich ge-
änderten Datensätze.

9.2.3
Die MODIFY-Anweisung

Die MODIFY-Anweisung fasst die beiden Anweisungen INSERT
und UPDATE zusammen. Existiert der durch die MODIFY-
Anweisung zu bearbeitende Datensatz in der Datenbanktabelle, ver-
hält sich MODIFY wie die UPDATE-Anweisung, existiert der Da-
tensatz nicht, entspricht das Verhalten der MODIFY-Anweisung
dem der INSERT-Anweisung.

Syntax:
Für Einzelsatzzugriff:
MODIFY <datenbanktabelle> [CLIENT SPECIFIED]
 FROM <struktur>.

Systemvariable Belegung Erklärung

0 Datensatz angelegt bzw. geändert. SY-SUBRC

4 Datensatz nicht angelegt bzw. geän-
dert.

Für Mengenzugriff:
MODIFY <datenbanktabelle> [CLIENT SPECIFIED]
 FROM TABLE <interne Tabelle>.

9 Datenbankänderungen programmieren ■

■

■

502

Systemvariable Belegung Erklärung

0 Alle zu bearbeitenden Datensätze
angelegt bzw. geändert.

SY-SUBRC

4 Die Bearbeitung mindestens eines
Datensatzes ist fehlgeschlagen.

SY-DBCNT Enthält die Anzahl der tatsächlich ge-
änderten Datensätze.

9.2.4
Die DELETE-Anweisung

Einzelsätze können über eine Struktur oder eine logische Bedingung
gelöscht werden. Das Löschen mehrerer Datensätze erfolgt über eine
interne Tabelle oder ebenfalls über eine logische Bedingung.

Einzelsatz über Arbeitsbereich löschen

Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]
 FROM <struktur>.

Voraussetzung: Die Struktur hat den gleichen Zeilenaufbau wie die
Datenbanktabelle.

Abb. 9.10
DELETE

Einzelsatz lö-
schen

9.2 Datenbankändernde Anweisungen 503■

■

■

Die Klausel CLIENT SPECIFIED bewirkt, dass nicht nur Datensät-
ze des aktuellen Mandanten gelöscht werden können, die Struktur
kann die Komponente MANDANT besitzen, so dass auch Datensät-
ze mit anderen Mandantennummern geändert werden könnnen.

Systemvariable Belegung Erklärung

0 Datensatz konnte gelöscht werden. SY-SUBRC

4 Datensatz konnte nicht gelöscht wer-
den (z.B. Weil kein Datensatz mit
gleiche Schlüsselfeldbelegung exis-
tiert).

Einzelsatz über log. Bedingung löschen

Syntax:
DELETE FROM <datenbanktabelle> [CLIENT SPECIFIED]
 WHERE <log. Bedingung mit allen Schlüsselfeldern>.

Über die logische Bedingung wird genau ein Datensatz in der Da-
tenbanktabelle identifiziert und dann gelöscht.

Systemvariable Belegung Erklärung

0 Datensatz konnte gelöscht werden. SY-SUBRC

4 Datensatz konnte nicht gelöscht wer-
den (z.B. weil durch die WHERE-
Klausel kein Datensatz identifiziert
wurde).

Abb. 9.11
DELETE
Einzelsatz über
log. Bedingung
löschen

9 Datenbankänderungen programmieren ■

■

■

504

Menge von Datensätzen über eine interne Tabelle
löschen

Syntax:
DELETE <datenbanktabelle> [CLIENT SPECIFIED]
 FROM TABLE <interne Tabelle>.

Die interne Tabelle wird durch den DELETE-Befehl zeilenweise
abgearbeitet. Wird in der Datenbanktabelle ein Datensatz gefunden,
der mit der Schlüsselfeldbelegung der aktuellen Zeile der internen
Tabelle übereinstimmt, wird dieser gelöscht.

Systemvariable Belegung Erklärung

0 Alle in der internen Tabelle stehenden
Datensätze konnten in der Datenbank-
tabelle gelöscht werden.

SY-SUBRC

4 Mindestens ein Datensatz konnte
nicht gelöscht werden (z.B. Weil kein
Datensatz mit gleicher Schlüsselfeld-
belegung vorhanden ist).

SY-DBCNT Enthält die Anzahl der tatsächlich ge-
löschten Datensätze.

Abb. 9.12
DELETE

mehrere Daten-
sätze über int.

Tabelle löschen

9.2 Datenbankändernde Anweisungen 505■

■

■

Menge von Datensätzen über eine logische Bedingung
löschen

Syntax:
DELETE FROM <datenbanktabelle> [CLIENT SPECIFIED]
 WHERE <log. Bedingung>.

Die über die logische Bedingung spezifizierte Menge von Datensät-
zen wird aus der Datenbanktabelle gelöscht.

Systemvariable Belegung Erklärung

0 Mindestens ein Datensatz der Daten-
banktabelle wurde gelöscht.

SY-SUBRC

4 Es wurde kein Datensatz gelöscht.

SY-DBCNT Enthält die Anzahl der tatsächlich ge-
löschten Datensätze.

Mit der Anweisung

DELETE FROM <datenbanktabelle> WHERE <feld> LIKE '%'.

löschen Sie bei mandantenunabhängigen Tabellen alle Datensätze,
bei mandantenabhängigen Tabellen alle Datensätze des aktuellen
Mandanten.
Wollen Sie alle Datensätze einer mandantenabhängigen Tabelle lö-
schen, benutzen Sie die Anweisung

DELETE FROM <datenbanktabelle> CLIENT SPECIFIED
WHERE <feld> LIKE '%'.

Dabei ist <feld> ein beliebiges Feld der Tabelle, aus der die Daten-
sätze gelöscht werden sollen. Beachten Sie dabei jedoch, dass ein
Wiederherstellen der Datensätze, zumindest mit einem ABAP-
Programm, nicht möglich ist.

Abb. 9.13
DELETE
mehrere Daten-
sätze über log.
Bedingung
löschen

9 Datenbankänderungen programmieren ■

■

■

506

Im Programm SAPMYK09_Bestand_1 sollen jetzt neu angelegte
oder geänderte Bestands- bzw. Autorendaten in die Datenbankta-
bellen ZBESTAND und ZAUTOREN (bzw. ZBESTAND_TW
und ZAUTOREN_TW) eingetragen werden.

3. Tabelle ZBESTAND bzw. ZBESTAND_TW aktualisieren
Wählt der Benutzer die Funktion SICHERN (Funktionscode
SAVE) im Dynpro 100, wird nach der Prüfung der eingege-
benen Daten, im PAI-Modul USER_COMMAND_0100 das
Unterprogramm BESTANDSDATEN_SICHERN aufgerufen.
Die Daten, mit der die Datenbanktabelle aktualisiert werden
soll, befinden sich in der Struktur WA_ZBESTAND, mit der
auch das Layout des Dynpros 100 angelegt wurde. Diese
Struktur besitzt den gleichen Zeilenaufbau wie die zu aktuali-
sierende Tabelle. Um zu entscheiden, ob ein Datensatz dieser
Tabelle geändert (UPDATE) oder neu angelegt (INSERT)
werden muss, steht Ihnen die Variable MODUS zur Verfügung

■ MODUS = 'Buch anlegen'(006) INSERT

■ MODUS = 'Buch ändern'(007) UPDATE

Keine Abfrage des MODUS brauchen Sie, wenn Sie die
MODIFY-Anweisung benutzen.

Programmieren Sie die Aktualisierung der Datenbanktabelle
ZBESTAND bzw. ZBESTAND_TW im Unterprogramm
BESTANDSDATEN_SICHERN.

4. Tabelle ZAUTOREN bzw. ZAUTOREN_TW aktualisieren
Der Benutzer kann Autoren ändern oder neu anlegen. Die in-
terne Tabelle IT_ZAUTOREN_CHANGED wird im Unter-
programm AUTOREN_AENDERUNGEN_ERMITTELN mit
den Daten der zu ändernden Autoren des bearbeiteten Buches
geladen. Diese Tabelle hat den gleichen Zeilenaufbau wie die
zu aktualisierende Datenbanktabelle ZAUTOREN bzw.
ZAUTOREN_TW. Programmieren Sie im Unterprogramm
AUTOREN_AENDERUNGEN_SICHERN die Datenbankän-
derungen.
Die Daten der neu anzulegenden Autorensätze befinden sich in
der internen Tabelle IT_ZAUTOREN_NEW, die im Unter-
programm AUTOREN_NEUE_ERMITTELN geladen wird.
Programmieren Sie das Anlegen der neuen Autoren im Unter-
programm AUTOREN_NEUE_ANLEGEN.

Lösung: SAPMYK09_Bestand_2

9.2 Datenbankändernde Anweisungen 507■

■

■

Lösung:

&---
*& Form bestandsdaten_sichern *
&---
FORM bestandsdaten_sichern.
*Hier werden die geänderten bzw. neu angelegten
*Bestandsdaten in die Tabelle ZBESTAND bzw.
*ZBESTAND_TW eingetragen
 IF modus = 'Buch anlegen'(006).
 INSERT (t_bestand) FROM wa_zbestand.
 IF sy-subrc <> 0. MESSAGE a018(zlib_tw).
 ENDIF.
 ENDIF.
 IF modus = 'Buch ändern'(007).
 UPDATE (t_bestand) FROM wa_zbestand.
 IF sy-subrc <> 0. MESSAGE a019(zlib_tw).
 ENDIF.
 ENDIF.
ENDFORM.

&---
*& Form autoren_aenderungen_sichern *
&---
FORM autoren_aenderungen_sichern.
*it_zautoren_changed enthält die Angaben zu den
*zu ändernden Autoren.
 UPDATE (t_autoren)
 FROM TABLE it_zautoren_changed.
 IF sy-subrc <> 0. MESSAGE a019(zlib_tw).
 ENDIF.
ENDFORM.

&---
*& Form autoren_neue_anlegen *
&---
FORM autoren_neue_anlegen.
*it_zautoren_new enthält die Angaben zu den neu
*anzulegenden Autoren.
 insert (t_autoren)
 FROM TABLE it_zautoren_new.
 IF sy-subrc <> 0. MESSAGE a020(zlib_tw).
 ENDIF.
ENDFORM.

9 Datenbankänderungen programmieren ■

■

■

508

9.3
Datenbankänderungen organisieren

Was passiert eigentlich, wenn im Dynpro 200 des Programmes
SAPMYK09_Bestand_1 ein neuer Autorenstammsatz erfolgreich
angelegt wurde, das Anlegen des dazugehörigen Datensatzes in der
Datenbanktabelle ZBESTAND jedoch scheitert. Wir haben dann ei-
nen Autorenstammsatz der keinem Buch zugeordnet ist. Das ist nun
für unser Bibliotheksprogramm nicht unbedingt schlimm, denken
Sie aber an andere Anwendungen (z.B. Umbuchen eines Geldbetra-
ges vom Konto A nach Konto B), wird schnell klar, dass solche Ri-
siken vom Programm abgefangen werden müssen.

Das Problem kann auch abstrakter ausgedrückt werden: Zu Pro-
grammbeginn befinden sich die Datenbanktabellen in einem konsi-
stenten (d.h. fehlerfreien) Zustand. Zur Laufzeit des Programmes
kommt es zwangsläufig zu inkonsistenten Zuständen in den beteilig-
ten Datenbanktabellen. Diese dauern solange, bis alle Datenbankän-
derungen ausgeführt sind. Durch die Organisation der Datenbank-
änderungen muss der Programmierer dafür sorgen, dass die Ausfüh-
rung des Programmes die Datenbank von einem konsistenten Zu-
stand in einen anderen konsistenten Zustand überführt. Dieses
Prinzip darf auch bei Programmabstürzen, nicht fehlerfrei ausge-
führten datenbankändernden Anweisungen etc. nicht durchbrochen
werden. Dieses Kapitel befasst sich mit den Programmiertechniken,
die dazu eingesetzt werden.

9.3.1
Das LUW-Konzept

Unter einer LUW (Logical Unit of Work) ist die Zeitspanne zu ver-
stehen, in der die Datenbank von einem konsistenten Zustand in ei-
nen anderen konsistenten Zustand überführt wird. Jede LUW endet
entweder mit einem sogenannten COMMIT-Befehl, der die Ände-
rungen in die Datenbank einträgt oder mit einem Datenbank-
Rollback, der den Zustand der Datenbank vor der LUW wiederher-
stellt (weil eben z.B. eine Datenbankänderung fehlgeschlagen ist).
Innerhalb einer LUW werden entweder alle Datenbankänderungen
oder überhaupt keine ausgeführt (Alles oder Nichts-Prinzip). Für un-
ser eingangs geschildertes Beispiel heißt das, dass beim Fehlschla-
gen des Anlegens des Bestandsdatensatzes die dazugehörigen Auto-
renstammsätze nicht in die Datenbank geschrieben werden.

9.3 Datenbankänderungen organisieren 509■

■

■

DB-LUW
Die Datenbank-LUW ist ein vom SAP-System unabhängiger Me-
chanismus des Datenbanksystems. Er führt, wie auch in Abb. 9.14
dargestellt, entweder alle Datenbankänderungen aus oder überhaupt
keine. Die Frage ist, wann eine solche Datenbank-LUW ausgeführt
wird und wie im Fehlerfall ein Rollback ausgelöst wird. Um den ers-
ten Teil der Frage beantworten zu können, müssen wir uns mit dem
Prinzip der Abarbeitung der Datenbankänderungen durch das SAP-
System beschäftigen. Für einen Dialogschritt, also dem Abarbeiten
der PAI-Ablauflogik bis zum Senden des Folgedynpros nach PBO,
wird dem Programm vom SAP-Systemkern ein sogenannter Work-
prozess (im Dialogbetrieb ist das der Dialogworkprozess) zur Ver-
fügung gestellt. Dieser Dialogworkprozess führt u.a. die Datenbank-
änderungen aus bzw. stößt einen anderen Workprozess, den
sogenannten Verbucher, an, der das tut. Die Anzahl der Workpro-
zesse ist begrenzt, es steht also nicht für jedes aktive Programm ein
eigener Workprozess zur Verfügung, vielmehr wird jedem Dialog-
schritt ein, mehr oder weniger zufällig, freier Workprozess zugeord-
net. Es ist auch nicht gewährleistet, dass dem nächsten Dialogschritt
der gleiche Workprozess zugeordnet wird wie dem aktuellen. Da der
Workprozess aber für die Durchführung der Datenbankänderungen
verantwortlich ist, muss also nach jedem Dialogschritt eine Daten-
bank-LUW ausgelöst werden, damit der Workprozess dieser Ver-
antwortung auch gerecht werden kann.
Eine DB-LUW wird also immer dann ausgelöst, wenn der dem Dia-
logschritt zugeordnete Workprozess beendet wird. Das ist der Fall

■ wenn ein neuer Bildschirm gesendet wird (Achtung: auch beim
Senden einer Message) oder

■ die Programmausführung durch einen anderen Workprozess
fortgesetzt wird (z.B. beim Aufruf von und der Rückkehr aus
RFC-Funktionsbausteinen).

Kommen wir zum zweiten Teil der eingangs gestellten Frage: wie
wird ein Datenbank-Rollback ausgelöst?

Abb. 9.14
Dateenbankän-
derungen (Alles
oder Nichts-
Prinzip)

9 Datenbankänderungen programmieren ■

■

■

510

Das Datenbank-Rollback wird vom ABAP-Programm ausgelöst.
Dafür gibt es zwei Möglichkeiten:

1. Nach dem Feststellen eines Fehlers bei der Durchführung der
Datenbankänderung wird eine Message vom Typ A (Abbruch)
oder X (Kurzdump) gesendet. Bei diesen Messagetypen wird
das laufende Programm abgebrochen und die Datenbank zu-
rückgesetzt.

2. Im Programm wird die Anweisung ROLLBACK WORK abge-
arbeitet. Diese Anweisung verursacht ein Datenbankrollback,
ohne das Programm zu beenden. Hier ist allerdings Vorsicht ge-
boten, weil der Programmkontext nicht zurückgesetzt wird (alle
Datenobjekte behalten Ihre Werte).

SAP-LUW
Widmen wir uns jetzt wieder unserem Bestandspflegeprogramm
SAPMYK09_Bestand_1. Es besteht aus dem Dynpro 100, in dem
die Tabelle ZBESTAND gepflegt wird und dem Dynpro 200, das
die Autorentabelle ZAUTOREN aktualisiert. Gebe es nur das Prin-
zip der Datenbank-LUW, dürften die Datenbankänderungen nur im
Dynpro 100 programmiert werden, weil die Änderungen sonst in
zwei verschiedenen Datenbank-LUWs erfogten und im Fehlerfall
nicht gemeinsam zurückgesetzt werden könnten. Hier kommt nun
die SAP-LUW ins Spiel. Die SAP-LUW klammert die Schritte, die

Abb. 9.15
Auslösen eines

Datenbank-
Rollbacks

9.3 Datenbankänderungen organisieren 511■

■

■

zu einem betriebswirtschaftlichen Prozess gehören, zusammen. In
unserem Beispiel die Bestands- und die Autorenpflege. In einem an-
deren Beispiel evtl. das Abbuchen eines Geldbetrages vom Konto A
und die Gutschrift in Konto B.
Innerhalb der Datenbank-LUWs der einzelnen Bildschirmbilder, die
von der SAP-LUW geklammert werden, finden keine Datenbank-
änderungen statt. Die Änderungen werden nur „vorgemerkt“. Sie
werden erst am Ende der SAP-LUW, in einer einzigen Datenbank-
LUW, ausgeführt. Damit werden alle Änderungen des betriebswirt-
schaftlichen Prozesses beim Auslösen eines Datenbank-Rollbacks
zurückgesetzt. Das Ziel, die Datenbank von einem konsistenten Zu-
stand in einen anderen, ebenfalls konsistenten Zustand zu überfüh-
ren, ist damit unter allen Umständen gewährleistet. Die Änderungen
werden also in der SAP-LUW auf die letzte DB-LUW gebündelt.
Die SAP-LUW wird im ABAP-Programm mit der COMMIT
WORK Anweisung abgeschlossen.

Die Bündelung der Datenbankänderungen auf die letzte Datenbank-
LUW der SAP-LUW kann über 3 Wege erreicht werden:

■ Direkt, d.h. die Anweisung zur Datenbankänderung wird erst im
letzten Dialogschritt programmiert (Dynpro 300 in Abb. 9.16).
Damit ist die Einschränkung verbunden, dass Dynpro 300 in je-
dem Fall durchlaufen werden muss.

■ Durch verzögert abzuarbeitende Unterprogramme. Bei dieser
Methode werden die Datenbankänderungen in Unterprogram-
men gekapselt. Die Unterprogramme werden an der richtigen

Abb. 9.16
SAP-LUW

9 Datenbankänderungen programmieren ■

■

■

512

Stelle aufgerufen jedoch erst nach der Anweisung COMMIT
WORK ausgeführt.

■ Über den Verbucherworkprozess. Dieser Workprozess ist ein
Systemprogramm, das durch das ABAP-Programm angestoßen
wird und die Datenbankänderungen durchführt. Der Anstoß des
Workprozesses erfolg über die Anweisung COMMIT WORK.

9.3.2
Bündelung durch Unterprogramme

Prinzip: Die Datenbankänderungen werden in Unterprogrammen
gekapselt. Der Unterprogrammaufruf erfolgt in dem Dialogschritt, in
dem der Benutzer die Änderung anweist. Durch die Klausel ON
COMMIT beim Aufruf des Unterprogrammes wird dieses jedoch
nicht ausgeführt, sondern in eine Systemtabelle eingetragen. Stößt
das ABAP-Programm auf die Anweisung COMMIT WORK werden
die der Systemtabelle stehenden Unterprogramme nach dem FIFO-
Prinzip (First In – First out) abgearbeitet.

Achtung: Zur Datenbankänderung werden die globalen Daten des
Programmes genutzt. Entscheidend für die Aktualisierung der Da-
tenbank ist deren Inhalt zum Zeitpunkt der Ausführung der daten-
bankändernden Anweisungen, nicht der Zeitpunkt des Unterpro-
grammaufrufs über PERFORM ... ON COMMIT.

Abb. 9.17
Bündelung

durch Unterpro-
gramme

9.3 Datenbankänderungen organisieren 513■

■

■

Hinweis:
Der ganze Aufwand nützt Ihnen nichts, wenn Sie vergessen, über ei-
ne Abbruchmeldung im Unterprogramm das Datenbank-Rollback
auch auszulösen, wenn Fehler beim Aktualisieren der Datenbank
aufgetreten sind.

1. Ändern Sie das Programm SAPMYK09_Bestand_1 so, dass
die Datenbankänderungen erst ausgeführt werden, wenn der
Benutzer im Dynpro 100 die Funktion sichern auslöst. Nutzen
Sie dafür die Methode PERFORM ... ON COMMIT. Beim
Auftreten von Fehlern bei der Datenbankänderung soll die Da-
tenbank zurückgesetzt werden.

2. Setzen Sie einen Breakpoint im Unterprogramm
AUTOREN_AENDERUNGEN_SICHERN, starten Sie das
Programm und ändern Sie für ein beliebiges Buch dessen Au-
tor. Dann sichern Sie die Autorendaten, kehren zurück zu
Dynpro 100 und sichern dort die Bestandsdaten. Erst jetzt wird
der Breakpoint im Unterprogramm erreicht. Die Bündelung
der Datenbankänderungen auf die letzte DB-LUW funktio-
niert.

3. Ändern Sie den GUI-Status DYNPRO_0200. Im Dynpro 200
soll nicht mehr das Symbol SICHERN (Diskette) sondern
ZURÜCK (grüner Pfeil) die Datenänderungen in die System-
tabelle schreiben und die Datenbank aktualisieren. Danach soll
das Programm in das Dynpro 100 verzweigen.

Lösung: SAPMYK09:Bestand:3

Lösung:

&---
*& Module USER_COMMAND_0200 INPUT *
&---
MODULE user_command_0200 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.

WHEN 'BACK'.
 PERFORM autoren_aenderungen_ermitteln.
 IF ok = '1'.
*Unterprogramm nicht sofort ausführen,
*sondern in Systemtabelle schreiben

9 Datenbankänderungen programmieren ■

■

■

514

 PERFORM autoren_aenderungen_sichern
 ON COMMIT.
 ENDIF.
 PERFORM autoren_neue_ermitteln.
 IF ok = '1'.
 PERFORM autoren_neue_anlegen
 ON COMMIT.
 ENDIF.
 LEAVE TO SCREEN 0.
 ENDCASE.
ENDMODULE.
&---
*& Form autoren_aenderungen_sichern *
&---
FORM autoren_aenderungen_sichern.
*Die Tabelle it_zautoren_changed enthält
*die Angaben zu den zu ändernden Autoren.
 UPDATE (t_autoren)
 FROM TABLE it_zautoren_changed.
 IF sy-subrc <> 0.

MESSAGE a019(zlib_tw).
 ENDIF.
ENDFORM.

&---
*& Form autoren_neue_anlegen *
&---
FORM autoren_neue_anlegen.
*Die Tabelle it_zautoren_new enthält die
*Angaben zu den neu anzulegenden Autoren.
 insert (t_autoren)
 FROM TABLE it_zautoren_new.
 IF sy-subrc <> 0.
 MESSAGE a020(zlib_tw).
 ENDIF.
ENDFORM.

&---
*& Module USER_COMMAND_0100 INPUT *
&---
MODULE user_command_0100 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.

9.3 Datenbankänderungen organisieren 515■

■

■

*...
 WHEN 'SAVE'.
*...
 IF ok = '1'.
 PERFORM bestandsdaten_sichern
 ON COMMIT.
 COMMIT WORK.
 geladen_200 = '0'.
 ENDIF.
*...
 ENDCASE.
ENDMODULE.

9.3.3
Bündelung durch Verbucherbausteine

Eine weitere Möglichkeit zur Bündelung der Datenbankänderungen
ist die Benutzung des Verbucherworkprozesses, einem Systempro-
gramm dessen Aufgabe es ist, die Datenbank zu aktualisieren. Bei
dieser Methode werden die datenbankändernden Anweisungen in
Verbucherfunktionsbausteinen gekapselt. Durch den Aufruf der Ver-
bucherfunktionsbausteine über die Anweisung CALL FUNCTION
<Name> IN UPDATE TASK wird dieser nicht sofort ausgeführt,
sondern in die sogenannte Protokolltabelle geschrieben. Nach dem
Abschluss der SAP-LUW durch COMMIT WORK, werden die in
der Protokolltabelle dieser SAP-LUW zugeordneten Funktionsbau-
steine abgearbeitet. Standardmäßig arbeitet das Verbucherprogramm
unabhängig von Ihrem ABAP-Programm (asynchrone Verbuchung).

9 Datenbankänderungen programmieren ■

■

■

516

Erklärung zur Abb. 9.18

1. Jede SAP-LUW bekommt bei dieser Methode vom SAP-
System einen eindeutigen Verbuchungsschlüssel (VB-Key) zu-
geordnet.

2. Um diese Technik anwenden zu können, müssen Sie (mindes-
tens) einen Verbucherfunktionsbaustein anlegen. Der Aufruf
dieses Funktionsbausteins erfolgt mit der Klausel IN UPDATE
TASK. Dadurch wird der Funktionsbaustein mit den Exportpa-
rametern in die Protokolltabelle eingetragen.

3. Die Anweisung COMMIT WORK schließt die SAP-LUW. Es
wird ein Header-Eintrag in der Protokolltabelle erzeugt.

4. Durch den Header-Eintrag in der Protokolltabelle erkennt das
Verbucherprogramm, dass die Daten verbucht werden können
und beginnt mit der Verbuchung.

Abb. 9.18
Nutzung des

Verbucher-
programmes

9.3 Datenbankänderungen organisieren 517■

■

■

5. Wird durch einen Verbucherbaustein ein Fehler bei der Daten-
bankänderung erzeugt, löst dieser das Rollback aus. Der Verbu-
cher kennzeichnet alle Einträge der SAP-LUW in der Protokoll-
tabelle als fehlerhaft und bricht die Verbuchung ab. Diese
Datensätze können Sie mit der Transaktion SM13 bearbeiten.

6. Verläuft der Verbuchungsprozess fehlerfrei, werden die Daten-
sätze der SAP-LUW aus der Protokolltabelle gelöscht.

Datensatzsperren (siehe folgendes Kapitel) werden im Standard vom
ABAP-Programm an das Verbucherprogramm vererbt und nach der
Verbuchung vom Verbucherprogramm zurückgesetzt.

Hinweis:
Das Verbucherprogramm arbeitet zeitlich unabhängig (asynchron)
von Ihrem ABAP-Programm. Sie sollten deshalb in Ihrem Pro-
gramm die Daten, die es gerade in die Protokolltabelle eingetragen
hat, nicht über SELECT ... neu einlesen, weil sie das Verbuchungs-
programm eventuell noch nicht in die Datenbanktabelle eingetragen
hat. Sollte das notwendig sein, arbeiten Sie mit COMMIT WORK
AND WAIT (synchron).

Vorgehensweise: Verbucherfunktionsbaustein anlegen

Das Anlegen von Verbucherfunktionsbausteinen unterscheidet sich
im Prinzip nicht vom Anlegen eines normalen Funktionsbausteins
(siehe Kapitel 5). Es sind allerdings einige Details zu beachten.

In der Registerkarte Eigenschaften ist der Auswahlknopf VER-
BUCHUNGSBAUSTEIN auszuwählen. Sie können verschiedene
Eigenschaften einstellen:

Abb. 9.19
asynchrone und
synchrone
Arbeitsweise

9 Datenbankänderungen programmieren ■

■

■

518

Eigenschaft Erklärung

Start sofort Die Verbuchung wird zum nächstmöglichen
Zeitpunkt ausgeführt. Ist ein Verbuchungsfeh-
ler aufgetreten (Datenbank wurde zurückge-
setzt), können Sie diese Verbuchungen „ma-
nuell“ über die Transaktion SM13 auslösen
(nachverbuchen). Dabei ist Vorsicht geboten,
weil zwischenzeitlich durchgeführte Änderun-
gen nicht berücksichtigt werden können. Diese
Art der Verbuchung wird auch V1 Verbu-
chung genannt.

Start sofort – nicht
nachverbuchbar

Die Verbuchung wird zum nächstmöglichen
Zeitpunkt ausgeführt, nachverbuchen wird
nicht erlaubt. Diese Art der Verbuchung wird
auch V1 Verbuchung genannt.

Start verzögert Die Verbuchung erfolgt erst, wenn alle V1-
Verbuchungen erfolgreich ausgeführt wurden.
Diese Art der Verbuchung wird auch V2 Ver-
buchung genannt.

Sammellauf Eine Anzahl gleicher Funktionsbausteine, die
bisher in der V2-Verbuchung einzeln jeder für
sich liefen, können zu einem Sammellauf zu-
sammengefaßt werden.
Weitere Informationen können in der ABAP-
Dokumentation unter IMPORT FROM
LOGFILE und VERBUCHUNG gefunden
werden.

9.3 Datenbankänderungen organisieren 519■

■

■

Importparameter müssen zwingend als Wert übergeben werden. Ei-
ne Adressübergabe ist nicht möglich. Wenn Sie bedenken, dass die
Verbucherbausteine in aller Regel asynchron arbeiten, könnte es bei
der Adressübergabe dazu kommen, dass zwischenzeitlich andere
Werte, als die zu verbuchenden, auf dieser Adresse gespeichert wor-
den sind. Deshalb ist nur die Wertübergabe erlaubt.

Export- und Changing-Parameter gibt es für Verbucherfunktions-
bausteine nicht. Auch das ist durch die asynchrone Arbeitsweise si-
cher leicht einzusehen.
Der Funktionsbaustein muss beim Auftreten eines Verbuchungsfeh-
lers eine Message vom Typ A oder X ausgeben. Der Fehler wird in
der Registerkarte AUSNAHMEN definiert.

Abb. 9.20
Eigenschaften
festlegen

Abb. 9.21
Importparameter
festlegen

9 Datenbankänderungen programmieren ■

■

■

520

Und jetzt noch der Quelltext. Hier ist unbedingt die Abbruchmel-
dung auszugeben, falls ein Verbuchungsfehler aufgetreten ist.

Aktivieren – und fertig.

9.4
Das SAP-Sperrkonzept

Wenn das Bestandspflegeprogramm SAPMYK09_Bestand_1 von
mehreren Anwendern gleichzeitig benutzt werden soll, brauchen wir
einen Mechanismus, der verhindert, das mehrere Benutzer (bzw.
mehrere Programme) zur gleichen Zeit den selben Datensatz ändern.
Würden wir das nicht ausschließen, könnten Änderungen verloren
gehen. Zur Lösung des Problems hat die SAP ein eigenes Sperrkon-
zept entwickelt. Natürlich sperrt das Datenbanksystem während ei-

Abb. 9.22
Ausnahmen

festlegen

Abb. 9.23
Quelltext
anlegen

9.4 Das SAP-Sperrkonzept 521■

■

■

ner Datenbank-LUW den Datensatz gegen weitere Änderungen.
Durch das SAP-Sperrkonzept kann der Datensatz aber über die ge-
samte SAP-LUW gesperrt werden.

9.4.1
Prinzip des SAP-Sperrkonzepts

Kern des SAP-Sperrkonzeptes ist die Sperrtabelle. Wenn ein Daten-
satz zum Bearbeiten bereitgestellt werden soll, muss das Anwen-
dungsprogramm vorher prüfen, ob sich der Datensatz bereits in der
Sperrtabelle befindet. Ist das nicht der Fall, wird er dort eingetragen
und das Programm kann diesen Datensatz zum Bearbeiten bereitstel-
len. Hat der Datensatz jedoch bereits einen Eintrag in der Sperrtabel-
le, wird das dem Programm über die Systemvariable SY-SUBRC
mitgeteilt. Der Datensatz darf dann nicht zur Bearbeitung bereitge-
stellt werden, der Benutzer bekommt in diesem Fall eine Meldung
die besagt, dass sich der gewünschte Datensatz z.Z. in Bearbeitung
befindet. Am Ende der Bearbeitung wird der Eintrag des Datensat-
zes in der Sperrtabelle wieder gelöscht, d.h. der Datensatz wird für
weitere Bearbeitungen wieder freigegeben. Das SAP-Sperrkonzept
sperrt die Datensätze logisch, nicht physisch. Es funktioniert nur
dann, wenn alle Programme das Sperrkonzept bedienen. Die Ver-
antwortung dafür liegt beim Programmierer. Syntaxfehler oder
Laufzeitfehler werden durch eine vergessene Sperre nicht erzeugt.

Abb. 9.24
Prinzip des
Sperrkonzeptes

9 Datenbankänderungen programmieren ■

■

■

522

Die Verwaltung der Sperrtabelle wird durch einen eigenen
Workprozess, dem Enqueue-Workprozess, übernommen.

9.4.2
Grundsätzliche Arbeitsweise beim Sperren und
Freigeben

Für das Setzen bzw. Entfernen von Datensatzsperren ist folgende
Reihenfolge anzuwenden:

1. Sperren des Datensatzes.

2. Lesen des Datensatzes, wenn die Sperre gesetzt werden konnte.

3. Ändern.

4. Aktualisierung der Datenbank.

5. Löschen der Sperre.

Diese Reihenfolge gewährleistet, dass

■ die Änderungen vollständig unter dem Schutz der Sperre ablau-
fen,

■ Keine Änderungen zu Datensätzen durchgeführt werden kön-
nen, die durch andere Benutzer gerade geändert werden.

Voraussetzung ist allerdings, dass alle Programme das Sperrkonzept
verwenden.
Sie sollten darüber hinaus die zu ändernden Datensätze so zeitig wie
möglich sperren. Idealerweise zu Beginn der SAP-LUW.

9.4.3
Technische Realisierung

Um Sperren setzen zu können, benötigen Sie ein Sperrobjekt. In
diesem wird festgelegt, in welcher Tabelle, bzw. in welchen Tabel-
len, Sperren gesetzt werden sollen. Außerdem wird im Sperrobjekt
definiert, welche Datensätze zu sperren sind. Sie können genau ei-
nen Datensatz sperren oder eine Menge von Datensätzen. Durch das
Aktivieren des Sperrobjektes werden zwei Funktionsbausteine an-
gelegt, der ENQUEUE-Funktionsbaustein zum Setzen, und der
DEQUEUE-Funktionsbaustein zum Löschen der Datensatzsperren.
Diese Funktionsbausteine müssen an den entsprechenden Stellen des
Anwendungsprogrammes aufgerufen werden. Als Exportparameter
übergibt das Anwendungsprogramm die Schlüsselfelder des zu sper-
renden Datensatzes. Der ENQUEUE-Funktionsbaustein versucht
dann, den entsprechenden Datensatz zu sperren, gelingt das nicht,

9.4 Das SAP-Sperrkonzept 523■

■

■

löst er eine Ausnahme aus, auf die das Anwendungsprogramm rea-
gieren muss.

Vorgehensweise: Sperrobjekt anlegen

Sperrobjekte werden im ABAP-Dictionary angelegt. Starten Sie die-
ses Werkzeug (Transaktionscode SE11). Der Name eines Sperrob-
jektes beginnt mit dem Buchstaben E. Das zweite Zeichen kenn-
zeichnet den Namensbereich (z oder y für den Kundennamensbe-
reich). Die Vorgehensweise wird am Beispiel des Sperrobjektes
EZZBESTAND_TW gezeigt, das Datensätze in der Tabelle
ZBESTAND_TW sperren soll.
Tragen Sie den Namen des Sperrobjektes im Einstiegsbild des
ABAP-Dictionarys ein und aktivieren Sie den Auswahlknopf
SPERROBJEKT.

Im Folgebild „Sperrobjekt pflegen“ geben Sie eine ausagekräftige
Kurzbeschreibung und den Namen der Tabelle, in der Sperren ge-
setzt werden sollen, sowie den gewünschten Sperrmodus ein.

Abb. 9.25
Sperrobjekt an-
legen, Einstieg

9 Datenbankänderungen programmieren ■

■

■

524

Eine Erklärung zu den Sperrmodi (hier „Schreibsperre“) finden Sie
unter Hilfe Hilfe zur Anwendung (Link: „Sperrmodi“).
Werfen Sie noch einen Blick auf die Registerkarte „Sperrparame-
ter“.

In dieser Registerkarte stehen die Schlüsselfelder der Tabelle, in
der Datensatzsperren gesetzt werden sollen. Über die Ankreuzfelder
legen Sie die Importparameter der Sperrfunktionsbausteine (EN-
QUEUE und DEQUEUE) dieses Sperrobjektes fest. Wollen Sie ge-
nau einen Datensatz sperren, sind alle Schlüsselfelder der Tabelle als
Sperrparameter auszuwählen.
Aktivieren Sie zum Schluss das Sperrobjekt. Dieser Vorgang be-
wirkt, dass die Funktionsbausteine ENQUEUE_EZZBESTAND_TW
(Sperrfunktionsbaustein)und DEQUEUE_EZZBESTAND_TW (Frei-
gabefunktionsbaustein) angelegt werden. Die Namensgebung erfolgt
nach dem Muster ENQUEUE_<Name des Sperrobjektes> bzw.
DEQUEUE_<Name des Sperrobjektes>.

Abb. 9.26
Tabelle und
Sperrmodus

festlegen

Abb. 9.27
Sperrparameter

festlegen

9.4 Das SAP-Sperrkonzept 525■

■

■

Legen Sie die Sperrobjekte EZZBESTAND zum Setzen einer
Schreibsperre in der Tabelle ZBESTAND (bzw. ZBESTAND_TW)
und EZZAUTOREN zum Setzen einer Schreibsperre in der Tabelle
ZAUTOREN (bzw. ZAUTOREN_TW) an.

Vorgehensweise: Sperrbausteine einbinden

Um einen Datensatz zu sperren bzw. die gesetzte Sperre wieder auf-
zuheben, werden die beim Anlegen des Sperrobjektes generierten
Funktionsbausteine ENQUEUE_<Name des Sperrobjektes> bzw.
DEQUEUE_<Name des Sperrobjektes> aufgerufen und ihnen die
Schlüsselfeldbelegung des zu sperrenden Datensatzes übergeben.
Stellen Sie dazu den Cursor an die Stelle Ihres Programmes, an der
die Sperre gesetzt bzw. wieder aufgehoben werden soll. Beachten
Sie dabei, dass der Datensatz erst gesperrt und dann, im Erfolgsfall,
gelesen wird. Erzeugen Sie über die Schaltfläche MUSTER die Syn-
tax zum Aufruf der Sperrbausteine.

Abb. 9.28
Sperrfunktions-
baustein aufru-
fen (1)

9 Datenbankänderungen programmieren ■

■

■

526

Die Syntax des Funktionsbausteinaufrufes wird in Ihr Programm ge-
laden. Übergeben Sie im Abschnitt EXPORTING die Sperrparame-
ter. Der Sperrbaustein löst folgende Ausnahmen aus:

FOREIGN_LOCK Datensatz durch anderen Benutzer bzw.
durch ein anderes Programm gesperrt.

SYSTEM_FAILURE Systemfehler, Datensatz konnte nicht ge-
sperrt werden

OTHERS anderer Fehler, Datensatz konnte nicht ge-
sperrt werden

Stellen Sie den Datensatz nur dann zum Bearbeiten bereit, wenn
vom Funktionsbaustein keine Ausnahme ausgelöst wurde. An dem
folgenden Quelltextausschitt können Sie sich orientieren.
Die Freigabe der gesperrten Datensätze programmieren Sie auf die
gleiche Art und Weise, mit dem DEQUEUE-Funktionsbaustein. Im
Unterschied zum ENQUEUE-Funktionsbaustein löst dieser keine
Ausnahmen aus.

Wollen Sie alle Sperren, die durch das Programm gesetzt wurden,
aufheben, können Sie auch den Funktionsbaustein DEQUEUE_ALL
aufrufen.

IF modus = 'Buch ändern'
AND NOT wa_zbestand-isbn IS INITIAL.

*****************Sperre setzen******************
 CALL FUNCTION 'ENQUEUE_EZZBESTAND_TW'
 EXPORTING
 mode_zbestand_tw = 'E'

mandant = sy-mandt
isbn = wa_zbestand-isbn

 EXCEPTIONS
 foreign_lock = 1

Abb. 9.29
Sperrfunktions-
baustein aufru-

fen (2)

9.4 Das SAP-Sperrkonzept 527■

■

■

 system_failure = 2
 OTHERS = 3.
*Nur wenn sy-subrc = 0, konnte Sperre gesetzt
*werden
IF sy-subrc = 0.
 SELECT SINGLE * FROM (t_bestand) INTO
 wa_zbestand
 WHERE isbn = wa_zbestand-isbn.
 IF NOT wa_autor_neu IS INITIAL.
 CALL SCREEN 200.
 ENDIF.
ELSE.
*Sperre konnte nicht gesetzt werden
 MESSAGE i020(zlib_tw) WITH wa_zbestand-isbn.
 ENDIF.
ENDIF.

1. Programmieren Sie im Bestandspflegeprogramm
SAPMYK09_Bestand_1 die notwendigen Datensatzsperren.
Wählt der Benutzer ein Buch zum Ändern aus, wird der ent-
sprechende Datensatz in der Tabelle ZBESTAND (bzw.
ZBESTAND_TW) gesperrt. Außerdem sollen auch die Daten-
sätze der Autoren des ausgewählten Buches in der Tabelle
ZAUTOREN (bzw. ZAUTOREN_TW) gesperrt werden.

2. Löschen Sie die Sperren, wenn der Benutzer im Dynpro 100
die Änderungen gesichert hat oder sie verwirft.

Lösung: SAPMYK09_Bestand_4

Lösung:

&---
*& Module USER_COMMAND_0100 INPUT *
&---
MODULE user_command_0100 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
...
 WHEN 'NEW'.
*eventuell gesetzte Datensatzsperren freigeben
 CALL FUNCTION 'DEQUEUE_ALL'.

9 Datenbankänderungen programmieren ■

■

■

528

 modus = 'Buch anlegen'(006).
 CLEAR wa_zbestand.
 CLEAR wa_autor_neu.
 geladen_200 = '0'.
...
 WHEN 'CHANGE'.
*eventuell gesetzte Datensatzsperren freigeben
 CALL FUNCTION 'DEQUEUE_ALL'.
 modus = 'Buch ändern'(007).
 CLEAR wa_zbestand.
 CLEAR wa_autor_neu.
 geladen_200 = '0'.
...
 WHEN 'SAVE'.
 PERFORM alle_neuen_autoren_angelegt.
 IF ok = '0'.
 MESSAGE i009(zlib_tw).
 geladen_200 = '0'.
 CALL SCREEN 200.
 ok = '0'.
 ENDIF.
 IF ok = '1'.
 PERFORM bestandsdaten_sichern ON COMMIT.
 COMMIT WORK. "Datenbank wird aktuali-
siert
*Datensatzsperren freigeben;
*Nur bei der Methode 'PERFORM...ON COMMIT.
*Bei CALL FUNCTION ... IN UPDATE TASK würde
*der Verbucher die Sperren "erben" und nach der
*Verbuchung freigeben
 CALL FUNCTION 'DEQUEUE_ALL'.
 CLEAR wa_zbestand.
 geladen_200 = '0'.
 ENDIF.
 WHEN OTHERS.
 IF modus = 'Buch ändern'
 AND NOT wa_zbestand-isbn IS INITIAL.

*Sperren setzen
 CALL FUNCTION 'ENQUEUE_EZZBESTAND_TW'
 EXPORTING
 mode_zbestand_tw = 'E'
 mandant = sy-mandt
 isbn = wa_zbestand-isbn

9.4 Das SAP-Sperrkonzept 529■

■

■

 EXCEPTIONS
 foreign_lock = 1
 system_failure = 2
 OTHERS = 3.
 IF sy-subrc = 0.
*Bestandsdatensatz konnte gesperrt werden
 SELECT SINGLE * FROM (t_bestand)
 INTO wa_zbestand
 WHERE isbn = wa_zbestand-isbn.
 ok = '0'.
*Zugehörige Autorendatensätze sperren
 PERFORM autor_sperren
 USING wa_zbestand-autor1.
 IF ok = '0'
 AND NOT wa_zbestand-autor2 IS INITIAL.
 PERFORM autor_sperren
 USING wa_zbestand-autor2.
 ENDIF.
 IF ok = '0'
 AND NOT wa_zbestand-autor3 IS INITIAL.
 PERFORM autor_sperren
 USING wa_zbestand-autor3.
 ENDIF.
 IF ok <> '0'.
*Mindestens ein Autorendatensatz konnte nicht
*gesperrt werden
 MESSAGE i022(zlib_tw).
*eventuell bereits gesperrte Datensätze
*freigeben
 CALL FUNCTION 'DEQUEUE_ALL'.
 CLEAR wa_zbestand.
 ELSE.
 IF NOT wa_autor_neu IS INITIAL.
 CALL SCREEN 200.
 ENDIF.
 ENDIF.
 ELSE.
 MESSAGE i021(zlib_tw)
 WITH wa_zbestand-isbn.
 CLEAR wa_zbestand.
 ENDIF.
 ENDIF.
 ENDCASE.
ENDMODULE.

9 Datenbankänderungen programmieren ■

■

■

530

&---
*& Form autor_sperren *
&---
FORM autor_sperren USING p_autor.
 CALL FUNCTION 'ENQUEUE_EZZAUTOREN_TW'
 EXPORTING
 mode_zautoren_tw = 'E'
 mandant = sy-mandt
 autorennr = p_autor
 EXCEPTIONS
 foreign_lock = 1
 system_failure = 2
 OTHERS = 3.
 IF sy-subrc <> 0.
 ok = '1'.
 ENDIF.
ENDFORM.

9.4.4
Die Sperrtabelle

Wie Sie bereits an früherer Stelle erfahren haben, werden alle Sper-
ren in die Sperrtabelle eingetragen. Sie können sich die Sperrtabelle
über die Transaktion SM12 (Werkzeuge Administration Ver-
waltung Monitor SM12 Sperreinträge) anzeigen lassen.

1. Starten Sie das Bestandspflegeprogramm
(SAPMYK09_Bestand_1) und lassen Sie sich den Bestandsda-
tensatz zum Buch „Administration des SAP-Systems R/3“
(ISBN 3827311365) im Änderungsmodus anzeigen.

2. Starten Sie in einem neuen Modus die Transaktion SM12.

3. Lassen Sie sich Ihre Sperreinträge anzeigen.

4. Wählen Sie im Programm SAPMYK09_Bestand_1 die Funk-
tion „Neues Buch“ aus und frischen Sie die Anzeige der Sperr-
tabelle auf.

9.4 Das SAP-Sperrkonzept 531■

■

■

Das Sperrargument setzt sich aus den Schlüsselfeldern des zu sper-
renden Datensatzes zusammen. Achten Sie penibel darauf, dass das
Sperrargument korrekt gebildet wird, nicht etwa Doppelkreuze (#)
enthält. Sonst wird nicht nur der eine Datensatz gesperrt, sondern
mehrere.
Nach dem Auslösen der Funktion „Neues Buch“ (oder einer beliebi-
gen anderen Funktion) im Programm SAPMYK09_Bestand_1 wer-
den die Sperren zurückgesetzt.

Abb. 9.30
Sperrtabelle
anzeigen

Abb. 9.31
Liste der Sperr-
einträge

9 Datenbankänderungen programmieren ■

■

■

532

9.5
Nummernkreise

Beim Anlegen neuer Autoren im Programm SAPMYK09_ Be-
stand_1 werden automatisch Autorennummern vergeben. Das ge-
schieht im Unterprogramm AUTOREN_NEUE_ ERMITTELN. Zur
Zeit wird dazu die höchste bisher vergebene Autorennummer ermit-
telt und um 1 erhöht (incrementiert). Dagegen ist an sich nichts ein-
zuwenden, wenn nicht mehrere Benutzer gleichzeitig neue Autoren
anlegen. Ist das jedoch der Fall, kann diese Methode nicht mehr oh-
ne Weiteres angewendet werden, weil nicht ausgeschlossen ist, dass
Benutzer B eine neue Autorennummer ermittelt, bevor Benutzer A
„seinen“ neuen Autor in die Datenbanktabelle eingetragen hat. Das
führt dazu, dass der vom Benutzer B anzulegende Autor die gleiche
Autorennummer zugeordnet bekäme, wie der von Benutzer A. Die
INSERT-Anweisung schlägt dann fehl und die Datenbank wird zu-
rückgesetzt.
Zur Lösung des Problems können Sie ein sogenanntes Nummern-
kreisobjekt benutzen. Ein Nummernkreisobjekt verwaltet eine An-
zahl von Nummern für ein Objekt (z.B. für die Autorennummer).
Das Anwendungsprogramm holt sich dann für dieses Objekt eine
Nummer aus diesem Nummernkreisobjekt.
In diesem Kapitel werden wir die Autorennummernvergabe über ein
Nummernkreisobjekt programmieren. Dazu legen wir zunächst ein
Nummernkreisobjekt für die Autorennummer an und holen im An-
wendungsprogramm über einen Funktionsbaustein, für die neu anzu-
legenden Autoren, die Autorennummern aus diesem Nummern-
kreisobjekt.

Vorgehensweise: Nummernkreisobjekt anlegen

Starten Sie die Transaktion SNRO (Werkzeuge ABAP Work-
bench Entwicklung SNRO Nummernkreise). Vergeben Sie im
Einstiegsbild einen Namen für das Nummernkreisobjekt im Kun-
dennamensbereich.

9.5 Nummernkreise 533■

■

■

Füllen Sie das Folgebild „NrKreisObjekt: Anlegen“ entsprechend
Abb. 9.33 aus.

Sichern Sie dann Ihr Nummernkreisobjekt. Nach dem Sichern steht
Ihnen eine Drucktaste „Nummernkreise“ zur Verfügung. Klicken
Sie die Drucktaste „Nummernkreise‘‘ und wählen Sie im Folgebild-
schirm „Intervalle ändern“.

Abb. 9.32
Nummernkreis-
objekt
anlegen

Abb. 9.33
Eigenschaften
des Nummern-
objektes pflegen

9 Datenbankänderungen programmieren ■

■

■

534

Wählen Sie im Bild „Nummernkreisintervalle pflegen“ die Druck-
taste „Intervall“ aus und legen Sie im Folgebild „Intervall einfügen“
die Intervallgrenzen fest, in denen der Nummernbereich liegen soll.

Abb. 9.34
Nummernkreise

anlegen (1)

Abb. 9.35
Nummernkreise

anlegen (2)

Abb. 9.36
Nummernkreis

anlegen (3)

9.5 Nummernkreise 535■

■

■

Drücken Sie dann die ENTER-Taste. Das Bild „Intervalle einfügen“
schließt sich. Sichern Sie im Bild „Nummernkreisintervalle pfle-
gen“.

Vorgehensweise: Nummern aus Nummernkreisobjekt holen

Mit Hilfe des Funktionsbausteins NUMBER_GET_NEXT können
Sie eine oder mehrere Nummern aus dem Nummernkreisobjekt ho-
len. Beachten Sie, dass einmal geholte Nummern nicht mehr in das
Nummernkreisobjekt zurückgestellt werden können. Es ist deshalb
zweckmäßig, die Nummern erst dann zu holen, wenn sicher ist, dass
sie auch verwendet werden. Fügen Sie den Funktionsbausteinaufruf
über die Drucktaste MUSTER in Ihr Quellprogramm ein. Im fol-
genden Beispiel wird eine Nummer aus dem Nummernkreisobjekt
ZAUTOR geholt und auf die Variable NR geschrieben.

DATA: nr TYPE zautoren-autorennr.

CALL FUNCTION 'NUMBER_GET_NEXT'
 EXPORTING
 nr_range_nr = '1' "Intervallnummer
 object = 'ZAUTOR'
 IMPORTING
 number = nr
 EXCEPTIONS
 ...
IF sy-subrc <> 0.
* MESSAGE ...
ENDIF.

9 Datenbankänderungen programmieren ■

■

■

536

Unserem Bibliotheksprojekt fehlt noch ein Programm, das die Aus-
leihe und die Rückgabe von Büchern unterstützt. Dieses Programm
soll jetzt erstellt werden. Dazu sind folgende Arbeitsschritte not-
wendig:

1. Um dem Benutzer die Arbeit zu erleichtern, sollten Sie eine
neue Suchhilfen anlegen.

■ Suchhilfename: ZISBN_AUSLEIHE

■ Selektionsmethode: ZAUSLEIHE

■ Parameter

Suchhilfeparameter Import Export LPos SPos
ISBN 1 1
KUNDENNR 2 2
AUSLEIHDAT 3 3
RUECKGABEDAT 4 4
ANZAHL 5

Binden Sie diese Suchhilfe an die Felder ISBN und
KUNDENNR der Tabelle ZAUSLEIHE an.

2. Legen Sie ein Programm SAPMYK09_Ausleihe als Modulpool
und den Transaktionscode ZK09_AUSLEIHE an. Startdynpro
ist Dynpro 100.

3. Erstellen Sie das Dynpro 100 mit dem abgebildeten Layout. Es
soll später für die Buchrückgabe genutzt werden.

9.5 Nummernkreise 537■

■

■

Legende

Pos Tabelle Feld aus Programm
1 ZAUSLEIHE ISBN
2 ZBESTAND TITEL
3 ZAUTOREN NAME
4 ZAUSLEIHE KUNDENNR
5 ZKUNDEN NAME

STRASSE
PLZ
WOHNORT

6 ANZAHL
(DATA
anzahl(3)

7 ZAUSLEIHE RUECKGABEDAT
AUSLEIHDAT

8 ANZEIGE_
ANZAHL
(DATA
Anzeige_Anzahl
TYPE zbestand-
bestand.)

9 TEXT
(DATA text(22).)

4. Kopieren Sie das Dynpro 100 (Zieldynpro 200). Die Abbil-
dung zeigt die Vorgehensweise. Dynpro 200 soll später für die
Buchausleihe benutzt werden.

9 Datenbankänderungen programmieren ■

■

■

538

5. Im Dynpro 100, das für die Buchrückgabe genutzt werden soll,
wird für die Felder ISBN und KUNDENNR die im Punkt 1
angelegte Suchhilfe angezeigt. Das erfolgt automatisch, weil
die Suchhilfe im Punkt 2 der Aufgabenstellung diesen Feldern
zugeordnet wurde. Im Dynpro 200, das für die Buchausleihe
benutzt werden soll, nützt uns diese Suchhilfe nichts. Sie zeigt
nur die bereits ausgeliehenen Bücher und die dazugehörigen
Kunden. Für die Buchausleihe brauchen wir jedoch Suchhil-
fen, mit denen aus der Menge aller Kunden bzw. aller ISBN
ausgewählt werden kann. Die Suchhilfen ZISBN_TW und
ZKUNDEN_TW erfüllen diese Anforderung und sollen im
Dynpro 200 dem Benutzer anstelle der Suchhilfe
ZISBN_AUSLEIHE zur Verfügung gestellt werden. Diese
Änderung lässt sich im Layout des Dynpros 200 programmie-
ren. Die Abbildung zeigt die Vorgehensweise.

6. Erzeugen Sie einen GUI-Status GESAMT mit folgenden
Funktionen:

Funktionscode Funktionstext Funktionstyp
SAVE Sichern
AUSLEIHE Ausleihe (F5)
RUECKGABE Rückgabe (F6)
CANCEL Abbrechen E

7. Damit Sie später das Programm ohne Probleme beenden kön-
nen, sollten Sie jetzt ein PAI-Modul BEENDEN anlegen und
dort über die Anweisung LEAVE TO SCREEN 0 das Beenden
des Programmes vorsehen. Rufen Sie dieses Modul in den
PAI-Ablaufsteuerungen der Dynpros 100 und 200 mit der
Klausel AT EXIT-COMMAND auf.

9.5 Nummernkreise 539■

■

■

8. Legen Sie die GUI-Titel
DYNPRO_0100: „East-Side-Library: Buchrückgabe”
DYNPRO_0200: „East-Side-Library: Buchausleihe“ an.

9. Programmieren Sie in der PBO-Ablauflogik der Dynpros den
Aufruf der Module STATUS_0100 bzw. STATUS_0200 und
laden Sie dort GUI-Status und GUI-Titel.

10. Die Drucktasten sollen folgende Funktionalität erhalten:

Taste Dynpro Funktion
100 Alle Eingabefelder des Dynpros 100

werden auf ihren Initialwert gesetzt.
Rückgabe

200 Aufruf des Dynpros 100.
Ausleihe 100 Aufruf des Dynpros 200.

Programmieren Sie diese Funktionalität in den Modulen
USER_COMMAND_0100 bzw. 0200.

11. Legen Sie ein PBO-Modul LADEN_0100 an, in dem die benö-
tigten Strukturen und Variablen geladen werden.

Struktur Bedingung Inhalt

ZAUSLEIHE Eine in Tabelle
ZAUSLEIHE vorhan-
dene Kombination
ISBN/Kundennummer
wurde eingegeben.

Entsprechender
Datensatz der
Tabelle
ZAUSLEIHE.

ZKUNDEN Eine in Tabelle
ZAUSLEIHE vorhan-
dene Kundennummer
wurde eingegeben.

Daten des Kunden
aus ZKUNDEN.

ZBESTAND Eine in Tabelle
ZAUSLEIHE vorhan-
dene ISBN wurde ein-
gegeben.

Entsprechender
Datensatz der Ta-
belle ZBESTAND.

Variable Inhalt
ANZEIGE_ANZAHL Anzahl vom Kunden ausgeliehener

Bücher dieser ISBN.
TEXT vom Kunden ausgeliehen.

9 Datenbankänderungen programmieren ■

■

■

540

12. Da der Benutzer im Dynpro 100 sowohl die ISBN als auch die
KUNDENNR per Hand eingeben kann, müssen die Eingaben
in diesen Feldern geprüft werden. Folgende Prüfungen sind zu
programmieren:

■ Ist vom Benutzer nur die Kundennummer eingetragen
worden (ISBN noch leer), ist zu prüfen, ob diese in der
Tabelle ZAUSLEIHE vorhanden ist.

■ Ist vom Benutzer nur die ISBN eingetragen worden
(KUNDENNR noch leer), ist zu prüfen, ob diese in der
Tabelle ZAUSLEIHE vorhanden ist.

■ Hat der Benutzer sowohl ISBN als auch KUNDENNR
eingegebene, ist zu prüfen, ob es in der Tabelle
ZAUSLEIHE einen Datensatz gibt, in dem diese Kombi-
nation vorkommt.

■ Die Anzahl der zurückgegebenen Bücher ist nicht größer
als die der ausgeliehenen.

13. Legen Sie ein PBO-Modul LADEN_0200 an, in dem die benö-
tigten Strukturen und Variablen geladen werden.

Struktur Bedingung Inhalt

ZKUNDEN Eine in Tabelle
ZKUNDEN vorhandene
Kundennummer wurde
eingegeben.

Daten des Kunden
aus ZKUNDEN

ZBESTAND Eine in Tabelle
ZBESTAND vorhande-
ne ISBN wurde einge-
geben.

Entsprechender
Datensatz der Ta-
belle ZBESTAND

Variable Inhalt

ZAUSLEIHE-
RUECKGABEDAT

aktuelles Datum + 28 Tage

ZAUSLEIHE-AUSLEIHDAT aktuelles Datum
ANZEIGE_ANZAHL verfügbarer Bestand
TEXT verfügbarer Bestand

14. Auch im Dynpro 200 kann der Benutzer ISBN und
KUNDENNR eintippen. Anders als im Dynpro 100 (Buch-
rückgabe), in dem die Eingaben gegen die Tabelle
ZAUSLEIHE geprüft wurden, werden sie im Dynpro 200 ge-
gen die Tabellen ZBESTAND und ZKUNDEN geprüft. Diese

9.5 Nummernkreise 541■

■

■

Prüfungen werden jedoch automatisch durchgeführt, weil diese
Tabellen als Prüftabellen für die Felder ISBN und
KUNDENNR der Tabelle ZAUSLEIHE eingetragen sind.
Im Dynpro 200 sollte geprüft werden, ob beim sichern der Da-
ten

■ Die Anzahl der zu verleihenden Bücher nicht größer als
der verfügbare Bestand ist.

■ Sowohl ISBN als auch KUNDENNR ausgefüllt sind,
wenn der Benutzer die Daten sichern will.

15. Die Funktion „Sichern“ ist in den Dynpros 100 und 200 unter-
schiedlich zu programmieren.

Dyn Bedingung Funktionalität
Anzahl = ZAUSLEHE_ANZAHL Löschen des Da-

tensatzes in
ZAUSLEIHE.

100

Anzahl <>
ZAUSLEHE_ANZAHL

Aktualisieren des
Datensatzes in
ZAUSLEIHE.

Anzahl <= verfügbare Anzahl
Es existiert noch kein Datensatz
mit gleicher Belegung der Felder
ISBN, KUNDENNR und
AUSLEIHDAT in der Tabelle
ZAUSLEIHE. (Kunde leiht das
erste Buch mit dieser ISBN an die-
sem Tag).

Anlegen eines
Datensatzes in
ZAUSLEIHE.

200

Anzahl <= verfügbare Anzahl
Es existiert bereits ein Datensatz
mit gleicher Belegung der Felder
ISBN, KUNDENNR und
AUSLEIHDAT in der Tabelle
ZAUSLEIHE. (Kunde leiht ein
weiteres Buch mit dieser ISBN an
diesem Tag).

Aktualisieren des
vorhandenen Da-
tensatzes (Die
Anzahl ausgelie-
hener Bücher ist
zu kummulieren).

Unabhängig davon, ob ein Buch ausgeliehen oder zurückgege-
ben wird, ist das Feld AUSGELIEHEN der Tabelle
ZBESTAND zu aktualisieren.

9 Datenbankänderungen programmieren ■

■

■

542

16. Datensätze sperren und freigeben

Hinweis zum Setzen und Löschen der Sperren:
Zum Setzen und Löschen der Sperren stehen die Sperrobjekte
EZZBESTAND_TW und EZZAUSLEIHE_TW zur Verfü-
gung. Sie können also die Funktionsbausteine
ENQUEUE_EZZBESTAND_TW,
ENQUEUE_EZZAUSLEIHE_TW,
DEQUEUE_EZZBESTAND_TW und
DEQUEUE_EZZAUSLEIHE_TW nutzen.

Sperren setzen im Dynpro 100 (Buchrückgabe)
Sie können alle notwendigen Sperren im Modul LADEN_0100
bzw. LADEN_0200 setzen. Wurde vom Benutzer die ISBN
des zurückgegebenen/auszuleihenden Buches eingegeben, ist
der entsprechende Datensatz in der Tabelle ZBESTAND zu
sperren. Zu beachten ist, dass der Benutzer die Eingabe der
ISBN korrigieren kann. Ändert der Benutzer die ISBN, ist ein
eventuell vorher gesperrter Datensatz wieder freizugeben. Um
dieses Problem zu lösen, können Sie eine Variable, z.B.
ISBN_ALT, deklarieren und diese nach dem erfolgreichen
Sperren eines Datensatzes mit dessen ISBN laden. Vor dem
Sperrvorgang löschen Sie eine vorher gesetzte Sperre über den
DEQUEUE-Funktionsbaustein. Der Sperrparameter steht in
ISBN_ALT.

Wurde vom Benutzer ISBN und KUNDENNR eingegeben, ist
auch der entsprechende Datensatz in der Tabelle ZAUSLEIHE
zu sperren. Auch hier ist zu berücksichtigen, dass der Benutzer
seine Eingaben korrigieren kann.

Alle Sperren werden zurückgesetzt, wenn der Benutzer die
Funktionscodes AUSLEIHE, RUECKGABE oder SICHERN
ausgelöst hat. Beim Sichern sind die Sperren natürlich erst
nach dem Sichern Aktualisieren der Datenbanktabelle zu lö-
schen.

Lösung: SAPMYK09_Ausleihe_TW

Lösung:

&-----------_---------------------------------
*& Include MYK09_AUSLEIHETOP *
&---

9.5 Nummernkreise 543■

■

■

PROGRAM sapmyk09_ausleihe .
TABLES: zausleihe_tw,zkunden_tw,
 zbestand_tw,
 zautoren_tw.
DATA: ok_code TYPE sy-ucomm,
 ok_save TYPE sy-ucomm,
 wa_zausleihe_alt TYPE zausleihe_tw,
 isbn_alt TYPE zbestand_tw-isbn,
 ok TYPE sy-subrc,
 anzeige_anzahl TYPE zbestand_tw-bestand,
 anzahl(3) TYPE n,
 text(22) VALUE 'verfügbarer Bestand'.

&-----------_---------------------------------
*& Ablauflogik Dynpro 100 (Buchrückgabe) *
&---
PROCESS BEFORE OUTPUT.
 MODULE status_0100.
 MODULE laden_0100.

PROCESS AFTER INPUT.
 MODULE beenden AT EXIT-COMMAND.
 CHAIN.
 FIELD: zausleihe_tw-isbn,
 zausleihe_tw-kundennr
 MODULE pruefen1_0100
 ON CHAIN-INPUT.
 ENDCHAIN.
 FIELD anzahl MODULE pruefen2_0200.
 MODULE user_command_0100.

&-----------_---------------------------------
*& Ablauflogik Dynpro 200 (Ausleihe) *
&---
PROCESS BEFORE OUTPUT.
 MODULE status_0200.
 MODULE laden_0200.

PROCESS AFTER INPUT.
 MODULE beenden AT EXIT-COMMAND.
 FIELD: anzahl MODULE pruefen2_0200.
 CHAIN.
 FIELD: zausleihe_tw-isbn,
 zausleihe_tw-kundennr

9 Datenbankänderungen programmieren ■

■

■

544

 MODULE pruefen1_0200.
 ENDCHAIN.
 MODULE user_command_0200.

--
***INCLUDE MYK09_AUSLEIHEO01 . *
--
&---
*& Module STATUS_0100 OUTPUT *
&---
MODULE status_0100 OUTPUT.
 SET PF-STATUS 'GESAMT'.
 SET TITLEBAR 'DYNPRO_0100'.
ENDMODULE. " STATUS_0100 OUTPUT

&---
*& Module laden_0100 OUTPUT *
&---
MODULE laden_0100 OUTPUT.
*Laden der Struktur ZAUSLEIHE_TW
 text = 'vom Kunden ausgeliehen'.
 IF NOT zausleihe_tw-kundennr IS INITIAL.
 SELECT SINGLE * FROM zkunden_tw
 WHERE kundennr = zausleihe_tw-kundennr.
 ENDIF.
 IF NOT zausleihe_tw-isbn IS INITIAL.
*Datensatz in ZBESTAND_TW sperren.
 PERFORM sperren_zbestand.
*ok wird im Unterprogramm mit sy-subrc geladen
 IF ok = 0.
 SELECT SINGLE * FROM zbestand_tw
 WHERE isbn = zausleihe_tw-isbn.
 SELECT SINGLE * FROM zautoren_tw
 WHERE autorennr = zbestand_tw-autor1.
 ELSE.
*Datensatz konnte nicht gesperrt werden
 CLEAR: zausleihe_tw-isbn,
 zautoren_tw,
 zbestand_tw,
 anzahl,
 anzeige_anzahl.
 ENDIF.
 ENDIF.
 IF NOT zausleihe_tw-isbn IS INITIAL AND

9.5 Nummernkreise 545■

■

■

 NOT zausleihe_tw-kundennr IS INITIAL.
*Datensatz in ZAUSLEIHE sperren
 PERFORM sperren_zausleihe.
*ok wird im Unterprogramm mit sy-subrc geladen
 IF ok = 0.
 SELECT SINGLE * FROM zausleihe_tw
 WHERE kundennr = zausleihe_tw-kundennr AND
 isbn = zausleihe_tw-isbn.
*Das Ausleihdatum, welches ebenfalls ein
*Schlüsselfeld ist, bleibt unberücksichtigt.
*Sollte mehr als ein Datensatz mit der gleichen
*Belegung der Felder ISBN und KUNDENNR in der
*Tabelle vorhanden sein (Kunde hat das gleiche
*Buch an verschiedenen Tagen ausgeliehen), wird
*der älteste Datensatz ausgewählt.
 anzeige_anzahl = zausleihe_tw-anzahl.
 ELSE.
*Datensatz konnte nicht gesperrt werden
 PERFORM initialisieren.
 ENDIF.
 ENDIF.
ENDMODULE. " laden_0100 OUTPUT

&---
*& Module status_0200 OUTPUT *
&---
MODULE status_0200 OUTPUT.
 SET PF-STATUS 'GESAMT'.
 SET TITLEBAR 'DYNPRO_200'.
ENDMODULE. " status_0200 OUTPUT

&---
*& Module laden_0200 OUTPUT *
&---
MODULE laden_0200 OUTPUT.
 text = 'verfügbarer Bestand'.
 IF NOT zausleihe_tw-isbn IS INITIAL.
*Datensatz in Tabelle ZBESTAND_TW sperren
 PERFORM sperren_zbestand.
*ok wird im Unterprogramm mit sy-subrc geladen
 IF ok = 0.
 SELECT SINGLE * FROM zbestand_tw
 WHERE isbn = zausleihe_tw-isbn.
 SELECT SINGLE * FROM zautoren_tw

9 Datenbankänderungen programmieren ■

■

■

546

 WHERE autorennr = zbestand_tw-autor1.
 zausleihe_tw-rueckgabedat = sy-datum + 28.
 zausleihe_tw-ausleihdat = sy-datum.
 anzeige_anzahl = zbestand_tw-bestand –
 zbestand_tw-ausgeliehen.
 ELSE.
*Datensatz konnte nicht gesperrt werden
 CLEAR: zausleihe_tw-isbn,
 zbestand_tw,
 zautoren_tw,
 anzahl,
 anzeige_anzahl.
 ENDIF.
 ENDIF.
 IF NOT zausleihe_tw-kundennr IS INITIAL.
 SELECT SINGLE * FROM zkunden_tw
 WHERE kundennr = zausleihe_tw-kundennr.
 ENDIF.
 IF NOT zausleihe_tw-isbn IS INITIAL AND
 NOT zausleihe_tw-kundennr IS INITIAL.
 PERFORM sperren_zausleihe.
 IF ok <> 0.
*Datensatz konnte nicht gesperrt werden.
*Kann nur vorkommen, wenn der Kunde am gleichen
*Tag mehrere gleiche Bücher in verschiedenen
*Ausleihvorgängen ausleiht.
 PERFORM initialisieren.
 ENDIF.
 ENDIF.
ENDMODULE. " laden_0200 OUTPUT

--
***INCLUDE MYK09_AUSLEIHEI01 . *
------- --------------------------------------
&---
*& Module beenden INPUT
&---
MODULE beenden INPUT.
 LEAVE TO SCREEN 0.
ENDMODULE. " beenden INPUT

&---
*& Module user_command_0100 INPUT *
&---

9.5 Nummernkreise 547■

■

■

MODULE user_command_0100 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
 WHEN 'AUSLEIHE'.
 CALL FUNCTION 'DEQUEUE_ALL'.
 LEAVE TO SCREEN 200.
 WHEN 'RUECKGABE'.
 CALL FUNCTION 'DEQUEUE_ALL'.
 PERFORM initialisieren.
 WHEN 'SAVE'.
 PERFORM sichern_rueckgabe.
 CALL FUNCTION 'DEQUEUE_ALL'.
 ENDCASE.
ENDMODULE. " user_command_0100
INPUT

&---
*& Module pruefen1_0100 INPUT *
&---
MODULE pruefen1_0100 INPUT.
 IF ok_code <> 'AUSLEIHE'.
 IF NOT zausleihe_tw-isbn IS INITIAL AND
 NOT zausleihe_tw-kundennr IS INITIAL.
 SELECT SINGLE * FROM zausleihe_tw WHERE
 isbn = zausleihe_tw-isbn AND
 kundennr = zausleihe_tw-kundennr.
 IF sy-subrc <> 0.
 MESSAGE e023(zlib_tw)
 WITH zausleihe_tw-isbn
 zausleihe_tw-kundennr.
 ENDIF.
 ELSEIF NOT zausleihe_tw-isbn IS INITIAL.
 SELECT SINGLE * FROM zausleihe_tw
 WHERE isbn = zausleihe_tw-isbn.
 IF sy-subrc <> 0.
 MESSAGE e024(zlib_tw)
 WITH zausleihe_tw-isbn.
 ENDIF.
 ELSEIF NOT zausleihe_tw-kundennr IS INITIAL.
 SELECT SINGLE * FROM zausleihe_tw
 WHERE kundennr = zausleihe_tw-kundennr.
 IF sy-subrc <> 0.
 MESSAGE e025(zlib_tw)

9 Datenbankänderungen programmieren ■

■

■

548

 WITH zausleihe_tw-kundennr.
 ENDIF.
 ENDIF.
 ENDIF.
ENDMODULE. " pruefen1_0100
INPUT

&---
*& Module user_command_0200 INPUT *
&---
MODULE user_command_0200 INPUT.
 ok_save = ok_code.
 CLEAR ok_code.
 CASE ok_save.
 WHEN 'AUSLEIHE'.
 CALL FUNCTION 'DEQUEUE_ALL'.
 PERFORM initialisieren.
 WHEN 'RUECKGABE'.
 CALL FUNCTION 'DEQUEUE_ALL'.
 LEAVE TO SCREEN 100.
 WHEN 'SAVE'.
 PERFORM sichern_ausleihe.
 CALL FUNCTION 'DEQUEUE_ALL'.
 ENDCASE.
ENDMODULE. " user_command_0200
INPUT

&---
*& Module pruefen1_0200 INPUT *
&---
MODULE pruefen1_0200 INPUT.
 IF ok_code = 'SAVE'.
 IF zausleihe_tw-isbn IS INITIAL
 OR zausleihe_tw-kundennr IS INITIAL.
 CLEAR ok_code.
 MESSAGE e028(zlib_tw).
 ENDIF.
 ENDIF.
ENDMODULE. " pruefen3_0200
INPUT

&---
*& Module pruefen2_0200 INPUT *
--

9.5 Nummernkreise 549■

■

■

MODULE pruefen2_0200 INPUT.
 IF ok_code = 'SAVE'.
*Das Feld zbestand_tw-titel wird in der
*if-Anweisung abgefragt, um sicher zu sein,
*dass der Benutzer die ENTER-Taste gedrückt
*und dadurch die Variable anzeige_anzahl
*geladen wurde.
 IF anzahl > anzeige_anzahl OR anzahl = 0
 OR zbestand_tw-titel IS INITIAL.
 CLEAR ok_code.
 MESSAGE e029(zlib_tw).
 ENDIF.
 ENDIF.
ENDMODULE. " pruefen4_0200
INPUT

--
***INCLUDE MYK09_AUSLEIHEF01 . *
--
&---
*& Form initialisieren *
&---
FORM initialisieren.
 CLEAR: zausleihe_tw,
 zkunden_tw,
 zbestand_tw,
 zautoren_tw,
 anzeige_anzahl,anzahl.
ENDFORM. " initialisieren

&---
*& Form sichern_rueckgabe *
&---
FORM sichern_rueckgabe.
 DATA: kundennr TYPE zausleihe_tw-kundennr.
 kundennr = zausleihe_tw-kundennr.
 zbestand_tw-ausgeliehen =
 zbestand_tw-ausgeliehen - anzahl.
 UPDATE zbestand_tw FROM zbestand_tw.
 IF sy-subrc <> 0.
 MESSAGE a030(zlib_tw)
 WITH 'Update in Tabelle ZBESTAND_TW'.
 ENDIF.
 IF anzahl = anzeige_anzahl.

9 Datenbankänderungen programmieren ■

■

■

550

 DELETE zausleihe_tw FROM zausleihe_tw.
 IF sy-subrc <> 0.
 MESSAGE a030(zlib_tw)
 WITH 'Delete in Tabelle ZAUSLEIHE_TW'.
 ENDIF.
 ELSE.
 zausleihe_tw-anzahl =
 zausleihe_tw-anzahl - anzahl.
 UPDATE zausleihe_tw FROM zausleihe_tw.
 IF sy-subrc <> 0.
 MESSAGE a030(zlib_tw)
 WITH 'Update in Tabelle ZAUSLEIHE_TW'.
 ENDIF.
 ENDIF.
 MESSAGE i031(zlib_tw)
 WITH zausleihe_tw-kundennr zausleihe_tw-isbn
 zausleihe_tw-ausleihdat.
 CLEAR: zausleihe_tw,
 zbestand_tw,
 zautoren_tw,
 anzahl,
 anzeige_anzahl.
 zausleihe_tw-kundennr = kundennr.
ENDFORM. " sichern_rueckgabe

&---
*& Form sichern_ausleihe *
&---
FORM sichern_ausleihe.
 DATA: kundennr TYPE zausleihe_tw-kundennr,
 wa_zausleihe TYPE zausleihe_tw.
 kundennr = zausleihe_tw-kundennr.
 zbestand_tw-ausgeliehen =
 zbestand_tw-ausgeliehen + anzahl.
 UPDATE zbestand_tw FROM zbestand_tw.
 IF sy-subrc <> 0.
 MESSAGE a030(zlib_tw)
 WITH 'Update in Tabelle ZBESTAND_TW'.
 ENDIF.
 SELECT SINGLE * FROM zausleihe_tw
 INTO wa_zausleihe
 WHERE isbn = zausleihe_tw-isbn AND
 kundennr = zausleihe_tw-kundennr AND
 ausleihdat = zausleihe_tw-ausleihdat.

9.5 Nummernkreise 551■

■

■

 IF sy-subrc = 0.
 zausleihe_tw-anzahl =
 anzahl + wa_zausleihe-anzahl.
 UPDATE zausleihe_tw FROM zausleihe_tw.
 IF sy-subrc <> 0.
 MESSAGE a032(zlib_tw)
 WITH 'Update in Tabelle ZAUSLEIHE_TW'.
 ENDIF.
 ELSE.
 zausleihe_tw-anzahl = anzahl.
 INSERT zausleihe_tw FROM zausleihe_tw.
 IF sy-subrc <> 0.
 MESSAGE a032(zlib_tw)
 WITH 'Insert in Tabelle ZAUSLEIHE_TW'.
 ENDIF.
 ENDIF.
 MESSAGE i033(zlib_tw)
 WITH zausleihe_tw-kundennr zausleihe_tw-isbn
 zausleihe_tw-ausleihdat.
 CLEAR: zausleihe_tw,
 zbestand_tw,
 zautoren_tw,
 anzahl,
 anzeige_anzahl.
 zausleihe_tw-kundennr = kundennr.
ENDFORM. " sichern_ausleihe

&---
*& Form sperren_zausleihe *
&---
FORM sperren_zausleihe.
*Sollte dieses Programm bereits ein anderen
*Datensatz in der Tabelle ZAUSLEIHE_TW gesperrt
*haben, wird dieser freigegeben. Das kann vor-
*kommen, wenn der Benutzer eine fehlerhafte Ein
*gabe im Feld ISBN oder KUNDENNR korrigiert. Die
*Daten des gesperrten Datensatzes stehen in der
*Struktur WA_ZAUSLEIHE_ALT.
 CALL FUNCTION 'DEQUEUE_EZZAUSLEIHE_TW'
 EXPORTING
 mode_zausleihe_tw = 'E'
 mandant = sy-mandt
 isbn = wa_zausleihe_alt-isbn
 kundennr = wa_zausleihe_alt-kundennr

9 Datenbankänderungen programmieren ■

■

■

552

 ausleihdat = wa_zausleihe_alt-ausleihdat.
*Um den neuen Satz zu sperren, muss das Ausleih
*datum ermittelt werden
 SELECT SINGLE * FROM zausleihe_tw
 WHERE kundennr = zausleihe_tw-kundennr AND
 isbn = zausleihe_tw-isbn.
*Datensatz sperren
 CALL FUNCTION 'ENQUEUE_EZZAUSLEIHE_TW'
 EXPORTING
 mode_zausleihe_tw = 'E'
 mandant = sy-mandt
 isbn = zausleihe_tw-isbn
 kundennr = zausleihe_tw-kundennr
 ausleihdat = zausleihe_tw-ausleihdat
 EXCEPTIONS
 foreign_lock = 1
 system_failure = 2
 OTHERS = 3.
 IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE 'W' NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3
 sy-msgv4.
 ELSE.
*Merken, welcher Datensatz gesperrt wurde
 wa_zausleihe_alt = zausleihe_tw.
 ENDIF.
 ok = sy-subrc.
ENDFORM. " sperren_zausleihe

&---
*& Form sperren_zbestand *
&---
FORM sperren_zbestand.
*Sollte dieses Programm bereits ein anderen
*Datensatz in der Tabelle ZBESTAND_TW gesperrt
*haben, wird dieser freigegeben. Das kann vor-
*kommen, wenn der Benutzer eine fehlerhafte Ein-
*gabe im Feld ISBN korrigiert.
*Die Daten des gesperrten Datensatzes stehen in
*der Struktur WA_ZBESTAND_ALT.

*Datensatz sperren
CALL FUNCTION 'DEQUEUE_EZZBESTAND_TW'
 EXPORTING

9.5 Nummernkreise 553■

■

■

 mode_zbestand_tw = 'E'
 mandant = sy-mandt
 isbn = isbn_alt.

 CALL FUNCTION 'ENQUEUE_EZZBESTAND_TW'
 EXPORTING
 mode_zbestand_tw = 'E'
 mandant = sy-mandt
 isbn = zausleihe_tw-isbn
 EXCEPTIONS
 foreign_lock = 1
 system_failure = 2
 OTHERS = 3.
 IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE 'W' NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3
 sy-msgv4.
 ELSE.
*Merken, welcher Datensatz gesperrt wurde
 isbn_alt = zausleihe_tw-isbn.
 ENDIF.
 ok = sy-subrc.
ENDFORM. " sperren_zbestand

Die folgende Aufgabe besteht darin, ein Programm zu entwickeln,
mit der die Kunden der East-Side-Library gepflegt werden können.
Dieses Programm soll aus einem Dynpro bestehen, mit dem Kun-
dendaten angelegt und geändert werden können. Die Kundennum-
mern sollen über ein Nummernkreisobjekt automatisch vergeben
werden.

1. Legen Sie ein Programm SAPMYK09_Kunden als Modulpool
und den Transaktionscode ZK09_Kunden an. Startdynpro ist
Dynpro 100.

2. Erstellen Sie Dynpro 100 mit dem abgebildeten Layout. Es soll
später für das Anlegen und Ändern der Kundendaten genutzt
werden.

9 Datenbankänderungen programmieren ■

■

■

554

3. Erzeugen Sie einen GUI-Status DYNPRO_0100 mit folgenden
Funktionen:

Funktionscode Funktionstext Funktionstyp
SAVE Sichern
AENDERN Ändern (F5)
ANLEGEN Anlegen (F6)
CANCEL Abbrechen E

4. Damit Sie später das Programm ohne Probleme beenden kön-
nen, sollten Sie jetzt ein PAI-Modul BEENDEN vorsehen und
dort über die Anweisung LEAVE TO SCREEN 0 das Beenden
des Programmes vorsehen. Rufen Sie dieses Modul in der
PAI-Ablaufsteuerung mit der Klausel AT EXIT-COMMAND
auf.

5. Legen Sie einen GUI-Titel DYNPRO_0100: „East-Side-Lib-
rary: „&1” an.
„&1“ ist dabei ein Platzhalter, der beim Aufruf des Titels über
die WITH-Klausel (SET TITLEBAR 'DYNPRO_0100' WITH
'Kunden anlegen'.) übergeben wird.

6. Um im Programm zu unterscheiden, ob gerade Kundenda
ten angelegt oder geändert werden, legen Sie eine Variable
STATUS (Type C, einstellig) an und laden diese mit 'A' (An-
legen). Wechselt der Benutzer in den Änderungsmodus, wird
diese Variable auf 'C' gesetzt.

7. Programmieren Sie in der PBO-Ablauflogik den Aufruf des
Moduls STATUS_0100 und laden Sie dort GUI-Status und
GUI-Titel in Abhängigkeit zur Variable STATUS.

9.5 Nummernkreise 555■

■

■

8. Die Drucktasten sollen folgende Programmreaktionen auslö-
sen:

Taste Funktion
Anlegen ■ Der Titel „East-Side-Library: Kunden an-

legen“ wird gesetzt.

■ Alle Eingabefelder werden auf ihren
Initialwert gesetzt.

■ Dem Feld KUNDENNR wird die Einga-
bebereitschaft entzogen. Alle anderen
Felder sind eingabebereit.

■ Im Dynprofeld TEXT wird die Zeichen-
kette „wird automatisch vergeben“ ange-
zeigt.

Ändern ■ Titel „East-Side-Library: Kunden ändern“
wird gesetzt.

■ Alle Eingabefelder werden auf ihren Initi-
alwert gesetzt.

■ Im Dynprofeld TEXT wird die Zeichen-
kette „ENTER drücken“ angezeigt.

■ Das Feld KUNDENNR wird zum Einga-
befeld. Alle anderen Felder sind nicht
eingabebereit. Erst wenn der Benutzer ei-
ne gültige Kundennummer eingegeben
und ENTER gedrückt hat, werden die
restlichen Felder zur Eingabe freigege-
ben. Dafür ist das Feld KUNDENNR
nicht mehr eingabebereit.

Programmieren Sie diese Funktionalität. Laden Sie beim Aus-
lösen des Funktionscodes ANLEGEN die Variable STATUS
mit 'A', beim Funktionscode AENDERN mit 'C'. Initialisieren
Sie in beiden Fällen die Standardstruktur ZKUNDEN. Für das
Ändern der Eigenschaften des Feldes KUNDENNR benötigen
Sie ein PBO-Modul (Namensvorschlag DYBBILDMOD (Dy-
namisch Bildschirmmodifikation) indem die interne Tabelle
SCREEN, die die Eigenschaften der Dynproelemente enthält,
innerhalb einer LOOP-Schleife bearbeitet wird. Entscheiden
Sie über die Variable STATUS, welche Felder Eingabefelder
bzw. Ausgabefelder sind. Sie können sich die Arbeit erleich-
tern, wenn Sie dem Feld KUNDENNR in der Elementliste des
Dynpros einen anderen Eintrag in einer Modifikationsgruppe

9 Datenbankänderungen programmieren ■

■

■

556

(z.B. Gruppe1) zuordnen als den restlichen Feldern.

9. Programmieren Sie ein PBO-Modul LADEN_0100, in dem im
Änderungsmodus (STATUS = 'C') die Struktur ZKUNDEN
mit den Daten des ausgewählten Kunden geladen wird.

10. Legen Sie ein Nummernkreisobjekt ZKNR an.

Hinweis: Das Feld KUNDENNR benutzt die Domäne
YRVP_NR (oder YRVP_NR_TW). Diese ist beim Anlegen
des Nummernkreisobjektes in das Feld „Domäne für Num-
mernlänge“ einzutragen.

Legen Sie ein Nummernkreisintervall von 1500 bis 3500 an.

11. Im nächsten Schritt wird die Funktion „Sichern“ (Funktions-
code SAVE) angelegt. Hier muss wieder unterschieden wer-
den, ob im Anlege- oder im Änderungsmodus gearbeitet wird.
Kriterium ist die Variable STATUS.

Status Inhalt der Funktion Sichern

A
(Anlegen)

■ Holen einer Kundennummer aus dem
Nummernkreisobjekt ZKNR über den
Funktionsbaustein
NUMBER_GET_NEXT.

■ Anlegen eines neuen Datensatzes in der
Tabelle ZKUNDEN. In das Feld
EINTRITTSDADTUM soll das aktuelle
Datum gespeichert werden.

C
(Ändern)

■ Aktualisieren des Kundendatensatzes in
der Tabelle ZKUNDEN.

12. Legen Sie ein Modul PRUEFEN_0100 an. In diesem Modul
soll geprüft werden, ob beim Auslösen des Funktionscodes
SAVE die Felder NAME, VORNAME1, PLZ, WOHNORT
und STRASSE ausgefüllt sind. Ist das nicht der Fall, soll eine
Fehlermeldung ausgegeben werden und diese Felder eingabe-
bereit geschaltet werden. Legen Sie in der Ablauflogik eine
entsprechende CHAIN-Kette an.

13. Zuletzt setzen Sie noch die erforderliche Sperre. Im Ände-
rungsmodus wird der zu ändernde Datensatz gesperrt, wenn
der Benutzer die Kundennummer ausgewählt und die ENTER-
Taste gedrückt hat. Legen Sie einen Sperrbaustein
EZKUNDEN an und binden Sie den ENQUEUE-Funk-
tionsbaustein (ENQUEUE_EZKUNDE) in das Modul

9.5 Nummernkreise 557■

■

■

LADEN_0100 ein. Setzen Sie die Sperre zurück, wenn der
Funktionscode ANLEGEN oder AENDERN ausgelöst wurde.
Nach dem Sichern ist die Sperre ebenfalls zu löschen und die
Struktur ZKUNDEN zu initialisieren.

Lösung: SAPMYK09_KUNDEN_TW

Lösung:

&---
*& Include MYK09_KUNDENTOP *
&---
PROGRAM sapmyk09_kunden .
TABLES: zkunden_tw.
DATA: ok_code TYPE sy-ucomm,
 ok_save TYPE sy-ucomm,
 ok type sy-subrc,
 text(25),
 status VALUE 'A'.

&---
*& Ablauflogik Dynpro 100 *
&---
PROCESS BEFORE OUTPUT.
 MODULE status_0100.
 MODULE dynbildmod.
 MODULE laden_0100.
*
PROCESS AFTER INPUT.
 MODULE beenden AT EXIT-COMMAND.
 CHAIN.
 FIELD: zkunden_tw-name,zkunden_tw-vorname1,
 zkunden_tw-plz,zkunden_tw-wohnort,
 zkunden_tw-strasse
 MODULE pruefen_0100.
 ENDCHAIN.
 MODULE user_command_0100.
--
***INCLUDE MYK09_KUNDEN_TWO01 . *
--
&---
*& Module dynbildmod OUTPUT *
&---

9 Datenbankänderungen programmieren ■

■

■

558

MODULE dynbildmod OUTPUT.
 IF status = 'A'.
 LOOP AT SCREEN.
 IF screen-group1 = 'K'.
*Feld KUNDENNR ausschalten
 screen-input = 0.screen-output = 1.
 ELSE.
*alle anderen Felder einschalten
 screen-input = '1'.screen-output = 1.
 ENDIF.
 screen-invisible = 0.
 MODIFY SCREEN.
 ENDLOOP.
 IF zkunden_tw-name IS INITIAL.
 SET CURSOR FIELD 'ZKUNDEN_TW-NAME'.
 ENDIF.
 ENDIF.
 IF status = 'C'.
 LOOP AT SCREEN.
 IF zkunden_tw-kundennr IS INITIAL.
*Feld KUNDENNR einschalten
 IF screen-group1 = 'K'.
 screen-input = 1.screen-output = 1.
 ELSE.
*alle anderen Felder ausschalten
 screen-input = '0'.screen-output = 1.
 ENDIF.
 ELSE.
 IF screen-group1 = 'K'.
*Feld KUNDENNR ausschalten
 screen-input = 0.screen-output = 1.
 ELSE.
*alle anderen Felder ausschalten
 screen-input = '1'.screen-output = 1.
 ENDIF.
 ENDIF.
 screen-invisible = 0.
 MODIFY SCREEN.
 ENDLOOP.
 IF zkunden_tw-kundennr IS INITIAL.
 SET CURSOR FIELD 'ZKUNDEN_TW-KUNDENNR'.
 ENDIF.
 ENDIF.
ENDMODULE. " dynbildmod OUTPUT

9.5 Nummernkreise 559■

■

■

&---
*& Module STATUS_0100 OUTPUT *
&---
MODULE status_0100 OUTPUT.
 SET PF-STATUS 'DYNPRO_0100'.
 IF status = 'A'.
 SET TITLEBAR 'DYNPRO_0100'
 WITH 'Kunden anlegen'.
 text = 'wird automatisch vergeben'.
 ELSE.
 SET TITLEBAR 'DYNPRO_0100' WITH 'Kunden
ändern'.
 text = 'ENTER drücken'.
 ENDIF.
ENDMODULE. " STATUS_0100 OUTPUT

&---
*& Module laden_0100 OUTPUT *
&---
MODULE laden_0100 OUTPUT.
 IF status = 'C'.
 PERFORM sperren_zkunde.
 IF ok = 0.
 SELECT SINGLE * FROM zkunden_tw
 WHERE kundennr = zkunden_tw-kundennr.
 IF sy-subrc <> 0.
 MESSAGE i034(zlib_tw)
 WITH zkunden_tw-kundennr.
 CALL FUNCTION 'DEQUEUE_ALL'.
 ENDIF.
 ELSE.
 CLEAR zkunden_tw.
 ENDIF.
 ENDIF.
ENDMODULE. " laden_0100 OUTPUT

--
***INCLUDE MYK09_KUNDEN_TWI01 . *
--
&---
*& Module USER_COMMAND_0100 INPUT *
&---
MODULE user_command_0100 INPUT.
 ok_save = ok_code. CLEAR ok_code.

9 Datenbankänderungen programmieren ■

■

■

560

 CASE ok_save.
 WHEN 'ANLEGEN'.
 status = 'A'.
 CLEAR zkunden_tw.
 CALL FUNCTION 'DEQUEUE_ALL'.
 WHEN 'AENDERN'.
 status = 'C'.
 CLEAR zkunden_tw.
 CALL FUNCTION 'DEQUEUE_ALL'.
 WHEN 'SAVE'.
 PERFORM sichern.
 CLEAR zkunden_tw.
 CALL FUNCTION 'DEQUEUE_ALL'.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0100 INPUT

&---
*& Module beenden INPUT *
&---
MODULE beenden INPUT.
 LEAVE TO SCREEN 0.
ENDMODULE. " beenden INPUT

&---
*& Module pruefen_0100 INPUT *
&---
MODULE pruefen_0100 INPUT.
 IF ok_code = 'SAVE'.
 IF zkunden_tw-name IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Name'.
 ENDIF.
 IF zkunden_tw-vorname1 IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Vorname 1'.
 ENDIF.
 IF zkunden_tw-plz IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Plz'.
 ENDIF.
 IF zkunden_tw-wohnort IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Wohnort'.
 ENDIF.
 IF zkunden_tw-strasse IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Strasse'.
 ENDIF.
 ENDIF.

9.5 Nummernkreise 561■

■

■

ENDMODULE. " pruefen_0100 INPUT

--
***INCLUDE MYK09_KUNDEN_TWF01 . *
--
&---
*& Form sichern
&---
FORM sichern.
 IF status = 'A'.
 CALL FUNCTION 'NUMBER_GET_NEXT'
 EXPORTING
 nr_range_nr = '1'
 object = 'ZKNR_TW'
 IMPORTING
 number = zkunden_tw-kundennr
 EXCEPTIONS
 interval_not_found = 1
 number_range_not_intern = 2
 object_not_found = 3
 quantity_is_0 = 4
 quantity_is_not_1 = 5
 interval_overflow = 6
 OTHERS = 7.
 IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE sy-msgty
 NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
 ELSE.
 INSERT zkunden_tw FROM zkunden_tw.
 IF sy-subrc <> 0.
 MESSAGE a035(zlib_tw).
 ELSE.
 MESSAGE i036(zlib_tw)
 WITH zkunden_tw-kundennr.
 ENDIF.
 ENDIF.
 ELSE.
 UPDATE zkunden_tw FROM zkunden_tw.
 IF sy-subrc <> 0.
 MESSAGE a037(zlib_tw).
 ELSE.
 MESSAGE i038(zlib_tw)
 WITH zkunden_tw-kundennr.

9.5 Nummernkreise 559■

■

■

&---
*& Module STATUS_0100 OUTPUT *
&---
MODULE status_0100 OUTPUT.
 SET PF-STATUS 'DYNPRO_0100'.
 IF status = 'A'.
 SET TITLEBAR 'DYNPRO_0100'
 WITH 'Kunden anlegen'.
 text = 'wird automatisch vergeben'.
 ELSE.
 SET TITLEBAR 'DYNPRO_0100' WITH 'Kunden
ändern'.
 text = 'ENTER drücken'.
 ENDIF.
ENDMODULE. " STATUS_0100 OUTPUT

&---
*& Module laden_0100 OUTPUT *
&---
MODULE laden_0100 OUTPUT.
 IF status = 'C'.
 PERFORM sperren_zkunde.
 IF ok = 0.
 SELECT SINGLE * FROM zkunden_tw
 WHERE kundennr = zkunden_tw-kundennr.
 IF sy-subrc <> 0.
 MESSAGE i034(zlib_tw)
 WITH zkunden_tw-kundennr.
 CALL FUNCTION 'DEQUEUE_ALL'.
 ENDIF.
 ELSE.
 CLEAR zkunden_tw.
 ENDIF.
 ENDIF.
ENDMODULE. " laden_0100 OUTPUT

--
***INCLUDE MYK09_KUNDEN_TWI01 . *
--
&---
*& Module USER_COMMAND_0100 INPUT *
&---
MODULE user_command_0100 INPUT.
 ok_save = ok_code. CLEAR ok_code.

9 Datenbankänderungen programmieren ■

■

■

560

 CASE ok_save.
 WHEN 'ANLEGEN'.
 status = 'A'.
 CLEAR zkunden_tw.
 CALL FUNCTION 'DEQUEUE_ALL'.
 WHEN 'AENDERN'.
 status = 'C'.
 CLEAR zkunden_tw.
 CALL FUNCTION 'DEQUEUE_ALL'.
 WHEN 'SAVE'.
 PERFORM sichern.
 CLEAR zkunden_tw.
 CALL FUNCTION 'DEQUEUE_ALL'.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0100 INPUT

&---
*& Module beenden INPUT *
&---
MODULE beenden INPUT.
 LEAVE TO SCREEN 0.
ENDMODULE. " beenden INPUT

&---
*& Module pruefen_0100 INPUT *
&---
MODULE pruefen_0100 INPUT.
 IF ok_code = 'SAVE'.
 IF zkunden_tw-name IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Name'.
 ENDIF.
 IF zkunden_tw-vorname1 IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Vorname 1'.
 ENDIF.
 IF zkunden_tw-plz IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Plz'.
 ENDIF.
 IF zkunden_tw-wohnort IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Wohnort'.
 ENDIF.
 IF zkunden_tw-strasse IS INITIAL.
 MESSAGE e039(zlib_tw) WITH 'Strasse'.
 ENDIF.
 ENDIF.

9.5 Nummernkreise 561■

■

■

ENDMODULE. " pruefen_0100 INPUT

--
***INCLUDE MYK09_KUNDEN_TWF01 . *
--
&---
*& Form sichern
&---
FORM sichern.
 IF status = 'A'.
 CALL FUNCTION 'NUMBER_GET_NEXT'
 EXPORTING
 nr_range_nr = '1'
 object = 'ZKNR_TW'
 IMPORTING
 number = zkunden_tw-kundennr
 EXCEPTIONS
 interval_not_found = 1
 number_range_not_intern = 2
 object_not_found = 3
 quantity_is_0 = 4
 quantity_is_not_1 = 5
 interval_overflow = 6
 OTHERS = 7.
 IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE sy-msgty
 NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
 ELSE.
 INSERT zkunden_tw FROM zkunden_tw.
 IF sy-subrc <> 0.
 MESSAGE a035(zlib_tw).
 ELSE.
 MESSAGE i036(zlib_tw)
 WITH zkunden_tw-kundennr.
 ENDIF.
 ENDIF.
 ELSE.
 UPDATE zkunden_tw FROM zkunden_tw.
 IF sy-subrc <> 0.
 MESSAGE a037(zlib_tw).
 ELSE.
 MESSAGE i038(zlib_tw)
 WITH zkunden_tw-kundennr.

9 Datenbankänderungen programmieren ■

■

■

562

 ENDIF.
 ENDIF.
ENDFORM. " sichern

&---
*& Form sperren_zkunde *
&---
FORM sperren_zkunde.
 CALL FUNCTION 'ENQUEUE_EZKUNDEN_TW'
 EXPORTING
 mode_zkunden_tw = 'E'
 mandant = sy-mandt
 kundennr = zkunden_tw-
kundennr
 EXCEPTIONS
 foreign_lock = 1
 system_failure = 2
 OTHERS = 3.
 IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE 'I' NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
 ENDIF.
 ok = sy-subrc.
ENDFORM. " sperren_zkunde

10.1 Zielstellung des Kapitels 563■

■

■

10 Ausblick: ABAP Objects

10.1
Zielstellung des Kapitels

Dieses Kapitel soll Ihnen den Einstieg in die Objektorientierte Pro-
grammierung erleichtern. Am Beispiel des Rechercheprogramms der
„East-Side-Library“ werden wichtige Grundbegriffe und ihre pro-
grammtechnische Realisierung mit ABAP Objects gezeigt. Zum tie-
feren Eindringen in die objektorientierte Programmierwelt ist z.B.
das Buch „ABAP Objects“ von Horst Keller und Sascha Krüger
(ISBN 3-89842-147-3, Verlag: SAP Press) gut geeignet.

Außerdem wird für das in Kapitel 7 entwickelte Recherchepro-
gramm, die Datenausgabe mittels ALV Grid Control programmiert.

Abb. 10.1
Selektionsbild
aus Kapitel 7

10 Ausblick: ABAP Objects ■

■

■

564

10.2
Ein Wort zu ABAP-Objects

ABAP Objects ist keine neue Programmiersprache. Es ist die ob-
jektorientierte Komponente von ABAP. Anweisungen aus dem
Sprachumfang von ABAP Objects können Sie auch in Ihren „kon-
ventionellen“ Programmen verwenden. Andererseits können Sie
auch Anweisungen des klassischen ABAP/4 in ABAP Objects Pro-
grammen benutzen. ABAP Objects zeichnet sich durch folgende Ei-
genschaften aus:

■ Es wurden nur objektorientiert Konzepte verwendet, die sich in
anderen objektorientierten Sprachen bewährt haben,

■ ABAP Objects Anweisungen können auch in klassischen, d.h.
nicht objektorientierten, ABAP-Programmen eingesetzt werden,

■ klassische ABAP-Anweisungen können in ABAP Objects Pro-
grammen verwendet werden, allerdings sind einige Kurzformen
von Anweisungen nicht erlaubt. Die Syntaxprüfung deckt sol-
che Probleme aber auf.

Abb. 10.2
Ergebnisaus-
gabe mit ALV

Grid Control

565■

■

■

10.3 Objekte, Attribute, Methoden und Klassen

In ABAP Objects
verboten

Korrekte Syntax

TABLES dbtab
SELECT ...
FROM dbtab...

DATA wa TYPE dbtab.
SELECT ... FROM dbtab INTO wa.

TABLES dbtab
INSERT dbtab.

DATA wa TYPE dbtab.
INSERT dbtab FROM wa.
oder
INSERT INTO dbtab VALUES wa.

TABLES dbtab
UPDATE dbtab

DATA wa TYPE dbtab.
UPDATE dbtab FROM wa.
oder
UPDATE dbtab SET

TABLES dbtab
DELETE dbtab.

DATA wa TYPE dbtab.
DELETE dbtab FROM wa.
oder
DELETE FROM dbtab WHERE ...

TABLES dbtab
MODIFY dbtab.

DATA wa TYPE dbtab.
MODIFY dbtab FROM wa.

Wie Sie sehen, betreffen die Verbote die Kurzanweisungen, die
eine mit der TABLES-Anweisung erzeugte Standardstruktur
voraussetzen. Der Grund dafür ist einfach: Um eine bessere
Lesbarkeit der ABAP Objects Programme zu erreichen, ist die
TABLES-Anweisung im ABAP Objects Umfeld auch verboten.
Sie können diese Anweisung also nicht in Klassendefinitionen,
die weiter unten behandelt werden, verwenden.

■ In ABAP Objects werden „schärfere“ Typprüfungen als im
klassischen ABAP durchgeführt.

10.3
Objekte, Attribute, Methoden und Klassen

Im Mittelpunkt der objektorientierten Denkweise stehen Objekte.
Dabei können wir ein Objekt als Modell eines konkreter „Dinges“
der realen Welt auffassen, wie z.B.:

■ ein bestimmtes Buch,

■ ein bestimmter Autor,

■ ein bestimmter Kunde,

■ ein bestimmtes Haus etc.

10 Ausblick: ABAP Objects ■

■

■

566

Objekte der gleichen Art, z.B. verschiede Bücher, unterscheiden sich
in ihren Eigenschaften, die in der objektorientierten Welt Attribute
genannt werden. Attribute für Buchobjekte können sein:
ISBN, Titel, Autor, Kategorie etc. Objekte der gleichen Art werden
durch gleiche Attribute beschrieben, deren Inhalt natürlich unter-
schiedlich sein kann (ähnlich wie Datensätze einer Datenbanktabel-
le, die die gleichen Felder aber eine unterschiedliche Feldbelegung
haben).
Zu einem Objekt gehören aber nicht nur die Daten (Attribute) son-
dern auch Programme, die diese Daten verarbeiten. So könnten wir
im Objekt „Buch“ ein Programm integrieren, das die ISBN, den Ti-
tel, den Autor und die Kategorie auf dem Bildschirm ausgibt. Die
Programme, die in einem Objekt integriert sind, heißen Methoden.

Wie in der realen Welt, können verschiedene Objekte (z.B. Objekt
„Buch“ und Objekt „Autor“) miteinander in Beziehung stehen.

Zusammenfassung:

■ Objekte sind Modelle von konkreten Dingen der realen Welt.

■ Objekte bilden eine Einheit aus Daten (Attributen) und den da-
zugehörigen Funktionen (Methoden).

An Abbildung 10.3 können Sie noch einige typische Eigenschaften
von Objekten erkennen. Objekte sind in mehrere Bereiche geglie-
dert. In der Abbildung ist das der öffentliche Bereich (engl. public
section) und der private Bereich (engl. privat section). Der öffentli-
che Bereich stellt die Schnittstelle des Objektes zur Außenwelt, als
z.B. zum ABAP-Programm oder einem anderen Objekt, dar. Er ent-
hält in der Regel nur Methoden, die auf die Daten im privaten Be-

Abb. 10.3
Objekte

567■

■

■

10.4 Klassen in ABAP Objects

reich zugreifen können. Man sagt, die Daten werden gekapselt. Der
öffentliche Bereich darf auch Attribute enthalten. Sie sollten aber
solche öffentlichen Attributen sehr sparsam einsetzen.
So, die Begriffe Objekt, Attribut und Methoden sind geklärt. Was
aber ist eine Klasse? Eine Klasse ist der „Bauplan“ für ein Objekt. In
diesem Bauplan wird definiert, welche Attribute und Methoden ein
Objekt dieser Klasse besitzt und welchen Bereichen Attribute und
Methoden zugeordnet sind. Ein anderer Teil der Klasse enthält dann
den Quelltext der Methoden. Aus der Klasse wird im Programm ein
Objekt erzeugt. Diesen Vorgang nennt man Instanzierung. Gelegent-
lich wird für den Begriff Objekt auch der Begriff Instanz benutzt.

10.4
Klassen in ABAP Objects

In ABAP Objects besteht eine Klasse aus den Definitions- und dem
Implementationsteil. Der Definitionsteil enthält die Definition der
Attribute und Methoden und ihre Einordnung in die Bereiche

■ PUBLIC SECTION (öffentlicher Bereich),

■ PROTECTED SECTION (Bereich auf den Unterklassen zugrei-
fen können – wird in diesem Buch nicht behandelt) und

■ PRIVATE SECTION (privater Bereich, nur die Methoden des
Objektes haben Zugriff auf diesen Bereich).

Für die Methoden werden im Definitionsteil nur die Namen und die
Schnittstellenparameter festgelegt. Den Quellcode, also die Funktio-
nalität der im Definitionsteil benannten Methoden, enthält der
Implementationsteil. Abbildung 10.4 gibt einen Überblick über De-
finitions- und Implementationsteil in ABAP Objects:

10 Ausblick: ABAP Objects ■

■

■

568

Die Klasse „Buch“ würde für unser Bibliotheksprojekt so angelegt:

--
* CLASS buch DEFINITION *
--
CLASS buch DEFINITION.

Abb. 10.4
Definitionsteil
einer Klasse

Abb. 10.5
Implementati-

onsteil einer
Klasse

569■

■

■

10.4 Klassen in ABAP Objects

 PUBLIC SECTION.
 METHODS: set_attributes IMPORTING
 im_isbn TYPE zbestand_tw-isbn
 im_titel TYPE zbestand_tw-titel
 im_autor1 TYPE zbestand_tw-autor1
 im_kategorie TYPE zbestand_tw-
 kategorie
 im_bestand TYPE zbestand_tw-bestand
 im_ausgeliehen TYPE zbestand_tw-
 Bestand,
 ausgabe.
 private section.
DATA: isbn TYPE zbestand_tw-isbn,

 titel TYPE zbestand_tw-titel,
 autor1 TYPE zbestand_tw-autor1,
 kategorie TYPE zbestand_tw-kategorie,
 verfuegbar TYPE zbestand_tw-bestand.
ENDCLASS.
--
* CLASS buch IMPLEMENTATION
--
CLASS buch IMPLEMENTATION.
 METHOD set_attributes.
 isbn = im_isbn.
 titel = im_titel.
 autor1 = im_autor1.
 kategorie = im_kategorie.
 verfuegbar = im_bestand - im_ausgeliehen.
 ENDMETHOD.
 METHOD ausgabe.
 WRITE: / isbn, titel, autor1, kategorie,
 verfuegbar.
 ENDMETHOD.
ENDCLASS.

Erklärung wichtiger Teile des Programms:
Die Klasse stellt den Bauplan für ein Objekt „Buch“ dar, nicht das
Objekt selbst. Um ein Objekt „Buch“ zu erzeugen, muss es instan-
ziert werden. Nach diesem Vorgang gibt es ein Objekt „Buch“, des-
sen Attributen jedoch in einem Folgeschritt noch Werte übergeben.
werden müssen. Dafür ist die Methode SET_ATTRIBUTES vorge-
sehen. Diese Methode ist aufgrund ihrer Importschnittstelle und ih-
rer Zuordnung zur PUBLIC SECTION in der Lage, Werte vom
ABAP-Programm für die Attribute entgegenzunehmen. Die Attribu-

10 Ausblick: ABAP Objects ■

■

■

570

te selbst (ISBN, TITEL,AUTOR1 etc) sind für das ABAP-
Programm (bzw. für andere Objekte) nicht erreichbar, weil sie der
PRIVATE SECTION zugeordnet sind.
Im Implementationsteil der Klasse ist die Funktionalität der Metho-
de SET_ATTRIBUTES hinterlegt. Die über die Schnittstelle über-
gebenen Werte werden von dieser Methode in die Attribute geladen.

Die Methode AUSGABE gibt die Attribute anderer Objekte seiner
Klasse (also eines Buches) auf dem Bildschirm aus.

10.5
Instanz- und statische Methoden, Instanz-
und statische Attribute

Beim Instanzieren wird ein Objekt einer bestimmten Klasse ange-
legt. Entsprechend des bisher gesagten, enthält dieses Objekt die
Methoden und Attribute, die in der Klassendefinition festgelegt sind.
Methoden und Attribute die beim Instanzieren den Objekten überge-
ben werden, nennt man auch Instanzmethoden bzw. Instanzattribute.
Zusätzlich gibt es noch statische Methoden und Attribute. Diese
werden nicht an die Objekte übergeben sondern verbleiben in der
Klasse. Sie werden deshalb auch als Klassenmethoden bzw. -attri-
bute bezeichnet. Eine typische Anwendung für solche Methoden und
Attribute ist das Anlegen von Zählern. Wenn Sie z.B. wissen wollen,
wie viele Objekte einer Klasse angelegt wurden, kann Ihnen ein ein-
zelnes Objekt darüber keine Auskunft geben, weil es vom Anlegen
des Objektes nicht informiert wird. Es ist aber leicht möglich, beim
Instanzieren eine Klassenmethode aufzurufen, die einen als stati-
sches Attribut definierten Zähler inkrementiert. Klassenmethoden
werden mit dem Schlüsselwort CLASS-METHODS, Klassenattribu-
te mit dem Schlüsselwort CLASS-DATA im Definitionsteil der
Klasse angelegt.

571■

■

■

10.6 Methoden in ABAP Objects

10.6
Methoden in ABAP Objects

In der Schnittstelle der Methoden können folgende Parameter ver-
wendet werden:

■ Importing-Parameter

Mit IMPORTING legen Sie einen oder mehrere Eingabepara-
meter fest (Parameter, die von der Methode importiert werden,
z.B von einem anderen Objekt oder vom ABAP-Programm).

■ Exporting-Parameter

Mit EXPORTING legen Sie einen oder mehrere Ausgabepara-
meter fest (Parameter, die von der Methode exportiert werden,
z.B an ein anderes Objekt oder an das ABAP-Programm).

■ Changing-Parameter

Mit CHANGING legen Sie einen oder mehrere Parameter fest,
die sowohl Eingabe- als auch Ausgabeparameter sein können.

■ einen Returning-Parameter

Abb. 10.6
Definitionsteil ei-
ner Klasse mit
Klassenmethode
und Klassen-
attribut

10 Ausblick: ABAP Objects ■

■

■

572

Jede Methode kann maximal einen Returningparameter besizen.
Dieser Parameter übergibt, wie der Exporting-Parameter auch,
Werte z.B. an ein anderes Objekt oder an das Hauptprogramm.
Durch die Nutzung des Returningparameters ergeben sich syn-
taktische Vereinfachungen im importierenden Programm. Me-
thoden, die einen Returning-Parameter benutzen, werden funk-
tionale Methoden genannt. Sie dürfen keine Exporting- und
Changingparameter besitzen.

10.7
Anlegen von Objekten

Um ein Objekt anzulegen, wird eine Variable benötigt, die mit der
Speicheradresse des Objektes geladen werden kann. Diese Variable
wird Referenzvariable, die Speicheradresse des Objektes Objektrefe-
renz genannt. Gelegentlich wird die Referenzvariable auch als Zei-
ger bezeichnet.

Syntax zum Anlegen einer Referenzvariablen:

DATA <Referenzvariable> TYPE REF TO <Klasse>.

<Name> Name der Referenzvariablen.
Hinweis: Um n Objekte (Instanzen) einer Klasse
anzulegen, benötigen Sie n Referenzvariable oder
Sie speichern die Objektreferenzen in einer internen
Tabelle ab, was an späterer Stelle gezeigt wird.

<Klasse> Bauplan, nach dem das Objekt angelegt wird.

Syntax zum Anlegen eines Objektes:

CREATE OBJECT <Referenzvariable>.

Beispiel:
CLASS buch DEFINITION.
...(siehe Seite 568
ENDCLASS.
CLASS buch IMPLEMENTATION.
...(siehe Seite 569)
ENDCLASS.

*Deklaration der Referenzvariable

573■

■

■

10.8 Methodenaufrufe

DATA: r_buch1 TYPE REF TO buch.
*Anlegen eines Objektes der Klasse buch
*(Instanzierung)
CREATE OBJECT r_buch1.

10.8
Methodenaufrufe

10.8.1
Aufruf einer Instanzmethode

Eine Instanzmethode wird über die Referenzvariable des Objektes
und dem Operator „->“ aufgerufen. Beim Aufruf werden die
Schnittstellenparameter übergeben.

Syntax zum Aufruf einer Instanzmethode:

CALL METHOD <Referenzvariable>-><Methode>
 [EXPORTING <Importparameter 1> = <Wert 1>
 <Importparameter 2> = <Wert 2>
 <Importparameter n> = <Wert n>]
 [IMPORTING <Exportparameter 1> = <Wert 1>
 <Exportparameter 2> = <Wert 2>
 <Exportparameter n> = <Wert n>]
 [CHANGING <Changingparameter 1> = <Wert 1>
 <Changingparameter 2> = <Wert 2>
 <Changingparameter n> = <Wert n>]
 [EXCEPTIONS <Exception1> = <Wert 1>
 <Exception 2> = <Wert 2>
 <Exception n> = <Wert n>
 OTHERS = <Wert y>].

Beispiel:

CLASS buch DEFINITION.
...(siehe Seite 568)
ENDCLASS.
CLASS buch IMPLEMENTATION.
...(siehe Seite 569)
ENDCLASS.
*Deklaration der Referenzvariable
DATA: r_buch1 TYPE REF TO buch.
*Anlegen eines Objektes der Klasse buch

10 Ausblick: ABAP Objects ■

■

■

574

CREATE OBJECT r_buch1.
*Setzen der Attribute des Objekts
CALL METHOD r_buch->set_attributes
EXPORTING im_isbn = '1234567890'
 im_titel = 'ABAP-Objects'
*Ausgabe der Attribute des Objekts
CALL METHOD r_buch->ausgabe.

10.8.2
Aufruf einer Klassenmethode

Eine Klassenmethode wird über den Namen der Klasse und dem
Operator „=>“ aufgerufen. Beim Aufruf werden die Schnittstellen-
parameter übergeben.

Syntax zum Aufruf einer Klassenmethode:

CALL METHOD <Klassenname>=><Methode>
 [EXPORTING <Importparameter 1> = <Wert 1>
 <Importparameter 2> = <Wert 2>
 <Importparameter n> = <Wert n>]
 [IMPORTING <Exportparameter 1> = <Wert 1>
 <Exportparameter 2> = <Wert 2>
 <Exportparameter n> = <Wert n>]
 [CHANGING <Changingparameter 1> = <Wert 1>
 <Changingparameter 2> = <Wert 2>
 <Changingparameter n> = <Wert n>]
 [EXCEPTIONS <Exception1> = <Wert 1>
 <Exception 2> = <Wert 2>
 <Exception n> = <Wert n>
 OTHERS = <Wert y>].

Beispiel:

CLASS buch DEFINITION.
 PUBLIC SECTION.
 ...(siehe Seite 568)
 CLASS-METHODS counter.
 PRIVATE SECTION.
 ...(siehe Seite 568)
 CLASS-DATA: anzahl TYPE I.
ENDCLASS.
CLASS buch IMPLEMENTATION.

575■

■

■

10.9 Externer Zugriff auf öffentliche Attribute

...(siehe Seite 569)
 METHOD counter.
 anzahl = anzahl + 1.
 ENDMETHOD.
ENDCLASS.
DATA: r_buch1 TYPE REF TO buch.
CREATE OBJECT r_buch1.
CALL METHOD r_buch->set_attributes
EXPORTING im_isbn = '1234567890'
 im_titel = 'ABAP-Objects'.
*Aufruf der Klassenmethode COUNTER
CALL METHOD buch=>counter.

10.9
Externer Zugriff auf öffentliche Attribute

Der Zugriff auf öffentliche Methoden von außerhalb der Klasse, z.B.
vom ABAP-Programm oder von einer anderen Klasse, erfolgt über
folgende Syntax:

Zugriff auf Instanzattribute: <Refernzvariable>-> <Instanzattribut>.

Zugriff auf Klassenattribut: <Klassenname>=><Klassenattribut>.

Beispiel:
CLASS zcl_buch DEFINITION.
 PUBLIC SECTION.
 DATA: bestand TYPE i.
 CLASS-DATA: buchanzahl TYPE i.
...
 ENDCLASS.
CLASS zcl_buch IMPLEMENTATION.
...
ENDCLASS.

DATA: buchanzahl_gesamt TYPE i,
 exemplare TYPE i,
 r_buch TYPE REF TO zcl_buch.
*Zugriff auf das Klassenattribut buchanzahl
*(Gesamtanzahl der Bücher der Bibliothek)
buchanzahl_gesamt = zcl_buch=>anzahl_buecher.
CREATE OBJECT r_buch.

10 Ausblick: ABAP Objects ■

■

■

576

*Zugriff auf das Instanzattribut bestand (Anzahl
*der Bücher zu einer ISBN.)
exemplare_ = r_buch->bestand

10.10
Funktionale Methoden

Funktionale Methoden sind Methoden, die einen RETURNING-
Parameter besitzen. Dieser ist immer als Wertparameter zu pro-
grammieren (siehe Beispiel). EXPORTING- oder CHANGING-
Parameter sind nicht erlaubt. Die Definition des RETURNING-
Parameters erfolg durch das Schlüsselwort RETURNING (siehe
Abb. 10.6, Seite 571) im Definitionsteil der Klasse. Der Vorteil
funktionaler Methoden ist die Möglichkeit, sie direkt in logischen
und arithmetischen Ausdrücken und Zuweisungen benutzen zu kön-
nen. Außerhalb dieser Ausdrücke kann der Aufruf einer solchen Me-
thode mit dem Schlüsselwort RECEIVING programmiert werden.

Beispiel:
CLASS zcl_buch DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS ausgabe_ist_gesamt RETURNING
 VALUE(ist_bestand_gesamt) TYPE i.
 METHODS ausgabe_ist_exemplar RETURNING
 VALUE(ist_bestand_exemplar) TYPE i.
...
 PRIVATE SECTION.
 CLASS-DATA: buchanzahl_gesamt TYPE i,
 ausgeliehen_gesamt TYPE i,
 ist_bestand_gesamt TYPE i.
 DATA: bestand_exemplar TYPE i,
 ausgeliehen_exemplar TYPE i,
 ist_bestand_exemplar TYPE i.
...
ENDCLASS.
CLASS zcl_buch IMPLEMENTATION.
 METHOD ausgabe_ist_gesamt.
 ist_bestand_gesamt =
 buchanzahl_gesamt – ausgeliehen_gesamt.
 ENDMETHOD.
 METHOD ausgabe_ist_exemplar.
 ist_bestand_exemplar =
 buchanzahl_exemplar – ausgeliehen_exemplar.

577■

■

■

10.10 Funktionale Methoden

 ENDMETHOD.
ENDCLASS.

DATA r_buch TYPE REF TO zcl_buch.
 buchbestand_gesamt TYPE i.
*Zuweisung des Returningparameters der Klassen-
*methode ausgabe_ist_gesamt an
*buchbestand_gesamt.
*Langform
CALL METHOD zcl_buch=>ausgabe_ist_gesamt
 RECEIVING ist_bestand_gesamt = buchbe-
stand_gesamt
*Kurzform
buchbestand_gesamt =
zcl_buch=>ausgabe_ist_gesamt.

CREATE OBJECT r_buch.
IF r_buch->ausgabe_ist_exemplar <= 10.
 WRITE: 'Mindestbestand unterschritten'.
ENDIF.

In der folgenden Aufgabe soll die Klasse ZCL_BUCH angelegt, ein
Objekt dieser Klasse erzeugt und initialisiert werden. Anschließend
soll eine Methode aufgerufen werden, die die Attribute des Objek-
tes auf dem Bildschirm ausgibt.

1. Legen Sie ein ausführbares Programm YK10 an.

2. Legen Sie das Top-Include YK10TOP und das Ereignisinclude
YK10E01 an.

3. Legen Sie im Top-Include die Klasse ZCL_BUCH an. Orientie-
ren Sie sich dabei an der Klasse BUCH auf Seite 568/569.

4. Deklarieren Sie eine Referenzvariable R_BUCH mit Bezug zur
Klasse ZCL_BUCH.

5. Programmieren Sie im Include YK10E01 den Ereignisblock
START-OF-SELECTION und instanzieren Sie ein Objekt der
Klasse ZCL_BUCH.

6. Rufen Sie die Methode SET_ATTRIBUTES dieses Objektes
auf und übergeben Sie der Methode sinnvolle Werte für deren
Importparameter.

7. Rufen Sie die Methode AUSGABE auf.

Lösung: YK10_1

10 Ausblick: ABAP Objects ■

■

■

578

Lösung:

--
* INCLUDE ZK10_1top *
--
* CLASS zcl_buch DEFINITION *
--
CLASS zcl_buch DEFINITION.
 PUBLIC SECTION.
 METHODS: set_attributes
 IMPORTING
 im_isbn TYPE zbestand_tw-isbn
 im_titel TYPE zbestand_tw-titel
 im_autor1 TYPE zbestand_tw-autor1
 im_kategorie TYPE zbestand_tw-
 kategorie
 im_bestand TYPE zbestand_tw-bestand
 im_ausgeliehen TYPE zbestand_tw-
 bestand,
 ausgabe.
 PRIVATE SECTION.
 DATA: isbn TYPE zbestand_tw-isbn,
 titel TYPE zbestand_tw-titel,
 autor1 TYPE zbestand_tw-autor1,
 kategorie TYPE zbestand_tw-kategorie,
 verfuegbar TYPE zbestand_tw-bestand.
ENDCLASS.
--
* CLASS zcl_buch IMPLEMENTATION *
--
CLASS zcl_buch IMPLEMENTATION.
 METHOD set_attributes.
 isbn = im_isbn.
 titel = im_titel.
 autor1 = im_autor1.
 kategorie = im_kategorie.
 verfuegbar = im_bestand - im_ausgeliehen.
 ENDMETHOD.
 METHOD ausgabe.
 WRITE: / isbn, titel, autor1,
 kategorie, verfuegbar.
 ENDMETHOD.
ENDCLASS.

579■

■

■

10.11 Der Konstruktor, eine besondere Methode

DATA: r_buch TYPE REF TO zcl_buch.

--
* INCLUDE ZK10_1E01 *
--
START-OF-SELECTION.
*Objekt instanzieren
CREATE OBJECT r_buch.
*Methodenaufrufe
CALL METHOD r_buch->set_attributes
 EXPORTING
 im_isbn = '1234567890'
 im_titel = 'ABAP-Objects'
 im_autor1 = '110'
 im_kategorie = 'SAP'
 im_bestand = '10'
 im_ausgeliehen = '6'.
CALL METHOD r_buch->ausgabe.

10.11
Der Konstruktor, eine besondere Methode

Nach dem Anlegen eines Objektes besitzt das Objekt die Methoden
und Attribute, die in der Klasse definiert wurden. Die Attribute sind
im Folgeschritt mit Werten geladen sollen. Das erfolgte im
Beispielprogramm über die Methode SET_ATTRIBUTES, die
im Programm über die Anweisung CALL METHOD r->buch
EXPORTING ... aufgerufen wurde. Im Allgemeinen erfolgt die Ini-
tialisierung der Attribute jedoch nicht über eine „normale“ Methode,
sondern über eine Methode mit dem Namen CONSTRUCTOR. Im
Definitions- und Implementationsteil gibt es, mit Ausnahme des
vorgebenen Namens, keine Unterschiede zu anderen Methoden. Der
Aufruf dieser Methode erfolgt jedoch nicht durch einen Methoden-
aufruf im Programm sondern wird vom Laufzeitsystem nach dem
vollständigen Erzeugen des Objektes ausgeführt. Die Parameter
werden mit der CREATE OBJECT-Anweisung an das Objekt über-
geben.

Beispiel:
CREATE OBJECT r_buch EXPORTING
 im_isbn = '1234567890'
 im_titel = 'ABAP-Objects'.
.

10 Ausblick: ABAP Objects ■

■

■

580

Benennen Sie im Programm YK10 die Methode
SET_ATTRIBUTES der Klasse ZCL_BUCH in CONSTRUCTOR
um. Übergeben Sie die Werte für die Attribute in der CREATE
OBJECT-Anweisung und löschen Sie den Aufruf der Methode
SET_ATTRIBUTES.

Lösung: YK10_2

Lösung:

--
* INCLUDE ZK10_1top *
--
* CLASS zcl_buch DEFINITION *
--
CLASS zcl_buch DEFINITION.
 PUBLIC SECTION.
 METHODS: constructor
 IMPORTING
 im_isbn TYPE zbestand_tw-isbn
 im_titel TYPE zbestand_tw-titel
...
ENDCLASS.
--
* CLASS zcl_buch IMPLEMENTATION *
--
CLASS zcl_buch IMPLEMENTATION.
 METHOD constructor.
 isbn = im_isbn.
 titel = im_titel.
...
 ENDMETHOD.
...
ENDCLASS.
DATA: r_buch TYPE REF TO zcl_buch.
--
* INCLUDE ZK10_1E01 *
--
START-OF-SELECTION.
CREATE OBJECT r_buch EXPORTING
 im_isbn = '1234567890'
 im_titel = 'ABAP-Objects'
 im_autor1 = '110'
 im_kategorie = 'SAP'

581■

■

■

10.12 Objekte löschen

 im_bestand = '10'
 im_ausgeliehen = '6'.
CALL METHOD r_buch->ausgabe.

10.12
Objekte löschen

Objekte belegen Platz im Hauptspeicher und sind deshalb zu lö-
schen, wenn sie nicht mehr benötigt werden. Das Löschen der Ob-
jekte und die Freigabe des Speicherbereiches wird durch den soge-
nannten Garbage Collector (Müllabfuhr) übernommen. Alle Objek-
te, auf die keine Referenz mehr zeigt, werden vom Garbage Collec-
tor gelöscht und der von ihnen allokierte Speicherbereich wird frei-
gegeben. Um ein Objekt zu löschen, ist also die Referenzvariable,
die auf das Objekt zeigt, zu initialisieren. Den Garbage Collector
müssen Sie nicht aufrufen, das besorgt das Laufzeitsystem.

10.13
Referenzen in internen Tabellen speichern

Referenzen können auch in internen Tabellen gespeichert werden. In
einer LOOP-Schleife können dann die Methoden und Attribute der
Objekte aufgerufen werden, deren Referenzen in der internen Tabel-
le gespeichert sind. Diese Methode ist immer dann günstig, wenn
auf mehrere artgleiche Objekte zugegriffen werden soll, z.B. bei der
Listenausgabe. Häufig wird solch eine interne Tabelle durch eine
Klasssenmethode, die beim Anlegen bzw. Löschen eines Objektes
vom Konstruktor aufgerufen wird, gepflegt. Die Listenausgabe sollte
dann ebenfalls als Klassenmethode implementiert werden.

Die interne Tabelle ist über die folgende Syntax zu deklarieren:

DATA: <int.Tabelle> TYPE REF TO <Klasse>.

<int. Tabelle> Name der internen Tabelle

<Klasse> Klasse der Objekte, deren Referenzen in der in-
ternen Tabelle gespeichert werden sollen.

10 Ausblick: ABAP Objects ■

■

■

582

In dieser Aufgabe soll für jeden Datensatz der Datenbanktabelle
ZBESTAND ein Objekt der Klasse ZCL_BUCH angelegt werden.
Unmittelbar nach dem Anlegen des Objektes wird dessen Referenz
in die interne Tabelle IT_ZCL_BUCH gespeichert. Am Schluss des
Programmes wird für jedes Objekt, dessen Referenz in der internen
Tabelle abgelegt ist, die Methode AUSGABE aufgerufen.

1. Deklarieren Sie im TOP-Include des Programms YK10 die in-
terne Tabelle IT_ZCL_BUCH zum Speichern von Referenzen
der Klasse ZCL_BUCH.

2. Programmieren Sie eine SELECT-Schleife über die Tabelle
ZBESTAND. Erzeugen Sie in dieser Schleife ein Objekt dieser
Klasse und laden Sie dessen Attribute mit den Werten aus dem
Datensatz des aktuellen SELECT-Schleifendurchlaufes.

3. Übernehmen Sie die Referenz über eine APPEND-Anweisung
in die interne Tabelle.

4. Programmieren Sie eine LOOP-Schleife (LOOP AT it_cl_buch
INTO r_buch) und rufen Sie innerhalb der Schleife die Metho-
de AUSGABE auf.

Lösung: YK10_3

Lösung:

--
* CLASS zcl_buch DEFINITION *
--
CLASS zcl_buch DEFINITION.
 PUBLIC SECTION.
 METHODS:
 constructor
 IMPORTING
 im_isbn TYPE zbestand_tw-isbn
 im_titel TYPE zbestand_tw-titel
 im_autor1 TYPE zbestand_tw-autor1
 im_kategorie TYPE zbestand_tw-kategorie
 im_bestand TYPE zbestand_tw-bestand
 im_ausgeliehen TYPE zbestand_tw-
 ausgeliehen,
 ausgabe.
 PRIVATE SECTION.
 DATA: isbn TYPE zbestand_tw-isbn,
 titel TYPE zbestand_tw-titel,

583■

■

■

10.13 Referenzen in internen Tabellen speichern

 autor1 TYPE zbestand_tw-autor1,
 kategorie TYPE zbestand_tw-kategorie,
 verfuegbar TYPE zbestand_tw-bestand.
ENDCLASS.

--
* CLASS zcl_buch IMPLEMENTATION *
--
CLASS zcl_buch IMPLEMENTATION.
 METHOD constructor.
 isbn = im_isbn.
 titel = im_titel.
 autor1 = im_autor1.
 kategorie = im_kategorie.
 verfuegbar = im_bestand - im_ausgeliehen.
 ENDMETHOD.
 METHOD ausgabe.
 WRITE: / isbn, titel,
 autor1, kategorie, verfuegbar.
 ENDMETHOD.
ENDCLASS.

DATA: r_buch TYPE REF TO zcl_buch,
 it_zcl_buch TYPE TABLE OF REF TO zcl_buch,
 wa_zbestand TYPE zbestand_tw.

--
* INCLUDE ZK10_1E01 *
--
START-OF-SELECTION.
*Löschen der Zeilen der internen Tabelle
 REFRESH it_zcl_buch.
 SELECT * FROM zbestand_tw INTO wa_zbestand.
 CREATE OBJECT r_buch EXPORTING
 im_isbn = wa_zbestand-isbn
 im_titel = wa_zbestand-titel
 im_autor1 = wa_zbestand-autor1
 im_kategorie = wa_zbestand-kategorie
 im_bestand = wa_zbestand-bestand
 im_ausgeliehen = wa_zbestand-
 ausgeliehen.
 APPEND r_buch TO it_zcl_buch.
 ENDSELECT.

10 Ausblick: ABAP Objects ■

■

■

584

 LOOP AT it_zcl_buch INTO r_buch.
 CALL METHOD r_buch->ausgabe.
 ENDLOOP.

10.14
Globale Klassen

Bisher haben wir Klassen im Programm definiert. Sie sind damit
programmlokal angelegt. Ein Zugriff auf diese Klassen durch andere
Programme ist nicht möglich. Wird eine Klasse in mehreren Pro-
grammen benötigt, sollte sie global im Class Builder angelegt wer-
den.

Vorgehensweise: Globale Klasse anlegen

In dieser Vorgehensweise soll die globale Klasse ZCL_BUCH mit
den gleichen Methoden und Attributen angelegt werden wie die na-
mensgleiche programmlokale Klasse.
Starten Sie den Class Builder über Werkzeuge ABAP Work-
bench Entwicklung SE24 Class Builder oder im Object Navi-
gator über das Symbol „Anderes Objekt“ Registerkarte Klassen-
bibliothek.

Tragen Sie im Einstiegsbild in das Eingabefeld Objekttyp den Na-
men der anzulegenden Klasse ein und aktivieren Sie im Folgebild
den Auswahlknopf „Klasse“.

585■

■

■

10.14 Globale Klassen

Geben Sie eine Kurzbeschreibung ein. Das Ankreuzfeld „Final“
kann aktiviert bleiben (Eine finale Klasse ist eine Klasse, zu der kei-
ne Unterklassen angelegt werden können). Sichern Sie dann die
Klasse.

Sie gelangen in den Bildschirm „Class Builder: Klasse ZCL_BUCH
ändern“. Tragen Sie in der Registerkarte „Methoden“ Namen, Me-
thodenart und Sichtbarkeitsbereich der zur Klasse gehörenden Me-
thoden ein. Den Eintrag für den Konstruktor erzeugen Sie über die
Drucktaste Konstruktor.
Um die Parameter einer Methode festzulegen, stellen Sie den Cursor
in die betreffende Methode und Klicken die Drucktaste „Parameter“.

10 Ausblick: ABAP Objects ■

■

■

586

Über die Drucktaste „Methode“ gelangen Sie wieder in den Bild-
schirm, in dem Sie die Methoden der Klasse eingetragen haben.

Durch Doppelklick auf den Methodennamen verzweigt das Pro-
gramm in den Editor.

587■

■

■

10.14 Globale Klassen

Zum Schluss sind noch die Attribute der Klasse festzulegen. Dazu
steht die Registerkarte „Attribute“ zu Verfügung.

Aktivieren Sie die Klasse.

10 Ausblick: ABAP Objects ■

■

■

588

Die globale Klasse ZCL_BUCH ist damit fertig angelegt. Sie kön-
nen diese Klasse in Ihrem Programm genau so benutzen, wie die lo-
kale Klasse. Legen Sie eine Referenzvariable an und erzeugen Sie
damit ein Objekt.
DATA r_buch TYPE REF TO zcl_buch.
CREATE OBJECT r_buch EXPORTING …

1. Legen Sie die globale Klasse ZCL_BUCH mit den gleichen
Methoden und Attributen an, wie die namensgleiche lokale
Klasse im Programm YK10. Orientieren Sie sich dabei an der
Vorgehensweise „Globale Klasse anlegen“.

2. Kommentieren Sie den Definitions- und Implementationsteil
der lokalen Klasse ZCL_BUCH im Programm YK10 aus, da-
mit das Programm YK10 mit der globalen Klasse arbeitet.

Lösung: Klasse ZCL_BUCH_TW
 Programm: YK10_4

10.15
Vererbung und Polymorphie

In der East-Side-Library sollen nicht nur Bücher sondern auch CDs
verwaltet werden. Um an diesen Beispiel die Begriffe Vererbung
und Polymorphie zu erklären, wird eine neue Klasse
ZCL_MEDIUM angelegt. Diese enthält alle Attribute und Metho-
den, die für beide Medien, also Bücher und CDs, benötigt werden.

--
* CLASS zcl_medium DEFINITION *
--
CLASS zcl_medium DEFINITION.
 PUBLIC SECTION.
 METHODS:
 neues_medium_hinzufuegen
 IMPORTING im_referenz
 TYPE REF TO zcl_medium,
 ausgabe.
 PROTECTED SECTION.
 CLASS-DATA it_medien
 TYPE TABLE OF REF TO zcl_medium.
 PRIVATE SECTION.
 DATA r_referenz TYPE REF TO zcl_medium.
ENDCLASS.

589■

■

■

10.15 Vererbung und Polymorphie

--
* CLASS zcl_medium IMPLEMENTATION *
--
CLASS zcl_medium IMPLEMENTATION.
 METHOD neues_medium_hinzufuegen.
 APPEND im_referenz TO it_medien.
 ENDMETHOD.
 METHOD ausgabe.
*Alle Bücher und CDs werden in einem für jedes
*Medium spezifischen Format ausgegeben werden.
*Der Quelltext ist weiter unten in diesem
*Abschitt erläutert.
 LOOP AT it_medien INTO r_referenz.
 CALL METHOD r_referenz->ausgabe.
 ENDLOOP.
 ENDMETHOD.
ENDCLASS.

Die Klassen für Bücher (ZCL_BUCH) und CDs (ZCL_CD) werden
durch Vererbung der Klasse ZCL_MEDIUM erzeugt. Damit stehen
den Klassen ZCL_BUCH und ZCL_CD, die Unterklassen der Klas-
se ZCL_MEDIUM sind, alle Attribute und Methoden der Klasse
ZCL_MEDIUM (Oberklasse) zur Verfügung. In den Unterklassen
sind nur die Änderungen gegenüber der Oberklasse zu programmie-
ren. Es können sowohl neue Methoden und Attribute definiert und
implementiert, als auch der Implementationsteil der von der Ober-
klasse vererbten Methoden geändert werden.
Eine Klasse wird zur Erbin einer Oberklasse durch die Syntax:

CLASS <Unterklasse> DEFINITION
INHERITING FROM <Oberklasse>.

Damit stehen der Unterklasse alle Methoden und Attribute der Ober-
klasse zur Verfügung. Soll eine geerbte Methode geändert werden,
ist der Methodenname in den Definitionsteil der Unterklasse aufzu-
nehmen (gleicher Sichtbarkeitsbereich wie in der Oberklasse) und
durch das Schlüsselwort REDEFINITION zu kennzeichnen. Die
Parameter dürfen dabei in ABAP Objects nicht geändert werden. In
unserem Beispiel wird die Methode SET_ATTRIBUTES in den Un-
terklassen ergänzt und die geerbte Methode AUSGABE geändert.

--
* CLASS zcl_buch DEFINITION *
--

10 Ausblick: ABAP Objects ■

■

■

590

CLASS zcl_buch DEFINITION INHERITING FROM
zcl_medium.
 PUBLIC SECTION.
 METHODS: set_attributes IMPORTING
 im_isbn TYPE zbestand_tw-isbn
 im_titel TYPE zbestand_tw-titel,
 ausgabe REDEFINITION.
 PRIVATE SECTION.
 DATA: isbn TYPE zbestand_tw-isbn,
 titel TYPE zbestand_tw-titel.
ENDCLASS.
--
* CLASS zcl_buch IMPLEMENTATION *
--
CLASS zcl_buch IMPLEMENTATION.
 METHOD set_attributes.
 isbn = im_isbn.
 titel = im_titel.
 ENDMETHOD.
 METHOD ausgabe.
 WRITE:
 / 'Medium: Buch','ISBN: ',isbn,
 ' Titel: ',titel.
 ENDMETHOD.
ENDCLASS.
--
* CLASS zcl_cd DEFINITION *
--
CLASS zcl_cd DEFINITION INHERITING FROM
zcl_medium.
 PUBLIC SECTION.
 METHODS: set_attributes IMPORTING
 im_cdnr TYPE i
 im_titel TYPE zbestand_tw-titel,
 ausgabe REDEFINITION.
 PRIVATE SECTION.
 DATA: cdnr TYPE I,
 titel TYPE zbestand_tw-titel.
ENDCLASS.
--
* CLASS zcl_cd IMPLEMENTATION *
--
CLASS zcl_cd IMPLEMENTATION.
 METHOD set_attributes.

591■

■

■

10.15 Vererbung und Polymorphie

 cdnr = im_cdnr.
 titel = im_titel.
 ENDMETHOD.
 METHOD ausgabe.
 WRITE:
 / 'Medium: CD','CD-Nr.: ',cdnr,'Titel:
',titel.
 ENDMETHOD.
ENDCLASS.

--
* Programm *
--
*Das Programm soll je 2 Objekte der Klasse
*ZCL_BUCH und der Klasse ZCL_CD erzeugen. Danach
*soll eine Liste mit allen Objekten der Klassen
*ZCL_BUCH und ZCL_CD ausgegeben werden. Die
*Ausgabe soll dabei immer über die Methode
*AUSGABE der jeweiligen Klasse erfolgen.
DATA: r_medium TYPE REF TO zcl_medium,
 r_buch TYPE REF TO zcl_buch,
 r_cd TYPE REF TO zcl_cd.
START-OF-SELECTION.
CREATE OBJECT r_medium.
*Objekte erzeugen, Referenzen in der Tabelle
*it_medien eintragen
*1. Buch
CREATE OBJECT r_buch.
CALL METHOD r_buch->set_attributes EXPORTING
 im_isbn = '3827258863' im_titel = 'SAP R/3'.
CALL METHOD r_buch->neues_medium_hinzufuegen
 EXPORTING im_referenz = r_buch.
*2. Buch
CREATE OBJECT r_buch.
CALL METHOD r_buch->set_attributes
 EXPORTING im_isbn = '3827254388'
 im_titel = 'Internet'.
CALL METHOD r_buch->neues_medium_hinzufuegen
 EXPORTING im_referenz = r_buch.

10 Ausblick: ABAP Objects ■

■

■

592

*1. CD
CREATE OBJECT r_cd.
CALL METHOD r_cd->set_attributes
 EXPORTING im_cdnr = '100'
 im_titel = 'Lieder'.
CALL METHOD r_cd->neues_medium_hinzufuegen
 EXPORTING im_referenz = r_cd.
*2. CD
CREATE OBJECT r_cd.
CALL METHOD r_cd->set_attributes
 EXPORTING im_cdnr = '101'
 im_titel = 'Songs'.
CALL METHOD r_cd->neues_medium_hinzufuegen
 EXPORTING im_referenz = r_cd.

*Ausgabe aller Objekte im Ausgabeformat, das in
*der Methode AUSGABE der jeweiligen Unterklasse
*festgelegt ist durch Aufruf der Methode AUSGABE
*der Klasse ZCL_MEDIUM (Oberklasse).
CALL METHOD r_medium->ausgabe.

Ergebnis:

Hinweis: Das Programm ist auf der Buch-CD unter dem Namen
 YK10_Vererbung zu finden.

Hinweise zum Programm:

■ Die Oberklasse ZCL_MEDIUM enthält als Klassenattribut die
interne Tabelle IT_MEDIEN. In dieser Tabelle können Refe-
renzen auf Objekte der Klasse ZCL_MEDIUM und ihrer Unter-
klassen (ZCL_BUCH, ZCL_CD) gespeichert werden.

■ Die Methode NEUES_MEDIUM_HINZUFUEGEN wird un-
mittelbar nach dem Anlegen eines Objektes aufgerufen und
trägt dessen Referenz in IT_MEDIEN ein. Die interne Tabelle
enthält somit Referenzen zu Objekten der Klasse ZCL_BUCH
und ZCL_CD.

593■

■

■

10.15 Vererbung und Polymorphie

■ Die Methode AUSGABE ist in den Unterklassen durch Rede-
finition so geändert worden, dass sie die Attribute eines Objek-
tes, in einer für die jeweilige Klasse spezifischen Form, auf dem
Bildschirm ausgibt.

■ In der Methode AUSGABE der Oberklasse wird für jede in der
internen Tabelle eingetragene Referenz (Zeiger auf ein Objekt
der Klassen ZCL_BUCH oder ZCL_CD) die Methode
AUSGABE des jeweiligen Objektes aufgerufen.

Wie in Abb. 10.7 zu sehen ist, reagieren die Objekte auf den Metho-
denaufruf CALL METHOD r_referenz->ausgabe, entsprechend ih-
rer Klassenzughörigkeit, unterschiedlich. Dieses Verhalten wird als
Polymorphie bezeichnet.

Abb. 10.7
Grafische
Darstellung
der Abläufe
der Methode
AUSGABE der
Oberklasse
ZCL_MEDIUM

10 Ausblick: ABAP Objects ■

■

■

594

10.16
Kurzer Überblick über GUI-Controls am
Beispiel des ALV-Grid-Controls

Die klassischen Controls, Tabstrip und TableControl, sind Software-
komponenten der Laufzeitumgebung, mit denen der Programmierer
komfortable Dynprooberflächen entwickeln kann. Dem gleichen
Zweck dienen die GUI-Controls. Das sind eigenständige Software-
komponenten, die jedoch nicht Teil der ABAP-Laufzeitumgebung
sind. Sie werden zusammen mit der SAPGUI auf der Präsentations-
ebene installiert und laufen auch dort ab. Die Funktionalität der
GUI-Controls, wie z.B. das Blättern in Listen, findet vollständig auf
der Präsentationsebene (Frontend) statt und entlastet somit die An-
wendungsebene. Allerdings ist die Netzbelastung höher, weil große
Datenmengen zwischen Frontend und Applikationsserver transpor-
tiert werden müssen.
GUI-Controls sind nicht an den klassischen Datenstrom zwischen
Anwendungsebene und Präsentationsebene angeschlossen. Der Da-
tentransport findet über das sogenannte Control Framework (CFW),
das in diesem Buch nicht weiter behandelt wird, statt. Für jedes
GUI-Control existiert in der Klassenbibliothek eine globale Klasse.
Möchte der Programmierer ein GUI-Control in einem Dynpro be-
nutzen, legt er ein sogenanntes Stellvertreterobjekt der Klasse des
gewünschten GUI-Controls an. Der Datenaustausch zwischen Stell-
vertreterobjekt auf der Applikations- und GUI-Control auf der Prä-
sentationsebene wird durch das CFW organisiert.
Tabelle 10.1 gibt Auskunft über bis zu Version 4.7 realisierte GUI-
Controls.

595■

■

■

10.16 Kurzer Überblick über GUI-Controls am Beispiel des ALV-
Grid-Controls

GUI-Control Funktion

Toolbar-
Control

Ermöglicht die Programmierung einer vom GUI-
Status unabhängigen Drucktastenleiste.
Stellvertreterklasse: CL_GUI_TOOLBAR

Picture-Control Damit können Sie Bilder mit den Formaten BMP,
JPG oder GIF in ihr Dynpro einbinden.
Stellvertreterklasse: CL_GUI_PICTURE

HTML-Control Erlaubt das Einbinden von HTML-Seiten.
Stellvertreterklasse: CL_GUI_HTML_VIEWER

Textedtit-
Control

Mit diesem Control können Sie einen Texteditor
mit den üblichen Funktionen wie z.B. Suchen und
Ersetzen, Markieren, in ein Dynpro einbinden.
Stellvertreterklasse: CL_GUI_TEXTEDIT.

Tree-Control Hierarchische Zusammenhänge können mit die-
sem Control in Form einer Baumstruktur
(mehrspaltiger Baum oder Listenbaum) grafisch
dargestellt werden.
Stellvertreterklasse: CL_GUI_SIMPLE_TREE

ALV-Grid-
Control

Bietet die Möglichkeit, komfortable Tabellen zu
programmieren.
Stellvertreterklasse: CL_GUI_ALV_GRID

Abbilden eines GUI-Controls auf einem Dynpro (Prinzip)
Anders als ein klassisches Control kann ein GUI-Control nicht direkt
auf dem Dynpro platziert werden. Auf dem Dynpro wird im Layout-
editor lediglich ein Bereich für einen Container, der im Programm
mit dem GUI-Control verbunden wird, angelegt. Abbildung 10.8
stellt das Prinzip grafisch dar.

10 Ausblick: ABAP Objects ■

■

■

596

Container sind Objekte einer Containerklasse. Die folgende Tabelle
enthält die derzeit zur Verfügung stehenden Containerklassen.

Containerklasse Kurzbeschreibung

CL_GUI_CUSTOM_
CONTAINER

Die Objekte dieser Containerklasse
werden wie in Abb. 10.8 eingesetzt.

CL_GUI_DOCKING_
CONTAINER

Die Containerbereiche von Containern
dieser Klasse sind an die Rändern
(links, rechts, oben oder unten) von
Dynpros angeheftet (angedockt)

CL_GUI_SPLITTER_
CONTAINER

Der Container kann horizontal und/oder
vertikal geteilt werden. In jedem Teil
kann dann ein GUI-Control geladen
werden.

CL_GUI_DIALOGBOX_
CONTAINER

Die Containerbereiche von Containern
dieser Klasse sind eigenständige amo-
dale Dialogfenster.

Abb. 10.8
Abbilden eines

GUI-Controls auf
einem Dynpro

597■

■

■

10.16 Kurzer Überblick über GUI-Controls am Beispiel des ALV-
Grid-Controls

Vorgehensweise: Anzeigen von Daten mit dem ALV-Grid-Control

Voraussetzungen:
■ Es wurde eine interne Tabelle mit den im im ALV-Grid-Control

anzuzeigenden Daten geladen.

■ Der Zeilentyp der internen Tabelle ist im ABAP-Dictionary de-
finiert. Das vereinfacht das Anlegen des ALV-Grid-Controls.

Laden Sie das Dynpro, auf dem das GUI-Control platziert werden
soll, in den grafischen Layouteditor. Legen Sie den Containerbereich
entsprechend der folgenden Abbildung an.

1. Klicken Sie im Layouteditor das Werkzeug „Custom Control“.

2. Schieben Sie den Mauszeiger, ohne eine Maustaste zu drücken,
an die linke obere Ecke des Containerbereiches.

3. Ziehen Sie den Minirahmen, mit gedrückter linker Maustaste,
bis zum unteren rechten Rand des künftigen Bereiches.

4. Lassen Sie die Maustaste wieder los. Doppelklicken Sie in den
Containerbereich. Tragen Sie in dem sich daraufhin öffnenden
Attributefenster einen Namen für den Containerbereich ein.

Deklarieren Sie im ABAP-Programm je eine Referenzvariable für
den Container und das ALV-Grid-Control.
Beispiel für eine Referenz auf ein Objekt der Klasse
CL_GUI_CUSTOM_CONTAINER:

DATA: my_container TYPE REF TO
 cl_gui_custom_container.

Beispiel für eine Referenz auf ein Objekt der Klasse
CL_GUI_ALV_GRID:

10 Ausblick: ABAP Objects ■

■

■

598

DATA: my_alv TYPE REF TO
 cl_gui_alv_grid.

Legen Sie ein PBO-Modul an, indem das Containerobjekt und das
ALV-Grid-Objekt erzeugt wird. Das Containerobjekt wird beim An-
legen mit dem Containerbereich, das ALV-Grid-Objekt mit dem
Container verbunden. Dem ALV-Grid-Objekt wird die interne Ta-
belle mit den abzubildenden Daten und der Zeilentyp, der idealer-
weise im ABAP-Dictionary definiert ist, übergeben. Orientieren Sie
sich an der folgenden Syntax:

MODULE init_create_control_0130 OUTPUT.
*Container und ALV Grid Control nur einmal
*anlegen
 IF my_container IS INITIAL.
*Container MY_CONTAINER anlegen
 CREATE OBJECT my_container
 EXPORTING
*Als Exportparameter wird der Name der Contai
*nerbereiches MY_CC angegeben
 container_name = 'MY_CC'
 EXCEPTIONS
 cntl_error = 1
 cntl_system_error = 2
 create_error = 3
 lifetime_error = 4
 lifetime_dynpro_dynpro_link = 5
 others = 6.
 IF sy-subrc <> 0.
*Container konnte nicht angelegt werden
 MESSAGE ...
 ENDIF.
*ALV Grid Control angelegen, ebenfalls nur
*einmal und nicht bei jedem PBO-Durchlauf.
 CREATE OBJECT my_alv
 EXPORTING
*Als Exportparameter wird der Name der
*Containerobjektes MY_CONTAINER angegeben
 i_parent = my_container
 EXCEPTIONS
 error_cntl_create = 1
 error_cntl_init = 2
 error_cntl_link = 3
 error_dp_create = 4

599■

■

■

10.16 Kurzer Überblick über GUI-Controls am Beispiel des ALV-
Grid-Controls

 others = 5.
 IF sy-subrc <> 0.
*ALV Grid Control konnte nicht angelegt werden
 MESSAGE ...
 ENDIF.
*Methode SET_TABLE_FOR_FIRST_DISPLAY aufrufen.
*Das ALV-Grid-Objekt wird mit der internen
*Tabelle, die die anzuzeigenden Daten enthält,
*und dem Zeilentyp, der z.B. die Spaltennamen
*enthält, verbunden.
 CALL METHOD my_alv->set_table_for_first_display
 EXPORTING
*der Zeilentyp wird als Exportparameter
*übergeben
 i_structure_name = '<Zeilentyp>'
 CHANGING
*interne Tabelle als CHANGING-Parameter
*übergeben
 it_outtab = <int. Tabelle>
 EXCEPTIONS
 invalid_parameter_combination = 1
 program_error = 2
 too_many_lines = 3
 OTHERS = 4.
 IF sy-subrc <> 0.
*Methode konnte nicht ausgeführt werden
 MESSAGE
 ENDIF.
 ELSE.
*Existiert beim PBO-Durchlauf das ALV-Grid-
*Objekt bereits, wird lediglich die Anzeige
*aktualisiert.
 CALL METHOD my_alv->refresh_table_display.
 ENDIF.
ENDMODULE.

Erinnern Sie sich an die Aufgabe in Kapitel 7, bei der das Ergebnis
einer Literaturrecherche als Liste und als TableControl ausgegeben
wurde? In diesem Programm haben Sie schon die Ausgabe als
ALV-Grid-Control vorbereitet. In folgender Aufgabe wird das Pro-
gramm vervollständigt.

1. Kopieren Sie das Programm SAPMYK07_3_TW nach
SAPMYK10_1. Aktivieren Sie das Programm und legen Sie

10 Ausblick: ABAP Objects ■

■

■

600

den Transaktionscode ZK10_1 zu diesem Programm an (Start-
dynpro 100).

2. Legen Sie das Dynpro 130 mit einem Containerbereich
MY_CC an.

3. Legen Sie einen neuen GUI-Status (Namensvorschlag
DYNPRO_0130) an. Programmieren Sie in diesem Status nur
die Funktionstaste EXIT. Rufen Sie den Status im Dynpro 130
im Modul STATUS_0130 auf.

4. Ersetzen Sie im PAI-Modul USER_COMMAND_0100 die
Anweisung MESSAGE i008(zlib) durch die Anweisung CALL
SCREEN 130.

5. Legen Sie im Top-Include je eine Referenzvariable für ein Ob-
jekt der Klasse CL_GUI_ALV_GRID und der Klasse
CL_GUI_CUSTOM_CONTAINER an. Außerdem benötigen
Sie eine interne Tabelle mit Bezug auf die Dictionary-Struktur
ZST_TC1_TW
DATA: my_alv TYPE REF TO cl_gui_alv_grid,

 my_container
 TYPE REF TO cl_gui_custom_container,
 it_tc1_tw TYPE TABLE OF zst_tc1_tw.

6. Rufen Sie im PBO des Dynpros 130 das bereits vorhandene
Modul LADEN_INT_TAB auf. In diesem Modul wird die in-
terne Tabelle IT_ZBESTAND mit den durch die Selektionskri-
terien identifizierten Daten der Tabelle ZBESTAND geladen.

7. Programmieren Sie Dynpro 130 nach dem Aufruf des Moduls
LADEN_INT_TAB den Aufruf eines Moduls (Namensvor-
schlag: LADEN_ALV_INT_TAB), in dem die Daten der inter-
nen Tabelle IT_ZBESTAND in die namensgleichen Felder der
Tabelle IT_TC1_TW gespeichert werden. Das Feld Name der
internen Tabelle IT_TC1_TW wird mit dem Namen des Au-
tors1 aus Datenbanktabelle ZAUTOREN geladen. Diese Tabel-
le und der zugehörige Zeilentyp ZST_TC1_TW wird später an
das ALV-Grid-Control übergeben.

8. Programmieren Sie ein Modul (Namensvorschlag:
INIT_CREATE_CONTROL_0130) in dem das Containerob-
jekt und das ALV-Grid-Objekt angelegt werden. Übergeben Sie
an das ALV-Grid-Objekt die interne Tabelle IT_TC1_TW und
deren Zeilentyp ZST_TC1_TW. Orientieren Sie sich dabei am
Syntaxbeispiel der Vorgehensweise „Anzeigen von Daten mit
dem ALV-Grid-Control“. Rufen Sie dieses Modul im PBO des
Dynpros 130 auf.

601■

■

■

10.16 Kurzer Überblick über GUI-Controls am Beispiel des ALV-
Grid-Controls

9. Programmieren Sie das PAI-Modul
AT_USER_COMMAND_130 wie folgt:

 MODULE user_command_0130 INPUT.
 LEAVE TO SCREEN 0100.
 ENDMODULE.

 Bemerkung:
 Das Modul muss ohne die Auswertung des OK_CODE-Feldes

auskommen. Aufgrund der anderen Arbeitsweise der GUI-
Controls wird dieses Feld nicht geladen. Die Alternative ist die
Ereignissteuerung, die aber im Rahmen dieser kurzen Einfüh-
rung in ABAP-Objects nicht behandelt wird.

Lösung: SAPMYK10_1

Lösung:

&---
*& Include MYK10_1TOP *
&---
PROGRAM sapmyk10_1 NO STANDARD PAGE HEADING.
TABLES: zbestand_tw,zst_tc1_tw.
DATA: my_alv TYPE REF TO cl_gui_alv_grid,
 my_container TYPE REF TO
 cl_gui_custom_container,
 it_tc1_tw TYPE TABLE OF zst_tc1_tw.
*************nicht geänderter Quelltext*********************

&---
*& Ablauflogik Dynpro 0130 *
&---
PROCESS BEFORE OUTPUT.

 MODULE status_0130.
 MODULE laden_int_tab.
 MODULE laden_alv_int_tab.
 MODULE init_create_control_0130.

PROCESS AFTER INPUT.
 MODULE user_command_0130.
&---
*& Module STATUS_0130 OUTPUT *
&---
MODULE status_0130 OUTPUT.
 SET PF-STATUS 'DYNPRO_0130'.

10 Ausblick: ABAP Objects ■

■

■

602

 SET TITLEBAR 'DYNPRO_0130'.
ENDMODULE.

&---
*& Module laden_alv_int_tab OUTPUT *
&---
MODULE laden_alv_int_tab OUTPUT.
 REFRESH it_tc1_tw.
 LOOP AT it_zbestand INTO wa_zbestand.
 MOVE-CORRESPONDING wa_zbestand TO zst_tc1_tw.

 SELECT SINGLE * FROM zautoren_tw INTO
 CORRESPONDING FIELDS OF zst_tc1_tw
 WHERE autorennr = zst_tc1_tw-autor1.

 zst_tc1_tw-verfuegbar =
 zst_tc1_tw-bestand - zst_tc1_tw-ausgeliehen.

 APPEND zst_tc1_tw TO it_tc1_tw.
 ENDLOOP.
ENDMODULE.

&---
*& Module init_create_control_0130 OUTPUT *
&---
MODULE init_create_control_0130 OUTPUT.
*Container und ALV Grid Control nur einmal
*anlegen
 IF my_container IS INITIAL.
 CREATE OBJECT my_container
 EXPORTING
 container_name = 'MY_CC'
 EXCEPTIONS
 cntl_error = 1
 cntl_system_error = 2
 create_error = 3
 lifetime_error = 4
 lifetime_dynpro_dynpro_link = 5
 others = 6.
 IF sy-subrc <> 0.
*Container konnte nicht angelegt werden
 MESSAGE ID sy-msgid TYPE sy-msgty
 NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.

603■

■

■

10.16 Kurzer Überblick über GUI-Controls am Beispiel des ALV-
Grid-Controls

 ENDIF.

 CREATE OBJECT my_alv
 EXPORTING
 i_parent = my_container
 EXCEPTIONS
 error_cntl_create = 1
 error_cntl_init = 2
 error_cntl_link = 3
 error_dp_create = 4
 others = 5.
 IF sy-subrc <> 0.
*ALV Grid Control konnte nicht angelegt werden
 MESSAGE ID sy-msgid TYPE sy-msgty
 NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
 ENDIF.
*Methode SET_TABLE_FOR_FIRST_DISPLAY aufrufen
 CALL METHOD my_alv->set_table_for_first_display
 EXPORTING
 i_structure_name = 'zst_tc1_tw'
 CHANGING
 it_outtab = it_tc1_tw
 EXCEPTIONS
 invalid_parameter_combination = 1
 program_error = 2
 too_many_lines = 3
 OTHERS = 4.
 IF sy-subrc <> 0.
*Methode konnte nicht ausgeführt werden
 MESSAGE ID sy-msgid TYPE sy-msgty
 NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
 ENDIF.
 ELSE.
 CALL METHOD my_alv->refresh_table_display.
 ENDIF.
ENDMODULE.

Installation des Übungsszenarios ■

■

■

605

Anlage

Installation des Übungsszenarios

Die Dateien R900115.MBS, D900115.MBS und K900115.MBS der
Buch-CD enthalten die Entwicklungsklasse (Paket) „Y_ABAP_
TRAINING_TW“, in der sich die Lösungen der Übungsaufgaben
befinden. Die Übernahme der Entwicklungsklasse und der dazuge-
hörigen Entwicklungsobjekte in Ihr R/3-System erfolgt mittels eines
Transportes. Dazu sind zunächst die Dateien in das Transportver-
zeichnis des R/3-Systems zu kopieren.

Datei (auf Buch-CD) R/3-Zielverzeichnis

R900115.MBS
D900115.MBS

<LW>:\<R3-System>\trans\data

K900115.MBS <LW>:\<R3-System>\trans\cofiles

Wenn Sie Zugang zum SAP-R/3-Server haben bzw. mit dem Mini-
SAP arbeiten, können Sie den Kopiervorgang wie gewohnt durch-
führen. Anderenfalls gehen Sie entsprechend der Vorgehensweise
„Upload Transportdateien“ vor.

Bei einem Transport in ein „echtes“ R/3-System sollten Sie vorher
Ihren Systemadministrator konsultieren.

Vorgehensweise: Upload Transportdateien

1. Legen Sie die Buch-CD in Ihr CD-Laufwerk ein.

2. Starten Sie Ihr R/3-System, rufen Sie die Transaktion SE38
auf.

3. Legen Sie das Programm ZTP_UPLOAD an. Gehen Sie dabei
entsprechend der nachfolgenden Abbildungen vor.

Installation des Übungsszenarios ■

■

■

606

Abb. A.1
ABAP Editor:
Einstiegsbild

Abb. A.2
ABAP Editor:

Programm-
eigenschaften

festlegen

Abb. A.3
Programm als
lokales Objekt

sichern

Installation des Übungsszenarios 607■

■

■

4. Laden Sie die Datei ZTP_UPLOAD der Buch-CD in einen
Texteditor und kopieren Sie den gesamten Text in die Zwi-
schenablage.

5. Verzweigen Sie wieder in den ABAP-Editor und fügen Sie
den Quelltext aus der Zwischenablage ein.

Achten Sie darauf, dass der Anfang Ihres Programms so aus-
sieht, wie in Abb. A.4. Löschen Sie gegebenenfalls die zusätz-
lich entstandene Zeile „REPORT ztp_upload.“.

6. Sichern Sie das Programm (Symbol „Diskette“).

7. Führen Sie das Programm aus (Menü Programm Testen).
Tragen Sie im Einstiegsbild das Laufwerk der Buch-CD ein.
Die anderen Eingabefelder müssen nur im Ausnahmefall ge-
ändert werden.
Klicken Sie das Symbol „Ausführen“.

Abb. A.4
Quelltext aus
Zwischenablage
einfügen

Installation des Übungsszenarios ■

■

■

608

8. Als Ergebnis wird Ihnen ein Transportprotokoll angezeigt.

9. Sie können mit der Transaktion AL11 (SAP-Directories) über-
prüfen, ob die 3 Dateien im Transportverzeichnis vorhanden
sind. Doppelklicken Sie im Einstiegsbild dieser Transaktion
den Eintrag „DIR_TRANS“ und danach „DATA“ bzw.
„COFILES“ und kontrollieren Sie, ob die Dateien
R900115.MBS, D900115.MBS und K900115.MBS in den
Verzeichnissen zu finden sind.

Nach dem erfolgreichen Upload der Transportdateien in das Trans-
portverzeichnis können Sie den Transport der Entwicklungsobjekte
in Ihr R/3-System entsprechend der Vorgehensweise „Transport aus-
führen“.

Abb. A.5
Programm

ZTP_UPLOAD
ausführen

Abb. A.6
Upload-Protokoll

Installation des Übungsszenarios 609■

■

■

Vorgehensweise: Transport ausführen

1. Starten Sie die Transaktion STMS (Transport Management
System)

2. Wählen Sie im Einstiegsbild das Menü Übersicht Importe.

3. Doppelklicken Sie in der Importübersicht Ihr R/3-System.

4. Wählen Sie im Folgebild das Menü Zusätze Weitere Auf-
träge Anhängen.

Tragen Sie im folgenden Dialogfenster in das Eingabefeld
„Transportauftrag“ die Zeichenkette MBSK00115 ein (auch
wenn Ihr R/3-System nicht MBS heißt).

Abb. A.7
Menüauswahl
im Einstiegsbild
des Transport
Management
Systems

Abb. A.8
Auswahl der Im-
portqueue in der
Importübersicht

Abb. A.9
Menüauswahl in
der Importqueue

Installation des Übungsszenarios ■

■

■

610

5. Beantworten Sie die folgende Sicherheitsabfrage „Transport-
auftrag MBSK900115 an Importqueue ... anhängen“ mit „Ja“.

6. Wählen Sie, falls möglich, das Menü Queue Öffnen. Sie
müssten jetzt folgendes Bildschirmbild erzeugt haben:

Stellen Sie den Cursor in den Transportauftrag und klicken Sie
die Schaltfläche „Auftrag importieren“.

7. Tragen Sie im Folgebild als Zielmandanten den Mandanten
ein, an dem Sie angemeldet sind.

Abb. A.10
Eintragen des

Transport-
auftrages

Abb. A.11
Auslösen des

Imports

Abb. A.12
Import beginnen

Index ■

■

■

611

Index

A
ABAP-Anweisungen

APPEND 193
CALL FUNCTION 349, 350
CALL SCREEN 358, 418
CALL SELECTION SCREEN

433
CALL SUBSCREEN 432
CASE-Anweisung 226
CHAIN 409
CHANGING 265, 267
CLEAR 294
COMMIT WORK 511, 512,

516
COMMIT WORK AND

WAIT 517
CONDENSE 177
CONSTANTS 166
CONTROLS 448

TYPE TABLEVIEW 448
DATA 160
DELETE 206, 502
DESCRIBE 215
DIV 170
DO n TIMES-Schleife 230
DO-Schleife 229
FIELD 406
FIELD-SYMBOLS 167
FORM 264
FORMAT 151
FREE 214
GET CURSOR FIELD 315
HIDE 292
IF-Anweisung 225
INCLUDE 270
INSERT 194, 494
LEAVE TO LIST-

PROCESSING 440

LEAVE TO SCREEN 358,
419

LIKE 267
LOOP 210
MATCHCODE 248
MESSAGE 335
MOD 170
MODIFY 202, 501
MODIFY CURRENT LINE

312
MOVE 213
OVERLAY 177
PARAMETERS 248
PERFORM 264

PERFORM <up> ON
COMMIT 512

RAISE 346
READ 195
READ LINE 309
REFRESH 214
REPLACE 175
SEARCH 175
SELECT Siehe SELECT
SELECT-OPTIONS 250
SET TITLEBAR 298
SET-PF-STATUS 305
SHIFT 176
SKIP 137
SORT 214
SORT (dyn. sortieren einer int.

Tabelle) 316
SUPPRESS DIALOG 44
Syntax von ~ 136
TABLES 372
TYPES 160
ULINE 137
UPDATE 496
USING 265
WHILE-Schleife 232

Index■

■

■

612

WINDOW STARTING AT...
295

WRITE 143
WRITE ... AS CHECKBOX

308
WRITE ... AS ICON 281

ABAP-Dictionary 79
Datenbanktabelle 82
Datenelement 82
Domäne 82
Sperrobjekt 84
Struktur 83
Suchhilfe 83
Tabellentyp 83
View 82

ABAP-Objects 564
Attribute 566

Externer Zugriff 575
Control Framework 594
GUI-Controls 594
Klassen 567

Definitionsteil 567
globale Klassen 584
Implementationsteil 568

Konstruktor 579
Methoden 566

Aufrufe 573
Changing-Parameter 571
Exporting-Parameter 571
Funktionale Methoden 576
Importing-Parameter 571
Instanzmethode 570
Klassenmethode 570
Parameter 571
Redefinition 589
Returning-Parameter 571
statische Methode 570

Objekte 565
Anlegen 572
löschen 581

Polymorphie 593
Redefinition 589
Referenzvariable 572

in interne Tabelle speichern
581

verbotene Anweisungen 565
Vererbung 588

Ablauflogik 382
Adressübergabe 265
Aktualparameter 264
AND 233

Änderungsebenen 6
Erweiterungen 6
Kundenentwicklungen 6
Modifikationen 7

Änderungsstrategien 8
mandantenabhängige Daten 8
mandantenunabhängige

Daten 9
Ankreuzfelder 376
Anwendungsdaten Siehe

Datenstruktur (R/3-System)
Anwendungsschicht 2
APPEND 193
Append-Struktur 97
Arbeitsbereich 193
Arithmetische Operationen 168
Arithmetische Operatoren 168
ARRAY-Fetch 243
asynchrone Verbuchung 517
AT LINE-SELECTION 140, 286
At Selection-Screen 137, 139
AT USER-COMMAND 139,

286, 306
Attribute 566

Externer Zugriff 575
Aufgaben

Kapitel 10
Datenausgabe mit ALV-

Grid-Control 599
Globale Klassen anlegen

588
Lokale Klassen anlegen 577
Konstruktor verwenden 580
Methoden aufrufen 577
Referenzen in interne

Tabelle speichern 582
Kapitel 3

Datenelemente anlegen 92
Domänen anlegen 88
Fremdschlüsselbeziehungen

definieren 118
Suchhilfen anbinden 124
Suchhilfen anlegen 121
Tabellen anlegen 114

Kapitel 4
ARRAY-Fetch 245
FORMAT 154
globale Datentypen 224
interne Tabelle 217
Kettenanweisungen 147
Parameters 249

Index 613■

■

■

Programm YK04DBAS
anlegen 140

Select-Options 253
Selektionstexte/Rahmen

257
Strukturen 181
Textsymbole 150
WRITE 145

Kapitel 5
Ändern des Listenpuffers

313
dynamische Zeilenauswahl

(Teil 1) 308
dynamische Zeilenauswahl

(Teil 2) 311
dynamisches Sortieren der

Ausgabeliste 317
Funktionsbaustein anlegen

und einbinden 350
GUI-Titel anlegen und

einbinden 299
Ikonen in Listen 282
Includes anlegen 273
Nachrichtenausgabe 337
PF-Status anlegen und ein-

binden 306
Programm debuggen

(Teil 1) 326
Programm debuggen

(Teil 2) 328
Programm debuggen

(Teil 3) 330
Programm kopieren 272
Unterprogramme anlegen

und einbinden 277
Verzweigungsliste (Teil 1)

287
Verzweigungsliste (Teil 2)

288
Verzweigungslisten (Teil 3)

292
Verzweigungslisten (Teil 4)

293
Verzweigungsliste in

modaler Dialogbox 296
Kapitel 6

Bedingte Modulausführung
417

Drucktasten programmieren
393

Dynamische Änderung von
Dynproelementattributen
404

Dynamische Dynproaufrufe
420

Dynpro-Layout anlegen
380

Ein-/Ausgabefelder zu PBO
laden 386

Eingabeprüfungen 397
GUI-Status und GUI-Titel

in Dynpros setzen 397
Modulpool anlegen 352
Transaktionscode anlegen

355
Kapitel 7

Listenausgabe auf Dynpros
440

Selektionsbild als Subscreen
einsetzen 434

Subscreendynpro einbinden
(dynamisch) 465

Subscreendynpro einbinden
(statisch) 461

Table Control (Auswertung
markierte Zeile) 460

Table Control
(Datenausgabe) 455

Kapitel 8
Bündelung durch

Unterprogramme 513
Datenbankänderungen pro-

grammieren 506
Datensatzsperren löschen

527
Datensatzsperren setzen

527
Programm zur Ausleihe und

Rückgabe von Büchern
(Komplexe Wiederho-
lung) 536

Programm zur Kundenpfle-
ge (Komplexe Wiederho-
lung) 553

Sperrobjekt anlegen 525
Sperrtabelle anzeigen 530
Tabstrip mit dynamischer

Blätterfunktion 482
Ausgabe von Texten 140
Auswahlknopfgruppe 373

Index■

■

■

614

automatische Aufzeichnung von
Änderungen 12, 18, 43

B
Bedingte Verzweigungen 225
Belieferungsweg Siehe

Transportweg
Benutzeraktionen

Reagieren auf ~ 305
Benutzerdaten Siehe

Datenstruktur (R/3-System)
Bündelung

der Datenbankänderungen 511
durch Unterprogramme 512
durch Verbucherbausteine 515

C
CALL SCREEN 358, 418
CALL SELECTION-SCREEN

433
Call-by-reference Siehe Wert-

übergabe
Call-by-value Siehe Wertüber-

gabe
Call-by-value-and-result Siehe

Wertübergabe
CASE-Anweisung 226
CFW Siehe Control Framework
CHANGING 265, 267
Client-Server-Architektur 1

Hardwareorientierte Sicht 2
softwareorientierte Sicht 1

Clustertabelle 95
COMMIT 508, 509
COMMIT WORK 511, 512, 516
CONDENSE 177
CONSTANTS 166
Control Framework 594
CONTROLS 448
Customizing 5, 8, 12, 15, 16, 19,

20, 21, 23, 27, 43
Projekt-IMG 20
Referenz-IMG 19

Customizingauftrag 12, 16, 17,
18, 25, 26, 27, 28, 30, 43, 50,
61

Customizingdaten Siehe
Datenstruktur (R/3-System)

D
DATA 160
Datenbankändernde Anweisungen

Datenbankschicht
COMMIT WORK 511, 513
DELETE 502
INSERT 494
MODIFY 501
UPDATE 496

Datenbank-LUW 509
Datenbanktabelle 82
Datenelement 82
Datenobjekt 158

Deklaration 158
Deklarationsbeispiele 161,

164, 165
Datenstruktur (R/3-System) 3

Anwendungsdaten 5
Benutzerdaten 5
Customizingdaten 5
Mandant 4
mandantenunabhängiges

Customizing 5
Repository 5

Datentyp 156
Eingebaute Datentypen 156
global 220
Unvollständige Datentypen

156
Vollständige Datentypen 156

Datumsarithmetik 174
Debugger 323

Breakpoint setzen / löschen
324

Programm debuggen 325
interne Tabellen im

Debugger 330
Strukturen im Debugger 328

Start des Debuggers 323
DELETE 206, 502
Dequeue-Funktionsbaustein 522
DESCRIBE 215
DIV 170
DO n TIMES-Schleife 230
Domain Controller 44, 48
Domäne 82
DO-Schleife 229
Drucktasten 378
Dynpro

Ablauflogik 355, 382

Index 615■

■

■

Bedingte Modulaufrufe 414
ON CHAIN-INPUT 416
ON CHAIN-REQUEST

416
ON INPUT 416
ON REQUEST 416

Bestandteile 355
Dynamische Änderung der

Dynproelementattribute
399

Dynproaufrufe 418, 419
Dynproelemente

Ankreuzfelder 376
Auswahlknopfgruppe 373
Datentransport 368
Drucktasten 378
Ein-/Ausgabefelder 368
Gruppenrahmen 363
Statusikonen 365
Textfelder 362

Eingabeprüfungen
Einzelfelder prüfen 406
mehrere Felder prüfen (Ver-

arbeitungskette) 409
Funktionstypen 414
GUI-Status 396
GUI-Titel 396
Layout 356
OK-Feld 390
PAI 356

PAI-auslösende Benutzerak-
tionen 388

PBO 356
Process After Input 356
Process Before Output 356
SCREEN 399
sy-ucomm 390

Dynproaufruf
dynamisch 357
statisch 357

Dynproexit Siehe Erweiterungen
Dynprofolgen

CALL SCREEN 358
LEAVE TO SCREEN 358

Dynprosprache 382

E
Ein-/Ausgabefelder 368
Eingebaute Datentypen 156
End-of-Page 140

End-of-Selection 139
Enqueue-Funktionsbaustein 522
Entwicklungsklasse 43, 51, 52,

53, 54, 55, 56, 59
Entwicklungssystem 9, 11, 40,

44, 46, 47
Ereignisblöcke 137

in Verzweigungslisten 286
Erweiterungen Siehe auch

Änderungsebenen
Dynproexit 7
Funktionsbausteinexit 7
Menüexits 7

F
Feldsymbol 167, 196, 197, 199,

200, 202, 204, 205
Festpunktarithmetik 170
FIELD-SYMBOLS 167, 197,

200, 202, 204, 205
FORM 264
Formalparameter 264
FORMAT 151
FREE 214
Freigabe

Customizingaufgabe 27
Customizingauftrag 28
Workbenchaufgabe 58
Workbenchauftrag 40, 58

Fremdschlüssel 101
From 236
Funktionsbaustein 339
Funktionsbausteinexit Siehe

Erweiterungen
Funktionscodes und ihre Wirkung

303
Funktionsgruppe 340
Funktionstyp 414

G
Ganzzahlarithmetik 170
GET CURSOR FIELD 315
Gleitpunktarithmetik 171
Globale Datentypen 220
Grundaufbau ABAP-Programm

136
Ereignisblöcke 137
globaler Deklarationsteil 137
prozeduraler Teil 137

Index■

■

■

616

Unterprogramme 138
Gruppenrahmen 364
GUI-Controls 594
GUI-Status 297, 396

Funktionsprinzip 299
GUI-Titel 297, 396

H
HIDE-Bereich

HIDE 292
Prinzip 291

I
Icons 281
IF-Anweisung 225
Ikonen 281
Import 39, 40, 41, 42, 62
Importqueue 40, 41, 42, 56, 58,

61, 62
INCLUDE 269, 270

Einbindung in das Laufzeitob-
jekt 270

INSERT 194, 494
interaktive Listen Siehe Verzwei-

gungslisten
Interne Tabellen 186

Anlegen 189
APPEND 193
Arbeitsbereich 193
DELETE 206
DESCRIBE 215
FREE 214
INSERT 194
LOOP 210
mit Bezug zum ABAP-Dict.

192
mit implizitem Tabellentyp

190
mit lokalem Tabellentyp 189
MODIFY 202
MOVE 213
READ 195
REFRESH 214
SORT 214
Standard Table 187
Tabellenarten 187
Tabellenoperationen 212
Zeilenoperationen 192

INTO 236

INTO CORRESPONDING
FIELDS OF CORRESPON-
DING FIELDS OF 239

INTO TABLE 243

K
Kettenanweisungen 147
Klassen 567

globale Klassen 584
Kommetare 146
Konsolidierungsweg Siehe

Transportweg
Konstruktor 579
Kontrollstrukturen 225

Bedingte Verzweigungen 225
CASE-Anweisung 226
DO n TIMES-Schleife 230
DO-Schleife 229
IF-Anweisung 225
Programmschleifen 228
WHILE-Schleife 232

Kostanten 166
Kundenentwicklungen Siehe Än-

derungsebenen

L
Laufzeitobjekt 270
Layout Siehe Dynpro
LEAVE TO LIST-PROCESSING

440
LEAVE TO SCREEN 358, 419
Lebensdauer von Datenobjekten

267
LIKE 267
Listenausgabe auf Dynpros 437
Listenpuffer

Lesen im Listenpuffer 309
Listenpuffer ändern 312

Listensystem 285
Load-of-Program 139
Logische Ausdrücke 232

AND 233
logische Operatoren 233
NOT 233
OR 233
Vergleichsoperatoren 232
Verknüpfungsoperatoren 233
Verknüpfungsregeln 233

logische Operatoren 233

Index 617■

■

■

LOOP 210
LUW

Datenbank-LUW 509
Datenbank-Rollback 508, 509,

510
SAP-LUW 510, 511

M
Mandant Siehe Datenstruktur

(R/3-System)
Mandantendeklaration Siehe

Vorgehensweise
Mandantenkopie Siehe

Vorgehensweise
mandantenunabhängiges

Customizing Siehe
Datenstruktur (R/3-System)

MATCHCODE 248
Meldungen Siehe Nachrichten
Menüexit Siehe Erweiterungen
Methoden 566

Aufrufe 573
Changing-Parameter 571
Exporting-Parameter 571
Funktionale Methoden 576
Importing-Parameter 571
Instanzmethode 570
Klassenmethode 570
Parameter 571
Redefinition 589
Returning-Parameter 571
statische Methode 570

MOD 170
MODIFY 202, 501
MODIFY CURRENT LINE 312
Modul 383
Modularisierung 260

durch Includes 260
durch Unterprogramme 260

MOVE 213

N
Nachrichten 331

MESSAGE-Anweisung 335
Nachrichtenklasse 332
Nachrichtentypen 335
Programmablaufsteuerung über

den Nachichtentyp 336

Verwaltung von Nachrichten
332

NOT 233
Nummernkreise 532

O
Objekte 565

Anlegen 572
löschen 581

OK-Feld 390
ON CHAIN-INPUT 416
ON CHAIN-REQUEST 416
ON INPUT 416
ON REQUEST 416
OR 233
ORDER BY 241
OVERLAY 177

P
PARAMETERS 248

MATCHCODE 248
Parameterübergabe

Adressübergabe 265
An Unterprogramme 264
Wertübergabe 264
Wertübergabe mit Rückgabe

266
PERFORM 264

PERFORM <up> ON
COMMIT 512

Polymorphie 593
Pooltabelle 94
Präsentationsschicht 2
Primärindex 98
Process After Input 356
Process Before Output 356
Produktionssystem 11, 42, 44
Programmoberfläche 297

GUI-Status 297
GUI-Titel 297

Programmschleifen 228
Projekt-IMG Siehe Customizing
Pufferung 102

Einzelsatzpufferung 106
Entscheidungsbaum 104
generische Pufferung 105
Synchronisation 107
vollständige Pufferung 105

	front-matter_015
	fulltext_015
	fulltext_015_001
	fulltext_015_002
	fulltext_015_003
	fulltext_015_004
	fulltext_015_005
	fulltext_015_006
	fulltext_015_007
	fulltext_015_008
	fulltext_015_009
	back-matter_015

