Xpert.press

Die Reihe Xpert.press vermittelt Professionals

in den Bereichen Softwareentwicklung,
Internettechnologie und IT-Management aktuell

und kompetent relevantes Fachwissen iiber
Technologien und Produkte zur Entwicklung

und Anwendung moderner Informationstechnologien.

Thomas Winkler

ABAP/4
Programmiertechniken

Trainingsbuch

Mit 350 Abbildungen und 51 Tabellen

@ Springer

Thomas Winkler

Gerhard-Hauptmann-Str. 26
15537 Erkner
th.winkleri001@t-online.de

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet iiber
http://dnb.ddb.de abrufbar.

ISSN 1439-5428
ISBN 3-540-40486-4 Springer Berlin Heidelberg New York

Dieses Werk ist urheberrechtlich geschiitzt. Die dadurch begriindeten Rechte, insbe-
sondere die der Ubersetzung, des Nachdrucks, des Vortrags, der Entnahme von
Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der
Vervielfiltigung auf anderen Wegen und der Speicherung in Datenverarbeitungs-
anlagen bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Verviel-
faltigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den
Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik
Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulédssig.
Sie ist grundsitzlich vergiitungspflichtig. Zuwiderhandlungen unterliegen den Straf-
bestimmungen des Urheberrechtsgesetzes.

Springer ist nicht Urheber der Daten und Programme. Weder Springer noch die Autoren
iibernehmen die Haftung fiir die CD-ROM und das Buch, einschlief3lich Threr Qulitit,
Handels- und Anwendungseignung. In keinem Fall iibernehmen Springer oder die Autoren
Haftung fiir direkte, indirekte, zufillige oder Folgeschidden, die sich aus der Nutzung der
CD-ROM oder des Buches ergeben.

Springer ist ein Unternehmen von Springer Science+Business Media
springer.de

© Springer-Verlag Berlin Heidelberg 2005

Printed in Germany

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in die-
sem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass
solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu be-
trachten wiren und daher von jedermann benutzt werden diirften. Text und Abbildungen
wurden mit grofiter Sorgfalt erarbeitet. Verlag und Autor konnen jedoch fiir eventuell ver-
bliebene fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch
irgendeine Haftung iibernehmen.

Satz und Herstellung: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig
Umschlaggestaltung: KiinkelLopka Werbeagentur, Heidelberg
Gedruckt auf sdurefreiem Papier 33/3142/YL-543210

EinfUhrung

Wieder ein neues Buch zu ABAP/4 — wer soll es lesen und wie un-
terscheidet es sich von den anderen Werken, die sich mit der Pro-
grammiersprache des SAP R/3-Systems befassen?

So wie das Boxen nicht durch die Analyse von Kédmpfen guter Bo-
xer zu erlernen ist, kann auch das Programmieren nicht allein durch
Analysieren von Syntaxdiagrammen, Lernen von Definitionen und
Klauseln gemeistert werden. Programmieren lernt man am besten
durch - Programmieren.

Deshalb vermittelt Ihnen das vorliegende Buch grundlegende und
weiterfithrende ABAP/4-Programmiertechniken, wie z.B. das Erstel-
len von interaktiven Listen und die Nutzung aller klassischen Kom-
ponenten der Dialogprogrammierung, am Beispiel der Entwicklung
eines ,Literaturrecherche- und -verwaltungsprogrammes® fiir die
East-Side-Library.

Ein Ausblick in die objektorientierte Programmierung mit
ABAP-Objects erklirt wichtige Begriffe und Prinzipien dieser integ-
rierten, objektorientierten Komponente der Programmiersprache
ABAP - ebenfalls am Beispiel des ,,Literaturrecherche- und verwal-
tungsprogrammes*‘, das mit einer objektorientierten Komponente zur
komfortablen Tabellenausgabe von Daten, dem ALV Grid Control,
vervollkommnet wird.

Das vorliegende Buch versteht sich als handlungsorientierte Ergin-
zung zu den ABAP/4-Standardwerken. In den einzelnen Kapiteln
programmieren Sie, in leicht iiberschaubaren Programmierschritten,
das ,,Literaturrecherche- und -verwaltungsprogramm* der East-Side-
Library. Zu jedem Programmierschritt wird eine kurze Einfiihrung
gegeben, den Abschluss bildet jeweils eine Programmieraufgabe de-
ren Losung sowohl im Buch als auch auf der mitgelieferten CD zu
finden ist.

Durch den Transport der fiir die einzelnen Programmierschritte
benétigten Entwicklungsobjekte von der Buch-CD in Thr R/3-

Einfahrung

Inhaltiibersicht

Methode

Vorkenntnisse

Entwicklungs-
system

Zeichen-
erkldrung

vi =

System, kdnnen Sie selbst bestimmen, mit welchem Schwierigkeits-
grad Sie Thr ABAP/4-Training beginnen. Vorkenntnisse sind dem-
nach nicht notwendig, wenn Sie Thr Training mit dem ersten Kapitel
beginnen. Der Anhang enthilt eine detaillierte Anleitung zum
Transport der Entwicklungsobjekte in Thr R/3-System.

Alle Ubungen konnen Sie auf dem ,Mini SAP-System* durchfiih-
ren, dessen neueste Version Sie fiir 29,00 € bei der SAP erwerben
konnen (http://www.sap.com/company/shop, Link: SAP Knowledge
Shop, Suchbegriff ,,Mini SAP*). Dieses System lduft unter Windows
2000 oder Windows XP. Sie bendtigen 199 Mbyte RAM und 3,5
Gbyte freie Plattenkapazitiit.

Im Buch werden zur Verbesserung der Ubersichtlichkeit die folgen-
den Icons benutzt:

Der Student macht auf wichtige Definitionen und
Begriffe aufmerksam.

Das Stopschild warnt vor Aktionen, deren Ausfiihrung
weitreichende Konsequenzen fiir das R/3-System hat.

Auf Vorgehensweisen, wie z.B. das Anlegen einer
Tabelle oder eines Dynpros, weist Sie das Computer-
symbol hin.

=

Ly

|\

Und dieses Symbol zeigt Ihnen an, dass durch Sie eine
Aufgabe zur Programmierung des ,,Literaturrecher-
che- und —verwaltungsprogramm* zu erledigen ist.

Ich wiinsche Thnen viel Freude beim Programmieren, denn die Freu-
de iiber ein funktionierendes Programm garantiert den Erfolg beim
bewiiltigen der nidchsten Aufgabe (Hinweis: Dieses rekursive Prinzip
wirkt nicht nur beim Programmieren).

Thomas Winkler

Einfahrung

Inhaltsverzeichnis

1 Projektmanagement 1
1.1 Komponenten eines SAP-R/3-Systems...........cccceee.. 1

1.2 Datenstruktur eines R/3-Systemsc.ccccceveverveeiennene 3

1.3 Anderungen an R/3-Datenobjekten.............c..co.c........ 6

1.3.1 Anderungsebenenc..ccoooevevrrrrenrenrennen. 6

1.3.2 Anderungsstrategienc.oeoeveeververrerreneen. 8

1.4 Die Drei-System-Landschaft...........ccccceeeverieeniennne. 10

1.5 Transporte durchfiihrenccccocveveviecenenieeniene. 12

1.5.1 Transporte innerhalb eines R/3-Systems 12

1.5.2 Transporte in andere R/3-Systeme................. 39

2 Wegweiser 69
2.1 Projektbeschreibung.........c.cccevevenenenienienencnenene 69

3 Das ABAP-Dictionary 79
3.1 EinfUhrung ..o 79

3.2 Domine, Datenelement, Datenbankfeld 85

3.2.1 Doménen anlegencccceeevereneneneneeneennen 86

3.2.2 Datenelemente anlegen..........ccccceeverereennnen. 88

3.3 Eigenschaften von Tabellen..........cccccceevevrverireruennnne. 92

3.3.1 Tabellenartencoccoeeererreeeereneecreneecnnens 92

3.3.2 Schliisselfelder und Primérindex.................... 98

3.3.3 Sekundirindizes..........ccceeeveeeeenenneencnnencnn 100

3.3.4 Fremdschliisselcccoccoeerinecninencncnnennn 101

3.3.5 Pufferungsarten.........ccccoeeereneererenienereneenenn 102

3.3.6 Synchronisation von Puffern....................... 106

3.3.7 Anderungen an Tabellenc..cccceorreeen.. 108

3.3.8 Anlegen der Tabellen fiir das

Bibliotheksprojektccccoceveneneninninniennne 111

3.3.9 Anlegen und Einbinden von Suchhilfen...... 118

3.3.10 Tabellen mit Werten ladenc.ccceueeneeee 124
Inhaltsverzeichnis

Vil

3.3.11 Ubungsaufgabenccccocevvrvereerrerrerrennnn. 125

3.3.12 LOSUNZEN ...evinvenieirenieiireeeeeneeeenreneeeenene 129
4 Grundlegende Techniken der Listenprogrammierung 135
4.1 Zielstellung des Kapitels........ccccoceveenenenencncnncnne. 135
4.2 Grundaufbau eines ABAP-Programmes 136
4.3 Ausgabe von Texten........cocovceeerieriienieneneneneeeene 140
4.4 Datentypen und Datenobjekte............ccccererenencne. 155
4.4.1 FEingebaute Datentypen...........ccccceeruereenee. 156
4.4.2 Deklaration von Datenobjekten................... 158
4.4.3 Arithmetische Operationen...............cc.c....... 168
4.4.4 Operationen mit Zeichenketten 173
4.4.5 Strukturen..........coocoveveeeeeiiesienieneneeceeeene 179
4.4.6 Interne Tabellenccccoevevencnevenenccnnne 186
4.4.7 Globale Datentypencccceeeeveereeneenuennenne. 220
4.5 KontrollStruKturen...........ccceeeveenenveerenerenenneneenenne 225
4.5.1 Bedingte Verzweigungenccocceuenenee. 225
4.5.2 Programmschleifen........c..cccooeienenencncnne. 228
4.5.3 Logische Ausdriickeccccecevenenencnncne. 232
4.6 Lesen von Daten aus Datenbanktabellen................ 234
4.6.1 Die,,SELECT-Anweisung* als Schleife..... 235
4.6.2 FEinzelsatzzugriff mit der ,,Select single-
ANWEISUNG™ ..ot 242
4.6.3 Array-Fetch — Laden einer internen Tabelle
mit Daten aus einer Datenbanktabelle......... 243
4.6.4 Der Selektionsbildschirmcccccceeuennenee. 247
5 Spezielle Techniken der Listenerstellung...................... 259
5.1 Zielstellung des Kapitels.........ccccererenenenenencnen. 259
5.2 Modularisierung durch Unterprogramme............... 260
5.2.1 Anlegen eines Includes..........cccccoererenncnnen. 270
5.2.2 Anlegen und Einbinden eines
UNLerprogramimescocecevereereesueseesennens 275
5.3 Tkonen in Listen........cccccooeminenenienienienienencseeeeen 281
54 Verzweigungslisten.........oceereeieniesieneneneneeeenee. 285
5.4.1 Anlegen von Verzweigungslisten................ 286
5.5 Die Programmoberfliche...........ccccovenenrinennencnnes 297
5.6 Dynamische Auswahl von Datensitzen der
AUSZADCIISLE ... 308
5.7 Dynamisches Sortieren der Ausgabeliste................ 314
5.8 Ein Freund des Programmierers — Der Debugger. 323
5.8.1 Start des Debuggersccceeeveneneneecnen. 323
5.8.2 Programm debuggen...........cccccceririninncnnen. 325

Vill ® [nhaltsverzeichnis

5.9 Ausgabe von Meldungen (Messages)c.cccceveeee. 331

5.10 Modularisierung mit Funktionsbausteinen.............. 339
Grundlagen der Dynproprogrammierung..................... 351
6.1 Zielstellung des Kapitels........c.ccccevenerenicnnienienennne. 351
6.2 Dynpros und ihre Komponentencc.ccccecueneee. 355
6.3 Statischer und dynamischer Dynproaufruf.............. 357
6.4 Dateneingabe und —ausgabe mit Dynpros............... 359
6.4.1 Dynproelemente............ccocerereneriennienienienann. 361
6.4.2 Dynproelemente zur Ausgabe...................... 362
6.4.3 Dynproelemente zur Ein-/Ausgabe.............. 368
6.5 Programmierung der Ablauflogikc..c.cceceeueeee. 382
6.5.1 Module und Modulaufrufccceceeeneee 382
6.5.2 Benutzeraktionen auswertenc..c.c...... 388
6.6 GUI-Status und GUI-Titel des Dynpros 396
6.7 Eigenschaften der Dynproelemente dynamisch
ANAETN c..ceeiiece e 399

6.8 Eingabepriifungen mit der FIELD-Anweisung.......406
6.9 Bedingtes bzw. vorrangiges Ausfiihren von

Modulencoceeieieniniie e 414
Subscreens, Listen und Tabellen in Dynpros 427
7.1 Zielstellung des Kapitels........c.cccceverinencnnienienennne. 427
7.2 Subscreenbereiche und Subscreendynpros 430
7.3 Ausgabe von Listen auf einem Dynpro................... 437
7.4 Datenausgabe mit Table Controlsc..ccccecueneee. 445

7.4.1 Anlegen eines Table Controls...................... 446

7.4.2 Datentransport zum Table Control und

ZUTUCK .o 450
Tabstrips 471
8.1 Zielstellung des Kapitels..........cccceverenencnninnienennnne 471
8.2 Allgemeine Eigenschaften Einsatzbedingungen.....472
8.3 Tabstrip-Elemente...........cccceceeiieiienenenininiiieieene 473
8.4 Blattern im Tabstripcccceveverenenieieereceeeeee 474

8.4.1 Tabstrip mit statischer Blétterfunktion......... 474
8.4.2 Tabstrip mit dynamischer Blatterfunktion...475

8.5 Tabstrip anlegen........c.ccececeevieneneneneeieeseseeeee. 476
Datenbankénderungen programmierenoeecsseesssss 491
9.1 Zielstellung des Kapitels.......c..ccceoerereercnccencnenns 491
9.2 Datenbankindernde Anweisungen............cc.coeeeenee 493
Inhaltsverzeichnis

X

X

9.2.1 Die INSERT-Anweisung.........c.cccceverveeenenn 494

9.2.2 Die UPDATE-Anweisung.......c..cccecceveuenenn 496
9.2.3 Die MODIFY-Anweisung.......c..cccecceveuenenn 501
9.2.4 Die DELETE-Anweisung........c..cccecceveeuenenn. 502
9.3 Datenbankédnderungen organisieren 508
9.3.1 Das LUW-Konzept.......cccoceeervererenenencnnenn 508
9.3.2 Biindelung durch Unterprogramme............. 512
9.3.3 Biindelung durch Verbucherbausteine........ 515
9.4 Das SAP-Sperrkonzeptcccoevveverenecenenvcnnnenee 520
9.4.1 Prinzip des SAP-Sperrkonzepts................... 521
9.4.2 Grundsitzliche Arbeitsweise beim Sperren
und Freigeben.........ccccooeviiiniincniniicncnee. 522
9.4.3 Technische Realisierung..........cccccceevveuenneee. 522
9.4.4 Die Sperrtabellec..cccecevenecnenercncnencnn 530
9.5 Nummernkreisec.coeeeeverereerenuenveeneneerenrennenenne 532
10 Ausblick: ABAP Objects 563
10.1 Zielstellung des Kapitels........cceceeveevienenenenenence. 563
10.2 Ein Wort zu ABAP-Objects........cccevererenencnnennen. 564
10.3 Objekte, Attribute, Methoden und Klassen............. 565
10.4 Klassen in ABAP ODbjects........ccceveevenenenencnenncn. 567
10.5 Instanz- und statische Methoden, Instanz- und
statische Attribute........c.coevevveenenieenenecnencceene 570
10.6 Methoden in ABAP Objectsccccevevveveneruccnenenes 571
10.7 Anlegen von Objektencccceceevieiienencnencecnee. 572
10.8 Methodenaufrufe...........cccoevveverinenencnnincenenee 573
10.8.1 Aufruf einer Instanzmethode....................... 573
10.8.2 Aufruf einer Klassenmethode...................... 574
10.9 Externer Zugriff auf 6ffentliche Attribute.............. 575
10.10 Funktionale Methodenc.cocceeeneneenenicnnnennee 576
10.11 Der Konstruktor, eine besondere Methode............. 579
10.12 Objekte 16Schen.........cccovvveenirieinincineeereecrene 581
10.13 Referenzen in internen Tabellen speichern 581
10.14 Globale KIassencoccoeevereerenieerenerenenrennes 584
10.15 Vererbung und Polymorphie..........cccceocereriniennnnee. 588
10.16 Kurzer Uberblick iiber GUI-Controls am Beispiel
des ALV-Grid-Controlscccecceeeevienienenenencnncn. 594
Anlage 605
Installation des Ubungsszenarios..............cccoeveeevereeruenenss 605
Index 611
Inhaltsverzeichnis

1 Projektmanagement

1.1
Komponenten eines SAP-R/3-Systems

Ein SAP-R/3-System basiert, wie die meisten Leser sicher wissen,
auf einer Client-Server-Architektur. Dieser Begriff ldsst sich sowohl
aus software- als auch aus hardwareorientierter Sicht betrachten.

Softwareorientierte Sicht

Unter ,,Service® ist ein Dienst zu verstehen, der von einer Software-
komponente angeboten wird. Solche Softwarekomponenten kénnen
aus einem einzelnen Prozess oder aus mehreren Prozessen (Prozess-
gruppe) bestehen und werden dann ,,Server (Diener) genannt. Soft-
warekomponenten, die einen ,,Service* nutzen, werden als ,,Clients*
(Kunden) bezeichnet.

Client ¢ Server

Erbringen der angefor-
ProzeB3 1 derten Dienstleistung ProzeB3 2

Aus softwareorientierter Sichtweise besteht ein R/3-System immer
aus drei Komponenten, die oft auch als ,,Schichten* bezeichnet wer-
den:

m Datenbankschicht

Die Datenbankschicht {ibernimmt die Datenhaltung. Sie speichert
alle Anwendungstabellen und Programme im darunterliegenden
Datenbanksystem und stellt sie der Anwendungsschicht zur Verfii-

gung.

1.1 Komponenten eines SAP-R/3-Systems

Client-Server-
Architektur

Abb. 1.1
Softwareorien-
tierte Sicht

Datenbank-
schicht

Anwendungs- ® Anwendungsschicht

schicht Diese Schicht ist verantwortlich fiir alle Ablaufe und Funktionen der

R/3-Anwendung. Hier laufen alle System- und ABAP/4-Pro-
gramme.

Prdsentations- m Prisentationsschicht

schicht Die Prisentationsschicht hat folgende Hauptaufgaben:
= Entgegennehmen und Weiterleiten von Benutzeraktionen
(Maus, Tastatureingaben),
= Entgegennchmen, Aufbereiten und Darstellen der Anwen-
dungsdaten.
Abb. 1.2
Schichtenmodell D K
eines SAP-R/3- Stanban
Systems Datenbankebene
,
o, (I

Prasentationsebene

Hardwareorientierte Sicht

In der hardwareorientierten Sicht wird unter ,,Server® ein Rechner
verstanden, der bestimmte ,Services® (Dienste) anbietet. Der
,.Client” ist bei dieser Betrachtungsweise ein Rechner, der Dienste
des Servers in Anspruch nimmt.

2 ®m 1 Projektmanagement

Ii .xm-unmmm

..EIJ'

Client Server

Der Vorteil der Client-Server-Architektur besteht darin, dass ver-
schiedene Dienste (softwareorientierte Sicht) auf verschiedene Hard-
warekomponenten aufgeteilt werden konnen. Zwei mogliche Vertei-
lungen (Konfigurationen) eines R/3-Systems zeigt die folgende
Abbildung:

Konfiguration zweistufig dreistufig
Datenbank-
schicht

| i W<
Anwendungs-
schicn q
Présentations-
schicht E [)

ﬁ /‘g R oy =1
pi==r 3
v | #
Bemerkung i Ablauf von Datenbank- Ablauf von Datenbank- und
und Anwendungsprozes- Anwendungsprozessen auf
sen auf einem Rechner verschiedenen Rechnern

Theoretisch konnen alle Softwarekomponenten eines R/3-Systems
auch in einem einzigen Rechner installiert werden. Das ist dann eine
einstufige Konfiguration, die in der Praxis jedoch eher selten vor-
kommt.

1.2
Datenstruktur eines R/3-Systems

Jedes SAP-R/3-System besitzt genau eine Datenbank. In dieser kon-
nen verschiedene organisatorische Bereiche, die als Mandanten be-
zeichnet werden, angelegt werden. Jedem dieser Mandanten ist ein

1.2 Datenstruktur eines R/3-Systems

Abb. 1.3
Hardwareorien-
tierte Sicht

Abb. 1.4
R/3-Konfigura-
tionsméglich-
keiten

Abb. 1.5
Datenstruktur
des R/3-Systems

Mandant

,,mandantenabhiingiger Speicherbereich zugeordnet, auf dessen
Datenobjekte

= Anwendungsdaten,
= Customizingdaten,
= Userdaten,

nur der jeweilige Mandant zugreifen kann.
Zusitzlich gibt es noch zwei ,,mandantenunabhéngige* Speicher-
bereiche fiir

= Mandantenunabhéngige Customizingdaten,
= Repositorydaten,

auf deren Datenobjekte alle Mandanten zugreifen.

Mandantenumabhiéingiges Customizing

R/3 Repository

\-...._H_______ ___'____’_,_,,..-'

B Mandant

Organisatorischer Bereich in der Datenbank, der Customizingdaten,
Anwendungsdaten und Benutzerdaten kapselt.

Standardmandanten:
= Mandant 000 (SAP-R/3-Auslieferungsmandant)

= Mandant 001 (SAP-R/3-Entwicklungs- oder Customizingman-
dant)

= Mandant 066 (SAP-R/3-Mandant zur Durchfiihrung der Fern-
wartung im Rahmen des SAP-Services EarlyWatch)

1 Projektmanagement

m Customizingdaten

Customizing ist das Anpassen des R/3-Systems an die konkreten
Bedingungen im Kundenunternehmen ohne Programmierung. Dabei
werden Unternehmensdaten, wie z.B. Buchungskreise, Kostenstel-
len, Werke usw., in Customizingtabellen eingetragen. Jede Customi-
zingtabelle existiert einmal pro Mandant.

B Anwendungsdaten

Anwendungsdaten sind z.B. Dokumente, Materialstammsétze und
Lieferantenstammesitze. Solche Anwendungsdaten sind nur in ihrer
jeweiligen Customizing-Umgebung betriebswirtschaftlich sinnvoll.
Beispiel: Material (Anwendungsdaten) wird einem Lager (Customi-
zingdaten) zugeordnet, ein Lieferant (Anwendungsdaten) wird ei-
nem Buchungskreis zugeordnet (Customizingdaten).

B Benutzerdaten

Fiir jeden R/3-Benutzer wird vom Systemadministrator ein Benut-
zerstammsatz angelegt. Darin stehen z.B.

= der Benutzername,
= das Kennwort,
= die Benutzerrechte.

Diese Daten sind mandantenabhéngig, deshalb kann sich jeder Be-
nutzer mit seinen Daten (Benutzername und Kennwort) nur an den
Mandanten anmelden, in denen ein entsprechender Benutzerstamm-
satz angelegt wurde.

B Mandantenunabhéngiges Customizing

Neben dem mandantenabhingigen Customizing gibt es auch das
mandantenunabhéngige. Die hier bearbeiteten Customizingdaten
stehen dann fiir alle Mandanten zur Verfiigung. Beispiele dafiir sind:

= die Druckereinstellungen und
= der Werktagskalender
B R/3 Repository

Das Repository ist ein Teil der zentralen Datenbank, in dem alle
Objekte, die in der ABAP Workbench angelegt wurden, gespeichert
sind. Zu diesen Daten gehoren:

= Programme
= Funktionsbausteine

= Klassen

1.2 Datenstruktur eines R/3-Systems

Mandanten-
abhéngige
Customizing-
daten

Anwendungs-
daten

Benutzerdaten

Mandanten-
unabhéngiges
Customizing

R/3 Repository

5

Abb. 1.6
Ebenen von
Datenbankén-
derungen und
Anpassungen

Kundenent-
wicklungen

Erweiterungen

= Tabellen

= Views

= Datenelemente
= Dominen

= Suchhilfen

= Sperrobjekte

1.3
Anderungen an R/3-Datenobjekten

1.3.1
Anderungsebenen

Anderungen konnen sowohl an mandantenabhiingigen als auch an
mandantenunabhingigen Datenobjekten durchgefiihrt werden. Im
folgenden Kapitel sollen unterschiedliche Methoden zur Anderung
von R/3-Datenobjekten gezeigt werden.

R
\h‘-‘-‘-‘-‘_‘—‘——_

/ Mandant 1

Custo

Q Mandantenunabhiingiges Customizing
ust0

R/3 Repository

T :
Modiﬁ%ﬂﬁw/

® Kundenentwicklungen

Der Kunde entwickelt selbst neue Repository-Objekte (Programme,
Tabellen, Views, ...).

m Erweiterungen

1 Projektmanagement

Der Kunde nutzt von der SAP vorgedachte Programmschnittstellen,
um die Funktionalitit der Standardprogramme zu erweitern. Diese
Schnittstellen werden auch als ,,Exits* bezeichnet.
Prinzipdarstellung:

SAP-Quellprogramm

call function... .

call customer-function xTestEr s> Function xTest
exporting (im Kunden-
namensraum)

importing

\/’\/

Wie an der Prinzipdarstellung zu erkennen ist, muss der SAP-
Programmierer einen Exit in das SAP-Programm eingearbeitet ha-
ben. In diesem Fall sorgt ein ,,Funktionsbaustein-Exit* fiir den Auf-
ruf eines Funktionsbausteins im Kundennamensbereich. Es gibt
folgende Exits:

= Funktionsbausteinexit
Vom SAP-Programm wird ein Funktionsbaustein im Kunden-
namensbereich aufgerufen.

= Dynproexit
Im Dynpro ist ein Subscreenbereich, der ein Subscreen im
Kundennamensbereich aufruft, implementiert.

= Meniiexits
Im Menii (GUI-Oberfldche) der SAP-Anwendung befindet
sich ein Meniipunkt, der einen Funktionsbausteinexit aufruft.

B Modifikationen

Modifikationen sind Anderungen, die der Kunde direkt am SAP-
Programm durchfiihrt. Modifikationen sollten nach Maoglichkeit
nicht angewendet werden, weil sie zu Komplikationen bzw. Mehr-
aufwand beim Update fiihren.

1.3 Anderungen an R/3-Datenobjekten

Abb. 1.7
Ebenen von
Datenbankén-
derungen und
Anpassungen

Funktions-
bausteinexit

Dynproexit

Mendtiexit

Modifikationen

8

1.3.2
Anderungsstrategien

Das Durchfiihren von Anderungen erfordert bei so umfangreichen
Systemen, wie es das SAP-R/3 darstellt, einen hohen administrati-
ven Aufwand. Folgende Hauptanforderungen sollten durch techni-
sche und administratorische Maflnahmen gewihrleistet sein:

* Die Tests der Anderungen und Anpassungen sollten immer auf
einem genau definierten Stand basieren.

= Test- und Entwicklungsarbeiten sollten parallel erfolgen kon-
nen.

* Nicht getestete Anderungen diirfen nicht praxiswirksam wer-
den.

Um diese Anforderun.gen zu erfiillen, bedarf es unterschiedlicher
Voraussetzungen bei Anderungen an mandantenunabhéngigen und
mandantenabhingigen Daten.

Anderungsstrategie fiir mandantenabhingige Daten

Die Anderungen an mandantenabhingigen Daten (Customizing)
werden im Entwicklungsmandanten (Mandant 001), der zunéchst
eine 1:1 Kopie des Auslieferungsmandanten (Mandant 000) ist,
durchgefiihrt.

Zu einem bestimmten Zeitpunkt werden alle mandantenabhéngi-
gen Anderungen in einen dritten Mandanten (Testmandant) trans-
portiert und dort getestet. Wahrend der Testphase konnen die Ent-
wicklungsarbeiten im Entwicklungsmandanten weitergefiihrt
werden, ohne dass sie sich auf den Test auswirken.

Durch den Test entdeckte Fehler werden im Entwicklungsman-
danten korrigiert und erneut in den Testmandanten transportiert. Am
Ende enthilt der Entwicklungsmandant alle (ausreichend getesteten)
mandantenabhiingigen Einstellungen. In Abb. 1.8 ist die Anderungs-
strategie fiir mandantenabhingige Daten grafisch dargestellt.

1 Projektmanagement

Mandant 001 und Testmandant h
durch Kopie des Mandanten
000 anlegen

-
-

i ™
Customizing im Mandanten 001
durchfihren

L r

v

(Zum Zeitpunkt t geanderte
Customizingeinstellungen in den
L Testmandanten transportieren

l

S

v

Customizingein-
stellungen testen

Customizingauf-
gaben und Tests
abgeschlossen?

Customizing
beenden

Customizing-
einstellungen
ok?

{ Test beenden]

Anderungsstrategie fiir mandantenunabhéngige Daten

Anderungen an mandantenunabhingigen Datenobjekten wirken sich
sofort auf alle Mandanten eines SAP-R/3-Systems aus. Daraus erge-
ben sich folgende Konsequenzen:

= Es ist nicht moglich, innerhalb eines SAP-R/3-Systems Test-
und Entwicklungsarbeiten an mandantenunabhéngigen Daten-
objekten parallel durchzufiihren.

= Der Mandant, auf dem der Produktivbetrieb lduft, und der
Entwicklungsmandant sind in verschiedenen R/3-Systemen zu
installieren. Anderungen an mandantenunabhingigen Daten-
objekten wiirden sich sonst sofort, d.h. ohne getestet worden
zu sein, auf die Produktivumgebung auswirken.

Sollen also Anderungen an Repository-Objekten oder an Objekten
des mandantenunabhingigen Customizings vorgenommen werden,
miissen im Unternehmen mindestens zwei SAP-R/3-System betrie-
ben werden — ein Entwicklungssystem und ein Produktivsystem.

1.3 Anderungen an R/3-Datenobjekten

Abb. 1.8
Anderungen an
mandantenab-
héngigen Daten

Abb. 1.9 e B
A'nderungen an R/3-System (Qualitaissicherungssys-

tem) zum Testen der mandanten-
mangan.ten- unabhangigen Daten einrichten
unabhéngigen

Daten

el
>

-
Entwicklungsarbeiten im Entwick-
lungsmandanten des Enfwicklungs-

L systems durchfahren.

g ™
Transport der geanderten Daten zum
Zeitpunkt tin das Qulitatssicherungs-

L system

v

Test der geander-
ten Daten im Quali-
tatssicherungs-
system

2

Abschuf der Ent- Test fehlerfrei?
wicklungsarbeit

Alle Entwick-
lungsarbeiten
abgeschlossen?

v
[Test beenden

1.4
Die Drei-System-Landschaft

Unter einer Systemlandschaft sind alle miteinander durch Trans-
‘90 portwege verbundenen SAP-R/3-Systeme mit den darin angelegten

\\-// Mandanten zu verstehen.

Systemland- .
schaft Im Abschnitt ,,Anderungsstrategie fiir mandantenunabhéngige Da-

ten (Seite 9) wurde die Notwendigkeit begriindet, mindestens zwei
R/3-Systeme zu betreiben. Die dort beschriebene Systemlandschaft
(Entwicklungssystem und Produktivsystem) hat jedoch den Nach-
teil, dass Entwicklung und Test nicht parallel erfolgen kénnen. Des-
halb empfiehlt SAP, diese Zwei-System-Landschaft um ein R/3-
System, das Qualitédtssicherungssystem (QAS), zur Drei-System-
Landschaft zu erweitern.

10 1 Projektmanagement

Grundsitzlich erfolgen alle Entwicklungsarbeiten im Entwicklungs-
system (Mandant 001). Die gednderten Datenobjekte werden nach
Abschluss der Entwicklungsarbeiten in das Qualitétssicherungssys-
tem transportiert und unabhingig von weiteren Entwicklungsarbei-
ten getestet. Alle in das Qualitédtssicherungssystem transportierten
Objekte lassen sich automatisch in das Produktivsystem iiberneh-
men.

R/3-System |Mandant |Aktivititen
Entwick- 001 Entwicklung
lungssystem | Tpgr Testen der mandantenabhiingigen Ein-
stellungen
SAND Experimentieren mit den Customizing-
werkzeugen
Qualitéts- QTST Customizingeinstellungen und Pro-
sicherungs- grammentwicklungen werden in einer
system realititsnahen Umgebung getestet
TRNG Schulung der Endanwender
Produktions- |PROD produktive Arbeit
system

1.4 Die Drei-System-Landschaft

Abb. 1.10
Drei-System-
Landschaft

Tabelle 1.1
Mandantenrollen

71
=
u

Voraussetzun-
gen flir das

Customizing

Schritte zum
Transport von
Anderungen
innerhalb eines
R/3-Systems

12

1.5
Transporte durchfiihren

1.5.1
Transporte innerhalb eines R/3-Systems

1.5.1.1
Voraussetzungen und Durchfiihrung

Um geidnderte mandantenabhingige Daten unabhingig von weiteren
Anderungen an den Customizingtabellen testen zu konnen, werden
sie in den Testmandanten des Entwicklungssystems transportiert.
Dazu miissen vorher folgende Voraussetzungen geschaffen worden
sein:

= der Testmandant ist angelegt (siehe Seite 12),

= der Projektleiter hat fiir alle Entwickler einen Customizing-
auftrag angelegt (siehe Seite 16),

= im Entwicklungsmandanter}. (001) ist die Eigenschaft ,,automa-
tische Aufzeichnung von Anderungen® aktiviert (siehe Seite
18).

Die Datenidnderungen und der Transport der gednderten Daten er-
folgt in folgenden Schritten:

= Die Daten werden mit den Customizingwerkzeugen gepflegt.
Beim Sichern der Anderungen werden diese in einen speziel-
len Abschnitt des Customizingauftrages, der dem jeweiligen
Entwickler zugeordnet ist, eingetragen. Dieser spezielle Ab-
schnitt wird als ,,Aufgabe® bezeichnet (sieche Seite 17).

= Hat der Entwickler seine Customizingaufgaben abgeschlossen,
gibt er seine Aufgabe frei (siehe Seite 27).

= Hat jeder Entwickler seine Aufgabe freigegeben, gibt der Pro-
jektleiter den gesamten Auftrag frei (siehe Seite 27).

* Zum Schluss werden vom Projektleiter alle im Customizin-
gauftrag gekapselten Anderungen in den Zielmandanten trans-
portiert (siehe Seite 30).

1.5.1.2
Anlegen des Testmandanten

Der Testmandant wird durch Kopieren des Mandanten 000 (Auslie-
ferungsmandant) erzeugt. Die Kopie wird in zwei Schritten erstellt:

1 Projektmanagement

Erster Schritt: Deklaration des Testmandanten

Alle Mandanten eines Systems werden in die Tabelle TOOO einge-
tragen.

Vorgehensweise: Mandantendeklaration

Die Mandantendeklaration wird mit SCC4 vorgenommen.
(Werkzege > Administration - Verwaltung - Mandantenverwal-
tung > SCC4 Mandantenpflege)

Das Einstiegsbild Sicht ,, Mandanten* dndern: Ubersicht zeigt alle
Mandanten des R/3-Systems an dem Sie angemeldet sind.

B B @@ LHE DDLaD BE @@
Sicht "Mandanten” dndern: Ubersicht

() (&) [Neve Einvae | (@) @) 2] B) (&) [

Mandant |Ggeichnung Ot [VWahr. |geandert am
000 AG Konzem Walldorf DEM |11.08.2000 [=]
joo1 Entwicklungsmandant Berlin EUR |24.06.2003 =]

|

Im Bild Neue Eintréige: Detail Hinzugefiigte werden die Eigenschaf-
ten des neuen Mandanten festgelegt (siche Abb. 1.11).

= 9B A DHR OO0 DR @0
Neue Eintrdge: Detail Hinz fiigte

Mandant

002 Testmandant

ort Berlin Letzter Anderer
Logisches System Datum

Std wWahrung EUR

Rolle des Mandanten Test]

Produktiy

Anderungen und Transporte Customizing
) Anderungen ohne autoDemo

= Training/Education
(@) automatische Aufzeich s p Regl'elenz

) keine erla

() Anderungen ohne sutom. Aufzeichnung, keine Transporte erlaubl

Anderungen an mandantenibergreifenden Objekten .~

Anderungen an Repository und mand unabh. Customizing erlaubt &

Zweiter Schritt: Mandantenkopie durchfiihren

Nachdem der Testmandant deklariert ist, miissen die Customizing-
tabellen vom Quellmandanten (000) in den Testmandanten (002)
kopiert werden.

1.5 Transporte durchfiihren

Abb. 1.11
Sicht ,Mandan-
ten” dndern:
Ubersicht
(Anzeige der
Datensétze der
Tabelle TO00)

Abb. 1.12
Deklaration ei-
nes neuen Man-
danten in der
Tabelle TO0O0

13

Abb. 1.13
Mandantenkopie
— Kopieren eines

Mandanten

14

Achtung: Bei der Mandantenkopie werden mehrere Tausend Tabel-
len kopiert. Das erfordert erhebliche Systemressourcen. AuBlerdem
wird fiir die Zeit der Ausfiihrung der Mandantenkopie der Quell-
mandant fiir weitere Anmeldungen gesperrt. Sollten Sie beabsichti-
gen, die Mandantenkopie wirklich auszufiihren, sprechen Sie mit
Threm Systemadministrator — am besten vorher, damit kein Frust
aufkommt.

Vorgehensweise: Mandantenkopie

Wichtig: Sie miissen sich am Testmandanten (Zielmandant) anmel-
den. Weil im Testmandanten jedoch noch keine Benutzerstammda-
ten angelegt sind, benutzen Sie folgende Login-Daten:

Mandant: 002 (Nr. des Zielmandanten)
Benutzer: SAP*
Kennwort: Pass

Im Testmandanten starten Sie die Mandantenkopie iiber die Trans-
aktion SCCL (Werkzeuge —> Administration > Verwaltung
- Mandantenverwaltung = Mandantenkopie = SCCL lokale Ko-

pie)

i B 0B COQ DHRE DDOO BAE @M

Mandantenkopie - Kopieren eines Mandanten
|m Hintergrundjob einplanen]@ Sofort starten |

Zielmandant I smnd.'ut
P SAP_ALL
Alle mandarftenabhangigen Daten
Quelimandant 000
e

[Testia

Fopieren von Tabellen aus einem Mandanten 1

%
COMPLETE || Kompletter Mandant mit User und Anwendung 2
CUST+USE ||Kompletter Mandant mit User ynd Anwendung =] "
RSCLACOP =
SAP_APPL ||Customizing und Anwendungadaten 2

Customizing-Daten kopieren

SAP_CUST
[] 3]

Gehen Sie wie folgt vor:

= Kontrollieren Sie, ob der richtige Zielmandant (002) eingetra-
gen ist.

= Wihlen Sie im Feld ,,Selektiertes Profil”“ ein Profil aus.
Uber das Profil steuern Sie, welche Daten vom Quellmandan-

1 Projektmanagement

ten in den Zielmandanten transportiert werden. Thnen stehen
folgende Selektions- Standardprofile zur Verfiigung:

Profil Daten Tabelle 1.2
SAP_ALL Alle mandantenabhingigen Daten Selektionsprofile
SAP_APPL Customizing- und Anwendungsdaten

SAP_CUST Customizingdaten

SAP_CUSV Customizingdaten und Reportvarianten

SAP_UAPP Benutzerstimme, Reportvarianten,
Anwendungsdaten

SAP_UCSV Customizingdaten, Reportvarianten
und Benutzerstimme

SAP_UCUS Customizingdaten und Benutzerstimme
SAP_USER Benutzerstimme und Berechtigungsprofile

= Hinweis: Die Customizingtabellen sind einmal pro Mandant
vorhanden. Sie werden beim Anlegen des Mandanten vom
Quell- in den Zielmandanten kopiert. Tabellen fiir Anwen-
dungsdaten, z.B. die Debitorenstammtabelle existiert nur ein-
mal pro R/3-System. Die Mandantenabhédngigkeit wird da-
durch erreicht, dass die Mandantennummer Bestandteil des
Datensatzes ist. Die Tabellen fiir die Anwendungsdaten wer-
den also nicht kopiert, sondern die Datensétze dieser Tabellen
werden mit der Nummer des Zielmandanten neu angelegt.

= Geben Sie im Feld ,,Quellmandant® den Quellmandanten (000)
an.

= Geben Sie im Feld ,,Quellmandant Benutzerstimme* einen
Mandanten an, der die Benutzerstammsitze enthilt, die im
Zielmandanten benotigt werden. Das konnte zum Beispiel der
Mandant 001 (Entwicklungsmandant) sein, weil in dieser Pha-
se der Entwickler seine Anderungen meist selbst testet.

= Starten Sie die Mandantenkopie iiber eine der folgenden
Schaltfléichen:

= Als Hintergrundjob einplanen* oder
= . Sofort starten®.

Wihrend der Mandantenkopie diirfen weder am Quellmandanten
noch am Zielmandanten Daten gedndert werden.

1.5 Transporte durchfihren 15

1.5.1.3

Anlegen eines Customizingaufirages

Das Customizing ist im Allgemeinen projektorientiert, d.h. unter-
schiedliche Aufgabenkomplexe werden von verschiedenen Projekt-
teams bearbeitet. Der Transport-Organizer unterstiitzt diese Ar-
beitsweise. Auf der Grundlage eines Customizingauftrages werden

folgende administratorischen Aufgaben der Projektarbeit gelost:

* Zuordnung von Anderungen zum jeweiligen Entwickler

» Kapselung aller Anderungen die ein Projektteam durchfiihrt.

» Sicherstellen, dass alle zu einem Projekt gehdrenden Anderun-

gen zum richtigen Zeitpunkt transportiert werden.

= Priifen, ob alle Entwickler ihre Aufgaben beendet haben.

-~Anlegen®.

Vorgehensweise: Customizingauftrag anlegen

Customizingauftrige werden im Transport-Organizer (SE10) ange-
legt (Werkzeuge > AcceleratedSAP -> Customizing = SEI10
Transport Organizer). Fiillen Sie das Einstiegsbild des Transport-
Organizers wie in Abb. 1.14 aus. Klicken Sie dann die Schaltfliche

Abb. 1.14
Einstiegsbild |& IHCEe DHR anon BE @

Transport-

) Transport Organizer
Organizer

| (S]] | [

utzer THOMAS

orkbench-Aufirage
D TraNgporte von Kopien
[Umzage

Auftragsstatus
E Anderbar
[Freigegeben

16

1 Projektmanagement

Globale Inf

gl
(=1

{ Transp g

Transporte

Q2
-
]
L

Reparaturen

Abb. 1.15

Auftrag Customizing-Auftrag Auftrag an/egen
Kurzbeschreibung EinfUhrung FVCO

Projekt

Inhaber THOMAS Quelimandant ooo

Status Neu Ziel QAS

Letzte Anderung 26.06.2003 12:07:32

Aufgatien Mitarbeiter ||

THOMAS

GUNTHER

(A

—
]

|

BE| (x]

Geben Sie in das Eingabefeld ,,Kurzbeschreibung® einen Titel fiir
Thren Customizingauftrag ein. Wenn Sie in der komfortablen Lage
sind, die anfallenden Customizingarbeiten auf andere Teammitarbei-
ter delegieren zu konnen, tragen Sie in die Datengruppe Aufgaben
deren Benutzernamen ein. Thr eigener Benutzername wird vom Sys-
tem in diese Datengruppe iibernommen.

Ist die Systemlandschaft bereits angelegt ist, wird im Feld ,,Ziel*
das R/3-System angegeben, in welches die Anderungen nach Ab-
schluss der Entwicklungsarbeiten transportiert werden sollen. Bei
einer Drei-System-Landschaft ist das das Qualititssicherungssystem
QAS.

Abb. 1.16
JH @ CHE noan BR @@ Auftrag anzei-
Auftrag MBSK900033 anzeljen gen

(@[] 653 | B[] (=) | (2]

Anzeige des Auftrags MBSKS00033

Zielsystem I

omizing-Auftrag

Auftragsnummer]

8 MBSKI0003F 00O THOMAS Einfihrung FI/CO
— MB3KS00034 GUNTHER Customizing-Aufgabe
— MBSKS00035 MAX Customizing-Aufgabe

—MSKQM Customizing-Aufgabe
[Aufgabennummer]

1.5 Transporte durchfihren ® 17

18

In diesem Fenster ist zu erkennen:

= Fiir jeden Auftrag wird vom System automatisch eine Auf-
tragsnummer ermittelt. Diese setzt sich zusammen aus dem
Systemnamen (hier: MBS), einer Konstanten ,,K9* und einer
5-stelligen laufenden Nummer (hier ,,00033%).

= Fiir jeden Entwickler, der beim Anlegen des Auftrages in die
Datengruppe ,,Aufgaben® eingetragen wurde (siche Abb.
1.14), ist automatisch eine ,,Aufgabe‘ angelegt worden. Beim
Sichern der Anderungen wihlt der Entwickler den Customi-
zingauftrag aus. Das System ermittelt den Benutzernamen des
Entwicklers und trigt die Anderungen in die entsprechende
Aufgabe des Customizingauftrages ein.

= Ist die Systemlandschaft angelegt, wird das Zielsystem (hier
das Qualitétssicherungssystem QAS) in die Auftragshierarchie
eingetragen. Dadurch kann man die Anderungen spiiter auch in
das Zielsystem transportieren.

1.5.1.4
Automatische Aufzeichnung von Anderungen

Die automatische Aufzeichnung von Anderungen bewirkt, dass der
Entwickler beim Sichern seiner Anderungen vom System nach der
Auftragsnummer gefragt wird. Die Zuordnung der Anderungen zu
einem Auftrag erfolgt nur, wenn diese Eigenschaft des Mandanten
aktiviert ist. Durch die ,,automatische Aufzeichnung von Anderun-
gen werden die gednderten Objekte an das Korrektur- und Trans-
portwesen (CTW) des R/3-Systems angeschlossen. Damit ist sicher-
gestellt, dass keine Anderungen beim Transport in den
Zielmandanten bzw. in das Zielsystem ,,vergessen” werden — ein
Highlight des R/3-Systems.

Vorgehensweise: Automatische Aufzeichnung von Anderungen akti-
vieren

Die Eigenschaften der Mandanten eines R/3-Systems werden mit der
Transaktion SCC4 (Werkzeuge - Administration = Verwaltung
- Mandantenverwaltung > SCC4 Mandantenpflege) geindert.
Stellen Sie im Bild Sicht ,,Mandanten* indern: Ubersicht (Abb.
1.17) durch Anklicken der Schaltfliche (Andern - Anzeigen)
den Anderungsmodus ein und wihlen Sie danach durch Doppelklick
den Entwicklungsmandanten aus.

1 Projektmanagement

(] 8 I@CEQ RHNE D0LH OE @@
Sicht "Mandanten” dndern: Ubersicht
|
Mandant |Bezeichnung I Ont [Wahr. |gedndert am
jooo [SAP AG Konze walldor? DEM 11.08.2000 [=]
o rvcongsmangere—penn v s -
ooz Testmandant Berlin EUR [25.06.2003 H

Sicht "Mandanten” dndern: Detail

Mandant 001 Entwickiungsmandant

Ort Berlin Letzter Anderer DDIc
Logisches System Datum 24.06.2003
Std Wahrung EUR

Rolie des Mandanten Customizing -]
ﬁg@n und Transporte for } bhangige Objekte

(@) Anderungen ohne automat. Aufzeichnung
O automatische Aufzeichnung von Anderungen
O keine Anderungen erlaubt

(9] Anda:ungen ohne autom. Aufzeichnung, keine Transporte erlaubt

Anderungen an 4 bergl jen Objekten
Anderungen an Repository und mand unabh. Customizing erlaubt B

Ausflug ins Customizing

Das Customizing ist die Anpassung der Standardsoftware R/3 an die

konkreten Bedingungen des Anwenderunternehmens. Dieser Teil

der Kundenanpassung wird ohne ABAP-Programmierung ausge-

fiihrt. Beispiele dafiir sind:

= das Festlegen allgemeiner Einstellungen (z.B. im Unternehmen
gebriuchliche MaBleinheiten)

= die Abbildung der Unternehmensstruktur im R/3-System.

Die allgemeinen Einstellungen bzw. die Struktureinheiten, wie Bu-
chungskreise, Kostenstellen, Werke, Lager, werden mit speziellen
R/3-Werkzeugen in die entsprechenden Customizingtabellen einge-
tragen.

Ausgangspunkt des Customizings ist der Referenz-Einfiihrungs-
leitfaden, auch Referenz-IMG genannt

1.5 Transporte durchfiihren

Abb. 1.17
Sicht Mandan-
ten dndern:
Ubersicht

Abb. 1.18
Sicht Mandanten
dndern: Detail

Referenz-IMG

19

Projekt-IMG

Abb. 1.19
Customizing:
Projekt-
verwaltung

Abb. 1.20
Projekt anlegen
mit Vorlage

20

(IMG - Implementation Guide). Der Referenz-IMG enthilt
= alle Customizingaufgaben und
= die notwendigen Customizingwerkzeuge.

Daraus wird der Projekt-Einfiihrungsleitfaden, auch als Projekt-IMG
bezeichnet, abgeleitet. Der Projekt-IMG enthilt

= alle Customizingaufgaben fiir ein Projektteam,
= alle notwendigen Customizingwerkzeuge,

= Tools zur Verwaltung des Projektes.

Vorgehensweise: Projekt-IMG anlegen

Der Projekt-IMG wird mit der Transaktion SPRO_ADMIN (Werk-
zeuge > AcceleratedSAP - Customizing - SPRO_ADMIN-Pro-
jektverwaltung) angelegt.

V] P AH CAQ SHB DDO0 BR @m
Customizing: Projektverwaltung
| [63’ SAF'ReEerenz-lMG]ﬁ IMG-Infi]| |F‘ jek z,|
rojektibersicht
rojekt |Bezeichnung
[=]
=

|

Um den Referenz-IMG anzuzeigen, klicken Sie auf die Schaltfliche
SAP Referenz-IMG. Einen neuen Projekt-IMG erzeugen Sie iiber die
Schaltfldche ,,Anlegen®.

Projektname

Legen Sie einen Projektnamen fest und driicken Sie dann die
ENTER-Taste. Sie gelangen in das Fenster Projekt anlegen. Alle
Registerkarten dieses Werkzeuges hier zu erldutern wiirde den ,,Aus-
flug ins Customizing® in eine eher knochige Bergtour verwandeln.
Deshalb beschrinkt sich dieses Buch auf die Registerkarten ,,Allge-

1 Projektmanagement

meine Daten” und ,,Umfang“. Am Beispielprojekt ,Einfiihrung
Fi/Co (Allgemeine FEinstellungen)* soll das Customizing gezeigt
werden.

Abb. 1.21
& 8 OECQe DHE L0 DR @M Projekt anlegen
Projekt anlegen

Projektname FI CO Proj t C gprojekt
Bezeichnung Einflhrung FUCo {Allgemeine Einstellungen)
Allgemeine Daten (= hten |/," jektmitarbe) |/_"‘- m v I'E
Verantwortlicher THOMAS
Projektsprache Deutsch -]
Status 01 offen
Abgeschlossen 0%
Plandaten Istdaten .~
Beginn 30.09.2003 Beginn
Ende 01.04.2004 Ende
Aufwand 80 PT Autwand PT

In der Registerkarte ,,Umfang” werden die Customizingaufgaben
festgelegt, die im jeweiligen Projekt bearbeitet werden sollen.

Im Beispiel soll fiir die physikalische GroBe ,,Zeit” das ,,Semester Beispielaufgabe

als MalBeinheit eingefiihrt werden. Customizing
Abb. 1.22
& . AR -

&l B eae LiE BE @ Umfang
Projekt anfegen

festlegen
Projektname FI_co Projektart Customizingprojekt

Bezeichnung Einfohrung FIYCo (Aligemeine Einstellungen)

" Aligemeine Daten .+~ Umfang |~ Projektsichien |~ Projekimitarbeiter |~ Statuswerte I CI-IeE

l Urnfang festlegen. .

% Projekt-IMG generieren
OF g durch von A und Landarn festlegen
Anwendungskomponenten - Lander ~
Augwahl anzeigen 2 Alle Lander in den Projektumfang einbeziehen

2 Lander for den Projekiumfang auswahlen

Auswahl andem

1.5 Transporte durchfiihren 21

Abb. 1.23
Auswahl der
Customizing-
aufgaben

Abb. 1.24
Customizingpro-
Jekt generieren

22 =

R/3 Einfiihrungsleitfaden Basis
I—E = 2llgemeine Einstellungen

—a B Lander einstellen

& @ Geokodierung einstellen
—a B Wahrungen

—% @ Malbeinheiten iberpriifen
— = @ Kalender pflegen
_% @ Kalender fiir Japan pflegen

—a8 B Zeitzonen

—a& @ Anzeigeeigenschaften von Feldern
—= O Einstellungsvarianten fiir Hilfe

—& @ Basis
'_ Knowledge Management
my3SAP.com Workplace

i..%l IIE]

Nach Anklicken der Schaltfldche ,,Umfang festlegen zeigt das Sys-
tem alle Customizingaufgaben aus dem Referenz-IMG an.

Stellen Sie den Cursor in die Customizingaufgabe, die Sie aus-
wihlen wollen (hier: MaBeinheiten iiberpriifen) und klicken Sie
dann auf die Schaltfliche ,Markieren auf der Symbolleiste des
Fensters.

Wenn Sie mehrere Aufgaben auswihlen wollen, wiederholen Sie
diesen Vorgang solange, bis alle Aufgaben markiert sind. Markieren
Sie einen Knoten, wenn alle untergeordneten Hierarchiestufen aus-
gewihlt werden sollen. Driicken Sie anschliefend die ENTER-
Taste.

Das Fenster ,,Projekt anlegen* wird wieder angezeigt. Das Projekt
muss jetzt generiert werden.

@ 2 I8 e DR 9000 IR @M
Projekt anlegen
Projektname FI_CO Projektart Customizingprojekt
Bezeichnung Einfuhrung Fi'Co (Allgemeine Einstellungen)

Allgemeine Daten,”” Umfang | Projektsichten | Projekimitart ¥ st I CIBIrE
@ Projektumfang durch lle A hl im Referenz-IMG festlegen

Umfang festlegen I

& Projek-IMG generieren _

1 Projektmanagement

Zum Generieren des Projektes klicken Sie auf die Schaltfldche ,,Pro-
jekt-IMG generieren” und bestitigen alle folgenden System-aus-
schriften mit der ENTER-Taste.

Kehren Sie in die Projektverwaltung zuriick (F3). Ihr Customi-
zingprojekt wird jetzt angezeigt.

Abb. 1.25
» UHCQe CHRDNLS DEIm| Dasneue
S emm———— N Customizing-
ustomizing:. rFroje erwaitung projekt wird
(O] | [&e_SAP ReferanzMG | [E IMG-Information | | [Projek o] angezeigt

Projektibersicht

Bezeichnung

Vorgehensweise: Customizing durchfiihren
Ausgangspunkt ist die Transaktion SPRO_ADMIN (Werkzeuge
- AcceleratedSAP - Customizing - SPRO_ADMIN Projektver-

waltung).
Starten Sie im Fenster ,,Customizing: Projektverwaltung® (siehe

Abb. 1.26) Thren Projekt-IMG durch Doppelklick.

Abb. 1.26
& T 9@ Qe DHE Dnon NE @F Projekt-IMG
starten

Andern: Projekt FI_CO: Einfiihrung Fi/Co (Aligemeine Einstellungen)

(] | [82_Projekt-IMG | (& Benut dnen__|[&&] Alle Projektmitarbeiter zuordnen |
Projekiname F1.CO Projektart Customizingprojekt
Bezeichnung Einfuhrung FI/Co (Allgemeine Einstellungen)
Aligemeine Daten | Umfang | Projektsichten | Proj ter |8 I
Verantwortiicher THOMAS =
Projektsprache Deutsch]

Durch Anklicken der Schaltfliche ,,Projekt-IMG* gelangen Sie in
die Baumstruktur Thres Projekt-IMGs.

1.5 Transporte durchfihren ®™ 23

Abb. 1.27 @

Baumstruktur G B 9H Qe CHE 2000 DR B
des Projekt- Einfiihrungsleitfaden anzeigen
IMGs [®][E] | [Existierende BC-Sets][5 BC-Sets zur Aktivitat | | [Anderungsprotokoll | [Weitere Objel

T ¥ '@ RI3 Enfuhrungsieitfaden Basis
v B ¥ 9P Algemeine Einstellungen

rrHier konnen in verschiedenen
| ,Notizblichern Notizen zur

kAufgabe angelegt werden

ﬁar werden vom Entwickleh
bzw. Teamleiter Statusin-
formationen gepflegt, z.B
- Plandaten (Beginn, Ende,
Aufwand) vom Teamleiter
- Istdaten (Beginn, Ende,
Abarbeitungsgrad) vom
Entwickler
Die Pflege der Statusanga-
ben ist die Grundlage fiir die
Projektsteuerung

.(Hier ist die Hilfe zur jeweiligen)

Aufgabe zu erreichen)

Klicken Sie auf die Schaltfliche ,IMG-Aktivitiat”. Damit rufen Sie
das Customizingwerkzeug ,,Maleinheiten iiberpriifen* auf.

Abb. 1.28
D/meg§/on fiir < ? OHICOQ@ UHRB OO0 BE
ie neue - —r—— n . " '
MaBeinheit Einstiegsbifd MaBeinheiten
auswéhlen

Einstiegsbild MaReinheitenpflege

| Dimensionen |

[ISO-Codes |

[MaReinheiten | zeit =

24 w1 Projektmanagement

@ B IB CEa LDHE DDOD AF @@

MaBeinheiten der Dimension Zeit Zndern: Ubersichtsbild

SkEinheit deklar.
Maleinhei Kaufr isch [Technisch |Matieinheitentext u
10 fd Tage =]
H H h h @
{THR ITHR l dahr | |
MIN MIN imin min
MIS MIS s s
T — Monate wolSekunde, als Sl-
= pis Ims ms [Einheit deklariert
NS NS ns ns |
ps 1] ps ps *
= 5 ISI-E
5TD ISTD fstdl Stunden
ITAG ITAG Tage Tage
WCH RMCH Wochen Wochen

Legen Sie im folgenden Fenster die Eigenschaften der neuen Maf3-

einheit ,,Semester* fest.

Q| 8 B CAe DHE DDLHD BE @

MaBeinheiten der Din

sion Zeit hinzufiigen: Detailbild

interne Mageinheit SEM
Darstellung Maleinheitentext
Kaufmannisch SEM Semester
Technisch SEM Semester|
Dezimaistelien
Exp Gleitkomma
ALE/EDI
ISO-Code PER
Umrechnung [Primarcode
Zahiler 15552000
Nenner 1
Exponent Anwendungsparameter
Additive Konstante [¥] Kaufm. Einheit
e I?“'”{Umrechnungsfaktor zur 1ISO-Maleinheit ,Sekunde*]
Mateinheitent:
]

Beim Sichern der MaBeinheit miissen die Anderungen dem im Kapi-
tel 1.5.1.3 ,,Anlegen eines Customizingauftrages (Seite 16) ange-
legten Customizingauftrag (MSBK900033) zugeordnet werden. Im
folgenden Fenster konnen Sie diesen Auftrag iiber die Schaltfliche
,Eigene Auftrige* auswihlen.

1.5 Transporte durchfiihren

Abb. 1.29
Anzeige

der bereits
deklarierten
MaBeinheiten

Abb. 1.30
Eigenschaften
der neuen Maf3-
einheit festlegen

25

Abb. 1.31
Zuordnung der
Anderungen
zum Customi-
zingauftrag

Abb. 1.32
Anzeige der
eigenen Trans-
portauftrdge

Tabelle 1.3
Geédnderte
Customizing-
tabellen

26

Customizing: Tabelle..

Auftrag
2

CUNI

MBSK900033
1 Einfuhrung FYCO

[v] | B[O [Eigene Autrage] | [3¢]

[> customizing-Auttrag

Uber die Transaktion SE10 konnen Sie den Transport-Organizer

aufrufen.

T o H G SHE anoa0 DR @@

Transport Organizer

O &)@ | @

Benutzer

fraomas E‘

eigener Benutzername]

Aufiragstyp
ustomizing-Auftrige
bench-Aufirage
D Transporte von Kopien
D Umzige

Globale Infi

§ 8

Aufiragsstatus
Anderbar

O Freiggueben

Ihnen werden alle Customizingauftrige angezeigt, an denen Sie
beteiligt sind (siche Abb. 1.33). Alle Anderungen, die Sie wihrend
des Customizings bearbeitet haben, sind Threr Aufgabe (siche Abb.
1.15, Seite 17) zugeordnet worden. Im Beispiel sind in der Aufgabe
,,Thomas** des Customizingauftrages MBSK900033 Anderungen an

{ Transt

Transporie

2
2

Reparaturen

den folgenden Tabellen aufgezeichnet:

Tabelle Kurzbeschreibung

T006 Mafeinheiten

TOO6A Zuordnung interne — sprachabhéngige Malleinhei-
ten

T006B Zuordnung externe kaufminnische zu interner
Mafeinheit

T006C Zuordnung externe technische zu interner Mafein-

heit

1 Projektmanagement

Durch die ,,automatische Aufzeichnung von Anderungen* werden
die Anderungen an den verschiedenen Customizingtabellen in den
Customizingauftrag eingetragen. Das Customizing ist dadurch ohne
Kenntnisse der R/3-Tabellenstruktur durchfiihrbar.

Abb. 1.33
V] B 0H Cee DHR 00D BB @@ Aufriss des

Transport Organizer: Auftrige Cus;‘;)mizin-
9 DELE@pa | (B (23 gauftrages

L—§) 608 sar Ac Konzern

F2 0AS Qualitdt=aicherungssystem

f Anderbar
B MBSKODO033 000 THOMAS Einfihrung FI/CO
B MBSKO00036 THOMAS Customizing-Aufgabe

i IMG-Aktivitst Maleinheiten iberprifen
Customizing: Tabelleninhalt
f cunz

T006

l_‘IZIDIJS EM

C
(

TO06E

0000001
—000DSEM

_Ec
0000000001

o

1.5.1.6
Freigabe der Customizingaufgabe und des Customizin-
gauftrages

Bevor der Transport der im Customizing durchgefiihrten Anderun-
gen, d.h. der Transport der neuen MalBeinheit ,,Semester” die im
vorigen Kapitel angelegt wurde, durchgefiihrt werden kann, muss
jedes Teammitglied seine Customizingaufgabe freigeben. Die Frei-
gabe durch den jeweiligen Bearbeiter bestitigt den qualititsgerech-
ten Abschluss der Anderungen. Durch das R/3-Berechtigungssystem
ist gesichert, dass kein anderer Bearbeiter aufler dem Inhaber der
Aufgabe selbst, diese freigeben kann. Voraussetzung dafiir ist die
Vergabe der Berechtigungsprofile entsprechend der folgenden Ta-
belle:

1.5 Transporte durchfihren 27

Tabelle 1.4
Berechtigungs-
profile des
Customizings

Abb. 1.34

Freigabe der
Customizing-
aufgabe

28 =

Profil Benutzertyp Rechte im Transport-
Organizer

S_A.SYSTEM Systemverwalter ~ Systemverwalter

S_A.ADMIN Operator Nur Anzeige

S _A.CUSTOMIZ Customizer Projektverantwortlicher

S_A.DEVELOP Entwickler Entwickler

Sind alle Customizingaufgaben freigegeben, gibt der Projektleiter
den Customizingauftrag frei. Freigegebene Aufgaben/Auftriage kon-
nen nicht mehr geéndert werden. Die Freigabe kann nicht zuriickge-
nommen werden.

Vorgehensweise: Freigabe der Aufgabe und des Auftrages

Die Freigabe der Customizingaufgaben und -auftrige erfolgt im
Transport-Organizer (Transaktionscode SE10). Rufen Sie die Auf-
trage, in denen Thnen iiber Thren Benutzernamen eine Aufgabe zuge-
ordnet ist auf (siehe Seite 26).

ITH @ DHR ODOD BE @
Transport Organizer: Auftrdge

@ Oe:EEE0) B 2R &

Direkt freigeben F9

Customizing-Auftrége mit Beteiligung von THOMAS (Thomas)
f D08 sap AG Konzern

| B50A8S Qualitétssicherungssystem

Anderbar
f MBSKO00033 000 THOMAS Einfithrung FI/CO
- THOMAS Customizing-Aufgabe

SKO00034 GUNTHER
SK900035 MAX

Customizing-Aufgabe
Customizing-Aufgabe

Stellen Sie den Cursor in die freizugebende Aufgabe und klicken Sie
die Schaltfldche ,,Direkt freigeben® an.

1 Projektmanagement

G DHE DoH AR @@
Auftrag/Aufgabe dndern: SK900036 Sprache DE
[2]] | [82_Formate || & Zeichenformate | (7] | &) (@]

3 * Stands

Abzatzfo ik Whmmn (-]

Hier kann ein Kommentar zur Freigabe der Aufgabe eingegeben werde

Die SAP empfiehlt, folgende Informationen zu dokumentieren:

= Verantwortliche Personen und Ansprechpartner

= Verweise auf zusitzliche interne Dokumentationen oder inner-
betriebliche Anweisungen

= Details zur Implementierung
= Abhingigkeiten von anderen Entwicklungsprojekten

Damit ist die Freigabe der Customizingaufgabe beendet. Sind alle
Aufgaben, denen Anderungen zugeordnet sind, freigegeben, erfolgt,
ebenfalls im Transport-Organizer, die Freigabe des Auftrages durch
den Projektleiter.

B IHICOa CHR DL AR @F

Transport Organizer: Auftrdage

@ O)elSE0 | Bl PR &

Customizing-Auftrége mit Beteiligung J@n THOMAS (Thomas)
B 608 sap AG Konzern

l BB8AS cualitatssicherungssystem
Freigabekennzeichen }

Anderbar
0oo OMAS Einfithrung FI/CO
MBSKO00037 ~ MAX Customizing-Aufgabe
MBSKO00035 ~ MAX Customizing-Aufgabe
MBSKI00036 ~ THOMAS Customizing-Aufgabe
SEQ00034 GUNTHER Customizing-Aufgabe

Objektliste des Auftrags

Am Freigabekennzeichen ist zu erkennen, dass die Projektmitarbei-
ter Max und Thomas die von ihnen durchgefiihrten Anderungen
ebenfalls zum Transport freigegeben haben. Max hat nach der Auf-
gabenfreigabe weitere Anderungen vorgenommen. Fiir ihn wurde
deshalb automatisch eine neue Aufgabe angelegt, die er dann eben-

1.5 Transporte durchfiihren

Abb. 1.35
Kommentar
zur Freigabe
der Aufgabe
eingeben

Abb. 1.36
Freigabe des
Customizig-
auftrages

29

Abb. 1.37

Protokollbild-
schirm

30

falls freigegeben hat. Nach der Freigabe des Auftrages wird ein Pro-
tokollbildschirm angezeigt.

98 BFD B8E

L] s [0S Qe Nk anan OF @E
Ubersicht iiber alfe Trans protokolle filr MBSK900033

ﬂ!‘rﬂ!ukclhﬂa!x::chr fur MBIKDO00033
- MBEES00033 Einfuhrung FI/CO
i mEs Mini BAF Basis System

Prufungen auf Betriebssystemebene 29.06.2003 10:57:28 i0) Erfolgreich beendet

Export 29.06.2003 11:00:15 (0) Eefolgreich beendet
Transportaufteagsunabbangige Schritte
{8 Fuckmeldung nach Export oder Import 29.06.2003 11:02:37 (0} Erfolgreich beendet
§ aas Cualitatasicherungsaystem

= Vormerkung fur Isport 29.06.2003 11:00:15 (0] Erfolgreich beendst
Transportauftragsunsbhangige Schritte

Durch die Freigabe des Auftrages MBSK900033 werden zwei Da-
teien erzeugt:

= RO0O0033.MBS (enthilt die zu dndernden Daten)
= KO00033.MBS (enthélt Transportsteuerdaten)

Zusitzlich werden Steuerinformationen in einen Pufferspeicher des
Qualitétssicherungssystems transportiert — Vorraussetzungen fiir den
Transport der Anderungen in das Qualititssicherungssystem (Kapi-
tel ,,Transporte in andere R/3-Systeme* (Seite 39).

Dem freigegebenen Customizingauftrag konnen keine Anderungen
mehr zugeordnet werden. Um weitere Anderungen durchfiihren zu
konnen, ist ein neuer Customizingauftrag anzulegen.

1.5.1.7
Transport der Anderungen in den Testmandanten

Die im freigegebenen Customizingauftrag gekapselten Anderungen
sollen jetzt in den Testmandanten (002) transportiert werden.

Vorgehensweise: Transport in einen Mandanten des gleichen R/3-
Systems

Melden Sie sich am Testmandanten an. Sollte fiir Sie im Testman-
danten noch kein Benutzerstammsatz angelegt sein, benutzen Sie
folgende Login-Daten:

Mandant: 002
Benutzer: SAP*
Kennwort: Pass

1 Projektmanagement

Starten Sie die Transaktion SCC1 (Werkzge > Administration
- Verwaltung > Mandantenverwaltung -> Sonderfunktionen

- SCCI1 Trsp-Auftrg kopieren).

Abb. 1.38
V] B0 Q@@ DAl Bnoaa BE @@ Transportauftrag
ausfiihren

Kopie gemaB Transportauftrag
[I® Sofort starten | [Als Hintergrundjob einplanen |

Mandanten@@py gemat Transportauftra

Quellmandant 001
Transportaufirag MBESK90003 3|[d‘

inc| Aufgaben zu Auftrag
[YeNglauf

Tragen Sie den Quellmandanten und die Auftragsnummer in die
entsprechenden Eingabefelder ein und wihlen Sie ,,Sofort starten‘

oder ,,Als Hintergrundjob einplanen®.
Uber das Menii Springen = Protokollanzeige konnen Sie den Erfolg

des Transports kontrollieren.

Abb. 1.39
|| B 0H e DHE Hhoo OB @@ Aufruf der Pro-
SAP R/3 tokollanzeige
(&) [Auswahlen] [Laschen | [Alle Mandanten | [Alle Transportautr | (]
!A.Ile Transportauftr. FB
Abb.1.40
(vl B ol e DHB D0D Qm Anzeige aller
Transportproto-

SAP R/3
kolle
] Auswihlen ” Alle Mandanten ” Alle Transportaufir H Exporte || Importe l

Mandantenkopie-Protokolle
Auswahl: Transportauftragskopien

Z2iel- |Anzahl|Letzter Lauf
Mandant |Laufe |Datum Status-Text
ooz 3 |2003/06/29 |Ecfolgreich beendet

Mit der Kontrolle des Transportprotokolls ist der Transport der An-
derungen in den Testmandanten abgeschlossen.

1.5 Transporte durchfiihren 31

32

1.5.1.8
Ubungsaufgaben

A 1. Ermitteln Sie, welche Mandanten in Threm System angelegt
sind.

A 2. Deklarieren Sie einen neuen Mandanten.

Mandant: 010 Testmandant (sollte dieser Mandant bereits angelegt
sein, wihlen Sie eine andere Mandan-
tennummer)

Mandantenrolle: Testmandant

Anderungen ohne automatische Aufzeichnung

Stellen Sie fest, wie viele Dateien bei der Mandantenkopie vom
Quellmandanten 000 in den Zielmandanten 010 kopiert werden
wiirden.

Achtung: Fiir die folgenden Ubungen reicht es, den neuen Mandan-
ten zu deklarieren. Beim zweiten Schritt, der Mandantenkopie, wer-
den mehrere Tausend Tabellen kopiert. Das erfordert erhebliche
Systemressourcen. Sollten Sie Beabsichtigen, die Mandantenkopie
wirklich auszufiihren, sprechen Sie vorher mit dem Systemadminist-
rator.

A 3. Legen Sie einen Customizingauftrag mit der Kurzbezeich-
nung ,,.Linder-Regionen* an.

A 4. Legen Sie einen Projekt-IMG ,.Regionen* an. Nehmen Sie
den Knoten ,,Allgemeine Einstellungen in den Umfang Ihres Pro-
jekt-IMGs auf.

A S. Legen Sie fiir das Land Deutschland (DE) die Region 17
Berlin-Brandenburg an.

A6. Uberpriifen Sie in Threm Customizingauftrag welche Tabellen
Anderungen enthalten, die durch das Anlegen der Region Berlin-

Brandenburg erzeugt wurden und geben Sie den Auftrag frei.

A7. Melden Sie sich an dem in Aufgabe 2 angelegten Mandanten
an.

A 8. Kontrollieren Sie im Customizing, ob die Region Berlin-
Brandenburg vorhanden ist.

1 Projektmanagement

A 9. Fiihren Sie den Transport (Auftragskopie) durch und kontrol-
lieren Sie, ob die Region Berlin-Brandenburg jetzt vorhanden ist.

A 10. Loschen Sie den neuen Mandanten wieder.

1.5.1.9
Lésungen

Al Ermitteln Sie, welche Mandanten in Ihrem System angelegt sind.

Starten Sie die Transaktion SCC4 (Werkzeuge = Administration
- Verwaltung - Mandantenverwaltung - SCC4 Mandantenpfle-
ge). Im Folgebild ,,Sicht Mandanten anzeigen: Ubersicht** sehen Sie
alle im System angelegten Mandanten.

A 2. Deklarieren Sie einen neuen Mandanten.

1. Transaktion SCC4 (Werkzeuge = Administration = Verwal-
tung - Mandantenverwaltung - SCC4 Mandantenpflege) star-
ten.

2. ,anzeigen & #ndern®.
,Neue Eintrige*.

4. Attribute des Mandanten entsprechend der Aufgabenstellung
eingeben.

5. Sichern Sie die Eingabe.

Stellen Sie fest, wie viele Dateien bei der Mandantenkopie vom Quellmandanten 000
in den Zielmandanten 010 kopiert werden wiirden.
6. Am Zielmandanten anmelden

Mandant: 010

Benutzer: SAP*

Kennwort: PASS

7. Transaktion SCCL starten (Werkzeuge = Administration
- Verwaltung - Mandantenverwaltung - Mandantenkopie
- SCCL Lokale Kopie)

8. Im Folgebild ,,Mandantenkopie — Kopieren eines Mandanten*
- Selektionsprofil ,,SAP_CUST*
- Quellmandanten ,,000
auswihlen.

9. Kontrollkistchen ,, Testlauf* aktivieren
10. Mandantenkopie (,,Sofort starten‘) starten

11. Im Folgebild ,,Verifikation“ die Schaltfliche ,,Fortfahren an-
klicken

1.5 Transporte durchfihren

33

34

12. Im Folgebild ,,Mandantenkopie Verifikation® den Schalter ,,Re-
sourcencheck anklicken

Nach dem ,,Ressourcencheck befinden Sie sich wieder im Haupt-
menii ,,Easy Access®.

13. Transaktion SCCL erneut aufrufen
14. Im Folgebild Quellmandanten 000 eintragen
15. Menii ,,Springen = Protokollanzeige* auswihlen

16. Im Folgebild den Protokolleintrag anklicken

Ergebnis:

& B aH e SHE BDHD BAE

SAP R/3
[Auswéhien || Loschen || Alle Mandanten I|Alle Transportaufir. |

Mandantenkopien in Mandant 010 : 1
Datum Zeit Quelle Status-Text Profil
20.07.2003 4 | 000 Erfolgreich bdenfet SAP_CUST

JH e QHEB o BEE

SAP R/3

[Resourcenanalyse “ Details]

Z2ielmandant 010

Que llmandant ooo

Kopiertyp Lokale Kopie
Testlauf!

Profil SAP_CUST

Status Erfolgreich beendet

Benutzer SAP*

Letzter Lauf am 20.07.2003 / 15:58:54

Letzter Eintrag am 16:06:45

Statistik dieses Laufes

= Anzahl Tabellen 1,775 wvon 1.775

- geloschte Zeilen 1

- kopierte Zeilen 403.804

1 Projektmanagement

A3.

Legen Sie einen Customizingauftrag mit der Kurzbeschreibung ,Lander-

Regionen* an.

1.

5.

A4

Transaktion SE10 starten (Werkzeuge > AcceleratedSAP
—> Customizing = SE10 Transport Organizer).

1111 Folgebild die Kontrollkistchen ,,Customizing-Auftrige* und
,,Anderbar* aktivieren.

Schaltfldche ,,Anlegen (F7)* anklicken.

Im Folgebild ,,Auftrag anlegen* Kurzbeschreibung ,,Linder-
Regionen® und eventuell Teammitarbeiter eintragen.

Sichern (ENTER-Taste).

Legen Sie einen Projekt-IMG ,,Regionen an. Nehmen Sie den Knoten

,-Allgemeine Einstellungen® in den Umfang Ihres Projekt-IMGs auf.

6.

10.

11.

12.

13.
14.

15.
16.
17.

18.
19.

20.

Transaktion SPRO_ADMIN starten (Werkzeuge = Accelera-
tedSAP - Customizing - SPRO_ADMIN Projektverwaltung)

Im Folgebild ,,Customizing: Projektverwaltung® Schaltfliche
»Anlegen* anklicken.

Im Folgebild ,,Projekt anlegen ... Projektname ,,Regionen® ein-
geben/ENTER.

Im Folgebild ,,Projekt anlegen‘* Bezeichnung des Projektes (z.B.
Linderregionen) eingeben.

Registerkarte ,,Allgemeine Daten* mit sinnvollen Daten ausfiil-
len.

In der Registerkarte ,,Umfang® Auswahlknopf ,,Projektumfang
durch manuelle Auswahl im Referenz-IMG festlegen aktivie-
ren.

Sichern.
Schaltfldche ,,Umfang festlegen anklicken.

Im Folgebild , IMG-Knoten auswéhlen® Cursor in den Knoten
,~Allgemeine Einstellungen* stellen.

Schaltfldache ,,Markieren FO“ anklicken.
ENTER-Taste driicken.

Im Bildschirm ,,Projekt anlegen* Schaltfliche ,,Projekt-IMG
generieren” anklicken.

Informationen mit ENTER-Taste bestitigen.

Im Folgebild ,,Projekt-IMG generieren* gewiinschte Arbeits-
weise einstellen (,,Hintergrundjob* oder ,,Sofort*) .

ENTER-Taste driicken.

1.5 Transporte durchfihren

35

A5, Legen Sie fiir das Land Deutschland (DE) die Region 17 Berlin-

Brandenburg an.

1. Transaktion SPRO_ADMIN starten (Werkzeuge = Accelera-
tedSAP - Customizing = SPRO_ADMIN Projektverwaltung).

2. Im Folgebild ,,Customizing: Projektverwaltung® das Projekt
»~Regionen‘ durch Doppelklick starten.

3. Im Folgebild Andern: Projekt Regionen: Lénderregionen‘
Schaltfliche ,,Projekt-IMG* anklicken.

4. IMG-Aktivitit ,,Regionen einfiigen* entsprechend der Abbil-
dung auswihlen.

Andern: Projekt REGIONEN: Sicht: Linderregionen

A BC-Sets zur Akttt] | [A ! | [weitere al
BEIEIE

= R/3 Einfuhrungsieitfaden Basis
=@ + Algemeine Einstellungen

Lander einstellen
Lander definieren

B
=]

-

Bo®

Landesspexsische Prifungen einstelien
Eir ndereinstefungsn fr Basis-System

PPe
LI LT

La efinieren

5. Im Folgebild ,,Sicht Regionen #ndern: Ubersicht* Schaltfliche
»Neue Eintrige* anklicken.

6. Folgebild ,,Neue FEintrige ... Region Berlin-Brandenburg ent-
sprechend Abbildung anlegen.

[i s I B e on

Neue Eintrdge: Ubersicht Hinzugefiigte

PEEEGE

Land |Reglon Bezeichnung
bE 17 Berlin-Brandenbur Q

7. Sichern und Customizingauftrag aus Aufgabe 3 (Linder-
Regionen) zuweisen.

A6. Uberpriifen Sie in Threm Customizingauftrag welche Tabellen Anderun-

gen enthalten, die durch das Anlegen der Region Berlin-Brandenburg erzeugt wurde

1. Transaktion SE10 starten (Werkzeuge —> AcceleratedSAP
- Customizing = SE10 Transport Organizer).

2. Irp Folgebild die Kontrollkdstchen ,,Customizing-Auftrige” und
,,2Anderbar* aktivieren.

36 ® 1 Projektmanagement

3. Schaltfliche ,,Anzeigen* anklicken Im Folgebild ,,Transport
Organizer: Auftrige” Customizingauftrag ,Lénder-Regionen*
entsprechend Abbildung aufrei3en.

Transport Qrganizer: Aufirdge

4 DeHSE | 0 PEE &

4. Stellen Sie den Cursor in die Aufgabe und geben Sie diese frei
(Schaltflache ,direkt freigeben®).

5. Stellen Sie den Cursor in den Auftrag und geben Sie diesen frei
(Schaltflache ,,direkt freigeben®).

AT Melden Sie sich an dem in Aufgabe 2 angelegten Mandanten an.
Start ,,SAPLogon“ = Logon

Logondaten:

Mandant: 010

Benutzer: SAP*

Kennwort: PASS

A 8. Kontrollieren Sie im Customizing, ob die Region Berlin-Brandenburg

vorhanden ist.

Die folgenden Handlungen sind im Mandanten 010 (Mandant aus
Aufgabe 2) auszufiihren.

1. Transaktion SPRO_ADMIN starten (Werkzeuge > Accelera-
tedSAP - Customizing - SPRO_ADMIN Projektverwaltung).

2. Im Folgebild ,,Customizing: Projektverwaltung® das Projekt
»Regionen‘ durch Doppelklick starten.

3. Im Folgebild ,,Andern: Projekt Regionen: Linderregionen®
Schaltfliche ,,Projekt-IMG* anklicken.

4. IMG-Aktivitit ,,Regionen einfiigen* entsprechend der Abbil-
dung auswéhlen.

1.5 Transporte durchfihren

37

38

Andern: Projekt REGIONEN: Sicht: Linderregionen

@ BC-Sets zur Aktaatat | | | Andenungsprotokoll || Wistars Objektverwandung |
=IO

= & R/3Emfuhrungsieifaden Basis

=@ & Asgemeine Einstefungen

Langer einstesien
Lander definieren

Langesspezifische Prufungen einsteien
Emngeschranite La fr B

h]
@
D
D
@
[

PPRPE
L1

Landervorwahien defineren

5. Suchen Sie im Folgebild ,,Sicht Regionen #ndern: Ubersicht
fiir Deutschland (DE) die Region 17.

Ergebnis: Die Region DE 17 Berlin-Brandenburg ist nicht vorhan-
den.

Begriindung: Die Lindereinstellungen gehéren zum mandantenab-
héngigen Customizing. Sie miissen erst in den Testmandanten (010)
transportiert werden.

A9. Fiihren Sie den Transport (Auftragskopie) durch und kontrollieren Sie, ob
die Region Berlin-Brandenburg jetzt vorhanden ist.

Die folgenden Handlungen sind im Mandanten 010 (Mandant aus
Aufgabe 2) auszufiihren.

1. Transaktion ,,SCC1 Trsp-Auftrag kopieren* starten (Werkzeuge
—> Administration > Verwaltung - Mandantenverwaltung —>
Sonderfunktionen - SCC1 Trsp-Auftrag kopieren).

2. Geben Sie im Folgebild ,,Kopie gemadl Transportauftrag® fol-
gende Daten ein:
Quellmandant: <Mandant indem die Region angelegt wurde>
Transportauftrag: <Customizing-Auftragsnr. aus Aufgabe 3>

3. ,,Sofort starten* oder ,,Als Hintergrundjob einplanen* anklicken.

Kontrollieren Sie analog zur Aufgabe 8, ob die Region jetzt vorhan-
den ist.

A 10. Loschen Sie den neuen Mandanten wieder.

Die folgenden Handlungen sind im Mandanten 010 (Mandant aus
Aufgabe 2) auszufiihren.

1. Transaktion ,,SCC5 Mandant Ioschen* starten (Werkzeuge
- Administration > Verwaltung > Mandantenverwaltung
—> Sonderfunktionen = SCC1 Trsp-Auftrag kopieren). Im Fol-
gebild ,,Mandanten 16schen* ist im Anzeigefeld ,,zu 16schende
Mandanten* der aktuelle Mandant eingetragen (010).

2. Kontrollkéstchen ,,L.osche Eintrag aus TO00* aktivieren.

3. Wihlen Sie ,,Online 16schen* oder ,,Hintergrund®.

1 Projektmanagement

Es werden alle mandantenabhéngigen Tabellen des Mandanten 010
und der Datensatz des Mandanten 010 in der Tabelle TOOO geloscht.
Hinweis: Das manuelle Loschen des Mandanten in der Mandanten-
iibersicht (SCC4) loscht die mandantenabhéngigen Tabellen des
Mandanten nicht.

1.5.2
Transporte in andere R/3-Systeme

1.5.2.1

Grundlagen

Bei der Installation eines R/3-Systems wird auf der Betriebssystem-
ebene ein Transportverzeichnis angelegt. Alle R/3-Systeme einer
Systemlandschaft nutzen ein gemeinsames Transportverzeichnis.

DEV
(= MBS)

—..._‘_.\
_'_F__'_J
t2

t B &3 Datentrager (D:) t3

Zum Zeitpunkt t, (Freigabe des Auftrages) werden die zu transportie-
renden Daten in das Unterverzeichnis ,data* des gemeinsamen
Transportverzeichnisses ,trans“ geschrieben. Gleichzeitig werden
fiir den Transport wichtige Steuerdaten im Verzeichnis ,.cofiles*
gespeichert.

Zum Zeitpunkt t, Import der Daten in das System QAS) werden
die Daten in das Qualitdtssicherungssystem transportiert und dort

1.5 Transporte durchfihren

Abb. 1.40
Nutzung des
gemeinsamen
Transportver-
zeichnisses

39

Abb. 1.41
Daten- und In-
formationsfiui3

bei der Freigabe

40 ®

getestet. Korrekturen werden im Entwicklungssystem durchgefiihrt
und anschlieBend in das Qualititssicherungssystem transportiert.

Zum Zeitpunkt t, (Import der Daten in das System PRD) werden
die Daten aller Anderungsauftrige in das Produktivsystem iiber-
nommen. Die Reihenfolge der Anderungen wird dabei exakt ein-
gehalten, damit neue Versionen nicht durch alte {iberschrieben wer-
den.

Importqueue: System QAS
HEEE
L Auft Inhabe
o uftrag 3
(= MBS)
: MBSK900025 | BCUSER
Freigabe Auftrag
MBSKY00033 MBSK900033 | THOMAS
4
/"_—_’_'__ __'_‘—'—--__‘
\-____‘__‘__-‘ _‘_'__'_'___H,
B trans
Cbn
(7] bufer
| MBS 1KB Datei
#|PRD 0KB Datei
> E]Q&S 1KB Datel [QAS-Importpuffer
() cofies
> Bowos 10 st
7] data
P ERoo033 3KB MESDatei
‘.-‘_'_\—l—_
Datenfluf3
Informationsfluf3

Vorgdnge bei der Freigabe des Auftrages

Nach der Freigabe des Auftrages MBSK900033 wird die Datei
R900033.MBS mit den zu transportierenden Daten erzeugt und in
das Unterverzeichnis ,data® kopiert. Zusitzlich wird die Datei
K900033.MBS mit Steuerinformationen angelegt und im Transport-
unterverzeichnis ,,cofiles* abgelegt.

Die QAS-Importdatei und Importqueue werden ebenfalls mit
Steuerinformationen versorgt.

1 Projektmanagement

Die Dateien K900033.MBS, R900033.MBS und QAS kénnen auch
von den R/3-Arbeitsstationen angezeigt werden. Mit der Transaktion
AL11 konnen Sie die Verzeichnisse des Servers auf dem Bildschirm
Threr Arbeitsstation abbilden. Doppelklicken Sie in das Verzeichnis
DIR_TRANS -> data, DIR_TRANS - cofiles bzw. DIR_TRANS
- buffer. Den Inhalt der Dateien koénnen Sie sich von dort aus eben-
falls mit Doppelklick anschauen.

rg Importqueue: System PRD
BaFNEYE HENE
{ofm':" Nummer queng | Inhaber ‘
' é:::” Importqueue ist leer
R A
g__%__ Aufteag Inhaber 3
E"“‘ 1 | mesxeo002s | mcusem ™
Q 2 | MBSK900033 | THOMAS
=
80 tans
~Qbn
MBS 1KB Datei
>Bm e
QAS 1KB Datei
) cofes
EJK00033 1KB MBSDatel | Steuerdatei
G data
ERo0ozs 3KB MBSDatei

—_— Datenfluf3

.................. Informationsfluf3

Vorgdnge beim Import

,Damit ein SAP-System durch die Versorgung mit Anderungsauf-
trdgen immer in einem konsistenten Zustand bleibt, ist es notwendig,
Termine festzulegen, zu denen die Entwickler ihre Anderungsauf-
trage freigeben miissen. Um zu verhindern, dass Auftrige, die nach

1.5 Transporte durchfiihren

Abb. 1.42
Daten- und In-
formationsfiui3
beim Import in
das QAS

Wirkungsweise
der Import-
queues

41

Abb. 1.43
Daten- und In-
formationsfiui3
beim Import in

das PRD

42

diesem Zeitpunkt freigegeben werden, auch noch importiert werden,
kann die Importqueue geschlossen werden.

Anderungsauftrige, die dann freigegeben werden, werden nach
einer Endemarkierung in die Queue geschrieben und damit erst fiir
den iibernédchsten Import vorgemerkt. Beim néchsten Import, der
durch das SchlieBen der Importqueue auch zu einem spiteren Zeit-
punkt erfolgen kann, werden nur die Auftrige vor der Endemarkie-
rung importiert (SAP R/3 Online-Hilfe).

Hinweis: Im Normalfall wird die Importqueue zu festgelegten und
veroffentlichten Terminen geschlossen damit die Projektleiter iiber
die Wahl des Freigabezeitpunktes festlegen konnen, wann die Ent-
wicklungen in die Folgesysteme importiert werden.

Beim Import der Auftrige in das QAS werden Steuerinformatio-
nen in den PRD-Importpuffer und die PRD-Importqueue geschrie-
ben.

Im letzten Schritt erfolgt der Import der Auftrige in das Produkti-
onssystem PRD. Die Eintrige der PRD-Importqueue bestimmen,
welche Auftrige in das Produktivsystem transportiert werden. Der
Import erfolgt analog zum Import in das QAS, nur dass kein Import-
puffer und keine Importqueue beliefert werden miissen.

Importqueue: System PRD

1 | MBSK900025 | BCUSER
2 | MBSK900033 THOMAS

.

1KB Datei
OKB Datei |PRD-Impurtpuﬁ'et_]
QAS 1KB Datei

E| K900033 1KB MBS-Datei Steuerdatei

@JRo00033 3KB MBSDatei | Datendatei

1 Projektmanagement

1.5.2.2
Voraussetzungen und Durchfiihrung

Es gibt verschieden Methoden, Transporte in andere R/3-Systeme zu
realisieren. Hier soll speziell auf das Transport-Management-System
(TMS) eingegangen werden. Mit dem TMS steht ein komfortables
Werkzeug zur Verfiigung mit dem alle Transporte organisiert und
zuverldssig ausgefiihrt werden konnen. Benutzeraktionen auf Be-
triebssystemebene sind bei der Verwendung des MTS nicht mehr
notwendig, da alle benétigten Informationen und Funktionen im
SAP-System abgebildet werden.

Um Anderungen mit dem TMS zu transportieren, sind folgende
Voraussetzungen zu erfiillen:

= Die Systemlandschaft ist eingerichtet.

* Fiir die Anderungen an mandantenabhingigen Daten ist ein
Customizingauftrag angelegt.

* Fiir die Anderungen an mandantenunabhiingigen Daten ist eine
Entwicklungsklasse und ein Workbenchauftrag angelegt.

* Die automatische Aufzeichnung von Anderungen ist einge-
schaltet.

Die Datenénderungen und der Transport der geidnderten Daten in ein
anderes R/3-System erfolgt in folgenden Schritten:

= Die mandantenabhingigen Daten werden mit den Customi-
zingwerkzeugen gepflegt und beim Sichern in den Customi-
zingauftrag eingetragen (siehe Kapitel 1.5.1 ,,Transporte in-
nerhalb eines R/3-Systems*).

= Mandantenunabhingige Daten werden beim Anlegen einer
Entwicklungsklasse und einem Workbenchauftrag zugeordnet.
Die Entwicklungsklasse enthdlt Angaben zum Zielsystem in
welches die Anderungen transportiert werden sollen. Analog
zum Customizingauftrag erfiillt der Workbenchauftrag folgen-
de Hauptaufgaben:

» Zuordnung der Anderungen an mandantenunabhiingigen
Daten zum jeweiligen Entwickler

» Kapselung aller Anderungen, die zu einem Projekt geho-
ren

= Kennzeichnung der erledigten Entwicklungsaufgaben

= Nach dem Abschluss der Entwicklungsarbeiten erfolgt die
Freigabe der Customizing- und Workbenchauftrige. Bei der
Freigabe werden die Anderungsauftrige und die dazugehori-

1.5 Transporte durchfihren

43

Domain
Controller

44

gen Steuerinformationen in das gemeinsame Transportver-
zeichnis geschrieben (siche Abb. 1.41, Seite 40).

* Zum Schluss wird im Transport-Management-System der
Transport der Anderung in das Zielsystem ausgefiihrt.

1.5.2.3
Einrichten der Systemlandschaft

In diesem Kapitel wird das Anlegen einer ,,Drei-System-Land-
schaft” gezeigt. Als Entwicklungssystem dient das System MBS
(Mini-Basis-System). Fiir das Qualitétssicherungssystem (QAS) und
das Produktionssystem (PRD) werden zwei virtuelle Systeme ange-
legt. In der Praxis werden virtuelle Systeme immer dann benutzt,
wenn die Zielsysteme (in der Regel QAS und PRD) physisch noch
nicht vorhanden sind und das Transport-Management-System zu
Testzwecken initialisiert werden soll.

Um die Systemlandschaft zu konfigurieren, miissen Sie am Domain
Controller angemeldet sein. Der Domain Controller ist ein System
der Systemlandschaft, das dazu bestimmt wurde, Anderungen an der
Systemlandschaft aufzunehmen und in die anderen Systeme zu ver-
teilen. Wie der Domain Controller konfiguriert wird, entnehmen Sie
bitte der Online-Dokumentation.

Nach Auslosen des Transportvorganges wird dieser vom TMS
selbststindig ausgefiihrt. Dazu benotigt das TMS Angaben iiber die
R/3-Systeme der Systemlandschaft und die Transportwege iiber die
die Entwicklungsobjekte transportiert werden sollen.

Alle benétigten Informationen werden direkt im TMS angelegt.

R/3-Systeme der Systemlandschaft im TMS anlegen
Vorgehensweise: R/3-Systeme anlegen

Starten Sie das TMS iiber die Transaktion STMS (Werkzeuge
- Administration = Transporte = STMS Transport-Management-

System),)
und wihlen Sie die Meniifolge ,,Ubersicht = Systeme*.

1 Projektmanagement

Abb. 1.44

Einstiegsbild
des TMS
s N — _] _ _ Abb. 1.45
— —— Kl ' = = Anlegen eines
Sl __ R/3-Systems
Sysdemaberslcht: Domidne DOMAIN_MBS im -,—MVS
(S s3] [s«) (@] %] | [@)[2)[=] |
Anzahl Systeme: 1 07.07.2003
~ Sysfem | Typ |Kurzbeschreibung
M & |Mini SAP Basis System
Anlegen » Virtuelles System
Andern Externes System
Angeigen Strg+F3 Domain Link

System
Beschreibung

Qualitatssicherungssyste

Kornmunikationssysterﬂ/
Name MES
eschreibung Mini SAP Basis System

2 B 2 8600
ystemiibersicht: Domadne DOMAIN_MBS
s3)(sd (@] (B | (@)(2)(=] | (&)@ @)

Anzahl Systeme: 2 07.07.2003

System | Typ |Kurzbeschreibung
MBS | i=& |Mini SAP Basis System
QAS © |Qualitatssicherungssystem

1.5 Transporte durchfiihren 45

Abb. 1.46

Systeme im
grafischen Edi-
tor des TMS
positionieren

46

Wihlen Sie das Menii ,,SAP-System = Anlegen - Virtuelles Sys-
tem* und belegen Sie die Eingabefelder im folgenden Dialogfenster
entsprechend Abb. 1.46. Sichern Sie in diesem Dialogfenster Thre
Eingaben. Als Ergebnis wird in der Systemiibersicht das neue Sys-
tem angezeigt.

Legen Sie im TMS ein virtuelles System ,,PRD* (Produktionssys-
tem) an.

Vorgehensweise: Transportwege anlegen

Ausgangspunkt ist das Einstiegsbild des TMS (Transaktion STMS).
Wihlen Sie die Meniifolge ,,Ubersicht = Transportwege*. Es wird
ein grafischer Editor zur Pflege der Systemlandschaft angezeigt.
Wechseln Sie in den Anderungsmodus.

Unter der Drucktastenleiste sehen Sie die R/3-Systeme, die in die
Systemlandschaft integriert werden konnen. Klicken Sie mit der
Maustaste auf das Entwicklungssystem (MBS). Stellvertretend fiir
das ausgewihlte System wird im Arbeitsbereich ein rotes Rechteck
angezeigt, das Sie mit der Maus an eine geeignete Stelle schieben
konnen. Zum Positionieren des Systems driicken Sie die linke Maus-
taste.

ansportwege dndern (gesichert)

[ERE | @)l
S

JustiehTee il rradubriyEpey
Qs I PRD I

Positionieren Sie die Systeme QAS und PRD entsprechend der Ab-
bildung im Arbeitsbereich des grafischen Editors.

Die Systeme der anzulegenden Transportlandschaft werden durch

Transportwege miteinander verbunden. Es werden zwei Arten von
Transportwegen unterschieden:

1 Projektmanagement

= Konsolidierungswege

Ein Konsolidierungssystem ist ein System der Systemlandschaft, in
das stabile Entwicklungsstinde aus dem Entwicklungssystem per
Transport iibernommen und getestet werden.
Der Transportweg vom Entwicklungssystem zum Konsolidierungs-
system wird als Konsolidierungsweg bezeichnet Ein Konsolidie-
rungsweg setzt eine Transportschicht voraus.

= Belieferungswege.

Ein Belieferungssystem ist ein System der Systemlandschaft, das aus
einem Konsolidierungssystem automatisch beliefert wird. Der
Transportweg von einem Konsolidierungssystem in ein Beliefe-
rungssystem wird als Belieferungsweg bezeichnet. Belieferungswe-
ge benotigen keine Transportschicht.

Vorgehensweise: Konsolidierungsweg anlegen

Zum Anlegen eines Konsolidierungsweges wird eine Transport-
schicht benotigt.

Pro SAP-System und Transportschicht konnen Sie nur einen Konso-
lidierungsweg einrichten.

Legen Sie iiber die Meniifolge ,,Bearbeiten - Transportschicht
-> Anlegen* eine Transportschicht an.

1 Bearbeiten S Abb 147
Transportweg vy /74_n/egen e/nﬁr .
- 5 ransportschicht
Transporty—sbotschicht IET | p
Transportschicht zqas[®
Kurzbeschreibung mbs->gas

vi@)[x]

Der Name der Transportschicht muss im Kundennamensbereich
liegen (Anfangsbuchstabe ,,z** oder ,,y*).

Mit dieser Transportschicht soll jetzt ein Konsolidierungsweg zwi-
schen dem Entwicklungssystem (MBS) und dem Qualitits-siche-
rungssystem (QAS) angelegt werden. Wihlen Sie dazu im Fenster
»Transportwege #ndern“ die Meniifolge ,,Bearbeiten = Transport-
weg > Transportweg einfiigen®.

1.5 Transporte durchfihren 47

Abb. 1.48
Transportweg

anlegen

48

Daraufhin nimmt der Cursor die Form eines Bleistiftes an. Ziehen
Sie mit gedriickter linker Maustaste eine Linie (Kante) vom Mittel-
punkt des Entwicklungssystems (MBS) zum Qualitétssicherungssys-
tem (QAS) und lassen Sie die Maustaste wieder los. Aktivieren Sie
im folgenden Dialogfenster den Auswahlknopf ,,Konsolidierungs-
weg®, wihlen Sie die von Thnen angelegte Transportschicht aus und
driicken Sie dann die ENTER-Taste. Der Konsolidierungsweg ist
angelegt (Vergleiche Abb. 1.48).

(] Transportweg . Irarsporteeg einfogen
1 Taansponschicht | Andem
Tra’ # v Quetom . I Aerhan

[Z][sal (@] | [8)[2] (@] | =[] | (&)
gl'lml-!.sndlc:po

alnl 3ar oacl uallzExcelch rrodutzlveyex
MES "8' ______ Qu s l PRD I

(2} Konsaklerung Konsokdenung
Integrabons=y=tem
Transportschicht
Honzcidierungssystem

BT

O Belielernng | Belmkung
Quelsystem
Belefenrgrsystem

£

CdlEIETIIES

el
= M=-Langscaps
alnl Yar oacl e : JuasllzExcclch rradukzlveycex
MES Qs PRD
ZaAs *I S _ I b I

Die am Domain Controller konfigurierte Systemlandschaft muss
jetzt gesichert, verteilt und aktiviert werden. Klicken Sie die Schalt-
fliche ,,Sichern an, geben Sie der Konfiguration einen Namen und
verteilen Sie im folgenden Dialogfenster Ihre Konfiguration.

1 Projektmanagement

= Abb. 1.49

Kurzbeschreibung Konfiguration
B-System-Landscape sichern, verteilen
und aktivieren

(¥][x]

& wolen Sie die Konfiguration systemdbergreifend
verteilen und aktivieren ?

|

| Ja | Nein {3 Abbrechen |

dem Produktionssystem (PRD) einen Belieferungsweg an.
Hinweis: Der Belieferungsweg benétigt im Gegensatz zum Konso-
lidierungssystem keine Transportschicht.

Legen Sie zwischen den Qualititssicherungssystem (QAS) und F

1.5.2.4
Der Workbenchauftrag

Jedes mandantenunabhiingige Objekt das angelegt oder geidndert
werden soll, ist vom Entwickler einem Workbenchauftrag zuzuord-

nen.

/ Auftrag MBSK90038 AbD. 1.50
Wirkung der
Objektsperre
Aufgabe MBSK90039 | | Aufgabe MBSK90040 m nvgﬁ; IL(J-ftra
Inhaber Max Inhaber Thomas g
Proggamm zEurodruck | | Prog zDollardruck

/ Gunther

1.5 Transporte durchfihren ® 49

Abb. 1.51
Anlegen eines
Workben-
chauftrages

Abb. 1.52
Neu angelegter
Workben-
chauftrag

50 =

Dadurch wird das Objekt gesperrt und kann nur von Benutzern, die
im Workbenchauftrag eingetragen sind, bearbeitet werden. Jeder
Bearbeiter des Objektes wird in eine Objektliste eingetragen. Damit
ist jederzeit eine Zuordnung der Bearbeiter zum gednderten Objekt
moglich. Erst mit der Freigabe des Workbenchauftrages wird die
Sperre wieder aufgehoben und das Objekt steht wieder allen Ent-
wicklern fiir weitere Anderungen zur Verfiigung.

Vorgehensweise: Anlegen eines Workbenchauftrages

Workbenchauftrage werden mit der Transaktion SE09 (Werkzeuge
- ABAP Workbench - Ubersicht & SE09 Transport Organizer)
angelegt.

@ « THCOeDRE OO0 O Ol
Transport Organizer
D) | ()3 | @6

THs 4—4—'[eigener Benutzername

THcsus
Status Neu Zel aAs
b f—— Letste Anderurg 02.07.2000 15:06:57

Autgaven Meutace

g@@@

AuBerlich unterscheidet sich der Workbenchauftrag nicht vom
Customizingauftrag (siche Kapitel 1.5.1.3 ,,Anlegen eines Customi-
zingauftrages*, Seite 16).

(v} B IHCee DR a0L0 B @6

Transport Organizer: Auftrdge
| D@ | |PEER

Workbench-Auftrage mit Beteiligung von THOMAS | Thomas) .
Zielsystem]

L @ SAF AG Fonzern

l_":' BSIGAS Qualitatssicherungssystem
e

MBSFS00038 THOMAS Transporttest (mandantenunabhangige Cbjekte}

oM Aufgaben |

1 Projektmanagement

In diesem Fenster kann man folgendes erkennen:

= Fiir jeden Auftrag wird vom System automatisch eine Auf-
tragsnummer ermittelt. Diese setzt sich zusammen aus

= dem Systemnamen (hier: MBS)
= einer Konstanten ,, K9 und einer
= S-stelligen laufenden Nummer (hier ,,00038°).

= Fiir jeden Entwickler, der beim Anlegen des Auftrages in die
Datengruppe ,,Aufgaben” eingetragen wurde (siche Abb.
1.14), ist automatisch eine ,,Aufgabe“ angelegt worden. Beim
Sichern der Anderungen wihlt der Entwickler den Workben-
chauftrag aus. Das System ermittelt den Benutzernamen des
Entwicklers und trigt die Anderungen in die entsprechende
Aufgabe des Customizingauftrages ein.

1.5.2.5
Die Entwicklungsklasse

Jedes Entwicklungsobjekt, das in andere R/3-Systeme transpor
tiert werden soll, bekommt eine Entwicklungsklasse zugeordnet.
Die Entwicklungsklasse stellt die obere Hierarchiestufe logisch zu-
sammenhéngender Entwicklungsobjekte dar. Fiir grolere Entwick-
lungsprojekte sollten immer eine eigene Entwicklungsklasse an-
gelegt werden. So sind zum Beispiel alle Entwicklungsobjekte
(Programme, Tabellen, Nachrichtenklasse etc.) die im Zusam-
menhang mit diesem Buch stehen, beim Autor der Entwicklungs-
klasse ,,Y_ABAP_TRAINING_TW* zugeordnet.

Ist die Entwicklungsklasse eines Projektes bekannt, konnen alle
Entwicklungsobjekte, die zu diesem Projekt gehoren, mit dem Ob-
ject Navigator angezeigt werden.

1.5 Transporte durchfihren

51

Abb. 1.53
Entwicklungs-
objekte der
Entwicklungs-
klasse yBuch

Abb. 1.54
Object Navigator

52

_ 2 ABICA0 QHRB BT
Nachrichtenpflege: Nachrichtenklasse d@ndern

ER P (@ & EmE | (&

Entwicklungsklasse &

[VBUuCHO1 v | se]
e[=i)[=a](LE]]) =]

| Objektname Beschreibung
< (1 YBUCHOD1 Zum Testen des Transports
=~ [DDIC-Objekte
< (1 Datenbanktabellen
ZBKUNDEN Kunden der Bibliothek
P (1 Datenelemente
< (3 Programme

YTESTO1 Programm YTESTO1
v & Nachrichtenklassen |
ZBUCH L Gstige Siprdiche T

Vorgehensweise: Anlegen einer Entwicklungsklasse

Entwicklungsklassen werden mit SE80 (Werkzeuge - ABAP
Workbench = Ubersicht = SE80 Object Navigator) angelegt.

L t 1H oA QNR Bhoo OB 28
Object Navigator

Objekiname
= = YTESTO!

Dieses Werkzeug ist die integrierte Entwicklungsumgebung des
R/3-Systems. Von hier aus lassen sich alle Entwicklungsobjekte
anlegen und #dndern. Um eine Entwicklungsklasse anzulegen, kli-
cken Sie auf die Schaltfldche ,,Objekt bearbeiten®.

1 Projektmanagement

Abb. 1.55

‘/;j Programm }*~ Funktionsgruppe | Business Enginaenng/ Weitere | []C0rE An/egen einer
Entwicklungs-
@) Entwicklungsklasse YABAP_BUCH El' k/
O Include asse

) Dialogbaustein

() Transaktion

(O Logische Datenbank
) SET/GET-Parameter-ID
) Bereichsmenus

O Nachrichtenklasse
{_) Machrichtennummer
O Testfall

() Berechtigungsobjekt
O MiniApp

) Internet Service

QO URL

O Selektionfillew

(~)(s[2][O) =] (<) | (@) (D) ED) | €]

Tragen Sie in diesem Bildschirm den Namen der Entwicklungsklas-
se ein. Der Name muss sich im Kundennamensbereich befinden, d.h.
mit den Buchstaben ,,z*“ oder ,,y* beginnen. Gro$3- und Kleinschrei-
bung spielen dabei keine Rolle.

L Abb.1.57
Entwicklungsklasse YABAP_BUCH Eigenschaften
Kurzbeschreibung Entwicklungsobjekte zum Fachbuchprojekt der Entwick-

lungsklasse
Transportschicht

erantwortlicher BCUSER
Softwarekomponente HOME Kundenentwickiungen
Anwendungskomponente

Mit Anderungsaufzeichnung

][]

Neben der Kurzbeschreibung wird in diesem Bildschirm die Trans-
portschicht angegeben. Das Eingabefeld ist immer mit der Standard-
transportschicht vorbelegt. Beim Sichern wird die Entwicklungs-
klasse dem im Kapitel 1.5.2.4 ,.Der Workbenchauftrag™ (Seite 49)
angelegten Workbenchauftrag zugeordnet.

1.5 Transporte durchfiihren 53

Abb. 1.56
Zuweisung des
Workbench-
auftrages

Abb. 1.57
ABAP-
Programm
anlegen

Abb. 1.58

54

Entwicklungskiasse/P . YABAP BUCH

g MBsko00038 E? Worktench-Auftrag
Transporttest (mandantenunabhangige Objekte)

| B0 Ex) |

1.5.2.6
Das erstes ABAP-Programm

In diesem Kapitel soll nun das Zusammenwirken zwischen Work-
benchauftrag, Entwicklungsklasse und Entwicklungsobjekt am Bei-
spiel eines ABAP-Programmes gezeigt werden. Der Wirkungsme-
chanismus ist {ibertragbar auf alle anderen Entwicklungsobjekte wie
z.B. Tabellen, Funktionsbausteine, Sperrobjekte, Datenelemente etc.

Vorgehensweise: ABAP-Programm anlegen

ABAP-Programme konnen mit zwei verschiedenen Werkzeugen,
dem eigentlichen ABAP-Editor (SE38) und dem ,,Object Navigator*
(SE80) angelegt werden.

B O9H CAQ DHE DLOoD BHE @
Object Navigator

Objekt bearbeiten... Umsch+F5

——

Objektname |Eleschreibung

Wihlen Sie als Entwicklungsobjekt ,,Programm® aus, geben Sie in
das zweite Eingabefeld den Namen des neuen Programmes ein
(Achtung: Kundennamensbereich beachten, Programmname mit ,,z*
oder ,,y* beginnend) und driicken Sie die ENTER-Taste.

Progfamm SWILLKOMMEN

Deaktivieren Sie das Kontrollkdstchen ,,Mit TOP-Include“. Auf
diese Funktion werden wir an spéterer Stelle eingehen.

5 4

1 Projektmanagement

[ABAP. Progiammeigenschafien ZWILLKOMMEN andem I ST R NTe]
Titel

Programm 2WILLKOMMEN

Originalsprache DE Deutsch
Erstellt 03.07.2003 BCUSER
Letzte Anderung
Status neu(iberarbeitet)
Aftribute -
Typ Austinhrbares Programm
Status «slprogramm]
Anwendung

Anwendungsibergrelfend
Berechtigungsgruppe

Logische Datenbank

Selektionsbildversion

{] Editorsy [F

|:| Start dber Variante

[Sichem) () 1) %)

Wihlen Sie als Programmtyp ,,Ausfiihrbares Programm® und si-
chern Sie dann Thre Eingabe.

=4 =
Objekt R3TR PROG ZWILLKCOMMEN
Attribute
Entwicklungsklasse YABAP BUCH [a
Verantwortlicher BCUSER
Originalsystem MBS
griginalsprache DE Deutsch
[Cokales Objekt |[2 Sperrubersicht | (@] [3€]

Jedes Entwicklungsobjekt bekommt beim Anlegen eine Entwick-
lungsklasse zugeordnet. Im Beispiel wird das Programm ,,zWill-
kommen* in die Entwicklungsklasse YABAP_BUCH gelegt.

3 =

Prngrarnm ZWILLEOMMEN

Auftrag MBSK9I00038 E:- Workbench-Auftrag
Transportest (mandantenunabhangige Objekte) E

¥ | B0 (e Avtan) | 3]

1.5 Transporte durchfiihren

Programmtyp
auswéhlen

Abb. 1.60
Zuordnung der
Entwicklungs-
klasse

Abb. 1.61
Zuordnung des
Workbench-
auftrages

m 55

Abb. 1.62
Object Navigator

56

Als letzten administrativen Schritt wird nun das Entwicklungsobjekt
in den Workbenchauftrag gestellt und damit fiir Nichtmitglieder des
Workbenchauftrages gesperrt. Vergewissern Sie sich, dass im Ein-
gabefeld ,,Auftrag® der richtige Workbenchauftrag eingetragen ist

Zusammenfassung:

Jedem Entwicklungsobjekt wird beim Anlegen eine Entwicklungs-
klasse zugeordnet. Die Entwicklungsklasse wiederum enthilt die
Transportschicht, mit der der Transportweg zum Zielsystem verbun-
den ist.

Damit entscheidet die Entwicklungsklasse, in welches Zielsystem
die ihr zugeordneten Entwicklungsobjekte transportiert werden.

Entwick- Entwick- \ \Transport-\\ Trans- Zielsys-
lungsobjekt / /lungsklasse // schicht portweg tem
Hinweis:

Eine Transportschicht kann nicht mehreren Transportwegen, die auf
verschiedene Zielsysteme zeigen, zugeordnet werden. Es ist daher
nicht moglich, ein Entwicklungsobjekt gleichzeitig in mehrere Im-
portqueues zu stellen.

Nachdem das Programm ,,zWillkommen* einem Workbenchauftrag
zugewiesen wurde, kann die Programmentwicklung beginnen.

@ B 13 COe DHMB oD
ABAP Editor: Report ZWILLKOMMEN &ndern

CH PEE | EEE SO | B Pty Frue]

0E @@

Pragranft testen Report ZWILLECHMEN Inaldiviibera|

[:w-LL DMNEN & w | g . |“ @j @E

s 3 Q0 e

— SLLROMEN :}.u;.;:l.: z\.-.1|_|_w:-x4mEN| o

[Navigationsbereich] D [Arbeitsbereich]

REPORT ZWILLKOMMEN
write: 'Herzlichen Glickwunsch'.
write: / |'Das Fapitel Ad ist fast

Ohne den spiteren Kapiteln die Spannung zu stehlen, soll an dieser
Stelle schon das erste einfache ABAP-Programm geschrieben wer-
den. Der Object Navigator ist das integrierte Werkzeug zum Anle-

1 Projektmanagement

gen von Entwicklungsobjekten. Im Navigationsbereich wihlen Sie
das Entwicklungsobjekt aus (Doppelklick auf Programmname). Im
Arbeitsbereich wird darauthin der ABAP-Editor bereitgestellt.
Wechseln Sie in den Arbeitsbereich und stellen Sie in den Ande-
rungsmodus her (Schaltfliche ,,Anzeigen<>Andern). Geben Sie
folgenden Quelltext ein:

WRITE 'Herzlichen Glickwunsch'.
WRITE / 'Das Kapitel Administration ist fast
geschafft.'.

Beachten Sie:
= WRITE ist das Schliisselwort fiir eine Datenausgabe.

= Jede Anweisung wird mit einem Punkt abgeschlossen (hier ist
der Punkt am Ende jeder Zeile Eingabezeile gemeint).

= Jede Zeichenkette beginnt und endet mit einem Hochkomma

G5

Der Aufbau eines ABAP-Programmes und die Syntax der An-
weisungen wird in einem spéteren Kapitel ausfiihrlich behandelt.

Sichern Sie Thr Programm. Uber die Schaltfliche (Testen) konnen
Sie das Programm starten.

=

TH e DRE
Programm ZWILLKOMMEN

Programm ZWILLKOMMEN

Herzlichen Gliickwunsch
Das Kapitel Administration ist fast geschaft.

Kehren Sie in den Object Navigator zuriick. Klicken Sie mit der
rechten Maustaste auf den Programmnamen in der Baumstruktur im
Navigationsbereich und Aktivieren Sie Thr Programm. Das ist die
Voraussetzung zur Freigabe der Aufgabe im Workbenchauftrag.

1.5 Transporte durchfiihren

Abb. 1.63
Ausfiihrung des
Programms
~ZWillkommen*

57

Abb. 1.64
Aktivieren des
Programms

58

] 1B e BHR “DOD HRE @B

ABAP Editor: Report ZWILLKOMMEN &dndern
[« =] |)] | &)@ | (5)(E) @] | (@) [Muster] [Prety Printer |

F’rugramm []

garen i Report ZWILLKOMMEN
HLEITE SRR EE 6E 2R

#U]%Lﬂh glﬁ |ﬁ¥|@m|ﬂ| . :2 Report ZWILLKCOMMEN

Objektname | Beschreib... ||| +«
DMLLKOMMEN [Droorarmm 71l +
Anlegen vl
Andem
Anzeigen
Priifen » [PORT ZWILLKOMMEN
Aktivieren
AsToh Tite: 'Herzlichen Gliuckwunsch'.
ey ite: / 'Das Kapitel Administration

1.5.2.7
Freigabe des Workbenchauftrages

Die Freigabe des Workbenchauftrages (MBSKO00038) hat folgende
Wirkungen:

Die Sperrung der einzelnen Entwicklungsobjekte wird aufgeho-
ben.

Die Steuerdatei KO0O038 wird angelegt und in das Transportun-
terverzeichnis COFILES geschrieben.

Die Datei RO0038 mit den zu transportierenden Entwicklungs-
objekten wird angelegt und Transportunterverzeichnis DATA
gestellt.

Die Pufferdatei des Zielsystems (QAS) im gemeinsamen Trans-
portverzeichnis (Unterverzeichnis BUFFER) wird aktualisiert.

Ist die Importqueue des Zielsystems (QAS-Importqueue) geoff-
net, wird der Workbenchauftrag hineingestellt (siche auch Abb.
1.41 Seite 40).

Vorgehensweise: Freigabe des Workbenchauftrages

Die Freigabe der Workbenchauftrige erfolgt mit der Transaktion
SEQ09 oder SE10 (Werkzeuge > ABAP Workbench - Ubersicht
-> SE09 Transport Organizer).

1 Projektmanagement

Abb. 1.65
& 8 JH Qe OHR anon DR @8 Workbench-

Transport Organizer auftrdge
0 1 anzeigen
Benutzer Thomas [

/
Aufiragétyp Globale Infarmation t Transportantrige

stomizing-Aufirage
Workbench-Aufirage
[Transporte von Kopien

O lez/'ge
7
?ssﬁlus 7
Anderbar

[Freigefiben -]

1 |2 Transporte
0 |2 Reparaturen

§ 8l

Alle vom Entwickler Thomas innerhalb des Auftrages angelegten
oder gednderten Entwicklungsobjekte (im Beispiel die Entwick-
lungsklasse und das ABAP-Programm ,,zWillkommen*) sind einer
Aufgabe (Inhaber Thomas) zugeordnet. Die Entwicklungsarbeiten
an diesen Objekten gelten als beendet, wenn die Aufgabe freigege-
ben ist.

Zur Freigabe der Aufgabe stellen Sie den Cursor in die Aufgabe und
klicken die Schaltfliche ,,Direkt freigeben‘ an.

Abb. 1.66
_ T iH cee DHNR d0aa OE @6 Freigabe der
Transport Organizer: Auftrige Aufgabe

OG0 8) | [B) &[S Eene Arine]| RS/ IB) | &)

Workbench-Auftrége mit Beteiligung von THOMAS | Thomal

J D00 sap AG Xonzern

—fll BSGAS cualitatssicherungssystem

LI Andecbar
I—‘i MBSKS0003 THOMAS Transporttest (mandantenunabhangige Chiekte)
| THOMAS Entuickl. /Forrektur

f Entwicklungsklasse/Paket

YABAP BUCH

Programn
ZWILLEOMMEN
[MBSES00038 MAX Unklassifiziect
T MBEES00040 THOMAS Unklassificiect

1.5 Transporte durchfihren ® 59

Abb. 1.67
Kommentieren
der Aufgabe

Abb. 1.68
Freigabe des
Auftrages

60 =

Die SAP empfiehlt, folgende Informationen zu dokumentieren:
= Verantwortliche Personen und Ansprechpartner

= Verweise auf zusitzliche interne Dokumentationen oder inner-
betriebliche Anweisungen

= Details zur Implementierung

= Abhingigkeiten von anderen Entwicklungsprojekten

] B0 @@ SHB® dLod @@

Auftrag/Aufgabe dndern: MBSK900041 Sprache DE
| | [& Formate |[& Zeichenformate || @

z Zeichenformate AB ABAP Sprachelemerte]

Hier solite ein Kommentar elngeqehenD

Damit ist die Freigabe der Workbenchaufgabe beendet. Sind alle
Aufgaben, denen Anderungen zugeordnet sind, freigegeben, erfolgt
die Freigabe des Auftrages durch den Projektleiter. Die Freigabe des
Auftrages wird ebenfalls im Transportorganizer durchgefiihrt.

@ TH e DHE vNLD OIE @@

Transport Organizer: Auftrige

|| OEEEPB | B o At | ZEBIE | &

Workbench-Auftrage mit Beteiligung von THOMAS | Thoms
000 sAP AG Konzern
5 0AS Qualitstksicherungssystem
Andecbar

{5 20003 6] THOMAS Transporttest (mandantenunabhangige Objekte)

—H MBSES0004 Entuickl,/Korrektur

Entwicklungsklasse et

YABAP_BUCH

freigegebene
Aufgabe

f Programm

ZWILLKOMMEN

[HMBSKS00038 MAX Unklassifiziert
“MBSK900040 THOMAS Unklassifiziert
—#@ Sbjektliste des Auftrags

Nach der Freigabe des Auftrages wird ein Protokoll zur Auftrags-
freigabe angezeigt.

1 Projektmanagement

(] ' B OH GO QMR vnoD OF O
Ubersicht ilber alle Transportprotokolle filr MBSK900038

BT BEEE

Tro tokollubersicht fur HMBIKGO003E

B MBSRI00038 Transporttest (mandantenunabbangige Cbjckte)

f mes Mini SAF Basis System

Frifungen auf Detriehssystemebens 06.07.2003 07:10:19 [0) ¥cfolgreich beendet
Export 06.07.2003 07:12:19 (0) Erfolgreich beendet
@ Transportaufrragsunsbhangige Schritee
i s Qualitatasicherungasystem
Vormeckung fur Import 06.07.2003 07:12:19 (0) Erfolgreich beendet

Transportauftragsunabhingige Schricte

1.5.2.8
Transport durchfiihren

Vorgehensweise: Transport der freigegebenen Auftriige

Starten Sie das TMS iiber die Transaktion STMS (Werkzeuge
—> Administration = Transporte = STMS Transport-Management-
System). Wihlen Sie im Einstiegsbild des TMS das Menii ,,Uber-
sicht > Importe*.

Wiihlen Sie das Zielsystem aus.

Importqueus 3 t f t Hilf
Angeigen FElE e DHE Hhoh @@

i, t " line DOMAIN_MBS

Beenden Umsch+F3 —

eSS EeEE) R

G5 Anzahl Importgueues: 3

Queus Beschreibung

MBS Mini SAP Basis System
PRD @ Produktivsystem
s @

SchlieBen Sie die Importqueue des Zielsystems. Damit sichern Sie,
dass Auftrige, die wihrend des Imports freigegeben werden, nicht
im aktuellen Transportlauf in das Zielsystem gelangen.

Wie Sie in Abb. 1.71 sehen, finden Sie in der QAS-Importqueue
sowohl den Workbenchauftrag WBSK900038 als auch den im Kapi-
tel 1.5.1.5 ,,Ausflug ins Customizing* (Seite 19) angelegten Custo-
mizingauftrag MBSK900033. Die Aufgaben der Auftrige konnen
Sie mit Doppelklick auf die Auftragsnummer anzeigen.

1.5 Transporte durchfiihren

Abb. 1.69
Protokoll der
Freigabe

Abb. 1.70
Auswahl des
Zielsystems

61

Abb. 1.71
SchlieBBen der
Importqueue
des Zielsystems

Abb. 1.72

links: Import der
gesamten Im-
portqueue

Abb. 1.73
rechts: Import
eines einzelnen
Auftrages

62 =

B OH e SHR ODo0 BE @@
a‘mplonqueue: System QAS

@aFEEREEE MERE @)

B Auftrage fir Q{freigegebene AUftrége]

Hummer | Auftrag er Kurztext

Andere Queue... —

1 | MBSK9000Z5 | BCUBER Transporttes .
2 | MBsK900033 | TH Einfihrung FI Priifen
3 MBSES00038 THj Transporttest 1 &)
Schlielen
10 eae SHE 2
Importqueue: System QAS
BaF&EEE HMDRE & (EEE
Beenden =

B Auftrage fur QAS{ 3 |

Hummer J\uftrag% Inhaber Kurztext
1 | MBSKSD0UZ5 | BCUSER Transporttest
2 MESKI00033 THOMAS Einfihrung FI/CO
3 MESES00038 THOMAS Transporttest | bh ge Cbijekte)

Ende der Importgqueus

Jetzt kann der Import ausgefiihrt werden. Sie konnen alle Auftrige
die in der Importqueue stehen oder einen einzelnen Auftrag impor-
tieren.

- prr— coe cuw g S i
1] Eofen ! Importqueue: S) I;:.:;.::.. -
& e & @E [@I[FE8 | [zeimandan i

Ciffren Sirg+F2 Lgschen Umsch+f2 |

Endemarkierung verschisben

@ wrecaa] 2: (Markieren)

Impaort starten

Beenden Umsch+F3
Furztext
Wummer | Aufteag h Inhabar Furstext
1 | MESKSO0025 | BCUSER Teansportte: 1
2 | MBSKSO0033 | THOMAS Einfuhrung 1 1 | MBSKS00ORS | BCUSER Transporttes
3 | MBSKSDDO38 | THOMAS Transporttes 2 | MBsSKS0 THOMAS Einfuhrung F
] THOMAS Transporttes
Ende der Importqueus

Ende der Importqueus

1 Projektmanagement

1.5.2.9
Ubungsaufgaben

A1. Legen Sie einen Workbenchauftrag mit der Kurzbeschrei-
bung ,Transporte an. Achten Sie darauf, dass im Eingabefeld
»Ziel* das System QAS aus Kapitel 1.5.2.3 , Finrichten der System-
landschaft™ angegeben ist.

A 2. Legen Sie eine Entwicklungsklasse ,,ZK1“, Kurzbeschrei-
bung ,,Transporte®, an. Achten Sie darauf, dass im Eingabefeld
»Transportschicht® die Transportschicht ,,ZQAS* aus dem Kapitel
,Einrichten der Systemlandschaft* eingetragen ist. Weisen Sie beim
Sichern der Entwicklungsklasse den in Aufgabe 1 angelegten Work-
benchauftrag ,, Transporte® zu.

A 3. Legen Sie ein ABAP-Programm ,,zTest ohne Top-Include
an.

Programmtyp: ,,Ausfiihrbares Programm*
Entwicklungsklasse: ,,ZK1* aus Aufgabe 2
Auftrag: Transporte (aus Aufgabe 1)

REPORT zTest.
WRITE ’'Transporttest’.

Sichern und aktivieren Sie Thr Programm.

A 4. Geben Sie im Transport-Organizer Thren Workbenchauftrag
frei.

A'S. Kontrollieren Sie im Transport-Management-System (TMS)
ob Thr Workbenchauftrag in der Importqueue des Systems QAS zu
finden ist.

A 6. Wie wird der Transport ausgelost?

Legen Sie fiir die Ubungen der niichsten Kapitel eine Entwick-
lungsklasse ,,YABAP-TR* (Kurzbeschreibung: ,,ABAP-Training*)
und einen Workbenchauftrag mit der gleichen Kurzbeschreibung
an. Diese Entwicklungsklasse und der Workbenchauftrag werden
im weiteren als ,,Jhre Entwicklungsklasse* und ,,Ihr Workben-
chauftrag‘ bezeichnet.

1.5 Transporte durchfihren

63

64

1.5.2.10

Lésungen

Al Legen Sie einen Workbenchauftrag mit der Kurzbezeichnung ,, Transpor-

te* an.

1. Transaktion SEQ9 starten (Werkzeuge - ABAP Workbench -
Ubersicht > SE09 Transport Organizer).

2. Irp Folgebild die Kontrollkéstchen ,,Workbench-Auftriage und
,2Anderbar* aktivieren.

Schaltfldche ,,Anlegen (F7)* anklicken.

4. Im Folgebild ,,Auftrag anlegen Kurzbeschreibung ,, Transporte*
und eventuell Teammitarbeiter eintragen.

5. Sichern (ENTER-Taste).

A 2. Legen Sie eine Entwicklungsklasse ,,ZK1* an.

1. Transaktion SE80 (Werkzeuge = ABAP-Workbench = Ub-
ersicht > SE80 Object Navigator).

2. Im Folgebild ,,Object Navigator* Schaltfliche ,,Objekt bearbei-
ten* anklicken.

3. Im Folgebild ,,Objektauswahl Registerkarte ,,Weitere* auswih-
len.

4. Auswahlknopf ,.Entwicklungsklasse‘ aktivieren.

In das Eingabefeld den Namen der Entwicklungsklasse eintra-
gen (zk1).

6. Schaltfldche ,,anlegen* am unteren Rand des Fensters anklicken.
Im Folgebildschirm ,,Entwicklungsklasse anlegen® Kurzbe-
schreibung ,,Transporte* und Transportschicht ,,ZQAS* einge-
ben.

Sichern.

9. Im Folgebild ,,Abfrage transportierbarer Workbench-Auftrag*
den in Aufgabe 1 angelegten Workbench-Auftrag ,,Transporte*
angeben.

A3. Legen Sie ein ABAP-Programm ,,zZTest* ohne Top-Include an.

1. Transaktion SE80 (Werkzeuge = ABAP Workbench = Uber-
sicht = SE80 Object Navigator).

2. Ausfiillen der Eingabefelder entsprechend Abbildung.

1 Projektmanagement

N oo »

®°

10.
11.

12.

13.

14.
15.

Object Navigator

.. | ...l% Objekt bearbeﬂen'

Programm

|ZT EST —
< | » L

co[=n][e]a](&]=]q) (=]

ENTER-Taste driicken

Im Folgebild ,,Objekt anlegen* Schaltfldche ,,Ja* anklicken

Im Folgebild Kontrollkéstchen ,,Mit TOP-Include* deaktivieren.
ENTER-Taste driicken.

Im Folgebild ,,ABAP: Programmeigenschaften ... Programm-
attribute eintragen.

Sichern.

Im Folgebild ,,0Objektkatalogeintrag anlegen‘* die Entwicklungs-
klasse ,,zk1‘ angeben.

Sichern.

Im Folgebild ,,Abfrage transportierbarer Workbench-Auftrag*
den in Aufgabe 1 angelegten Workbench-Auftrag ,, Transporte*
zuordnen.

Doppelklicken Sie auf den Objektnamen ,,ZTEST*.

ABAP Editor: Report ZTEST88 an:

(=) | @PR]E)| llﬂlﬁ | [&)E]

Programm

= Re
ETEST: =
[J iy !
e I%Iﬁllﬁ“&l@-lﬁ]@ |
Objekt | Beschre... ||| +
D 1 ZTEST test :

In die Arbeitsflidche des Object Navigators ist jetzt der ABAP-
Editor geladen. Klicken Sie auf die Schaltfliche ,,Anzei-
gen<Andern“ und geben Sie den Quelltext aus der Aufgaben-
stellung ein.

Sichern.

Aktivieren.

1.5 Transporte durchfiihren

65

66

A4,

AS.

ABAP Editor: Report ZTEST
Co[Ea)] @S |

Programm u
|zTEST
= | d
HEEEREEIRIE
oF]Bsschu
b I ZTEST

Anlegen

Andem
rechte S
Maustaste |[“agnieren

Geben Sie im Transport-Organizer Ihren Workbenchauftrag frei.

Transaktion SEQ9 starten (Werkzeuge - ABAP-Workbench
- Ubersicht > SE09 Transport Organizer).

Im Folgebild die Kontrollkdstchen ,,Workbench-Auftrége™ und
,,Anderbar* aktivieren.

Schaltflache ,,Anzeigen* anklicken.

Im Folgebild , Transport Organizer: Auftrige* Aufgabe und
Auftrag freigeben Stellen Sie zuerst den Cursor in die Aufgabe
und geben diese mit der Schaltflidche ,,Direkt freigeben FO* frei.
Im Folgebild konnen Sie einen Kommentar eingeben. Sichern
Sie den Kommentar. Stellen Sie danach den Cursor in den Auf-
trag und geben Sie diesen ebenfalls iiber die Schaltfliche ,,Di-
rekt freigeben F9* frei.

Transport Organizer: Auftrige
| @@I;@J%I

Workbench-Auftrage mit Beteiligung voll BCUSER | Thomas)
B0 =ar AG Xonzern
| BBENE cualitstssicherungssystem

Anderbar

_>|—I MBSKS00046 BCUSER Transporte
|—I MBSKIO004T BCUSER Entuickl. /Rorrektur

Kontrollieren Sie im Transport-Management-System (TMS) ob Ihr Work-

benchauftrag in der Importqueue des Systems QAS zu finden ist.

1.

Transaktion STMS starten (Werkzeuge -> Administration
—> Transporte > STMS Transport Management System).

Menii ,,Ubersicht = Importe* auswihlen.

Im Folgebild ,,Importiibersicht ... Doppelklick auf die Zeile
»Qualitdtssicherungessystem*.

1 Projektmanagement

Im Folgebild ,,Importqueue: System QAS* finden Sie Thren Trans-
portauftrag ,, Transporte*

A6. Wie wird der Transport ausgelost?

1. Transaktion STMS starten (Werkzeuge -> Administration
—> Transporte = STMS Transport Management System).

2. Menii ,,Ubersicht > Importe* auswihlen.

3. Im Folgebild ,Importiibersicht ... Doppelklick auf die Zeile
,»Qualititssicherungessystem®.

4. Im Folgebild ,Importqueue: System QAS* Cursor in den Auf-
trag ,,Transporte* stellen.

5. Menii ,,Auftrag = Importieren* auswéhlen.

Hinweis: Sollen alle Auftrige der Importqueue importiert werden,
wihlen Sie das Menii ,,Queue = Import starten®.

1.5 Transporte durchfihren ® 67

2 Wegweiser

2.1
Projektbeschreibung

In den folgenden Kapiteln werden von Thnen fiir die fiktive Biblio-
thek ,,East-Side-Library* verschiedene Datenbanktabellen und Pro-
gramme entwickelt werden. Dabei bauen die Entwicklungsaufgaben
der einzelnen Kapitel aufeinander auf. Wenn Sie alle Aufgaben der
einzelnen Kapitel nacheinander bearbeiten, konnen Sie also immer
auf Thre eigenen Entwicklungsobjekte zuriickgreifen. Die Namen der
Entwicklungsobjekte in den Aufgabenstellungen beziehen sich auf
die von Thnen entwickelten Objekte.

Damit Sie selbst bestimmen konnen, welche Kapitel bzw. welche
Aufgaben sie bearbeiten, sind die einzelnen Entwicklungsstinde der
Programme auf der mitgelieferten CD enthalten. Uber einen Trans-
portvorgang konnen Sie alle Entwicklungsobjekte der CD in Ihr
R/3-System laden. Die konkrete Vorgehensweise ist in der Anlage
beschrieben.

Sie sollten alle Thre Entwicklungsobjekte, die Sie im Zusammen-
hang mit dem Bibliotheksprojekt anlegen, der Entwicklungsklasse
YABAP-TR zuordnen, die in Kapitel 1 (Projektmanagement) ange-
legt wurde. Dort ist auch ein Workbenchauftrag ,,ABAP-Training*
angelegt worden, dem Sie Thre Entwicklungen zuweisen konnen. In
den Aufgabenstellungen und Vorgehensweisen der spiteren Kapitel
wird auf diese Zuordnungen nicht mehr eingegangen.

Alternativ zu dieser Arbeitsweise konnen Sie Thre Entwicklungs-
objekte auch als lokale Objekte speichern. Sie benodtigen dann keine
Entwicklungsklasse und keinen Workbenchauftrag. Allerdings kon-
nen Sie dann Ihre Entwicklungen nicht transportieren.

Dieses Kapitel soll Thnen helfen, das Kapitel auszuwéhlen, mit
dem Sie Thr ABAP-Training beginnen. Auflerdem enthilt es Anga-
ben zu den Entwicklungsobjekten der Buch-CD.

2.1 Projektbeschreibung

69

Tabelle 2.1

70

Kapitel 3

Kurzbeschreibung:

Die Tabellen

= ZBESTAND

= ZAUTOREN

= ZKUNDEN

= ZKATEGORIE
= ZAUSLEIHE

werden angelegt. Mit dem Programm YDATEN_TW werden diese
Tabellen mit Daten versorgt.

Entwicklungsobjekte der Buch-CD

Alle in diesem Kapitel anzulegenden Datenobjekte und -deklaratio-
nen befinden sich auch auf der Buch-CD. Als Unterscheidungsmerk-
mal zu den von Ihnen angelegten Objekten, wurde an die der CD die
Zeichenkette '_TW' angehéngt.

Beispiele:

Objekt Name des Objektes Name des Objektes auf
aus Aufgabenstellung der CD

Domine YRVP_ANZ YRVP_ANZ_TW
YRVP_BESTAND YRVP_BESTAND_TW
YRVP_NAME YRVP_NAME_TW

Datenelement YRVP_KNR YRVP_KNR
YRVP_ISBN YRVP_ISBN

Tabelle

Suchhilfen

YRVP_BESTAND

ZBESTAND
ZAUTOREN
ZKUNDEN
ZKATEGORIE
ZAUSLEIHE
ZAUTOREN
ZISBN
ZKATEGORIE
ZKUNDEN

YRVP_BESTAND

ZBESTAND_TW
ZAUTOREN_TW
ZKUNDEN_TW
ZKATEGORIE_TW
ZAUSLEIHE_TW
ZAUTOREN_TW
ZISBN_TW
ZKATEGORIE_TW
ZKUNDEN_TW

2 Wegweiser

Uberspringen des Kapitels 3

Soll Kapitel 3 iibersprungen werden, sind die folgende Handlungen
notwendig:

= Kopieren der Tabellen. Dieser Schritt ist optional. Wenn Sie ihn
ausfiihren, konnen Sie so weiterarbeiten, als hitten Sie Kapitel 3
bearbeitet. Kopieren Sie diese Objekte nicht, sind beim Bearbei-
ten der Aufgaben anderer Kapitel die von der Buch-CD iiber-
nommenen Objekte zu verwenden.

Objekt Name des Originals Name der Kopie Tabelle 2.2
Tabelle ZBESTAND_TW ZBESTAND

ZAUTOREN_TW ZAUTOREN

ZKUNDEN_TW ZKUNDEN

ZKATEGORIE_TW ZKATEGORIE

ZAUSLEIHE_TW ZAUSLEIHE

= Ausfilhren des Programmes YDATEN_TW. Das Programm
versorgt die Tabellen die von der BUCH-CD in Ihr R/3-System
transportiert wurden und deren Kopien, sofern Sie sich an die
vereinbarten Namen gehalten haben, mit Daten.

Kapitel 4
Voraussetzung

= Vor der Bearbeitung der Aufgaben aus Kapitel 4 sollten die
verwendeten Tabellen iiber das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe ,,Uberspringen des Kapi-
tels 3%, Seite 71).

Kurzbeschreibung

In diesem Kapitel wird das ABAP-Programm YKO4DBAS fiir die
,Bast-Side-Library” entwickelt. Dabei werden grundlegende Pro-
grammiertechniken, wie z.B.

= der Grundaufbau eines ABAP-Programmes.

= die Ausgabe von Texten und Variablen.

= die Deklaration elementarer und strukturierter Datenobjekte,
= die Arbeit mit internen Tabellen.

= das Lesen von Datenbanktabellen und

= das Anlegen von Selektionsbildschirmen

behandelt.

2.1 Projektbeschreibung ® 71
]

72

Entwicklungsobjekte der Buch-CD

Das Programm wird in 10 Entwicklungsschritten (Aufgaben) zu
einem Literaturrechercheprogramm ausgebaut. Die Programme, die
bei der Bearbeitung der einzelnen Aufgaben entstehen, finden Sie
auf der Buch-CD unter folgenden Namen:

1. Entwicklungsschritt > YKO4DABAS_1
2. Entwicklungsschritt > YKO4DABAS_2

10. Entwicklungsschritt > YKO4DABAS_10

Uberspringen des Kapitels 4

Das Uberspringen dieses Kapitels erfordert keine Aktivititen.

Kapitel 5
Voraussetzungen

= Vor der Bearbeitung der Aufgaben aus Kapitel 5 sollten die
verwendeten Tabellen iiber das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siche ,,Uberspringen des Kapi-
tels 3%, Seite 71).

Kurzbeschreibung

Das Literaturrechercheprogramm YKO04DBAS aus Kapitel 4 wird
nach YKOSDBAS kopiert und weiterentwickelt. Es werden folgende
Schwerpunkte behandelt:

= Modularisierung durch Unterprogramme und Includes,
= Benutzen von Ikonen in Listen,

= Programmierung von Meniileiste, Drucktastenleiste und Titel-
zeile,

= Anzeige von Zusatzinformationen in Verzweigungslisten (inter-
aktive Listen),

= Mehrfachauswahl von Zeilen einer Liste,
= Dynamisches Sortieren von Listen,

= Arbeit mit Funktionsgruppen und Funktionsbausteinen.

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

2 Wegweiser

1. Aufgabe - YKOSDABAS_1
2. Aufgabe > YKOSDABAS_2

14. Aufgabe > YKO5DABAS_14

Uberspringen des Kapitels 5
Das Uberspringen dieses Kapitels erfordert keine Aktivititen.

Kapitel 6

Voraussetzungen

= Vor der Bearbeitung der Aufgaben aus Kapitel 6 sollten die
verwendeten Tabellen iiber das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siche ,,Uberspringen des Kapi-
tels 3%, Seite 71).

Kurzbeschreibung

Im Kapitel 6 beginnt die Dialogprogrammierung. Das Recherche-
programm der ,,East-Side-Library* erhilt ein zeitgemédBes Design
auf der Basis von Dynpros. Dazu wird ein neues Programm
SAPMYKO6 angelegt. An diesem Programm werden

= die Bestandteile eines Dynpros,
= das Anlegen eines Dynpros,

= Dynproelemente zur Datenausgabe (Textfelder, Statusikonen
und Gruppenrahmen) und

= Dynproelemente zur Ein- und Ausgabe (Ein- und Ausgabefel-
der, Ankreuzfelder, Auswahlknopfgruppen und Drucktasten)

gezeigt und die theoretischen Grundlagen der Dynproprogrammie-
rung erkart.

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

1. Aufgabe > SAPMYKO06_1
2. Aufgabe 2> SAPMYKO06_2

10. Aufgabe > SAPMYKO06_10

Uberspringen des Kapitels 6
Das Uberspringen dieses Kapitels erfordert keine Aktivititen.

2.1 Projektbeschreibung

73

74

Kapitel 7
Voraussetzungen

= Vor der Bearbeitung der Aufgaben aus Kapitel 7 sollten die
verwendeten Tabellen iiber das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe ,,Uberspringen des Kapi-
tels 3%, Seite 71).

Kurzbeschreibung

Im Kapitel 6 werden anspruchsvollere Dynproprogrammiertechni-
ken erarbeitet. Schwerpunkte werden auf

= die Anzeige von Dynpros in einem Trigerdynpro (Subscreen-
technik),

= das Anzeigen von Listen in Dynpros und
= die Darstellung von Daten in Table Controls

gelegt.

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

1. Aufgabe - SAPMYKO07_1
2. Aufgabe - SAPMYKO07_2

5. Aufgabe > SAPMYKO07_5

Uberspringen des Kapitels 7
Das Uberspringen dieses Kapitels erfordert keine Aktivititen.

Kapitel 8
Voraussetzungen

= Vor der Bearbeitung der Aufgaben aus Kapitel 8 sollten die
verwendeten Tabellen iiber das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siehe ,,Uberspringen des Kapi-
tels 3, Seite 71).

Kurzbeschreibung

Die bisher auf verschiedene Dynpros der Anwendungsprogramme
verteilte Funktionalitit des Programmes wird in einem Tabstrip mit
Blitterfunktion komprimiert.

2 Wegweiser

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

1. Aufgabe > SAPMYKO08_1

Uberspringen des Kapitels 8
Das Uberspringen dieses Kapitels erfordert keine Aktivititen.

Kapitel 9

Voraussetzungen

= Vor der Bearbeitung der Aufgaben aus Kapitel 9 sollten die
verwendeten Tabellen iiber das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siche ,,Uberspringen des Kapi-
tels 3%, Seite 71).

Kurzbeschreibung

Auf der Grundlage des Programmes SAPMYKO09_Bestand_1, das
sich ebenfalls auf der Buch-CD befindet, werden

= Datenbankéndernde Anweisungen,

= das SAP-LUW und DB-LUW-Konzept als Grundlage fiir die
korrekte Organisation der Datenbankédnderungen,

= das SAP-Sperrkonzept und

= die automatische Vergabe von Nummern iiber Nummernkreis-
objekte

erklért.

AuBerdem werden von Thnen zwei neue Programme fiir das ,,East-
Side-Library-Projekt” entwickelt — das Programm zur Bearbeitung
von Ausleih- und Riickgabevorgingen SAPMYKO09_Ausleihe und
das Kundenverwaltungsprogramm SAPMYKO09_Kunden. Als Hilfe-
stellung wird eine Step by Step-Anleitung gegeben. Zielstellung
dieses Kapitels ist neben der Vermittlung der fiir die Datenbankin-
derungen notwendigen Programmiertechniken auch die Festigung
des bisherigen Stoffes in der praktischen Arbeit.

Entwicklungsobjekte der Buch-CD

Ausgangspunkt fiir die Arbeit in diesem Kapitel ist das Bestands-
pflegeprogramm SAPMYKO09_Bestand_1. AuBerdem sind noch
folgende Entwicklungsobjekte auf der CD:

2.1 Projektbeschreibung

75

Tabelle 2.3

76 =

Objektart Name Inhalt
Programm SAPMYKO09_Bestand_2 Entwicklungsstinde des
SAPMYKO09_Bestand_3 Bestandspflegepro-
SAPMYKO09_Bestand_4 ~ &ramms
SAPMYKO09_Ausleihe_TW Ausleih- und Riick-
gabeprogramm
SAPMYKO09_Kunden_TW Kundenverwaltungs-
programm
Sperrobjekte EZZAUSLEIHE_TW
EZZAUTOREN_TW
EZZKUNDEN_TW
EZZBESTAND TW
Nummern- ZKNR_TW Zur automatischen Ver-
kreisobjekt gabe von Kundennum-
mern
Suchhilfen ZISBN_AUSLEIHE TW Suchehilfe fiir ISBN
und Kundennummern.
Diese Suchhilfe greift
auf die Tabelle
ZAUSLEIHE_TW zu.
ZAUTOREN_TW Suchhilfe fiir Autoren-
nummern.. Greift auf die
Tabelle
ZAUTOREN_TW zu
ZISBN_TW Suchhilfe fiir die ISBN
in der Bestandstabelle.
Greift auf
ZBESTAND_TW zu
ZKATEGORIE_TW Suchhilfe fiir das Feld

ZKUNDEN_TW

Kategorie. Greift auf
Tabelle
ZKATEGORIE_TW zu

Suchhilfe fiir das Feld
Kundennummer. Greift
auf Tabelle
ZKUNDEN_TW zu.

2 Wegweiser

Uberspringen des Kapitels 9

Das Uberspringen dieses Kapitels erfordert keine Aktivititen.

Kapitel 10
Voraussetzungen

= Vor der Bearbeitung der Aufgaben aus Kapitel 10 sollten die
verwendeten Tabellen iiber das Programm YDATEN_TW mit
Testdaten versorgt worden sein (siche ,,Uberspringen des Kapi-
tels 3%, Seite 71).

Kurzbeschreibung

In Kapitel 10 wird ein Ausblick auf die objektorientierte Program-
mierung mit ABAP Objects gegeben.

Entwicklungsobjekte der Buch-CD

Die Programme, die bei der Bearbeitung der einzelnen Aufgaben
entstehen, finden Sie auf der Buch-CD unter folgenden Namen:

1. Aufgabe - YKI10_1

2. Aufgabe > YK10_2

3. Aufgabe > YK10_3

4. Aufgabe > YK10_4, Klasse: ZCL_BUCH_TW
5. Aufgabe > SAPMYKI10_1

Demonstration Vererbung und Morphologie: YK10_VERERBUNG

2.1 Projektbeschreibung ™ 77
|
|

3 Das ABAP-Dictionary

3.1
Einfuhrung

Das ABAP-Dictionary ist der Teil der Entwicklungsumgebung in
dem alle globalen Datendefinitionen des R/3-Systems angelegt und
verwaltet werden. Gehoren zu den Datendefinitionen Datenobjekte
auf der Datenbank, werden diese vom ABAP-Dictionary angelegt.
Das ABAP-Dictionary ,.kennt* somit

= die logische Struktur der Objekte und
= deren Abbildung auf der Datenbank.

Die Abbildung eines Datenobjektes auf der Datenbank ist abhéngig
vom eingesetzten relationalen Datenbankmanagementsystem
(RDMS), wihrend die logische Struktur des Datenobjektes system-
unabhingig ist.

—— e Abb. 3.1
atenaerinition im _

Tabellen- ABAP-Dictionary Das ABAP

definition) Dictionary als

im ABAP- Schnittstelle zur

RicHanary Datenbank

physische

Tabellen- <
definition .
auf der Da- Datenobjekte
tenbank

v

Y

Das ABAP-Dictionary kann demzufolge als Schnittstelle zwischen
der R/3-Entwicklungsumgebung und dem vom RDMS verwalteten
Datenbestand aufgefasst werden.

3.1 Einfihrung ®™ 79

Open SQL

Abb. 3.2

Das ABAP-
Dictionary als
Vorraussetzung
fiir datenbank-
unabhéngiges
Programmieren

80

Die Programme des R/3-Systems greifen iiber die Datendefinitionen
des ABAP-Dictionarys (genauer iiber deren Laufzeitobjekte) und die
Datenbankschnittstelle auf die Datenobjekte zu.

Das ABAP-Dictionary bildet somit die eigentliche Grundlage fiir
eine datenbankunabhingige Programmierung mit ABAP/4. Die Pro-
grammiersprache enthilt SQL-dhnliche Anweisungen fiir die Bear-
beitung der R/3-Tabellen die sich nicht auf die Tabellendefinitionen
der Datenbank, sondern auf die Definitionen des ABAP-Dictionarys
beziehen. Diese Anweisungen gehoren zum Sprachumfang des von
der SAP entwickelten ,,Open SQL* und werden in der Datenbank-
schnittstelle in datenbankabhingige Standard-SQL-Anweisungen
iibersetzt.

Anwendungsprogramm
DATA :
it type table of T1.
=elect * from T1
inte table it
where. ..

F 3
Open SQL

A

ABAP-Dictionary

Datenbankschnittstelle
A

SQL

Datenbank

Weitere Highlights des ABAP-Dictionarys:

= Auch die Dokumentation (F1-Hilfe) und die Eingabehilfe (F4-
Hilfe) zu einem Feld auf einer Eingabemaske stammen aus
dem ABAP-Dictionary.

» Uber Fremdschliisselbeziehungen werden im ABAP-Dictiona-
ry Beziehungen, die zwischen den Tabellen des R/3-Systems
bestehen, hinterlegt.

* Anderungen an Dictionary-Objekten werden nach ihrer Akti-
vierung in allen Komponenten die die geédnderten Objekte nut-
zen, sofort wirksam. Damit ist sichergestellt, dass Dynpro- und
ABAP-Interpreter, Eingabehilfe, Datenbankschnittstelle und
Entwicklungswerkzeuge stets auf aktuelle Informationen zugrei-
fen.

3 Das ABAP-Dictionary

Beispiel:
Das folgende Programm gibt den Buchbestand der ,,East Side Libra-
ry* aus.

REPORT ZBESTANDSAUSGABE . Beispiel zur
Aokkkkhkkhhhhkhhkhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhhkkk* Nutzung des
*Anlegen einer Struktur mit Bezug zum * ABAP'
*ABAP-Dictionary zur Aufnahme eines Daten- * Dictionarys
*satzes aus der Tabelle zBestand tw * ng\’;g:alb eines

khkkkkhkhkhhkkhkhkhkhkhhkhhhkhkhhhhhkhhhhhkhkhhkhkhkdhk khddhkkk,khkhxkx*
Programmes
DATA: wa zbestand type zbestand tw.

khkkkkkhkhhkkhkhkhkhkhhkhhhkhkhhhhhkhhhhhkhkhkhkdhdhhkhdkdkkkhkhkhxkx*
*Open-SQL-Anweisung Select...Endselect *
*zur Selection der Datensatze *
khkkkkhkkhkhhkkhkhkhkhkhhkhkhhkhkhhhhhkhhhhhkhkhkhkdhdhkhkhddkdkkk khkhxkx*
select * from zbestand tw into wa_ zbestand.
*Ausgabe ausgewdhlter Felder der Struktur
*wa_zbestand
write: / wa_zbestand-ISBN,

wa_ zbestand-Auflage,

wa_zbestand-Titel,

wa_ zbestand-Bestand,

wa_zbestand-Ausgeliehen.
endselect.

Im Programm wird nur die Struktur ,,wa_zbestand“ deklariert
(DATA-Anweisung). Alle Informationen zu dieser Struktur, z.B.
Feldnamen, Datentypen und Feldlidngen, werden aus der im ABAP-
Dictionary definierten Tabelle ZBESTAND_TW iibernommen. Die-
se Informationen zur Tabelle ZBESTAND werden beim Generieren
des Programms aus dem ABAP-Dictionary abgerufen.

Damit muss bei einer Anderung der Tabelle ZBESTAND_TW,
zum Beispiel bei der Verdnderung der Linge eines Tabellenfeldes,
der Quelltext des Programms nicht angepasst werden. Beim nichs-
ten Aufruf des Programms wird iiber den sogenannten Zeitstempel,
festgestellt, dass sich die Struktur der Tabelle ZBESTAND_TW ver-
dndert hat. Das Programm wird automatisch neu generiert und arbei-
tet dann mit der gednderten Tabelle ZBESTAND_TW.

Kurzbeschreibung der Dictionary-Datenobjekte
Alle Dictionary-Objekte werden im Repository, einem besonderen K-/

Bereich der Datenbank, gespeichert. Sie werden deshalb gelegent-
lich auch als Repository-Objekte bezeichnet.

3.1 Einfihrung 81

Datenbank-
tabelle

Doméne

Datenelement

View

82

B Datenbanktabelle

Datenobjekt, in das zusammengehorige Daten gespeichert werden.

Beispiel:
Mandant ISBN Titel Jahr Autorennr.
001 4825212815 Easy-Web- 1993 123
Transactions
programmieren
001 4897212722 HTML-Business 1997 123
001 4934358222 ABAP Objects 2003 456
Terminologie:

Eine Spalte der Tabelle wird als ,Feld* oder ,,Tabellenfeld” (z.B.
Feld Mandant, Feld ISBN), eine Zeile als ,,Datensatz“ bezeichnet.
Jedes Feld erhilt einen eindeutigen Feldnamen (im Beispiel ,,Man-
dant®, ,ISBN®, ,Titel“ und ,,JJahr®) iiber den es vom ABAP-Pro-
gramm angesprochen werden kann.

Die Struktur der Datenbanktabelle wird im Repository gespei-
chert. Fiir die Daten dieser Tabelle wird auf der Datenbank Speicher
reserviert.

B Domine

In der Doméne werden die physikalischen Eigenschaften der Tabel-
lenfelder (z.B. Datumsfeld), und ggf. ein Wertebereich (z.B.
01.01.2004-31.12.2004) hinterlegt. Eine Domine kann mehreren
Datenelementen zugeordnet werden.

B Datenelement

Das Datenelement wird direkt einem oder mehreren Datenbankfel-
dern zugeordnet. Es enthélt eine Doméne (d.h. die physikalischen
Eigenschaften), den Feldbezeichner und ggf. eine Suchhilfe fiir das
ihm zugeordnete Tabellenfeld.

B View

Hauptsédchlich werden Views benutzt, um Daten die in verschie-
denen Tabellen stehen, zusammenzufassen.

3 Das ABAP-Dictionary

Beispiel:

Datenbanktabelle 1 Datenbanktabelle 2

ISBN Titel Auto- Buto- Autor
ren- ren-—
nr nr.

4825212815 | Easy-Web— | 123 123 Smith

Transac-— 456 Walther

tions

program-—

mieren
4897212722 | HTML- 123

Business
4934358222 | ABAP Ob-| 456

A A
View Y4)
ISBH Titel Auto- | Autor
ren-
nr.

4825212815 Easy-Web— 123 Smith

Transactions

programmieren
4897212722 | HTML-Business 123 Smith
4934358222 ABAP Objects 456 Walther

W Struktur

Ebenso wie eine Datenbanktabelle besteht eine Struktur aus mehre-
ren, inhaltlich zusammengehorigen, Feldern. Fiir sie wird jedoch
kein Speicherbereich auf der Datenbank reserviert. Somit konnen in
Datenobjekten dieses Typs keine Daten dauerhaft gespeichert wer-
den. Sie dienen dem Programmierer zum temporéren Speichern von
Daten, oftmals eines Datensatzes aus einer Datenbanktabelle.

B Tabellentyp

Dieses Datenobjekt dient zum Anlegen interner Tabellen im ABAP-
Programm. Dem Tabellentyp wird, ebenso wie der Struktur, kein
Speicher in der Datenbank zugeordnet.

m Suchhilfe

Datenobjekt, indem festgelegt wird, welche Felder einer Tabelle o-
der eines Views in der F4-Hilfe angezeigt werden sollen.

3.1 Einfiihrung

Abb. 3.3
View mit 2
Tabellen

Struktur

Tabellentyp

Suchhilfe

" 83

Sperrobjekt

84

Beispiel:

ISBN 9988776655
Autorennummer =

A

ool [SN A]

v[S]
MO EIEEDIEY

Autoren... |Name |Vornam...|Geb.D...|La...

B Sperrobjekt

Gleichzeitiges Bearbeiten eines Datensatzes durch mehrere Benutzer
kann zu Inkonsistenzen in der Datenbank fiihren. Sollen z.B.
Stammdaten eines Kunden in der Tabelle ZKUNDEN des Biblio-
theksprojektes geéndert werden, muss das dndernde Programm si-
cherstellen, dass andere Anwender nicht zur gleichen Zeit den
gleichen Datensatz bearbeiten koénnen. Nach der Anderung ist der
Datensatz fiir die Bearbeitung durch andere Benutzer wieder frei-
zugeben.

Das Sperrobjekt ist Teil des Sperrkonzeptes des R/3-Systems.
Beim Anlegen eines Sperrobjektes wird festgelegt, in welchen Ta-
bellen Datensitze von der jeweiligen Anwendung gesperrt werden.
Beim Aktivieren des Sperrobjektes im ABAP-Dictionary werden da-
fir zwei Funktionsbausteine (Enqueue- und Dequeuefunktions-
baustein) angelegt, die, eingebunden in das jeweilige Anwendungs-
programm, den entsprechenden Datensatz sperren und zu gegebener
Zeit auch wieder freigeben.

3 Das ABAP-Dictionary

3.2
Domane, Datenelement, Datenbankfeld

Abb. 3.4
Doménen-
konzept

_'-
_’-

= die Domine legt die physikalischen Eigenschaften des ihr zuge-
ordneten Feldes fest. Zusitzlich kann in der Doméne noch der
giiltige Wertebereich des Datenbankfeldes angegeben werden.

= Die Domine wird dem Feld nicht direkt, sondern iiber ein Da-
tenelement zugeordnet. Dabei kann eine Domine mehreren
Datenelementen zugeordnet werden. In Abb. 3.4 wurde die
Domine ,,zZNR*“ den Datenelementen ,,zZISBN*“ und ,,zAutor*
zugeordnet, weil diese Datenelemente wiederum Feldern zu-
geordnet sind, die gleiche physikalische Eigenschaften haben
sollen (Ziffernfeld, 10-stellig).

= Die Datenelemente enthalten neben der Domine den Feldbe-
zeichner (nicht zu verwechseln mit dem Feldnamen) ggf. eine
Suchhilfe und eine Feldhilfe (F1-Hilfe). Ein Datenelement
kann mehreren Feldern zugewiesen werden. In Abb. 3.4 ist das
Datenelement ,,zAutor” den Feldern ,,Autorl®, ,,Autor2“ und
»Autor3“ zugeordnet, weil alle 3 Felder mit der gleichen Such-
hilfe (,,zAutoren*) der gleichen Feldhilfe und dem gleichen
Bezeichner arbeiten sollen.

= Dem Feld wird das Datenelement zugeordnet. Damit sind die
physikalischen Eigenschaften (iiber die Domine) und semanti-
schen Eigenschaften (F4- und F1-Hilfe) des Feldes festgelegt.

3.2 Doméne, Datenelement, Datenbankfeld 85

Tabelle 3.1
benétigte
Doménen

86

3.21
Doménen anlegen

Das Bibliotheksprojekt (RVP) benoétigt die folgenden Doménen:

Dominenname Datentyp Zahl der Stellen Ausgabelidnge
YRVP_ANZ NUMC 4 4
YRVP_BESTAND NUMC 5 5
YRVP_BEREICH CHAR 10 10
YRVP_DAT DATS 8 10
YRVP_JAHR NUMC 4 4
YRVP_MAIL CHAR 20 20
YRVP_NAME CHAR 35 35
YRVP_NR NUMC 10 10
YRVP_POSITION CHAR 10 10
YRVP_INHALT CHAR 35 35
YRVP_TEL NUMC 15 15
YRVP_TITEL CHAR 65 65
YRVP_KAT CHR 10 10
YRVP_PLZ NUMC 5 5

Der Domiénenname muss sich im Kundennamensbereich befinden,
d.h. er beginnt mit ,,z*“ oder ,,y*".

Hinweis: Dominen werden im ABAP-Dictionary angelegt und ste-
hen damit global, d.h. im gesamten R/3-System zur Verfiigung. Die
Dominennamen des Bibliotheksprojektes sind so gewihlt, dass es
mit hoher Wahrscheinlichkeit nicht zu Namenskonflikten mit bereits
angelegten Dominen kommt. Sollte in Ausnahmefillen der Domé-
nenname doch schon vergeben sein, wihlen Sie einen anderen.

Vorgehensweise: Domdine anlegen

Dominen werden im ABAP-Dictionary angelegt. Starten Sie die
Transaktion SE11 (Werkzeuge = Entwicklung = SE11 Dictiona-
ry).

Aktivieren Sie im FEinstiegsbild den Auswahlknopf ,,Doméne’
und tragen Sie im dazugehorigen Eingabefeld den Namen der Do-
méne ein.

3

3 Das ABAP-Dictionary

Abb. 3.5

. Einstiegsbild

ABAP Dictionary: Einstieg Anlegen einer
(63 (5] =] (= [| (@) (@) Doméne
O Datenbanktabelle ZBKUNDEN
O Wiew
D) D;ﬂentyp

Domane E'
() Suchhilfe
O Sperrobjekt
IGD Anzeigen] |ﬂ Andem I |D Anlegen I

Abb. 3.6
< | : = . Anlegen einer
Dictionary: Domingifiegen Doméne Eigen_
[=][=] | [Z][#a][=] | [« CH = | [&](S)F0E) schaften pﬂegen
Doméane aktiv und aktivieren
Kurzbeschrelbung ‘@iﬁﬁ'
Eig "‘/D V'“‘" ich |

Format

Datentyp CHAR Zelchenfolge

Zahl der Stellen 65

Dezimalstellen o

Ausgabesigenschaffen

Ausgabelange [

Konvert -Routine

[] worzeichen

[] iieinbuchstaben

Pflegen Sie die Eingabefelder im Nachfolgebild ,,Dictionary: Do-
mine pflegen entsprechend der Abb. 3.6 und wihlen Sie dann die
Schaltfldache ,,Aktivieren®.

Durch das Aktivieren der Domine wird diese in das Repository
gespeichert. Erst danach steht die Doméne wirklich zur Verfiigung.

Hinweis: Beachten Sie die Statusangabe rechts neben dem Eingabe-
feld fiir den Dominennamen. Nach dem erfolgreichen Aktivieren
der Domine ist der Status ,,aktiv* gesetzt.

3.2 Doméne, Datenelement, Datenbankfeld 87

Abb. 3.7
Zuordnen der
Entwicklungs-

klasse

Abb. 3.8
Zuordnen des
Workbench-
auftrages

L

88 =

Objekt R3TR DOMA ZRVP_TITEL

Attribute

Entwicklungsklasse 2 ABAP TRAINING WI El'
Verantwortlicher

Originalsystem MBS

ariginalsprache DE Deutsch

E] [Lokales Objekt “é Sperribersicht]

Doméane ZRVP_TITEL

Ilag @ [d‘ Workbench-Auftrag Q

- 5
(V)| (B0 Eene pte) | [

Geben Sie im Folgebild ,,Abfrage transportierbarer Workbench-
Auftrag* Ihren Workbenchauftrag ein.

Aufgabe:

Legen Sie die Doménen des Bibliotheksprojektes entsprechend der
Tabelle 3.1 (Seite 86) an.

3 Das ABAP-Dictionary

3.2.2
Datenelemente anlegen

Das Bibliotheksprojekt (RVP) benotigt folgende Datenelemente:

Datenelement Domiine Feldbezeichner Tabelle 3.2
- bendtigte Da-

YRVP_ADATUM YRVP_DAT Ausleihe tenelemente

YRVP_ANR YRVP_NR Autorennr.

YRVP_ANZ YRVP_ANZ Anzahl

YRVP_AUFLAGE YR VP_ANZ Auflage

YRVP_AUS YRVP_BESTAND verliehen

YRVP_BESTAND YRVP_BESTAND Bestand

YRVP_BEREICH YRVP_BEREICH Bereich

YRVP_EINTRITT YRVP_EINTRITT Eintritt

YRVP_EJAHR YRVP_JAHR Ersch. Jahr

YRVP_GDAT YRVP_DAT Geb.Dat.

YRVP_ISBN YRVP_NR ISBN

YRVP_KATEGORIE YRVP_KAT Kategorie

YRVP_KNR YRVP_NR Kundennr

YRVP_LAND LANDI1 Land

YRVP_MAIL YRVP_MAIL e-Mail

YRVP_NAME YRVP_NAME Name

YRVP_ORT YRVP_NAME Ort

YRVP_PLZ YRVP_PLZ Plz

YRVP_POSITION YRVP_POSITION Lagerpos.

YRVP_RDATUM YRVP_DAT Riickgabe

YRVP_SCHLAGWORT YRVP_INHALT Inhalt

YRVP_STRASSE YRVP_NAME Stral3e

YRVP_TEL YRVP_TEL Telefon

YRVP_TITEL YRVP_TITEL Titel

YRVP_VERLAG YRVP_NAME Verlag

YRVP_VNAMEI1 YRVP_NAME Vorname 1

YRVP_VNAME2 YRVP_NAME Vorname 2

YRVP_BESCHR YRVP_INHALT Beschreibung

3.2 Doméne, Datenelement, Datenbankfeld

89

Abb. 3.9
Datenelement
anlegen

Abb. 3.10
Auswahl des
anzuanlegenden
Datenobjektes

90

Vorgehensweise: Datenelemente anlegen

Datenelemente werden im ABAP-Dictionary angelegt. Starten Sie
SE11 (Werkzeuge = Entwicklung - SE11 Dictionary).

Aktivieren Sie im Einstiegsbild den Auswahlknopf ,,Datentyp*
und tragen Sie im dazugehorigen Eingabefeld den Namen des Da-
tenelementes ein.

& B IH @ DHE ano8 B @m

ABAP Dictionary: Einstieg
|

) Datenbanktabelle

O Ylew

£ s-
) Doméne

O Suchhilfe

) Sperrobjekt

itﬁ:“ Anzeigen I [ﬂ Andemn] ID Anlegen I

i@ Datenelement

(O Struktur
abellentyp

(v][3]

Im Folgebild ,,Dictionary: Datenelement pflegen” geben Sie in der
Registerkarte ,,Definition* die zugehorige Doméne an.

3 Das ABAP-Dictionary

EIE] | R | EEE | E > [

Ausleindatum

Datenelement
Hurzbeschreibung

I jon |

neu{berarbeitet)

= flan > Definit

F |

Datentyp ~
@) Elementarer Typ
(@) Domane

O Eingebauter Typ

) Referenziyp
Referenz auf

Datumsfeld

D faTs

Lange oooooe Dezimalstellen o0oooo
Datentyp
Lange o Dezimalstellen o

Wihlen Sie dann die Registerkarte ,,Feldbezeichner* und tragen Sie
in die Eingabefelder ,.kurz®, ,mittel”, ,,Jang* und , Uberschrift aus-
sagekriftige Feldbezeichner fiir IThr Datenelement ein. Die Feldbe-
zeichner werden Thnen spdter beim Anlegen der Programm-
oberfldche (Dynproprogrammierung) das Leben erleichtern.
Aktivieren Sie anschliefend das Datenelement.

Jl Qe DEA BT A8 FR & '_.'.
Dictionary: Datencf@nent pflegen
E=) |) | @00 | @) E) | (oo ion) (Zusatzd ion)
Datenelement YRVP_ADATUM_TW neu(iberarbeitet)
Fur 0 4, indatum f
/ Eigenschatien | Defntion) Feld |
Lang Feldbezeichner
Kurz 10 Ausleihdat
mittel 15 Auslelhdatum
lang 20 ausgeliehen am
Uberschrift 12

3.2 Doméne, Datenelement, Datenbankfeld

Abb. 3.11
Zuordnen der
Doméne

Abb. 3.12
Feldbezeichner
pflegen,
Aktivieren

= 91

Ordnen Sie die Doméne Threr Entwicklungsklasse zu.

Abb. 3.13
Entwicklungs- Objekt R3TR DTEL YRVP_ADATUM TW
klasse zuordnen
Attribute
Entwickiungskiasse (=
Verantwortlicher BCUSER
Originalsystem MBS
Originalsprache DE Deutsch

E] | Lokales Objekt Hé Sperriibersicht |

Geben Sie im Folgebild ,,Abfrage transportierbarer Workbench-
Auftrag® Thren Workbenchauftrag ein.

Aufgabe:
ﬁ Legen Sie in analoger Art und Weise die Datenelemente des Biblio-
theksprojektes entsprechend der Tabelle 3.2 (siehe Seite 8§9) an.

3.3
Eigenschaften von Tabellen

3.3.1
Tabellenarten

Uber die Tabellenart wird festgelegt, wie die im ABAP-Dictionary
erfolgte logische Beschreibung einer Tabelle (bzw. mehrerer Tabel-
len) auf der Datenbank abgebildet wird. Es werden die folgenden
Tabellenarten unterschieden:

= Transparente Tabellen
= Pooltabellen

= (lustertabellen

= Strukturen

= Append-Strukturen

92 ®m 3 Das ABAP-Dictionary

Hinweis:

Der ABAP/4-Quellcode bezieht sich immer auf die logische Be-
schreibung der Tabelle im ABAP-Dictionary. Der Quellcode zur
Bearbeitung von Tabellen ist deshalb unabhéngig von der Tabellen-

art.

Beschreibung der Tabellenarten

B Transparente Tabellen

Bei transparenten Tabellen entspricht jedem Feld der im ABAP-
Dictionary angelegten logischen Beschreibung genau einem Feld auf
der Datenbank.

Beim Aktivieren der transparenten Tabelle im ABAP-
Dictionary wird diese auf der Datenbank angelegt und Platz fiir
die Daten der Tabelle reserviert. Die Grofle des reservierten
Speicherbereiches richtet sich nach der Groflenklasse der Tabel-
le, die ebenfalls im ABAP-Dictionary festgelegt wird.

Tabellenname und Feldnamen der physischen Tabellendefiniti-
on sind namensgleich zu den entsprechenden Namen der logi-
schen Tabellendefinition.

Datentypen der logischen Tabellendefinition werden automa-
tisch in korrespondierende Datentypen des jeweiligen Daten-
banksystems umgewandelt. Damit ist das Anlegen von Tabellen
unabhingig von der verwendeten Datenbank.

Die Reihenfolge der Felder in der Datenbank kann von der Rei-
henfolge der Felder in der logischen Tabellendefinition abwei-
chen. Dadurch koénnen Felder in die Tabelle eingefiigt werden,
ohne dass die Tabelle umgesetzt (siehe Kapitel 3.3.7 ,,Anderun-
gen an Tabellen* Seite 108) werden muss.

3.3 Eigenschaften von Tabellen

93

Abb. 3.14
Abbildung der
logischen Tabel-
lendefinition
(ABAP-
Dictionary) auf
der Datenbank

Tabelle 3.3
Felder eines
Tabellenpools

94

Transparente Tabelle (zAutoren)

|Felder Key|Lange S
NDANT
v
Logsane JAUTORENNR
abellen-
delinilion< — _ |NAME El
im ABAP-
Dictionary] ORNAME 1 D
8
/ |
P I | [T S z
a
#2‘:;;:2_8 Mandant | Autorennr |Name
definition in 000 1234567 Schulz
der 000 8901234 [Conrad
Datenbank 000 5678901 |George
-

m Pooltabellen

Eine Pooltabelle wird auf der Datenbankebene in einem ihr zuge-
ordneten Tabellenpool gespeichert. Dabei konnen mehrere Poolta-
bellen einen gemeinsamen Tabellenpool nutzen.

Ein Tabellenpool hat folgende 4 Felder:
Feld Datentyp Bedeutung
Tabname CHAR(10) Name der Pooltabelle

Varkey CHAR(n)

Dataln INT2
Vardata RAW

Enthélt als String die Eintrdge aller
Schliisselfelder des Satzes der Poolta-
belle, max. Linge fiir nist 110

Linge des in Vardata stehenden Strings

Enthélt die Eintrdge aller Datenfelder
des Satzes der Pooltabelle.

3 Das ABAP-Dictionary

[[Tana Wishrungs-h TabB Wiahrungs-/h
(ogische Te: Felder [Key Date... |Lange Felder Key|Date [Lange
belendefintl- | [PELD 1A [3] 5 1 PELD 1B CHAR 1
ABAP- i o 2 [] lcrar Oferar | o 1
Dickmary PELD 3A O lear cuy 1

| [PELD 4A [fcrar
Daten, mit { Ein ABAP-Prog |5dt die Tabell i Datensitzen. Da-
denen der bei bezieht sich das Programm auf die Tabell ah ABAP-Dictionary.
Tabelle:

o oites 8 [Feld_1A[Feld 2A|Feld 3A| Feld 44 Feld_1BFeld_7BFeld_38

pool geladen Al B ol BB I-d
deaal | [5 c D] K

\ E |F [¢] H L M N

.
Tabellenpool POOL_AB

physische

Tdﬂenhﬂ-{ Tabname | Varkey | Dataln)
nitionen in der TabA AB 2
Detenbank

TabA 2
TabB 2
TabB 2

\

Abb. 3.15 zeigt, wie die Speicherung der Daten im Tabellenpool or-
ganisiert ist. Es ist zu erkennen, dass die Zuordnung der Feldinhalte
in den Datenfeldern VARKEY und VARDATA zu den jeweiligen
Feldern der Pooltabellen nur noch mit Hilfe der Informationen aus
dem ABAP-Dictionary moglich ist.

In jedem Datenbanksystem ist die Anzahl der zu verwaltenden
Tabellen begrenzt. Der Vorteil dieser Speichermethode ist es, dass
weniger Tabellen auf der Datenbank angelegt werden miissen als bei
der Nutzung transparenter Tabellen.

Dieser Vorteil wird durch lingere Zeiten zur Bereitstellung der
benotigten Daten erkauft, was zu einer Verschlechterung der Per-
formance fiihrt. Grofle Datenbestinde wie z.B. betriebswirtschaftli-
che Daten des Unternechmens, werden deshalb niemals in
Pooltabellen sondern immer in transparenten Tabellen gespeichert.

Nutzen Sie Tabellenpools nur zur Ablage interner Steuerinforma-
tionen (Dynprofolgen, Programmparameter, temporére Daten).

B Clustertabellen

In einem Tabellencluster (Datenbankebene) konnen mehrere Daten-
sdtze aus verschiedenen, voneinander abhingigen Clustertabellen
(ABAP-Dictionary-Ebene) in einem physischen Satz gespeichert
werden.

3.3 Eigenschaften von Tabellen

Abb. 3.15
Tabellenpool

95

Tabelle. 3.4
Felder eines

Tabellenclusters

Abb. 3.16

Tabellencluster

9 =

Das Tabellencluster hat folgende Felder:

Feld Datentyp Bedeutung

CLKEY1l * Erstes Schliisselfeld

CLKEY2 * Zweites Schliisselfeld

CLKEYn * n-tes Schliisselfeld

Pageno INT2(5) Nummer des Fortsetzungssatzes
Timestmp CHAR(14) Zeitstempel

Pagelg INT2(5) Linge des in Vardata stehenden Strings
Vardata RAW (n) Enthilt als Zeichenkette die Eintrdge der

Datenfelder der zugeordneten Clusterta-

bellen

Abb. 3.16 zeigt das Prinzip eines Tabellencluster. Die Datensétze
aus den Clustertabellen TABA und TABB, die in den Schliisselfel-
dern FELD_1A und FELD_2A gleiche Feldinhalte besitzen, sollen
in einen Datensatz des Tabellenclusters CLUSTER_AB geschrieben
werden. Beim Erzeugen des Tabellenclusters wurden fiir diese bei-
den Felder Schliisselfelder (CLKEY1 und CLKEY?2) angelegt.

Tabg Wahrungs-/h
logische Ta- Felder Key|Date... |Lange
beliendefinii-

Debgevle | [rEzp 14 ICHAR 1
ABAP- FELD 2A [Mpmer | , 1
Dictionary [v] kcram j/ 1
ensétzen. Dabei be-
Daten.m? | Zieht sich das Programm auf die Tabellend Dictionary.
e . | [FelA_1A[Feld JA|Feld 3A|Feid aA Feid_1B|Feld_JB|Feid 38
den werden A B 7y
sall A B F
i e
e i —
Tabellencluster Cluster AB
CLKEY1l [CLKEY2 [Pageno |[Pagelg [Vardata |
A B [0 4 [CDEF |
physische
- I A\ J
ionen i dor - .
Datenbank chisselfelder Nr. des Lange Var-| [Feldinhalte des
ie Anzahl der Folge- lata atzes aus Tabel
chlisselfelder wird satzes e TabA und der
beim Anlegen des Ta- jbeiden Satze aus
bellenclusters festge- Tabelle TabB
of)
| |
3 Das ABAP-Dictionary

Hinweis:

Verwechseln Sie Tabellencluster nicht mit Views. Diese werden auf
der logischen Ebene, also im ABAP-Dictionary, definiert wihrend
Tabellencluster die physische Datenspeicherung betreffen.

Durch die Verwendung von Tabellenclustern wird, genau wie bei
der Verwendung von Tabellenpools auch, die Anzahl der vom Da-
tenbanksystem zu verwaltenden Tabellen verringert. Die Zuordnung
der Inhalte des Feldes VARDATA des Tabellenclusters zu den Fel-
dern der Clustertabelle ist nur iiber das ABAP-Dictionary moglich.
Tabellencluster sollten daher nicht zur Speicherung betriebswirt-
schaftlicher Daten verwendet werden (schlechte Performance).

m Strukturen

Strukturen bestehen, ebenso wie Tabellen, aus Feldern. Im Gegen-
satz zu Tabellen wird ihnen jedoch beim Aktivieren kein Speicher-
platz auf der Datenbank bereitgestellt. Strukturen werden haupt-
séchlich als Schnittstellen zu Programmen, Funktionsbausteinen und
Dynpros eingesetzt.

B Append-Strukturen

Eine Append-Struktur ist eine Struktur, die genau einer Tabelle zu-
geordnet ist. Sie wird hauptsédchlich benétigt, um Erweiterungen an
Tabellen vorzunehmen, die nicht im eigenen Namensbereich liegen,
wie z.B. SAP-Standardtabellen.

s Append-Struktur Abb. 3.17
Logische Struktur
Tabellende- Datenbanktabelle | zzf1 | zzf2 | zz£3 |
finition im
ABAP- _< [Feldl __ [Felaz [Feld3s _ [Feldd
Dictionary angedian
"on
P
g ..
L a\!
/ -t /
4
physische
Tabellende- Datenbanktabelle
finition in der Feld] |Feld2 |Feld3 |Feldd |zzf1 |zzf2 |zzf3
Datenbank

3.3 Eigenschaften von Tabellen 97

98

Beim Aktivieren der Tabelle im ABAP-Dictionary werden vom Sys-
tem alle zu dieser Tabelle gehorenden Append-Strukturen gesucht.
Die Felder der Append-Struktur werden an die Tabelle angehéngt.
Die ,,Gesamttabelle* (Tabellenfelder + Append-Strukturfelder) wird
auf der Datenbank abgebildet.

Namenskonventionen:

Append-Strukturen werden im Kundennamensbereich angelegt. Sie
beginnen daher mit ,,z*“ oder mit ,,y*“. Damit Namenskonflikte zwi-
schen den Feldern der Tabelle und denen der Append-Struktur ver-
hindert werden, beginnt der Kundennamensbereich fiir Felder der
Append-Struktur mit ,,zz* oder mit ,,yy*.

3.3.2
Schliisselfelder und Primarindex

Die kleinstmogliche Kombination von Feldern, die einen Datensatz
in einer Tabelle eindeutig identifizieren kann, heifit Schliissel. Jede
R/3-Tabelle besitzt einen solchen Schliissel. Mit den Schliisselfel-
dern wird beim Aktivieren der Tabelle automatisch eine ,,Hilfstabel-
le*, die Primirschliissel oder Primirindex genannt wird, erzeugt. Der
Primirindex liegt sortiert nach Schliisselfeldern auf der Datenbank.
Zusitzlich zu den Schliisselfeldern enthélt er noch einen Zeiger
(Pointer) auf den zugehorigen Datensatz der Tabelle.

Der Primirindex ermoglicht einen schnellen Zugriff auf einzelne
Sitze der Tabelle. Die Sortierung des Primédrindexes gestattet es, an-
dere Suchalgorithmen (z.B. binédre Suche) einzusetzen als bei der
Suche in der nichtsortierten Tabelle (sequentielle Suche).

Die Alternative zum Primérindex wire das Sortieren der Gesamt-
tabelle, was jedoch im Vergleich zur Sortierung der wenigen Felder
des Primirindexes sehr zeitaufwendig ist.

Anderungen in den Schliisselfeldern der Tabelle fiihren zu einem so-
fortigen Aktualisieren des Primérindexes.

In Abb. 3.18 wird iiber die Syntax

Select single * from zBestand client specified
where Mandant = '000' and ISBN = '3877917410".

in der Tabelle ZBESTAND auf den Datensatz mit der ISBN
3877917410 zugegriffen.

3 Das ABAP-Dictionary

Der Zugriff auf diesen Datensatz iiber den Primirindex erfolgt nach
dem Prinzip der bindren Suche. In diesem Fall sind 2 Datenbank-
zugriffe notig:
1. Halbieren der Gesamtmenge der Datensitze
(Ergebnis: 1172 2 5)
Zugriff auf Satz Nr. 5, Vergleich ISBN(5) mit 3877917410
(Ergebnis: ISBN > 3877917410)

2. Halbieren der Menge der Datensétze mit ISBN < ISBN des
Satzes 5 (4/2 2 2)
Zugriff auf Satz Nr. 2, Vergleich ISBN(5) mit 3877917410
(Ergebnis: ISBN = 3877917410)

Die Suche in der unsortierten Tabelle ZBESTAND hitte 10 Daten-
bankzugriffe erfordert.

Priméarindex der Tabelle Abb. 3.18
ZBESTAND Datenbank-
Select single * from ZEESTAND zugriff iiber den
- _ - client specified . .
Hore Rendeit = '000! ‘end Primérschliissel
ISBN = '38773917410'

000 3540523979001
—{Too0_ |3677917410[010 —
D00 |3827311365|004 hinare Suche
000 |3827314011|00¢
000 |3827314569 007
000 3827313724 | 005
000 |3827254388 |002
000 3827316464 |008
000 |3827258863 003
000 3827317886009

L

000 38098421473 (011 Tahelle zBestand
POINTER MANDANT ISEW ||TITEL [Emsc
001 000 3540523979 | EDV-ORIENTIERTE BETRIEBSWIRTSCHAPTSLEHRE |1950
002 000 3827254386 | INTERNET 1999
003 0oo 3827258863 | SAP R/3 2000
004 0oo 3827311365 | ADMINISTRATION DES SAP-SYSTEMS R/3 1997
005 000 3827313724 | ABAP/4 DIE PROGRAMMIERSPRACHE DES SAP R/3|1998
006 ooo 3827314011 | SAP R/3 PROZESORIENTIERT ANWENDEN 1998
007 poo 3827314569 | SAP R/3 DYNAMISCH EINPUHREN 1998
008 000 3827316464 | SAP R/3 DER SCHNELLE EINSTIEG 2000
009 000 3827317886 | PROGRAMMIERUNG VON INTERNET-ANWENDUNGSKOM|2001
—.{ 010 ooo 3877917410 | SAP R/3 BASISSYSTEM 1996
011 000 3808421473 | ABAP OBJECTS 2001
\—V—J

3.3 Eigenschaften von Tabellen 99

Abb. 3.19
Datenbank-
zugriff iber

Sekundér-
schliissel

100

3.3.3
Sekundarindizes

Sekundérindizes sind Hilfsdateien, die immer dann von Nutzen sind,
wenn der Zugriff auf die Daten einer Tabelle hiufig iiber ein be-
stimmtes Feld bzw. iiber eine bestimmte Feldkombination erfolgt.
Der Sekundérindex enthélt in sortierter Reihenfolge alle Feldinhalte
des Feldes bzw. der Feldkombination und einen Zeiger auf den ent-

sprechenden Tabellensatz.

Beispiel:

Der Zugriff auf den Datenbestand der Buchbestandstabelle

ZBESTAND erfolgt oft iiber das

Feld AUTORI1 (Autorennummer).

Abbildung 3.19 zeigt das Auffinden eines Datensatzes {iber einen
Sekunddrindex zum Feld AUTORI.

Sekundarindex zum
Feld AUTOR1
POINTER |AUTORL |
o1 0000000100 elect * from ZBESTAND where
12 0000000101 utorl = 'l16',
09 0000000103
06 0000000104
lo7 0000000106 o
10 0000000107 binare
08 0000000109 Suche
04
I
I— 03 [
1 Tabelle ZBESTAND
POINTER (AUTORL |IseW |mreer
01 0000000100|3540523979 | EDV-ORIENTIERTE BETRIEBSWIRTSCHAFTSLEHRE
02 11513877917410|SAP R/3 BASISSYSTEM
03 D000000116/3827217894 | ABAP-UBUNGSBUCH
0a | |ADMINISTRATION DES SAP-SISTEMS R/3 |
05 DOO00D0113|3827314569 |SAP R/3 DYNAMISCH EINFUHREN
06 0000000104|{3827314011 |SAP R/3 PROZEDORIENTIERT ANWENDEN
07 D000000106{3827313724 |ABAR/4 DIE PROGRAMMIERSPRACHE DES SAP R/:
08 0000000109|3827254388 | INTERNET
09 0000000103|3827316464 |SAP R/3 DER SCHNELLE EINSTIEG
10 D000000107|3827258863 |SAP R/3
_.[11 0000000116{3827317886 | PROGRAMMIERUNG VON INTERNET-ANWENDUNGSKO!
Z DOUUUUUIUI|JBO6AZ 1% 73 |[ABAP UBJECTS

Durch die bindre Suche im Sekundérindex wird das Auffinden des
gesuchten Datensatzes mit erheblich weniger Datenbankzugriffen

3 Das ABAP-Dictionary

als bei der sequentiellen Suche in der Tabelle ZBESTAND erreicht,
was zu einer deutlichen Verbesserung der Performance fiihrt.

3.34
Fremdschlussel

Im ABAP-Dictionary konnen Verbindungen zwischen R/3-Tabellen
definiert werden. Dazu werden Felder, die Beziehungen zu einer an-
deren Tabelle haben, iiber einen Fremdschliissel mit dieser anderen
Tabelle abgeglichen.

Zum Beispiel kann die Autorennummer in der Buchbestandsdatei
(ZBESTAND) mit den Autorennummern der Autorenstammdatei
(ZAUTOREN) abgeglichen werden. Damit wird gesichert, dass in
die Tabelle ZBESTAND keine Autorennummern eingetragen wer-
den konnen, fiir die in der Tabelle ZAUTOREN kein Stammdaten-
satz existiert.

Ein Fremdschliissel ist eine Kombinationen von Feldern einer Tabel-
le (Fremdschliisseltabelle), die mit dem Primérschliissel einer
»fremden‘ Tabelle (Priiftabelle) abgeglichen wird.

In Abb. 3.20 wird zum Feld AUTORI1 der Tabelle ZBESTAND
ein Fremdschliissel zur Tabelle ZAUTOREN definiert.

(ZBESTAND > Fremdsch:ﬁssenabene] (ZAUTOREN 3 Priftabelle] Abb. .3.20 .
Begriffe bei
Fremdschliis-
Eigenschaften / Felder / Eigenschaften /Y Felder selbeziehungen
Nam B[~ [X][wE EE][
F Key Felde Key
— L paanpanT MANDANT O\
Tson—" UTORENNR /— |[Y]
Eurmss 1)
Exm L] [VORNAME 1 O
RSCHEINUNGSJAHR|[| [VORNAMEZ O
=] [cEBDAT 0
BESTAND LI [uanp]
1 OJ
7 [auTor1 T —
A =i -‘\ h A
(Fremdschidsselfelder] (_Priiffeld] (__schiisselfelder]

Jedem Schliisselfeld der Priiftabelle muss ein Fremdschliisselfeld
zugeordnet sein. Es reicht also im obigen Beispiel nicht aus, nur den

3.3 Eigenschaften von Tabellen ® 101

102

Inhalt des Feldes AUTORI1 an die Priiftabelle zu iibergeben, auch
das Feld MANDANT wird benotigt.

Den internen Abgleich kann man sich entsprechend der folgenden
Select-Anweisung vorstellen:

SELECT SINGLE * FROM ZAUTOREN CLIENT SPECIFIED
WHERE MANDANT = ZBESTAND-MANDANT AND
AUTORENNR = ZBESTAND-AUTORI.

Die SELECT SINGLE-Anweisung sucht einen Datensatz in der Ta-
belle ZAUTOREN in dem das Feld MANDANT inhaltsgleich mit
dem Fremdschliisselfeld MANDANT und das Feld AUTORENNR
inhaltsgleich mit dem Fremdschliisselfeld ,,AUTOR1* ist. Wird kein
entsprechender Datensatz gefunden, gibt das System eine Fehler-
meldung aus.

In eher seltenen Fillen ist eine Priifung gegen alle Schliisselfelder
der Priiftabelle nicht sinnvoll. In diesen Féllen kénnen generische
Fremdschliissel definiert werden. Durch Setzen eines Flags werden
dabei die Schliisselfelder der Priiftabelle die nicht in die Priifung
einbezogen werden sollen, gekennzeichnet.

Voraussetzungen fiir Fremdschliisselbeziehungen:

= Priiffeld und referierendes Schliisselfeld benutzen die gleiche
Domine.

= Die anderen Fremdschliisselfelder haben den gleichen Daten-
typ und die gleiche Feldlinge wie die referierenden Schliissel-
felder.

3.3.5
Pufferungsarten

Puffern bedeutet, dass Datensiitze der Datenbanktabelle vom Mas-
senspeicher in einen Speicherbereich des Arbeitsspeichers des Ap-
plikationsservers, den Tabellenpuffer, geschrieben werden.

Erfolgt ein Zugriff auf eine gepufferte Datenbanktabelle, priift die
Datenbankschnittstelle, ob sich die jeweiligen Daten im lokalen Puf-
fer des Applikationsservers befinden. Ist das der Fall, werden die
Daten aus dem Puffer gelesen. Anderenfalls werden sie direkt aus
der Datenbank geholt und dabei in den Puffer geschrieben, wo sie
dann fiir den néchsten (schnellen) Zugriff zur Verfiigung stehen.

3 Das ABAP-Dictionary

Die Verwaltung der Puffer wird vom R/3-System iibernommen.
Dazu gehort auch die Synchronisation der Puffer bei der Verwen-
dung mehrerer Applikationsserver (siehe 3.3.6 Synchronisation von
Puffern Seite 107).

Durch die erheblich kiirzeren Zugriffszeiten auf die Daten des Ar-
beitsspeichers kann durch die Pufferung die Systemperformance
deutlich verbessert werden.

Uber die Pufferungsartart wird festgelegt, welche Datensitze ei-
ner Tabelle in den Pufferspeicher des Applikationsservers geschrie-
ben werden.

Nicht in jedem Fall bringt die Pufferung aller Datensétze einer
Tabelle den groBten Performancegewinn, in ungiinstigen Fillen
kann gar eine Verschlechterung eintreten.

Bei der Wahl der Pufferungsart sind folgende Kriterien zu be-
riicksichtigen:

= Welche Speicherkapazitit ist fiir die zu puffernde Tabelle von
Noten?

= Wie groB ist die Anzahl der lesenden Zugriffe?
Bei einer geringen Anzahl lesender Zugriffe ist in der Regel ei-
ne Pufferung nicht sinnvoll.

= Wie grof} ist die Anzahl der schreibenden Zugriffe?
Bei Anderungen wird vom R/3-System der Puffer und die Da-
tenbank aktualisiert. Das Aktualisieren der Puffer wird beson-
ders dann prekir, wenn die betreffende Tabelle in mehreren
Servern gepuffert ist.
Ubersteigt die Anzahl schreibender Zugriffe die Anzahl der le-
senden fiihrt eine Pufferung aller Datensitze einer Tabelle in der
Regel nicht zu einer Verbesserung der Performance.

= Erfolgt der Zugriff auf die Datensétze im Allgemeinen iiber die
Schliisselfelder?
Die Datensdtze im Puffer sind nach dem Primérschliissel der
gepufferten Tabelle sortiert. Bei Zugriffen bei denen das erste
Schliisselfeld nicht angegeben ist, wird der Puffer sequentiell
(d.h. Satz fiir Satz) gelesen. Diese Zugriffsmethode wird ,,Full
Table Scan“ genannt. Schon dieser Name assoziiert lange
Zugriffszeiten!
Bei hiufigen Anfragen ohne das erste Schliisselfeld, sollten Sie
priifen, ob ein Zugriff iiber einen geeigneten Sekundirindex
nicht schneller zum Ziel fiihrt.

= Kann die Anzahl der zu puffernden Datensitze eingeschrinkt
werden?

3.3 Eigenschaften von Tabellen

103

Abb. 3.21
Entscheidungs-

baum zur

Pufferung

104

Nachfolgen werden die zur Verfiigung stehenden Pufferarten
= Vollstindige Pufferung

= generische Pufferung

= Finzelsatzpufferung

beschrieben. Die Auswahl der geeigneten Pufferungsart ist eine
wichtige Entscheidung. Die Abb. 3.21 soll Thnen helfen, die richtige
zu treffen.

Stant
Y
Datenénderungen an der zu puf-
fernden Tabelle missen nicht
sofort flir jeden Benutzer zur Ver- Nein -
flgung stehen. Eine Verzdgeruny Tabellefl;?tnn nlght geput- e
in Hohe der Synchronisstionszeit werden
(80 bis 240 Sekunden) kann ak-
zeptiert werden.
v Ja
Es erfolgen meist lesende Nein Tabelle kann nicht gepul-
Zugriffe auf die Daten der zu fertwerden —-
puffernden Tabelle
J
Die GroRe d * :ff d Nein
e Grolse der Zu puiternaen e
< Datei ist gréfier 8KB >—>| volisténdige Pufferung |
v J2
Im Allgemeinen wird bei einer Nein
Abfrage nicht auf einen, son- -
dern auf mehrere Datensétze Einzelsatzputfer —
zugegriffen.
¥ Ja olistandige oder generi-
: = ; che Pufferung ist mog-
Die GroRe der zu puffernden Nein Eoh Es solte 120',0,:,, g%_)
Detei ist nicht >> 1 MB und nicht ruftwerden, ob ein Se-
>> 1000 Datensétze undarindex nicht glinsti-
¢ Ja er ist.
Die meisten Zugriffe Erfolgen
Uber einen generischen Zugriff. Ja
Die Anzahl der zu berlicksichti- generische Pufferung |—
genden Schilisselfelder kann
genau angegeben werden
3 Das ABAP-Dictionary

Volistédndige Pufferung

Bei der vollstindigen Pufferung werden beim ersten Zugriff auf die
Tabelle alle Datensitze in den Puffer geschrieben. Je kleiner die zu
puffernde Tabelle ist, je haufiger sie gelesen wird, je seltener die Da-
ten geédndert werden umso bedenkenloser konnen Sie die vollstiandi-
ge Pufferung anwenden.

Generische Pufferung

Unter einem generischen Schliissel versteht man einen linksbiindi- generischer
gen Teil des Primirschliissels einer Tabelle. Wie viele Schliisselfel- ~ Schiissel
der zum generischen Schliissel gehoren, wird beim Festlegen der
Pufferart angegeben.

Beim Zugriff auf einen Satz einer generisch gepufferten Tabelle
werden alle mit diesem Datensatz im generischen Schliissel iiberein-
stimmenden Datensitze in den Puffer geschrieben.

Programra im Sexrver: Abb. 3.22
Select * from ZAUSLEIHE client specified generische
—where MANDANT = '000' end Pufferung

ISBN = '3827316464' and
KUNDENNR = '323'.

Schiisselfelder der Datenbanktabelle ZAUSLEIHE

A
r Y

MANDANT |ISBN || KUNDEWNR | | AUSLEIHDAT |ANZAHL

3540523979 (0000000199 |06.09.2003 |000S
—|2540529979 | 0000000210 04..99. 2003 oo ||
3827316464 |0000000123 |03.09.2003 0001
3827316464 |0000000199 |05.09.2003 0001 || |
3827316464 (0000000288 |05.09.2003 LK]O]. |
3827316464 (0000000323 |08 .09.2003 [0001
e Tt fer-nr—zoerfomor—|
|
|
|

3827316464 |0000000444 |08.09.2003 |0001
3827316464 |0000000510 |D5.09.2003 |0001
3827316464 |0000000555(31.08.2003 |0001
362731646410000000555/05.09.2003 0001
3898421473 (0000000044 |D2.09.2003 |0001
3898421473 | 0000000063 |07.09.2003 |0001

generischer Schlissel
Pufferinhalt des Servers

000 3827316464 0000000123 |03.09.2003 |0001
000 3827316464 |0000000159 |05.09.2003 |0001
000 3827316464 0000000288 |05.09.2003 |0001
000 3827316464 |0000000323 |08.09.2003 |0001
000 3827316464 |0000000408 [08.09.2003 |0001
000 3827316464 |0000000444 |08.09.2003 |0001
ala] 3827316464 |0000000510(05.09.2003 | 0001
000 3827316464 |0000000555(31.08.2003 |0001
ooo 3827316464 0000000555 |05.09.2003 |0001

3.3 Eigenschaften von Tabellen ® 105

106

Mandantenunabhéngige, vollstindig gepufferte Tabellen, werden
automatisch generisch gepuffert. Der generische Schiissel ist dabei
das Feld MANDANT.

Einzelsatzpufferung

Bei Einzelsatzpufferung werden nur die Datensédtze der Tabelle in
den Pufferspeicher geladen, auf die tatséichlich zugegriffen wurde.

Beispiel:
Ein Programm greift mit der Anweisung

select single from ZAUSLEIHE client specified

where Mandant = '000' and
ISBN = '3827316464' and
KUNDENNR = '323"'.

auf genau einen Datensatz zu.

Dieser eine Datensatz wird dabei in den Pufferspeicher geschrie-
ben. Existiert der Datensatz nicht, so werden die Feldinhalte der Se-
lect-Anweisung (im Beispiel Mandant = '000', ISBN = '3827316464'
und Kundennr = '323") mit dem Status "Nicht existent" in den Puffer
eingetragen. Dadurch ist beim wiederholten Zugriff auf diesen Da-
tensatz kein Datenbankzugriff erforderlich.

Vorteil:
Es wird weniger Speicherplatz bendtigt wird, als bei den anderen
Pufferungsarten.

Nachteile:
Es ist ein hoherer Verwaltungsaufwand im Puffer notwendig.

Zum Laden der Datensitze in den Puffer sind wesentlich mehr
Datenbankzugriffe notwendig als bei der vollstindigen oder der ge-
nerischen Pufferung.

Bei kleineren Tabellen ist in der Regel die vollstindige Pufferung
giinstiger.

Die Einzelsatzpufferung ist besonders bei groflen Tabellen, auf
die hiufig tiber "Select single" zugriffen wird, zu empfehlen.

Alle "Nicht-Select-Single-Zugriffe" gehen am Puffer vorbei di-
rekt auf die Datenbank.

3 Das ABAP-Dictionary

3.3.6
Synchronisation von Puffern

Jeder Applikationsserver besitzt seinen eigenen Pufferbereich. Der
Puffer wird beim ersten Zugriff auf eine zu puffernde Tabelle mit
Daten gefiillt. Greifen zwei Applikationsserver (Serverl und Ser-
ver2) auf die gleiche Tabelle (T1) zu, werden in die Pufferbereiche
jeweils die gleichen Daten geschrieben. Bei einer Anderung an Ta-
belle T1 durch Serverl werden folgende Vorgéinge ausgelost:

= Andern des Datensatzes in der Datenbanktabelle.
= Aktualisieren des Puffers auf Server 1.
= Aktualisieren des Puffers auf Server 2.

Die Aktualisierung (Synchronisierung) des Puffers auf Server2
erfolgt dabei nicht sofort sondern in festen Zeitintervallen, deren
Linge iiber den Parameter rdisp/bufreftime festgelegt wird. Dieser
Parameter ist in der Datei Default. PFL zu finden, mit der das R/3-
System beim Start konfiguriert wird. Theoretisch konnen dafiir Wer-
te im Bereich von 60 bis 3600 Sekunden ausgewihlt werden. Emp-
fohlen wird eine Intervalllinge zwischen 60 und 240 Sekunden.

Das Prinzip der Pufferung und der Synchronisation der Puffer
veranschaulicht Abb. 3.23 am Beispiel eines R/3-Systems mit 2 Ap-
plikationsservern. Eine Tabelle T1 wird vollstindig in die Puffer der
Server 1 und 2 geladen.

Von Serverl wird ein Datensatz der Tabelle T1 gel6scht.

Wie in Abb. 3.23 leicht zu erkennen ist, greift der Server 2 zum temporére
Zeitpunkt t, auf veraltete Daten des Puffers 2 zu. Die Tabelle T1 im /nkonsistenzen
Puffer 2 wird erst nach der Synchronisation (Zeitpunkt t,)) fiir ungiil- ~ beim Puffern
tig erklirt und beim néichsten Zugriff des Servers2 auf T1 neuin den V0N Tabellen
Puffer geschrieben. Priifen Sie also fiir jede zu puffernde Tabelle, ob

solche temporire Inkonsistenzen akzeptiert werden kdnnen (siehe

dazu auch Abb. 3.21 Entscheidungsbaum zur Pufferung).

3.3 Eigenschaften von Tabellen ® 107

Abb. 3.23
Synchonisation
von Puffern

N P 1%
~ < =@

-
]

to oriff auf Tabelle 11

elect * From Tl where ..
tz — [Die Tabelle T1 wird volistandig in
Puffer 1 geschrieben

t Eug—ﬁrfauf‘l‘ahelneﬂ
Select * Fromn Tl where ..
[Die Tabelle T1 ward volistandig in
IPuffer 2 geschrieben
Ein Datensatz der Tabelle T1 wird
ts | [geldscht
Delete * From Tl where
Feldl = 'X*'.

ts - [Datenbankwird akiualisiert |

erver 1 schreibl emen Eintrag in
tr - |die Synchronisierungstabelle

Ll Server 1 greift auf den geloschien
Datensatz zu

b elect * From Tl where
Feldl = 'X'.

to - Synchronisationszeitpunkt erreicht, Tabelle T1 im Puffer 2 wird als

ungilig gekennzeichnet {invalidiert)
Qniff auf Tabelle T1

tn - elect * From Tl where .

\ Die Tabelle T1 wird neu in Puffer 2

=k eschrieben

Zeit ¢
3.3.7

Anderungen an Tabellen

Soll eine aktives Dictionary-Objekt gedndert werden, legt das R/3-
System zusitzlich eine iiberarbeitete Version dieses Objektes an, in
das dann die Anderungen eingearbeitet werden. AnschlieBend wird
die iiberarbeitete Version aktiviert und damit die bisher aktive Ver-
sion iiberschrieben. Das R/3-Laufzeitsystem greift grundsétzlich nur
auf die aktive Version eines Datenobjektes zu.

108 ™ 3 Das ABAP-Dictionary

aktive Version
IMandt. [TSEN lAuto:C‘lI

= Anfligen des Feldes , Autord*

aktive Version Uberarbeitete Version
taf~ [Mandt | ISBN | Autor3 Mandt | ISBN | Autor3 | Autord

s = Aktivieren

aktive Version
Mandt | ISBN | Autor3 | Autord

Zeit¥W

Beim Aktivieren eines Objektes wird sowohl die Anderung selbst
als auch die Auswirkung der Anderung auf andere, vom geiinderten
Objekt abhédngige, Objekte gepriift. Die Aktivierung wird nur dann
durchgefiihrt, wenn bei diesen Priifungen keine Inkonsistenzen fest-
gestellt wurden.

abhingige | zAutoren zBestand| |zBestand|zSchlagwom| zhuslethe] [zAusleithe | zKunden |
Tabellen y Y
abhéngige yRVP_ANE | yRVP_ISEN I yRVP_ENR
Datenelemente A

Doméne yRVP_NR

Sind von der Andemng Datenbanktabellen betroffen, muss die Da-
tenbankstruktur der Tabelle an die Definition der Tabelle im ABAP-
Dictionary angepasst werden. Fiir diese Anpassung stehen die fol-
genden Methoden zur Verfiigung:

= Loschen und Neuanlegen:
Bei dieser Methode wird die auf der Datenbank vorhandene Ta-
belle geloscht. Danach wird die {iberarbeitete Version der Tabel-
le im ABAP Dictionary aktiviert und auf der Datenbank erneut
angelegt. In der Tabelle vorhandene Daten gehen verloren.

* Anderung des Datenbank-Katalogs (ALTER TABLE).
Es wird lediglich die Definition der Tabelle auf der Datenbank
gedndert. In der Tabelle vorhandene Daten bleiben erhalten. In-
dizes zur Tabelle miissen aber unter Umstinden neu aufgebaut
werden. Bei Strukturinderungen durch Anderungen des Daten-
bank-Katalogs konnen bei einigen Datenbanksystemen aufwen-
dige interne Reorganisationen der Daten ablaufen.

3.3 Eigenschaften von Tabellen

Abb. 3.24
Aktive und
liberarbeitete
Version

Abb. 3.25
Beispiel fir
abhéngige
Objekte

109

110

= Umsetzung der Tabelle:

Die Datenbanktabelle (Beispielname:: TAB1) wird umbenannt
in QCMTABI. Danach wird die iiberarbeitete Version der Ta-
belle TAB1 im ABAP Dictionary aktiviert und auf der Daten-
bank angelegt. AnschlieBend werden die Daten aus der Tabelle
QCMTABI in die gednderte Tabelle TAB1 zuriickgeschrieben.
Die Indizes zur Tabelle TAB1 werden neu aufgebaut. Die Ta-
belle QCMTABI1 wird geloscht. Hinsichtlich der benétigten Re-
sourcen ist die Umsetzung die aufwendigste Methode, die
Datenbankstruktur der Dictionarystruktur anzupassen.

Welche dieser Methoden vom System zur Anwendung gebracht
wird ist von folgenden Bedingungen abhéngig:

= der Art der Strukturdnderung
= dem verwendeten Datenbank-System
= der Frage, ob schon Daten in der Tabelle vorhanden sind.

Enthilt die Tabelle keine Daten, so wird die vorhandene Tabelle
auf der Datenbank geloscht und neu angelegt. Sind Daten in der
Tabelle vorhanden, so wird versucht die Strukturdnderung durch
ein ALTER TABLE durchzufiihren. Falls das verwendete Da-
tenbanksystem die Strukturinderung nicht durch ein ALTER
TABLE abbilden kann, wird eine Umsetzung durchgefiihrt.

Bei bestimmten Anderungen an der Tabellenstruktur im ABAP-
Dictionary ist keine Anderung der Datenbankstruktur notwendig,
z.B. bei der Anderung der Reihenfolge der Tabellenfelder, wenn
keine Schliisselfelder betroffen sind

Hinweis

Eine Anpassung der Datenbankstruktur sollte nicht wihrend des
Produktivbetriebs durchgefiihrt werden. Zumindest sollten alle Ap-
plikationen, die auf die Tabelle zugreifen, wéihrend der Strukturan-
passung deaktiviert sein. Da der Datenbestand einer Tabelle
wihrend der Strukturanpassung (insbesondere bei Umsetzungen)
nicht konsistent ist, konnen sich Programme beim Zugriff auf diesen
Datenbestand fehlerhaft verhalten!

3 Das ABAP-Dictionary

3.3.8
Anlegen der Tabellen fir das Bibliotheksprojekt

Fiir das Bibliotheksprojekt sind 6 Tabellen anzulegen. Es ist zweck-
méBig in folgenden Schritten vorzugehen:

1. Dominen anlegen
2. Datenelemente anlegen
3. Tabellen anlegen

Die notwendigen Doménen und Datenelemente sind schon in den
Kapiteln ,,Doménen anlegen* (Seite 86) und ,,Datenelemente anle-
gen” (Seite 89) bereitgestellt worden.

Man kann auch zuerst die Tabellen anlegen und Doménen und
Datenelemente in der Vorwértsnavigation erstellen. Dabei geht aber
schnell die Ubersicht verloren und es kommt leicht eine gewisse
Missstimmung auf und schneller ist diese Methode auch nicht.

Vorgehensweise: Tabellen anlegen

Tabellen werden im ABAP-Dictionary angelegt. Starten Sie die
Transaktion SE11 (Werkzeuge - Entwicklung - SE11 Dictionary).

Aktivieren Sie im Einstiegsbild den Auswahlknopf ,,.Datenbank-
tabelle* und tragen Sie im dazugehorigen Eingabefeld den Namen
der Datenbanktabelle ein.

Abb. 3.26
& B aH e MM Dnoo BE @& Anlegen eine

ABAP Dictionary: Einstieg Tabelle
[|

(@) Datenbanktabelle ZBESTAND_TW Er
O View

) Datentyp

) Doméne

) Suchhilfe

() Sperrobjekt l

|@e Anzeigen | |2 Andemn | [OO Anlegen |

Fiillen Sie in der Registerkarte ,,Eigenschaften des Folgebildes die
Eingabefelder ,,Kurzbeschreibung* und ,,Auslieferungsklasse ent-
sprechend der Abb. 3.27 aus.

3.3 Eigenschaften von Tabellen 111

Abb. 3.27
Kurzbeschrei-
bung und Aus-
lieferungsklasse
eintragen

Abb. 3.28
Felder und
Datenelemente
eintragen

112

Dictionary: Tabelle pflegen

| | | @@ I @| Technische Einstellungen ” Indize

Transparente Tabelle e neu(tberarbeitet)
Kurzbeschrelbung Bestandsdaten

Eigenschaften Falder |/ gs-/M |
Letzte Anderung BCUSER 26.08.2003

Entwicklungsklasse Entwicklungsobjektf des AB,
Originalsprache DE

Tabellenart ansparente Tabelle
Auslieferungskiasse ndungstan. (und B gung 1)

[¥] Tabellenpflege erlaubt

Wiihlen Sie dann die Registerkarte ,,Felder* aus und tragen Sie dort
die Feldnamen und die dazugehérigen Datenelemente ein. Wenn die
Spalten ,,Felder, ,,Key* und ,,Feldtyp* ausgefiillt sind, driicken Sie
die ENTER-Taste.

lle Bearbeiten Springen Hilfsmittel Zusatze Umfeld

< 5 10 COR OHEB

Dictionary: Tabelfe pfifegen
I | I |

Transparente Tabelle ZBESTAND_TW inaktiv
Kurzbeschreibung Bestandsdaten

/Eigenschaﬂen/ Felder VW&hrungs—!Mengenfelder |

% |[@]@] [BBE] [vevezeien | 7] [S|E]FE][2] |
Felder Key|Init. |Feldtyp
MANDANT] manpT
ISBN [][zrve ISBN TW
A UFLAGE [|[] |ER¥F AUFLAGE TW
TITEL [1|[] [grvP TITEL TW
|IERSCHEINUNGSJAHR EI D ¥YRVF EJAHR TW
[VERLAG [J|[] |grvE VERLAG TW
|BESTAND [J|[] [xrvEP BESTAND TW
2 USGEL IEHEN] [xrve aus Tw
|KATEGORIE [|[] [ZrRvP KATEGORIE TW
A UTOR1 /] lxrve aANR TW
2 UTORZ 1] lzrve anr TW
5 UTOR3 [J1[] lgrve anr TW

3 Das ABAP-Dictionary

Sichern Sie Ihre Tabelle. Weisen Sie der Tabelle Ihre Entwicklungs-
klasse und Thren Workbenchauftrag zu.

Hinweis: Uber die Schaltfliche ,,Datenelement/Direkter Typ* kann
zwischen dem Anlegen von Feldern unter Verwendung von Daten-
elementen und der direkten Eingabe des Datentyps umgeschaltet
werden. Die direkte Eingabe kann jedoch nicht fiir Schliisselfelder
und Priiffelder benutzt werden.

Zum Schluss sind noch die technischen Eigenschaften der Tabelle
festzulegen. Wihlen Sie dazu das Menii ,,Springen = technische
Einstellungen®.

(] I Ce@ CHR Do BE @R

Dictionary: Technische Einsteliungen pflegen

I Uberarbeitet<->Aktiv 4

Datenart | Beschreibung

Name ZBESTAND TW
Kurzbeschreibung Bestandsdaten St laten, tr ente Tabellen
Letzte Anderung BCUSER APPL1 Bewegungsdaten, Transparente Tabellen
Status neu APPLZ Organisation und Customizing
USER Kunden-Datenart
Logische Speicher-Parameter /- USER1 Kunden-Datenart
Datenart APPLO
GraRenkategorie o E] System-Datenarten El
\\
Pufferu:
o —
@) Pufferung nicht erlaubt j Grkat [Anzahl erwarteter Datenshtze der Tabelle
- usgeschaltet 0 bis 1.500
3 1 1.500 bis 6.100
O Pufferung eingeschaltet i i it iidn
3 24.000 bis 96000
4 98.000 bis 7.800.000

Durch die Auswahl der Datenart wird der Speicherort der Tabelle in
der Datenbank bestimmt. Die Grofenkategorie legt fest, wie viel
Speicherplatz bereitgestellt wird.

Sichern Sie jetzt die technischen Einstellungen der Tabelle. Ver-
zweigen Sie mit der Schaltflidche ,,zuriick in den Bildschirm ,,Dicti-
onary: Tabelle pflegen®. Aktivieren Sie dort Thre Tabelle.

@ ® B Cce@ oM
Dictionary: Tabelfe pflegen

[HE]|) | &) | &) S0 | 6

Transparente Tabelle ZBESTAND_TW neu
Kurzbeschreibung Bestandsdaten

3.3 Eigenschaften von Tabellen

Direkte Eingabe
des Datentyps

Abb. 3.29
Festlegen der
technischen
Einstellungen

Abb. 3.30
Aktivieren der
Tabelle

" 713

Ly

Tabelle 3.5
Datenbank-
tabelle
ZBESTAND

114

Aufgabe:
Legen Sie die Tabellen fiir das Bibliotheksprojekt an!
Tabelle ZBESTAND (Bestandsstammdaten)

Auslieferungsklasse: A
Datenart: APPLO; Grofenklasse: 0; Pufferung nicht erlaubt

Feld Key Datenelement * Priiftabelle ®

MANDANT] MANDT TO00

ISBN M YRVP_ISBN

AUFLAGE YRVP_AUFLAGE

TITEL YRVP_TITEL

ERSCHEINUNGS YRVP_EJAHR

JAHR

VERLAG YRVP_VERLAG

BESTAND YRVP_BESTAND

AUSGELIEHEN YRVP_AUS

KATEGORIE YRVP_KATEGORIE ZKATEGORIE

BEREICH YRVP_NAME

AUTORI1 YRVP_ANR ZAUTOREN

AUTOR2 YRVP_ANR ZAUTOREN
(Kardinalitit:
C:CN)

AUTOR3 YRVP_ANR ZAUTOREN
(Kardinalitit:
C:CN)

Tabelle ZAUTOREN (Autorenstammdaten)
Auslieferungsklasse: A
Datenart: APPLO; GroBenklasse: 0; Pufferung nicht erlaubt

* In den Tabellen sind die Datenelementnamen aus der Ubung des Ka-
pitels ,,Datenelemente anlegen* (Seite 89) angegeben. Alternativ kon-
nen Sie auch die Datenelemente der Buch-CD benutzen. Hingen Sie
dazu die Zeichenkette _tw an die Datenelementnamen an.

* Die Angabe der Priiftabelle wird zum Anlegen der Fremdschliissel-
beziehungen, das nach dem Anlegen der Tabellen gezeigt wird, beno-
tigt.

3 Das ABAP-Dictionary

Feld Key Datenelement Priiftabelle
MANDANT M MANDT TO000
AUTORENNR | YRVP_ANR

NAME YRVP_NAME

VORNAME1 YRVP_VNAMEI1
VORNAME2 YRVP_VNAME2

GEBDAT YRVP_GDAT

LAND YRVP_LAND TO05

Tabelle ZKUNDEN (Kundenstammdaten)

Auslieferungsklasse: A

Datenart: APPLO; Grofenklasse: 0; Pufferung nicht erlaubt

Feld Key Datenelement Priiftabelle
MANDANT M MANDT TO00
KUNDENNR M YRVP_KNR

NAME YRVP_NAME
VORNAMEL1 YRVP_VNAMEI1
VORNAME2 YRVP_VNAME2
EINTRITTSDATUM YRVP_EINTRITT

LAND YRVP_LAND TO05
PLZ YRVP_PLZ

WOHNORT YRVP_ORT

STRASSE YRVP_STRASSE
TELEFON YRVP_TEL

E_MAIL YRVP_MAIL

Tabelle ZAUSLEIHE (Ausleihdaten)

Auslieferungsklasse: A

Datenart: APPL1; GroBenklasse: 0; Pufferung nicht erlaubt

3.3 Eigenschaften von Tabellen

Tabelle 3.6

Tabelle

ZAUTOREN

Tabelle 3.7

Tabelle

ZKUNDEN

115

Tabelle 3.8
Tabelle
ZAusleihe

Tabelle 3.9
Tabelle
ZKATEGORIE

116

Feld Key Datenelement Priiftabelle
MANDANT | MANDT TO000
KUNDENNR | YRVP_KNR ZKUNDEN
ISBN | YRVP_ISBN ZBESTAND
AUSLEIHDAT | YRVP_ADATUM
RUECKGABEDAT YRVP_RDATUM

ANZAHL YRVP_ANZ

Tabelle ZKATEGORIE (Giiltige Katalogeintriige)
Auslieferungsklasse: A
Datenart: APPLO; GroBenklasse: 0; Pufferung nicht erlaubt

Feld Key Datenelement Priiftabelle
MANDANT M MANDT T000
KATEGORIE M YRVP_KATEGORI

E
BESCHREIBUNG YRVP_BESCHR

Vorgehensweise: Anlegen der Fremdschliisselbeziehungen

Mit Fremdschliisseln kénnen Verbindungen zwischen R/3-Tabellen
im ABAP-Dictionary hinterlegt werden.

Starten Sie die Transaktion SE11 (Werkzeuge > ABAP-Work-
bench = Entwicklung = SE11 ABAP Dictionary) und rufen Sie die
Tabelle, in die eine Fremdschliisselbeziehung eingetragen werden
soll (Fremdschliisseltabelle), zum Andern auf.

Stellen Sie den Cursor in das Priiffeld und klicken Sie die Schalt-
flache ,,Fremdschliissel* an.

3 Das ABAP-Dictionary

Dictionary: Tabelle pflegen
| | IB | | @ITEch«n:schﬂ Einstellungen | Indizes... |[Append-Stru

Transparente Tabelle
Kurzbeschreibung

ZBESTAND_TW aktiv
Bestandsdaten

Eigensnhaﬂen/y Felder }/Wshmng |

Neue Zeilen I I;ﬂ | Datenelerent / Direkter Typ
—IFekhr Keylinit. IFe]dlyp Date... |Lange |[DezSt.. [Proftabelle
3 3] LT 3 0
[#] e 10 0|
-ﬁ HUMC 4 0
O ICHAR 65 1]
ﬁ HUMC A 0|
| ICHAR 35 0|
ﬁ HUMC 5 0
O N 5 0|
ﬁ [CHAR 35 0
O HUMC 10 0|
ﬁ (NUMC 10j 0|

Kurzbeschreibung
Prifabelle 1

EremdschiTab Fremdechifeld lgenerisch _[Konstante
ZKUNDEN_TWMANDANT ZBESTAND_TW MANDANT O []
ZKUNDEN_TW[K ZBESTAND_TW [AUTOR1 O

[A [I
ofm 3 Vorschlag priifen

[#] Prifung erwinscht

oo

Kd|Kurzbeschreibung

Fehlernac|

C Jeder Satz der Priftab. hat hochstgll einen abhangigen Satz
N Jeder Satz der Priftab. hat mindestgns einen abhangigen Satz
Semantische Eigenschaften 1 Jeder Satz der Priftab. hat genau efpen abhangigen Satz
Art der Fremdschilsselfelder) nicht spezifizient
@) keine Schiisselfelder-kandidaten
) Schlisselfeldert-kandidaten
O Dkl Wald. einaf T

3G 4
I—> -_mrag T Priffeid mid sein

Eintrag im Priffeld kann vorhanden sein

Kardinalitat

7 st @ [2))3

3.3 Eigenschaften von Tabellen

Abb. 3.31
Anlegen einer
Fremdschlis-
selbeziehung

Abb. 3.32
Details der
Fremdschliis-
selbeziehung
festlegen

" 717
=
u

Abb. 3.33
Die Priiftabelle
ist festgelegt

118

& 1B 0@ DHR Do BFE @&

Dictionary: Tabelle pflegen
DD | | D | D | | Technische Einstellungen ” Indizes. .“Append-S!r

Transparente Tabelle ZBESTAND_TW aktiv
Kurzbeschreibung Bestandsdaten
Elgenschaﬂsn/ Felder }/ gs-M]
BREEE Newe Zeien | [7] [B|E|ER] | Datenelement / Direkter Typ
Felder ey|init. [Feldtyp |Date...|Lange [DezSt...|Prifabelle
MANDANT [#]|] panoT CLET 3 0|
_IEI-I [[xrve_1sBN M 'JWHC 10 0|
AUPLAGE O| O [xrve_avrrace Tw Ll 4 0|
_% - T‘jﬁraﬁ TITEL TW c_m; TN o
i} || O] [xeve esanr mw [wumc 4 0
Ol [grve verzac ™ [cHAR 35 0|
O10 fxrve_sesTanp W e 5| 0
0|0 kerve_avs ™ HUMC 5 0|
| [grve raTEGORIE TW HAR 35 T~
OO0 [grve_awr e 10| QEKUN‘DEN ™ 2
)] S = == =

Legen Sie in dhnlicher Art und Weise die Fremdschliisselbeziehun-
gen zu den Datenbanktabellen des Bibliotheksprojektes an. Sie fin-
den die Priiffelder und die zuzuordnenden Priiftabellen in den
Tabellen 3.5 bis 3.9.

3.3.9
Anlegen und Einbinden von Suchhilfen

Suchhilfen werden benétigt, um dem Anwender iiber die F4-Hilfe
zusitzliche Informationen zu einem Eingabefeld zu iibergeben. Ge-
gebenenfalls werden der Suchhilfe Eingabewerte, die der Benutzer
bereits in seine Eingabemaske eingetragen hat, iibergeben. Diese
werden dann von der Suchhilfe bei der Auswahl der Suchhilfedaten
beriicksichtigt. Suchhilfen konnen verbunden werden

= mit einer Tabelle
Die Suchhilfe wird angezeigt, wenn der Benutzer die F4-Hilfe
zu einem Feld anfordert, dem die Tabelle mit der Suchhilfe als
Priiftabelle zugeordnet ist.

= mit einem Datenelement
Die Suchhilfe wird angezeigt, wenn der Benutzer die F4-Hilfe
zu einem Feld anfordert, das mit dem Datenelement, dem die
Suchhilfe zugeordnet ist, angelegt wurde.

3 Das ABAP-Dictionary

" mit einem Tabellenfeld:
Die Suchhilfe wird angezeigt, wenn die F4-Hilfe zu diesem Feld
angefordert wird.

Abb. 3.34
4 8 9d Beispiel fir eine
Programm YKO04DBAS_TW [Suchhilfe, die an
3 Erachirkungen | die Tabelle
71
Auswahibildschirm ORI EEEEDIR ZAUTOREN an
ISBN [autorennr. Name Vorname 1 |Vornan gebunden wurde
Buchtitel Scheer August-wilhe...
scy C foooomaoioz kriger sesera
Kateudtie 0000000103 Uliich Michael
0000000104 Keller Gerhard
0000000105 Teurel Thomas
0000000108 Matzke Bermnd
0000000107 Kokot Friedrich
0000000108 Mdhren Regine
0000000102 Saaro Helmut
0000000110 will Liane
0000000111 Hienger Christiane
0000000112 Stragenb... Frank
0000000113 Geild Marcus
Soltysiak Roland

Vorgehensweise: Suchhilfe anlegen

Starten Sie die Transaktion SE11 (Werkzeuge > ABAP Workbench
- Entwicklung = SE11 ABAP Dictionary). Aktivieren Sie im Ein-
stiegsbild den Auswahlknopf ,,Suchhilfe* und legen Sie den Namen
der Suchhilfe fest. Dieser muss sich im Kundennamensbereich be-
finden (,,z oder ,,y* als ersten Buchstaben).

. Abb. 3.35
(V] B dH e@e DHE NUoO FR @ Suchhilfenamen
festlegen

ABAP Dictionary: Einstieg

EEHEEG @

(O Datenbanktabelle Es‘
) View

) Datentyp

omane
@) Suchhilfe ZAUTOREN_TW
) Sperobjekt
16&’ Anzeigen] |ﬁ Andem | JD Anlegen |

3.3 Eigenschaften von Tabellen

119

Abb. 3.36
Auswahl der
Suchhilfeart

Abb. 3.37
Festlegen der
Eigenschaften

der Suchhilfe

120 ™

Aktivieren Sie im Folgebild den Auswahlknopf ,,Elementare Such-
hilfe* (iiber ,,Sammelsuchhilfen konnen mehrere elementare Such-
hilfen zusammengefasst werden)

ammelsuchhilfa

C -

Im Bild ,,Dictionary: Suchhilfe pflegen* werden die Eigenschaften
der Suchhilfe festgelegt.

< : 18 ceoe g | avelle, aus der die
Dictionary: Suchhiife pflegen Suchhilfeparameter geholt
HE PRE | EEEE | EEE werden)
Elementare Suchhite ZAUTOjEN W ER
Kurzheschreibung Suchhife Autotennummer-Autorenname N
Einstellen des
D | Dialogverhaltens
Datonbeschafiung,” Dislogwrhatton,” _b=— _ J
Selektionsmethos ZAUTCREN TW Dtalogtyp Sofortige Werteanzeige]
Testabelle Kurzanwahl Ia!o abhangig von erlemen ge
Suchhife-Exit
¥ || =
Pa \
chhilfaparameter IME [EXP [LPos [SPos [SAnz [DaterNg ... [Defaultwe
UTORENNE: v [[¢] 1 1 OO feve ™ O [=]
HAME OOk k O [keve magh O L)
NKonnane1 DOk b O 1] H
@ s OOk ‘i VEAMEZ TW [m]
E=mE (] M

® Importparameter
Der Inhalt des Suchhilfeparameters in der Eingabemaske wird
von der Suchhilfe importiert und bei der Auswahl der Daten-
sétze fiir die F4-Hilfe beriicksichtigt.

= Exportparameter
Der Inhalt der vom Benutzer in der F4-Hilfe ausgewihlten
Eintrages wird von der Suchhilfe an das entsprechende Einga-
befeld exportiert.

= Lpos (Listenposition)
Position desSuchhilfeparameters in der F4-Ausgabeliste.

= Spos (Position im Selektionsbildschirm)
Position des Suchhilfeparameters in der Registerkarte ,,Ein-
schrinkungen® der Suchhilfe.

3 Das ABAP-Dictionary

Legen Sie folgende Suchhilfen an:
1. Suchhilfe ZAUTOREN.
= Selektionsmethode: ZAUTOREN

= Parameter

Suchhilfeparameter | Import | Export | LPos | SPos
AUTORENNR v v 1 1
NAME 2 2
VORNAME1 3 3
VORNAME2 4 4

2. Suchhilfe ZKATEGORIE
= Selektionsmethode: ZKATEGORIE

= Parameter

Suchhilfeparameter | Import | Export | LPos | SPos
KATEGORIE ™ | 1 2
LANGTEXT ™ 2 1

3. Suchhilfe ZISBN
= Selektionsmethode: ZBESTAND

= Parameter

Suchhilfeparameter | Import | Export | LPos | SPos
ISBN ™ ™ 1 1
TITEL 2 2

Losung: ZAUTOREN_TW
ZKATEGORIE_TW
ZISBN_TW

Vorgehensweise: Anbinden der Suchhilfe an eine Tabelle

Die Suchhilfe ZAUTOREN_TW soll an die Priiftabelle ZAUTOR-
EN_TW angebunden werden. Die Suchhilfe wird dann fiir die Fel-
der angezeigt, denen die Priiftabelle zugeordnet ist (z.B.
ZBESTAND-Autorl ... ZBESTAND-Autor3).

1. Starten Sie das ABAP-Dictionary (Werkzeuge > ABAP Work-
bench = Entwicklung = SE11 ABAP Dictionary) mit der Ta-
belle ZAUTOREN_TW.

2. Wibhlen Sie das Menii ,,Springen = Suchhilfe = Zum Feld“.

3.3 Eigenschaften von Tabellen

121

122

1 Springen Hilfsmittel Zusatze

Technische Einstellungen Strg+Umsch+F9 1 83 FE] @

chﬁonary_. Tal] Append-Struktur...

Indizes... Strg#F5

ED | Texttabelle he Einstellungen || Indize:
T | FEremdschiussel

Transparente Tabelle [~ =t I
Kurzheschreibung Objelikatalogeinirag Zur Tabelle

3. Tragen Sie im Bild ,,Suchhilfe zur Tabelle ...“ den Namen der
zuzuordnenden Suchhilfe ein.

[= Suchhilfe zur Tabelle ZAUTOREN TW

Suchhilfename zautoren_tw (=

4. Lassen Sie sich gegebenenfalls einen Vorschlag erzeugen und
tibernehmen Sie die Suchhilfe.

Suchhilfename ZISEN_TV E? | Vorschlag erzeugen |
Feldzuordnung
Suchhilfeparameter Tabellenname Feld Konstante
ISEN ZBESTAND_TW ISBN =]
[0 | 14][»]

|

5. Aktivieren Sie danach die Tabelle

Vorgehensweise: Anbinden der Suchhilfe an ein Datenelement

Die Suchhilfe ,,ZISBN_TW* soll an das Datenelement YRVP_-
ISBN_TW angebunden werden. Die Suchhilfe wird dann fiir alle

Felder, die dieses Datenelement nutzen, bereitgestellt. Sie konnen
wie folgt vorgehen:

1. ABAP-Dictionary (Werkzeuge > ABAP Workbench - Ent-
wicklung = SE11 ABAP Dictionary) starten,

2. Auswahlknopf DATENTYP aktivieren, Name des Datenele-
mentes in das Eingabefeld DATENTYP schreiben,

3 Das ABAP-Dictionary

Drucktaste ANDERN driicken,

4. Suchhilfe und Parameter entsprechend nachfolgender Abbil-
dung eintragen,

5. Datenelement aktivieren.

@’I B9 ead QHNE noo BR @m

Dictionary: Datenelement pflegen

E0 FEE 8 BEN0 | e t
e e -

Eigenschafien » Definition | Feldbezeichner

(Daanye >
(@) Elementarer Typ
(2} Doméne TRVP_NR_TW Ziernfeld (10)
Datantyp HUMC
Linge 10 Dezimalstelien [}
() Eingebauter Typ Datentyp
Lange o Dezimalstelien o
() Referenatyp
Referenz auf
Eigenschaften Buchhilfe
Paramater-id Name ZISBN TU [=
Default-Komponentanname Paramaler ISEN
[Anderungsbeleg

Vorgehensweise: Anbinden der Suchhilfe an ein Feld

Die Suchhilfe ,ZISBN_TW* das Tabellenfeld ISBN der Tabelle
ZBESTAND_TW angebunden werden. Die Suchhilfe wird dann ge-
nau fiir dieses Feld bereitgestellt.

1. Starten Sie das ABAP-Dictionary (Werkzeuge > ABAP Work-
bench = Entwicklung - SE11 ABAP Dictionary) mit der Ta-
belle ZBESTAND_TW.

2. Stellen Sie im Folgebild ,,Dictionary: Tabelle pflegen* den Cur-
sor in das Feld, an das die Suchhilfe angebunden werden soll.
Wihlen Sie das Menii Springen = Suchhilfe 2 Zum Feld.

& T Strg+Ums: 00 BE @B
e~ | Append-Strukiur.
Dictionary: Tabe| dese e
E]E | @@ Tertabelle e Elnmllungen] [Indizes. ."pram!-suunur]
Eremdschidssel
e Tehells Suchhiife .| Zum Feld I
Objekikatalogelnirag | zwTahene |
&
Elgenschaften FF G
Opline-Handbuch Sirg+F8 W
i Zurdck F3 =

3.3 Eigenschaften von Tabellen

123

3. Tragen Sie im Bild ,,Suchhilfe zum Feld ... den Namen der
zuzuordnenden Suchhilfe ein.

= Suchhilfe zum Feld ZBESTAND _

Suchhilfename ZISBN_TUW

Suchhilfename ZISBH_TW ES' | Vorschlag erzeugen I

Feldzuordnung

Suchhilfeparameter abellenname Feldname Konstante
ISEN ZBESTAND_TW ISEN E
=
[0l I I«

|

4. Lassen Sie sich gegebenenfalls einen Vorschlag erzeugen und
tibernehmen Sie die Suchhilfe.

5. Aktivieren Sie danach die Tabelle

Binden Sie die in der vorherigen Ubung angelegten Suchhilfen ent-
m sprechend der Tabelle an:

Suchhilfe Anbindung

ZISBN IDatenelement YRVP_ISBN

ZAUTOREN Tabelle ZAUTOREN

7ZKATEGORIE Tabelle ZKATEGORIE
3.3.10

Tabellen mit Werten laden

Um nun in die von Thnen angelegten Tabellen
= zBestand

= zAutoren

= zKunden

= zAusleihe

= zKategorie

124 3 Das ABAP-Dictionary

einige Testdaten zu laden, Starten Sie das Programm YDATEN_-
TW. Dieses Programm fiillt auch die Mustertabellen

= zBestand_tw,

= zAutoren_tw,

= zKunden_tw,

= zAusleihe_tw und
= zKategorie_tw.

des Bibliotheksprojektes mit Daten.

3.3.11
Ubungsaufgaben

Hinsichtlich der Zugriffe auf die Datensétze der Tabellen des Biblio-
theksprojektes gelten die Angaben aus Tabelle 3.11.

Datenbank- hiufigster hiufige Anzahl zu erwar- Tabelle 3.11
tabelle Zugriff Zugriffe tender Datensiitze Zugriffe auf die
- Datenbank-
zBestand ISBN Titel >> 1000 tabellen
Kategorie
Autorl,2,3
zAutoren Autorennr Name >> 1000
zAusleihe Kundennr ISBN >> 1000
Rueckgabedat
zKategorie Kategorie <50
zKunden Kundennr >> 1000
Schreibende Zugriffe:

Auf die Tabelle zBestand erfolgt pro Ausleih- und Riickgabevor-
gang je ein schreibender Zugriff um das Feld ,,ausgeliehen* zu aktu-
alisieren. Dieses Feld enthilt die Anzahl der ausgeliechenen Biicher
zu einer ISBN.

In der Tabelle zAusleihe wird bei jedem Ausleihvorgang ein neuer
Datensatz erzeugt. Bei jedem Riickgabevorgang wird ein Datensatz
geloscht.

Die Tabellen zAutoren, zKategorie, und zKunden werden nur selten
gedndert.

3.3 Eigenschaften von Tabellen 125

126

Lesende Zugriffe:
Lesende Zugriffe auf die Tabellen erfolgen durch die Recherche-
funktion. Am hiufigsten werden folgende Recherchen durchgefiihrt:

1. Recherche nach Autoren
Der Rechercheur gibt den Namen eines Autors ein. Das Pro-
gramm ermittelt in der Tabelle zAutoren die Autorennummer
und liest dann in der Tabelle zBestand alle Datensitze, in de-
nen in den Feldern Autorl, Autor2 oder Autor3 diese Auto-
rennummer eingetragen ist.

2. Titel und Autor.
In der Tabelle zBestand werden alle Biicher mit dem gesuch-
ten Titel ermittel. Danach werden die Felder Autorl Autor2
und Autor3 in der Tabelle zAutoren {iberpriift

Durchschnittlich erfolgen durch die Recherche in der Tabelle
zBestand pro Ausleihvorgang 12 lesende Zugriffe (6 iiber das Feld
ISBN, 3 iiber das Feld Titel und 3 iiber das Feld Autorl, Autor2 oder
Autor3).

Die Tabelle zKategorie dient als Priiftabelle fiir das Feld ,,Katego-
rie* der Tabelle zBestand. Der Zugriff auf zKategorie erfolgt dem-

zufolge ausschlieBlich tiber den Primirindex.

A 1. Welche Tabellen konnten gepuffert werden?

Datenbank- keine Vollstiindige generische Einzelsatz-
tabelle Pufferung Pufferung Pufferung pufferung

zBestand
zAutoren
zAusleihe
zKategorie

zKunden

A 2. Zu welchen Tabellen konnten zur Verbesserung der Zugriffs-
zeiten Sekundérindizes angelegt werden?

3 Das ABAP-Dictionary

Datenbanktabelle Sekundir-index zum Tabellenfeld

zBestand

zAutoren

zAusleihe

zKategorie

zKunden

A 3. Stellen Sie die Pufferung fiir die Tabelle zKategorie entspre-
chend der Losung fiir Aufgabe 1 ein.

A 4. Legen Sie zu den Tabelle zBestand, zAutoren und zAusleihe
Sekundirindizes entsprechend der Losung zu Aufgabe 2 an.

A 5. Die Struktur einer Tabelle, die bereits Daten enthilt, wurde
im ABAP-Dictionary gedndert. Welche der folgenden Aussagen ist
richtig:

O

Die Struktur der Tabelle auf Datenbankebene muss generell
nicht an die Struktur der Tabelle im ABAP-Dictionary ange-
passt werden. Die Datenbank greift immer {iber das ABAP-
Dictionary auf die Daten zu.

Die Anpassung erfolgt durch Léschen und Neuanlegen der Da-
tenbanktabelle

Die Anpassung erfolgt durch eine Anderung im Datenbankka-
talog (ALTER TABLE), wenn die Datenbank die Strukturinde-
rung iiber ALTER TABLE durchfiihren kann.

Ist die Anpassung iiber eine Anderung des Datenbankkataloges
nicht moglich, muss eine Umsetzung vorgenommen werden.

A 6. Was ist im SAP-Sprachgebrauch unter einer Priiftabelle zu

verstehen?

O Eine Wertetabelle, die in der Domine eines Feldes angelegt
wurde

O Die Tabelle, fiir die ein Fremdschliissel definiert wurde

O Die Tabelle, auf die sich der Fremdschliissel bezieht

O Die Tabelle, die einem oder mehreren Feldern einer Fremd-

schliisseltabelle zur Priifung von Eingabewerten zugeordnet ist.

3.3 Eigenschaften von Tabellen

127

128

A 7. Welche Aussage hinsichtlich der Pufferung ist richtig?

O

Einzelsatzpufferung ist nur sinnvoll, wenn hiufig mit der An-
weisung ,,Select single ...““ auf einen bestimmten Datensatz zu-
gegriffen wird.

Wenn auf eine Datenbanktabelle mehr schreibende als lesende
Zugriffe erfolgen, sollte diese gepuffert werden.

Bei Zugriffen auf gepufferte Tabellen erfolgt immer dann ein
,obull Table Scan“, wenn der Zugriff iiber ,Nicht-
Schliisselfelder* erfolgt oder das linke Schliisselfeld nicht ange-
geben ist.

A 8. Welche Aussagen treffen zu?

O

Das Priiffeld ist das Feld der Fremdschliisseltabelle, an das eine
Priiftabelle angebunden ist, d.h. dessen Inhalt mit der Priiftabelle
abgeglichen werden soll.

Der Fremdschliissel enthilt in der Regel alle Schliisselfelder der
Priiftabelle. Fremdschliisselfelder konnen auch ,Nicht-
Schliisselfelder der Fremdschliisseltabelle sein.

Fremdschliisselfelder sind Felder der Fremdschliisseltabelle, die
in der Priiftabelle mit dem Primérindex abgeglichen werden.

Die Kardinalitdt 1:CN bei Fremdschliisselbeziehungen gibt an,
dass

= das Priiffeld nicht leer sein darf (1:CN).

= die Fremdschliisseltabelle beliebig viele abhéingige Daten-
séitze enthalten kann (1:CN).

Abhingige Datensitze haben in den Fremdschliisselfeldern die
gleichen Inhalte wie die Schliisselfelder der Priiftabelle.

In einer Struktur konnen dauerhaft (d.h. auf der Datenbank) Da-
ten gespeichert werden.

Der Primirindex einer Tabelle wird durch die Felder, die beim
Anlegen der Tabelle als Schliisselfelder deklariert wurden, ge-
bildet.

Der Primirindex wird automatisch angelegt.

Sekundérindizes miissen manuell im ABAP-Dictionary angelegt
werden. Sie konnen die Performance erheblich verbessern.

3 Das ABAP-Dictionary

3.3.12
Lésungen

Al Welche Tabellen konnten gepuffert werden?

Datenbank- keine Vollstindige generische Einzelsatz-
tabelle Pufferung Pufferung Pufferung pufferung

zBestand X
zAutoren X
zAusleihe X

zKategorie X
zKunden X
Begriindungen

Keine Pufferung der Tabelle zBestand

Zur Tabelle zBestand wurde kein Puffer angelegt. Die Tabelle ist re-
lativ groB3 (>> 1000 Datensitze). Der Zugriff erfolgt in den meisten
Fillen iiber den Primérindex. Durch die bindre Suche ist dieser
Zugriff wahrscheinlich auch ohne Pufferung schnell genug. Sollten
dennoch Performanceprobleme auftreten, kann eine vollstindige
Pufferung in Erwigung gezogen werden.

Ebenfalls hiufig wird iiber die Felder Titel, Autorl, Autor2 und
Autor3 auf die Datensitze zugegriffen. Da diese Felder aber nicht
Bestandteil des Primérindexes sind, miisste hier vom System ein
,,Full Table Scan* durchgefiihrt werden. Bei der Groe der Tabelle
ist es sicher besser, entsprechende Sekundirindizes anzulegen.

Keine Pufferung der Tabelle zAutoren
Mit der gleichen Begriindung wie fiir Tabelle zBestand wurde auch
fiir diese Tabelle kein Puffer angelegt.

Keine Pufferung der Tabelle zAusleihe
Die Anzahl schreibender Zugriffe auf diese Tabelle ist hoher als die
der lesenden Zugriffe. Damit ist eine Pufferung nicht sinnvoll.

Vollstindige Pufferung der Tabelle zKategorie

Bei der Tabelle zKategorie handelt es sich um eine sehr kleine Ta-
belle (< 50 Datensitze). Hier bringt die vollstindige Pufferung si-
cher einen Performancegewinn.

3.3 Eigenschaften von Tabellen

129

130

Keine Pufferung der Tabelle zKunden

Die Tabelle zKunden wird nicht gepuffert. Auf diese Tabelle wird
nur beim Ausleihvorgang zuriickgegriffen, um das Feld ,,Kundennr*
zu priifen. Dafiir wird der Zugriff auch ohne Pufferung schnell ge-
nug sein. Sollte es dennoch zu Performanceproblemen kommen,
kann die vollstindige Pufferung eingeschaltet werden.

A2, Zu welchen Tabellen konnten zur Verbesserung der Zugriffszeiten Sekun-
darindizes angelegt werden?

Tabelle Sekundirindex zum Tabellenfeld
ZBestand Titel, Autorl, Autor2, Autor3, Kategorie
ZAutoren Name

zAusleihe Rueckgabedat, ISBN

A3. Stellen Sie die Pufferung fiir die Tabellen zKategorie und zSchlagworte
entsprechend der Losung fiir Aufgabe 1 ein.

Vorgehensweise: Pufferung einschalten

Starten Sie die Transaktion SE11 (ABAP-Dictionary) und rufen Sie
die Tabelle, zu der die Pufferung eingeschaltet werden soll, zum
Andern auf. Klicken Sie im Bild ,,Dictionary: Tabelle pflegen* die
Schaltfldche ,,Technische Einstellungen®.

B IH AR DHE ODLO HE @8
Dictionary: Tabelle pflegen

| | EI [] | Technische Einstellungen]@

Technische E

Transparente Tabelle ZSCHLAGWORTE_TW aktiv
Kurzbeschreibung Schiagwortkatalog

/ Eiganschaﬂen) Felder VWéhrungs—fMenganfeldar |

¥ [ﬁ| E"@ | Neue Zeilen | W f@"@@@ | Datenelement / Direkter 1
Felder Key|Init. [Feldtyp Date...|Lange |DezSt...
MANDANT [] panpT CLNT 3 0

| 15BN [] [xrve 15BN TW {umc 10 0
‘qcmmmn‘r [] [¥RVP SCHLAGWORT TW]anR 35 0

Im Folgebild ,,Dictionary: Technische Einstellungen pflegen* kon-
nen Sie die verschiedenen Pufferungsarten einstellen. Sichern Sie
dann die Anderungen und Aktivieren Sie die Tabelle.

3 Das ABAP-Dictionary

T @eaa SHE OO0 IR @n
Dictionary: Technischeginstellungen pflegen

i Ubaral‘bsitelc-)mi\fl SiChern

narll aktivierenmasorr: Transparente Tabelle
Kurzbeschreibung Schlagwortkatalog

Letrte Anderung BCUSER 15.10.2003

Status aktiv gesichert

Logische Speicher-Parameter

Datenart APPLO Stammdaten, transparente Tabellen
Grogenkategorie 0 Erwartete Datensatze: 0 bis 12.000
Pufferung

O Pufferung nicht erlaubt

Mmalm
(@) Pufferung eingeschaltet
\

— —
Puf sart
Einzelsatze gepuffert
generischer Bereich gepuffert Anzahl Schiisselfelder It [ﬂ
Nwéndig gepuffert
\ /

A 4. Legen Sie zu den Tabelle zBestand, zAutoren und zAusleihe Sekundirin-
dizes entsprechend der Losung zu Aufgabe 2 an.

Vorgehensweise: Sekunddrindex anlegen

Starten Sie die Transaktion SE11 (ABAP-Dictionary) und rufen Sie
die Tabelle, zu der ein Sekundirindex angelegt werden soll, zum
Andern auf.

@ e 10 0@ DMK NNAD BF OB
Dictionary: Tabelle pflegen

== | @@ ()= | (&) (&)) (@) | [BE) [@] [Technische Einsteliungen | [indizes... | [App
Transparente Tabelie %_ﬂ aktd

Kurzbeschreibung Schiagwortkatalog

Eigenschaften }” Felder |~ Wahrungs-/Mengenfelder |

¥ .. B8] [Newezsien | [H] E'ﬂlﬁg‘ | Datenelement / Direkter Typ

—IFe1der ey |init. |Feldlyp Date...|Lange [DezSt. |Priftabelle
NDANT [+] DENDT ICLNT 3 0

ISBH | [grve_1sEN TW NUMC 10 0
|sc|mmmm' [#]] [xrvE scHLAGWORT TW (CHAR 35 0
Im Folgebild ,Index anlegen“ vergeben Sie fiir den anzulegenden
Index eine 3-stellige Indexkennung, z.B. ,,001*. Die Kennung ,,0 ist

3.3 Eigenschaften von Tabellen

131

132

fiir den Primédrindex vergeben und darf nicht benutzt werden. Der
Indexname auf der Datenbank setzt sich aus dem Tabellennamen
und der Indexkennung zusammen. Im Beispiel lautet der Indexname
ZSCHLAGWORTE_TW~001.

Tahellenname ZSCHLAGWORTE TW
Indexkennung 001

Im Folgebild ,,Dictionary: Index pflegen* geben Sie einen Kurztext
ein, legen die Eigenschaften des Sekundirindizes fest und wihlen
ein oder mehrere Felder aus, zu denen der Sekundérindex angelegt
werden soll.

t 08 CO@ ano0 BE OB
Dictionary: Index pflegen

EE| [EEE @@

Indexkennung ZSCHLAGWORTE_TW - 001
Kurzbeschreibung Index zum Feld Schiagwort
Letzte Anderung BCUSER 15.10.2003 Originalsprache DE Deutsch
Status neu nicht gesichert Entwicklungskiasse TAS
Index existiert nicht auf Datenbanksystem MSSQL

(@) Non-Unique-Index

{6) Index auf allen Datenbanksystemen :

O auf ausgewshlten Datenbanksystemen L |

) kein Datenbankindex
O Unique-Index (D i

¥ |[@E] [BE) [Tavelenteider

Indexfelder

Feldname Kurzbeschreibung D
SCHLAGWORT [Schlagwort 1

B Non-Unique-Index
Der Non-Unique-Index ldsst zu, das mehrere Datensitze ange-
legt werden konnen, die in allen Schliisselfeldern des Sekundir-
indizes gleiche Feldinhalte haben. Diesen Index konnen Sie auf
allen Datenbanksystemen oder auf ausgewihlten Datenbanksys-
temen anlegen. Zudem besteht die Moglichkeit den Index nicht
auf der Datenbank zu speichern.

3 Das ABAP-Dictionary

AS.

Unique-Index

Der Unique-Index erlaubt nicht, dass mehrere Datensitze ange-
legt werden, die in allen Feldern des Sekundirindizes die glei-
chen Feldinhalte haben. Der Unique-Index muss zwingend auf
der Datenbank angelegt werden.

Die Struktur einer Tabelle, die bereits Daten enthilt, wurde im ABAP-

Dictionary gedandert. Welche der folgenden Aussagen ist richtig:

O Die Struktur der Tabelle auf Datenbankebene muss generell
nicht an die Struktur der Tabelle im ABAP-Dictionary ange-
passt werden. Die Datenbank greift immer iiber das ABAP-
Dictionary auf die Daten zu.

O Die Anpassung erfolgt durch Loschen und Neuanlegen der Da-
tenbanktabelle

@ Die Anpassung erfolgt durch eine Anderung im Datenbankka-
talog (ALTER TABLE), wenn die Datenbank die Strukturinde-
rung iiber ALTER TABLE durchfiihren kann.

@ Ist die Anpassung iiber eine Anderung des Datenbankkataloges
nicht moglich, muss eine Umsetzung vorgenommen werden.

A 6. Was ist im SAP-Sprachgebrauch unter einer Priiftabelle zu

verstehen?

O Eine Wertetabelle, die in der Domine eines Feldes angelegt
wurde.

O Die Tabelle, fiir die ein Fremdschliissel definiert wurde.

® Die Tabelle, auf die sich der Fremdschliissel bezieht.

¥ Die Tabelle, die einem oder mehreren Feldern einer Fremd-
schliisseltabelle zur Priifung von Eingabewerten zugeordnet ist.

AT Welche Aussage hinsichtlich der Pufferung ist richtig?

M Einzelsatzpufferung ist nur sinnvoll, wenn héufig mit der An-
weisung ,,Select single ... auf einen bestimmten Datensatz zu-
gegriffen wird.

O Wenn auf eine Datenbanktabelle mehr schreibende als lesende
Zugriffe erfolgen, sollte diese gepuffert werden.

@ Bei Zugriffen auf gepufferte Tabellen erfolgt immer dann ein

,Full Table Scan“, wenn der Zugriff iiber ,Nicht-Schliissel-
felder* erfolgt oder das linke Schliisselfeld nicht angegeben ist.

3.3 Eigenschaften von Tabellen

133

134

A 8.

Welche Aussagen treffen zu?

Das Priiffeld ist das Feld der Fremdschliisseltabelle, an das eine
Priiftabelle angebunden ist, d.h. dessen Inhalt mit der Priiftabelle
abgeglichen werden soll.

Der Fremdschliissel enthilt in der Regel alle Schliisselfelder der
Priiftabelle. Fremdschliisselfelder konnen auch ,,Nicht-Schliis-
selfelder der Fremdschliisseltabelle sein.

Fremdschliisselfelder sind Felder der Fremdschliisseltabelle, die
in der Priiftabelle mit dem Primérindex abgeglichen werden.

Die Kardinalitdt 1:CN bei Fremdschliisselbeziehungen gibt an,
dass

= das Priiffeld nicht leer sein darf (1:CN).

= die Fremdschliisseltabelle beliebig viele abhingige Daten-
sédtze enthalten kann (1:CN).

Abhingige Datensitze haben in den Fremdschliisselfeldern die
gleichen Inhalte wie die Schliisselfelder der Priiftabelle.

In einer Struktur konnen dauerhaft (d.h. auf der Datenbank) Da-
ten gespeichert werden.

Der Primirindex einer Tabelle wird durch die Felder, die beim
Anlegen der Tabelle als Schliisselfelder deklariert wurden, ge-
bildet.

Der Primirindex wird automatisch angelegt.

Sekundérindizes miissen manuell im ABAP-Dictionary angelegt
werden. Sie konnen die Performance erheblich verbessern.

3 Das ABAP-Dictionary

4 Grundlegende Techniken der
Listenprogrammierung

4.1
Zielstellung des Kapitels

Im Kapitel ,,Grundlegende Techniken der Listenprogrammierung®
sollen die Themen

= Ausgabe von Texten und Variablen,

= Deklaration elementarer und strukturierter Variablen,
= Arbeit mit internen Tabellen,

= Datenbeschaffung aus Datenbanktabellen und

= Anlegen von Selektionsbildschirmen

behandelt werden. Das Projekt ,,East Side Library®, fiir das im vori-
gen Kapitel die bendtigten Tabellen angelegt wurden, soll jetzt das
erste ABAP/4-Programm erhalten. Uber ein Selektionsbild sollen
iiber die Felder ISBN, Titel, Autor und Kategorie bestimmte Biicher
ausgewihlt und angezeigt werden.

Abb. 4.1
B B e@@ QiR “non AR @8 Selektionsbild
East-Side-Library: L:'reratur-Rechercheprogranum des Literatur-
& t | | Recherche-
Auswahlkterian — = Programmes der
|SBN ot LR R o L - East Side
b " Gooooooio0 scheer Augustwinem || Library
Autorensummer G 0000000101 Keller Harst
Kategorie bis |0000DD0102 Kriger Sascha
0000000103 Ulirich Michael
0000000104 Keller Gerhard
0000000105 Teufel Thamas
00000001 06| Matzke Bernd
0000000107 Kokot Friedrich
000D00D108 Mahrien Regine
0000000109 Saaro Helmut

4.1 Zielstellung des Kapitels 135

Abb. 4.2
Ausgabeliste
des Literatur-

Recherche-
Programmes

ABAP-
Anweisungen

ABAP-
Laufzeitsystem

136 ™

Die Ausgabeliste soll folgendes Layout erhalten:

t 0 ©0@ DHNB 0D0S BF 0B
East-Side-Library: Literatur-Rechercheprogramm

East-Side-Librasy: Literatur-Rechercheprogeams 1 %
Husgabelisce Nusgabedatim 17.12,2003 Ausgabesest 14:01:53]
Lfdnr ISEN Titel Autor Fategorie verfighbar
1 3540523979 EDV-ORIENTIERTE BETRIEESWIRTICHAFTSLEHRE Scheer By oace?
2 3827254388 Intecnet Saaro Internst 00020
3 3827256863 SAP RS3 Fakot BBV 00008
i 3827311365 Administration des SAP-Systems R/3 Hill EXV oqo8
5 3027313724 ABAF/4 Die Prograsmiersprache des SAP R/3-Syatems Matzke B3V oaozs
6 3827314011 SAP R/3 proceBorienticct amuendsn Feller LE)) 00031
il 3827314569 SAF R/3 dynamisch einfihren Geib BBV 0ap0?
8 3827316464 SAF R/3 Dec schnelle Binstieg Olleich BV 0141
9 381731788 urg von Internet Omlauff B3V 0ao1s
10 JBZTILTEI4 ABAF-lbungsbuch Omlaufé By 00015
11 3877917410 SAP R/ Basissystem Eerth E3V oaoz?
12 3898421473 ABAP Gbjects Feller BV 03085
Anzahl Bucher 12
4.2

Grundaufbau eines ABAP-Programmes

Ein ABAP-Programm besteht zunichst, wie jedes andere Programm
auch, aus einer Abfolge von Anweisungen, die vom ABAP-
Laufzeitsystem nacheinander abgearbeitet werden. Diese Anweisun-
gen werden im ABAP-Editor in den sogenannten Quelltext des Pro-
grammes geschrieben. ABAP-Anweisungen haben folgende Syntax:

Schliisselwort [Parameter].

Das Schliisselwort gibt an, welche Aktion vom Laufzeitsystem aus-
gefiihrt werden soll (z.B. Ausgabe von Daten, Lesen von Daten,
Schreiben in die Datenbank, Andern der Ausgabefarben etc). Die
meisten Schliisselworte benotigen Parameter, die angeben, mit wel-
chen Daten die Aktion ausgefiihrt werden soll. Der Punkt schlief3t
die Anweisung ab.

Beispiele:
Anweisung zur Ausgabe des Textes ,,Das ist eine Textausgabe“.

'Das ist eine Textausgabe'.

Schliisselwort Parameter
zur Datenausgabe was wird ausgegeben

4 Grundlegende Techniken der Listenprogrammierung

Anweisung fiir das Erzeugen von zwei Leerzeilen.

Schliisselwort Parameter: Anzahl
zum Erzeugen der zu erzeugenden
von Leerzeilen Leerzeilen

Anweisung fiir eine Unterstreichung ab Position 1 mit einer Linge
von 20 Zeichen

Schliisselwort zum Parameter: Position und Linge
Erzeugen einer der Unterstreichung
Unterstreichung

Jedes ABAP-Programm besteht aus den zwei Teilen: Aufbau eines

. . ABAP-
globaler Deklarationsteil Programmes
= prozeduraler Teil.

Im globalen Deklarationsteil werden die Datenobjekte angelegt, die
im Programm benétigt werden (z.B. eine Variable, die die Anzahl
der verfiigbaren Biicher aufnimmt). Wird ein Programm gestartet, so
werden als erstes alle globalen, also fiir das gesamte Programm zur
Verfiigung stehenden Datenobjekte, angelegt. Dabei sucht das
ABAP-Laufzeitsystem die globalen Datendeklarationen im gesam-
ten Quelltet. Im Interesse der besseren Lesbarkeit der Programme ist
es jedoch iiblich, Datendeklarationen am Anfang des Quelltextes zu
platzieren.

Der prozedurale Teil enthélt die Anweisungen zur Verarbeitung der
Daten, fiir die im globalen Deklarationsteil Datenobjekte angelegt
wurden. Bei der Listenprogrammierung besteht der prozedurale Teil
aus zwei Arten von Verarbeitungsblocken:

= Ereignisblocke Verarbeitungs-

Ein Ereignisblock wird vom ABAP-Laufzeitsystem aufgeru- bldcke

fen, wenn ein bestimmtes Ereignis aufgetreten ist (z.B. Verlas-

sen des Selektionsbildschirmes, Doppelklick auf eine Zeile der

Ausgabeliste etc). Ein Ereignisblock beginnt mit einem

Schliisselwort (z.B. Start-of-Selection, At Selection-Screen

etc.) und endet am Schliisselwort des nédchsten Verarbeitungs-

blockes.

4.2 Grundaufbau eines ABAP-Programmes 137

Abb. 4.3
Struktur eines
ABAP-
Programmes

Abb. 4.4
Ablauf eines
ABAP-
Pogrammes

138 =
(]

= Unterprogramme
Unterprogramme werden durch die ABAP-Anweisung ,,PER-
FORM* aufgerufen. Sie beginnen mit dem Schliisselwort
FORM und enden mit ENDFORM.

ABAP-Programm

Globaler Deklarationsteil Prozeduraler Teil

Verarbeitungsblock 1 Verarbeitungsblock 2 Verarbeitungsblock n

Y
Unterprogramm Ereignisblock Ereignisblock
z.B. z.B. z.B.
FORM Berechne IST Eestand. Start-of-Selection At Selection-Screen

ist = bestand - ausgeliehen
ENDFORM.

Prasentationsebene Anwendungsebene Datenbankebene
Programmstart ABAP-Programm KD4DBAS_TW
: 2 q Die bendtigten Datenohjekte
und der Selektionshildschirm
werden angelegt s —
3 | roseem e |
000
< Auswahibidschem, z 2000000 108 ;:::
u e] seN red AT
Selektionskriterien B]
eingeben und s ¢ = -
= Hategarie 000 |CO00000108 (ke Lam
__ “Ausfiihren*” \ ol -
(&) J - o
S — =
s v o
Buchotel Ty
R 1o Ereignishlock .
Kategane -of-Selection s
~.< | o |
Listenausgabe > =3y
- 60 | 0000600320 | ragex
Listen- o Lons
] » 0 puffer v o
Programm YKO4DBAS_T Ewig:jsbluck : Eshst
| SOO0000I00 |Meks Law
B — End-of-Selection oo
it) = :
TSI reoprammisrung vou I ™ \: B,
el
PEITIIMR ARAR- Thungetanh oo

= Der Benutzer startet in der Pridsentationsebene ein ausfiihrba-
res Programm (z.B. YKO4DBAS_TW). Das ABAP-Lauf-

4 Grundlegende Techniken der Listenprogrammierung

zeitsystem durchsucht das Programm (genauer das Laufzeitob-
jekt des Programmes) nach globalen Datendeklarationen und
reserviert fiir diese entsprechende Speicherstellen. Die Felder,
die das Selektionsbild bereitstellen soll, sind letztlich ebenfalls
globale Datendeklarationen. Danach wird vom Laufzeitsystem
das Selektionsbild an die Prisentationsebene iibermittelt.

= Der Benutzer fiillt das Selektionsbild aus und fiihrt das Pro-
gramm aus (Schaltfliache ,,Ausfiihren*). Durch dieses Ereignis
l1ost das Laufzeitsystem den Ereignisblock ,,Start-of-Selection*
aus. Dieser lddt die Datenobjekte mit Daten aus der Daten-
bank. Sind alle Anweisungen des Ereignisblockes ,,Start-of-
Selection* abgearbeitet, wird vom Laufzeitsystem der Ereig-
nisblock ,,End-of-Selection aufgerufen.

= Danach erfolgt die Ausgabe des Listenpuffers.
Hinweis:
Ist der Ereignisblock ,,End-of-Selection im Programm nicht
vorhanden, wird nach Beenden des Blockes ,,Start-of-Selection®
der Listenpuffer ausgegeben.

Ereignisblock Auslosendes Ereignis Tabelle 4.1
. . Ereigni
Load-of-Program Wird vom ABAP-Laufzeitsystem gestartet, L I-rsetg: isse der
bevor das Selektionsbild auf dem Bildschirm programmierung

angezeigt wird. Er kann zur Vorbelegung von
Feldern des Selektionsbildes benutzt werden.

At Selection- Wird vom ABAP-Laufzeitsystem ausgelost,
Screen wenn der Anwender das Selektionsbild tiber
die Schaltfldche ,,Ausfiihren verlassen will.

Start-of-Selection Wird vom ABAP-Laufzeitsystem ausgelost,
wenn das Selektionsbild verlassen wurde. Bei
der Listenprogrammierung werden in diesem
Block die Ausgabedaten ermittelt. In den meis-
ten Fillen wird in diesem Block auch der Lis-
tenpuffer gefiillt.

End-of-Selection =~ Wird vom ABAP-Laufzeitsystem ausgelost,
wenn der Ereignisblock Start-of-Selection be-
endet wird. Dieser Block kann z.B. benutzt
werden, um Daten in den Listenpuffer zu
schreiben (z.B. einen Listenfulitext).

At User-Command Wird vom ABAP-Laufzeitsystem ausgelost,
nachdem der Benutzer eine Aktion ausgelost
hat, z.B. Auswahl eines Meniipunktes, Ankli-
cken einer Schaltflache etc.). In diesem Block

4.2 Grundaufbau eines ABAP-Programmes 139

140 =
(]

Ereignisblock Auslosendes Ereignis

muss die vom Benutzer gewiinschte Atkivitit
ermittelt und ausgelost werden.

At Line-Selection Dieser Ereignisblock wird nach einem Dop-
pelklick auf eine Zeile der Ausgabeliste ausge-
16st. Er wird zur Breitstellung von zusétzlichen
Informationen in Verzweigungslisten benotigt.

Top-of-Page Wird vom ABAP-Laufzeitsystem ausgelost,
wenn eine neue Seite begonnen werden muss.
Dieser Block ist die geeignete Stelle, um z.B.
Seitentiberschriften auszugeben.

End-of-Page Wird ausgelost, wenn das Seitenende erreicht
ist.

Top-of-Page dur- Wird ausgeldst, wenn in einer Verzweigungs-
ing Line-Selection liste eine neue Seite begonnen werden muss.

4.3
Ausgabe von Texten

Nach diesen theoretischen Betrachtungen, die durchaus Auswirkun-
gen auf Thren Programmierstil haben werden, soll nun mit der Pro-
grammierung zum Projekt ,,East Side Library” begonnen werden.
Beginnen wir mit der Ausgabe der konstanten Texte der in Abb. 4.2
abgebideten Ausgabeliste. Diese Liste enthilt folgende Textausga-
ben:

Zeile 1: ,,Ausgabeliste®

Zeile 2: , JSBN*®, , Titel, ,,Autor, , Kategorie, ,,verfiigbar*.

Legen Sie in Threr Entwicklungsklasse YABAP_TR ein ausfiihrba-
res ABAP-Programm YKO04DBAS, ohne TOP-Include mit dem Ti-
tel ,,East-Side-Library: Literatur-Rechercheprogramm® an und wei-
sen Sie das Programm Threm Workbenchauftrag ,,ABAP-Training"
zu. Starten Sie dann den ABAP-Editor.

Hinweis:

Das Anlegen eines ABAP Programmes ist in Kapitel 1.5.2.6 (Das
erste ABAP-Programm) beschrieben

Sie sollten sich jetzt im ,,ABAP Editor:Report YKO4DBAS anzei-
gen* befinden.

4 Grundlegende Techniken der Listenprogrammierung

Springen _Hilfsmittel _Lmfe vstem Hilfe Abb. 4.5
10 @@ BB nnos IR @@ ABAP-Editor
ABAP Editor: Report YK0O4DBAS anzeigen
l:l | | @Jl | Muster IPra!ly Printer

i::?]a‘;;: = £ Report YROADBAS inakth
A ~r =7 - —
dJ | _._yj w =] (S]] Gl [Ee

REFORT YEOADBAS

Wenn Sie das Programm iiber die Transaktion SE80 (Object Navi-
gator) angelegt haben, wird in der linken Hilfte des Bildschirmes ein
Navigationsbaum mit den Komponenten des Programmes, ange-
zeigt. Beim aktuellen Entwicklungsstand ist hier lediglich der Pro-
grammname zu finden. Der rechte Teil des Bildschirmes enthilt
immer das Werkzeug, mit dem die jeweilige Komponente bearbeitet
werden kann. In unserem Beispiel also den ABAP-Editor. Die wich-
tigsten Funktionen konnen iiber die Symbole in der Drucktastenleis-
te ausgefiihrt werden.

Symbol Beschreibung Tabelle 4.2
Voriges Objekt: Sie wechseln zu dem Objekt, das Sie Z’:: ’/’i\tgi’\",;f’one”
zuvor bearbeitet haben, usw, usw.. Editors

Ndchstes Objekt: Mit diesem Symbol gelangen Sie wie-
der in das Objekt, dass sie vor dem Benutzen des Sym-
bols ,,Voriges Objekt* bearbeitet haben.

[£]

Anzeigen<->Andern:Mit diesem Symbol wechseln Sie
vom Anzeigemodus in den Anderungsmodus und um-
gekehrt.

Anderes Objekt: Sie konnen andere Werkzeuge der
ABAP-Workbench starten (z.B. Dictionary, Funktion-
builder)

Hilfe zu: Sie verzweigen in eine kontextsensitive Hilfe

B & N

Priifen: Sie konnen die Syntax Thres Programmes testen

2

Testen: Uber diese Symbol kann sowohl die aktive als
auch die inaktive Version des Programmes gestartet
werden.

[

Aktivieren: Ein Programm ist erst systemweit sichtbar,
wenn es aktiviert worden ist. Sobald Sie Anderungen an

L0
1N

4.3 Ausgabe von Texten 141

Symbol Beschreibung

einem aktiven Programm ausfiihren, wird eine inaktive
Version zu diesem Programm angelegt. Beim Aktivie-
ren wird dann die bisherige aktive Version mit der bis-
her inaktiven Version iiberschrieben. Die inaktive Ver-
sion existiert nach der Aktivierung nicht mehr.

Aktiv <-> Inaktiv: Mit diesem Symbol konnen Sie zwi-
% schen der Anzeige des Quelltextes der aktiven und der
inaktiven Version umschalten.

Verwendungsnachweis: Wenn Sie in Threm Programm
Komponenten benutzen, die im ABAP-Dictionary an-

gelegt wurden, konnen Sie iiber diese Schaltfldche fest-
stellen, in welchen Programmen diese Komponenten
noch eingesetzt werden.

Objektliste anzeigen: Wenn der ABAP-Editor direkt

tiber die Transaktion SE38 aufgerufen wurde, kann tiber
dieseSchaltfliache der Navigationsbereich eingeschaltet
werden.

Navigationsfenster anzeigen: Im unteren rechten Bild-
schirmbereich werden alle Objekte angezeigt, die Sie in

der aktuellen Sitzung bearbeitet haben. Durch Ankli-
cken des jeweiligen Objektes konnen Sie die Bearbei-
tung des Objektes fortsetzen

Breakpoint setzen/ldschen: Erreicht das Programm die

Anweisung, auf die Sie einen Breakpoint gesetzt haben,
wird die Abarbeitung des Programmes im Debugging-
modus fortgesetzt.

Mit dieser Funktion lassen sich Muster von ABAP-
Anweisungen (z.B. Call Function, Message, Write) in
den Quelltext laden. Der Programmierer muss dann nur

die richtigen Parameter einsetzen. Diese Funktion hilft,
Fehler die oft schwer zu finden sind, zu vermeiden. U-
bertreiben sollten Sie die Anwendung dieser Funktion
allerdings auch nicht.

Wie uniibersichtlich Thr Quellprogramm auch ist, der
Pretty Printer bereitet es so auf, das Sie von Ihrem
Quellprogramm begeistert sein werden. Allerdings soll-
ten Sie die Einstellungen des Werkzeuges kontrollieren
(Hilfsmittel - Einstellungen, Registerkarte Pretty Prin-
ter. Empfehlenswert: Einriicken, Schliisselwort grof3)

142 : 4 Grundlegende Techniken der Listenprogrammierung

Wechseln Sie jetzt vom Anzeige- in den Anderungsmodus (Symbol
,,Anzeigen <-> Andern®. Die erste Zeile des Programmes

REPORT YKO4DBAS.
hat der ABAP-Editor automatisch angelegt. Diese Zeile kennzeich-
net das Programm als ausfiihrbares Programm.

In der Listenprogrammierung erfolgen alle Ausgaben iiber die WRITE
WRITE-Anweisung.

Allgemeine Syntax:
WRITE [/][<Position>][(<Léinge>)] Ausgabedaten [Optionen].

Hinweis:
Lassen Sie nur an den Stellen Leerzeichen, an denen auch in der
Syntaxbeschreibung Leerzeichen vorhanden sind.

Die in [] eingeschlossenen Parameter sind optional, d.h. sie konnen Ve gnba}g ungen
bei Bedarf verwendet werden, fiir die in < > stehenden Parameter Zur bescnrel-

miissen konkrete Werte angegeben werden. Die Klammern gehéren bung der Sy ntax
. . . von Anweisun-
dabei nicht zur eigentlichen Sysntax. gen
Parameter Wirkung Tabelle 4.3
/ Wird dieser Parameter angegeben, erfolgt die Ausgabe ﬁ%?%’;_ ter der
auf einer neuen Zeile Anweisung

Position Position, ab der die Ausgabe erfolgt.
Beispiel: WRITE 10 'Ausgabeliste’.
Die Ausgabe des Textes erfolgt auf der aktuellen Zei-
le, beginnend auf der Position 10.
Ausgabe: Ausgabeliste
Wird die Position nicht angegeben, erfolgt die Ausga-
be an der aktuellen Cursorposition.

Linge Mit diesem Parameter konnen Sie die Ausgabelinge
begrenzen.
Beispiel: WRITE 10(7) 'Ausgabeliste'.
Die Ausgabe des Textes erfolgt auf der aktuellen Zei-
le, beginnend auf der Position 10 mit einer Ausgabe-
lange von 7 Zeichen.
Ausgabe: Ausgabe
Wird die Léange nicht angegeben, erfolgt die Ausgabe
der gesamten Zeichenkette.
Ausgabe- Das sind die Daten, die von der WRITE-Anweisung
daten ausgegeben werden sollen. Texte sind in Hochkom-
mata einzuschlieBen. Die Ausgabe von Datenobjekten

4.3 Ausgabe von Texten 143

erfolgt hingegen ohne Hochkommata.
Beispiel: Textausgabe

WRITE 10 'Ausgabeliste’

Ausgabe: Ausgabeliste

Beispiel: Ausgabe des Inhaltes einer Variablen
ERGEBNIS. Die Variable ERGEBNIS muss vor ih-
rem Gebrauch im ABAP-Progamm deklariert worden
sein.

ERGEBNIS = 10 * 2.
WRITE 10 ERGEBNIS.

Ausgabe: 20.
Optionen Es konnen Ausgabeoptionen eingestellt werden, z.B
m Format der Datumsaufbereitung,

m Aufbereitung eines Wihrungsfeldes entsprechend
der Wihrung,

m linksbiindige Ausgabe,
m zentrierte Ausgabe,

m rechtsbiindige Ausgabe,
m Farbe der Ausgabe.

Beispiel: WRITE 'Ausgabeliste' color
COL_HEADING.
Ausgabe:

Das Wort Ausgabe wird schwarz, auf blauem Hinter-
grund ausgegeben.

Die WRITE-Anweisung ist eine umfangreiche Anweisung. Es gibt
viele Parameter, die in Tabelle 4.3 nicht aufgefiihrt werden konnten.
Eine vollstindige Dokumentation zu WRITE bekommen Sie iiber
die Funktion ,,Hilfe zu* (Schliisselwortdokumentation).

Abb. 4.6
Aufruf der Hilfe
zum Schliissel-

wort ,Write“

ABAP Editor: Report YKO4DBAS adndern
(2] | [(ee)(=) | (a8 (5] () (== | &) (5] (PO) | (@] [Muster][Pretty Printer]

Programm

[ykoaDBAS
4

inaktv

144 ™ 4 Grundlegende Techniken der Listenprogrammierung

"M EAP-Ubersicht
() Neues zu ABAP

() ABAP Doku und Beispiele

A

3AP-Schllsselwortdokumentation
glEEa@Ees@m@a Iy [e[=
= & ABAP - Die Programmiersprache von SA
> & ABAP - Thematische Darstellung y g
b & ABAP - Ubersichtsdarstellungen
I @ ABAP - Releaseabhangige Anderung WRITE

-WRITE £. I

-WRITE £ TO g.
-WRITE £ TD itab INDEX idx.

Weitere Hilfe

arte mil WRITE TO zuweiser

Geben Sie im Programm die folgenden Texte aus:
Zeile 1: ,,Ausgabeliste*

Zeile 2: , ,JSBN*, , Titel“, ,,Autor®, ,, Kategorie* ,,verfligbar*.

Die Texte der 2. Zeile sollen an folgende Positionen geschrieben
werden:

Position Text

1 ISBN

12 Titel

79 Autor
101 Kategorie

111 verfiigbar

Priifen Sie die Syntax Ihres Programmes

Testen Sie anschlieBend Ihr Programm
Losung: YKO4DBAS_1

4.3 Ausgabe von Texten

Abb. 4.7
Eingabe des
Schliisselwortes

Abb. 4.8
Einstiegsbild zur
Schiliissel-
worthilfe

145

Quellecode des
Programmes
YKO4DBAS

Kommentare

Ketten-
anweisungen

146 =

Sie sollten in Threm Programm YKO04DBAS folgende Ergiinzungen
vorgenommen haben:

REPORT ykO4dbas

WRITE 'Ausgabeliste'.

*Ausgabe auf der nachsten Zeile, '/' in der
*WRITE-Anweisung

WRITE /1 'ISBN'.

WRITE 12 'Titel'. "Ausgabe ab Position 12
WRITE 79 'Autor'.

WRITE 101 'Kategorie'.

WRITE 111 'verfigbar'.

Kommentare, wie in Zeile 3 und 6 des Beispielprogrammes, sollen
kompliziertern Programmcode kurz erldutern.

Sie dienen dazu, Quelltexte verstdndlicher zu gestalten. Sparen Sie
nicht mit Kommentaren. Sie werden sonst erstaunt sein, nach welch
kurzer Zeit Sie Schwierigkeiten haben werden, Ihr eigenes Pro-
gramm zu verstehen.

Syntax von Kommentaren:

*<Kommentarzeile> Mit * beginnende Zeilen sind Kommentar-
zeilen und werden bei der Abarbeitung des
Programmes ignoriert

"<Kommentar> " leitet einen Kommentar an eine beliebigen
Stelle der Programmzeile ein. Er endet am
Zeilenende.

Hinweis: Wollen Sie beim Testen eines Programmes bestimmte
Anweisungen vom Test ausschlieBen, konnen Sie diese Zeilen
kommentieren. Markieren Sie dazu die auszuschlieBenden Pro-
grammzeilen mit der linken, gedriickten Maustaste und rufen Sie
dann iiber die rechte Maustaste das Kontextmenii auf. Dort finden
Sie das Menii ,,Kommentieren“. Wihlen Sie diesen Meniipunkt aus,
um alle markierten Zeilen zu kommentieren.

Sollen die kommentierten Zeilen wieder aktiviert werden, gehen Sie
in der gleichen Weise vor, wihlen jedoch im Kontextmenii den
Meniipunkt ,,Dekommentieren‘‘.

Im Programm YKO4DBAS werden iiber WRITE-Anweisungen 6
Texte ausgegeben. Das bisherig Verfahren wird bei der Program-
mierung groflerer Ausgaben leicht l4dstig, muss doch fiir jede Ausga-
be eine neue Anweisung geschrieben werden. Der Ausweg aus die-

4 Grundlegende Techniken der Listenprogrammierung

ser, fiir jeden Programmierer unbefriedigenden Methode, sind die

Kettenanweisungen. Damit kénnen aufeinanderfolgende Einzelan-

weisungen zum gleichen Schliisselwort zusammengefasst werden.

Syntax von Kettenanweisungen

<Schliisselwort>: <Parameter der 1. Einzelanweisung>,
<Parameter der 2. Einzelanweisung>,

<Parameter der n. Einzelanweisung>.

Zur Kennzeichnung der Kettenanweisung wird hinter das Schliis-
selwort ein Doppelpunkt geschrieben. Es folgen die Parameter, fiir
die sonst je eine Einzelanweisung geschrieben werden miisste, ge-
trennt durch Kommata. Die Kettenanweisung wird durch einen
Punkt abgeschlossen.

Fassen Sie die WRITE-Anweisungen im Programm YKO04DBAS zu
einer Kettenanweisung zusammen. Kommentieren Sie Thr Pro-
gramm.

Losung: YKO4DBAS_2
Ihr Programm sollte nach dieser kurzen Ubung wie folgt aussehen:

REPORT ykO4dbas

WRITE: 'Ausgabeliste',
/1 "ISBN',12 'Titel',79 'Autor',
101 'Kategorie', 111l 'verfigbar'.

An welchen Stellen Sie eine neue Zeile im Quelltext beginnen, ist
Thre Entscheidung. In Zeichenketten (z.B. TSBN') sollten Sie jedoch
keinen Zeilenumbruch benutzen. Die Ausgabe entspricht dann nicht
mehr Thren Erwartungen.

Unser bisheriges Programm hat einen entscheitenden Nachteil. Soll
das Programm in anderen Sprachen abgearbeitet werden, z.B. in
Englisch, kann fiir die Texte keine Ubersetzung angefertigt werden.
Ubersetzungen im Quelltext sind nicht praktikabel, weil fiir jede
Sprache eine andere Version des Programmes aufgerufen werden
miisste.

Die Losung des Problems liegt in der Verwendung sogenannter
Textsymbole. Das sind Texte die auBerhalb Thres Programms in
sprachabhingigen Textpools gespeichert werden. Thr Programm

4.3 Ausgabe von Texten

Verwendung
von Text-
symbolen

147

Abb. 4.9
Abfrage bei der
Vorwaérts-
navigation

148 ™
(]

greift dann automatisch auf die Texte im Textpool zu, die fiir die
entsprechende Anmeldesprache des Benutzers vorhanden sind.

Syntax zur Verwendung von Textsymbolen

Textsymbole konnen iiber folgende Syntax angesprochen werden:

= Text-<id>
Der Parameter id ist dabei eine 3-stellige Zeichenkette, die als
Kennung fiir Ihr Textsymbol dient. Innerhalb eines Program-
mes muss jedes Textsymbol eine eindeutige Kennung haben.

Beispiele = Text-001
Text-AAA
Text-AQ02

Diese Syntax ist fiir die Lesbarkeit des Programmes nicht un-
bedingt von Vorteil, weil nicht sofort ersichtlich ist, welcher
Text dem Textsymbol zugeordnet ist.

= '<Literal>'(<id>).
Auch in diesem Fall ist der Parameter id eine 3-stellige Zei-
chenkette, die als Kennung fiir das Textsymbol dient.
Im <Literal> kann ein beliebiger Text stehen.

Beispiele 'Ausgabeliste' (001)
'ISBN' (AARA)
'Titel' (A02)

Vorgehensweise: Anlegen eines Textsymbols

Am bequemsten ist das Anlegen eines Textsymbols iiber die Vor-
wirtsnavigation. Vorwirtsnavigation bedeutet, dass Sie im ABAP-
Programm zunichst den Aufruf des Textsymbols programmieren.

REPORT ykO4dbas . lr
WRITE: 'Ausgabeliste' (001).

Doppelklicken Sie dann auf die Kennung des Textsymbols. Ist das
Textsymbol noch nicht angelegt, erscheint die folgende Abfrage,
anderenfalls wird das Textsymbol angezeigt.

Objekt anlegen

Programmtext 'Ausgabeliste'(001) existiert nicht.
Soll das Objekt angelegt werden?

| Nein " 3 Abbrechen

o
ITIJTIJ" <

4 Grundlegende Techniken der Listenprogrammierung

Im Folgebild ,,ABAP Textelemente: Textsymbole @ndern Sprache
Deutsch® sind die Felder fiir den Text und den Namen des Symbols,
die Werte aus dem Textsymbolaufruf des ABAP-Programmes einge-
tragen. In der Spalte dLen steht die Lénge des deutschen Textes, Im
Feld mLen die maximal zuldssige Lange des Textes. Diese Lingen-
begrenzung gilt dann auch fiir eventuelle Ubersetzungen.

Aktivieren Sie das Textsymbol.

Abb. 4.10
BE Z'extsymbole
dndern

1H e o
ABAP Textefemente: Textsymbole dndern Sprache Deutsch

EE | ZE)E |) (S| E

Programm KO4DBAS aktiv

Textsymbole |/Seleklionstexte I/Lislinherschriﬂen |

BEAE

.| Text dLen |mLen
001 Ausgabeliste 1z |12
Hinweis:

Wenn Sie nicht die Vorwirtsnavigation anwenden wollen, kénnen
Sie Textsymbole iiber das Menii des ABAP-Editors ,,Springen
- Textelemente > Textsymbole“ anlegen. Diese Methode ist em-
pfehlenswert, wenn Sie die Textsymbole anlegen wollen, bevor Sie
Ihr Programm schreiben.

Vorgehensweise: Textsymbole iibersetzen

Wiihlen Sie im ABAP-Editor das Menii ,,Springen = Ubersetzung®
auf. Im Folgebild wihlen Sie die Zielsprache (Englisch). Im Uber-
setzungsbildschirm tragen Sie die Ubersetzung des Textsymbols ein
und sichern sie.

Abb. 4.11
@ 5 qleaalamm-lnﬁ_aalm@@m Ubersetzung ei-

Ubersetzung ABAP-Tebool: YKO4DBAS (8) von Sprache DE nach EN nes Textsym-
Blzl | | E | |‘ hl '"I i anl. H” hlag dndem " Ubersetzung bestat. I bOIS

Texs
Ausgabeliste
Cutputlist

Text
Progremn YKO4DBAS

4.3 Ausgabe von Texten ® 149

YK04DBAS
Gegenwdrtiger
Entwicklungs-
stand

Abb. 4.12
Anlegen der
Textsymbole

150 =

Andern Sie Thr Programm YKO04DBAS so, dass die Texte nicht di-
rekt, sondern iiber Textsymbole ausgegeben werden. Vergessen Sie
nicht, das Programm zu aktivieren.

Legen Sie eine Ubersetzung der Textsymbole an

Melden Sie sich mit der Sprache ,,EN“ neu am R/3-System an und
fihren Sie das Programm YKO4DBAS aus. Erscheinen jetzt die
Ubersetzungen der Textsymbole in der Ausgabe?

Losung: YKO4DBAS_2a

Nach der Ubung sollte Thr Programm folgende Anweisungen enthal-
ten:

REPORT vykO4dbas

WRITE: 'Ausgabeliste' (001),
/1 'ISBN' (002),

12 '"Titel' (003),

79 'Autor' (004),

101 'Kategorie' (0

0

5),
111 'verfigbar' (006).

0
06)

Im Bildschirm ABAP Textelemente sollten folgende Textsymbole
definiert sein:

Textelemente Bearbeiten Springen Hilflsmittel Umfeld Syster Hilfe
& | 8 I H Q@ DHE 000 R @
ABAP Textelemente: Textsymbole dndern Sprache Deutsch

EE PRE EE EEAE | 6

Programm KO4DBAS aktiv

_/Te:lsyrnbole I/Se!el-rlionstexte]/Listaherschriﬂen]

ST
S.. fext \ dLen |mLen
00 Yiausgabeliste 12 |12
OOF Titel 5 ,.5\
00§ Autor 3 (5)
(00\Kateqgorie P 2]
oos\rtugar / b
~_S I

Hinweis: Es ist zweckmiBig, die maximale Linge des Textsymbols
Autor auf 6 zu erhohen, damit spéter die englische Ubersetzung
(Author) ohne zusitzlichen Aufwand eingetragen werden kann.

4 Grundlegende Techniken der Listenprogrammierung

Im Ubersetzungswerkzeug sind die Textsymbole zu Ubersetzen
(Originalsprache: Deutsch, Zielsprache: Englisch).

P 3. 413
- Ubersetzungen
(v i JB ¢cee CHR BDOO A @ der Textsymbole

Ubersetzung ABAP-Textpool: YKO4DBAS (8) von Sprache DE
EE' | | | [Vorschlagspoal || Langenvariante anl. || Vorschlag andem

Text 1
Ausgabeliste
Result list

Text

Titel
Title

Text
Autor
Author

Text
Kategorie
Category

Text
verfiligbar
available

In Abhiéngigkeit von der Anmeldesprache wird entweder der deut-
sche Text oder die englische Ubersetzung angezeigt.

Abb. 4.14
Ausgabe der
Result list Toxt bole i
ISEN Title Author Category available exisymooie in
der Anmelde-
sprache

Programm YKO4DBAS

Ausgabeliste
ISEN Titel Autor Kategorie wverfiligbar

Im néchsten Schritt soll die Ausgabe farbig gestaltet werden. Die Farben in Listen
Farbe der gesamten Ausgabe wird mit der FORMAT-Anweisung,
die einer einzelnen Ausgabe in der WRITE-Anweisung, festgelegt.

Syntax der Format-Anweisung FORMAT
FORMAT [Zusatz].

Die FORMAT-Anweisung wirkt ab der nichsten Ausgabeanwei-
sung.

4.3 Ausgabe von Texten 151

Tabelle 4.4 Zusatz

Wirkung

Zusdétze zur
FORMAT- COLOR n ON/OFF

Anweisung

INTENSIFIED
ON/OFF

INVERSE ON/OFF

HOTSPOT
ON/OFF

INPUT ON/OFF

RESET

FORMAT COLOR n ON.

Die Ausgabe erfolgt mit der Hintergrund-
farbe n (siehe Hinweis)

FORMAT COLOR n OFF.

Die Ausgabe erfolgt mit Standardhinter-
grundfarbe.

FORMAT INTENSIFIED ON.

Die Ausgabe erfolgt mit der intensiven Ver-
sion der Hintergrundfarbe

FORMAT INTENSIFIED OFF.

Die Ausgabe erfolgt mit der normalen Hin-
tergrundfarbe

FORMAT INVERSE ON.

Die Ausgabe erfolgt invers, d.h. der Ausga-
betext wird mit der Hintergrundfarbe ausge-
geben. Die Hintergurundfarbe ist grau.
FORMAT INVERSE OFF.

Die inverse Darstellung wird wieder ausge-
schaltet.

FORMAT HOTSPOT ON.

Der Cursor nimmt die Form einer Hand mit
ausgestrecktem Zeigefinger an. Das Maus-
verhalten wird veréndert. Der Einfach-
Mausklick dieser Darstellung hat die gleiche
Wirkung wie der Doppelklick in der norma-
len Darstellung.

FORMAT HOTSPOT OFF. stelltden
Normalzustand wieder her.

Der Inhalt von Listenteilen, die mit
FORMAT INPUT ON. ausgeben wurde,
kann vom Anwender geindert werden (Ein-
gabefeld).

Zuriicksetzen aller Formate (Farbe, Intensiv,
Invers, Hotspot und Input).

Die Wirkung entspricht dem Befehl:
FORMAT COLOR OFF INTENSIFIED
OFF INVERSE OFF HOTSPOT OFF
INPUT OFF.

152 : 4 Grundlegende Techniken der Listenprogrammierung

Hinweis: Die , Liste der Farben* erhalten Sie iiber die Schliissel-
wortdokumentation zum Schliisselwort ,FORMAT*“ (Wihlen Sie
das Symbol ,Hilfe zu ...*“ und geben Sie als ABAP-Begriff ,,Format*
ein).

0123456789
0123456789
0123456789

0123456
0123456
0123456

COL_POSITIVE |0123456789
0123456789
0123456789

INEUT

Rr Farbe INTENSIFIED | INTENSIFIED OFF |INVERSE INT. INT. OFF
0 | |COL_BACKGROUND |01234567889 0123456789 123456 |0123456
1 COL_HEADING 0123456789 0123456789 1 0123456
2 COL_NORMAL 0123456789 0123456789 0123456
3 COL_TOTAL 0123456789 0123456789 0123456
3 COL_KEY 0123456789 0123455789 0123456
S

6

7

COL_NEGATIVE
COL_GROUP

Wie Sie in Abb. 4.15 sehen konnen, ist jede Farbe durch eine Farb-
nummer (Spalte 1) oder durch den Farbnamen (Farbe) definiert. Die
Farbnamen sind so gewihlt, dass erkennbar ist, fiir welchen Ver-
wendungszweck sie bestimmt sind. Sie sollten sich an diesen Ver-
wendungszweck halten, damit sich der Anwender nicht bei jedem
Programm an andere Farben und deren Bedeutung gewShnen muss.
In der Formatanweisung sollten Sie an Stelle der Farbnummer den
Farbnamen benutzen.

Also, z.B. die Anweisung FORMAT COLOR COL_HEADING. be-
nutzen und nicht FORMAT COLOR 2. Das Programm ist dadurch
besser lesbar. AuBerdem garantiert die SAP, dass die Farbnamen
nicht geéndert werden.

Hinweis: Die Zusitze der FORMAT-Anweisung sind auch fiir die
WRITE-Anweisung erlaubt.

Beispiel:

REPORT ydemo .
*Einschalten der Farbe COL HEADING fiir die
*gesamte weitere Ausgabe bzw. bis zur nachsten
*FORMAT-Anwelsung

FORMAT COLOR COL_HEADING INTENSIFIED OFF.

*Einschalten der Farbe COL KEY fUr eine

*einzelne WRITE-Anweisung

WRITE:1 'ISBN' COLOR COL KEY INTENSIFIED ON,
12 '"Titel',120 ''.

4.3 Ausgabe von Texten

Abb. 4.15
Aufbau der
Farbliste

153

Abb. 4.16
Ausgabeliste
des Beispieles

Ly

154 ™
| |

Dieses Programm erzeugt folgende Ausgabe:

Programm YDEMO

Programm YDEMO

Titel

Erginzen Sie Thr Programm ZK04DBAS so, dass die Texte mit fol-
genden Farben ausgegeben werden:

Text Farbe
Ausgabeliste COL_HEADING INTENSIFIED ON
ISBN COL_KEY INTENSIFIED ON

alle anderen Texte COL_HEADING

Formatieren Sie Ihr Programm mit dem Pretty Printer

Pretty Printer

Losung: YKO4DBAS_3

Thr Programm konnte jetzt so oder Ahnlich aussehen:
Moglichkeit 1:

REPORT vk04dbas

FORMAT COLOR COL HEADING INTENSIFIED ON.
WRITE: 'Ausgabeliste' (001).
FORMAT COLOR COL HEADING INTENSIFIED OFF.
WRITE: /1 '"ISBN' (002) COLOR COL_KEY
intensified on,

12 'Titel' (003),

79 'Autor' (004),

101 'Kategorie' (005),

111 'verfigbar' (006) .

Moglichkeit 2:
REPORT vykO4dbas

FORMAT COLOR COL_ HEADING INTENSIFIED ON.
WRITE: 'Ausgabeliste' (001).

4 Grundlegende Techniken der Listenprogrammierung

FORMAT COLOR COL KEY INTENSIFIED ON.
WRITE: /1 '"ISBN' (002) .
FORMAT COLOR COL HEADING INTENSIFIED OFF.
WRITE: 12 'Titel' (003),
79 'Autor' (004),
101 'Kategorie' (005),
111 'verfigbar' (006) .

4.4
Datentypen und Datenobjekte

In der Regel arbeitet jedes Programm mit Datenobjekten, es sei
denn, das Programm gibt lediglich feste Texte aus. Unter einem Da-
tenobjekt versteht man eine Speicherstelle, die das Programm fiir
sich reserviert. Fiir diese Speicherstelle wird im Programm ein Na-
me vergeben (deklariert), iiber den Daten in diese Speicherstelle ge-
schrieben, und auch wieder gelesen werden konnen.

Programm Speicher Abb. 4.17
Datenobjekt,
Programm,

Das Programm Speicher
reserviert fr sich

eine Speicherstelle
mit dem Namen
SPS, uber den es

; : Speicherstelle []_|
die Speicherstelle
Deklaration eines Da- anspr?cht_ SPS JU|

tenobjektes mit dem

Namen ,SPS" n'
10010 (0|0

Schreiben von Daten in|
das Datenobjekt:
SPS = 72. \

72 wird als Bit-

Ausgabe des Inhaltes muster 0100 1000
der Speicherstelle SPS| |n die Speicherstel-
WRITE SPS le SPS geschrieben

*Ausgabe: 72 \

Das Bitmuster
0100 1000 wird

vom Programm als
72 interpretiert und

ausgegeben

Es erscheint in Abb. 4.17 zunichst recht einsichtig, dass das Pro-
gramm die Bitfolge 01001000 als die dezimale Zahl 72 interpretiert

4.4 Datentypen und Datenobjekte ® 155

Datentyp

156 =
(]

(01001000 dual = 72 dezimal). Wenn Sie aber bedenken, dass Buch-
staben iiber den ASCII-Code in Bitfolgen umgewandelt werden, er-
gibt sich hier doch ein gewisses Problem. 72 ist auch die ASCII-
Codierung fiir den Buchstaben ,H*“. Woher weil} also das Pro-
gramm, dass die Bitfolge als 72, nicht aber als Buchstabe ,,H* zu in-
terpretieren ist?

In der Deklaration wird dem Datenobjekt nicht nur ein Name , son-
dern auch ein Datentyp zugeordnet. Dieser enthélt die technischen
Eigenschaften des Datenobjektes, wie z.B.

= die Ldnge des Datenobjektes im Speicher,
= die Datenart (Zeichen, Zahlen, Datum).

Aufgrund dieser Angaben wird das Programm in die Lage versetzt,
das aus der jeweiligen Speicherstelle gelesene Bitmuster, richtig zu
interpretieren.

4.41
Eingebaute Datentypen

ABAP/4 stellt sogenannte eingebaute Datentypen bereit, mit denen
Datenobjekte im Programm deklariert werden. Diese sind in den Ta-
bellen 4.5 und 4.6 dargestellt. Die eingebauten Datentypen konnen
in folgende zwei Gruppen eingeteilt werden:

= Vollstindige Datentypen
Diese Datentypen beschreiben die technischen Eigenschaften
eines Datenobjektes ohne zusitzliche Parameter.

= Unvollstindige Datentypen
Diese Datentypen bendtigen zur Beschreibung der technischen
Eigenschaften der mit [hnen deklarierten Datenobjekte, zusitz-
liche Parameter.

4 Grundlegende Techniken der Listenprogrammierung

Daten- Beschreibung

Linge des Initialwert Ausgabe-

typ Datenob- léinge in
jektes in Zeichen
Byte
d Datum (Date) Format 8 '00000000" 10
YYYYMMDD
t Zeitpunkt (Time) 6 '0000000" 6
Format HHMMSS
i ganze Zahl (integer) 4 0 11
Wertebereich: rechts-
2 %10"72 *#10 biindig
f Gleitpunktzahl 8 '0.0' 24
(Floating Point) rechts-
Wertebereich: biindig
2,2%10™...1,8¥10™
(positv und negativ)
string Zeichenfolge, Liange beliebige String mit Lénge der
variabel) Linge der Ldnge 0 Zeichen-
kette, links-
biindig
xstring Bytefolge (Hexa- beliebige String mit Lénge der
dedimal), Lange va- Lénge der Lidnge Zeichen-
riabel kette, links-
biindig

Lénge des Datenobjektes:

Anzahl der vom Datenobjekt reservierten Byte im Speicher.

Initialwert:
Das ist der Wert, der beim Anlegen des Datenobjektes in die-

ses eingetragen wird

Ausgabelinge
Das ist die Linge, mit der das Datenobjekt ausgegeben wird.
Ein Datenobjekt das auf dem Datentyp ,,i* basiert, wird mit ei-
ner Lénge von 11 Zeichen, linksbiindig ausgegeben.

| [[] | [[1] 2f 3]
— v
—~ H—J

Ausgabeliinge rechtsbiindig

4.4 Datentypen und Datenobjekte

Tabelle 4.5
vollstdndige
eingebaute
Datentypen

157

Tabelle 4.6 Typ Beschreibung Linge des Initial- Ausgbe-

unvollsténdige . " .
eingebaute Da- Datenobjektes wert lingein
tentypen Zeichen
Stan- Max.
dard Linge
c Zeichenkette (Cha- 1 65.530 Leer- Linge der
rakter), die Linge zeichen Zeichenket-
der Zeichenkette ist te, links-
Zu ergénzen biindig
n Numerisches Zei- 1 65.553 Leer- Linge der
chen (numerical zeichen Zeichenket-
Charakter), die te,
Léinge der Zei- rechtsbiin-
chenkette ist zu er- dig
ginzen
p gepackte Zahl (Pa- 8 16 0 2*Lange+1
cked Number) zur rechtsbiin-
Darstellung von dig
Festkommazahlen.
Die Anzahl der
Dezimalstellen
(max. 14) und die
Linge ist zusétz-
lich anzugeben
X Byte (Hexadezi- 1 65.553 X'0...0' Linge der
mal), die Lange der Zeichenket-
Hexadezimalzahl te, links-
ist zu ergénzen biindig

Weitere Datentypen konnen Sie im Programm oder im ABAP-
Dictionay definieren. Die im Programm angelegten Datentypen ste-
hen nur dem Programm zur Verfiigung, in dem sie definiert wurden
(programmlokale Definition). Auf die im ABAP-Dictionary ange-
legten Datentypen kann jedes Programm zugreifen (globale Defini-
tion).

4.4.2
Deklaration von Datenobjekten

Datenobjekte werden im Programm iiber die DATA-Anweisung de-
klariert. Erst durch die Deklaration eines Datenobjektes wird ein

158 : 4 Grundlegende Techniken der Listenprogrammierung

Speicherbereich im Arbeitsspeicher des SAP-Servers, auf dem das
Programm lduft, reserviert (siche Abb. 4.16). Bei der Deklaration
von Datenobjekten im ABAP-Programm kann auf folgende Daten-
typen zuriickgegriffen werden:

= eclementare, eingebaute Datentypen,

= programmlokale, mit der TYPES-Anweisung definierte Daten-
typen und

= globale, im ABAP-Dictionary definierte Datentypen.

Programmlokale und globale Typen sind immer vollstindig defi-
niert.

Abb. 4.18
Datentypen

Die mit der DATA-Anweisung deklarierten Datenobjekte werden
auch als Variablen bezeichnet, weil deren Inhalt durch Anweisungen
des ABAP-Programmes geéndert werden kann.

Andere ABAP/4-Anweisungen, mit denen Variablen angelegt wer-
den konnen, sind:

= PARAMETERS

= SELECT-OPTIONS und

= STATICS.

4.4 Datentypen und Datenobjekte 159

Syntax der Syntax der DATA-Anweisung
DATA-

Anweisung = Fiir vollstindige Datentypen

DATA <Datenobjektname> TYPE <Datentyp>
[VALUE <Wert>].

= Fiir Datentypen ohne implizite Lingenangabe
DATA <Datenobjektname>(<Linge>) TYPE <Datentyp>
[VALUE <Wert>].
Alternative:
Mit der TYPES-Anweisung wird ein Datentyp mit der beno-
tigten Linge angelegt. Die DATA-Anweisung wird dann mit
diesem neuen Datentyp geschrieben.
TYPES <Name desDatentyps>(<Lidnge>) TYPE <Datentyp>.
DATA <Datenobjekt> TYPE <Name des Datentyps>.
Beispiel:
TYPES zk_5(5) TYPE c.
DATA zeichekette TYPE zk_5.

Die TYPES- = Fiir den eingebauten Datenyp ,,p*
Anweisung DATA <Datenobjektname>(<Linge>) TYPE p
DECIMALS <Anzahl Nachkommastellen> [VALUE <Wert>].
Alternative
Mit der TYPES-Anweisung kann ein Datentyp mit der beno-
tigten Lange und Anzahl Nachkommastellen angelegt werden,
der dann in der DATA-Anweisung benutzt werden kann.

Beispiel:
TYPES geld(10) TYPE p DECIMALS 2
DATA preis TYPE geld.
Abb. 4.19 DATA gz(3) TYPE p DECIMALS 2 VALUE 12.34"
Speicherung
einer Variablen 12,34+
vom Typ p Gesamtlange (3 Byte).
2 Ziffern / Byte
Vorzeichen im letzten Byte
(C fur ,+“, D fur ,,-)
y
0[] RB]a
Hinweise:

= Mit dem optionalen Parameter VALUE wird der Variable ein
Initialwert zugewiesen, der im Programmverlauf gedndert
werden kann.

160 : 4 Grundlegende Techniken der Listenprogrammierung

= Fiir fehlende Parameter werden Standardparameter eingesetzt:
Lénge: 1
Decimals: 0
Type: C.

4.4.2.1
Beispiele fiir Datenobjektdeklarationen

Typ Deklarationsbeispiel Tabelle 4.7

d Deklariert werden die Datenobjekte ,,begin® und ,,beginl
vom Typ ,,.Datum®.

Initialwert: ,,11.12.2003*
DATA begin TYPE d VALUE 20031211".

Der Initialwert fiir ein Datum wird als Zeichenliteral in
der Form YYYYMMDD angegeben. Die Ausgabe erfolgt
tiber

WRITE begin DD/MM/YYYY.

Initialwert: aktuelles Datum

DATA beginl TYPE sy-datum.

beginl = sy-datum.

Soll das Datenobjekt vom Typ ,,Datum‘ mit dem aktuellen
Datum initialisiert werden, ist dem Datenobjekt die Sys-
temvariable sy-datum zuzuweisen. Die Ausgabe erfolgt,
ohne weitere Anweisungen, in dem Datumsformat, das in
den Benutzervorgaben ausgewdhlt ist, wenn Sie als Daten-
typ die Systemvariable sy-datum angeben.

t Deklariert werden die Datenobjekte ,,zeit* und ,,zeit]* vom
Type ,,Zeitpunkt* mit unterschiedlichen Initialwerten.

Initialwert: ,,12:10:15% (hh:mm:ss)
DATA zeit TYPE t VALUE '121015'.

Der Initialwert ist als Zeichenliteral anzugeben.

Initialwert: aktuelles Zeit

DATA zeitl TYPE sy-uzeit.

zeit]l = sy-uzeit.

Soll das Datenobjekt vom Typ ,,Zeitpunkt* mit der aktuel-
len Zeit initialisiert werden, ist dem Datenobjekt die Sys-
temvariable sy-uzeit zuzuweisen. Wird die Systemvariable
sy-uzeit als Datentyp eingesetzt, erfolgt die Ausgabe in
dem Zeitformat, das in den Benutzervorgaben ausgewéhlt
1St.

4.4 Datentypen und Datenobjekte 161

Typ Deklarationsbeispiel

i Deklariert werden die Datenobjekte ,,gz*“ und ,,gz1* vom
Typ ,.ganze Zahl“. Die Initialwerte konnen als Zeichenliteral
oder als Zahlenliteral angegeben werden:

= Initialwert als Literal angegeben
DATA gz TYPE i VALUE '123'.

Initialwert als Zahlenliteral
DATA gz1 TYPE i VALUE 123.

f Die Datenobjekte ,,fpz*“, ,fpz1*“ und ,,fpz2“ sind vom Typ
,FlieBpunktzahl“. Die Initialwerte konnen in verschiedener
Form als Zeichenliteral angegeben werden, z.B.

Literal ,.Jherkommliche* Schreibweise
' 1
'-765E-04' -765%10™
'1234E5' 1234*%10°
'+12E+34' 12%10™
'+12.3E-4' 12,3*10"
'1E160' 1#10'°
= [Initialwert 12#10%1
DATA fpz TYPE f VALUE '12E34".
= TInitialwert -765%10"
DATA fpzl TYPE f VALUE -765E10-4'.
= Initialwert -12,34567

DATA fpz2 TYPE f Value '12.34567'.

Achtung: Dezimaltrenner ist immer ein Punkt.
string Es wird ein Datenobjekt ,.zk” vom Typ ,,Zeichenkette™ dekla-
riert und mit ,,Alle Programmierer sind Pedanten* initialisiert.

DATA zk TYPE string.
zk = 'Alle Programmierer sind Pedanten'.

Hinweis: Der Type ,,string* darf nicht tiber ,,VALUE" initiali-
siert werden. Der Wert wird iiber den Zuweisungsoperator
,» = “in das Datenobjekt eingetragen.

X Im Gegensatz zum Typ ,,xstring* ist bei Typ ,,x*“ die Lénge des
anzulegenden Datenobjektes anzugeben.
Es wird ein Datenobjekt ,,xc* vom Typ x angelegt
und initialisiert.

DATA xc(2) TYPE x VALUE '1A".

162 : 4 Grundlegende Techniken der Listenprogrammierung
|

xstring Es wird ein Datenobjekt ,,xzk* bis ,,xzk4 vom Typ ,,Byte-
folge* deklariert.

= Initialwert: ,,1273%. = Initialwert:
DATA xzk TYPE xstring. LAB” DATA xzk3
xzk ="7273'". TYPE xstring.
xzk3 ='AB".
= Initialwert: 127, = Initialwert:
DATA xzkl TYPE xstring. ,,AX1” DATA xzk4
xzkl ="727". TYPE xstring.
xzk4 ='AX1".
m Initialwert: ,,ABC”
DATA xzk2 TYPE xstring.
xzk2 ='ABC'.

Hinweis: Der Type ,,xstring* darf nicht iiber ,,VALUE*
initialisiert werden. Der Wert wird iiber den Zuweisungs-
operator ,, = ““ in das Datenobjekt eingetragen.

c Im Unterschied zum Typ ,,string™ ist beim Typ ,,c* die
Linge des Datenobjektes festzulegen. Es wird das Daten-
objekt ,,chr* vom Datentyp ,,Zeichen® mit einer Lange von
3 Zeichen und dem Initialwert ,, THW* angelegt:

DATA chr(3) TYPE C VALUE THW'.

Hinweis: In diesem Datenobjekt lassen sich nur 3 Zeichen
speichern. Weisen Sie dem Datenobjekt ,,chr* mehr als 3
Zeichen zu, gehen die Zeichen ab Position 4 verloren.

n Es wird das Datenobjekt ,,plz* vom Datentyp ,,numeri-
sches Zeichen* mit einer Ldnge von 5 Zeichen und dem I-
nitialwert ,,03362* angelegt:

DATA plz(5) TYPE n VALUE '03362'".

Hinweis: In diesem Datenobjekt lassen sich nur 5 Ziffern
speichern. Weisen Sie dem Datenobjekt ,,plz** mehr als 5
Ziffern zu, gehen die Zeichen ab Position 6 verloren.

p Es wird ein Datenobjekt ,,betrag* vom Typ ,,gepackte
Zahl* angelegt und mit dem Wert ,,12,85 initialisiert. Be-
achten Sie, dass der Dezimaltrenner immer ein Punkt ist.
DATA betrag(5) TYPE p DECIMALS 2 VALUE '12.85'.

4.4 Datentypen und Datenobjekte 163

Programm zur ~ REPORT ydemo 04 1
Deklaration der ~ *Datendeklarationen entsprechen der Tabelle 4.7
Datenobjekte xpatentyp d (Datum)
aus Tabelle 4.7 para. pegin TYPE d VALUE '20031211',
begin2 TYPE sy-datum.
begin2 = sy-datum.
*Datentyp t (Zeitpunkt)
DATA: zeit TYPE t VALUE '121015',
zeitl TYPE sy-uzeit.
zeitl = sy-uzeit.
*Datentyp i1 (integer)
DATA: gz TYPE i VALUE '123',
gzl TYPE i VALUE 123.
*Datentyp £ (FlieRpunktzahl)
DATA: fpz TYPE f VALUE '12E34"',
fpzl TYPE f VALUE '-765E4',
fpz2 TYPE f Value '12.34567'.
*Datentyp string (Zeichenkette)
DATA: zk TYPE string,
xzk TYPE xstring,
xzkl TYPE xstring,
xzk2 TYPE xstring,
xzk3 TYPE xstring,
xzk4 TYPE xstring.
*Datentyp ¢ (Zeichen)
DATA chr(3) TYPE C VALUE 'THW'.
*Datentyp n (numerische Zeichen)
DATA plz(5) TYPE n VALUE '03362'.
*Datentyp p (gepackte Zahl)
DATA betrag(5) TYPE p DECIMALS 2 VALUE '12.85'.
*Datentyp x (Byte)
DATA xc(2) TYPE x VALUE '1lA'.
*Zuweisung der Werte flr die Typen string und

xstring

zk = 'Alle Programmierer sind Pedanten'.
xzk = '7273"'.

xzkl = '727'.

xzk2 = 'ABC'.

xzk3 = 'AB'.

xzk4 = 'AX1'.

Sie finden dieses Programm auf der Buch-CD
(Programmname: YDEMO_04_1).

164 ™ 4 Grundlegende Techniken der Listenprogrammierung

Durch die folgende WRITE-Anweisung werden die Datenobjekte
ausgegeben:

WRITE: Programm zur
/ '"Datum"' color COL HEADING, Ausgabe der
/ 'begin:',20 begin DD/MM/YYYY, Datenobjekte
/ 'begin2:',20 begin2, der Tabelle 4.7
/ '"Zeitpunkt"' color COL HEADING,

/ 'zeit:',20 zeit,/ 'zeitl',20 zeitl,

/ '"integer"' color COL_ HEADING,

/ 'gz:',20 gz, / 'gzl',20 gzl,

/ '"FlieBpunktzahl"' color COL_ HEADING,

/ 'fpz:',20 fpz,/ 'fpzl:',20 fpzl,

/ '"fpz2:',20 fpz2,

/ '"Zeichenkette"' color COL_ HEADING,
/ 'zk:',20 zk,

/ '"Bytefolge"' color COL HEADING,

/ 'xzk:',20 xzk,/ '"xzkl:',20 xzkl,

/ 'xzk2:',20 xzk2,/ 'xzk3:',20 xzk3,
/ 'xzk4:',20 xzk4,

/ '"Zeichen"' color COL HEADING,

/ 'chr:',20 chr(3),

/ '"numerische Zeichen"' color COL HEADING,
/ 'plz:',plz,

/ '"gepackte Zahl"' color COL_HEADING,
/ 'betrag:',betrag,

/ '"Byte"' color COL HEADING,
/ 'xc:',20 xc.

Sie finden dieses Programm auf der Buch-CD
(Programmname: YDEMO_04_1)

4.4 Datentypen und Datenobjekte 165

Abb. 4.20
Ausgabe der
Datenobjekte

166 ™

Die WRITE-Anweisung erzeugt folgende Ausgabe:

Ausgabe der Datenobjekte aus Tabelle 4.7

"Datum"
begin: 11.12.2003
begin2: 26.10.2003
zeit: 121015
zeitl 09:53:06
"integer”
gz: 123
gzl 123
"Plietpunktzahl®
fpz: 1,2000000000000001E+35
fpzl: -7, 6500000000000000E+06
fpzl: 1,2345670000000000E4+01
"Zeichenkette"
zk: Alle Prograumsierer sind Pedanten
"Bytefolge"
xzk: 7273
xzkl: 7270
xzk2: ABCOD
xzk3: AB
xzk4: AD
"Zeichen®
chr: THEW
"numerische Zeichen"
plz: 03362
"gepackte Zahl"
betrag: 12,85
"Byte”
H{-H 1400
4.4.2.2
Konstanten

Kostanten erhalten bei ihrer Deklaration einen Wert zugeordnet.
Dieser Wert kann im Programmablauf nicht mehr geéndert werden.

Die Deklaration von Konstanten wird iiber das Schliisselwort
»~CONSTANTS* vorgenommen. Die Syntax ist die gleiche wie bei
der DATA-Anweisung, allerdings ist die Wertzuweisung tiber die
VALUE-Klausel zwingend vorgeschrieben.

Beispiel:
CONSTANTS Pi (3) TYPE p DECIMALS 2 VALUE '3.14'.

4 Grundlegende Techniken der Listenprogrammierung

4.4.2.3
Feldsymbole

Ein Feldsymbol ist ein Zeiger, der auf Datenobjekte gerichtet wer-
den kann. Besonders hilfreich sind Feldsymbole beim Einsatz von
Strukturen und internen Tabellen. Dabei kénnen Sie einen Zeiger
mit den Komponenten einer Struktur oder einer Tabelle verbinden
und sehr kompakten und laufzeitgiinstigen Quellcode schreiben. Um
ein Feldsymbol zu benutzen, miissen Sie es definieren und mit ei-
nem Datenobjekt verbinden.

Definition eines Feldsymbols:
Syntax:
FIELD-SYMBOLS <Feldsymbols> TYPE <Datenobjekt>.

Hinweis:

Der Name eines Feldsymbols beginnt und endet mit einer spitzen
Klammer, z.B. <zeiger_i>.

Als Datentyp ist der Datentyp des Datenobjektes anzugeben, mit
dem der Zeiger verbunden werden soll.

Verbinden des Feldsymbols mit einem Datenobjekt:
Syntax:
ASSIGN <Feldsymbols> TO <Name des Datenobjektes>.

Beispiel:

Im folgenden Programm wird ein Feldsymbol <zeiger_i> definiert
und mit der Variablen y (TYPE i) verbunden. Dann wird der Variab-
len iiber das Feldsymbol ein Wert zugewiesen. Die Ausgabe des
Wertes erfolgt tiber das Feldsymbol erfolgen.

REPORT zfeldsymbole.

DATA: y TYPE 1.

*Deklaration des Feldsymbols
field-symbols: <zeiger i> type 1i.
*Verbinden des Feldsymbols mit y

ASSIGN y TO <zeiger i>.

*Zuwelisung eines Wertes an die Variable y
*{iber das Feldsymbol.

<zelger i> = 5 * 20.

*Ausgabe des Wertes der Variablen y iber
*das Feldsymbol

WRITE: <zeiger i>. "Ausgabe: 100
*direkte Ausgabe der Variablen

WRITE: / y. "Ausgabe: 100

4.4 Datentypen und Datenobjekte

167

44.3
Arithmetische Operationen

ABAP/4 stellt fiir die Deklaration von Datenobjekten, in denen Zah-
len gespeichert werden sollen, 3 eingebaute Datentypen zur Verfii-

gung:

Datentyp Beschreibung Verwendung

i integer fiir Berechnungen mit ganzen Zahlen
Ganzzahl Wertebereich: -2 *¥10°... 2 *10’
p Packed Number Berechnungen mit Festkommazahlen.

gepackte Zahl ~ Benutzen Sie diesen Datentyp immer
dann, wenn ,,auf den Pfennig* genau
gerechnet werden soll.

f Floating Point ~ Dieser Datentyp erlaubt das Rechnen
Gleitpunktzahl — mit sehr groen Zahlen
Wertebereich:
22%10™...1,8%10™ (positv und nega-
tiv)

Durch die interne Darstellung der
Zahlen als Dualsummen, sind Berch-
nungen mit Datenobjekten, die mit
diesem Datentyp angelegt wurden,
eher ungenau.

4.4.3.1
Arithmetische Operatoren

Fiir Datenobjekte, die mit den Datentypen ,,i*, ,,p* oder ,,f** angelegt
wurden, konnen Sie fiir die Formulierung arithmetischer Anweisun-
gen die Operatoren der Tabelle 4.8 benutzen. Operatoren sind grund-
sétzlich in Leerzeichen einzuschlieen.

168 : 4 Grundlegende Techniken der Listenprogrammierung
|

Ope- Beschrei- Beispiel Tabelle 4.8
rator bung Arithmetische

+ Addition DATA: summandl type i, Operatoren

summand?2 type i,
summe type 1.

summandl = 5.
summand?2 = 6.
summe = summandl + summand?2.

*summe: 11
- Subtraktion DATA: minuend type f,

subtrahend type £,
differenz type f.

minuend = '1.23E03'.

subtrahend = '5.91E02"'.

differenz = minuend - subtrahend.

*differenz: '6.39E+02"

* Multiplikation DATA:

faktorl (3) type p decimals 2,
faktor2 (3) type p decimals 2,
produkt (6) type p decimals 2.
faktorl = '123.45".
faktor2 = '678.90"'.
produkt = faktorl * faktor2.

*produkt: '83810,21"'
*ok Potenz DATA:basis type i,
potenz type i,
ergebnis type 1i.
basis = 2.
potenz = 3.
ergebnis = basis ** potenz.
*ergebnis: 8
= Zuweisung Der rechts neben dem Operator stehende Teil
eines Ausdrucks wird dem links stehenden
Teil zugewiesen. Verwechseln Sie den Zu-
weisungsoperator nicht mit dem mathemati-
schen Gleichheitszeichen.

DATA: n type 1.

n=>5.
n=n-+1.
*n: 6

Wirkung der Anweisungn=n+ 1:
Im ersten Schritt wird n um 1 erhoht (5 + 1).
Das Ergebnis wird wiederum dem Datenob-
jekt n zugewiesen.

(Klammer auf ergebnis = (a + b) * c.

) Klammer zu ergebnis = (a + b) * ¢

4.4 Datentypen und Datenobjekte 169

4.4.3.2
Ganzzahlarithmetik

Bei der Ganzzahlarithmetik wird das Ergebnis gerundet.

Beispiel:
Data: a type i,

b type i,

c type 1i.
a=4. b = 10.
ergebnis = a / b.
*ergebnis = 0.

a=>5.b=10.
ergebnis = a / b.
*ergebnis = 1.

Zusitzlich stehen fiir die Ganzzahlarithmetik die Funktionen DIV

(ganzahlige Division) und MOD (Rest ganzzahlige Division) zur
Verfiigung.

Abb. 421 7/2=

Die Funktion
DIV und MOD v
Wird durch DIV Wird durch MOD
ermittelt ermittelt

Syntax:
Data: a TYPE i VALUE 7,
b TYPE i VALUE 2,

c TYPE 1i.
c = a MOD b.
*c =1

c = a DIV b.
* c = 3.

4.4.3.3
Festpunktarithmetik

Berechnungen mit gepackten Zahlen (Datentyp p) erfolgen iiber die
Festpunktarithmetik. Diese Arithmetik ist die einzige, die Sie fiir be-
triebswirtschaftliche Berechnungen nutzen konnen. Die Festpunkt-
arithmetik nutzt die gleichen Prinzipien, wie sie auch bei Berech-
nungen mit ,,Papier und Bleistift” angewendet werden. Die Ergeb-

170 ™ 4 Grundlegende Techniken der Listenprogrammierung

nisse werden korrekt auf die in der Datendeklaration angegebenen
Dezimalstellen gerundet.

DATA: fpzl TYPE p DECIMALS 2 VALUE '5',
fpz2 TYPE p DECIMALS 2 VALUE '3',
ergebnis TYPE p DECIMALS 2.

ergebnis = fpzl / fpz2. " (5/2=1,6666606)

*ergebnis: 1,67

Die Ausgabeaufbereitung erfolgt entsprechend der Einstellungen im
Benutzerstammsatz.

4.4.3.4
Gleitpunktarithmetik

Die Gleitpunktaritmetik kommt bei Berechnungen mit FlieBpunkt-
zahlen (Datentyp f) zum Einsatz. Aufgrund der Zerlegung der an der
Berechnung beteiligten Zahlen in Dualbruchsummen und der Ar-
beitsweise der Gleitpunktprozessoren sind die Ergebnisse der Gleit-
punktarithmetik eher ungenau. Die Gleitpunktarithmetik ist fiir be-
triebswirtschaftliche Berechnungen nicht anwendbar.

Beispiel:

Mit Gleitpunktarithmetik Mit Festpunktarithmetik Tabelle 4.9

DATA: DATA:
a TYPE f., a TYPE p decimals 2,
b TYPE f, b TYPE p decimals 4,
f TYPE f, ¢ TYPE p decimals 2.
c type p decimals 2.

a = '8150"'. a = '8150"'.

b = 1'0.2957". b = '0.2957"'.

f =a * Db. c =a * b.

c = £f.

write: / 'c¢:', c, write: / 'c:', c.

'for, £

f: 2,409954999999999E+03

c: 2.409,95 c: 2.409,96

Genaues Ergebnis c: 2409,95500

4.4 Datentypen und Datenobjekte 171

4.4.3.5
Typkonvertierungen

Typkonvertierungen sind notwendig, wenn an einer numerischen
Operation Operanden mit unterschiedlichen Datentypen beteiligt
sind. Vor der Ausfiihrung einer solchen Operation konvertiert
ABAP Zahlen in den hochsten vorkommenden Datentyp und fiihrt
dann die Operation mit den konvertierten Zahlen aus. Dabei wird die
Datentyprangfolge i = p > f zugrunde gelegt. Nach Ausfiihrung
der Operation wird das Ergebnis dem Ergebnisfeld zugewiesen. Ist
das Ergebnis nicht vom gleichen Typ wie das Ergebnisfeld, erfolgt
eine Konvertierung des Ergebnisses in das Format des Ergebnisfel-
des.

Beispiel:

Die Konvertierung soll an der numerischen Operation
a/ b+c

gezeigt werden. Fiir die Berechnungen gilt:
a=300,b=301,c="10.25'

X =

Tabelle 4.10 Konvertierungsbeispiele

Datentyp Berechnung des Konvertierung in
x a b ¢ Zwischenergebnisses den Ergebnistyp
i 1 1 1 keine Konvertierung keine Konv.
300/301+10
1 +10 11
i i p i Konvertierung der Variablen a, b und ¢ Konvertierung
dec. in den Typ p decimals 3 von p nach i
3 300.000/301.000 + 10.25
G J
0,997 + 10,250 = 11,247 11
i i p i Konvertierung der Variablen a, b und ¢ Konvertierung
dec. in den Typ p decimals 2 von p nach i
2 300.000/301.000 + 10.25
N\ J
1 + 10,25 = 11,25 11
p 1 f n Konvertierung der Variablen a, b, und c Konvertierung
dec. inden Typ f von f nach p
3 &0000E+02 /3,01 00E+03 + 1,0250E+01
hd
9,966777E-01 + 1,0250E+01
=1,12466777E+01 11,247
172 ™ 4 Grundlegende Techniken der Listenprogrammierung

An den Konvertierungsbeispielen der Tabelle konnen Sie die fol-
genden Grundsitze erkennen: ‘00

= Die Ganzzahlarithmetik kommt dann zum Einsatz, wenn alle \./
beteiligten Komponenten Ganzzahltypen sind (1. Beispiel).

= Die Gleitpunktarithmetik wird fiir numerische Operationen be-
nutzt, wenn mindestens eine beteiligte Komponente vom Typ
FlieBpunktzahl ist (3. Beispiel).

= Die Festpunktarithmetik wird in allen anderen Fillen angewen-
det.

= Ist mindestens eine der beteiligten Komponenten ein Zahlentyp,
kann der Ausdruck auch zeichenartige Komponenten enthalten
(Beispiel 4). Die Zeichenkette wird dann in das Format des
hochsten vorkommenden Zahlendatentyps konvertiert. Kann die
Zeichenkette nicht als Zahl interpretiert werden, wird ein Lauf-
zeitfehler ausgelost.

44.4
Operationen mit Zeichenketten

Tabelle 4.10 zeigt eingebaute zeichenartige Datentypen.

Datentyp Beschreibung Verwendung Tabelle 4.11

: : eingebaute
t time Zeitberechnungen ' zeichenartige
Zeit Format: 6 Ziffern HHMMSS Datentypen

HH - Stunde (hour)
MM - Minute (minute)
SS — Sekunde (second)
Fiir Zeitberechnungen wird die Zeit-
arithmetik angewendet.

d Date Datumsberechnungen

Datum Format: 8 Ziffern YYYYMMDD

YYYY - Jahr (year)
MM — Monat (month)
DD - Tag (day)
Fiir Datumsberechnungen wird die
Datumsarithmetik angewendet.

c Character Zeichenkette fester Linge.
Zeichen 1...65535 Zeichen

n numerische Zeichenkette fester Linge.
Zeichen 1...65535 Ziffern

string string Zeichenkette beliebiger Linge. Dy-
Zeichenkette namische Speicherverwaltung.

4.4 Datentypen und Datenobjekte 173

Zeitarithmetik Zeitarithmetik

Uber die Zeitpunktarithmetik kann eine Zeitdifferenz (in Sekunden)
oder ein neuer Zeitpunkt berechnet werden.

Beispiel:
Berechnung einer Zeitdifferenz:

REPORT Zeitarithmetik.
DATA: differenz type i,

timel type t wvalue '091000°',

time2 type t wvalue '101000°'.
*Berechnung der Zeitdifferenz:
differenz = time2 - timel.
write: 'Zeitdifferenz [Sekunden]:',differenz.
*Ausgabe: Zeitdifferenz [Sekunden]: 3.600

Berechnung eines neuen Zeitpunktes:

REPORT Zeitarithmetik.

DATA: differenz type i1 wvalue 3600,
timel type sy-uzeit value '091000',
time2 type sy-uzeit.

*Berechnung des neuen Zeitpunktes:

time2 = timel + differenz.

write: 'Neuer Zeitpunkt:',time2, 'Uhr'.

*Ausgabe: Neuer Zeitpunkt: 10:10:00 Uhr

Datumsarithmetik

Uber die Datumsarithmetik kann eine Datumsdifferenz (in Tagen)
oder ein neues Datum berechnet werden.

Beispiel:
Berechnung einer Datumsdifferenz:

REPORT Datumsarithmetik.
DATA: differenz type i,
datuml type sy-datum value '20030225',
datum?2 type sy-datum value '20030325'.
*Berechnung der Differenz:
differenz = datum2 - datuml.
write: 'Datumsdifferenz [Tage]:',differenz.
*Ausgabe: Datumsdifferenz [Tage]: 28

174 ™ 4 Grundlegende Techniken der Listenprogrammierung

Berechnung eines neuen Datums:

REPORT Datumsarithmetik.

DATA: differenz type i value 28,
datuml type sy-datum value '20030225',
datum?2 type sy-datum.

*Berechnung des neuen Datums:

datum2 = datuml + differenz.

write: 'Neues Datum:',datum?2.

*Ausgabe: Neues Datum: 25.03.2003

4.4.4.1
Zeichenkettenverarbeitung

SEARCH SEARCH

Beschreibung:
SEARCH f FOR g.
Die Zeichenfolge g wird in der Zeichenkette f gesucht.
sy-subrc =0 > fenthilt g
sy-fdpos = x.=> x ist die Position, an der g in f beginnt. Die Zdhlung
beginnt bei 0.
Beispiel:
REPORT ZKV.
data: f(4) wvalue 'ABAP',
g(2) value 'BA'.
search £ for g.

write: 'sy-subrc:',sy-subrc,
/ 'sy-fdpos:',sy-fdpos.
*Ausgabe: sy-subrc: 0

*sy-fdpos: 1
REPLACE REPLACE

Beschreibung:
REPLACE a with g into f.
Ersetzen des ersten Auftretens der Zeichenfolge a mit der Zeichen-
folge g in der Zeichenkette f.
sy-subrc = 0 = a wurde durch g ersetzt.
Beispiel:
REPORT zkv.
DATA: a VALUE 'P',
f(6) VALUE 'ABAP',
g(3) VALUE 'P/4'.
REPLACE a WITH g INTO f.

4.4 Datentypen und Datenobjekte 175

TRANSLATE

SHIFT

176 ™

IF sy-subrc = 0.
WRITE: f.

ENDIF.

*Ausgabe: ABAP/4

TRANSLATE

Beschreibung:

1. TRANSLATE f TO LOWER CASE.

2. TRANSLATE f TO UPPER CASE.

In der ersten Variante werden alle GroBbuchstaben in Kleinbuchsta-
be, in der 2. Variante alle Kleinbuchstaben in GroBbuchstaben iiber-
setzt. Weitere Informationen finden Sie in der Schliisselwortdoku-
mentation.

Beispiel:

REPORT zkv.

DATA: f(4) VALUE 'ABAP'.
TRANSLATE f TO LOWER CASE.
WRITE: f.

*Ausgabe: abap

SHIFT

Beschreibung:
SHIFT f [Zusatz] [BY <n> PLACES].
Zusatze: RIGHT
LEFT
CIRCULAR
Die Zeichen der Zeichenkette f werden um n Stellen nach rechts
(Zusatz RIGHT) bzw. links (Zusatz LEFT) verschoben. Durch das
Hinzufiigen von Leerzeichen bleibt die Lange der Zeichenkette f er-
halten.
Beim Zusatz CIRCULAR werden die n linken Zeichen entfernt und
an die rechte Seite von f angehangen.
Weitere Anwendungsmoglichkeiten finden Sie in der Schliissel-
wortdokumentation.
Beispiel:
Zusatz 'LEFT' (Standard)
REPORT zkv.
DATA: f(6) VALUE '123456'.
SHIFT f LEFT BY 2 PLACES.
WRITE: '"' NO-GAP,f NO-GAP,'"'.
*Ausgabe: "3456 "

4 Grundlegende Techniken der Listenprogrammierung

Zusatz ,RIGHT*

REPORT zkv.

DATA: f£(6) VALUE '123456"'.
SHIFT £ RIGHT BY 2 PLACES.
WRITE: '"' NO-GAP,f NO-GAP,'"'.
*Ausgabe: " 1234"

Zusatz CIRCULAR

REPORT zkv.

DATA: f£(6) VALUE '123456"'.
SHIFT £ CIRCULAR BY 2 PLACES.
WRITE: '"' NO-GAP,f NO-GAP,'"'.
*Ausgabe: "345612"

Zusitze RIGHT CIRCULAR
REPORT zkv.

DATA: f(6) VALUE '123456"'.
SHIFT f RIGHT CIRCULAR BY 2 PLACES.

WRITE: '"' NO-GAP,f NO-GAP,'"'.

*Ausgabe: "561234"

CONDENSE CONDENSE
Beschreibung:

CONDENSE f.

Mehrere hintereinander auftretende Leerzeichen werden durch ge-
nau ein Leerzeichen ersetzt. Die entfernten Leerzeichen werden am
Ende der Zeichenkette eingefiigt.

Beispiel

REPORT zkv.

DATA: f£(14) VALUE '12 3456"'.

CONDENSE f.

WRITE: '"' NO-GAP,f NO-GAP,'"'.

*Ausgabe: "12 3456 "

OVERLAY OVERLAY

Beschreibung:

OVERLAY f with g

Leerzeichen der Zeichenkette f werden mit den an der gleichen Posi-
tion stehenden Zeichen der Zeichenkette g ersetzt.

4.4 Datentypen und Datenobjekte 177

CONCATENATE

SPLIT

178 =

Beispiel

REPORT zkv.

DATA: f(14) VALUE '12 3456,
g(l4) VALUE 'abcdefghijklmn'.

OVERLAY f with g.

WRITE: £ NO-GAP.

*Ausgabe: "12cdefghij3456"

CONCATENATE

Beschreibung:
CONCATENATE f g into f2.
Die Zeichenkette f wird mit der Zeichenkette g verkniipft. Die dar-
aus resultierende Zeichenkette wird auf f2 geschrieben. Leerzeichen
am Ende der Zeichenketten werden ignoriert, es sei denn, Sie be-
nutzen den Datentyp ,,string*. (Achtung: Linge {2 = Lénge f + Lin-
ge g).
sy-subrc = 0 = Lénge von f2 ausreichend.
Beispiel
REPORT zkv.
DATA: schlagworte type string,

S1(3) value 'EDV',

52 (8) wvalue 'Internet',

s3(15) value 'Programmierung'.
Concatenate sl s2 s3 into schlagworte separated
by ';'.
write: schlagworte.
*Ausgabe: EDV;Internet;Programmierung

SPLIT

Beschreibung:

SPLIT £ at g into sl s2..sn.

Die Zeichenkette f wird an den Stellen, an denen das in der Variab-

len g stehende Zeichen steht, getrennt. Die dadurch entstehenden

Teile der Zeichenkette werden in die Variablen s1...sn geschrieben.

Beispiel:

REPORT zkv.

DATA: schlagworte type string,
S1(3),S2(8),s3(15).

schlagworte = 'EDV;Internet;Programmierung'

SPLIT schlagworte at ';' into sl s2 s3.

write: sl, s2, s3.

*Ausgabe: EDV Internet Programmierung

4 Grundlegende Techniken der Listenprogrammierung

4.4.5
Strukturen

Unter einer Struktur ist ein zusammengehdoriger einzeiliger Spei-
cherbereich zu verstehen, der mehrere, einzeln adressierbare Kom-
ponenten besitzt.

Beispiel:
| Struktur. Kundenadresse | Abb. 4.22.
Beispiel einer
o N — Struktur

Kunden- Kunden- Kunden- PLZ Ort

nummer name vorname

S et
—

Komponenten der Struktur Kundenadresse

Alle Komponenten der Struktur kdnnen gemeinsam iiber den Struk-
turnamen, jede Komponente iiber Strukturnamen plus Komponen-
tennamen angesprochen werden. Strukturen werden hiufig genutzt,
um Daten eines Datensatzes einer Datenbanktabelle aufzunehmen
(siehe Kapitel 4.6 ,,LLesen von Daten aus Datenbanktabellen*).

4.4.5.1
Anlegen von Strukturen

Wie auch elementare Datentypen kénnen Strukturen auf verschiede-
nen Wegen erzeugt werden.

= Mit lokalem Strukturtyp,
= Mit implizitem Strukturtyp
= Mit einer globalen Struktur aus dem ABAP-Dictionary

Struktur mit lokalem Strukturtyp
Zunichst wird in einer TYPES-Anweisung der Strukturtyp definiert.
Syntax:

TYPES: BEGIN OF <Strukturname>,
<Komponentennamel> Type <Datentyp>,
<Komponentenname2> Type <Datentyp>,

4.4 Datentypen und Datenobjekte 179

180 ™

<Komponentennamen> Type <Datentyp>,
END OF <Strukturname>.

Beispiel

REPORT zstrukturen.

TYPES: BEGIN OF kundenadresse,
kunnr (8) TYPE n,
kundename (25),
kundenvorname (25),
plz(5) TYPE n,
ort (25),

END OF kundenadresse.

Danach wird die Struktur in der DATA-Anweisung deklariert, d.h.
es wird ein Datenobjekt vom Typ ,,Struktur* angelegt.

Syntax:

DATA: <Datenobjekte> TYPE <Strukturname>.

Beispiel:
DATA: wa_ kundenadresse TYPE kundenadresse.

Hinweis:

Strukturen werden héufig auch als ,,Arbeitsbereiche® (work area)
bezeichnet. Es hat sich deshalb eingebiirgert, dass Strukturnamen
mit ,,wa_* beginnen.

Struktur mit implizitem Strukturtyp

Alternativ zum oben beschriebenen Weg kann der Strukturtyp (im-
plizit) in der DATA-Anweisung angelegt werden.

Syntax:

DATA: BEGIN OF <Datenobjekt>
<Komponentennamel> Type <Datentyp>,
<Komponentenname2> Type <Datentyp>,

<Komponentennamen> Type <Datentyp>,
END OF <Datenobjekt>.

Im folgenden Programmausschnitt wird die Struktur aus Abb. 4.22
iiber die implizite Datentypkonstruktion angelegt.

REPORT zstrukturen.

DATA: BEGIN OF wa kundenadresse,
kunnr (8) TYPE n,
kundename (25),

4 Grundlegende Techniken der Listenprogrammierung

kundenvorname (25),
plz (5) TYPE n,
ort (25),

END OF wa_ kundenadresse.

Hinweis:
Strukturen kénnen geschachtelt werden, d.h. eine Struktur kann wie-
derum Komponente einer Struktur sein.

4.4.5.2

Strukturen im Programm benutzen

Nachdem nun klar ist, wie eine Struktur angelegt wird, wollen wir,
am Beispiel der vorher deklarierten Struktur wa_kundenadresse, Da-
ten in die Struktur einbringen und auch wieder ausgeben.

Eine Komponente einer Struktur wird iiber folgende allgemeine
Syntax angesprochen:
<Strukturname>-<Komponentenname>.

Laden der Struktur wa_kundenadresse mit Daten:

wa_kundenadresse-kunnr = '1234"'.

wa_ kundenadresse-kundename = 'Gottschalk'.
wa_ kundenadresse-kundenvorname = 'Thomas'.
wa_kundenadresse-plz = '01030".
wa_kundenadresse-ort = 'Berlin'.

Lesen der Daten der Struktur wa_kundenadresse:
write: / wa_ kundenadresse-kunnr,

/ wa_kundenadresse-kundename,

/ wa_kundenadresse-kundenvorname,
/ wa_kundenadresse-plz,

/ wa_kundenadresse-ort.

1. Legen Sie in Ihrem Programm YKO4DBAS eine Struktur
wa_zbestand mit den folgenden Komponenten an:

m isbn TYPE zbestand-isbn,

m titel TYPE zbestand-titel,

m autorl TYPE zbestand-autorl,

m kategorie TYPE zbestand-kategorie,

m Dbestand TYPE zbestand-bestand,

m ausgeliechen TYPE zbestand-ausgeliehen,
m verfuegbar TYPE i.

4.4 Datentypen und Datenobjekte

181

2. Legen Sie den Ereignisblock ,,Start-of-Selection an und laden
Sie die Struktur wa_zbestand mit sinnvollen Daten. Die Kom-
ponente ,,verfuegbar* soll aus den Komponenten ,,bestand* und
»ausgeliehen‘ berechnet werden.

3. Geben Sie den Inhalt der Struktur entsprechend des Listenfor-
mates aus.

4. Erginzen Sie in der Listeniiberschrift, die z.Z. lediglich aus
dem Wort ,,Ausgabeliste” besteht, Datum und Uhrzeit der Lis-
tenerstellung.

5. Sorgen Sie dafiir, dass die Uberschrift im Ereignisblock
,» Top-of-Page‘ ausgegeben wird.

Losung: YKO4DBAS_4

Losung

REPORT vykO4dbas.
*Definition des Strukturtyps st zbestand
TYPES: BEGIN OF st zbestand,
isbn TYPE zbestand-isbn,
titel TYPE zbestand-titel,
autorl TYPE zbestand-autorl,
kategorie TYPE zbestand-kategorie,
bestand TYPE zbestand-bestand,
ausgeliehen
TYPE zbestand-ausgeliehen,
verfuegbar (4) TYPE n,
END OF st_zbestand.
*Deklaration der Struktur wa zbestand mit dem
*Datentyp st zbestand und Deklaration der
*Variablen ausgabedatum und ausgabezeit
DATA: wa_zbestand TYPE st zbestand,
ausgabedatum TYPE sy-datum,
ausgabezeit TYPE sy-uzeit.
START-OF-SELECTION.
*Systemdatum und -zeit eintragen
ausgabedatum = sy-datum.
ausgabezeit = sy-uzeit.
*Strukturkomponenten mit sinnvollen Werten laden
wa_zbestand-isbn = '3898421473'.
wa_zbestand-titel = 'ABAP Objects'.
wa_zbestand-autorl = '101’

182 ™ 4 Grundlegende Techniken der Listenprogrammierung

wa_zbestand-kategorie = 'EDV'

wa_zbestand-bestand = 30

wa_zbestand-ausgeliehen = 10

*Berechnung der Anzahl verfigbarer Bicher
wa_zbestand-verfuegbar = wa_zbestand-bestand

- wa_zbestand-ausgeliehen.
*Ausgabe der Struktur wa zbestand.

WRITE:

*Mit UNDER kann die Ausgabe unter der
*Spalteniiberschrift positioniert werden
* (siehe Schlisselwortdokumentation "Write")

/ wa_zbestand-isbn UNDER 'ISBN' (002),
wa_zbestand-titel UNDER 'Titel' (003),
wa_zbestand-autorl UNDER 'Autor' (004),

(10) wa_zbestand-kategorie
UNDER 'Kategorie' (005),
wa_zbestand-verfuegbar
UNDER 'verfiigbar' (006) .
TOP-OF-PAGE.
*Dieser Ereignisblock wird vom Laufzeitsystem
*aufgerufen, wenn eine neue Ausgabeseite begon-
*nen wird
FORMAT COLOR COL HEADING INTENSIFIED ON.
WRITE:
'Ausgabeliste’ (001),
'Ausgabedatum' (007), ausgabedatum,
'Ausgabezeit' (008) ,ausgabezeit,119
FORMAT COLOR COL HEADING INTENSIFIED OFF.
WRITE: /1 '"ISBN' (002) COLOR COL_KEY
INTENSIFIED ON,
12 'Titel' (003),
79 'Autor' (004),
101 'Kategorie' (005),
111 ‘'verfigbar' (006) .

T

4.4.5.3
Zuweisungen von Strukturen und Zeichenketten

Mit der MOVE-Anweisung oder dem Zuweisungsoperator kann der
Inhalt einer Struktur oder einer Zeichenkette einer Struktur zugewie-
sen werden. Dabei werden die Zeichen der Zeichenkette bzw. der
Quellstruktur linksbiindig in die Zielstruktur kopiert. Eine Typkon-
vertierung findet dabei nicht statt.

4.4 Datentypen und Datenobjekte

183

Abb. 4.23
fehlerfreie
Zuweisung einer
Struktur an eine
Struktur

184 ™

Zuweisung einer Struktur an eine Struktur

DATA: BEGIN OF wa partner,
name (10),
vorname (10),
END OF wa partner,
BEGIN OF wa_kunden,
kundenname (10),
kundenvorname (10) ,
Umsatz (10) TYPE p DECIMALS 2,
END OF wa kunden.
wa_ partner-name = 'Meier'.
wa_ partner-vorname = 'Horst'.

MOVE wa_partner TO wa_kunden.
*oder
wa_kunden = wa partner.

Im Beispiel wird der Inhalt der Struktur wa_partner in die Struktur
wa_kunden kopiert. Dabei wird Zeichen fiir Zeichen der Struktur

wa_partner linksbiindig in wa_kunden eingetragen.

wa_partner wa_kunden = wa_partner
oder
/\«-._ move wa partner to wa_kunden
il R
Name Vorname
A A
dl N R
MIENI|E[R H|O|R|S|T
YYYYYYYYYVYVYYYVYYYYYYY
MIENL|E(R H|O|R|S|T
L. AN AN ~
K ;f K dﬂ(
undenname undenvorname
A A
N
wa_kunden
Das Andern der Komponentenreihenfolge in der Struktur

wa_kunden (z.B. Kundenname, Umsatz, Kundenvorname) hat bei
der Zuweisung der Struktur wa_partner zur Folge, dass der Inhalt
der Komponente Vorname in die Komponente Umsatz geschrieben
wird. Bei der Ausgabe der Komponente Umsatz wird der Vorname
als gepackte Zahl interpretiert, was schnell zu Fehleinschitzungen

des Kundenumsatzes fiihrt.

4 Grundlegende Techniken der Listenprogrammierung

wa_partner wa_kunden = wa_parcner

oder
P L moye\wa_pazt.ner to wa_kunden /fqe%?e;,j;e Zu-
Name Vorname weisung einer
A A f
P ~/ N gtrullitur an eine
M[E|T]E[R SO RER truktur
YYY VY Y YV VYYVYVYVYVYVYYVYVYYY
IMIENT|E|R H|O|R|S|T
Y P 1,53 N, >
' N N
N Kundenname | Umsatz | [Kunden\rernamel#-/
—~
wa_kunden
Kundenname : Meier
Umsatz: 48627273742020202,02
Kundenvorname:

Dieses Problem tritt nicht auf, wenn Sie an Stelle der einfachen Zu-
weisung die Anweisung ,,MOVE-CORRESSPONDING* benutzen.
Diese Anweisung kopiert nur die Inhalte namensgleicher Felder. Die
Komponentennamen des Beispielprogrammes sind deshalb ebenfalls
zu dndern.:

DATA: BEGIN OF wa partner,

name (10) ,

vorname (10) ,
END OF wa_ partner,
BEGIN OF wa_ kunden,

name (10) ,

umsatz (10) TYPE p DECIMALS 2,
vorname (10) ,

END OF wa_ kunden.
wa_partner-name = 'Meier'.
wa_partner-vorname = 'Horst'.
MOVE-CORRESPONDING wa partner to wa_ kunden.

Zuweisung einer Zeichenkette an eine Struktur
REPORT zDatumsaufbereitung.
DATA: BEGIN OF wa datum,

yyyy (4),
mm (2) ,

4.4 Datentypen und Datenobjekte 185

Abb. 4.25
Zuweisung einer
Zeichenkette an

eine Struktur

186 =
(]

dd(2),
END OF wa datum,
datum TYPE sy-datum VALUE '20031112°'.
MOVE datum TO wa_datum.
WRITE: 'wa datum-yyyy:',16 wa datum-yyyy,
/ 'wa datum-mm:',16 wa_ datum-mm,
/ 'wa datum-dd: ',16 wa datum-dd.

Datum wa_datum = datum
A oder

move datum to wa_datum

eyt At
g 03 wm ddj

ot
wa_datum

wa_datunm-yyyy: 2003
wa_datumn—rm: 11
wa_datun-dd: 12

4.4.6
Interne Tabellen

Interne Tabellen sind Datenobjekte, mit denen Datenmengen fester
Struktur im Arbeitsspeicher des SAP-Servers gehalten werden. Eine
interne Tabelle besteht aus Zeilen und Spalten. Die Spalten besitzen
einen Spaltennamen und einen Datentyp. Alle Spalten werden als
Zeilentyp bezeichnet.

4 Grundlegende Techniken der Listenprogrammierung

Spalte Abb. 4.26
interne Tabelle

Zeilen

——\——

ISBN Titel Bestand Autor

Type n Typec Typei Typen
Lange 10 Lange 65 Lange 10
o S/
“\/
Zeilentyp

m Interne Tabellen sind dynamische Datenobjekte, d. h. die beno-
tigte Speicherkapazitit wird wihrend der Laufzeit ermittelt und
bereitgestellt.

m Es gibt keine durch ABAP/4 gesetzten Beschrinkungen hin-
sichtlich der Anzahl der Spalten und Zeilen.

m Jede Spalte kann beliebig definiert werden, sie kann elementare
oder strukturierte Datentypen enthalten.

m Fiir interne Tabelle kann ein Tabellenschliissel definiert werden.
4.4.6.1

Tabellenarten

In ABAP/4 konnen Sie drei Tabellenarten einsetzen:

m Standard Tabelle (standard table)

m Sortierte Tabelle (sorted table)

m Hashed Tabelle (hashed table)

Eigenschaften der Standardtabelle Standardtabelle
m Die Zeilen der Tabelle sind nicht sortiert.

m Durch die Anweisung ,,SORT* kann die Tabelle beliebig sor-
tiert werden.

m Die Zeilennummern und ein Verweis auf die Datenzeile werden
im sogenannten Index gehalten. Uber diesen Index kann das
ABAP-Programm auf eine bestimmte Zeile zugreifen (Index-
Zugriff).

m Eine Standardtabelle besitzt immer einen non-unique-Schliissel.
Das ist ein Schliissel, der erlaubt, dass mehrere Zeiler_l. mit den
gleichen Schliisselwerten angelegt werden konnen. Uber den

4.4 Datentypen und Datenobjekte 187

sortierte Tabelle

Hashed-Tabelle

188 ™

Tabellenschliissel kann das ABAP-Programm ebenfalls auf eine
Zeile der Tabelle zugreifen.

Wird beim Anlegen der Tabelle kein Schliissel definiert, erzeugt
das Laufzeitsystem einen Standardschliissel, der aus allen zei-
chenartigen Feldern der Tabelle besteht.

Die Standardtabelle wird eingesetzt, wenn der Zugriff auf die
Zeilen der Tabelle vorwiegend iiber den Index erfolgt.

Eigenschaften der sortierten Tabelle

Die Zeilen sortierter Tabellen liegen sortiert nach dem Tabellen-
schliissel, der beim Anlegen der Tabelle definiert wird, im Ar-
beitsspeicher.

Sortierte Tabellen besitzen, wie auch die Standardtabellen, ei-
nen Index der die Zeilennummer und einen Verweis auf die Da-
tenzeile enthilt. Uber den Index kann das ABAP-Programm auf
eine bestimmte Datenzeile zugreifen (Index-Zugriff)

Sortierte Tabelle konnen iiber einen non-unique- oder einen
unique-Schliissel verfiigen. Im Gegensatz zum non-unique-
Schliissel lédsst der unique-Schliissel nicht zu, dass mehrere Zei-
len mit den gleichen Eintriigen in den Schliisselfeldern, angelegt
werden konnen.

Die sortierte Tabelle wird eingesetzt, wenn der Zugriff auf die
Zeilen der Tabelle vorwiegend iiber den Schliissel erfolgt.
Durch die Sortierung kann hier ein schnellerer Suchalgorithmus
angewendet werden (binédre Suche).

Eigenschaften der Hashed-Tabelle

Die Hashed-Tabelle besitzt keinen Index.
Es kann lediglich ein unique-Schliissel angelegt werden.

Auf die Zeilen der Tabelle kann nur iiber den Schliissel zuge-
griffen werden.

Der Zugriff auf die Zeilen der Tabelle erfolgt iiber einen spe-
ziellen Algorithmus. Dieser erreicht minimale Zugriffszeiten,
wenn beim Zugriff auf eine Zeile alle Schliisselfelder einbezo-
gen werden. Die Zugriffszeiten sind dabei unabhéngig von der
Anzahl der Zeilen.

Hashed-Tabellen sollten nur dann eingesetzt werden, wenn
beim Zugriff auf eine Zeile vorwiegend alle Schliisselfelder ein-
bezogen werden.

4 Grundlegende Techniken der Listenprogrammierung

4.4.6.2
Anlegen interner Tabellen

Interne Tabellen konnen iiber folgende Wege angelegt werden:
m Mit lokalem Tabellentyp

m Mit impliziten Tabellentyp

m Mit Bezug zum ABAP-Dictionary

Internen Tabelle mit lokalem Tabellentyp Internen Tabelle
. . . mit lokalem
In je einer TYPES-Anweisung wird Tabellentyp

m eine Strukturtyp fiir den Zeilentyp der internen Tabelle,
m der Typ der internen Tabelle

definiert. Fiir die Definition der internen Tabelle ist die folgende
Syntax zu benutzen:

TYPES <Name des Tabellentyps> TYPE <Tabellenart> TABLE
OF <Zeilentyp>
[WITH <Schliisselart> KEY <Schliisselfelder>]
[INITIAL SIZE <Anzahl Zeilen>].

Parameter Parameterwerte

Name des Ta- beliebige Zeichenkette

bellentyps

Tabellenart standard = Standardtabelle
sorted = Sortierte Tabelle
hashed = Hashed-Tabelle

Zeilentyp Ein Strukturtyp mit den Spalteneigenschaften

Schliissel- Die Schliisselfelder der Tabelle werden an dieser

felder Stelle angegeben. Mehrere Schliisselfelder sind-
durch Leerzeichen voneinander zu trennen

Anzahl optional kann die Anzahl der Zeilen der internen

Zeilen Tabelle festgelegt werden. Wird die Anzahl der Da-

tensitze nicht festgelegt, wird bei der Deklaration
der Tabelle standardmiBig ein 8 kB-Block resert-
viert, der dann bei Bedarf wiederum um einen 8 kB-
Block erweitert wird, usw.

Beispiel
Im folgenden Programmausschnitt wird ein Tabellentyp fiir die in-
terne Tabelle aus Abb. 4.26 definiert.

4.4 Datentypen und Datenobjekte 189

Interne Tabelle
mit implizitem
Tabellentyp

190 =
(]

REPORT zinterne tabelle.
TYPES: BEGIN OF st bestand, "Zeilentyp
isbn (10) TYPE n,
titel (65) TYPE c,
bestand TYPE i,
autor TYPE n,
END OF st bestand.
*Definition des Tabellentyps
TYPES: int bestand TYPE SORTED TABLE
OF st bestand
WITH UNIQUE KEY isbn.

Eigenschaften des Tabellentyps:

m sortierte Tabelle (sorted Table)

m Zeilentyp: st_bestand

m Tabellenschiissel (unique key): isbn.

Mit dem in der TYPES-Anweisung definierten Tabellentyp wird in
einer DATA-Anweisung die interne Tabelle deklariert.

Syntax:
DATA <Name der int. Tabelle> TYPE <Tabellentyp>.

Fiir das Beispiel sieht die Deklaration der internen Tabelle so aus:
DATA it bestand TYPE int bestand.

Internen Tabelle mit implizitem Tabellentyp
Die interne Tabelle kann auch (implizit) bei der Deklaration defi-

niert werden. Dabei wird anstelle des Schliisselwortes TYPES das
Schliisselwort DATA benutzt

DATA <Name der int. Tab.> TYPE/LIKE <Tabellenart> TABLE
OF <Zeilentyp> [initial size <n>].
[WITH <Schliisselart> KEY <Schliisselfelder>]
[INITIAL SIZE <Anzahl Zeilen>].

4 Grundlegende Techniken der Listenprogrammierung

Parameter

Parameterwerte

Name der int. Tab

Tabellenart

Zeilentyp

Schliisselfelder

Anzahl Zeilen

beliebige Zeichenkette fiir den Namen der
internen Tabelle

standard = Standardtabelle
sorted = Sortierte Tabelle
hashed = Hashed-Tabelle

Ein Strukturtyp oder eine Struktur (Datenob-
jekt). Der Strukturtyp bzw. die Struktur ent-
hilt die Eigenschaften der Spalten. Benutzen
Sie eine Struktur, miissen Sie bei der Dekla-
ration der internen Tabelle ,,LIKE* einset-
zen.

Die Schliisselfelder der Tabelle werden an
dieser Stelle angegeben. Werden mehrere
Schliisselfelder angegeben, sind diese durch
Leerzeichen voneinander zu trennen

Optional kann die Anzahl der Zeilen der in-
ternen Tabelle festgelegt werden. Wird die
Anzahl der Datensitze nicht festgelegt, wird
bei der Deklaration der Tabelle standardmi-
Big ein 8 kB-Block resertviert, der dann bei
Bedarf wiederum um einen 8 kB-Block er-
weitert wird, usw.

Beispiel

Im folgenden Programmausschnitt wird die interne Tabelle aus Abb.
4.26 mit implizitem Tabellentyp erzeugt. Als Zeilentyp wird eine

Struktur benutzt.

TYPES: BEGIN OF st_bestand,
isbn (10) TYPE n,
titel (65) TYPE c,
bestand TYPE i,
autor TYPE n,
END OF st bestand.
DATA: wa bestand type st bestand.
DATA: it_bestand LIKE SORTED TABLE
OF wa bestand
WITH UNIQUE KEY isbn.

4.4 Datentypen und Datenobjekte

191

Arbeitsbereich
Workarray

192 ™

interne Tabelle mit Bezug zum ABAP-Dictionary

Beim Anlegen interner Tabellen kann auf globale Tabellentypen zu-
gegriffen werden. Diese sind im ABAP-Dictionary abgelegt.

Syntax:
DATA <Name der int. Tab.> TYPE <Dictionary-Tabellentyp> .

Tabellenart und Tabellenschliissel sind im globalen Tabellentyp hin-
terlegt. AuBlerdem kann iiber die Syntax

DATA <Name der int. Tab.> TYPE <Tabellenart> TABLE
OF <Datenbanktabelle>

[WITH KEY <Schliisselfelder>]

[INITIAL SIZE <Anzahl Zeilen>].

eine interne Tabelle deklariert werden. Als Zeilentyp dient dabei die
Struktur der Datenbanktabelle.

Beispiel:
DATA: it bestand TYPE SORTED TABLE
OF zbestand WITH UNIQUE KEY isbn.

4.4.6.3
Zeilenoperationen

Die folgenden Anweisungen beziehen sich auf einzelne oder mehre-
re Zeilen der internen Tabelle:

= APPEND
(Anfiigen einer Zeile an das Ende der Tabelle)
m INSERT
(Einfiigen einer Zeile)
m READ
(Lesen einer Zeile)
= MODIFY
(Andern einer Zeile der internen Tabelle)
s DELETE

(Loschen einer Zeile)

s LOOP..ENDLOOP
(Sequentielles Bearbeiten von Zeilen)

Fiir diese Anweisungen werden Strukturen verwendet, die den glei-
chen Aufbau haben, wie der Zeilentyp der internen Tabelle. Diese
Strukturen werden auch als ,,Arbeitsbereich* oder ,,Workarea“ (wa)
bezeichnet.

4 Grundlegende Techniken der Listenprogrammierung

Nachfolgend sind die gebriuchlichsten Formen dieser Anweisungen
an Hand eines Beispiels beschrieben. Weitere mogliche Formen die-
ser Anweisungen finden Sie in der Schliisselwortdokumentation.

Die APPEND-Anweisung

Mit der APPEND-Anweisung wird eine neue Zeile am Ende einer
interne Tabelle angefiigt. Wenden Sie diese Anweisung nur bei
Standardtabellen an.

SYNTAX
APPEND <Arbeitsbereich> TO <int. Tabelle>.

Eine Struktur wird mit den Daten geladen, die in die interne Tabelle
eingefiigt werden sollen. Mit APPEND werden diese Daten am En-
de der internen Tabelle eingefiigt.

Beispiel:
kunnr kundenname Abb. 4.27
— N — APPEND
(123245 [Pflaume | wa_kunden Anfiigen einer
Zeile an die in-
APPEND wa_kunden TO it_kunden terne Tabelle.
123 |Gottschalk
345678 |Pilawa it_kunden
kunnr kundenname
e A
~
Zeilentyp

REPORT zAppend.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),
END OF st kunden.
DATA: wa_ kunden TYPE st kunden,
it_kunden TYPE TABLE OF st kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
Perform fill
*Laden der Struktur wa kunden
wa_kunden-kunnr = '123245'.
wa_kunden-kundenname = 'Pflaume’.
*Einfligen der Daten der Struktur
*in die interne Tabelle it kunden
APPEND wa_kunden TO it _kunden.

4.4 Datentypen und Datenobjekte 193

Tabelle 4.12

Abb. 4.28
INSERT
Einfligen einer
Zeile in die in-
terne Tabelle.

194 ®

Die INSERT-Anweisung

Mit der INSERT-Anweisung kann eine neue Zeile in die interne Ta-
belle eingefiigt werden.

SYNTAX
INSERT <Arbeitsbereich> INTO TABLE<int. Tabelle>.

Bei sortierten Tabellen (sorted table) wird die Zeile entsprechend der
Sortierfolge eingeordnet, bei Standardtabellen entspricht die Anwei-
sung der APPEND-Anweisung.

sy-subrc =0 Die Zeile wurde an die n-te Position eingefiigt

sy-subrc =4 Tritt bei Tabellen mit eindeutigem Schliissel (uni-
que-key) auf. Zeile wurde nicht eingefiigt, weil be-
reits eine Zeile mit gleichen Schliisselwerten vor-
handen ist.

Beispiel:
kunnr kundenname
(—_‘\f—j;‘w
|123245 [pPflaume | wa_kunden

INSERT wa_kunden
INTO TABLE it_kunden.

123|Gottschalk it_kunden
{sortierte Tabelle,
345678 |Pilawa Tabellenschlissel:

e . kundennarme)
kunnr kundenname

& i
T

Zeilentyp

REPORT zInsert.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),

END OF st kunden.
DATA:
wa_kunden TYPE st kunden,
it kunden TYPE SORTED TABLE OF st kunden

WITH NON-UNIQUE KEY kundenname.

*Int. Tabelle im Unterprogramm 'Fill'laden
PERFORM fill.
*Laden der Struktur wa kunden
wa_kunden-kunnr = '123245'.

4 Grundlegende Techniken der Listenprogrammierung

wa_kunden-kundenname = 'Pflaume’.
INSERT wa_kunden INTO TABLE it kunden.

Die READ-Anweisung

Die READ-Anweisung greift auf eine Tabellenzeile zu, tiber

m die Zeilennummer (Index),

m Feldinhalte der Tabellenschliisselspalten (Tabellenschliissel),
m Feldinhalte beliebiger Spalten.

Die READ-Anweisung belegt folgende Systemvariablen:

sy-subrc Mit O belegt, wenn eine Tabellenzeile gefunden wurde, Tabelle 4.13
die den Bedingungen der READ-Anweisung entspricht

sy-tabix enthélt die Zeilennummer der gefundenen Zeile

Indexzugriff

Der Index wird bei internen Tabellen vom Typ ,,sorted” und ,,stan-
dard* automatisch angelegt und verwaltet. Bei Hashed-Tabellen gibt
es keinen Index, demzufolge auch keinen Indexzugriff.

Syntax:
READ TABLE <it> INTO <wa> INDEX <n>.

it Interne Tabelle in der eine Zeile gelesen werden soll Tabelle 4.14

wa Arbeitsbereich, der die Felder der Tabellenzeile aufnimmt.

n Nummer der Zeile, die gelesen werden soll.

Beispiel
kunnr kundenname Index
i o W Abb. 4.29
123 |Gottschalk|l it_kunden Indexzugriff

123245 Pflaume 2
345678 Pilawa 3

READ TABLE it kunden INTO wa_ kunden INDEX 2

o)[123245 |[Pflaume | wa_kunden
V —_—
kunnr kundenname

4.4 Datentypen und Datenobjekte 195

Abb. 4.30
Indexzugriff

Verbinden der
zu lesenden
Zeile mit einem
Feldsymbol

196 ™

REPORT zreadindex.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),

END OF st kunden.
DATA: wa_kunden TYPE st kunden,

it _kunden TYPE TABLE OF st kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Lesen der 2. Zeile der Tabelle it kunden
READ TABLE it kunden INTO wa_kunden INDEX 2.
WRITE: wa_kunden-kunnr,wa_kunden-Kundenname.

Indexzugriff iiber Feldsymbole

Das Nutzen von Feldsymbolen (Zeigern) beim Lesen von Zeilen in-
terner Tabellen ist fiir die Performance Threr Programme giinstiger
als der oben beschriebene Umweg iiber eine Struktur.

Das Feldsymbol wird mit der zu lesenden Zeile verbunden. Sie lesen
die Daten also direkt aus der internen Tabelle. Eine Struktur wird bei
dieser Methode nicht benotigt.

Syntax:
READ TABLE <it> INDEX <n> ASSIGNING <fs>.

it Interne Tabelle in der eine Zeile gelesen werden soll
fs Feldsymbol

n Nummer der Zeile, die gelesen werden soll.

Beispiel:

FIELD-SYMBOLS: <zl> it_kunden
<z1> LIKE LINE OF it_kunden l
kunnr kundenname Index
f_)_.\"—/\.—.\’_k_\
<zl> 123 Gottschalk|l
1735215 |Pflagme 2
345878 Pilsa 3

ERITE <zl>—Kunnr| F-ﬁ'RITE <2 1>-kundenname

READ TABLE it kunden INDEX 2
ASSIGNING <zl>

REPORT zfeldsymbole.

TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),
END OF st kunden.

DATA:

it kunden TYPE TABLE OF st kunden.

4 Grundlegende Techniken der Listenprogrammierung

*Mit FIELD-SYMBOLS ...LIKE LINE OF it kunden
*wird ein Feldsymbol angelegt, das mit einer
*Zeile der Tabelle it kunden verbunden werden
*kann

FIELD-SYMBOLS: <zl1> LIKE LINE OF it kunden.
*Int. Tabelle im Unterprogramm 'Fill'laden
PERFORM fill.

READ TABLE it _kunden INDEX 2 ASSIGNING <zl>.
*Durch den Zusatz ASSIGNING <zl> wird das
*Feldsymbol <zl1l> mit der durch die INDEX-
*Klausel ausgewdhlten Zeile der Tabelle
*verbunden. Durch die Typisierung mit 'LIKE
*LINE OF in der Feldsymboldeklaration kann auf
*die Komponenten der Zeile der internen Tabelle
*zugegriffen werden.

WRITE: / <zl>-kunnr, <zl>-kundenname.

Tabellenschliisselzugriff

Bei sortierten Tabellen liegen die Zeilen der Tabelle sortiert nach
dem Tabellenschliissel vor, der beim Anlegen der internen Tabelle
definiert wird. Beim Zugriff auf eine Tabellenzeile iiber die Felder
dieses Schliissels, wird bei sortierten und bei Hashed-Tabellen ein
schneller Algorithmus, z.B. die bindre Suche, zum Auffinden der
benotigten Tabellenzeile angewendet. Bei hidufigen Zugriffen iiber
die Schliisselfelder sollten Sie deshalb diese Tabellenarten einsetzen.
Bei unsortierten Tabellen findet immer ein ,,Full-Table-Scan‘ statt.

Syntax 1:

READ TABLE <it> INTO <wa> WITH TABLE KEY <f1> =<il>
<f2>=<i2>
<fn> = <in>.

it Interne Tabelle in der eine Zeile gelesen werden soll

wa Arbeitsbereich, der die Felder der Tabellenzeile aufnimmt.
fl..fn Felder des Tabellenschliissels

il..in Inhalt der Schliisselfelder in der zu lesenden Zeile

4.4 Datentypen und Datenobjekte

197

Abb. 4.31
Tabellen-
schlisselzugriff

Laden des Ar-
beitsbereiches
mit dem Inhalt
der zu lesenden
Zeile

198 ™

Beispiel:
kunnr kundenname

(—'A'ﬂ—);'\
123 |Gottschalk| it_kunden
(123245 |Pflaume (Tabellenschlissel:
345678 |Pilawa kunnr)

READ TABLE it kunden INTO wa_kunden
WITH TABLE KEY kunnr ='123245"',

[123245 |Pflaume | wa_kunden

| R —
kunnr kundenname

REPORT zreadtabschl.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),
END OF st kunden.

DATA: wa kunden TYPE st kunden,

it kunden TYPE SORTED TABLE OF st kunden

WITH UNIQUE KEY kunnr.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.

*Lesen der Zeile in der kunnr = '123245' ist
READ TABLE it kunden INTO wa_ kunden
WITH TABLE KEY kunnr = '123245'.

WRITE: wa kunden-kunnr,wa kunden-kundenname.

Syntax 2:

Alternativ zur Angabe der Schliisselfelder und den Schliisselfeldin-
halten der zu lesenden Tabellenzeile in der READ-Anweisung, kann
eine Struktur mit den Schliisselfeldinhalten geladen werden. Diese
Struktur wird von der READ-Anweisung genutzt, um die Datenzeile
zu suchen, in der die gleiche Belegung der Schliisselfelder auftritt

wie in der vorher geladenen Struktur.

READ TABLE <it> INTO <wa> FROM <wal>.

it Interne Tabelle in der eine Zeile gelesen werden soll

wa Arbeitsbereich, der die Felder der Tabellenzeile aufnimmt.

wal Arbeitsbereich, der mit den Feldinhalten der Schliisselfelder

der zu lesenden Zeile geladen wird

Hinweis: Fiir wa und wal kann die gleiche Struktur benutzt werden.

4 Grundlegende Techniken der Listenprogrammierung

Beispiel
kunnr kundenname
M

-

A—‘\
(123245 | | wa_kunden

READ TABLE it kunden INTO wa_kunden
FROM wa_ kunden.

123 Gottschalk| it_kunden
123245 Pflaume (Tabellenschiliissel:
345678 Pilawa kunnr)
123245 [Pflaume | wa_kunden
kunnr kundenname

REPORT zreadtabschl.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),
END OF st kunden.

DATA: wa_kunden TYPE st kunden,

it kunden TYPE SORTED TABLE OF st kunden

WITH UNIQUE KEY kunnr.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Struktur mit dem Inhalt der Schlisselfelder
*der zu lesenden Tabellenzeile laden
wa_kunden-kunnr = '123245"'.
*Lesen der Zeile in der kunnr = '123245' ist
READ TABLE it_kunden INTO wa_kunden
FROM wa_kunden.
WRITE: wa kunden-kunnr,wa kunden-kundenname.

Tabellenschliisselzugriff iiber Feldsymbole

Das Nutzen von Feldsymbolen (Zeigern) beim Lesen von Zeilen in-
terner Tabellen ist fiir die Performance Threr Programme giinstiger
als der Umweg iiber eine Struktur. Das Feldsymbol wird iiber den
Tabellenschliissel mit der zu lesenden Zeile verbunden. Die Feldin-
halte der Tabellenzeile werden dann direkt aus der Tabelle gelesen.
Eine Struktur wird bei dieser Methode nicht benétigt.

Syntax:

READ TABLE <it> WITH TABLE KEY <fl1>=<il>
<f2>=<i2>
<fn> = <in>

ASSIGNING <fs>.

4.4 Datentypen und Datenobjekte

Abb. 4.32
Tabellenschliis-
selzugriff dber
den Arbeitsbe-
reich

Laden des Ar-
beitsbereiches
mit dem Inhalt
der zu lesenden
Zeile

199

Tabelle 4.15 it Interne Tabelle in der eine Zeile gelesen werden soll
fs Feldsymbol
fl..fn Felder des Tabellenschliissels
il..in Inhalt der Schliisselfelder in der zu lesenden Zeile

Abb. 4.33 Beispiel

Tabellenschliis- <>
selzugriff zigi‘oiigsﬂ’zé oF it Kunden l it_kunden (Tabellenschl.: kunnr)
- kunnr kundenname
Verbinden der . P S —
zu lesonden 18 TR NI L sase s bl Jomame
Zeile mit einem ASSIGNING <z1> T8 TR I
Feldsymbol

FERITE <zl>—kur|nr| rWRI'.T.‘E <zl>-kundenname

REPORT zreadtabschl.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),

END OF st kunden.
DATA: itikunden TYPE SORTED TABLE OF

st _kunden WITH KEY kunnr.
*Anlegen des Feldsymbols mit Bezug zum
*Zeilentyp der int. Tabelle it kunden
FIELD-SYMBOLS: <zl1l> LIKE LINE OF itikunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Feldsymbol mit der zu lesenden Zeile ver-
*binden
READ TABLE it kunden WITH TABLE KEY
kunnr = '123245' ASSIGNING <zl>.
WRITE: / <zl>-kunnr, <zl>-kundenname.

Zugriff iiber Feldinhalte beliebiger Spalten
Wird tiiber beliebige Felder auf eine Tabellenzeile zugegriffen, fin-
det, unabhingig von der Tabellenart, immer ,,Full-Table-Scan* statt.

Syntax 1:

READ TABLE <it> INTO <wa> WITH KEY <fl1> =<il>
<f2>=<i2>
<fn> = <in>.

200 : 4 Grundlegende Techniken der Listenprogrammierung

it Interne Tabelle in der eine Zeile gelesen werden soll

wa Arbeitsbereich, die die Felder der Tabellenzeile aufnimmt.
fl..fn Beliebige Felder der internen Tabelle
il..in Inhalt der Felder in der zu lesenden Zeile

Gibt es in der Tabelle mehrere Tabellenzeile, die die Bedingungen
der READ-Anweisung erfiillen, wird die erste Tabellezeile ausgege-
ben, die die READ-Anweisung identifiziert hat.

Beispiel
kunnr kundenname
—_—
123 |Gottschalk| it_kunden
(123245 |Pflaume
345673 Pflaume

READ TABLE it kunden INTO wa_kunden

WITH KEY kundenname = 'Pflaume’.
[123245 |[Pflaume | wa_kunden
LN A A

b

%
kunnr kundenname

REPORT zreadbeliebig.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),

END OF st kunden.
DATA: wa kunden TYPE st kunden,

it kunden TYPE TABLE OF st kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Lesen der Zeile in der

Kundenname = 'Pflaume' ist
READ TABLE it kunden INTO wa_kunden
WITH KEY kundenname = 'Pflaume'.

WRITE: wa kunden-kunnr,wa kunden-kundenname.

Zugriff iiber Feldinhalte beliebiger Spalten mit Feldsymbolen

Syntax:

READ TABLE <it> WITH KEY <fl>=<il>
<f2>=<i2>
<fn> = <in>

ASSIGNING <fs>.

4.4 Datentypen und Datenobjekte

Tabelle 4.16

Abb. 4.34
Zugriff auf eine
beliebige Zeile

Laden des Ar-
beitsbereiches
mit dem Inhalt
der zu lesenden
Zeile

u 201

Tabelle 4.17

Abb. 4.35
Zugriff auf eine
beliebige Zeile

Verbinden der
zu lesenden
Zeile mit einem
Feldsymbol

202 =

it Interne Tabelle in der eine Zeile gelesen werden soll

fs Feldsymbol
fl..fn Beliebige Felder der Tabelle
il..in Inhalt der Felder in der zu lesenden Zeile

Beispiel
<zl>
FIELD-SYMBOLS: it_kunden
<zl> LIKE LINE OF it_kunden l
kunnr kundenname
/'_)"_"\r'—)\"—‘\
READ TABLE it_kunden <z1> 123 Gottschalk
WITH KEY kundenname = 'Pflaume ™SS 123245 Pfla
ASSIGNING <zl> 345878 | Pfl4l

PRITE <zl>—l:unnrl PIRITB <zl>-kundenname

REPORT zreadbeliebig.
TYPES: BEGIN OF st kunden,

kunnr (8) TYPE n, kundenname (25),

END OF st kunden.

DATA: it kunden TYPE TABLE OF st kunden.
*Anlegen des Feldsymbols mit Bezug zum Zei-
*lentyp der int. Tabelle it kunden
FIELD-SYMBOLS: <z1> LIKE LINE OF it kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Feldsymbol mit der zu lesenden Zeile ver-
*binden
READ TABLE it kunden WITH KEY
kundenname = 'Pflaume' ASSIGNING <zl>.
WRITE: / <zl>-kunnr, <zl>-kundenname.

Die MODIFY-Anweisung

Mit der MODIFY-Anweisung konnen Feldinhalte innerhalb einer
oder mehrerer Zeilen der internen Tabelle gedndert werden. Die An-
derungen konnen iiber eine Struktur oder iiber ein Feldsymbol in die

interne Tabelle eingetragen werden.

Andern interner Tabellen mittels Struktur

Die Tabellenzeile, in der Feldinhalte geidndert werden sollen, wird
zunéchst ausgewihlt (z.B. mit einer READ-Anweisung) und in eine
Struktur geschrieben. In der Struktur werden die Anderungen durch-
gefiihrt. Durch die MODIFY-Anweisung wird die ausgewéhlte Ta-

bellenzeile mit der Struktur iiberschrieben.

4 Grundlegende Techniken der Listenprogrammierung

Hinweis: Die Struktur muss den gleichen Aufbau haben wie der
Zeilentyp der internen Tabelle, in der Anderungen ausgefiirht wer-
den sollen.

Syntax 1:
MODIFY TABLE <it> FROM <wa>.

it Name der internen Tabelle in der Daten geéndert werden Tabelle 4.18

wa Arbeitsbereich, der die Schliisselwerte der zu dndernden Ta-
bellenzeile und die Inhalte der zu dndernden Felder enthilt.
Das Laufzeitsystem ermittelt die Tabellenzeile iiber die in der
Struktur eingetragenen Schliisselwerte und iiberschreibt die zu
dndernden Felder mit denen aus der Struktur. Schliisselfelder
konnen iiber diese Methode nicht geéndert werden

Beispiel
kunnr kundenname Abb. 4.36
Ty MODIFY

123 |Gottschalk| it_kunden

T Andern einer
e Zeile der inter-
345678 Pilawa
nen Tabelle
READ TABLE it_kunden INTO wa_kunden tber den Ar-
WITH TABLE KEY kunnr = '123245°'. beitsbereich
[123245 [pflaume | wa_kunden

wa_kunden-kundenname = 'Birne'.

[123245 |[Birne | wa_kunden

MODIFY TABIE it kunden FROM wa kunden.

123 |Gottschalk| it_kunden
123245 Birne
345678 Pilawa

Syntax 2:
MODIFY <it> FROM <wa> INDEX <n>.

it Name der internen Tabelle in der Daten geéndert werden Tabelle 4.19

n Tabellenzeile, in die die Anderungen eingetragen werden

wa Arbeitsbereich, der die Inhalte der zu dndernden Felder der
Tabellenzeile n enthilt.

4.4 Datentypen und Datenobjekte ®™ 203

Abb. 4.37
MODIFY
Andern einer
Zeile der inter-
nen Tabelle
liber den Tabel-
lenindex

204 ®
[

Beispiel

123 |Gottschalk| it_kunden
123245 Pflaume
345678 Pilawa

wa_kunden-kundenname = "Birne'.

[999999 [Birne | wa_kunden

MODIFY it kunden FROM wa kunden INDEX 2,

123 |Gottschalk| it_kunden
999999 |Birne

345678 Pilawa

Andern interner Tabellen mittels Feldsymbol

Uber Feldsymbole kann direkt, ohne die Nutzung einer Struktur, in
der internen Tabelle gedndert werden. Dazu wird das Feldsymbol
mit der zu dndernden Tabellenzeile verbunden (READ-Anweisung).
Danach konnen die gewiinschten Anderungen iiber das Feldsymbol
in die Datenzeile eingetragen werden.

Syntax:

READ TABLE <it> WITH TABLE KEY <fl> =<il>
<f2>=<i2>
<fn> = <in>

ASSIGNING <fs>.

<fs>-<Komponente> = <neuer Inhalt>.

<fs> Feldsymbol, das mit der zu dndernden Tabellenzeile verbun-
den wird. Es muss im Programm iiber FIELD-SYMBOLS
vereinbart werden.

Hinweis:

Anstelle der Klausel ,WITH TABLE KEY*“ in der READ-
Anweisung, kénnen auch die Klauseln ,,WITH KEY* und ,,INDEX
<n>“ verwendet werden (siche Seite 196 und 201).

4 Grundlegende Techniken der Listenprogrammierung

Beispiel

FIELD-5YMBOLS T it_kunden (Tabellenschl. kunnr) Abb. 4.38
= : It_kKunden (I abellenschi. Kunnr| A
<z1> LIKE LINE OF it_kunden. l i = MODIFY Andern
kunnr - kundenname einer Zeile der

t rund — "Gott - 11: internen Tabelle
READ TABLE 1t kunden <z1> scha . . 3
WITH KEY kundenname = 'Pflaume 'Sy 123245 | Pflaume uber ein Feld
ASSIGNING <zl>. 345678 | pilawa symbol

123 Gottschalk
123245 Birne
345678 Pilawa

<zl>-kundenname = 'Birne’.

REPORT zmodifyfs.
TYPES: BEGIN OF st kunden,

kunnr (8) TYPE n, kundenname (25),

END OF st kunden.
DATA: it kunden TYPE TABLE OF st kunden
WITH KEY kunnr.

*Anlegen des Feldsymbols mit Bezug zum Zei-
*lentyp der int. Tabelle it kunden
FIELD-SYMBOLS: <zl> LIKE LINE OF it kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Feldsymbol mit zu andernder Zeile verbinden
READ TABLE it kunden WITH KEY
kundenname = 'Pflaume' ASSIGNING <zl>.
*Anderung der Komponente ,Kundenname®
<zl>-kundenname = 'Birne'.
WRITE: / <zl>-kunnr, <zl>-kundenname.
*Ausgabe: 123245 Birne

Andern interner Tabellen iiber eine Bedingung
Einen oder mehrere Zeilen einer internen Tabelle konnen Sie auch
iiber die Angabe einer logischen Bedingung @ndern.

Syntax:
MODIFY <it> FROM <wa> TRANSPORTING f1 fn
WHERE <log. Bed.>.

it Tabelle, in der mehrere Zeilen gedndert werden sollen. Tabelle 4.20
wa Arbeitsbereich, der die Inhalte der zu dndernden Felder
enthilt

fl..fn Felder der internen Tabelle, die geéindert werden sollen.

log. Logische Bedingung, die fiir jede zu dndernde Zeile der in-
Bed. ternen Tabelle erfiillt sein muss.

4.4 Datentypen und Datenobjekte ®™ 205

Abb. 4.39
Andern mehre-
rer Zeilen tber

eine logische
Bedingung

206 =

Belegung der Systemvariablen sy-subrc

sy-subrc =0 Es wurde mindestens eine Anderung durchgefiihrt

sy-subrc =4 Es wurde keine Anderung durchgefiihrt

Beispiel
123 [Gottschalk it_kunden
123245 |[pflaume (Zustand nach
345678 |Pilawa dem Laden)

| [Miller | wa_kunden

MODIFY it kunden FROM wa kunden
TRANSPORTING kundenname WHERE kunnr <= '123245°".

123 |Miller Iit_kunden
123245 |Miller (Zustand nach
345678 |Pilawa der Anderung)

kunnr kundenname

REPORT zmodifywhere.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),
END OF st kunden.
DATA: it kunden TYPE SORTED TABLE OF st kunden
WITH UNIQUE KEY kunnr,
wa_kunden type st kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
wa_kunden-kundenname = 'Miiller’'.
*Anderungen in allen Zeilen, fir die die log.
*Bedingung kunnr <= '123245' gilt, durchfihren
MODIFY it kunden FROM wa_kunden
TRANSPORTING kundenname
WHERE kunnr <= '123245'.
LOOP AT it kunden INTO wa_ kunden.
WRITE: / wa_kunden-kunnr,
wa_kunden-kundenname.
ENDLOOP.

Die DELETE-Anweisung

Mit der DELETE-Anweisungen konnen eine oder mehrere Zeilen
einer internen Tabelle geloscht werden. Das Loschen erfolgt iiber

m die Zeilennummer (Index),
m Feldinhalte der Tabellenschliisselspalten (Tabelleschliissel),

m cinen logischen Ausdruck.

4 Grundlegende Techniken der Listenprogrammierung

Belegung der Systemvariablen sy-subrc

sy-subrc =0 Es wurde mindestens eine Zeile geloscht.

sy-subrc =4 Es wurde keine keine Zeile geloscht.

Loschen iiber den Zeilenindex
Diese Moglichkeit Zeilen einer internen Tabelle zu 16schen, steht
nur fiir Indextabellen (standard und sorted table) zur Verfiigung.

Syntax:
DELETE <it> INDEX <n>.

it Interne Tabelle in der eine Zeile geloscht werden soll

n Nummer der Zeile, die gelesen werden soll.

Beispiel
kunnr kundenname Index Abb. 4.40
—_— "
o Léschen
122 |eoetachalkll it_kunden einer Zeile der
123245 |Pflaume 2 :
545675 | Pilana 3 /frternen Tabelle
liber den
DELETE it kunden INDEX 2. Zeilenindex
it_kunden
123 Géttscha.lk 1 nach dem
345678 |Pilawa 2 Léschen

REPORT zdeleteindex.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),

END OF st kunden.
DATA: wa kunden TYPE st kunden,

it kunden TYPE TABLE OF st kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Lesen der Zeile, in der Kundenname = 'Pflaume'
*ist. Dabei wird sy-tabix mit der Zeilennummer
*der gelesenen Zeile geladen
READ TABLE it_kunden WITH KEY
kundenname = 'Pflaume' INTO wa_kunden.
*Prifen, ob entsprechende Zeile gefunden wurde.
IF sy-subrc = 0.

DELETE it_kunden INDEX sy-tabix.

ENDIF.
*Ausgabe der Tabelle iiber eine Loop-Schleife

4.4 Datentypen und Datenobjekte ® 207

LOOP AT it kunden INTO wa_ kunden.
WRITE:/ wa_ kunden-kunnr,wa kunden-kundenname.
ENDLOOP.

Loschen iiber den Tabellenschliissel

Syntax 1:

DELETE TABLE <it> WITH TABLE KEY <fl>=<il>
<f2>=<i2>
<fn> = <in>.

it Interne Tabelle, in der eine Zeile geloscht werden soll

fl...fn Tabellenschliisselfeld 1...Tabellenschliisselfeld 3

il..in Inhalt der Schliisselfelder in der zu 16schenden Zeile

Beispiel
Abb. 4.41 kunnr kundenname
Léschen — & S
einer Zeile der » 123 [Gottschalk| frkemen @ o
internen Tabelle 5 123245 Pflaume
tber den Tabel- o 345678 |Pilawa
lenschltissel &

L DELETE TABLE it_kunden
5? WITH KEY kunnr = '123245",

it_kund
3 123 Gottschalk :sc:r:“emn
: 345678 |Pilawa Léschen

REPORT zdeleteschl.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),
END OF st kunden.
DATA: wa_ kunden TYPE st kunden,
it kunden TYPE TABLE OF st kunden
WITH KEY kunnr.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
DELETE TABLE it kunden
WITH TABLE KEY kunnr = '123245'.
*Ausgabe der Tabellenzeilen Uber eine
*Loop-Schleife
LOOP AT it kunden INTO wa_ kunden.
WRITE: / wa_ kunden-kunnr,
wa_kunden-kundenname.

ENDLOOP.

208 ™ 4 Grundlegende Techniken der Listenprogrammierung

Syntax 2:
DELETE TABLE <it> FROM <wa>.

it Interne Tabelle, in der eine Zeile geloscht werden soll
fl...fn Tabellenschliisselfeld 1...Tabellenschliisselfeld 3
il...in Inhalt der Schliisselfelder in der zu 16schenden Zeile

Beispiel
kunnr kundenname Abb. 4.42
— —— L6 ,
dschen einer
FELTLA | el Zeile der inter-
o)
5 123 |Gottschalk| it kunden nen Tabelle
é’,‘ 123245 |Pflaume (Tabellenschl.: kunnr) (iber den
e 345678 |Pilawa Arbeitsbereich
= DELETE TABLE it kunden
é? FROM wa_kunden.
: 123 |Gottschalk| it_kunden
: 345678 |Pilawa nach dem
. Léschen

REPORT zdeleteschl.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),
END OF st kunden.
DATA: wa kunden TYPE st kunden,
it kunden TYPE TABLE OF st kunden
WITH KEY kunnr.

*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*wa_kunden mit dem Inhalt des Schlissel-
*feldes der zu l6schenden Zeile laden
wa_ kunden-kunnr = '123245"'.
*Loschen der Zeile in der kunnr = '123245' ist
DELETE TABLE itikunden FROM wa_ kunden.
*Ausgabe der Tabellenzeilen iiber eine
*Loop-Schleife
LOOP AT it kunden INTO wa_ kunden.

WRITE: / wa_ kunden-kunnr,

wa_kunden-kundenname.

ENDLOOP.

Loschen iiber einen logischen Ausdruck

Uber einen logischen Ausdruck kénnen mehrere Zeilen einer inter-
nen Tabelle geloscht werden.

4.4 Datentypen und Datenobjekte ®™ 209

Abb. 4.43
Léschen
mehrerer Zeilen
der internen Ta-
belle liber eine
logische Bedin-

gung

210 =

Syntax 1:
DELETE <it> WHERE <logischer Ausdruck>.

it Interne Tabelle, in der eine Zeile geloscht werden soll

<logischer Alle Zeilen, fiir die der logische Ausdruck gilt, werden

Ausdruck> geloscht.

Beispiel
kunnr kundenname
A M
123 |Gottschalk| it_kunden
123245 Pflaume

5? 345678 Pilawa
A
find

Gottschalk

DELETE TABLE it kunden
WHERE kunnr >= '123' and
kunnr <= '123245"'.

[345678 [Pilawa | it_kunden
nach dem

Loschen

REPORT zdeleteausdr.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),
END OF st kunden.
DATA: wa_ kunden TYPE st kunden,
it kunden TYPE TABLE OF st kunden.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Loschen der Zeilen in denen
*kunnr >= '123245' und kunnr <= '234567' ist.
DELETE it_kunden WHERE
kunnr >= '123245' AND kunnr <= '234567'.
*Ausgabe der Tabellenzeilen ilber eine
*Loop-Schleife
LOOP AT it kunden INTO wa_ kunden.
WRITE: / wa_ kunden-kunnr,
wa_kunden-kundenname.
ENDLOOP.

Sequentielles Bearbeiten von Tabellenzeilen

Mit der LOOP-Schleife konnen Sie die Zeilen der internen Tabelle

sequentiell bearbeiten.

4 Grundlegende Techniken der Listenprogrammierung

Syntax
LOOP AT <it> INTO <wa> [FROM nl TO n2]
[WHERE <logischer Ausdruck].

*Bearbeitung der Tabellenzeile

ENDLOOP.

it Interne Tabelle, die sequentiell bearbeitet werden soll

nl..n2 Bei Verwendung der FROM-Klausel werden nur die
Tabellenzeilen verarbeitet, deren Zeilennummern im
Intervall nl<=Zeilnnummer<=n2 liegen

logischer Bei Verwendung der WHERE-Klausel werden nur die
Ausdruck Tabellenzeilen bearbeitet, fiir die der logische Aus-
druck zutrifft

Die Systemvariable sy-tabix enthilt den aktuellen Schleifenzihler.
Sie konnen diese Systemvariable nur innerhalb der Schleife benut-
zen. Nach dem Verlassen der Schleife wird sie wieder auf O gesetzt.

Prinzip der LOOP-Schleifenverarbeitung

Zeilenzahler = 0. (sy-tabix) Abb. 4.44
LOOP AT <it> INTO <wa>. (Begin der Schleifenverarbeitung) Wirkungsweise
Zeilenzahler = Zeilenzahler + 1. der LOOP-

Zeilenzahler > Anzahl Zeilen der internen Tabelle <it>? Schieife

Ja Nein

Schleifenverarbeitung verlassen | Struktur <wa> mit der Zeile der
{Programm wird mit der ersten |internen Tabelle <it>, deren Zei-
Anweisung nach der Schlgifen- [lennummer mit dem aktuellen
verarbeitung fortgesetzt) Inhalt des Zeilenzahlers wber-
einstimmt, laden.

\Verarbeitung der Daten der Struktur <wa>.
ENDLOOP.
Erste Anweisung nach der Schleifenverarbeitung

Hinweis: Die hervorgehobenen Zeilen des Struktogrammes miissen
vom Programmierer in ABAP-Quellcode umgesetzt werden. Die
anderen Eintrdge dienen zum Verstindnis der LOOP-Schleife und
werden automatisch ausgefiihrt.

4.4 Datentypen und Datenobjekte ®™ 211

Beispiel:
Im Beispiel werden alle Tabellenzeilen der internen Tabelle
it_kunden ausgegeben.

REPORT zloop.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (25),
END OF st kunden.
DATA: wa kunden TYPE st kunden,
it kunden TYPE TABLE OF st kunden
WITH KEY kunnr.

START-OF-SELECTION.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
*Ausgabe der Tabellenzeilen Uber eine
*Loop-Schleife
FORMAT COLOR COL NORMAL INTENSIFIED OFF.
LOOP AT it _kunden INTO wa_ kunden.
WRITE: /(3) sy-tabix UNDER 'Position',
wa_kunden-kunnr
NO-ZERO UNDER 'Kundennummer',
wa_kunden-kundenname
UNDER 'Kundenname'.
ENDLOOP.

TOP-OF-PAGE.
*Ausgabe der Spaltentiberschriften
FORMAT COLOR COL NORMAL INTENSIFIED ON.
WRITE: 'Position',10 'Kundennummer',
23 'Kundenname',47 '',/.

Ausgabe:

Position Kundennummer Kundenname

1 123 Gottschalk
2 123245 Pflaume
3 345678 Pilawa
4.4.6.4
Tabellenoperationen

Operationen, die die gesamte interne Tabelle bearbeiten, sind:

212 : 4 Grundlegende Techniken der Listenprogrammierung
|

= MOVE
(Zeilenweise kopieren der internen Tabelle),

m REFRESH
(Loschen des Inhaltes der internen Tabelle ohne Freigabe des al-
lokierten (reservierten) Speicherbereiches),

m FREE
(Loschen der internen Tabelle mit Freigabe des Speicherberei-
ches),

m SORT

(Sortieren der internen Tabelle),

m DESCRIBE TABLE
(Ermitteln der Tabelleneigenschaften).

Weiterhin konnen Sie zwei interne Tabelle mit den mathematischen
Operatoren (=, >= ;<=, <, >, <>) miteinander vergleichen. Dabei
wird zuerst die Zeilenanzahl und danach (bei gleicher Zeilenanzahl)
die Zeileninhalte miteinander verglichen.

Die MOVE-Anweisung
Mit der MOVE-Anweisung wird eine interne Tabelle kopiert.

Syntax 1:
MOVE <it-Quelle> TO <it-Ziel>.

Syntax 2.
<it-Ziel> = <it-Quelle>.

Prinzip der MOVE-Anweisung

kunnr kundenname Abb. 4.45
———" Wirkungsweise
123 |[Gottschalk it_Quelle der MOVE-An-

123245 Pflaume

weisung bei in-
345678 |Pilawa 9

ternen Tabellen

MOVE it_quelle TO it_Ziel.

123 |[Gottschalk it_Ziel
123245 |Pflaume
345678 Pilawa

——

Kunden- Umsatz
typ

Die Zeilentypen der Quell- und der Zieltabelle sollten dabei gleich
sein.

4.4 Datentypen und Datenobjekte ®™ 213

REFRESH

Free

Sort

214 =

Grundsitze der MOVE-Anweisung:

m Die Zuordnung der zu kopierenden Felder der Quelltabelle zu
den Feldern der Zieltabelle erfolgt durch ihre physische Anord-
nung, nicht durch Namensgleichheit.

m Sind die Typen der Quell- und Zielfelder unterschiedlich, er-
folgt eine automatische Typkonvertierung.

Die REFRESH-Anweisung

Die REFRESH-Anweisung 16scht alle Zeilen der internen Tabelle.
Der von der Tabelle allokierte, d.h. reservierte Platz im Hauptspei-
cher bleibt erhalten.

Syntax:
REFRESH <it>.

Die FREE-Anweisung

Die FREE-Anweisung 16scht alle Zeilen der internen Tabelle und
gibt den von der Tabelle allokierten Hauptspeicherbereich frei.

Syntax
FREE <it>.

Die SORT-Anweisung

Durch diese Anweisung konnen interne Tabellen nach beliebigen
Feldern sortiert werden.

Syntax

SORT <it>BY <feld1>[ascending/descending]
<feld2>[ascending/descending]
<feldn>[ascending/descending].

it Zu sortierende interne Tabelle
feldl...feldn Sortierfelder

ascending Sortierung aufsteigend (Standard)

descending Sortierung absteigend

Beispiel:
Im folgenden Programm wird eine interne Tabelle it_kunden mit
den Feldern ,kunnr®, ,kundenname® und ,.kundenvorname‘ nach
,.kundenname* und ,.kundenvorname* aufsteigend sortiert und aus-
gegeben.

4 Grundlegende Techniken der Listenprogrammierung

REPORT zsortierung.

SORT it _kunden BY kundenname kundenvorname.
LOOP AT it kunden INTO wa_ kunden.
WRITE: /(3) sy-tabix,
wa_kunden-kunnr NO-ZERO,
wa_kunden-kundenname,
wa_kunden-kundenvorname.
ENDLOOP.

Ausgabe

Position Kundennummer Kundenname Vorname

ik 124 Gottschalk Gilinther
2 123 Gottschalk Thomas
3 123245 Pf laume Kai
4 345678 Pilawa Jorg
Die DESCRIBE-Anweisung DESCRIBE

Mit Hilfe der DESCRIBE-Anweisung konnen folgende Eigenschaf-
ten einer internen Tabelle ermittelt werden:

m aktuelle Anzahl der Zeilen,

m Anzahl der initial reservierten Tabellenzeilen,

m Tabellenart.

Prinzip:

Legen Sie fiir die zu ermittelnden Eigenschaften je eine Variable
entsprechend der folgenden Tabell an.

TYPE Verwendung Riickgabewert der
DESCRIBE-Anweisung

i Anzahl Zeilen Anzahl der Tabellenzeilen

i Anzahl Initialzeilen ~Mit dem optionalen Zusatz

»initial size* angegebener Wert
fiir fiir die initial zu reservieren-
den Tabellenzeilen.

c Tabellentyp T — Standard Table

(Léange 1) S — Sorted Table
H — Hashed Table

4.4 Datentypen und Datenobjekte ®™ 215

216 =

Syntax:

DESCRIBE TABLE <it>
LINES <Anzahl Zeilen>
OCCURS <Anzahl Initialzeilen>
KIND <Tabellenart>.

Beispiel
REPORT zdescribe.
TYPES: BEGIN OF st kunden,
kunnr (8) TYPE n, kundenname (10),
END OF st kunden.
DATA: wa kunden TYPE st kunden,
it kunden
TYPE sorted TABLE OF st_kunden
WITH unique KEY kunnr
initial size 5,

zeilen TYPE 1,
initialzeilen TYPE 1i,
tabellenart.
*Int. Tabelle im Unterprogramm 'Fill' laden
PERFORM fill.
describe table it kunden
lines zeilen
occurs initialzeilen
kind tabellenart.
write: / 'aktuelle Anzahl Tabellenzeilen',
30 zeilen,
/ 'Tabellenart',39 tabellenart,
/ '"Initialzeilen',30 initialzeilen.

Ausgabe:
aktuelle Anzahl Tabellenzeile 4
Tabellenart =1
Initialzeilen =)

Wir wollen jetzt unser Bibliotheksprogramm YKO4DBAS um eine
interne Tabelle erginzen. In diese sollen 3 Buchbestandsdatensétze
geschrieben werden. Die Eintrige werden zunichst als Texteingaben
im Programm vorgenommen, spiter werden wir diesen Teil des
Programmes ersetzen und die Buchbestandsdaten direkt aus der Da-
tenbanktabelle ZBESTAND holen.

4 Grundlegende Techniken der Listenprogrammierung

1. Legen Sie einen internen Tabellentyp int_zbestand mit folgen-
den Eigenschaften an:

m Tabellentyp: sorted table
m Tabellenschliisselart: unique key
m Tabellenschliisselfeld: isbn.

2. Deklarieren Sie eine interne Tabelle it_zbestand mit dem unter
1. definierten Tabellentyp int_zbestand.

3. Fiillen Sie die interne Tabelle it_zbestand iiber die bereits be-
stehende Struktur wa_zbestand mit 3 Zeilen, die Buchstamm-
daten enthalten. Denken Sie sich dafiir sinvolle Werte fiir die
einzelnen Felder aus.

4. Geben Sie iiber eine LOOP-Schleife den Inhalt der Tabelle
it_zbestand aus. Die bisherige Ausgabe soll dabei um eine lau-
fende Nummer an der ersten Ausgabeposition ergédnzt werden.

5. Stellen Sie iiber die DESCRIBE-Anweisung die Anzahl der
Tabellenzeilen fest und geben Sie diese nach der LOOP-
Schleife aus.

Losung: YKO4DBAS_5

Ihr Programm sollte folgende Ergédnzungen bekommen haben (Die
Erginzungen sind im Quelltext so hervorgehoben) .

REPORT vkO4dbas.
*Definition des Strukturtyps st zbestand
TYPES: BEGIN OF st zbestand,
isbn TYPE zbestand-isbn,
titel TYPE zbestand-titel,
autorl TYPE zbestand-autorl,
kategorie TYPE zbestand-kategorie,
bestand TYPE zbestand-bestand,
ausgeliehen
TYPE zbestand-ausgeliehen,
verfuegbar (4) TYPE n,
END OF st zbestand.
*Definition des internen Tabellentyps
TYPES: int_zbestand
TYPE SORTED TABLE OF st zbestand
WITH UNIQUE KEY isbn.

4.4 Datentypen und Datenobjekte

217

DATA: it zbestand TYPE int zbestand,
wa_ zbestand TYPE st zbestand,
ausgabedatum TYPE sy-datum,
ausgabezeit TYPE sy-uzeit,
zeilen TYPE 1i.

START-OF-SELECTION.
*Systemdatum und -zeit in die Variablen

*eintragen
ausgabedatum = sy-datum.
ausgabezeit = sy-uzeit.

*Struktur mit sinnvollen Werten laden
wa_zbestand-isbn = '3898421473"'.

wa_zbestand-titel = 'ABAP Objects'.
wa_zbestand-autorl = '101"'
wa_zbestand-kategorie = 'EDV'

wa_zbestand-bestand = 30
wa_zbestand-ausgeliehen = 10

*Berechnung der Anzahl verfigbarer Biicher
wa_ zbestand-verfuegbar =

wa_zbestand-bestand

- wa_zbestand-ausgeliehen.

*Struktur in die interne Tabelle einfiigen
INSERT wa_zbestand INTO TABLE it zbestand.

*Struktur mit sinnvollen Werten laden
wa_zbestand-isbn = '3540523979°'.
wa_zbestand-titel = 'EDV-orientierte BWL'.
wa_zbestand-autorl = '100'
wa_zbestand-kategorie = 'EDV;BWL'
wa_zbestand-bestand = 95
wa_zbestand-ausgeliehen = 8

*Berechnung der Anzahl verfiigbarer Biicher
wa_zbestand-verfuegbar =

wa_zbestand-bestand
- wa_zbestand-ausgeliehen.

*Struktur in die interne Tabelle einfiigen
INSERT wa_zbestand INTO TABLE it zbestand.

*Struktur mit sinnvollen Werten *laden
wa_zbestand-isbn = '3827317894"'.
wa_zbestand-titel = 'ABAP-Ubungsbuch'.
wa_zbestand-autorl = '116'
wa_zbestand-kategorie = 'EDV'
wa_zbestand-bestand = 20

218 : 4 Grundlegende Techniken der Listenprogrammierung
|

wa_zbestand-ausgeliehen = 5
*Berechnung der Anzahl verfiigbarer Biicher
wa_zbestand-verfuegbar =
wa_zbestand-bestand
- wa_zbestand-ausgeliehen.
*Struktur in die interne Tabelle einfiigen
INSERT wa_zbestand INTO TABLE it zbestand.

*Ausgabe der internen Tabelle
LOOP AT it zbestand INTO wa_zbestand.
WRITE:
/ (3) sy-tabix,
wa_zbestand-isbn UNDER 'ISBN' (002),
wa_zbestand-titel UNDER 'Titel' (003),
wa_zbestand-autorl UNDER 'Autor' (004),
(10) wa_zbestand-kategorie
UNDER 'Kategorie' (005),
wa_ zbestand-verfuegbar
UNDER verfigbar' (006) .
ENDLOOP.
DESCRIBE TABLE it_zbestand
LINES zeilen.
WRITE: /,'Anzahl Biicher' (010), (3) zeilen.

TOP-OF-PAGE.
*Dieser Ereignisblock wird vom Laufzeitsystem
*aufgerufen, wenn eine neue Ausgabeseite
*begonnen wird
FORMAT COLOR COL HEADING INTENSIFIED ON.
WRITE: 'Ausgabeliste' (001),
20 'Ausgabedatum' (007),
ausgabedatum,
'Ausgabezeit' (008),
ausgabezeit, 125 ''.
FORMAT COLOR COL HEADING INTENSIFIED OFF.
WRITE: / 'Lfdnr' (009),
7 'ISBN' (002) COLOR COL_KEY
INTENSIFIED ON,
18 'Titel' (003),
85 'Autor' (004),
107 'Kategorie' (005),
117 'verfigbar' (006) .

4.4 Datentypen und Datenobjekte

219

Tabelle 4.21
globale Daten-

typen

Abb. 4.46
ABAP-

Dictonary:
Einstieg zum
Anlegen eines
Strukturtyps

220 »
(]

4.4.7
Globale Datentypen

In den vorigen Kapiteln wurden Datentypen iiber die TYPES-
Anweisung angelegt. Thr Geltungsbereich ist beschrinkt auf das
Programm, in dem sie definiert wurden. Sie werden deshalb auch als
programmlokale Datentypen bezeichnet. Im Gegensatz dazu kénnen
globale Datentypen von jedem Programm benutzt werden. Sie wer-
den im ABAP-Dictionary definiert. Tabelle 4.21 zeigt die globalen
Datentypen und die Bestandteile ihrer Definition.

globaler Bestandteile der Definition Bemerkung
Datentyp
Daten- m technische Beschreibung siche Kapitel 3.2
element m Feldbezeichner ,»Domine,
m Text fiir F1-Hilfe Datenelement,
m Suchhilfeanbindung Datenbankfeld™
Struktur- s Komponenten der Struktur
typ einschl. Komponententyp
m Suchhilfeanbindung
interner m Zeilentyp
Tabellen- = Tabellenart
typ m Schliissel

Vorgehensweise: Anlegen eines globalen Strukturtyps

Starten Sie das ABAP-Dictionary (Werkzeuge - ABAP Work-
bench - Entwicklung - SEI1 Dictionary). Aktivieren Sie den
Auswahlknopf ,,.Datentyp* und geben Sie den Namen des Struktur-
typs ein (im Beispiel ,,zst_zbestand)

ABAP Dictionary: Einstieg
|

() Datenbanktabelle

) Vjew
e 1

|53’ Anzeigen | |f Andern l |D Anlegen |

4 Grundlegende Techniken der Listenprogrammierung

Aktivieren Sie im Folgebild den Auswahlknopf ,,Struktur®.

\;i) Datenelement

\.1

Tahellentyp

Geben Sie im Folgebild ,,Dictionary: Struktur pflegen einen Kurz-
text ein. Als Komponenten der anzulegenden Struktur sollen Felder
aus der Datenbanktabelle ZBESTAND sowie eine neue Komponen-
te ,, VERFUEGBAR* verwendet werden. Wihlen Sie, um Felder aus
der Tabelle ZBESTAND in den Strukturtyp zu iibernehmen, das
Menii ,,Bearbeiten = Felder iibernehmen®.

@ CHNEB DnaD BE @B

& | i Emgabauter Typ Strg+F6
2| Eelder tbemehmen
Diction Aftribute aus Entitatstyp
BI:I | E Include . I:I | [Huerarchiedarslellung [| Append-Struktur, . |
fikati ;
Struktur Modifikationsoperationen helobarorteltet
Abbrachen Fi12
Kurzbeschrémors Sororeoryprerewsweotheksprojekt |
Eigenschaften) | |V Eingabehilfe/-prifung | Wahrungs-/Mengenfelder |
¥ [a]jon)] rm—m [®][Suchnite] [Eingebauter Typ |

DezSt..

DTyp [Lange .|Kurzbeschreibung

Im Folgebild ,,Komponenten iibernehmen* geben Sie den Namen
der Datenbanktabelle (ZBESTAND) ein.

Strukrname

c

(v Auswahl || Alle tbemehmen]

Waihlen Sie im Bild ,,Feldauswahl aus Tabelle ZBESTAND* die
Felder ensprechend der Abb. 4.50 aus, klicken Sie dann die Druck-
taste ,,Ubernehmen*.

4.4 Datentypen und Datenobjekte

Abb. 4.47
Auswahl des
anzulegenden
Datentyps

Abb. 4.48
Ubernahme von
Feldern einer
Datenbank-
tabelle

Abb. 4.49

Alle oder nur ei-
nige Felder
auswdéhlen

221

Abb. 4.50
Auswahl der zu
tibernehmenden
Felder

Abb. 4.51
Ubernehmen
der ausgewéhl-
ten Felder

222 m
[

Feldname § Typ Lénge Kurzbeschreibung
L mawpant [ciuT 000003 Mandant
[+ 15BN [numMc 000010 ISBN
C avrrase [nume 000004 Auflage
[+ T1TEL [cHAR 000065 Titel
C erscHEINUNGSIAHR [mumc 000004 Erscheinungsjahe
C vertas [char 000035 Verlag
[+ BESTAND [wme 000005 Bestand
[+ auscEnIEHEN [wumc 000005 Anzahl ausgelicher Bicher
[+ kATEGORIE [cHAR 000035 Kategorie
v AUTOR1 C wume 000010 Autorennummer
L avrorz [wume 000010 Autorennummer
[auror3 | NUMC 000010 Autorennummer
(ool K I a0

Um die ausgewdhlten Felder zu iibernehmen, klicken Sie im Folge-
bild die Schaltfldche ,,Einfligen*.

Dictionary: Struktur pflegen

QE] | | L_;__l | 1:] | | Hierarchiedarstellung I[,&ppend-Slrukmr...

Struktur 2ST_ZBESTAND neu(Uberarbeitet)
Kurzheschreibung Strukturtyp fur das Bibliotheksprojekt
Eigenschaften . Komp]/r' behilfe/-prafung | Wahrungs-/M feider |
E BN E = S|[EEE] [B][sucthite | [EingebauterTyp |
lKomp onente [Kompn nentantyp DTyp |Lange [DezSt.. .IKutzbasc hreibung
nuMc 10 ojsBN
lcHAR 65 o[Titel
HuMe s ojgestand
AUSGELIEHEN HUMC 5 Ojanzahl ausgelieher Bacher

FATEGORIE YRVF FATEGORIE |CHAR 35 Ojategorie
UTOR1 YEVF ANR NUMC 10 Olautorennummer

Zum Anlegen der Komponente ,,VERFUEGBAR® tragen Sie den
Komponentennamen in die Spalte ,,Komponente* ein und klicken
dann die Drucktaste ,,Eingebauter Typ*. Pflegen Sie die technischen
Eigenschaften entsprechend der Abb. 4.52. Alternativ konnen Sie
auch den Komponententyp ,,YRVP_BESTAND* verwenden.

4 Grundlegende Techniken der Listenprogrammierung

chffbnary: Struktur pﬁegen

DEI | | EI] D | [Hieralchiedarsleltung ||Append-51ruk!ur... |

Struktur Z5T_ZBESTAND neufuberarbeltet)
Kurzbeschreloung Strukturtyp fir das Bibliotheksprojekt
Eigenschaften,”” F | Eing prifung |~ gs-/Mengens
I,(?" Suchbhilfe [Komponententyp |
|Kumpunal|15 Komponententyp DTyp |Lange |DezSt .|Kurzhesl:hrelbung
¥RVE ISBM (NUMC 10| ojsBN
¥RVF TITEL ICHAR 65 O|Titel
[ERVP BESTAND (NUMC 5| OjBestand
YEVE AI.'IS. - (NUMC 5| DlAnzahl ausgelieher Bacher
[f{RVP FKATEGORIE JCHAP 35| Oj<ategorie
[YRVE AHR 10| Diutarennummer

Aktivieren Sie Thren Strukturtyp und weisen Sie ihm dabei eine
Entwicklungsklasse und einen Workbenchauftrag zu.

Vorgehensweise: Anlegen eines globalen internen Tabellentyps

Starten Sie das ABAP-Dictionary (Werkzeuge > ABAP Work-
bench = Entwicklung > SEI1 Dictionary), aktivieren Sie den
Auswahlknopf ,,Datentyp* und geben Sie den Namen des Tabellen-
typs ein.

ABAP Dictionary: Einstieg
|

() Datenbanktabelle

O View
@gatenlyp ZINT ZBESTAN l Es-

o]
|1f Andern ||D

|G{’ Anzeigen Anlegen |

Aktivieren Sie im Folgebild den Auswahlknopf ,,Tabellentyp®.

() Datenelement

truktur

(V][]

Im Folgebild ,Dictionary: Tabellentyp pflegen ist eine Kurzbe-
schreibung,, der benotigten Zeilentyp (im Beispiel zst_zbestand aus

4.4 Datentypen und Datenobjekte

Abb. 4.52
Anlegen einer
neuen Kompo-
nente

Abb. 4.53
ABAP-

Dictonary:
Einstieg zum
Anlegen eines
Tabellentyps

Abb. 4.54
Auswabhl des
anzulegenden
Datentyps

m 223

der Vorgehensweise ,,Anlegen eines globalen Strukturtyps‘) und die
Tabellenart einzutragen.

Abb. 4.55 Dictionary: Tabelfentyp pflegen

Auswahl des [| B | [EE))E] | [earchesarsteiung

Zeilentyps und Tabellentyp ZI = (berarbeitet)
def Tabellenart Kurzbeschreibung € interner Tabelientyp zum Bibliotheksprojekt >

Eigenschaﬁen/ Zeilentyp und Tugriff }/ Schidzzel]

Zeilentyp
(@) Zeilentyp

() Eingebauter Typ
Datentyp
Zahl der Stellen o Dezimalstellien 1]

Zuggffsant
L4
@5

Wechseln Sie in die Registerkarte ,,Schliissel* und wéhlen Sie dort
die Angaben zum Tabellenschliissel aus.

() Hash-Tabelle) nicht spezifizient
) Index-Tabells

Abb. 4.56 Dictionary: Tabellentyp pflegen

Auswahl der EIE) BEE)| @EE | @EEG)| (o)

Komponenten Tabelientyp ZINT_ZBESTAND TW neu(iberarbeitet)
des Tabellen Kurzbeschreibung internér Tabelentyp zum Bibliotheksprojekt

SCthsse/s Eigonschatten | Zeilentyp und Zugrff,»” Schiussel
/- :
Schigsseldefinition Schlugfelan v | B |G A=Y
O Stfidardschigssel o [SEEOhPODecSIEEREGANDT IV
(ggpientyp g S: pon...|DTyp |Kur]

@) Schiksselkomponanten (o] nlchns
[] TITEL CHAR Titel
O nicht speziézien []BESTAND NUMC Bestand
] AUSGELIEHEN NUMC Anzahl ausgelieher Bacher
E@E‘_@ﬂ Komponenten auswihfen % KATEGORIE CHAR Kategorie
AUTORN NUMC Autorennummer
hlisselk
?c SEDSTEERN [| VERFUEGEAR NUMC Verfugbare Exemplare
ISBN
Hi I I
=
|
1| E3[0]

lalo]

Aktivieren Sie Thren Tabellentyp und weisen Sie ihm dabei eine
Entwicklungsklasse und einen Workbenchauftrag zu.

Ersetzen Sie in Ihrem Programm YKO4DBAS alle programmloka-
m len durch globale Typdefinitionen.

1. Legen Sie einen globalen Strukturtyp zst_zbestand an. Er soll
die gleichen Komponenten besitzen wie der bisher verwende-
tet programmlokale Strukturtyp st_zbestand.

224 : 4 Grundlegende Techniken der Listenprogrammierung

2. Legen Sie einen globalen internen Tabellentyp zint_zbestand
an. Verwenden Sie als Zeilentyp den vorher angelegten Struk-
turtyp zst_bestand. Als Zugriffsart wéhlen Sie ,,Sortierte Ta-
belle* aus. Sorgen Sie dafiir, dass ein Tabellenschliissel vom
Typ ,,unique key* mit dem Schliisselfeld ,,JISBN*“ angelegt
wird.

3. Loschen Sie in Threm Programm YKO04DBAS die TYPES-
Anweisungen.

4. Ersetzen Sie in den DATA-Anweisungen die programmloka-
len Datentypen st_zbestand und int_zbestand durch die globa-
len Datentypen zst_zbestand bzw. zint_zbestand.

Losung: YKO4DBAS_6

Thre mit den globalen Datentypen zst_zbestand und zint_zbestand
vorgenommenen Datendeklarationen sollten wie folgt aussehen:

REPORT YKO04DBAS
DATA: it zbestand TYPE zint zbestand,
wa_zbestand TYPE zst zbestand,...

4.5
Kontrollstrukturen

Kontrollstrukturen werden eingesetzt, um den Ablauf eines Pro-
grammes zu steuern. So konnen z.B. Anweisungen in Abhingigkeit
eines logischen Ausdruckes einmalig oder mehrfach ausgefiihrt
werden. Es konnen zwei Arten von Kontrollstrukturen unterschieden
werden:

1. Bedingte Verzweigungen
2. Schleifen.

4.5.1
Bedingte Verzweigungen

Die IF-Anweisung

Die IF-Anweisung wird benétigt, um Anweisungen in Abhangigkeit
von logischen Ausdriicken auszufiihren. Die folgende Abbildung
soll die Wirkungsweise der IF-Anweisung und ihre Syntax veran-
schaulichen.

4.5 Kontrollstrukturen

225

Abb. 4.57
Wirkungsweise
und Syntax der

IF-Anweisung

226 »

@eginn der IF-Anweisung)

logischer
Ausdruck 1

" Tfalsch

logischer
Ausdruck 2

falsch *

logischer
Ausdruck n

falsch

Anweisungen, die nur
dann ausgefiihrt werden,
wenn keiner der
logischen Ausdruck 1..n
twahr ist.

@nae der IF-Anweisung)

4

Anweisungen, die nur
idann ausgefihrt
werden, wenn der
logische Ausdruck 1
Wwahr ist

(Anweisungen, die nur
idann ausgefihrt
werden, wenn der
logische Ausdruck 2
wiahr ist.

Anweisungen, die
nur dann ausgefihrt
werden, wenn der
logische Ausdruck n
wahr ist.

-

Y

Fﬂﬁchste Programmanweisung |

Beispiel

DATA: BEGIN OF wa,
jahr (4) ,monat (2),tag(2),

END OF wa.
wa = sy-datum.
IF wa-monat <=

WRITE:

WRITE:
ELSE.

WRITE:
ENDIF.

IF-Anweisungen konnen beliebig geschachtelt werden, d.h. inner-
halb eines Anweisungsblockes kénnen wiederum IF-Anweisungen

programmiert werden.

'06"'.

'l. Halbjahr'.
ELSEIF wa-monat <=
'2. Halbjahr'.

'12°'.

'ungiiltiges Datum'.

Die CASE-Anweisung

Die CASE-Anweisung stellt ebenfalls eine bedingte Programmver-
zweigung dar. Bei dieser Anweisung wird der Inhalt zweier Daten-

IF <logischer Ausdruck 1.
Anweisung 1
Armweisung 2

Anweisung n

ELSEIF <logischer Ausdruck 2:]

Anweisung 1
Anweisung 2

A-nwaisung n
ELSEIF <logischer Ausdruck n>.
Anweisung 1

Anweisung 2

Anweisung n

ELSE.
Anweisung 1
Anweisung 2

Anweisung n

ptionale Teile der,
F-Anweisung

4 Grundlegende Techniken der Listenprogrammierung

objekte verglichen. Die folgende Abbildung veranschaulicht die

Wirkungsweise der CASE-Anweisung und ihre Syntax.

(Beginn CASE-Anweisung)

Datenobjekt 1
Datenobjekt 2

— falgch

Datenobjekt 1
Datenobjekt 3
falsch
Datenobjekt 1 wahr
Datenobjekt n

falsch

nweisungen, die ausgefihrt
werden, wenn Datenobjekt 1
mit keinem der abgepriften
Datenobjekte (2...n)
ibereinstimmt.

Anweisungen, die nur
dann ausgefuhrt
erden, wenn
Datenobjekt 1 gleich
Datenobjekt 2 ist

Anweisungen, die nur
idann ausgefihrt
werden, wenn
Datenobjekt 1 gleich
[Datenobjekt 3 1st

ﬁnweisungen‘ die
nur dann ausgefiihrt
werden, wenn
Datenobjekt 1 gleich
Datenobjekt n ist

(Ende CASE-Anweisung)
le

CASE Datenobjekt 1.
WHEN Datenobjekt 2.
Anmweisung 1.
Anweisung 2,

Anweisung n.

WHEN Datenobjekt 3.
Anweisung 1.
Anmweisung 2.

|
|
Anweisung n. |

WHEN Datenobjekt 4. I
Anweisung 1. |
Anweisung 2. |
A.nweisung n. I

WHEN OTHERS, |
Anweisung 1. |
Anweisung 2. |
;nweisun.g n. |

|

ENDCASE.

|Néchste Programmanweisung |

Beispiel

DATA: BEGIN OF wa,
jahr (4) ,monat (2),tag(2),

END OF wa.
wa = sy-datum.
CASE wa-monat.

WHEN '01'.
WRITE:
WHEN '02'.
WRITE:
WHEN '03'.
WRITE: 'Marz'
WHEN OTHERS.

'Januar’'.

'Februar'.

loptionale Teile der‘
ICASE-Anweisung

WRITE: 'Monat liegt nicht im I. Quartal'.

ENDCASE.

CASE-Anweisungen konnen beliebig geschachtelt werden.

4.5 Kontrollstrukturen

Abb. 4.58
Wirkungsweise
und Syntax der
CASE- Anwei-
sung

n 227

4.5.2
Programmschleifen

Schleifen werden bendtigt, um Anweisungenblocke mehrmals hin-
tereinander ausfiihren zu konnen, ohne sie wiederholt zu implemen-
tieren. In ABAP/4 gibt es folgende Schleifen:

u

u

u
Abb. 4.59
Wirkungsweise
von Programm-
schleifen

DO-Schleifen, WHILE-Schleifen,

LOOP-Schleifen,
(siehe ...)

SELECT-Schleife zur Bearbeitung von Datenbanktabellen

| Anweisungen ‘

E | Schleifenbeginn

Anweisung 1
Anweisung 2

Anweisung n

Schleife
verlassen?

I Schleifenende

| Anweisungen |

Die DO-Schleife

Syntax 1:
Abb. 4.60 Schleifendurchlaufzahler = 0. (sy-index)
Wirkungsweise Schieifenbeginn DO.
und Syntax der Schieifendurchlaufzahler = Schleifendurchlaufzahler + 1.
DO-Schleife [Anwelsungen * Anweisungen.
Schleienverarbeimng verlassen? - :
m /’ﬁﬁ.}' IF <Abbruchbedingung>.
EXIT
(Programm wird mit der ersten An- EXIT.
weisung nach der Schieifenverar- ENDIE
beitung fortgesetzt, sy-index wird :
auf 0 gesetzl)
Schleifenende ENDDO.
Erste Amweisung nach der Schleifenverarbeitung

Die Systemvariable sy-index enthélt wahrend der Schleifenverarbei-
tung die Anzahl der bisherigen Schleifendurchliufe.

228 : 4 Grundlegende Techniken der Listenprogrammierung

Achtung: Wird die EXIT-Anweisung nicht erreicht, haben Sie eine
sogenannte Endlosschleife programmiert.

Beispiel:

REPORT zdol.

DATA:

zins% (3) TYPE p DECIMALS 2 VALUE '12.5',
anfangskap TYPE p DECIMALS 2 VALUE '1000',
wunschkap TYPE p DECIMALS 2 VALUE '2000',
kap TYPE p DECIMALS 2.

START-OF-SELECTION.
kap = anfangskap.
DO.
kap = kap + kap * zins% / 100.
WRITE: /(2) sy-index UNDER 'Jahr',
kap UNDER 'Wert'.
IF kap >= wunschkap.
EXIT.
ENDIF.
ENDDO.

TOP-OF-PAGE.
WRITE: 'Wertentwicklung: Anfangskapital =',
(8) anfangskap,
/'Zinssatz = ',zins%,'%"',/,
/'Jahr',10 'Wert'.

Das Beispiel berechnet in einer DO-Schleife die Wertentwicklung
einer Kapitalanlage. Vor dem Eintritt in die Schleifenverarbeitung
wird die Variable ,.kap*, die in der Schleife kummuliert wird, auf
den Anfangswert (Inhalt der Variablen ,,anfangskap*) geladen. Ab-
gebrochen wird die Schleifenverarbeitung, wenn die Geldanlage den
gewiinschten Endwert (,,wunschkap*) erreicht hat.

Hinweis: Bei der Abbruchbedingung sollten Sie nicht auf Gleichheit
priifen. Insbesondere bei Berechnungen ist die Wahrscheinlichkeit
hoch, dass das Ergebnis nicht 100%ig mit dem Vergleichswert tiber-
einstimmt.

4.5 Kontrollstrukturen ® 229

Ausgabe:

Wertentwicklung: Anfangskapital = 1000,00
Zinssatz = 12,50%

Jahr Wert
1 1.125,00
2 1.265,63
3 1.423,83
4 1.601,81
5 1.802,04
6 2.027,30
Syntax 2:
Abb. 4.61 Schleifendurchlaufzahler = 0. {sy-index)
Wirkungsweise Schleifenbeginn mit Anzahl Schleifendurchlaufen DO <Anzahl> TIMES.
und Syntax der Schleifendurchlaufzahler = Schleifendurchlaufzahler + 1
DOn TIM ES- Anzahl Schleifendurchlaufe erreicht?
Schleife e)
EXIT
(Programm wird mit der ersten An-
weisung nach der

Schieifenverarbeitung fortgesetzt,
sy-index wird auf 0 gesetzt)

{Anweisungen * Anweisungen.
Schieifenende ENDDO
Erste Anweisung nach der Schleifenverarbeitung

Bei dieser Schleife wird die Anzahl der Schleifendurchldufe als Lite-
ral oder als Variable im Schleifenkopf angegeben. Die im Struk-
togramm angegebene Abfrage ,,Anzahl der Schleifendurchldufe er-
reicht?* dient nur zum Verdeutlichen der Arbeitsweise dieser Schlei-
fe. Die Schleife wird automatisch beendet, eine Abfrage im Pro-
gramm ist nicht notwendig.

Beispiel:

REPORT zdo2.

DATA:

zins% (3) TYPE p DECIMALS 2 VALUE '12.5',
anfangskap TYPE p DECIMALS 2 VALUE '1000',
laufzeit TYPE n VALUE '5',

kap TYPE p DECIMALS 2.

START-OF-SELECTION.

kap = anfangskap.

DO laufzeit TIMES.
kap = kap + kap * zins% / 100.

230 ™ 4 Grundlegende Techniken der Listenprogrammierung

WRITE: /(2) sy-index UNDER 'Jahr',
kap UNDER 'Wert'.
ENDDO.

TOP-OF-PAGE.
WRITE: 'Wertentwicklung: Anfangskapital =',
(8) anfangskap,
/'Zinssatz = ',zins%,'%"',/,
/'Jahr',10 'Wert'.

In diesem Beispiel wird die Wertentwicklung einer Kapitalanlage
iiber eine vorgegeben Laufzeit berechnet. Pro Jahr muss die Schleife
einmal durchlaufen werden. Vor dem Eintritt in die Schleifenverar-
beitung wird die Variable ,kap“, die in der Schleife kummuliert
wird, auf den Anfangswert (Inhalt der Variablen ,,anfangskap*) ge-
laden. Abgebrochen wird die Schleifenverarbeitung nach 5 Schlei-
fendurchldufen.

Ausgabe:

Wertentwicklung: Anfangskapital = 1000,00
Zinssatz = 12,50 %

Jahr Wert
1 1.125,00
2 1.265,63
3 1.423,83
4 1.601,81
5 1.802,04
Die WHILE-Schleife
Syntax
Schieifendurchlaufzahler = 0. {sy-index) Abb. 4.62
Schieifenbeginn mit logischem Ausdruck WHILE <ogischer Ausdruck>, ~ Virkungsweise
logischer Ausdruck wahr? und Syntax er
e~ " e WHILE-Schieife
EXIT

(Prograrmm wird mit der ersten Arwei-
sung nach der Schieferverarbeitung
fortgesetzt, sy-index wird auf 0 gesetzt)

[Schleifendurchiaufzahler = Schieifendurchlaufzahler + 1,
{nweisungen * Anweisungen.

Schleifenende ENDWHILE.

Erste Anweisung nach der Schieifenverarbeitung

4.5 Kontrollstrukturen ®m 231

Die Schleife wird durchlaufen, wenn der im Schleifenkopf angege-
bene logische Ausdruck wahr ist. Die im Struktogramm angegebene
Abfrage ,logischer Ausdruck wahr?*“ dient nur zum Verdeutlichen
der Arbeitsweise dieser Schleife.

Beispiel:

REPORT zwhile.

DATA:

zins% (3) TYPE p DECIMALS 2 VALUE '12.5',
anfangskap TYPE p DECIMALS 2 VALUE '1000',
wunschkap TYPE p DECIMALS 2 VALUE '2000',
kap TYPE p DECIMALS 2.

START-OF-SELECTION.
kap = anfangskap.
WHILE kap <= wunschkap.
kap = kap + kap * zins% / 100.
WRITE: /(2) sy-index UNDER 'Jahr',
kap UNDER 'Wert'.
ENDWHILE.

TOP-OF-PAGE.
WRITE: 'Wertentwicklung: Anfangskapital =',
(8) anfangskap,
/'Zinssatz = ',zins%,'%"',/,
/'Jahr',10 'Wert'.

Im Beispiel wird die Wertentwicklung einer Kapitalanlage in einer
WHILE-Schleife berechnet. Vor dem Eintritt in die Schleifenver-
arbeitung wird die Variable ,.kap®, die in der Schleife kummuliert
wird, auf den Anfangswert (Variable ,,anfangskap) geladen. Die
Schleife wird solange durchlaufen, wie der Wert der Kapitalanlage
kleiner oder gleich dem ,,Wunschkapital“ ist (kap <= wunschkap).

4.5.3
Logische Ausdriicke

In ABAP/4 stehen Thnen folgende Operatoren fiir logische Ausdrii-
cke zur Verfiigung:

232 : 4 Grundlegende Techniken der Listenprogrammierung

Bezeichnug Operatoren Beispiel / Erkldrung
Variante 1 Var. 2

Gleich EQ = dol =do2.

(equal) dol EQ '123".

Ungleich NE <> dol <> do2.

(not equal) dol NE '123'.

grofer als GT > dol > do2.

(greater than) dol GT '123".

groBer/gleich GE >= dol >=do2.

(greater / dol GE '123".

equal) dol GE do2.

Kleiner LT < dol < do2.

(less than) dol LT '123".

kleiner/gleich LE <= dol <=do2.

(less / equal) dol LE do2.

Zwischen BETWEEN dol BETWEEN do2 AND

(between) AND do3

Initialwert IS INITIAL dol IS INITIAL.

(initial) Der Ausdruck ist wahr, wenn
dol mit seinem Initialwert
geladen ist.

UND- AND dol =do2 AND do3 > do4.

Verbindung Der Ausdruck ist wahr, wenn

(and) beide Teilausdriicke wahr
sind.

ODER- OR dol =do2 OR do3 > do4.

Verbindung Der Ausdruck ist wahr, wenn

(or) einer der beide Teilausdriicke
wahr ist.

Negation NOT dol NOT IS INITIAL.

(not) Der Ausdruck ist wahr, wenn

dol nicht mit seinem Initial-
wert geladen ist.

Verkniipfungsregeln bei AND, OR und NOT
m NOT bindet stirker als AND
m AND bindet stérker als OR.

Der logische Ausdruck
NOT dol < do2 OR do2 > do3 AND do2 = do5.

4.5 Kontrollstrukturen

233

Abb. 4.63
Datenbankab-
fragen dber SQL
und OPEN-SQL

234 ®
[

entspricht dem logischen Ausdruck
NOT (dol < do2 OR (do2 > do3 AND do2 =do5).

Hinweise:

m Setzen Sie aus Griinden der Ubersichtlichkeit und der Fehler-
vermeidung auch dann Klammern, wenn das nicht unbedingt
notwendig ist.

m Beachten Sie, dass vor und nach Operatoren je ein Leerzeichen
stehen muss. Auch Klammern sind Operatoren.

4.6
Lesen von Daten aus Datenbanktabellen

Der grofite Teil aller Daten des SAP-Systems ist im relationalen Da-
tenbanksystem gespeichert. Der Zugriff auf die Daten erfolgt iiber
die Abfragesprache SQL (Structured Query Language). SQL weist,
trotz Standardisierung, herstellerspezifische Eigenschaften auf. Pro-
gramme, in denen SQL-Anweisungen direkt verwenden werden,
sind deshalb abhingig vom eingesetzten Datenbanksystem. Damit
ABAP/4-Programme datenbankunabhiingig entwickelt werden kon-
nen, stellt das R/3-System eine eigene Abfragesprache namens
,,Open-SQL* und eine Datenbankschnittstelle zur Verfiigung.

Anwendungsprogramm
DATA:
it type table of TI1.
I([[gelect * from T1
into table it

where...
7

4 Open SGL Datenbankunabhangige
Programmierung

Datenbankabhangige
Programmierung

Datenbankschnittstalle

4

saL

k SQL

v

Datenbank

Die Datenbankschnittstelle setzt Open-SQL-Anweisungen in (da-
tenbankabhingige) SQL-Anweisungen um. SQL-Anweisungen kon-
nen auch direkt im ABAP-Programm eingesetzt werden. Die da-
durch erreichbare geringe Performanceverbesserung wiegt in der
Regel den Nachteil der Datenbankabhingigkeit nicht auf.

4 Grundlegende Techniken der Listenprogrammierung

Hinweis: SQL-Anweisungen werden in diesem Buch nicht behan-
delt.

4.6.1
Die ,,SELECT-Anweisung“ als Schleife

Die SELECT-Anweisung liest Datensitze einer Datenbanktabelle.
In Threr Grundform arbeitet diese Anweisung als Schleife.

Syntax

sy-dbent = 0. (Datensatzzeiger)
SELECT - Schleifenbeginn mit Selektionsbedingung
Datenbanktabelle enthalt Datensatze, die durch die

Selektonsbedingung identifiziert wurden 2 .

SELECT * FROM <db-Tabelle>
WHERE <selektionsbedin-
gung>.

sy-dbent = 0. sy-subrc =4,
Ja EXIT
g = {Programm wird mit der ersten
ssﬁﬁ‘gft = ? Anweisung nach der Schieifenver-
! arbeitung fortgesetzt.

Datensatzzeiger sy-dbent <= Anzahl der durch die Selektions-

bedingung idenlw
Ja Nein

Laden des Datensatzes |EXIT.

rmit der Datensatznurm | (Programm wird mit der ersten An-

mer sy-dbcnt in eine weisung nach der Schieiferverar-

Ergebnisstrulur beitung fortgesetat.)

sy-dbent = sy-dbent + 1,
Iﬁewbei‘ten der Ergebnisstruktur

Schleifenende

Erste A

Bearbeiten der Ergebnisstruktur.
ENDSELECT.

1g nach der Schieif arbeitung

Die SELECT-Anweisung belegt folgende Systemvariablen:

sy-subrc Mit O belegt, wenn durch die SELECT-Anweisung Da-
tensitze der ausgewdhlten Datenbanktabelle identifiziert
wurden. Wurden keine Datensitze gefunden, wird sy-
subrc mit 4 geladen.

enthilt die Nummer des aktuell bearbeiteten Datensatzes.
Diese Variable steht auch nach dem Verlassen der
SELECT-Schleife zur Verfiigung. Sie enthélt dann die
Anzahl der identifizierten Datensitze.

sy-dbent

Die Select-Anweisung besteht aus einer Reihe von Klauseln. Die
wichtigsten werden nachfolgend beschrieben:

Die SELECT-Klausel

Mit der SELECT-Klausel wird angegeben, welche Felder aus wel-
cher Datenbanktabelle gelesen werden sollen.

4.6 Lesen von Daten aus Datenbanktabellen

Abb. 4.64
Wirkungsweise
der SELECT-
Anweisung als
Schleife

B 235

Abb. 4.65
Wirkungsweise
der Feldliste

236 =

Syntax:
SELECT <Feldliste> FROM <Datenbanktabelle>
[CLIENT SPECIFIED].

Als Feldliste werden, durch Leerzeichen getrennt, die zu lesenden
Felder der Datenbanktabelle angegeben. Sollen alle Felder gelesen
werden, kann das durch die Angabe eines * angewiesen werden.

Durch den optionalen Zusatz ,,CLIENT SPECIFIED* konnen Da-
tensitze beliebiger Mandanten in die Ergebnismenge geschrieben
werden. Ohne diesen Zusatz werden von der SELECT-Anweisung
nur Datensitze des aktuellen Mandanten identifiziert.

Beispiel 1:
Datenbanktabelle; ZBESTAND

Datenséatze

Mandant ISBN Kategorie Autori Titel Bestand

| | [| Die Reihenfolge der Felder in der Feldliste
| —— muss nicht mit der physischen Reihenfolge
ISBN Titel Autor1 Obereinstimmen

. S
=

Feldliste

Aus der Datenbanktabelle ZBESTAND sollen die Felder ISBN,
TITEL und AUTORI1 gelesen werden.

SELECT isbn titel autor] FROM zbestand.
* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbent
ENDSELECT.

Beispiel 2:
Es sollen alle Felder der Tabelle ZBESTAND gelesen werden:

SELECT * FROM zbestand.
* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbent
ENDSELECT.

Die INTO-Klausel

Die INTO-Klausel gibt an, wohin die mit der SELECT-Klausel ge-
lesenen Daten, geschrieben werden. In der Regel wird hier eine

4 Grundlegende Techniken der Listenprogrammierung

Struktur angegeben. Die Komponenten der Struktur miissen in der
gleichen Reihenfolge angelegt sein, wie die Feldliste der SELECT-
Klausel.

Syntax:

SELECT <Feldliste> FROM <Datenbanktabelle>

INTO <Struktur>.

* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbcnt
ENDSELECT.

Beispiel:
Datenbanktabelle: ZBESTAND Abb. 4.66
Wirkungsweise
Datensstze der INTO-
Klausel

—_ "
Mandant ISBN Kategorie Autorl Titel Bestand

[I | | Die Reihenfolge der Felder in der Feldliste
— muss nicht mit der physischen Reihenfolge
ISBN Titel Autor1 Ubereinstimmen
i g
Feldliste

v v
[| | | Entscheidend fur die Zuordnung der Felder
L T T ; der Feldliste zu den Komponenten der
: Zielstruktur ist die Reihenfolge in der Felder
ZISBN ZTitel ZAutor! pbzw. Komponenten angegeben sind.
— _+ MNamensgleichheit ist nicht erforderlich.

Zielstruktur

REPORT zselectinto.
DATA: BEGIN OF wa_zbestand,
zisbn TYPE zbestand-isbn,
ztitel TYPE zbestand-titel,
zautorl TYPE zbestand-autorl,
END OF wa zbestand.

START-OF-SELECTION.
SELECT isbn titel autorl FROM zbestand
INTO wa_zbestand.

WRITE: / wa_ zbestand-zisbn,
wa_zbestand-zautorl,
wa_zbestand-ztitel.

ENDSELECT.
IF sy-subrc <> 0.

WRITE: 'Keine Datensé&tze gefunden'.
ENDIF.

4.6 Lesen von Daten aus Datenbanktabellen ®™ 237

Wollen Sie alle Felder der Datenbanktabelle lesen (SELECT *
FROM...) gibt es die Moglichkeit, mit der TABLES-Anweisung ei-
ne Standardstruktur mit allen Feldern der Datenbanktabelle zu er-
zeugen. Die Standardstruktur hat den gleichen Namen wie die Da-
tenbanktabelle.

Hinweis:

Diese Vorgehensweise wird von der SAP nicht mehr empfohlen.
Die TABLES-Anweisung soll nur noch als Schnittstelle zu Dynpros
benutzt werden.

Syntax der TABLES-Anweisung:
TABLES <datenbanktabelle>.

Wenn Sie als Zielstruktur die mit TABLES angelegte Standardstruk-
tur benutzen, konnen Sie auf die INTO-Klausel verzichten.

Beispiel:
REPORT zselect.
TABLES: zbestand.
START-OF-SELECTION.
SELECT * FROM zbestand.
WRITE: / zbestand-isbn, zbestand-autorl,
zbestand-titel.
ENDSELECT.
IF sy-subrc <> 0.
WRITE: 'Keine Datensatze gefunden'.
ENDIF'.

Alternative:
REPORT zselect.
DATA: wa_zbestand type zbestand.
START-OF-SELECTION.
SELECT * FROM zbestand
INTO wa_zbestand.

WRITE: / wa_ zbestand-isbn,
wa_zbestand-autorl,
wa_zbestand-titel.

ENDSELECT.
IF sy-subrc <> 0.

WRITE: 'Keine Datensatze gefunden'.
ENDIF.

238 : 4 Grundlegende Techniken der Listenprogrammierung

Die INTO CORRESPONDING FIELDS OF-Klausel

Der Zusatz INTO CORRESPONDING FIELDS OF bewirkt, dass
die Zuordnung der Felder der Feldliste zu den Feldern der Zielstruk-
tur nicht iiber ihre iibereinstimmende Reihenfolge sondern durch ih-
re Namensgleichheit erfolgt.

Syntax:

SELECT <Feldliste> FROM <Datenbanktabelle>

INTO CORRESPONDING FIELDS OF <Struktur>.

* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbcnt
ENDSELECT.

Beispiel:

Datenbanktabelle: ZBEESTAND Abb. 4.67

Wirkungsweise
Datensatze der INTO COR-

RESPONDING

Y Y D WY W | W) FIELDS OF-

Mandant ISBN Kategorie Autor! Titel Bestand Klausel

[| [] Die Reihenfolge der Felder in der Feldliste

M ——“——— muss nicht mit der physischen Reihenfolge
ISBN Titel Autorl der Felder der Datenbanktabelle (berein-
o — stirnmen

Feldliste

E heidend flr die Zuordnung der Felder

[[l [] der Feldliste zu den Komponenten der Ziel-
e/ strultur ist die Namensgleichheit der Fel-
Autor? ISBN verfugbare Titel der und Komponenten. Die Reihenfolge
Anzgahl der Komponenten ist far die Zuordnung nicht

. von Bedeutung. Die Zielstruktur kann des-
halb auch Komponenten enthalten, die nicht
Zielstruktur in der Feldliste stehen.

REPORT zselect.
DATA: BEGIN OF wa_zbestand,
autorl TYPE zbestand-autorl,
isbn TYPE zbestand-isbn,
verfuegbare Anzahl TYPE i,
titel TYPE zbestand-titel,
END OF wa zbestand.

START-OF-SELECTION.
SELECT isbn titel autorl FROM zbestand
INTO CORRESPONDING FIELDS OF wa_zbestand.
WRITE: / wa zbestand-isbn,
wa_ zbestand-autorl,
wa_ zbestand-titel.
ENDSELECT.

4.6 Lesen von Daten aus Datenbanktabellen ® 239

Abb. 4.68
Wirkungsweise
der WHERE-
Klausel

240 w
(]

IF sy-subrc <> 0.
WRITE: 'Keine Datensatze gefunden'
ENDIF.

Die WHERE-Klausel

Die WHERE-Klausel wihlt die Datensitze der Datenbanktabelle
aus, die verarbeitet werden sollen.

Syntax:

SELECT <Feldliste> FROM <Datenbanktabelle>

INTO...

WHERE <Feld1> <Operator> <Vergleichswert1>

[<log. Operator> <Feld2> <Operator> <Vergleichswert2>
[<log. Operator> <Feldn> <Operator> <Vergleichswertn>].
* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbcnt
ENDSELECT.

Beispiel
Datenbanktabelle: ZBESTAND

2u verarbeitende
Datensitze,
Auswabhl dber
Kategorie und
Autor1

Mandant ISBN Kategorie Autort Titel Bestand

[| T | Feldliste
I
ISBN Tiel Autor1

| |

L | | | Zielstruktur

ISBN Titel Autort

REPORT zselect.
DATA:
BEGIN OF wa zbestand,
autorl TYPE zbestand-autorl,
isbn TYPE zbestand-isbn,
titel TYPE zbestand-titel,
END OF wa zbestand,
v_autorl TYPE zbestand tw-autorl VALUE 116°',
v_kat TYPE zbestand-kategorie VALUE 'EDV'.

START-OF-SELECTION.
SELECT isbn titel autorl FROM zbestand

4 Grundlegende Techniken der Listenprogrammierung

INTO CORRESPONDING FIELDS OF wa zbestand
WHERE autorl = v_autorl
AND kategorie = v_kat.

WRITE: / wa zbestand-isbn,
wa_zbestand-autorl,
wa_zbestand-titel.

ENDSELECT.

Die ORDER BY-Klausel

Die Ergebnismenge einer Select-Anweisung kann durch die ORDER
BY-Klausel sortiert werden.

Syntax 1:

SELECT <Feldliste> FROM <Datenbanktabelle>

INTO...

WHERE...

ORDER BY <Feld1> [ASCENDING/DESCENDING]
<Feld2> [ASCENDING/DESCENDING]
<Feldn> [ASCENDING/DESCENDING]

* Bearbeiten des Datensatzes mit der Datensatznummer sy-dbent

ENDSELECT.

Durch die Angabe der optionalen Parameter erfolgt die Sortierung
der Ergebnismenge aufsteigend (ASCENDING) oder absteigend
(DESCENDING). Ohne die Angabe dieser Parameter erfolgt eine
aufsteigende Sortierung.

Hinweis:

Ist zu der Feldkombination <Feld1> <Feld2> <Feldn> kein Sekun-
dérindex angelegt, wird die Sortierung der Ergebnismenge zur Lauf-
zeit des Programmes auf dem Datenbankserver vorgenommen. Es ist
in diesem Fall laufzeitgiinstiger, die Ergebnismenge in eine interne
Tabelle zu schreiben und diese dann mit der SORT-Anweisung zu
sortieren.

Syntax 2:

SELECT <Feldliste> FROM <Datenbanktabelle>
INTO...

WHERE...

ORDER BY PRIMARY KEY.

Die Angabe ,,PRIMAR KEY* in der ORDER BY-Klausel bewirkt

eine Sortierung der Ergebnismenge entsprechend des Primérschliis-
sels.

4.6 Lesen von Daten aus Datenbanktabellen

241

Abb. 4.69
SELECT
SINGLE

242 m

Hinweis:
Die in der ORDER BY-Klausel angegebenen Felder miissen in der
Feldliste der SELECT-Klausel enthalten sein.

4.6.2
Einzelsatzzugriff mit der ,,Select single-
Anweisung*

Werden in der WHERE-KIlausel alle Schliisselfelder der Datenbank-
tabelle spezifiziert, besteht die Ergebnismenge der SELECT-
Anweisung aus genau einem Datensatz. In diesem Fall kann die
SELECT-Anweisung mit dem Zusatz ,,SINGLE® erginzt werden.
Dadurch arbeitet die SELECT-Anweisung nicht mehr als Schleife
sondern greift genau auf den Datensatz, der durch die WHERE-
Klausel identifiziert wird, zu.

Syntax:

SELECT SINGLE <Feldliste>

INTO...

WHERE <log.Ausdruck, der alle Schliisselfelder spezifiziert>.

Hinweise:

m Dadiese Anweisung nicht als Schleife arbeitet, entfillt die
ENDSELECT-Anweisung.

m Durch die SELECT-Anweisung werden nur Datensitze des ak-
tuellen Mandanten bearbeitet. Der Mandant darf deshalb nicht
als Parameter der WHERE-KIlausel angegeben werden. Sollen
durch die SELECT-Anweisung Datensitze anderer Mandanten
identifiziert werden, ist der Zusatz ,,CLIENT SPECIFIED* ein-
zusetzen. Weitere Informationen dazu finden Sie in der Schliis-
selwortdokumentation zu ,,FROM®.

Beispiel:

Datenbanitabelle: ZBESTAND

000 3827254389 | Internet | 100 Internet 25 Zu verarbeitender
000 3827317834 |EDV [116 ABAP- 20 Datensatz,
Ubungsbuch Auswahl iiber
i) 3827317686 [EDV [116 Progrsammieren | 20 die
von IAC Schliisselfelder
000 3608421473[EDV_ [101 ABAP Object |90 Mandant und
_r.__)'\._y._/H_lL,__Y_/\ﬂ_} [ISBN
Mandant ISBN Kategorie Autori Titel Bestand
Schlossel- Schlissel
feld 1 feld 2

4 Grundlegende Techniken der Listenprogrammierung

REPORT zselect.

DATA: wa zbestand TYPE zbestand tw,
v_isbn TYPE zbestand tw-isbn
VALUE '3827317886".

START-OF-SELECTION.
SELECT SINGLE * FROM zbestand tw
INTO wa zbestand
WHERE isbn = v_isbn.

IF sy-subrc <> 0.
WRITE: 'Keine Datensatze gefunden'.
ELSE.

WRITE: / wa_zbestand-isbn,
wa_zbestand-autorl,
wa_zbestand-titel.

ENDIF.

4.6.3
Array-Fetch — Laden einer internen Tabelle mit
Daten aus einer Datenbanktabelle

Der Array-Fetch ist die performancegiinstigste Moglichkeit, eine
Menge von Datensitzen der Datenbanktabelle in eine interne Tabel-
le zu schreiben. Die Datensdtze werden dabei nicht sequentiell, d.h.

einzeln, sondern als Block in die interne Tabelle iibertragen.

Syntax:
SELECT <Feldliste> FROM <Datenbanktabelle>
INTO [CORRESPONDING FIELDS OF] TABLE <int. Tabelle>

WHERE....

Hinweis:

Da beim Array-Fetch die Daten ,,in einem Block* von der Da-
tenbanktabelle in die interne Tabelle geschrieben werden und
die SELECT-Anweisung somit nicht als Schleife arbeitet, ent-
fillt die ENDSELECT-Anweisung.

Die Klausel ,, CORRESPONDING FIELDS OF* bewirkt, dass
der Inhalt namensgleicher Felder von der Datenbanktabelle in
die interne Tabelle transportiert wird. Ohne diesen Zusatz er-
folgt die Zuordnung der Felder iiber die (iibereinstimmende)
Reihenfolge der Felder der Feldliste und dem Zeilentyp der in-
ternen Tabelle.

4.6 Lesen von Daten aus Datenbanktabellen

243

Beispiel:

Abb. 4.70 Datenbanktabelle ZBESTAND Interne Tabelle IT_ZBESTAND
ARRAY-Fetch 1SBN Autor1 Titel ISBN Autorl Titel
— —— —*—
/ \
= /\\ Beim Array-Fetch werden die
\ Y ausgewahiten Daten in einem
Block von der Daten-
\ hanktabelle in die interne

Tabelle transportiert

REPORT zselect.
DATA: BEGIN OF wa zbestand,
isbn TYPE zbestand-isbn,
autorl TYPE zbestand-autorl,
titel TYPE zbestand-titel,
END OF wa zbestand,

it_zbestand LIKE TABLE OF
wa_zbestand,

v_autorl TYPE zbestand-autorl
VALUE 'll6'.

START-OF-SELECTION.
SELECT isbn autorl titel FROM zbestand

INTO CORRESPONDING FIELDS OF TABLE it zbestand

WHERE autorl = v_autorl.

IF sy-subrc <> 0.
WRITE: 'Keine Datensatze gefunden'.
ELSE.
LOOP AT it zbestand INTO wa_ zbestand.
WRITE: / wa_ zbestand-isbn,
wa_zbestand-autorl,
wa_zbestand-titel.
ENDLOOP.
ENDIF.

244 : 4 Grundlegende Techniken der Listenprogrammierung

Das Programm YKO4DBAS soll nun so gedndert werden, dass die
interne Tabelle iiber einen Array-Fetch aus der Tabelle ZBESTAND
geladen wird. Die Ergebnismenge soll alle Biicher des Autors mit
der Autorennummer 116 (AUTOR1 = '116") enthalten.

1.

Loschen Sie die Stellen im Quelltext, in denen die interne Ta-
belle IT_ZBESTAND mit fiktiven Daten geladen wird.

Fiigen Sie eine SELECT-Anweisung ein, die die interne Ta-
belle mit den gewiinschten Daten fiillt.

Fiillen Sie die interne Tabelle it_zbestand durch einen Array-
Fetch iiber die Datenbanktabelle ZBESTAND.

Legen Sie eine Struktur WA_ZAUTOREN mit Bezug zur Da-
tenbanktabelle ZAUTOREN an. Fiigen Sie in die LOOP-
Schleife zur Datenausgabe eine SELECT SINGLE-Anweisung
zur Datenbanktabelle ZAUTOREN ein. Diese Anweisung soll
tiber die Autorennummer den jeweiligen Autorenstammsatz
selektieren und in die Struktur WA_ZAUTOREN schreiben.
(AUTORENNR = ZBESTAND-AUTOR1)

Geben Sie an Stelle der Autorennummer (WA_ZBESTAND-
AUTOR1) den Namen des Autors aus (WA_ZAUTOREN-
NAME).

Die Ausgabezeilen sollen abwechselnd im Format

FORMAT COLOR COL_NORMAL INTENSIFIED ON und
FORMAT COLOR COL_NORMAL INTENSIFIED OFF er-
folgen. Legen Sie dazu eine Variable FARBE vom Type C mit
der Linge 1 an. Uber folgende Syntax konnte dann das alter-
nierende Format eingestellt werden:

IF farbe ="1".
FORMAT COLOR COL_NORMAL INTENSIFIED ON.
farbe ='0'.

ELSE.
FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
farbe ="1".

ENDIF.

Losung: YKO4DBAS_7

Ihr Programm sollte jetzt folgende Anderungen bzw. Erginzungen
enthalten:

REPORT vykO4dbas.
DATA: it zbestand TYPE zint zbestand,

4.6 Lesen von Daten aus Datenbanktabellen

m 245

wa_ zbestand TYPE zst zbestand,
wa_ zautoren TYPE zautoren,
ausgabedatum TYPE sy-datum,
ausgabezeit TYPE sy-uzeit,
zeilen TYPE i, farbe.

START-OF-SELECTION.

ausgabedatum = sy-datum.

ausgabezeit = sy-uzeit.

*it zbestand uUber Arra-Fetch laden

SELECT * FROM zbestand

INTO CORRESPONDING FIELDS OF TABLE it zbestand
WHERE autorl = '116'.

*Ausgabe der internen Tabelle
LOOP AT it zbestand INTO wa_ zbestand.
*IF-Anweisung zur Einstellung der Farbe
IF farbe = '1'.
FORMAT COLOR COL NORMAL INTENSIFIED ON.

farbe = '0'.

ELSE.
FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
farbe = '1'.

ENDIF.

*Berechnung der Anzahl verfigbarer Exemplare
wa_ zbestand-verfuegbar =
wa_zbestand-bestand
- wa_zbestand-ausgeliehen.
*Selektion des *Autorenstammsatzes
SELECT SINGLE * FROM zautoren_ tw
INTO wa_zautoren
WHERE autorennr = wa_zbestand-autorl.
WRITE:
/(3) sy-tabix,
wa_zbestand-isbn UNDER 'ISBN' (002),
wa_ zbestand-titel UNDER 'Titel' (003),
wa_zautoren-name UNDER 'Autor' (004),
(10) wa_zbestand-kategorie
UNDER 'Kategorie' (005),
wa zbestand-verfuegbar
UNDER 'verfigbar' (006),
125 ' ',
ENDLOOP.

246 : 4 Grundlegende Techniken der Listenprogrammierung

DESCRIBE TARBRLE it_zbestand
LINES zeilen.
WRITE: /, '"Anzahl Biicher' (010), (3) zeilen.

TOP-OF-PAGE.
*Dieser Ereignisblock wird vom Laufzeitsystem
*aufgerufen, wenn
*eine neue Ausgabeseite begonnen wird
FORMAT COLOR COL HEADING INTENSIFIED ON.
WRITE: 'Ausgabeliste' (001),
20 'Ausgabedatum' (007),
ausgabedatum,
'Ausgabezeit' (008),
ausgabezeit, 125 ''.
FORMAT COLOR COL HEADING INTENSIFIED OFF.
WRITE: / 'Lfdnr' (009),
7 '"ISBN' (002) COLOR COL_KEY
INTENSIFIED ON,
18 'Titel' (003),
85 'Autor' (004),
107 'Kategorie' (005),
117 'verfigbar' (006) .

4.6.4
Der Selektionsbildschirm

Wie Sie sicher erkannt haben werden, weist unser Programm
YKO4DBAS noch einen entscheidenden Nachteil auf. Die fiir die
WHERE-Klausel der SELECT-Anweisung benotigten Selektionspa-
rameter konnen bisher vom Benutzer nicht zur Laufzeit des Pro-
grammes eingegeben werden. Andert sich ein Selektionsparameter,
muss das Quellprogramm geédndert werden — ein Zustand, der durch
die Anweisungen

m PARAMETERS und
m SELECT-OPTIONS

beseitigt werden kann.

Die Parameters-Anweisung

Die PARAMETERS-Anweisung erzeugt ein Eingabefeld auf einem
Selektionsbildschirm. Existiert dieser Selektionsbildschirm im Pro-
gramm noch nicht, wird er durch die PARAMETERS-Anweisung
automatisch erzeugt.

4.6 Lesen von Daten aus Datenbanktabellen

247

248 »
(]

Syntax:
PARAMETERS <Name des Parameters>
TYPE <Datentyp> [Zusitze].

Hinweise:
m Der Name des Parameters darf maximal 8 Zeichen lang sein.

m Uber das Menii Springen = Textelemente > Selektionstexte
im ABAP-Editor konnen Sie fiir die Parameter Texte hinterleg-
ten.

m Bezieht sich die PARAMETERS-Anweisung auf eine im
ABAP-Dictionary angelegte Komponente der eine Suchhilfe
zugeordnet ist, wird die Suchhilfe auf dem Selektionsbildschirm
automatisch zur Verfiigung gestellt.

m Uber Zusitze konnen Sie z.B. anweisen, dass die Eingabe in das
PARAMERS-Feld obligatorisch (Mussfeld) ist oder als An-
kreuzfeld dargestellt wird. Uber den Zusatz MATCHCODE
<Suchhilfe> konnen Sie an das PARAMETERS-Feld eine
Suchhilfe anbinden. Weitere Zusitze finden Sie in der Schliis-
selwortdokumentation zum Schliisselwort PARAMETERS.

Beispiel:

PARAMETERS :
betrag(5) TYPE p DECIMALS 2,
mwst% (2) TYPE n,
autor TYPE zautoren-autorennr.

Diese Anweisungen erzeugen den folgenden Selektionsbildschirm:

4 Grundlegende Techniken der Listenprogrammierung

Abb. 4.71

g == 518 e@e QiR nhios AF O Selektionsbild-
Anwendung der PARAMETERS-Anweis D schirm,
erzeugt mit
BETRAG PARAMETERS
MWST%
UL & 0000000100 Scheer August-Wilhelm
. . . 000000010 r
Fir Parameter, die mit |ooooooiozicuger Savers
1 0000000103 Ulirich Michael
Bequ zu einer ABAP- 0000000104 Keller G:rhard
0000000105 Teufel Thomas

Dictionary-Komponente
mit einer Suchhilfe
angelegt werden, wird
diese automatisch

ubernommen. 0000000113 Geia Marcus
00000001 14 Soltysiak Roland

Im Programm YKO4DBAS soll die Autorennummer, die zur Selek-
tion der auszugebenden Datensdtze benotigt wird, durch eine
PARAMETERS-Anweisung zur Laufzeit des Programmes eingege-

0000000106 Matzke Bernd
0000000107 Kokot
0000000108 Mohrien Regine
0000000109 Saaro Helmut
0000000110 Wil Liane

0000000111 Hienger
0000000112 Straenburg Frank

0000000115 Herth

Friedrich

Christiang

Bemd

ben werden konnen.

1. Figen Sie in das Programm YKO04DBAS eine
PARAMETERS-Anweisung fiir die Eingabe der Autoren-

nummer ein.
Namensvorschlag fiir den Eingabeparameter: p_autor
TYPE: zautoren-autorennr

Hinweis:

Im Kapitel ,,Das ABAP-Dictionary* wurde der Tabelle
ZAUTOREN eine Suchhilfe zugeordne, die jetzt fiir das Einga-
befeld zur Verfiigung steht.

Ersetzen Sie in der WHERE-Klausel der SELECT-Anweisung
den fest programmierten Selektionswert ('116') durch den Para-
meter p_autor.

Losung: YKO4DBAS_8

4.6 Lesen von Daten aus Datenbanktabellen W™ 249

Thr Programm sollte jetzt folgende Anderungen und Erginzungen
enthalten:

REPORT vykO4dbas.

DATA: it zbestand TYPE zint zbestand,
wa_zbestand TYPE zst zbestand,
wa_ zautoren TYPE zautoren,
ausgabedatum TYPE sy-datum,
ausgabezeit TYPE sy-uzeit,
zeilen TYPE i, farbe.

parameters: p autor type zautoren-autorennr.

START-OF-SELECTION.

ausgabedatum = sy-datum.

ausgabezeit = sy-uzeit.

*it zbestand uUber Array-Fetch

SELECT * FROM zbestand

INTO CORRESPONDING FIELDS OF TABLE it zbestand
WHERE autorl = p autor.

Die Select-Options-Anweisung

Die SELECT-OPTIONS-Anweisung erzeugt, wie auch die PARA-
METERS-Anweisung, FEingabefelder auf einem Selektionsbild-
schirm. Existiert dieser Selektionsbildschirm im Programm noch
nicht, wird er durch die SELECT-OPTIONS-Anweisung automa-
tisch erzeugt.

Syntax:
SELECT-OPTIONS <Name> FOR <Bezugsfeld> [Zusitze].

Beispiel:
DATA:
betrag bezugsfeld(5) TYPE p DECIMALS 2,
mwst% bezugsfeld(2) TYPE n,
wa_zautoren TYPE zautoren.
SELECT-OPTIONS:
betrag FOR betrag bezugsfeld,
mwst% FOR mwst% bezugsfeld,
autor FOR wa zautoren-autorennr.

250 : 4 Grundlegende Techniken der Listenprogrammierung

Diese Anweisungen erzeugen den folgenden Selektionsbildschirm:

- e—y e Abb. 4.72
)?r ndung der SELECT-OPTIONS-Anweisung i Selektionsbild-
: schirm, erzeugt
mit SELECT-
OPTIONS

[Mehrfacha] wahl
Wﬂhl eanbinduhg
-

Selektions-
optionen

Eigenschaften der SELECT-OPTIONS-Anweisung:

m Fiir jede SELECT-OPTIONS-Anweisung werden auf dem Se-
lektionsbildschirm zwei Eingabefelder (von, bis) angelegt. Wird
die SELECT-OPTIONS-Anweisung in Kombination mit der
WHERE-Klausel einer SELECT-Anweisung benutzt, wird die
Ergebnismenge wie folgt gebildet:

von bis Ergebnismenge

INH_V leer Alle Datensitze, in denen das Bezugsfeld
den Wert INH_V hat.

INH_V INH_B Alle Datensitze, in denen das Bezugsfeld
einen Wert hat, der zwischen INH_V und

INH_B liegt.

(INH_V<=Inhalt Bezugsfeld<=INH_B)
leer INH_B Alle Datensitze, in denen der Inhalt des

Bezugsfeldes kleiner / gleich INH_B ist.
leer leer Alle Datensétze.

m Die Mehrfachauswahl bietet die Moglichkeit, mehrere Einzel-
werte oder Intervalle in die Ergebnismenge einzubeziehen bzw.
von der Ergebnismenge auszuschlieen.

4.6 Lesen von Daten aus Datenbanktabellen ® 251

252 ®

m Die Anweisung SELECT-OPTIONS <Name> FOR ...
erzeugt eine interne Tabelle <Name> mit Kopfzeile' die fol-
genden Komponenten besitzt:

Kompo- Inhalt
nente

SIGN I (included) : Intervall bzw. Einzelwert ist in die
Ergebnismenge zu iibernehmen
E (excluded) Intervall bzw. Einzelwert ist nicht in
die Ergebnismenge zu {ibernehmen

OPTION Ausgewihlte Selektionsoption
(=:>;>=:<;<9)
Die Selektionsoption kann vom Benutzer zur Lauf-
zeit ausgewdhlt werden (Siehe Abb. 4.72)

LOW Wert des Eingabefeldes “von‘
HIGH Wert des Eingabefeldes “bis”

m Da mit der SELECT-OPTIONS-Anweisung eine interne Tabel-
le erzeugt wird, muss in der WHERE-Klausel der SELECT-
Anweisung der IN-Operator benutzt werden

Beispiel:
SELECT-OPTIONS so_autor FOR wa_zautoren-autorennr.

SELECT * FROM zbestand INTO TABLE it_zbestand
WHERE autorl IN so_autor.

" Informationen zu internen Tabellen mit Kopfzeile finden Sie unter

Hilfe - SAP-Bibliothek; Basis > ABAP-Programmierung und Laufzeitumgebung > ABAP-
Programmierung; ABAP-Programmiersprache - Bearbeitung grofier Datenmengen = In-
terne Tabellen - Interne Tabellen anlegen > Interne Tabellenobjekte.

4 Grundlegende Techniken der Listenprogrammierung

Das Programm YKO4DBAS soll jetzt so gedndert werden, dass ein
Selektionsbildschirm mit Eingabemdglichkeiten fiir

die ISBN (Namensvorschlag so_isbn)

den Titel (Namensvorschlag so_title)

den Autor (Namensvorschlag so_autor) und
die Kategorie (Namensvorschlag so_kat).

Legen Sie eine Struktur wa_kategorie mit Bezug zur Daten-
banktabelle ZKATEGORIE an.

Loschen Sie die PARAMETERS-Anweisung

Ergénzen Sie fiir jedes Eingabefeld eine SELECT-OPTIONS-
Anweisung. Beziehen Sie sich bei den Eingabefeldern ISBN
und Titel auf die entsprechenden Komponenten der Struktur
wa_zbestand, beim Eingabefeld Autor auf die entsprechende
Komponente der Struktur wa_zautoren und beim Eingabefeld
fir die Kategorie auf die entsprechende Komponente der
Struktur wa_zkategorie.

Fiir die Eingabefelder ISBN, Titel und Autor soll die Anzeige
des zweiten Eingabefeldes unterbunden werden (keine Inter-
vallangaben). Machen Sie sich dazu in der Schliisselwortdo-
kumentation mit den Zusdtzen der SELECT-OPTIONS-
Anweisung vertraut. AuBerdem soll das Eingabefeld Titel und
Kategorie mit dem Zusatz ,,LOWER CASE* versehen werden.

Erginzen Sie die WHERE-Klausel der SELECT-Anweisung
so, dass alle Eingaben des Benutzers bei der Ermittlung der
Ergebnismenge beriicksichtigt werden. Die Autorennummer
(Eingabefeld Autor) soll dabei in den Feldern AUTORI,
AUTOR2 und AUTOR3 gepriift werden. Unabhingig davon,
ob das Feld AUTOR1, AUTOR2 oder AUTOR3 mit dem In-
halt des Eingabefeldes Autor iibereinstimmt, soll in der Aus-
gabeliste weiterhin der Name des Autors] ausgegeben werden.

Losung: YKO4DBAS_9

4.6 Lesen von Daten aus Datenbanktabellen

253

Das Programm YKO04DBAS wurde um folgende Anweisungen er-
ganzt:

REPORT vykO4dbas.
DATA: it zbestand TYPE zint zbestand,
wa_ zbestand TYPE zst zbestand,
wa_ zautoren TYPE zautoren,
wa_zkategorie TYPE zkategorie,
ausgabedatum TYPE sy-datum,
ausgabezeit TYPE sy-uzeit,
zeilen TYPE 1, farbe.
SELECT-OPTIONS:
so_isbn FOR wa_zbestand-isbn NO INTERVALS,
so_titel FOR wa_zbestand-titel LOWER CASE
NO INTERVALS,
so_autor FOR wa_zautoren-autorennr
NO INTERVALS,
so_kat FOR wa_zkategorie-kategorie LOWER CASE.

START-OF-SELECTION.
*Systemdatum und -zeit in die Variablen ein-

*tragen
ausgabedatum = sy-datum.
ausgabezeit = sy-uzeit.

* it zbestand tiber Array-Fetch
SELECT * FROM zbestand tw
INTO CORRESPONDING FIELDS OF TABLE it_zbestand
WHERE isbn IN so_isbn AND
titel IN so_titel AND
(autorl IN so_autor OR
(autor2 IN so_autor and autor2 > 0) OR
(autor3 IN so_autor and autor3 > 0)) AND
kategorie IN so_kat.

Der Zusatz...autor2 > 0 und ...autor3 > 0 in der WHERE-Klausel ist
notwendig, um bei den Selektionsoptionen ,,grofler als“ und ,,un-
gleich* keine Datensétze zu selektieren, die im Feld Autor2 und Au-
tor3 keinen Eintrag besitzen.

Selektionstexte hinzufiigen

Unser Programm YKO4DBAS hat sich zu einem gebrauchsfihigen
Rechercheprogramm entwickelt. Storend und unpraktisch fiir eine

254 ™ 4 Grundlegende Techniken der Listenprogrammierung

spitere Ubersetzung sind die Ausschriften auf dem Selektionsbild,
wie z.B. so_isbn, so_autor. Diese sollen jetzt durch Selektionstexte
ersetzt werden.

Vorgehensweise: Selektionstexte erstellen

Ausgangspunkt zum Erstellen der Selektionstexte ist der ABAP-
Editor. Laden Sie also das Programm, zu dem Selektionstexte ange-
legt werden sollen und aktivieren Sie es gegebenenfalls. Wihlen Sie
dann das Menii ,,Springen = Textelemente = Selektionstexte®.
Tragen im Folgebild einen Text fiir den Selektionsparameter ein.
Bezieht sich der Selektionsparameter auf ein Datenelement kénnen
Sie das Kontrollkdstchen ,,Dictionary Referenz aktivieren. In die-
sem Fall wird der Bezeichner des Datenelementes als Selektionstext
eingesetzt.

" Loxt pingen. Hilfsitte]. Urnfeld Systam il Abb. 4.73
(V] B IH e@@ oM Dhod R @@ Selektionstexte
ABAP Textelemdlte: Selektionstexte dndern Sprache Deutsch pflegen
€= | PRE | R (&SR (&
| :
EWB%EI Programm YEKO4DBAS 9 aktiv
.[. 7 Textsymbole »~ Selektionstexte |/L|5tl'.|helschriﬂsn |
Objektname ﬁl
i>. E Felder Name Text DictionargReferenz
b & Ereign s0_avToR(?. (\ =]
s0_I5EN [2 \&=/
50 _KAT flategorie \ =T
so_r:rz\ﬂucnﬂtel / O
S ——
Aktivieren Sie anschlieend die Selektionstexte.
Beim Start des Programmes erhalten Sie dann folgenden Selektions-
bildschirm:
Abb. 4.74
@ 18 e DHE vhon BE @ Selektionsbild-
Programm YK04DBAS schirm mit Se-
lektionstexten
@
ISBN E
Buchtite! E
Autorennummer n

Kategorie bis 3]

4.6 Lesen von Daten aus Datenbanktabellen ®m 255

256 W
(]

Die Anweisung SELECTION-SCREEN BEGIN OF
SCREEN <scr>.

Die Anweisungen PARAMETERS und SELECT-OPTIONS in ihrer
bisherigen Anwendung, werden vom Laufzeitsystem im Ereignis-
block INITIALIZATION gesucht und beim Start des Programmes
auf dem Bildschirm abgebildet. Mit der Konstruktion

SELECTION-SCREEN BEGIN OF SCREEN<scr>.
* Anweisungen zur Gestaltung des Selektionsbildes
SELECTION-SCREEN END OF <scr>.

haben Sie die Moglichkeit, ein Selektionsbild zu definieren und mit
der Anweisung CALL SELECTION-SCREEN <scr>. zu einem be-
liebigen Zeitpunkt aufzurufen.

Fiir <scr> setzen Sie Zahlen grofier 1000 ein.

Fiir nicht ausfiihrbare Programme ist diese Verfahrensweise zwin-
gend. Weitere Erkldrungen finden Sie in der Schliisselwortdokumen-
tation zum Schliisselwort ,,SELECTION-SCREEN*.

Anweisungen zur Gestaltung des Selektionsbildes

Zum Schluss soll um die Eingabefelder des Selektionsbildes ein
Rahmen gezogen werden. Dazu werden die Anweisungen, die zu ei-
nem Block zusammengefasst werden sollen in die Anweisungen
SELECTION-SCREEN BEGIN OF BLOCK und SELECTION-
SCREEN END OF BLOCK eingeschlossen.

Syntax:

SELECTION-SCREEN BEGIN OF BLOCK <Blockname>
WITH FRAME TITLE <Titel>.

* Parameters- bzw. Select-Options-Anweisungen
SELECTION-SCREEN END OF BLOCK <Blockname>

Hinweis: Sie sollten fiir den Titel ein Textsymbol verwenden. Da
die Linge des Titels auf 8 Zeichen begrenzt ist, muss das Textsym-

bol iiber folgende Syntax angelegt werden:

SELECTION-SCREEN BEGIN OF BLOCK <Blockname>
WITH FRAME TITLE text-<nnn>.

Doppelklicken Sie auf text-<nnn> und legen Sie in der Vorwértsna-
vigation den Rahmentitel an.

4 Grundlegende Techniken der Listenprogrammierung

und legen Sie fiir Thre Eingabefelder passende Selektionstexte an.

Geben Sie jetzt Threm Programm YKO04DBAS den letzten Schliff
Programmieren Sie dann einen Rahmen um die Eingabefelder. ﬁ

Losung: YKO4DBAS_10
Ihr Programm sollte jetzt die folgende Ergéinzung bekommen haben:

SELECTION-SCREEN BEGIN OF BLOCK recherche
WITH FRAME TITLE text-011.
SELECT-OPTIONS:
so_isbn FOR wa_ zbestand-isbn NO INTERVALS,
so_titel FOR wa zbestand-titel LOWER CASE
NO INTERVALS,
so_autor FOR wa_ zautoren-autorennr
NO INTERVALS,
so_kat FOR wa_ zkategorie-kategorie
LOWER CASE.
SELECTION-SCREEN END OF BLOCK recherche.

4.6 Lesen von Daten aus Datenbanktabellen ® 257

5 Spezielle Techniken der
Listenerstellung

5.1
Zielstellung des Kapitels

In diesem Kapitel werden die folgenden Themen behandelt:
= Modularisierung durch Unterprogramme und Includes,
= Benutzen von Ikonen in Listen,

= Programmierung der Oberfliche (Meniileiste, Drucktastenleiste
Kontextmeniis und Titelzeile),

= Anzeige von Zusatzinformationen in Verzweigungslisten,
= Mehrfachauswahl von Zeilen und dyn. Sortierung der Liste,

= Arbeiten mit Funktionsbausteinen.

Die im vorigen Kapitel programmierte Ausgabeliste soll in ihrem
Aussehen und ihrer Funktionalitét erweitert werden.

y Abb. 5.1
R IOHRE anhod (2] - .
| Detas zurisEN 3 EIN Liste der Reche-
Rechercheergebnisse i
rcheergebnisse
ails zur sgewahhe anzeigen | (] [I2] (& .

ST ::"L = mit Ikonen,

o : — rategocie Kontrollkéstchen
OO0 389842147 ABAF OBJECTS B meller OV . .
$50 31627213724 a4 13 FhoGeIIASFRACKE bEs sap 3/3-stsTaNe ey e und einer funkti-
€00 1927311365 Adninistration des SAP-Systems R/ 8 will 0V Ona/ erWeiterten

23979 EDV-CRIENTIERTE BETRIEBSWIRTSCHAFTSLEHRE A scheec L

200 Tl 2 soaco Internet

Oberflache

L e L L L R

BO6 PROGRAMMIERUNG VON INTERNET-| HEe Fl 8 tmlaufs o
0O IBITI5EHEI 3AF R/I Auswahlen F2 B rokot v
€00 3577917410 AP B/3 Basizsyates Turtck e 8 Hectn v
€00 J517316464 AP B/3 Der schnelle Einatis 8 Ullcick v
Eingabem e F4
OO0 3827314569 SAF R/ dynamisch einfuhren izl B cewn LV
00 1827114011 BAF /3 8 am| Ausgewihite anzeigen 5 R reller v
Detads zur ISBN F&
Anzahl Bucher 12 Alle autwihlen F7
Auswahl autheben F8
Abbrechen F12
Baenden Umzch+F3
Sortieren (abst) Umsch+F11
Sortieren Umsch+F12

5.1 Zielstellung des Kapitels ® 259

Abb. 5.2
Abbilden von
Zusatzinforma-
tionen zu einer
ausgewdéhlten
Zeile

Abb. 5.3
Verdichtete
Ergebnisliste

260

Rechercheergebnisse
[[Detwite zur 1500 [Bustgemibite snzegen | 2] (B[] (B
Ausgabeliste Ausgahedatus 04.01.2004 Ausgshereit 10:48:14

1580 Tikel Autor Fategorie
BV

OO0 JEFE421473 ABAP CBJECTS B rellec o
B8O 3027317894 ABAP-Thungsbuch 8 velauff BV
O30 1027113724 ABAR/4 DIE FROGRAMMIERSFRACEE DES ZAF R/J-SYSTEMS 8 matche oV
O8O 1927111365 Administration des SAP-Systems R/} 8 will EDV
OB 3540523979 EOV-ORIENTIERTE BDETRIEBSMIRTSCHAPTSLEHRE 8 scheec v
000 3937254388 Inkecnat = i 5 5| ratecnes
@8O 102 7I1TE0E PROCRAMMIERUNG VON INTE v

15B8: 1817254388 v

OBO 1827158861 BAP RSD
Titel: Intecnet Fren

OBO 38TI91T4I0 SAF R/) Basisaystem

[(i L L (e 13 a3

©00 1827316464 SAP R/3 Der schmelle Ei Muflage: goun. Eov
000 1627114565 SAP R/] dynsmisch einfu :"““""““‘“3""" ‘9-; Ty v
©00 1827314011 SAP R/3 prozeborientier Voo 103t i it v

Gesastbestand: 00025
davon ausgeliehen: 00005

Anzahl Eucher 12
Autor: Melwst Smaro

(00— I o]

o B]

Durch Doppelklick auf eine Listenzeile oder durch Meniiauswahl
wird eine Verzweigungsliste mit zusitzlichen Informationen abge-
bildet.

S CAP |

(4

= 1H e0e DNE DNoD BF 08
Rechercheergebnisse
[[Cetails 2 15BN | [Rusgewshine anzesgen | (B8] (2] (7] @]

Ausgebedatus 04.01.2004 Ausgabezeit 10:48:14

150y Tatel Autor Fategorie
000 1993421473 ABAP OBJECTS B Keller EDY [=
©80 1927117804 ABAP-Ubungsbuch 8 tmlauff B [=
ODO I540523979 EDV-ORIENTIERTE DETRIEBSMIRTSCHAFTSLEHRE 8 scheer DY [+
O00 38273114011 SAF BSI prozeborientiert asuenden B Eeller BV [+

Die Ergebnisliste kann auf Zeilen mit aktivierten Kontrollkéstchen
verdichtet werden. Auerdem kann der Benutzer die Liste nach ver-
schiedenen Spalten sortieren.

5.2
Modularisierung durch Unterprogramme

Wie Sie in Kapitel 4.2 ,,Grundaufbau eines ABAP-Programmes* ge-
sehen haben, ist ein ABAP-Programm durch seine Ereignisblocke in
verschiede Abschnitte unterteilt. Die Aufteilung des Quellcodes in
verschiedene Abschnitte wird als Modularisierung bezeichnet. Nun
kann der Quellcode nicht nur auf verschiedene Ereignisblocke, son-
dern auch auf Abschnitte, die der Entwickler selbst definieren kann,
aufgeteilt werden. Diese Abschnitte sind in der prozeduralen Pro-
grammierung die Unterprogramme und Funktionsbausteine.

In Unterprogrammen und Funktionsbausteinen wird in der Regel

Quelltext gekapselt, der eine bestimmte Funktionalitit, z.B. Ausgabe
einer Liste oder Listzeile, besitzt. Unterprogramme und Funktions-

5 Spezielle Techniken der Listenerstellung

bausteine konnen von verschiedenen Stellen des Programmes aus
aufgerufen werden. Diese Technik bietet folgende Vorteile:

= Die Lesbarkeit des Programmes wird erhoht, weil fiir das Ge-
samtverstdndnis des Programmes unnétige Details, in Unterpro-
gramme oder Funktionsbausteine ausgelagert werden konnen.

= Ein modular aufgebautes Programm ist ,,pflegeleichter* als ein
Programm, dessen Quellcode ,,in einem Stiick” programmiert
wurde. Im Idealfall wird eine Funktionalitiit (z.B. Ausgabe einer
Liste oder einer Listzeile) in einem Unterprogramm gekapselt
und von verschiedenen Stellen des Programmes aufgerufen. Der
Quellcode fiir diese Funktionalitit ist also nur einmal, namlich
im Unterprogramm bzw. dem Funktionsbaustein, vorhanden.
Soll nun die Funktionalitit gedndert werden, ist lediglich das
Unterprogramm oder der Funktionsbaustein anzupassen.

= Datenobjekte konnen so angelegt werden, dass sie nur zur Lauf-
zeit des Unterprogrammes vorhanden sind. Das spart Speicher-
platz.

= AulBerdem unterstiitzt die Modularisierung die Programment-
wicklung, weil sich der Entwickler zundchst auf den Ablauf
des Programmes konzentrieren kann. Die Details werden spi-
ter im den Unterprogramme programmiert (Top-Down-
Methode).

Der Aufruf des Unterprogrammes Abb 5' 4

erfolgt mit der Anweisung Modularisierung

I:.EPORT
PERFORM <Unterprogrammname> .
mit Unterpro-

TART-OF-SELECTI '_'

< Die Ababeiting des aktuellen Pro-

T grammabschnittes wird unterbrochen grammen
und mit der ersten Anweisung des (Prinzip)
‘Unta displ g Untemprogrammes forigesetzt
? ﬁdd.\qﬂ' se .

*Unterprogramm displ_sel
FORM displ_sel.

(

DO.

" PERFORM display_listzeile.

Untemprograrmme begnnen mit
FORM <Unterprogrammname>.
und enden mit

ENDFORM.

N

ENDFORM bewirkt, dass das
Programm eine Anweisung nach
dem Unterprogrammaufruf fortge-
setzt wird,

5.2 Modularisierung durch Unterprogramme ® 261

Abb. 5.5
Ergebnisbild-
schirm des
Beispiels:

262

Definition des Unterprogrammes:

Syntax:

FORM <Name desUnterprogrammes> [Parameterschnittstelle].
* ABAP-Anweisungen

ENDFORM.

Aufruf des Unterprogrammes:

Syntax:
PERFORM <Name des Unterprogrammes> [Parameterschnittstelle].

Beispiel:

REPORT zdemo_up.

START-OF-SELECTION.
PERFORM upl.
PERFORM up2.

FORM upl.

WRITE: / 'Unterprogramm 1'.
ENDFORM.

FORM up2.
WRITE: / 'Unterprogramm 2'.
ENDFORM.

Bearbeiten Springen

R

Einfaches Unterprogramm

Einfaches Unterprograrm

Unterprograran 1
Unterprograrmm 2

Hinweise:

= Ein Ereignisblock ist an der Stelle beendet, an der ein neuer
Verarbeitungsblock beginnt. Ein Unterprogramm ist ein sol-

5 Spezielle Techniken der Listenerstellung

cher Verarbeitungsblock. FORM UP1 beendet also im Bei-
spielprogramm den Ereignisblock ,,START-OF-SELECTION*.

= Im Beispiel erfolgt die Definition der Unterprogramme im
gleichen Programm wie der Unterprogrammaufruf. Im Allge-
meinen werden Unterprogramme jedoch in INCLUDE-
Programme geschrieben. Diese Technik wird zu einem spite-
ren Zeitpunkt in diesem Kapitel behandelt.

Die Parameterschnittstelle

Um in Unterprogrammen allgemeine Algorithmen ablegen zu kon-
nen, ist die Ubergabe von Parametern, mit denen das Unterpro-
gramm arbeiten soll, ein wichtiges Hilfsmittel. Kénnte man z.B. dem
Unterprogramm UP1 aus dem Beispiel auf Seite 262 einen Parame-
ter iibergeben, der den auszugebenden Text enthilt, wiirde das Un-
terprogramm UP2 nicht mehr gebraucht. Alle Textausgaben konnte
UPI iibernehmen. Im einfachsten Fall wird der Parameter mit dem
Schliisselwort USING iibergeben und vom Unterprogramm, eben-
falls mit USING, iibernommen.

Beispiel:
REPORT zdemo up.

START-OF-SELECTION.

PERFORM upl

USING '"Alle Kreter ligen", sagt ein Kreter.'.
PERFORM upl USING 'Das stimmt aber nicht,'’
PERFORM upl USING 'weil alle Kreter ligen.'

FORM upl using p_text.

WRITE: / p_text.
ENDFORM.

Liste Bearbeiten Springer

@ = FIRCICETICIHE

Unterprogramm mit Parameteriibergabe

aAlle Kreter liligen"”, sagt ein Kreter.
Das stimmt aber nicht,
weil alle Kreter liigen.

5.2 Modularisierung durch Unterprogramme

Abb. 5.6
Ergebnisbild-
schirm des
Beispiels

263

Abb. 5.7
Prinzip der
Wertiibergabe

264

Der vom aufrufenden Programm iibergebene Parameter, im Beispiel
ein Text, wird als Aktualparameter, der im Unterprogramm ver-
wendete Parameter, im Beispiel p_text, als Formalparameter, be-
zeichnet. Werden mehrere Parameter iibergeben, erfolgt die Zuord-
nung des Aktualparameters zum Formalparameter iiber die
Reihenfolge der Aktual- bzw. Formalparameter.

PERFORM upl USING apl ap2 ap3.

vy

FORM upl USING fpl fp2 fp3.

ENDFORM.

Arten der Parameteriibergabe

Die Art der Parameteriibergabe legt fest, wie das Unterprogramm
mit den iibergebenen Parametern arbeitet. In ABAP/4 gibt es fol-
gende Moglichkeiten der Parameteriibergabe:

= Wertiibergabe (call-by-value)
= Adressiibergabe (Call-by-reference)
= Wertiibergabe mit Riickgabe (call-by-value-and-result)

Wertiibergabe

Syntax:

Definition des Unterprogrammes

FORM <Name> USING VALUE(p1l) VALUE(p2)...VALUE(pn).
Aufruf des Unterprogrammes:

PERFORM <Name> USING al a2 an.

Wertiibergabe
Programm Arbeitsspeicher * Im Unterprogramm wird eine Kopie
der Aktualparameter angelegt
REPORT zup. | (ak19p1, ak2p2)
paTA: skl TYPE i, [—w0[0] 0] 0] aki = Das Unterprogramm arbeitet mit
ak2 TYPE i. |—»0| 0| 0] 0| ak2 den Kopien (p1;p2).
:immak:_p i = Nach dem Beenden des
) Unterprogrammes stehen die
FORIT UB Formalparameter nicht mehr zur
USING VALUE (pl) _Uerﬁ.:\gung. _Ihne Lebeasc_iauer ist
VALUE (p2) . identisch mit der Laufzeit des
pl = pl + 1. i 1 pi Upterprogrammes.)
p2 = p2 + 1. o1 p2 » Die Aktualparameter (ak1; ak2) im
ENDFORM. aufrufenden Progr teil behalten
o b b B ihre urspranglichen Werte, sie

werden nicht mit den

to— ak1 und ak2 vor dem Unterprogrammaufruf Formalparametern tberschrieben.

ty— Anderung von p1 im Unterprogramm
tz— Anderung von p2 im Unterprogramm
ty— akl und ak2 nach Beenden des Unterprogrammes

5 Spezielle Techniken der Listenerstellung

Benutzen Sie die Wertiibergabe immer dann, wenn die {ibergebenen
Datenobjekte im Unterprogramm geédndert werden, die Aktualpara-
meter ihren Wert behalten sollen.

Adressitibergabe

Syntax: 1

Definition des Unterprogrammes
FORM <Name> USING p1 p2...pn.
Aufruf des Unterprogrammes:
PERFORM <Name> USING al a2 an.

Um die Ubersichtlichkeit Thres Programmes zu erhéhen, sollten Sie
diese Syntax Syntax verwenden, wenn die Formalparameter im Un-
terprogramm nicht geidndert werden.

Syntax: 2
Definition des Unterprogrammes
FORM <Name> CHANGING p1 p2...pn. .

Aufruf des Unterprogrammes:
PERFORM <Name> CHANGING al a2 an.

Verwenden Sie diese Syntax, wenn die Formalparameter geidndert
werden.

Adressilbergabe Abb. 5.8
Programm Arbeitsspeicher » Dem Unterprogramm werden Prinzip der
die Speicheradressen der Wertlibergabe
REPORT zup. . I Aktualparameter Gbergeben
DATA: skl TYPE i, —|b0 ‘1 0| 1| aki * Das Unterprogramm arbeitet
PBRPORI:kl!zP TYEE 1. >0 ‘1 1| ak2 direkt auf den dbergebenen
CHANGING akl ak2. Adressen.
» Anderungen an den
Form UP | Formalparametern wirken sich
CHANGING pl sofort auf die Aktualparameter
p2. aus.
pl = pl + 1. » Nach dem Beenden des
p2 = pZ + 1. Aq.resse 1“1 p1 Unterprogrammes behalten die
ENDFORM. Adreske ak2 | p2 Aktualparameter (ak1; ak2) die
T aktuellen Werte.

bt B

to— Datenobjekte vor dem Unterprogrammaufruf

ty— ﬁfmderung von p1 im Unterprogramm

tz— Anderung von p2 im Unterprogramm

t;— akl und ak2 nach Beenden des Unterprogrammes

Die Adressiibergabe sollten Sie nur anwenden, wenn die Datenob-
jekte im Unterprogramm nicht geéindert werden oder wenn Sie gro-
Bere interne Tabellen an das Unterprogramm iibergeben.

5.2 Modularisierung durch Unterprogramme ® 265

Abb. 5.9
Prinzip der
Wertiibergabe
mit Riickgabe

266

Wertiibergabe mit Riickgabe

Syntax:
Definition des Unterprogrammes
FORM <Name> CHANGING
VALUE(pl) VALUE(p2) VALUE(pn).

Aufruf des Unterprogrammes:
PERFORM <Name> USING al a2 an.

Wertilbergabe mit Riickgabe

Programm Arbeitsspeicher * Im Unterprogramm wird eine
| Eopie der Aktualparameter an-
IREEORT zup. gelegt (ak1-2pl, ak2-2p2).
DATA: akl TYPE i, —0| 0] 0] 1] aki » Das Unterprogramm arbeitet
ak2 TYPE i. —»0| 0| o] 1| ak2 : :
oo T mit den Kopien (pl,p2)

Mach dem ordnungsgemaBen
Beenden des Unterprogrammes

ICHANGING akl ak2.

FORM UD werden die Aktualparameter
CHANGING VALUE (pl) (ak1; ak2) mit den Formalpa-
VALUE (p2) . rametern (p1; p2) uberschrie-
pl = pl + 1. | 1 p1 ben
2 =p2 + 1. o1 p2 = MNach dem Beenden des Un-
ENDEORM. "~ b terprogrammes stehen die For-
b b B B malparameter nicht mehr zur
Verfugung Ihre Lebensdauer
ty— Datenobjekte vor dem Unterprogrammaufruf ist identisch mit der Laufzeit
ty— Anderung von p1 im Unterprogramm des Unterprogrammes.

tz;— Anderung van p2 im Unterprogramm
ts— akl und ak2 nach Beenden des Unterprogrammes

Benutzen Sie die Wertiibergabe mit Riickgabe immer dann, wenn
die iibergebenen Datenobjekte im Unterprogramm geéndert werden,
und die Anderungen auch im aufrufenden Programm zur Verfiigung
stehen sollen.

Vorteil gegeniiber der Adressiibergabe:

Wird das Unterprogramm nicht ordnungsgemail beendet, z.B. durch
die Ausgabe einer Fehlernachricht, werden die Datenobjekte des
aufrufenden Programmes nicht gedndert, d.h. im aufrufenden Pro-
gramm herrschen die urspriinglichen (definierten) Verhéltnisse. Bei
der Adressiibergabe ist das nicht so, weil vor dem Abbruch des Un-
terprogrammes bereits Datenobjekte gedndert worden sein konnen.
Es herrschen dann im aufrufenden Programm keine definierten Ver-
hiltnisse mehr.

Verschiedene Arten der Parameteriibergabe in einem
Unterprogramm
Beispiel:
PERFORM UP1 USING akl ak2
CHANGING ak3 ak4.

5 Spezielle Techniken der Listenerstellung

FORM UP1 USING VALUE (pl) p2
CHANGING VALUE(p3) p4. .

Parameter Art der Ubergabe

akl > pl Wertiibergabe

ak2 > p2 Adressiibergabe

ak3 > p3 Wertiibergabe mit Riickgabe
ak4 > p4 Adressiibergabe

Sichtbarkeit und Lebensdauer von Datenobjekten

Auf Datenobjekte, die im globalen Deklarationsteil des ABAP-Prog-
rammes (sieche Kapitel 4.2 ,,Grundaufbau eines ABAP-Program-
mes®) vereinbart wurden, konnen Sie auch im Unterprogramm
zugreifen. Sie sind im gesamten Programm sichtbar. Die Lebens-
dauer dieser Objekte ist identisch mit der Laufzeit des Programmes.

Auf ein im Unterprogramm deklariertes Datenobjekt kann nur das
Unterprogramm zugreifen, in dem es angelegt wurde. Die Sichtbar-
keit ist auf das jeweilige Unterprogramm begrenzt. Die Lebensdauer
dieser Datenobjekte ist identisch mit der Laufzeit des Un-
terprogrammes.

Typisierung von Formalparametern

Die Formalparameter konnen in der Parameterschnittstelle einem
bestimmten Datentyp zugeordnet werden.

Syntax:
FORM upl USING/CHANGING
VALUE(p1)|p1 TYPE|LIKE<Datentyp|Datenobjekt>.

TYPE <Datentyp> Mit TYPE konnen Sie alle an dieser Stelle
sichtbaren programmlokalen und globalen
Datentypen fiir die Typisierung einsetzen.

LIKE <Datenobjekt> Mit LIKE konnen Sie alle an dieser Stelle
sichtbaren programmlokalen und globalen
Datenobjekte fiir die Typisierung einsetzen.

Die Typisierung hat den Vorteil, dass dem Unterprogramm die tech-
nischen Eigenschaften der iibergebenen Parameter bereits zur Kom-
pilierungszeit bekannt sind. Dadurch werden falsche Parameteriiber-
gaben bereits durch den Syntaxcheck herausgefunden. Somit ist die
Typiibergabe eine gute Methode, Laufzeitfehler zu vermeiden. Die

5.2 Modularisierung durch Unterprogramme

267

Tabelle 5.1
Generische
Angabe des
Datentyps

268

Typisierung ist bei elementaren Datentypen optional, bei Strukturen
und internen Tabellen jedoch zwingend erforderlich.

Um den Verallgemeinerungsgrad eines Unterprogrammes zu erhd-
hen, koénnen die Datentypen im Unterprogramm unvollstéindig, d.h.
generisch, angegeben werden. So muss z.B. in die Schnittstelle eines
Unterprogrammes, dem eine interne Tabelle iibergeben wird, nicht
deren konkreter Tabellentyp eingetragen werden. Fiir eine positive
Syntaxpriifung reicht es in vielen Féllen aus, lediglich anzugeben,
dass es sich beim Ubergabeparameter um eine interne Tabelle han-
delt. Tabelle 5.1) enthilt generische Ubergabeparameter.

Generischer Typ Bedeutung

ANY Vollstindig generische Ubergabe des Parame-
ters.

ANY TABLE Der Formalparameter ist eine interne Tabelle.

INDEX TABLE Der Formalparameter ist eine interne Tabelle
mit Index (standard table oder sorted table).

[STANDARD] Der Formalparameter ist eine Standardtabelle

TABLE (standard table).

SORTED TABLE Der Formalparameter ist eine sortierte Tabelle
(sorted table).

HASHED TABLE Der Formalparameter ist eine Hashedtabelle
(hashed table).

c,n, X, p Eingebaute Datentypen ohne Lingenangabe.

Beispiel:

Generische Typisierung fiir eine Indextabelle:
FORM upl USING it_tab TYPE INDEX TABLE.

Hinweise:

= Fin in der Parameterschnittstelle nicht typisierter Parameter
wird im Unterprogramm wie ein mit ANY typisierter Parame-

ter behandelt.

= Beim Syntaxcheck wird iiberpriift, ob die iibergebenen Parame-
ter mit dem (typisierten) Formalparameter kompatibel sind.

= Sie sollten alle Formalparameter typisieren. Das erhoht die
Lesbarkeit Thres Programmes und fiihrt zu robusteren Pro-

grammen.

5 Spezielle Techniken der Listenerstellung

Includes

Includes sind Programme, die in andere Programme eingebunden
werden konnen. Includes verbessern die Lesbarkeit des Ge-
samtprogrammes (Rahmenprogramm) und vereinfachen die Wie-
derverwendung von Programmkomponenten. Fiir umfangreiche
Programme sollte jeweils ein Include fiir globale Datendeklaratio-
nen, Ereignisse und Unterprogramme angelegt werden. Fiir diese
Includes sollten Sie folgende Namenskonventionen einhalten:

Name Inhalt
<progr>TOP Fiir die globalen Deklarationen

<progr>F01 Fiir die Definition der Unterprogramme
<progr>EQ1 Fiir Ereignisse

Hinweis:
An die Stelle <progr> soll der Programmname, dem das Include zu-
geordnet werden soll, geschrieben werden.

Das Einbinden des Quellcodes der Includes erfolgt iiber die
INCLUDE-Anweisung.

Syntax:
INCLUDE <Name des Includes>.

5.2 Modularisierung durch Unterprogramme

269

Abb. 5.10
Einbinden
von Includes

Beispiel:

Includes

Report

Laufzeitobjekt
(Prinzip)

FINCLUDE ZBESTAN D_TOP

DATA: it_zhestand TYPE ...
wa_zbestand TYPE ...

wa_zautoren TYPE ...

FIncLUDE 2329&&01\
[START-OF-SELECTION.

SELECT * FROM zbestand
INTO TABLE it_zhestand.

IF sy-subrec = 0.

PERFORM display_liste

N

ENDIF.

[* INCLUDE ZBESTAND F

[REPORT ZBESTAND.

INCLUDE zhestand top

-

INCLUDE bestand e0l.

FORM display liste... .
LOOP AT it INTO wa.
WRITE: / wa-isbn,

wa-titel... .
[ENDFORM.

[FORM lese autor
read table it_autor ...

[END FORM.

j
INCLUDE

zhestand f01.

[REPORT ZBESTAND.

thestand TYPE ...
—fautoren TYPE ...
‘TART-OF-SELECTION.

SELECT * FROM zhestand
INTO TAELE it_zhestand.
IF ay-subre = 0.

PERFORM diaplay liste

[FORM display liste... .
LOOP AT it INTO wa.
WRITE: / wa-ishn,

wa-titel... .

[END FORM.

[FORM lese_autor
read table it_sutor ...

g ol

[DATA: it_zhestand TYPE ...

Beim Generieren des Laufzeitobjekies
wird der Quelitext der Includes in das
Laufzeitobjekt geschrieben (includiert)

5.2.1
Anlegen eines Includes

Vorgehensweise: Anlegen eines Includes

Starten Sie den Object Navigator (SE80), laden Sie das Programm,
zu dem ein Include angelegt werden soll und wihlen Sie
tiber die rechte Maustaste das Kontextmenii entsprechend Abb. 5.11.

270 5 Spezielle Techniken der Listenerstellung

2 00 0@ DHE OD LD

BE @8

ABAP Editor: Report YKO5DBAS_1 anzeigen

(=] | (o] (w] | 6 (5] @8] e | () (55 F(@) | (@) (vuster](Pretty Priner]

FQEENT: =| Report YKOSDBAS_1 aktiv
e R B EE @R
' g I & Report YKO4DBAS 10
Objektname B g
= [P Tl | | b o e
b & Felder Anlegen Brogramm
b & Ereignisse| Andem Unterprogramm
Anzeigen PBO-Modul |
Priifen PA-Maodul
Aktivieren Dynpro _tw,
Ausfihren GUK-Status D
Kopieren... GUI-Titel l tw;
Umbenennen... Include
Léschen Transaktion

Tragen Sie im Folgebild den Namen des anzulegenden Includes ein.

¥KOSDEBASTOP

Irglude

Sichern Sie dann Thr Include. Nachdem Sie die Entwicklungsklasse
und den Workbenchauftrag zugewiesen haben, wird vom System die
INCLUDE-Anweisung an das Ende Thres Programmes eingefiigt.

0 Im Programrm YKOSDBAS wird eine INCLUDE-Anweisung
fir YKO5DBASTOP eingefligt

5.2 Modularisierung durch Unterprogramme

Abb. 5.11
Mend: Anlegen
eines Includes

Abb. 5.12
Anlegen eines
Includes

Abb. 5.13
INCLUDE-
Anweisung
automatisch
eingeftigt

u 271
=
u

Object Navigator @&/ T =A@

=-‘.= a0 BE @B

nach dem ABAP Editor: Report YKO5DBAS_1 dndern
An/egen des D | | D | @ | Musler"Prmty Printer

INCLUDES ‘
Programm 7] Report YROSDEAS 1
[VKOS0BAS [R[G[E]
Rahmenprogramm |~ cotor et wens o nwrewsreres o

€ o[58 By

WRITE: 'Ausgabeliste' (001},

Objektname * [Beschreibung

_

= [I¥KOS0BAS: East-Side-Library: Literatur-Re

B _I Felder
]

= @ Includes
YKOSOBASTOP Jnclude YHKOSDBASTOP

20 'husgabedatum’ (D07},
ausgabedatum,
‘Ausgabezeit' (008},
ausgabezeit, 125 '".
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: / 'Lfdnc’ (009),
7 ‘ISBH' (002} COLOR COL_KEY
INTENSIFIED ON,
18 'Titel' (003},
85 'Autor’ (004},
107 'Eategorie' (003),
: figbar ' (00E) .

INCLUDE YKOSDEASTOP.
e ———————

Der Navigationsteil des SE80 wurde um den Knoten Includes er-
ganzt. Unter diesen Knoten finden Sie das neu angelegte Include. In
das Rahmenprogramm wurde die INCLUDE-Anweisung fiir das

neue Include geschrieben.

Fir die Ubungen in diesem Kapitel soll das Programm
ﬁ YKO4DBAS aus dem vorigen Kapitel kopiert werden. Sollten Sie
erst in diesem Kapitel mit Threm ABAP-Training beginnen, kopie-
ren Sie bitte das Programm YKO04DBAS_10. Der neue Programm-

name soll YKOSDBAS sein.

1. Anlegen des Programmes YKO5SDBAS durch Kopieren von
YKO04DABS bzw. YKO4DBAS_10.

= Starten Sie den Object Navigator (SE80) und laden Sie das
zu kopierende Programm YKO4DBAS bzw. YKO4DBAS-
_10. Achten Sie darauf, dass das Programm aktiviert ist.

= Kiicken Sie im Navigationsteil des Object Navigators mit
der rechten Maustaste auf den Knoten des Rahmenpro-
grammes (YKO4DBAS bzw. YKO4DBAS_10) und wéhlen
Sie aus dem Kontextmenii den Meniipunkt ,,Kopieren* aus.
Im Folgebildschirm ,,Programm YKO04DBAS kopieren‘
geben Sie den Namen des Zielprogrammes YKOSDABAS
ein. Bestitigen Sie im Folgebild ,,Programm YK04DBAS
kopieren nach YKOSDBAS* die Angaben. Ordnen Sie dann

der Kopie, wie gewohnt,

Ihre Entwicklungsklasse

YABAP_TR und Thren Workbenchauftrag ,,ABAP-

Training* zu.

272 W 5 Spezielle Techniken der Listenerstellung

2. Legen Sie die folgenden Includes an.

= YKO5DBAS_TOP,
= YKO5DBAS_EO1,
= YKOSDBAS_FO1.

Achten Sie darauf, dass die Include-Anweisung
,INCLUDE ykO5dbastop* als erste Includeanweisung steht.

3. Kopieren Sie alle Datendeklarationen (DATA-Anweisungen
und den Selectionsbildschirm) in das TOP-Include und 16schen
Sie diese Anweisungen im Rahmenprogramm.

4. Kopieren Sie die beiden Ereignisblocke ,,.START-OF-
SELECTION® und ,,TOP-OF-PAGE* in das Ereignis-Include
YKO5DBASEO]1.

5. Aktivieren Sie iliber das Kontextmenii (rechte Maustaste im
Knoten des Rahmenprogrammes YKO5SDBAS) alle Programm-
komponenten.

6. Starten Sie Ihr Progamm (am besten ebenfalls iiber das Kon-
textmenii). Es muss jetzt ein Selektionsbild angezeigt werden
und danach eine Ausgabeliste.

Losung: YKOSDBAS_1

Thr Programm sollte jetzt folgende Anderungen aufweisen:

g i 1B @@ SH®
ABAP Editor: Report YKO5DBAS dndern

€= IBEEEREEE Muster | [Pretty Printer

a0 HEE @

O 0

Programm -] Report YKOSDBAS
W viel |MEE RE RHE BR)
en[55)[3]a] (#]E]Q) (=] ok Tuyorss PSS
Objektname] Beschreibung |
= [1'YKOSDBAS . East-Side-Library; Literatur-f

b @ Felder

b & Ereignisse
< & Includes

YKOSDBAS_ED1
YKOSDBAS_F01
YKDSDBAS TOP

Include YKOSDBAS_EOD1
Include YKOSDBAS_FO1
Include YKOSDBAS TOP

REFORT ykO5Sdbas.

INCLUDE YKOSDBAS_TOP.
INCLUDE YKOSDBAS_EOD1.
INCLUDE YKOSDBAS_FO1.

5.2 Modularisierung durch Unterprogramme

Abb. 5.15

Das Rahmen-
programm nach
den Anderungen

m 273

Abb. 5.16

Das TOP-
Include nach
den Anderungen

Abb. 5.17

Das EREIGNIS-
Include nach
den Anderungen

274 »
]
u

Im Rahmenprogramm YKO5SDBAS sind nur noch die INCLUDE-
Anweisungen zu finden. In Navigationsteil sind die Includes zu se-
hen, fiir die im Rahmenprogramm eine INCLUDE-Anweisung exis-

tiert.

Das TOP-Include YKOSDBAS_TOP enthilt alle Datendeklaratio-

nen.

@ = 1B @@ BHE “000 AR @8

ABAP Editor: Include YKO5DBAS_TOP dndern

() | (F7)(e3)) | (e (5] e | (65 5 O) | (B (st Pty Prnter]

Programm -]
[YKDSDBAS v s
o e e Y E 2 S)
Objektname I Beschreibung
7 @ YKO50BAS East-Side-Library Literatur-f
b & Felder
b & Ereignisse
¥ & Includes
YHOSDBAS_EO1 Include YKO5DBAS_EO1

YKDSDBAS_FO1 Include YKOSDBAS FO1

Inchede TKOSDBAS_TOP a

DATA: it_zbestand TYPE zint_zbestand tw,
wa_czhestand TYPE est_chestand_tw,
wa_zautoren TYPE zautoren_tw,
wa_z} i= TYPE zk ie_tuw,
ausgabedatum TYPE sy-datum,
ausgabezeit TYPE sy-uzeit,
zeilen TYPE i,

farbe.
SELECTION-SCREEN BEGIN OF BLOCK recherche
WITH FRAME TITLE text-011.
SELECT-OPTIONS:
s0_isbn FOR wa_zbestand-isbn NO INTERVALS,
so_titel FOR wa rbestand-titel LOWER CASE
HO INTERVALS,
20_autor FOR wa_zautoren-sutorennt
HO INTERVALS,
=0_kat FOR wa_zkategorie-kategorie.
SELECTION-SCREEN END OF BLOCK recherche.

Die Ereignisblocke START-OF-SELECTION und TOP-OF-PAGE
befinden sich jetzt im Ereignisinclude YKOSDBAS_EO1.

< s 1B e@@ BHRE 000 BE @B

ABAP Editor: Include YKO5DBAS_E01

dndern

= | @) | [B | @] [Muster] [Pty Priver

Programm -]
[¥KosDBAS

[CE[5E] [Ela] (E]E]a) (=]

Beschraibung

= lee]

Include YFOSDEAS EO1

E YROSDBAS EOL

< [@ YKD5DBAS
b 3 Felder
b & Ereignisse
= & Includes

Include YKDSDBAS_FO1
Include YKOSDBAS_TOP

VKOSOBAS_FO1
YKOSDBAS_TOP
Achtung:
Die Quelltexte der beiden Er-
eignisblocke sind aus Platz-
grinden nicht vollstandig dar-
gestellt.

East-Side-Library. Literatur-f

START-OF-SELECTICN.
ausgabedatum = sy-datum.
ausgabezeit = sy-uzeit.

*Array-Fetch zum laden der internen Tabelle

SELECT * FROM zhestand tw

TOP-OF-PAGE.
Ereignisblock wi

eine neue Ausgabeseite be d
FORMAT COLOR COL_HEADING INTENSIFIED ON.
WRITE: 'Ausgabeliste’ (001),

20 'Ausgabedatum’ (007),

ausgabedatum,
'Ausgabezeit' (008) ,
auagebezeit, 125 '

5 Spezielle Techniken der Listenerstellung

5.2.2
Anlegen und Einbinden eines Unterprogrammes

Vorgehensweise: Anlegen eines Unterprogrammes

Starten Sie den Object Navigator (SE80), laden Sie das Programm,
zu dem ein Unterprogramm angelegt werden soll und wéhlen Sie
iiber die rechte Maustaste das Kontextmenii entsprechend Abb. 5.18.

T 18 Qe DHE DNos BE
ABAP Editor: Inciude YKOSDBAS_TOP dndern
| | | | [@) [Muster] [Pretty Printer]
Programm 3‘ Include

hensnpas

YKOS5DBAS_TOP

Objektname
bl [
b & Felder
b @ Ereignisse

< & Includes
VISNEMBA

Anlegen

FE TR

1 _myno

. SR @)) @)

il

*| Programm

Andern
Anzeigen

estand_tw
stand_tw,

Unterprogramm

=n_tw,

*| PBO-Modul

ela] rie_tu,

I~ U,

Geben Sie im Folgebild den Namen des Unterprogrammes an und
wihlen Sie das Include, in welches das Unterprogramm geschrieben

werden soll aus.

Unterprogramm

Display_Grundiiste

Include-Auswahl

| |vkospeas
YKDSDBAS_EO1

YKOSDBAS_TOP

neues Include
Rahmenprogramm
Include YKDSDBAS_EO1
&

Include YKOSDBAS_TOP

KD]

[v](3¢]

Hinweis:

Das Unterprogramm ist an das Rahmenprogramm angebuden. Der
Unterprogrammname muss also nur im jeweiligen Rahmenpro-
gramm eindeutig sein.

5.2 Modularisierung durch Unterprogramme

Abb. 5.18
Mendi: Unter-

programm
anlegen

Abb. 5.19
Angabe des
Unterprogram-
mnamens und
Auswahl des
Includes

m 275

Abb. 5.20
Parameter-

schnittstelle und

Quelltext des
UP anlegen

276

Im Folgebild wird Thnen der Quelltext des ausgewihlten Includes
bereitgestellt. Die FORM- und ENDFORM-Anweisung Thres Un-
terprogrammes sind bereits eingetragen. Sie miissen gegebenenfalls
noch die Parameterschnittstelle definieren und den Quelltext des Un-
terprogrammes schreiben.

4 B 1B 0@ DK “nod BE @@
ABAP Editor: Include YKO5DBAS_F01 d@ndern

EE | PRE | EEEE | (&S E] | @) (Muster] (Prety Prer
Programm] i Include YKO5DBAS_FO1 Inaktiv(i
EII(I'IRI'\RAQ =[] @l‘@lﬁ:l @ BE
mwm’ 1 -__.._E;.:__..:_::_i:.._....__..__-:..Z_......_.._.._...._.._....__.._.._.._..__.._

< (@ YKO5DBAS 3
I» & Felder | * 4
b @ fered T

I:I

> @& Includes

wa TYPE zst_zbestand.

LOOP AT it INTO wa.
PERFORM display listzeile USING wa.
ENDLOOP .
DESCRIBE TABLE it
LINES zeilen.
WRITE: /,'Anzahl Bicher'(010), zeilen.
| ENDFORM. " Display Grundliste

Aktivieren Sie zum Schluss Thr Unterprogramm.

Hinweis:

Achten Sie immer darauf, dass alle Programmkomponenten aktiv
sind. Sie konnen an der blauen Textfarbe im Navigationsteil des Ob-
ject Navigators erkennen, dass es inaktive bzw. iiberarbeitete Pro-
grammkomponenten in Threm Rahmenprogramm gibt. Alle blau
dargestellten Komponenten sind nicht aktiviert.

Vorgehensweise: Einbinden eines Unterprogrammes

Selbstverstdndlich konnen Sie Thre PERFORM-Anweisung ,,manu-
ell“ in das Quellprogramm eintragen. Es ist aber auch moglich, den
Unterprogrammaufruf per ,,Drag and Drop* aus dem Navigationsteil
des Object Navigators in den Quellcode zu ziehen.

5 Spezielle Techniken der Listenerstellung

gen Hilismittel Umfald System Hilfe

@ 18 Q@ DB ©nioo

HE @6

ABAP Editor: Include YKOSDBAS_EO01 dndern

CI | | EIFEJ | Muster IPra'tty Pr:ntsrl

Programm @ —f Include YKOSDBAS_EO1 inz
Fnenens L RTEE) @) GE @&
T o || sTART-oP-sELpam=aa -
L E3E | R Y P 3 [| s rDie in die PERFORM-
Objel ne INTO CORRE:

< = YKD5DBAS

wnere 1=bnANW. €ingetragenen For-

b & Felder titemalparameter missen

=~ (@ Ereignisse { au X
START-OF-5& EC 71 asjnoch durch die Aktualpa-
REammne i werameter ersetzt werden.

SPL Z PERFORM display grundliste
b @ Includes USING

Die in dieser Ubung im Programm YKO5DBAS anzulegenden Un-
terprogramme sind im Include YKOSDBAS_FO1 zu kapseln.

1.

Legen Sie ein Unterprogramm ,,Display_Grundliste” an und
kopieren Sie den Quelltext zum Erstellen der Grundliste im
Ereignisblock ,,START-OF-SELECTION* hinein. Ubergeben
Sie die Tabelle it_zbestand und die Struktur wa_zbestand per
Adressiibergabe. Programmieren Sie an die Stelle des ur-
spriinglichen Quelltextes den Unterprogrammaufruf.

Legen Sie ein Unterprogramm ,,Display_Listzeile* an. Kopie-
ren Sie aus dem UP ,,Display_Grundliste* den Quelltext zum
Erzeugen einer Ausgabezeile in das neue Unterprogramm.
Ubergeben Sie die Struktur wa_zbestand per Wertiibergabe.
Fiigen Sie im Unterprogramm ,,Display_Grundliste* eine ent-
sprechende PERFORM-Anweisung ein.

Die Uberschriften, die z.Z. im Ereignisblock ,,TOP-OF-
PAGE* angelegt werden, sollen im Unterprogramm ,,Display_
Ueberschrift gekapselt werden. Legen Sie dieses Unterpro-
gramm und einen entsprechenden Unterprogrammaufruf an.

Welche der im TOP-Include deklarierten Variablen konnten
besser in den Unterprogrammen angelegt werden?

Losung: YKOSDBAS_2

5.2 Modularisierung durch Unterprogramme

Abb. 5.21
Unterpro-
grammaufruf mit
Drag and Drop
erzeugen

n 277

Das Programm YKO5DBAS besteht jetzt aus folgenden Komponen-

ten:

Komponente Bedeutung

YKOSDBAS Rahmenprogramm des Literatur-
Rechercheprogrammes der East-Side-Library

DISPLAY_ Unterprogramm zur Ausgabe der Recherche-

Grundliste ergebnisse

DISPLAY_ Unterprogramm zur Ausgabe einer Zeile der

Listzeile Rechercheergebnisse

DISPLAY _ Unterprogramm zur Ausgabe der Seiten- und

Ueberschrift Spalteniiberschriften

YKO5DBAS_TOP Include, das alle globalen Datendefinitionen
und Datendeklarationen enthélt

YKOSDBAS_FO1 Include, das alle Unterprogramme enthilt

YKO5DBAS_EO1 Include, das den Quellcode der Ereignisblocke
enthélt

Diese Komponenten sollten jetzt folgende Anderungen enthalten:

B — *
* INCLUDE YKO5DBAS TOP *
B ——. *

DATA: it zbestand TYPE zint zbestand tw,
wa_ zbestand TYPE zst zbestand tw,
wa_ zkategorie TYPE zkategorie tw,
farbe.
wa_zautoren TYPE zautoren tw,
ausgabedatum TYPE sy-datum,
ausgabezeit TYPE sy-uzeit,
zeilen TYPE 1,
SELECTION-SCREEN BEGIN OF BLOCK recherche
WITH FRAME TITLE text-011.
SELECT-OPTIONS:
so_isbn FOR wa_ zbestand-isbn NO INTERVALS,
so_titel FOR wa zbestand-titel
LOWER CASE
NO INTERVALS,
* so_autor FOR wa zautoren-autorennr
* NO INTERVALS,
so_autor FOR wa_zbestand-autorl

* o ok ot

278 W 5 Spezielle Techniken der Listenerstellung

NO INTERVALS,
so_kat FOR wa zkategorie-kategorie.
SELECTION-SCREEN END OF BLOCK recherche.

Die im TOP-Include auskommentierten Datendeklarationen wurden
in die Unterprogramme verlagert. Das spart Speicherplatz, weil die
im Unterprogramm deklarierten Variablen nur zur Laufzeit des Un-
terprogrammes existieren. Da die Struktur wa_zautoren keine globa-
le Variable mehr ist, kann sie in der SELECT-OPTIONS-
Anweisung nicht mehr verwendet werden. Deswegen wurde als Be-
zugsfeld fiir so_autor die Komponente autorl der Struktur
wa_zbestand eingesetzt.

START-OF-SELECTION.
*Array-Fetch zum laden der internen Tabelle
*it zbestand
SELECT * FROM zbestand tw INTO
CORRESPONDING FIELDS OF TABLE it zbestand
WHERE isbn IN so_isbn AND
titel IN so_titel AND
(autorl IN so autor OR
(autor2 IN so_autor and autor2 > 0) OR
(autor3 IN so autor and autor3 > 0))
AND kategorie IN so_ kat.

PERFORM display grundliste
USING it zbestand wa_ zbestand.

TOP-OF-PAGE.
PERFORM display ueberschrift.

Anstelle der urspriinglichen Quelltexte stehen jetzt Unterprogramm-
aufrufe. Das ist einfacher zu lesen, oder?

K e *
*& Form Display Grundliste *
K e e *

FORM display grundliste
USING it TYPE ANY TABLE
wa TYPE zst zbestand.
DATA: zeilen TYPE i.
LOOP AT it INTO wa.
PERFORM display listzeile USING wa.
ENDLOOP.

5.2 Modularisierung durch Unterprogramme

279

280

DESCRIBE TABLE it

LINES zeilen.

WRITE: /,'Anzahl Biicher' (010),zeilen.
ENDFORM. " Display Grundliste

Die Variable zeile (urspriinglich global deklariert) wird nur in die-
sem Unterprogramm benétigt. Es ist deshalb giinstig, sie als lokale
Variable anzulegen. Die Ausgabe der Listzeile erfolgt im Unterpro-
gramm DISPLAY_Listzeile, weil in einer spiteren Aufgabe Listzei-
len einzeln ausgegeben werden sollen. AuBerdem ist dadurch Uber-
sichtlichkeit des Programmes besser.

K e *
*& Form Display Listzeile *
K e e *

FORM display listzeile USING wa
TYPE zst zbestand.
DATA: wa_zautoren TYPE zautoren.

IF farbe = '1"'.
FORMAT COLOR COL NORMAL INTENSIFIED ON.
farbe = '0'.

ELSE.
FORMAT COLOR COL NORMAL INTENSIFIED OFF.
farbe = '1"'.

ENDIF'.

*Berechnung der Anzahl verfigbarer Exemplare
wa-verfuegbar = wa-bestand
- wa-ausgeliehen.
*Selektion des Autorenstammsatzes
SELECT SINGLE * FROM zautoren
INTO wa_ zautoren
WHERE autorennr = wa-autorl.

WRITE:
/(3) sy-tabix,
wa-isbn UNDER 'ISBN' (002),
wa-titel UNDER 'Titel' (003),
wa_zautoren-name UNDER 'Autor' (004),
(10) wa-kategorie
UNDER 'Kategorie' (005),
wa-verfuegbar
UNDER 'verfigbar' (006),
125 ' ',
ENDFORM. " Display Listzeile

5 Spezielle Techniken der Listenerstellung

5.3
Ikonen in Listen

Ikonen konnen dazu beitragen, Listen iibersichtlicher und aussage-
kriftiger zu gestalten. Ubertreibt man Ihren Einsatz nicht, sehen die
Listen auch interessanter aus. In diesem Kapitel soll die Ausgabelis-
te des Literatur-Rechercheprogrammes durch zwei Ikonen etwas
aufgepeppt werden.

Ikonen werden iiber die WRITE-Anweisung in die Ausgabeliste ge-
schrieben.

Syntax:
WRITE <icon-name | icon-ID> AS ICON.

icon-name Feld der Datenbanktabelle ICON, das den Namen
der Ikone enthélt

icon-id Schliisselfeld der Datenbanktabelle ICON, das eine
4-stellige Zeichenkette enthilt, die die Ikone ein-
deutig definiert.

Voraussetzung:

Um Ikonen in Threm Programm zu verwenden, muss das Include <i-
con> in Thr Programm eingebunden werden. Achtung: Die spitzen
Klammern gehdren hier ausnahmsweise mit zum Includenamen.

Vorgehensweise: Verwenden von Ikonen

1. Binden Sie das Include <icon> in Thr Programm ein.
INCLUDE <icon>.

2. Dain der Regel auf einer Listenposition verschiedene Ikonen
abgebildet werden, ist es zweckmiBig, eine Variable fiir die
Ikone zu deklarieren. Diese kann mit icon-id typisiert werden.
DATA: icon_status TYPE icon-id.

3. Laden Sie dann diese Variable mit der id oder dem Namen der
Ikone, die in der Liste abgebildet werden soll. Sie finden diese
Angaben iiber die Schliisselwortdokumentation zu ICON, dort
finden Sie einen Link zur ,Liste der Ikonen®. Doppelklicken
Sie in dieser Liste auf die gewiinschte Ikone. Sie erhalten ei-
nen Bildschirm mit den Eigenschaften der Ikone.
icon status = '@BIQ@'. oder
icon_ status = ICON POSITION HR.

5.3 Ikonen in Listen

281

282

@ 1 1H Ce@ DHE oD PR @8

Anzeige der lkonen in Listen Ausgabe|énge in

(€3 .

& Zeichen —

/ N\

Tkons |Hame der Tkone |Kmntn (Lange }nckbu intern
2] ICON_POSITION Name der Ikone Flts_'teil.e_\ \\-P/, BI|B_POST
il ICON_JOB . 2 CA|B_JOBS
® S 2 BK|B_TSAK
a a ICON_POSITION HR 1 EM(B_MNGR
a I(\ ,) —= ionseinheit 2 BN (B_OGUN
= intern BT nggabe 2 BQ|B_FAST
L iB_POS, 2 BR|B_LIFE
o e geeignet ~ 3 2 BS [B_WORK
2 fiir - ator 2 KQ|SYSADM
21 1CON_OPERATOR L 2 KF |OPERAT
i} ICON_OTF_DOCUM ID der Ikone T-Daten 2 Ok | OTFDOC
(] ICON_ANY_DOCUMENT Unbekannter Dokumenttyp z 0F [ANYDOC
3 ICOM_BINARY DOCUMENT Binfres Dokument & 08 | BINDOC
4. Programmieren Sie die WRITE_Anweisung

WRITE:

In der folgenden Ubung soll durch eine Ikone gekennzeichnet wer-
den, ob ein Buch von einem oder von mehreren Autoren geschrie-
ben wurde. Bei einem Autor soll vor die Ausgabe des Autors die

icon status AS ICON.

Tkone ICON_POSITION_HR Q bei mehreren Autoren die Ikone

ICON_SHARED_POSITION & gesetzt werden.

Fiigen Sie in das Rahmenprogramm das Include <icon> ein.

2. Deklarieren Sie im Unterprogramm DISPLAY_Listzeile eine

Variable icon_autoren vom Typ icon-id.

3. Laden Sie im Unterprogramm DISPLAY _Listzeile die Variable
icon_autoren mit der Ikone ICON_POSITION_HR, wenn fiir
die auszugebende Listzeile die Komponenten autor2 und
autor3 leer sind (IS INITIAL), anderenfalls mit der Ikone

ICON_SHARED_POSITION.

4. Andern Sie die Ausgabe der Listzeile und die Spalteniiber-

schriften. Die Ausgabe soll wie folgt formatiert werden:

ab Position

Ausgabe

6
17

85
110
120

ISBN

Titel
icon_autoren
Autor
Kategorie
verfiigbar

5 Spezielle Techniken der Listenerstellung

Erweitern Sie das Programm so, dass ab Ausgabeposition 2 eine
Ikone ausgegeben wird, die Auskunft iiber die Verfiigbarkeit eines
Buches gibt. Dabei sollen folgende Ikonen zum Einsatz kommen:

Verfiigbarkeit Ikonenname
0 % icon_red_light
>0% und <=5% icon_yellow_light
> 5% icon_green_light
Namensvorschlige fiir Variable:
Name Inhalt
icon_verfuegbar ID der auszugebenden Ikone
verfuegbar% Berechnung der prozentualen Verfiigbarkeit
> 5% icon_green_light

Da die Ikonen die Verfiigbarkeit hinreichend genau anzeigen, soll
die Anzahl der verfiigbaren Biicher nicht mehr ausgegeben werden.

Losung: YKOSDBAS_3

Vergleichen Sie Ihre Anderungen mit dem folgenden Quelltextaus-
ziigen:

*& ___ *
*g Report YKOSDBAS 3 *
*& ___ *

REPORT ykO5dbas.
INCLUDE <icon>.

INCLUDE YKO5DBAS 3 TOP.
INCLUDE YKO5DBAS 3 EOL.
INCLUDE YKO5DBAS 3 FOL.

*& ___ *
*& Form Display Listzeile *
*& ___ *

FORM display listzeile USING wa
TYPE zst zbestand.
DATA: wa_zautoren TYPE zautoren,

icon_autoren TYPE icon-id,
icon_verfuegbar TYPE icon-id,
verfuegbar$ TYPE p DECIMALS 2,
zeilen TYPE 1i.

*IF-Anweisung zur Einstellung der Farbe

'*******‘k****‘knicht geanderter Quelltext***‘k*‘k****‘k*********

5.3 Ikonen in Listen

283

284

*Auswahl der Ikone fiir die Anzahl Autoren
IF wa-autor2 IS INITIAL
AND wa-autor3 IS INITIAL
icon_autoren = icon position_hr.
ELSE.
icon_autoren = icon_shared position.
ENDIF.
*Berechnung der Anzahl verfigbarer Exemplare
wa-verfuegbar = wa-bestand
- wa—-ausgeliehen.
*Berechnung der Verfligbarkeit in %
verfuegbar% = wa-verfuegbar
/ wa-bestand * 100.
IF wa-verfuegbar <= 0.
icon_verfuegbar = icon_red light.
ELSEIF verfuegbar% < 5.
icon_verfuegbar = icon_yellow_ light.
ELSE.
icon_verfuegbar = icon_green light.
ENDIF.
*SELECT SINGLE-Anweisung zur Selektion des
*Autorenstammsatzes
.*************nicht geanderter Quelltext********************
WRITE:
/2 icon_verfuegbar AS ICON,
wa-isbn UNDER 'ISBN' (002),
wa-titel UNDER 'Titel' (003),
icon_autoren AS ICON,
wa_zautoren-name UNDER 'Autor' (004),
(10) wa-kategorie UNDER 'Kategorie' (005),
128 ' '.

ENDFORM. " Display Listzeile

*& ___ *
*& Form Display Ueberschrift *
*& ___ *

FORM display ueberschrift.
'*************nicht geanderter Quelltext********************
WRITE: /6 'ISBN' (002) COLOR COL_KEY
INTENSIFIED ON,
17 'Titel' (003),
85 'Autor' (004),
110 'Kategorie' (005),
128 ''.
ENDFORM. " Display Ueberschrift

5 Spezielle Techniken der Listenerstellung

54
Verzweigungslisten

Verzweigungslisten sind Listen, die angezeigt werden, wenn der
Benutzer z.B. einen Doppelklick auf eine Listzeile ausfiihrt. Der Ge-
samtumfang an Informationen, die ein Programm liefern soll, kann
so auf mehrere Listen verteilt werden. Damit ist auch ein Perfor-
mance-Gewinn verbunden, denn Zusatzinformationen werden nur
dann ermittelt, wenn sie der Benutzer auch wirklich sehen will.

= Abb. 5.22
Verzweigungsliste 20 pasjsten-
Sy-ISind =20 system

0101 I—
=] E

Doppelklick oder
Drucktaste

Verzweigungsliste 2
sy-Isind = 2

1SEN: 3827314011 Verzweigungsliste
Titel:

SAF R/3 pro i
Auflage: 0002 Sy-|s|nd =1
Erscheinungsjahr: 1998
e LIN:

Addison-Wesley
00040

]
cathitonSprngen Systam i Grundliste .
/Doppelklick oder®€€ gy |sind=0
Drucktaste S gmma =00
abeliste Ausgabedatum 09.01.2004 Ausgabezeit 09:21:53

Q 3540523979 EDV-ORIENTIERTE BETRIEBSWIRTSCHAPTSLEHRE
827254388 Internet

R SAP R/3

65 Administration des SAP-Systems R/3

DO BAP/4 DIE PROGRAMMIERSPRACHE DES SAP R/
00 3D SAP R/3 prozeforientiert anwenden
o0 382 SAP R/3 dynamisch einfihren

©00 3827316464 SAP R/3 Der schnelle Einstieg
Q0D 3827317886 PROGRAMMIERUNG VON INTERNET-ANWENDUNGSKOMPONENTEN
©89 3827317894 ABAP-ibungsbuch

O©89 3877917410 SAP R/3 Basisayatem

SO0 3898421473 ABAP OBJECTS

5.4 Verzweigungslisten ® 285

Tabelle 5.2
Ereignisblécke
fur Verzwei-
gungslisten

286

Prinzipien des Listensystems:

Zusitzlich zur Grundliste konnen Sie maximal 20 Verzwei-
gungslisten anlegen.

Jede Liste wird in einem eigenen Listenpuffer gehalten. Vor
dem Anzeigen der Liste wird der Systemvariablen sy-lsind ent-
sprechend Abb. 5.22 der Listenindex zugeordnet.

Die Funktionen ,,Zuriick® und ,,Abbruch geben den Listenpuf-
fer wieder frei (d,h. die Liste wird geldscht). Danach wird die
vorherige Liste wieder angezeigt.

5.4.1
Anlegen von Verzweigungslisten

Wihrend Grundlisten in den Ereignisblocken

START-OF-SELECTION,
END-OF-SELECTION,
TOP-OF-PAGE,
END-OF-PAGE

GET

angelegt werden konnen, gibt es fiir die Verzweigungslisten die in
Tabelle 5.2 beschriebenen Ereignisblocke

Ereignisblock Beschreibung

AT LINE-SELECTION Wird nach dem Ereignis ,,Doppelklick*

ausgelost. AuBlerdem 16st der Funkti-
onscode PICK diesen Verarbeitungs-
block aus. Funktioscodes werden Me-
niipunkten bzw. Drucktasten zuge-
ordnet (siehe Kapitel 6).

AT USER-COMMAND Wird nach einer Benutzeraktion, z.B.

driicken einer Drucktaste ausgelOst.
Ausnahme: Drucktaste mit dem Funk-
tionscode PICK (siehe Kapitel 6).

TOP-OF-PAGE Wird ausgelst, bevor eine neue Seite
DURING der Verzweigungsliste aufgebaut wird.
LINESELECTION

5 Spezielle Techniken der Listenerstellung

1. Legen Sie im Include YKOSDBAS_EO1 den Ereignisblock AT
LINE-SELECTION an. In diesem Ereignisblock soll das Un-
terprogramm DETAILANZEIGE aufgerufen werden.

2. Legen Sie im Include YKOS5DBAS_FO01 das Unterprogramm
DETAILANZEIGE an. Zunéchst soll hier nur der Inhalt der
Systemvariablen sy-lsind ausgegeben werden (WRITE: 'Ver-
zweigungsliste', sy-1sind.).

3. Starten Sie das Programm YKOSDBAS und lassen Sie sich die
Grundliste anzeigen. Doppelklicken Sie dann auf eine Listzeile
— die Verzweigungsliste wird angezeigt.

4. Doppelklicken Sie auf die Zeile der Verzweigungsliste. Was
passiert?

Das neue Programm hat folgende Anderungen erhalten:

K *
* INCLUDE YKO5DBAS EO1 *
K *

AT LINE-SELECTION.
PERFORM detailanzeige.

K e *
*& Form Detailanzeige *
K e *

FORM detailanzeige.
WRITE: 'Verzweigungsliste', sy-lsind.
ENDFORM. " Detailanzeige

Ergebnis:

Beim Doppelklick auf die Zeile ,,Verzweigungsliste 1 der Ver-
zweigungsliste wird die ,,Verzweigungsliste 2* angezeigt usw. Nach
dem Doppelklick auf ,,Verzweigungsliste 20 wird der Laufzeit-
fehler ,,LIST_TOO_MANY_LEVELS* ausgelost. Um das zu ver-
hindern und immer die richtige Verzweigungsliste aufzubauen,
ist im Ereignisblock AT LINE-SELECTION die Systemvariable
SY-LSIND (siehe Abb. 5.22 Seite 285) wie folgt auszuwerten:

AT LINE-SELECTION.
CASE sy-lsind.

WHEN 1.

* Aufbau der 1. Verzweigungsliste
WHEN 2.

* Aufbau der 2. Verzweigungsliste
ENDCASE.

5.4 Verzweigungslisten

287

288

. Ergéinzen Sie im Programm YKOSDBAS im Ereignisblock AT

LINE-SELECTION die CASE-Anweisung zur Auswertung der
Variablen sy-Isind.

. Programmieren Sie im Unterprogramm DETAILANZEIGE ei-

ne Verzweigungsliste mit dem abgebildeten Layout.

Liste Bearbeiten Springe n Hilfe

@ | | ©@@ CHE BDoD |

East-Side-Library: Literatur-Rechercheprogramm

ISEN: 3827314011

Titel: SAP R/3 prozebBorientiert anwenden
Auflage: 0ooz

Erscheinungsjahr: 1998

Verlag: Addison-Wesley

Gesamtbestand: 00040

davon ausgeliehen: 00009
Autoren: Gerhard Keller
Thomas Teufel

Hinweise:

= Die bisherige Struktur wa_zbestand enthélt nicht alle beno-
tigten Komponenten. Legen Sie deshalb eine Struktur
wa_bestand1 mit Bezug zur Datenbanktabelle zbestand an
und laden Sie diese iiber die Select-Anweisung
SELECT SINGLE * FROM zbestand
INTO wa_zbestand1
WHERE isbn = wa_zbestand-isbn.

= Zur Ermittlung aller Buchautoren kann eine interne Tabelle
it wie folgt geladen werden:
SELECT * FROM zautoren INTO TABLE it
WHERE autorennr = wa_bestand1-autor] OR
autorennr = wa_bestand1-autor2 OR
autorennr = wa_bestand 1-autor3.

= Benutzen Sie zur Formatierung der Autorenausgabe die
Anweisungen CONCATENATE und CONDENSE.

= Starten Sie Thr Programm und doppelklicken Sie in eine
Zeile der Grundliste. Wird die Verzweigungsliste ange-
zeigt? Werden in der Verzweigungsliste die richtigen Da-
ten angezeigt?

5 Spezielle Techniken der Listenerstellung

Losung: YKOSDBAS_4

Eine mégliche Losung:

AT LINE-SELECTION.
CASE sy-lsind.

WHEN 1.
PERFORM detailanzeige.
ENDCASE.
K e *
*& Form Detailanzeige *

FORM detailanzeige.
DATA: wa_zbestandl TYPE zbestand,
wa zautoren TYPE zautoren,
it zautoren TYPE TABLE OF zautoren,
name TYPE string,
anzahl autoren type i,
pos TYPE i VALUE 20.
*Die in der Grundliste ausgewahlte Zeile
*enthalt die ISBN im Feld wa zbestand-isbn.
*Um auch die, in der Grundliste nicht vor-
*handenen Felder (Auflage, Erscheinungsjahr,
*Verlag)ausgeben zu konnen, wird die Struktur
*wa_ zbestandl geladen
SELECT SINGLE * FROM zbestand tw
INTO wa_zbestandl
WHERE isbn = wa_ zbestand-isbn.

FORMAT COLOR COL NORMAL INTENSIFIED ON.
WRITE:

'"ISBN:',20 wa_zbestandl-isbn,85 '',
/ 'Titel:',20 wa_zbestandl-titel, 85 '',
'Auflage:',20 wa_zbestandl-auflage,85 '',
/ 'Erscheinungsjahr:',

20 wa_zbestandl-erscheinungsjahr,85 '',
/ 'Verlag:',20 wa_zbestandl-verlag,85 '',
/ 'Gesamtbestand:',

20 wa_zbestandl-bestand, 85 '',

~

5.4 Verzweigungslisten

289

290

/ 'davon ausgeliehen:',
20 wa_zbestandl-ausgeliehen, 85 ''.

*Laden der internen Tabelle it zautoren

*mit den Buchautoren des Buches aus der

*ausgewdhlten Zeile der Grundliste

SELECT * FROM zautoren

INTO TABLE it zautoren

WHERE autorennr = wa zbestandl-autorl OR
autorennr wa_zbestandl-autor2 OR
autorennr = wa_ zbestandl-autor3.

DESCRIBE TABLE it zautoren
LINES anzahl autoren.

FORMAT COLOR COL HEADING INTENSIFIED ON.
IF anzahl autoren > 1.
WRITE: / 'Autoren:'.

pos = 10.

ELSE.
WRITE: / 'Autor:'.
pos = 8.

ENDIF.

LOOP AT it zautoren INTO wa_zautoren.
CONCATENATE wa_ zautoren-vornamel
wa_zautoren-vorname?2
wa_zautoren-name
INTO name SEPARATED BY space.
*Hat der Autor keinen 2. Vornamen, stehen
*in ,name“ zweil Leerzeichen hinterienander.
*Diese sollten mit CONDENSE beseitigt werden
CONDENSE name.
*Der Zusatz "AT" der WHERE-Anweisung gestattet
*die Verwendung von Variablen fir die Angabe der
*Ausgabeposition und -lénge.
WRITE: AT pos name,AT posl ''.
NEW-LINE.
ENDLOOP.
ENDFORM. " Detailanzeige

Dieses Programm baut die Verzweigungsliste mit dem geforderten
Layout auf. Es werden jedoch, unabhingig von der ausgewihlten
Zeile, immer die Zusatzangaben zur letzten Zeile der Grundliste an-
gezeigt. Das kommt daher, dass beim Aufbau der Grundliste die

5 Spezielle Techniken der Listenerstellung

Struktur (im Beispielprogramm wa_zbestand) in der LOOP-Schleife
des Unterprogrammes DISPLAY_GRUNDLISTE jeweils mit den
Daten der aktuellen Zeile der internen Tabelle (im Beispiel
it_zbestand) geladen wird — im letzten Schleifendurchlauf mit den
Daten der letzten Zeile. Die Frage ist, wie die Struktur die Daten der
ausgewihlten Zeile bekommt. Um die Antwort zu finden, miissen
wir uns mit dem HIDE-Bereich und der HIDE-Anweisung beschif-
tigen.

Der HIDE-Bereich

Der HIDE-Bereich ist ein Speicherbereich, in dem fiir jede Zeile der
Ausgabeliste die Werte ausgewihlter Variablen gespeichert werden.
Mit Hilfe der Cursorposition werden beim Auftreten der Ereignisse

= AT LINE-SELECTION und
= AT USER-COMMAND

diese Variablen aus dem HIDE-Bereich mit den Werten der ausge-
wihlten Zeile geladen. Die folgenden beiden Grafiken sollen das
veranschaulichen:

ABAP-Programm Listenpuffer

START-CF-SELECTION. busgabeliste

WRITE: 'Ausgabeliste'.

skip. ////

3827254388 Internet Internet
3827258863 SAP R/3 EDV
3827317894 ABAP-Ubungsbuch EDV
3898421473 ABAP Objects EDV

LOOP AT it INTO wa.
WRITE: wa-ishn,
wa-titel,
wa-kategorie.
*HIDE-Anwelsung
HIDE: wa-ishn,

00~ oy A ;?R%‘K
T

wa-titel. ~
ENDLOOE. A HIDE-Bereich
AT LINE-SELECTION. Zeile|Variable |Wert
CASE sy-lsind. 3 wa-ishn |3B827254388
WHEN 1. . 3 wa-titel |Internet
SELECT single * 4 wa-isbn |[3827258863
FROM zbestand 4 wa-titel |SAP R/3
WERE) o by = wa A sk 5 wa-isbn |3827317894
.éﬁDCASE. S wa-?itel ABAP-Ubungsbuch
é wa-isbn 3898421473
3 wa-titel |ABAP Objects

Die HIDE-Anweisung bewirkt das Speichern der Variablen im
HIDE-Bereich. Wie Sie in Abb. 5.23 sehen, stehen nur Angaben zu
Zeilen im HIDE-Bereich, zu denen auch eine HIDE-Anweisung aus-
gefiihrt wurde. Die Zeilen 1 und 2 sind darin also nicht zu finden.

5.4 Verzweigungslisten

Abb. 5.23
Laden des
HIDE-Bereiches

m 291

Abb. 5.24
Laden der Vari-
ablen aus dem
HIDE-Bereich

292

Syntax:
HIDE <Variable>.

Hinweise:
= Die <Variable > kann auch eine Struktur sein.

= Es ist nicht erforderlich, das die <Variable> vorher durch die
WRITE-Anweisung in den Listenpuffer geschrieben wurde.

Laden des HIDE-Bereiches

Liste HIDE-Bereich
1 [Ausgabeliste Zeile|Variable [Wert
2 3 wa-isbhn |3827254388
3 [|BB27254388 Internet Internet 3 wa-titel |Internet
4 [3827258863 BAP R/3 EDV 4 wa-isbn |3827258863
5 [3827317894 ABAP-Ubungsbuch EDV q wa-titel |SAP R/3
6 [F898421473 ABAP Objects EDV — 5 wa-isbhn |3827317894
7 5 wa=-titel | ABAP-Ubungsabuch
8 [wa-ishn |3898421473

[3 wa-titel |ABAP Objects

truktur wa nach dem Aufbau der
rundliste

Achtung: wa-kategorie

behalt den alten Wert,

E;welﬂ;rwa nach dem Doppelkick auf ‘ weil diese Variable nicht
in den HIDE-Bereich ein-

| 3898421473 [ABAP Ckjects |EDV

| 3827254388 [Internet |EDV |
(R VAR W getragen wurde.
wa-isbn wa-titel wa-kategorie

Wie Sie sehen, kann unser Programm YKO5DBAS durch eine einzi-
ge Anweisung dazu gebracht werden, in der Verzweigungsliste die
richtigen Daten anzuzeigen.

Ergidnzen Sie im Unterprogramm DISPLAY_Listzeile, nach der
letzten WRITE-Anweisung, die HIDE-Anweisung.

Hinweis:

Es ist ausreichend, die Komponente WA-ISBN in den HIDE-
Bereich zu speichern, weil in der Verzweigungsliste der Datensatz
iiber die SELECT-Anweisung neu gelesen wird. Dazu wird nur die
ISBN benotigt (Schliisselfeld).

Losung: YKOSDBAS_4

Losung:

*& ___ *
*& Form Display Listzeile *
*& ___ *

5 Spezielle Techniken der Listenerstellung

.*************nicht geanderter Quelltext********************
WRITE:
/2 icon verfuegbar,
wa—-isbn UNDER 'ISBN' (002),
wa-titel UNDER 'Titel' (003),
icon_autoren AS ICON,
wa_zautoren-name UNDER 'Autor' (004),
(10) wa-kategorie
UNDER 'Kategorie' (005),
128 ' ',
HIDE: wa-isbn.
ENDFORM. " Display Listzeile

Ein Problem gibt es mit unserer Verzweigungsliste noch: doppelkli-
cken Sie in eine ungiiltige Zeile (z.B. die Uberschrift) wird die Ver-
zweigungsliste zur letzten Zeile angezeigt. Um das zu verhindern,
nutzen wir den Umstand, dass im HIDE-Bereich nur Zeilen gespei-
chert sind, zu denen eine HIDE-Anweisung existiert. Diese Zeilen
werden als ,giiltige Zeilen* bezeichnet. Die Uberschrift ist demzu-
folge eine ungiiltige Zeile.

Bei der Auswahl einer ungiiltigen Zeile, werden die Variablen dem-
zufolge nicht aus dem HIDE-Bereich geladen, sondern behalten ihre
Werte. Setzt man, nach der Ausgabe der Grundliste, eine der im
HIDE-Bereich stehenden Variablen auf einen ungiiltigen Wert
(Priifwert), z.B. ISBN = '0', kann vor dem Aufbau der Verzwei-
gungsliste iiberpriift werden, ob eine giiltige Zeile ausgewihlt wurde
(IF isbn <> '0").

Beachten Sie bei dieser Methode, dass beim ,,Riicksprung® in die
vorige Liste der Listenhierarchie, der Programmcode zu deren Er-
zeugung nicht erneut durchlaufen wird. Auf dem Bildschirm wird
lediglich der (alte) Inhalt des Listenpuffers dieser Liste angezeigt.
Dadurch wird auch Ihre Priifvariable, z.B. ISBN, nicht wieder auf
den Priifwert gesetzt. Doppelklicken Sie jetzt auf eine ungiiltige Zei-
le, wird die Verzweigungsliste trotzdem aufgebaut, mit den Daten
der vorher ausgewihlten giiltigen Zeile. Um das zu verhindern, ist,
nach dem Aufbau der Listenstufe ,,n“, die Priifvariable (z.B. ISBN)
der Listenstufe ,,n-1 mit ihren Priifwert zu laden.

1. Setzen Sie im Unterprogramm DISPLAY_Listzeile, nach der

HIDE-Anweisung, die Komponente WA-ISBN auf ihren Initi-
alwert zuriick. (CLEAR wa-isbn.).

5.4 Verzweigungslisten

293

294

2. Fiigen Sie in das Unterprogramm DETAILANZEIGE eine
IF- oder eine CHECK-Anweisung ein, die verhindert, dass die
Verzweigungsliste aufgebaut wird, wenn die Komponente WA-
ISBN mit ihrem Initialwert geladen ist.

3. Laden Sie nach dem Aufbau der Verzweigungsliste WA-ISBN
wieder mit dem Initialwert.

4. Testen Sie Ihr Programm. Wird die Verzweigungsliste nur dann
aufgebaut, wenn eine giiltige Zeile ausgewihlt wurde?

Losung: YKOSDBAS_5

Losung:

* g§&—————--———— " -\ -\ = *
*& Form Display Listzeile *
* g§&—————--—-" " -\ -\ = *

FORM display listzeile USING wa_ zbestand
TYPE zst zbestand.
'*************nicht geanderter Quelltext********************
HIDE: wa zbestand-isbn.
*wa_zbestand-isbn auf den Initialwert
*('000000000") setzen
CLEAR wa_zbestand-isbn.

ENDFORM. " Display Listzeile

*& ___ *
*& Form Detailanzeige *
*& ___ *

FORM detailanzeige.

DATA: wa zbestandl TYPE zbestand,
wa_zautoren TYPE zautoren,
it zautoren TYPE TABLE OF zautoren ,
name TYPE string,
anzahl autoren TYPE i,
pos TYPE i VALUE 20,
posl TYPE i1 VALUE 85.

CHECK NOT wa_zbestand-isbn IS INITIAL.
*Der folgende Programmabschnitt wird nur
*durchlaufen, wenn wa_ zbestand-isbn nicht
*mit dem Initialwert '00000000' geladen ist.
*Das ist der Fall, wenn der Benutzer eine
*glltige Zeile ausgewahlt hat. WA zbestand-*isbn

5 Spezielle Techniken der Listenerstellung

ist dann aus dem HIDE-Bereich mit der *isbn der
ausgewdhlten Zeile geladen.
SELECT SINGLE * FROM zbestand
INTO wa zbestandl
WHERE isbn = wa_ zbestand-isbn.
.*************nicht geanderter Quelltext********************
*wa_zbestand-isbn fiir den nédchsten Aufruf *der
Verzweigungsliste auf den Initialwert *setzen.
CLEAR wa_zbestand-isbn.
ENDFORM. " Detailanzeige

Verzweigungsliste in einer modalen Dialogbox anzeigen

Die Anzeige der Verzweigungsliste im Vollbildmodus ist fiir viele
Anwendungen nicht ideal, weil Informationen der vorigen Liste
verdeckt werden. Durch die WINDOW-Anweisung kann die Ver-
zweigungsliste auch in einer modalen Dialogbox angezeigt werden.

Syntax
WINDOW STARTING AT x1 y1 [ENDING AT x2 y2].

x1 linke Begrenzungsspalte der Dialogbox

yl obere Begrenzungszeile der Dialogbox
x2 rechte Begrenzungsspalte

y2 untere Begrenzungszeile

Hinweise:
= Fiirx1, y1, x2 und y2 kénnen auch Variable eingesetzt werden.

= Vom System werden Systemvariable zur Berechnung von x1,
yl, x2 und y2, in Abhéngigkeit zur Position der ausgewéhlten
Zeile und Spalte der Grundliste, bereitgestellt. Sie finden diese
Systemvariablen in der Schliisselwortdokumentation (Schliis-
selwort ,,Systemfelder fiir Listen*).

= Fiir x1 und y1 miissen Werte grofer O eingesetzt werden.

= Die Dialogbox wird immer vollstindig, d.h. mit Titel (obere
Zeile) und Drucktastenleiste (untere Zeile) abgebildet. Laufleis-
ten werden bei Bedarf automatisch angelegt. Ist y2 grofler als
die darstellbare Zeilenanzahl, wird der untere Rand der Dialog-
box nach oben geschoben, so dass die Drucktastenleiste der Dia-
logbox am unteren Bildrand abgebildet wird. Ist x2 groBer als
die max. Spaltenanzahl verhilt sich die Dialogbox analog.

5.4 Verzweigungslisten

295

Die Verzweigungsliste, die im Programm YKOSDBAS aufgebaut
ﬁ wird, soll als modale Dialogbox angezeigt werden.

= Die Dialogbox soll auf der ausgewihlten Zeile der Grund-
liste in der Spalte 40 beginnen (Systemvariable sy-curow).

= Die Breite der Verzweigungsliste betrdgt 65 Zeichen.

= Y2 soll mit der Anzahl der Zeilen der Verzweigungsliste
geladen werden (Systemvariable sy-linno).

Fiigen Sie die notwendigen Programminderung in das Unterpro-
gramm DETAILANZEIGE ein.

Losung: YKOSDBAS_6

Losung:

* §—f———— """ - = *
*& Form Detailanzeige *
* §—f———— """ = *

FORM detailanzeige.
DATA: wa zbestandl TYPE zbestand,
wa_ zautoren TYPE zautoren,
it_zautoren TYPE TABLE OF zautoren,
name TYPE string,
anzahl autoren TYPE i,
pos TYPE i VALUE 20,
posl TYPE i1 VALUE 85,
x1 type i VALUE 40,
vyl type i,
x2 type i,
y2 type i.
‘*************nicht geanderter Quelltext********************
yl = sy-curow.
x2 x1l + 65.
y2 = yl + sy-linno.
WINDOW STARTING AT x1 yl ENDING AT x2 y2.
ENDFORM. " Detailanzeige

296 5 Spezielle Techniken der Listenerstellung

5.5
Die Programmoberflache

@ 2 aH @@ Dk 0 R @3
East-Side-Library: Literatur-Rechercheprogrg A
GUI-Status GUI-Titel |
“WSET PF-STATUS <name>. =} “*|"SET TITLEBAR <name>.
“Menlleiste === | =Titel
xSymbolleiste i
EDrucktastenleiste mAn e i
X, Boeis
Tastenbelegung Suiicscr
3827317994 ADAP-Ubumgsbuch Riaies

3877917410

JB9B421473 ABAP OBJECTS Hilfe F1
Augswihlan F2

Ageahl Bucher 12 Zntick 3
Eingabemaglichkeitean F4

4’ Abbrechen F12

Beenden Urnsch+F3

Fiir jedes Bildschirmbild wird ein GUI-Titel und ein GUI-Status an-
gelegt. Die Menge aller GUI-Titel und Status bilden die Oberfldche
des Programmes.

Vorgehensweise: Anlegen und Einbinden eines GUI-Titels

Wihlen Sie entsprechend der Abb. 5.26 aus dem Kontextmenii den
Meniipunkt GUI-Titel.

<IQ=€3‘QE§SI‘B@$&=E}=
ABAP Editor: Report YKO5DBAS dndern
E“ [[| | Muster” Pretty Printer|

2l re
port
-
"*’KI woes AREE

YKOSDEAS akti

Objektname
- 2 *
Anlegen Programm
g E..:IEreignisse Andern Unterprogramm
> @8 ncluces ” [PEO-Modul
Prifen » PAI-Modul
Aktivieren Dynpro
Ausfihren | GUI-Status
Kopieren... GUI-Titel
[S Ry Inrlida

5.5 Die Programmoberfldche

Abb. 5.25
Bestanditeile
der Programm-
oberfldche

Abb. 5.26
Mentiauswahl
GUI-Titel

u 297

Abb. 5.27
Titelcode und
Titel eingeben

Abb. 5.28
Titel-Beispiel mit
Platzhaltern

298

Geben Sie im Folgebild ,,Titel anlegen* einen Titelcode und den Ti-
tel ein. Den Titelcode benotigen Sie spiter, um den GUI-Titel einem
Bildschirmbild zuordnen zu konnen. Der Titel erscheint in der Titel-

zeile des Bildschirmbildes.

Programm YKOSDBAS

Rechercheergebnisse &1 &2

Hinweis:

Um der Titelzeile zur Laufzeit des Programmes noch Daten zu iiber-
geben, konnen Sie im Titel bis zu 9 Platzhalter (&1...&9) verwen-
den.

Der GUI-Titel ist fertig angelegt. Er muss jetzt in den Programmteil,
in dem das betreffende Bildschirmbild erzeugt wird, eingebunden
werden.

Syntax:

SET TITLEBAR <Titelcode> [with <&1>...<&9>].
Beispiel:

name = 'Umlauff'.

SET TITLEBAR 'GRUNDLISTE' with 'Autor:' name.

Achtung:
Der Titelcode (im Beispiel ' GRUNDLISTE') ist unbedingt mit Grof3-
buchstaben zu schreiben.

Das Beispiel liefert das folgende Ergebnis:

@ 1H ce@ LHE oD FE @B

Rechercheergebnisse Autor: Umlauff

East-Side-Library: Literatur-Rechercheprogramm

Ausgabeliste Ausgabedatum 15.01.2004 Ausgabezeit 12:51:36

ISEN Titel Autor
QOO 3827317886 PROGRAMMIERUNG VON INTERNET-ANWENDUNGSKOMPONENTEN aU‘mlauff
@00 3827317894 ABAP-Ubungsbuch 8 vmlauff

Aktivieren Sie jetzt das Programm und den GUI-Titel.

5 Spezielle Techniken der Listenerstellung

1. Legen Sie fiir die Grundliste des Literatur-Rechercheprogram-
mes YKOSDBAS einen GUI-Titel an:

= Titelcode: GRUNDLISTE

= Titel: Rechercheergebnisse
und binden Sie ihn in das Unterprogramm DISPLAY-
Grundliste ein.

2. Legen Sie fiir die Verzweigungsliste einen zweiten GUI-Titel
an:

= Titelcode: VERZWEIGUNGSLISTE
= Titel: Detailangabe zum Titel &1

und binden Sie ihn in das Unterprogramm DETAILANZEIGE
ein. Ubergeben Sie dem GUI-Titel den Titel des in der Ver-
zweigungsliste angezeigten Buches.

Losung YKOSDBAS_7

Losung:

* §———————— - . —— *
*& Form Detailanzeige *
* §—————————— - —— *

FORM detailanzeige.

JFRkkxkxxxkkkxxnicht gednderter Quelltext &% % xxkkkk & & xkkkkxx
SELECT SINGLE * FROM zbestand tw
INTO wa zbestandl
WHERE isbn = wa zbestand-isbn.

condense wa_zbestandl-titel.
SET TITLEBAR 'VERZWEIGUNGSLISTE'
with wa_zbestandl-titel.

Funktionsprinzip des GUI-Status

1. Beim Anlegen eines GUI-Status (siche Abb. 5.25) wird je-
dem GUI-Status-Element (Meniipunkt, Symbol, Drucktas-
te, Funktionstaste) ein Funktionscode zugeordnet.

2. Beim Auswihlen eines GUI-Status-Elements durch den
Benutzer, wird

= die Systemvariable sy-ucomm mit dem Funktionscode des
ausgewihlten GUI-Status-Elements geladen,

5.5 Die Programmoberfldche

299

Abb. 5.29
Mentiiauswahl
GUI-Status

300

= das Programm mit den Ereignisblocken
= AT LINE-SELECTION oder AT USER-COMMAND
= oder mit einer Systemfunktion

fortgesetzt.

Um ein Programm mit einem GUI-Status auszuriisten, sind folgende
Schritte notwendig:

1. Anlegen des GUI-Status,
2. Einbinden des GUI-Status in das Bildschirmbild,

3. Reagieren auf die Benutzeraktion.

Vorgehensweise: GUI-Status Anlegen und Einbinden

Die Vorgehensweise zum Anlegen eines GUI-Status soll an einem
Beispiel gezeigt werden. Die Verzweigungsliste soll nicht nur iiber
den Doppelklick auf eine Zeile der Grundliste angezeigt werden,
sondern soll auch iiber die Meniileiste, die Drucktastenleiste und das
Kontextmenii aufgerufen werden konnen.

Wiihlen Sie entsprechend der Abb. 5.29 aus dem Kontextmenii den
Meniipunkt GUI-Status.

@ 2 15 0@ DHB Vhon PE QB
ABAP Editor: Include YKO5DBAS_F01 anzeigen

EH | EI | | Muster]Pretty Printer'

Programm fl Include YKO5DBAS_FO1
R —— |1]

FORM Heba_'l_lnnzeige.
DATA: wa_zbestandl TYPE zbestand tw,
wa_zautoren TYPE zautoren_ tw,

‘ »
Q-ﬂ|q>-ﬁ:|-|‘6|ﬁ| ﬁ%l@ﬂl »

= e - muEnE. TABLE OF zautoren tw
Anlegen Brogramm
b & Ereign| Andem Unterprograrmn [PE 1,
< (@ Unter, i . 20,
Pl Anzeigen PBO-Modul
DETAY . =5 =
DISPLA riafen Al-Modul o,
DISPLA Aktivieren Dynpro
DISPLA s
o Ausfihren v GUI-Status
E -I ?Yn{fd Wamimrnn =HLTital

Im Folgebild legen Sie den Namen des Status und den Statustyp fest.
Auflerdem ist noch ein Kurztext einzugeben. Den Namen des Status
brauchen Sie, um den Status dem jeweiligen Bildschirmbild zuzu-
ordnen.

5 Spezielle Techniken der Listenerstellung

Programm YKOSDBAS
s
Statusattribute
Kurztext Status zur Grundliste
Statustyp

(@) Dialogstatus
(O Dialogfenster

) Kontextmend

Der Menii Painter startet. Sie konnen jetzt die Meniileiste, die

Drucktastenleiste und die Funktionstasten programmieren.

o s 10 CO@ QM DNoD BF @8

Status GRUNDLISTE der Oberfliche YKOSDBAS pflegen
= | | | [3¢) () o] () (8] | (3 Funktions

Cherflache

Menitleiste

Drucktastenleiste

Funktionstasten

Sratus GRUNDLISTE n‘er Obedl:cbe 'mnsns.-is pﬂegen T

@E I E 6] | () (1) 8)| 5 O | ()) () | (8 Frtone)) (Foityons v | 8] | (] (<] (M) ({1 (B) BT

@ Normen eimmischen

Rk nieiaE]) B o8 ctetes e Grusdliste °

Positiomen 1 = 7

Positiomen 19 - 15

Fupktionstasten o O 4 .

slwuhulhut

@ a lc |tl I. ‘B ‘H ‘H ln |n Ia [e

Funke Legungs:

n
m”

tmsch-r2
Dmach=T4
Omach=F5

& @PQ

Freli belegbare

s
rE

5.5 Die Programmoberflédche

Abb. 5.30
Status, Status-
typ und Kurztext
festlegen

Abb. 5.31
Meni Painter

Abb. 5.32
Meni Painter
mit aufgerisse-
ner Arbeitsfla-
che zum Anle-
gen der Menti-
leiste, Druck-
tastenleiste und
Funktionstas-
tenbelegung

m 301

Abb. 5.33
Standardober-
fliche laden

Abb. 5.34
Oberflache mit
Standardfunkti-
onen einer Liste

302

Abbildung 5.32 zeigt die Arbeitsoberfliche zum Anlegen der Menii-
leiste, der Drucktastenleiste und der Funktionstastenbelegung (ein-
schlieBlich der Symbolleiste).

Laden Sie zuerst die Standardoberflidche Threr Liste. Wihlen Sie da-
zu ,,Zusitze - Vorlage abgleichen® und aktivieren Sie im Folgebild
,,Vorlagestatus abgleichen den Auswahlknopf ,,Liststatus®.

T8 @ 1 &kt Funkiionen im aktuslen Stats Strg+F4
Status GRUNDLISTE der Oberfl| “k"e Funktianen in mehreren S‘""l 1

Funktion Aktiv <-> Inaktiv

@ |] Ell [Worlage abgleichen
[ErVortagostaius abgleichon _________________H 4

‘Vorlage einbinden in
Status 2 GRUNDLISTE

F7

C

() Listviewer

) Baumstatus

O Vorlagestatus
Programm
Status

[als Diatoglenster

Varlage far
[#] Mendleiste
N @klimslastenhehgung

v

Die Standardoberfliche fiir eine Liste ist fertig.

2l @ 10 cod@ DHNE DDod EFR 98 —
Status GRUNDLISTE der Oberfliche YKOSDBAS piflegen
eI |) e | ())]| ()))| ())) 0] B | [#2 oo | (5] [Tttt o

tbarflache TEOSERAS l aktiv
Hanalesste = @ A
@ Mormen eimmischen
Laste Bencbaiten Sprangen
o il
Brucktastenlsiste | % [4 Ear r h X e
Positionen 1 - 7 PICE SPRI sc 8- 1)
] L] =
Funkriorstasten = O A \
Synbolleiste
BACKE nx R APRT s (L) - L e Liad
le Cl |¢> I@ o [mw& ‘n L} o
Funkt Tana
r PICE Ausvablen a2
| Funktionscodes |
-]

Tres beleghase T |
s

5 Spezielle Techniken der Listenerstellung

Nach einer Benutzeraktion (z.B. anklicken einer Symbols in der
Symbolleiste) wird der fiir diese Aktion vorgesehene Funktionscode
ausgelost. Darauthin wird ein Ereignisblock oder eine Systemfunk-
tion aufgerufen:

Funktionscode Wirkung

PICK Der Ereignisblock AT LINE-SELECTION
wird ausgefiihrt

9%PRI Systemfunktion: Drucken der Liste

%SC Systemfunktion: Suchen innerhalb der Liste

%SC+ Systemfunktion: Weitersuchen

RW Systemfunktion: Abbrechen

BACK Systemfunktion: Zuriick

Y%EX Systemfunktion: Beenden

P-- Systemfunktion: Blttern, erste Seite

P- Systemfunktion: Blittern, vorige Seite

P+ Systemfunktion: Bléttern, ndchste Seite

P++ Systemfunktion: Bléttern, letzte Seite

alle anderen Losen den Ereignisblock AT USER-

Funktionscodes = COMMAND aus.

Um die Verzweigungsliste auch iiber die Meniileiste aufrufen zu
konnen, tragen Sie an eine geeignete Stelle in der Meniileiste einen
Funktionscode (frei wihlbar) und einen Text ein.

1 H @@ CHE nnad BFR @38
Status GRUNDLISTE der Oberfldche YKOS5DEBAS pfiegen

EE] | R | R)] P | (K]) (@] 66 | (28 Funkions:

Oberfléche YEOSDBAS Inaktiv
Meniileiste = (51 [
@ Normen einmischen
Liste Bearbeiten Springen
Code Text
i T
VLISTE Details anzeigen

Danach kann mit dem gleichen Funktionscode eine Drucktaste und
eine Funktionstaste angelegt bzw. belegt werden.

5.5 Die Programmoberfldche

Tabelle 5.3
Funktionscodes
und ihre Wir-
kung

Abb. 5.35
Mentileiste
erweitern

" 303

Abb. 5.36 brucktastenieiste | % [H o8 srerus = ndliste -]

FunktlonStaSte F y BC L) PICK PRI 5 5 R VLISTE
auswahlen | la) & B m—
: "3 1. Freiwahlbaren
S ChiatiEsgs Funktionscode
ist keineg/Funktionstaste zugeordnet. .
Wahlen bitte eine Funktionstaste aus. elngeben’
- Lﬁ 2. Enter-Taste
HE drucken
'[9_ U 3. Funktionstaste
! auswahlen
Im Anschluss legen Sie die Eigenschaften der Funktion VLISTE
fest. Doppelklicken Sie dazu auf den Funktionscode.
Abb. 5_37 bruckeastenleizes M O o 3 ‘ °
Eigenschaften A ‘ o |n = wtore ‘ ‘
der Funktion S L | |
festleaen Typ |Kurzbeschreibung
g E Exitkommando (MODULE xe AT
Funktionscode VLISTE S SyStEI'TIl'UnMICIH
L < \ T Aufruf einer Transaktion
ST Normale Anwendungsfunktion
Funitionstext Details anzeigen L B Lokale GUI-Funktion
Fonennane {a H Int_erne Verwendung
Ikonentext
Infotext Details
Direktanwahl 1]
[Testar e (3]

Statische Funk- Beschreibung

tionstexte

Ikonenname Sie konnen eine Ikone auswihlen, die in der
Drucktastenleiste anstelle der Drucktaste ange-
zeigt wird.

Ikonentext Wenn dieses Eingabefeld ausgefiillt ist, wird ei-
ne Drucktaste mit der ausgewéhlten Ikone und
dem
Ikonentext angezeigt

Infotext Der Infotext wird als Quick-Info angezeigt

Direktwahl Alt-<Direktwahl> 16st die Funktion aus

304 5 Spezielle Techniken der Listenerstellung

Sichern und Aktivieren Sie anschliefend den GUI-Status. Das Akti-
vieren kann auch spiter, zusammen mit dem Aktivieren des Pro-
grammes erfolgen.

Der GUI-Status fiir die Grundliste ist jetzt vollstindig angelegt. Er
muss in das Programm, welches die Grundliste erzeugt, eingebunden
werden. Im Programm YKOSDBAS ist das das Unterprogramm
DISPLAY_Grundliste. Das Einbinden erfolgt iiber die

Syntax:
SET PF-STATUS <Name des GUI-Status>.

Beispiel:
FORM display grundliste
USING it TYPE ANY TABLE
wa TYPE zst zbestand tw.
DATA: zeilen TYPE 1i.
SET TITLEBAR 'GRUNDLISTE'.
SET PF-STATUS 'GRUNDLISTE'.

Die Grundliste hat jetzt ihren eigenen GUI-Status.

Abb. 5.38
& Zurck BIEHB aood IE @B Grundliste mit
Rechercheergmsanzeisen = GUI-Titel und
Details anzeigen GUI-Status
East-3ide-Library: Literatur-Rechercheprogramm
gabeliste A bed 17.01.2004 Ausgabezeit 19:53:03

ISBEN Titel Autor
O00 3540523979 EDV-ORIENTIERTE BETRIEESWIRTSCHAFTSLEHRE SStheet
©0Q 3827254388 Intecnet 8 saaro
080 3827258863 Brokot
©00 3827311365 Administration des SAP-Systems I Hilfe F1 Buill
@O0 3827313724 ABAP/4 DIE PROGRAMMIERSPRACHE DI Auswahlen F2 Bmatzke
©00 3827314011 SAP R/3 prozeBorientiert amwendd 7 .. F3 Breller
©00 3827314569 SAP R/3 dynsmisch einfihren Eingab: ichkeit 4 Roeis
©00 3827316464 SAP R/3 Der schnelle Einstieg M AADEmPSNEh KRN Rullrich
@O0 3827317886 PROGRAMMIERUNG VON INTERNET-amwy Detalls anzeigen F§ 8 Umlauff
OO0 3827317894 ABAP-Ubungshuch Abbrechen F12 8 tmlauff
©00 3877917410 SAF R/3 Basissystem Haenden Umsch+F3 S Herth
©00 3898421473 ABAP OBJECTS Breller

Reagieren auf Benutzeraktionen

Die Auswahl des gerade angelegten Meniipunktes ,,Detail anzei-
gen®, der gleichnamigen Drucktaste oder der zugeordneten Funkti-
onstaste F5 durch den Benutzer bewirkt, dass die Systemvariable
SY-UCOMM mit dem den Meniipunkt zugeordneten Funktionscode
VLISTE (siehe Abb. 5.35 Seite 303) geladen und das Programm mit
dem Ereignisblock AT USER-COMMAND fortgesetzt wird. In die-
sem Ereignisblock wird die Systemvariable SY-UCOMM untersucht

5.5 Die Programmoberfliche ® 305

306

und die gewiinschte Funktionalitit (im Beispiel: ,,Aufbau der Ver-
zweigungsliste*) aufgerufen.

Beispiel:

AT USER-COMMAND.

*

CASE sy-ucomm.
WHEN 'VLISTE'.
Aufruf des Unterprogrammes, das
die Verzweigungsliste erzeugt
PERFORM detailanzeige.
ENDCASE.

Legen Sie einen GUI-Status ,,GRUNDLISTE* (Statustyp ,,Di-
alogstatus®) an. Ordnen Sie ihm die Standardfunktionalitit ei-
ner Liste (Springen = Vorlage abgleichen / Liststatus) und ei-
nen zusitzlichen Meniipunkt ,,Springen = Detail anzeigen‘
(Vorschlag fiir den Funktionscode: VLISTE) zu. Legen Sie
zusitzlich eine Drucktaste ,,Detail anzeigen* mit dem gleichen
Funktionscode an. Verbinden Sie diese Drucktastaste mit der
Funktionstaste F5.

Binden Sie den neuen GUI-Status in Ihr Programm ein (Un-
terprogramm DISPLAY_GRUNDLISTE) ein.

Erginzen Sie im Ereignisinclude YKOSDBAS_EO1 den Ereig-
nisblock AT USER-COMMAND und sorgen Sie dafiir, dass
beim Auslosen des Funktionscodes VLISTE die Verzwei-
gungsliste angezeigt wird.

Starten Sie das Programm und zeigen Sie die Verzweigungs-
liste an. Welcher GUI-Status ist dort aktiv?

Wie aus Aufgabe 4 zu erkennen ist, ist der GUI-Status der
Grundliste auch in der Verzweigungsliste aktiv. In der Ver-
zweigungsliste wird die Zusatzfunktionalitit ,,Detail anzeigen*
nicht benotigt. Legen Sie deshalb eine weiteren GUI-Status
,VERZWEIGUNGSLISTE* an, der nur mit der Standardfunk-
tionalitdt ausgertiistet ist. Ordnen Sie diesen GUI-Status der
Verzweigungsliste zu.

Losung YKOSDBAS_8

Losung:

Nachdem Sie die GUI-Status , GRUNDLISTE“ und
,,WVERZWEIGUNGSLISTE* angelegt haben, sind folgende Pro-
grammerginzungen zu programmieren:

5 Spezielle Techniken der Listenerstellung

AT user-command.
CASE sy-ucomm.
WHEN 'VLISTE'.
PERFORM detailanzeige.

ENDCASE.
K e e *
*& Form Display Grundliste *
K e e *

FORM display grundliste
USING it TYPE ANY TABLE
wa TYPE zst zbestand tw.
DATA: zeilen TYPE 1i.
SET TITLEBAR 'GRUNDLISTE'.
SET PF-STATUS 'GRUNDLISTE'.

.*************nicht geanderter Quelltext********************

K e *
*& Form Detailanzeige *
K e *

FORM detailanzeige.

DATA: wa zbestandl TYPE zbestand tw,
wa zautoren TYPE zautoren tw,
it zautoren TYPE TABLE OF zautoren tw,
name TYPE string,
anzahl autoren TYPE i,
pos TYPE i VALUE 20,
posl TYPE i VALUE 85,
x1 TYPE i VALUE 40,
vyl TYPE i,
x2 TYPE i,
y2 TYPE i.

CHECK NOT wa_ zbestand-isbn IS INITIAL.
*Der folgende Programmabschnitt wird nur
*durchlaufen, wenn wa zbestand-isbn nicht
*mit dem Initialwert 'O' geladen ist.

SET PF-STATUS 'VERZWEIGUNGSLISTE'.

.*************nicht geanderter Quelltext********************

5.5 Die Programmoberfldche

307

Abb. 5.39
Aufgabenbe-
schreibung

308

5.6
Dynamische Auswahl von Datensatzen
der Ausgabeliste

In diesem Kapitel soll die Ausgabeliste um ein Kontrollkistchen er-
ginzt werden, mit dem der Benutzer ihn interessierende Eintrdge in
der Liste markieren kann. Durch eine Erweiterung des GUI-Status
und ein zusitzliches Unterprogramm soll die Liste zur Laufzeit des
Programmes so geédndert werden, dass nur noch die Zeilen mit akti-
vem Kontrollkéstchen angezeigt werden.

T 0 ¢O@ CHB N0 FD 96

Rechercheerge

EEIEﬁAuswahlte anzeigen L\

Fategorie

Auswahlen

Y

LV
Leh L1
v
v
o

RN

5 10 CO@ DNB DnoD BE of

Rechercheergebnisse
158 [et 1
e Ausgabedatus 29.01.2004 Ausgabezeit 13103115
P
3 Pro - 3 trma

[Glaine

Im ersten Schritt sollen in der Ausgabeliste die Kontrollkdstchen
ausgegeben und der GUI-Status ergédnzt werden.

1. Legen Sie im Top-Include eine Variable chkbox vom Typ ,C’
mit der Linge 1 an.

2. Erginzen Sie im Unterprogramm Display_Listzeile die Ausga-
be der Checkbox. Verwenden Sie dabei folgende Syntax:
WRITE: chkbox AS CHECKBOX.

3. Fiigen Sie in den GUI-Status ,,Grundliste* in die Meniileiste ei-
nen neuen Meniipunkt ,,Bearbeiten->Ausgewihlte anzeigen*
(Vorschlag fiir den Funktionscode: DISP_SEL) und eine dazu-
gehorige Drucktaste (Icon: ICON_SUMMARIZE) ein.

4. Andern Sie den Ereignisblock ,,AT USER-COMMAND* so
dass bei der Auswahl des Funktionscodes DISP-SEL ein Unter-
programm Change_Grundliste aufgerufen wird. Legen Sie die-
ses Unterprogramm zunéchst ohne Quelltext an.

Losung: YKOSDBAS_9

5 Spezielle Techniken der Listenerstellung

K *
* INCLUDE YKO5DBAS TOP *
K *

DATA: it zbestand TYPE zint zbestand tw,
wa_ zbestand TYPE zst zbestand tw,

wa_ zkategorie TYPE zkategorie tw,

farbe, chkbox.

K *
* INCLUDE YKO5DBAS E01 *
K *

AT USER-COMMAND.

CASE sy-ucomm.

WHEN 'VLISTE'.

* Aufruf des Unterprogrammes, das

* die Verzweigungsliste erzeugt
PERFORM detailanzeige.

WHEN 'DISP_SEL'.

PERFORM change grundliste USING 'SEL'.
ENDCASE.

FORM change grundliste.
ENDFORM.

Lesen im Listenpuffer

Den Kern des Unterprogrammes ,,Change_Grundliste” bildet die
Anweisung ,,Read Line*. Mit dieser Anweisung kann eine Zeile der
Liste im Listenpuffer gelesen werden. Gleichzeitig werden die Wer-
te, die zu dieser Zeile im HIDE-Bereich gespeichert sind, in die Ur-
sprungsvariablen zuriickgestellt.

Hinweis:)
Die Anderung des Kontrollkdstchens fiihrt zu einer Anderung der
Variablen chkbox im Listenpuffer.

Syntax der READ LINE-Anweisung:

RAED LINE <n> FIELD VALUE <fl1> [INTO <gl>]
<f2> [INTO <g2>]
<fn> [INTO <fn>].

5.6 Dynamische Auswahl von Datensétzen der Ausgabeliste

309

310

Belegung der Systemvariablen sy-subrc durch die READ LINE-
Anweisung:

sy-subrc =0 Die Zeile n konnte gelesen werden

sy-subrc =4 Die Zeile n konnte nicht gelesen werden (n > An-
zahl der Zeilen im Listenpuffer).

Erklirung:

Die Ausgabezeile n wird gelesen. Der Inhalt der (in dieser Zeile vor-
kommenden) Variablen f1 wird auf die Variable g1 geschrieben, der
Inhalt von {2 auf g2 und der Inhalt von fn auf gn. Enthilt die Zeile n
keine Variable f1 (f2, fn), bleibt gl (g2, gn) leer. Wird gl (g2, gn)
nicht angegeben, wird der Wert f1 (2, fn) der Listenzeile n auf die
Variablen f1 (f2, fn) geschrieben. Dabei ist zu beachten, dass alle
aus dem Listenpuffer gelesenen Werte vom Typ ,,C* sind.

Weiter Varianten der READ LINE-Anweisung finden Sie in der
Schliisselwortdokumentation.

Sollen alle Zeilen des aktuellen Listenpuffers gelesen und ausgewer-
tet werden, wird die READ LINE-Anweisung innerhalb einer DO-
Schleife benutzt.

Beispiel (Unterprogramm Change_Grundliste*)

DO.
*Lesen der Zeile sy-index (sy-index ist der
*Schleifenzdhler der DO-Schleife)

READ LINE sy-index FIELD VALUE chkbox.
*Prifen, ob die Zeile gelesen werden konnte
*Wenn nicht, DO-Schleife verlassen

IF sy-subrc <> 0.

EXIT.

ENDIF.

*Durch die READ LINE-Anweisung wurde die
*Variable chkbox mit dem aktuellen Wert chkbox
*der gelesenen Zeile geladen. Ist das Kontroll-
*kadstchen aktiv, hat chkbox den Wert 'X'.

IF NOT chkbox IS INITIAL.

*Aufbau der Listzeile sy-index.
ENDIF.
ENDDO.

5 Spezielle Techniken der Listenerstellung

in einer Listenzeile das Kontrollkdstchen aktiviert wurde, soll
zu dieser Zeile das Unterprogramm ,,Display_Listzeile* aufge-
rufen werden. Diesem Unterprogramm wird beim Aufruf die
Struktur wa_zbestand iibergeben. Diese muss vorher mit den
Daten der ausgewihlten Zeile geladen werden. Da READ
LINE- alle Werte der gelesenen Zeile aus dem HIDE-Bereich
in die Ursprungsvariablen zuriickstellt, kann das iiber die An-
weisung

SELECT SINGLE * FROM zbestand

INTO CORRESPONDING FIELDS OF wa zbestand
WHERE isbn = wa zbestand-isbn

erfolgen.

Hinweis: Die HIDE-Anweisung finden Sie im Unterprogramm
,»Display_Listzeile* — falls Sie noch mal nach ihr sehen wollen.

1. Schreiben Sie das Unterprogramm ,,Change_Grundliste*. Wenn F

2. Damit keine neue Verzweigungsliste aufgebaut, sondern die
Grundliste gedndert wird, ist nach der Datenausgabe die Sys-
temvariable SY-LSIND auf den Wert ,,0“ zu setzen. Dadurch
wird die neue Liste in den Listenpuffer der Grundliste geladen.
Testen Sie das Programm einmal mit dieser Zuweisung und
einmal ohne sie.

Losung: YKOSDBAS_10

Eine Losung fiir das Unterprogramm ,,Change_Grundliste*:

K o e *
*& Form change grundliste *
K o *

FORM change grundliste.
DO.
*Listenzeile sy-index lesen

READ LINE sy-index FIELD VALUE chkbox.
*nach der READ LINE-Anweisung haben die
*Variablen chkbox und wa zbestand-isbn die
*Werte der gerade gelesenen Zeile.
*sy-subrc ist <> 0, wenn alle Zeilen gelesen
*wurden

IF sy-subrc <> 0.

EXIT.

ENDTF.

CHECK NOT chkbox IS INITIAL.
*Durch die CHECK-Anweisung kommt das
*Programm nur an diese Stelle, wenn das Kon-

5.6 Dynamische Auswahl von Datensétzen der Ausgabeliste ® 311

312

*trollkastchen (chkbox) der aktuellen Zeile

*aktiviert ist.
selected = 'J'.
SELECT SINGLE * FROM zbestand tw
INTO CORRESPONDING FIELDS OF wa zbestand
WHERE isbn = wa_ zbestand-isbn.
chkbox = ""'.
PERFORM display listzeile

USING wa zbestand.

ENDDO.

sy-lsind = 0.

ENDFORM. " change grundliste

Andern des Listenpuffers

Nicht nur das Lesen sondern auch das Andern von Variablen in der
Liste ist moglich. Dazu steht die Anweisung ,,MODIFY LINE* zur
Verfiigung. Zu dieser Anweisung gibt es viele Syntaxformen und
Zusitze. Hier soll nur eine der gebrduchlichste Formen dieser An-
weisung behandelt werden. Ein Blick in die Schliisselwortdokumen-
tation zu ,,Modify Line* lohnt sich daher.

Syntax der MODIFY CURRENT LINE-Anweisung:

MODIFY CURRENT LINE FIELD VALUE <fl1> FROM <gl>
<f2> FROM <g2>
<fn> FROM <gn>.

Erklirung:

Mit dieser Form der Anweisung dndern Sie die zuletzt mit READ
LINE gelesene Listenzeile. Die Variable f1 (f2, fn) der vorher mit
READ LINE gelesenen Listenzeile wird mit dem Inhalt der Variab-
len g1 (g2, gn) iiberschrieben.

Durch die folgende Ubung soll es dem Benutzer des Literatur-
Rechercheprogrammes erméglicht werden, durch Auswahl einer
Meniifunktion bzw. Drucktaste, alle Kontrollkéstchen der Ausgabe-
liste zu aktivieren bzw. zu deaktivieren. Auflerdem soll die voll-
standige Liste wiederhergestellt werden konnen.

1. Erweitern Sie dazu den PF-Status ,,Grundliste” um folgende
Meniipunkte und Drucktasten.

5 Spezielle Techniken der Listenerstellung

Menii Fkt.code Wirkung
Bearbeiten = alle aktivieren AKT_ALL Aufruf Unter-

Icon fiir Drucktaste: programm
ICON_SELECT_ALL AKT_ALL
Bearbeiten = alle deaktivieren DAKT _ALL Aufruf Un-
Icon fiir Drucktaste: terprogramm-
ICON_DESELECT_ALL DAKT_ALL
Bearbeiten > alle anzeigen =~ DISP_ALL Aufruf Unter-
Icon fiir Drucktaste: programm
ICON_TOGGLE_DISPLAY DISP_ALL

2. Legen Sie die Unterprogramme AKT_ALL, DAKT_ALL und
DISP_ALL an und sorgen Sie dafiir, dass diese Unterprogram-
me bei Auswahl des entsprechenden Meniipunktes bzw. Druck-
taste aufgerufen werden.

3. Schreiben Sie das Unterprogramm AKT_ALL. Es besteht aus
einer DO-Schleife in der iiber eine READ LINE-Anweisung je-
de Listenzeile gelesen wird und einer MODIFY CURRENT
LINE-Anweisung, die den Inhalt der Variablen chkbox in der
Listenzeile mit ,X’ iiberschreibt.

4. Programmieren Sie in #dhnlicher Form das Unterprogramm
DAKT_ALL.

5. Rufen Sie im Unterprogramm DISP_ALL das Unterprogramm
DISPLAY_GRUNDLISTE auf.

Losung: YKOSDBAS_11

Losung:

K e *
* INCLUDE YKOS5DBAS 11 EO1 *
K e *

AT USER-COMMAND.

CASE sy-ucomm.
WHEN 'VLISTE'. PERFORM detailanzeige.
WHEN 'DISP SEL'.PERFORM change grundliste.
WHEN 'AKT ALL'. PERFORM akt all.
WHEN 'DAKT ALL'.PERFORM dakt all.
WHEN 'DISP ALL'.PERFORM disp all.

ENDCASE.
g g *
*& Form akt all *
g g *

DO.

5.6 Dynamische Auswahl von Datensétzen der Ausgabeliste

313

314

READ LINE sy-index.
IF sy-subrc <> 0.
EXIT.
ENDIF.
MODIFY CURRENT LINE
FIELD VALUE chkbox FROM 'X'.

ENDDO.

sy-lsind = 0.
ENDFORM. " akt all
g g g *
*& Form dakt all *
g g *
FORM dakt all.

DO.

READ LINE sy-index.
IF sy-subrc <> 0.
EXIT.
ENDIF.
MODIFY CURRENT LINE
FIELD VALUE chkbox FROM ''.

ENDDO.

sy-lsind = 0.
ENDFORM. " dakt all

K e *
*& Form disp all *
K *

FORM disp all.
PERFORM display grundliste
USING
it zbestand
wa_ zbestand.
ENDFORM. " disp_all

5.7
Dynamisches Sortieren der Ausgabeliste

Dynamisches Sortieren der Ausgabeliste bedeutet, dass der Benutzer
die Liste zur Laufzeit des Programmes nach verschiedenen Spalten
aufsteigend oder absteigend sortieren kann. Dazu stellt der Benutzer
den Cursor in die Spalte der Ausgabeliste nach der sortiert werden
soll und klickt auf eine entsprechende Drucktaste. Dabei darf die ak-

5 Spezielle Techniken der Listenerstellung

tuelle Buchauswahl, die der Benutzer durch die Funktion ,,ausge-
wihlte anzeigen* eventuell eingeschriankt hat und der Status der
Kontrollkéstchen (ausgewihlt bzw. nicht ausgewihlt) nicht verloren
gehen.

Um diese Aufgabenstellung programmtechnisch umzusetzen, brau-
chen wir eine Moglichkeit, den Spaltennamen der Ausgabespalte zu
ermitteln, in die der Benutzer den Cursor gestellt hat. Dazu nutzen
wir die GET CURSOR-Anweisung.

Syntax:
GET CURSOR FIELD <f>.

Der Name des Feldes, auf dem der Cursor positioniert ist, wird in
die Zeichenvariable <f> iibertragen.

Belegung der Systemvariablen sy-subrc durch die Anweisung:

sy-subrc =0 Cursor stand in einem Feld

sy-subrc =4 Cursor stand nicht in einem Feld

Hinweis:

Die Zeichenvariable <f> wird nur dann mit dem Namen des Feldes,
auf dem der Cursor positioniert ist geladen, wenn das Feld global
angelegt wurde. Lokale Felder, also Felder, die im Unterprogramm
deklariert wurden, werden wie Felder ohne Namen behandelt, d.h.
die Variable <f> wird auf ihren Initialwert gesetzt. Das gilt auch fiir
Literale, Feldsymbole und Parameter. Dabei wird sy-subrc trotzdem
mit 0 geladen.

Beispiel:

Eine LOOP-Schleife

LOOP AT it zbestand INTO wa_ zbestand.

WRITE: / wa_ zbestand-isbn,

wa_zbestand-titel,
wa_zbestand-autorl.

endloop.

erzeugt folgende Ausgabeliste:

5.7 Dynamisches Sortieren der Ausgabeliste

315

316

ERTIL ke [V -ortentierte Betriebswirtschaftalehre 0000000100
3827254388 Internet 0000000108

3827258863 SAP R/3 0000000107
3827311365 Administration des SAP-Systems R/3 0000000110
3827313724 ABAP/4 Die Programmiersprache des SAP R/3-Systems 0000000106
3827314011 SAP R/3 p borientiert d 0000000104
3827314569 SAP R/3 dynamisch einfihren 0000000113
3827316464 SAP R/3 Der schnelle Einstieg 0000000103
3827317886 Programmierung von I | k 0000000116
3827317894 ABAP-Ubungsbuch 0000000116
3877917410 SAP R/3 Basissystem 0000000115
3898421473 ABAP Cbjects 0000000101

Der Benutzer hat den Cursor in die Spalte gestellt, die mit
wa_zbestand-titel angelegt wurde.

Das folgende Programm ermittelt mit GET CURSOR die ausge-
wihlte Spalte und bereitet das ermittelte Feld so auf, dass damit die
interne Tabelle it_zbestand dynamisch sortiert werden kann.

DATA: spalte(30).

GET CURSOR FIELD spalte.

*Inhalt der Variablen spalte:

*'wa zbestand-titel'

*Zum sortieren iber die SORT-Anweisung wird
*jedoch nur der Komponentenname 'titel'
*benotigt.

spalte = spalte+13.

*+13 ist der sogenannte Offset. Der Variab-
*len spalte wird die Zeichenkette 'titel'
*zugewiesen (13. Stelle der Zeichenkette
*'wa zbestand-titel' bis zum Ende)

sort it zbestand by (spalte).

*Das Sortierkriterium kann der SORT-Anweisung
*auch als Variable tlbergeben werde. Die
*Variable, die das Sortierfeld enthalt, wird in
*runde Klammern geschrieben. Diese Methode heilit
*'dynamisches sortieren'.

Dynamisches Sortieren einer internen Tabelle
Der SORT-Anweisung konnen iiber die Syntax

SORT <itab> BY <f1> <f2>...<fn>.

Beispiel:
sort it zbestand by kategorie titel.

5 Spezielle Techniken der Listenerstellung

in den Variablen <fl>...<fn> die Sortierfelder iibergeben werden.
Stehen die Felder, nach denen die interne Tabelle sortiert werden
soll, in Zeichenkettenvariablen, werden diese in runde Klammern
(ohne Leerzeichen) iibergeben. Man spricht dann von ,,dynami-
scher* Sortierung, weil erst zur Laufzeit des Programmes festgelegt
wird, nach welchen Feldern die interne Tabelle sortiert werden soll.

Beispiel:

DATA: f£1(20), £f2(20).
fl1 = 'kategorie'.

f2 = 'titel'.

sort it zbestand by (fl) (£2).

Zusitzlich kann iiber die Klauseln ,,ascending® und ,,descending®
aufsteigend oder absteigend sortiert werden. Dabei steht ,,ascending*
fiir aufsteigend (Standard) und ,,descending® fiir absteigend. Die
Anweisung
sort it zbestand by (f1l) descending.

(f2) ascending.
bewirkt eine absteigende Sortierung nach Kategorie und eine auf-
steigende nach Titel (innerhalb einer Kategorie).

In dieser Ubung soll die Ausgabeliste so verbessert werden, dass
der Benutzer, wie eingangs beschrieben, die Ausgabe dynamisch
auf- oder absteigend sortieren kann. Dabei konnen Sie so vorgehen:

1. Legen Sie im GUI-Status ,,Grundliste* entsprechend der nach-
folgenden Tabelle zwei Meniipunkte und Drucktasten an.

Menii Fkt.code Wirkung
Bearbeiten = Sortieren (aufst.) SORTUP Aufruf UP
Icon fiir Drucktaste: SORT

ICON_SORT_UP

Bearbeiten = Sortieren (abst.) SORTDOWN Aufruf UP
Icon fiir Drucktaste: SORT
ICON_SORT_DOWN

2. Legen Sie das Unterprogramm SORT an (zunéchst ohne Quell-
text) und sorgen Sie im Ereignisblock ,,AT USER-
COMMAND dafiir, dass es beim Auslosen der Funktionsco-
des SORTUP und SORTDOWN aufgerufen wird. Ubergeben
Sie dem Unterprogramm beim Aufruf tiber den Funktionscode
SORTUP die Zeichenkette ,UP’ und beim Aufruf iiber den
Funktionscode SORTDOWN die Zeichenkette ,DN’. Uber die-
se Parameter soll im Unterprogramm die auf- bzw. absteigende
Sortierung ausgewihlt werden.

5.7 Dynamisches Sortieren der Ausgabeliste

" 317

318

3. Die Ausgabeliste soll u.a. auch nach dem Namen des Autors

sortiert werden konnen. Diese Ausgabe wird z.Z. iiber die loka-
le Variable wa_zautoren-namel erzeugt. Da fiir den Einsatz der
GET CURSOR FIELD-Anweisung globale Variablen benotigt
werden, kopieren Sie die die entsprechende DATA-Anweisung
vom Unterprogramm ,,DISPLAY_LISTZEILE® in das Top-
Include.

Um die Ausgabeliste zu sortieren, benotigen Sie eine interne
Tabelle mit allen Spalten der Ausgabeliste, nach denen sortiert
werden soll. Legen Sie im Unterprogramm SORT dazu zu-
nichst eine Struktur (Namensvorschlag: wa_listzeile) mit den
folgenden Komponenten an:

= Alle Komponenten der Struktur wa_zbestand

= ctrlkaestchen (Type C mit der Linge 1) zur Speicherung
des Status des Kontrollkistchens chkbox

= pame like wa_zautoren-name

Hinweis: Um Schreibarbeit zu sparen, kénnen Sie sich in der
Schliisselwortdokumentation ,,INCLUDE STRUCTURE® mit
der Syntax zum Includieren von Strukturen bekannt machen.
Ignorieren Sie die Hinweise, dass diese Methode veraltet ist.
Fiir die dynamische Sortierung konnen Sie diese Methode gut
verwenden.

. Legen Sie mit dieser Struktur eine Standardtabelle (Namens-

vorschlag it_listzeile) an.
Deklarieren Sie die Variablen
= gspalte(50)

= offset type i.

Laden Sie tiber die GET CURSOR FIELD-Anweisung die Va-
riable spalte mit dem Namen des Feldes, in das der Benutzer
den Cursor gestellt hat.

Steht der Cursor in einer giiltigen Zeile (sy-subrc = 0 AND
NOT spalte IS INITIAL) kann iiber eine SEARCH-Anweisung
der Offset ermittelt werden. Dabei konnen Sie davon ausgehen,
dass der Komponentenname hinter dem Zeichen -
(Bindestrich) steht. Ermitteln Sie den Komponentennamen wie
folgt:

5 Spezielle Techniken der Listenerstellung

10.

SEARCH spalte FOR '-'.

IF sy-subrc = 0.
offset = sy-fdpos + 1.
spalte = spaltetoffset.
DO.
*Glltige Listenzeilen mit der READ
*LINE-Anweisung lesen. Siehe Punkt 9.
*interne Tabelle it-listzeile mit
*den Werten der giiltigen Listenzeilen
*ftillen Siehe Punkt 10.
ENDDO.

ENDIF.

In der im Punkt 8 angelegten DO-Schleife werden zunéchst alle
Zeilen der Ausgabeliste gelesen. Nutzen Sie dazu die READ
LINE-Anweisung. Zur Wiederholung: Diese Anweisung liest
eine Zeile der Ausgabeliste, stellt ausgewéahlte Feldinhalte in ih-
re Ursprungsvariablen zuriick. Zusitzlich werden die im HIDE-
Bereich stehenden Variablen zur gelesenen Zeile ebenfalls in
ihre Ursprungsvariablen geladen. Sie konnen dazu die folgende
Syntax benutzen:

CLEAR wa zbestand-isbn.

READ LINE sy-index FIELD VALUE chkbox
wa zautoren-name.

IF sy-subrc <> 0.

EXIT.

ENDIF.

*Nur giiltige Zeilen bearbeiten

IF NOT wa zbestand-isbn IS INITIAL.
*interne Tabelle it-listzeile mit
*den Werten der giltigen Listenzeilen
*fillen Siehe Punkt 11.

ENDIF.

Fiillen Sie jetzt (zeilenweise) die interne Tabelle mit den Wer-
ten zur im Punkt 9 gelesenen Zeile. Die SELECT SINGLE-
Anweisung iiber die Tabelle zbestand fiillt die Struktur
wa_listzeile mit den aus dieser Tabelle stammenden Feldinhal-
ten. Die Komponenten wa_listzeile-name und wa_listzeile-
ctrlkaestchen miissen durch zusitzliche Anweisungen geladen
werden. Sie konnen sich an dieser Syntax orientieren:

SELECT SINGLE * FROM zbestand tw
INTO CORRESPONDING FIELDS OF wa_listzeile

5.7 Dynamisches Sortieren der Ausgabeliste

319

320

11.

12.

DATA: it zbestand TYPE zint zbestand tw,

WHERE isbn = wa zbestand-isbn.

wa listzeile-ctrlkaestchen = chkbox.
wa listzeile-name = wa zautoren—-name.
*die spdater zu sortierende Tabelle
*it listzeile laden

APPEND wa listzeile TO it listzeile.

Sortieren Sie jetzt die interne Tabelle it_listzeile nach dem in
der Variablen spalte stehenden Feld. Sortieren Sie absteigend,
wenn dem Unterprogramm der Parameter "UP' iibegeben wurde,
andernfalls sortieren Sie aufsteigend.

Im letzten Schritt ist die Liste neu auszugeben. Programmieren
Sie eine LOOP-Schleife iiber die interne Tabelle it_listzeile.
Laden Sie in dieser Schleife die Struktur wa_zbestand mit den
korrespondierenden Feldern der Struktur wa_listzeile. Laden
Sie die Variable chkbox mit wa_listzeile-ctrlkaestchen und ru-
fen Sie dann, ebenfalls innerhalb der Schleife, das Unterpro-
gramm DISPLAY_LISTZEILE auf. Uberschreiben Sie nach
der ENDLOOP-Anweisung den Listenpuffer der Grundliste mit
der sortierten Liste. Auch hier eine Hilfestellung hinsichtlich
der Codierung:
LOOP AT it listzeile INTO wa listzeile.
MOVE-CORRESPONDING wa listzeile TO

wa_ zbestand.
chkbox = wa listzeile-ctrlkaestchen.
PERFORM display listzeile
USING wa zbestand.
ENDLOOP.
sy-lsind = 0.

Losung: YKOSDBAS_12

Das war schon eine ganz anspruchsvolle Programmieraufgabe, fin-
den Sie das nicht auch? Hier nun eine funktionierende Losung:

wa_ zbestand TYPE zst zbestand tw,
wa_ zkategorie TYPE zkategorie tw,
wa_zautoren TYPE zautoren_tw,
farbe, chkbox.

5 Spezielle Techniken der Listenerstellung

AT USER-COMMAND.
CASE sy-ucomm.
WHEN 'VLISTE'. PERFORM detailanzeige.
WHEN 'DISP SEL'.PERFORM change grundliste.
WHEN 'AKT ALL'. PERFORM akt all.
WHEN 'DAKT ALL'.PERFORM dakt all.
WHEN 'DISP ALL'.PERFORM disp all.
WHEN 'SORTUP'. PERFORM sort USING 'UP'.
WHEN 'SORTDOWN'.PERFORM sort USING 'DN'.
ENDCASE.

K e e *
*& Form sort *
K e e *

FORM sort USING p_ sort.

*Deklarieren einer Struktur, die alle
*Komponenten der Struktur wa zbestand
*und zusatzlich die Komponente
*'ctrkaestchen' enthalt.

DATA: BEGIN OF wa listzeile.
INCLUDE STRUCTURE wa zbestand.
DATA: ctrlkaestchen,
name like wa zautoren-name.
DATA: END OF wa listzeile.

DATA:
it listzeile LIKE TABLE OF wa listzeile,
spalte (50),
offset TYPE i.
GET CURSOR FIELD spalte.
*spalte enthdalt jetzt den Namen des Feldes, in
*dem der Cursor steht (z.B. 'wa zbestand-titel'

IF sy-subrc <> 0 OR spalte IS INITIAL
WRITE: 'Keine sortierbare Spalte'.
EXIT.

ENDIF.

SEARCH spalte FOR '-'.

5.7 Dynamisches Sortieren der Ausgabeliste

321

322

*Zeichen '-' gefunden = sy-subrc = 0, sy-fdpos
*= Position des Zeichens in spalte (im Bsp: 12)

IF sy-subrc <> 0. EXIT. ENDIF.
offset = sy-fdpos + 1.
spalte = spaltetoffset.
DO.
CLEAR wa_ zbestand-isbn.

*Read Line liest die Listenzeile sy-index

* (Schleifenzahler), schreibt den Inhalt des
*Feldes chkbox der akt. Listenzeile in die Va-
*riable chkbox, wa zbestand-isbn wird aus dem
*HIDE-Ber. mit dem Wert der akt. Zeile geladen

READ LINE sy-index FIELD VALUE chkbox
wa_ zautoren-name.
IF sy-subrc <> 0.EXIT. ENDIF.

*Nur gliltige Zeilen bearbeiten
IF NOT wa zbestand-isbn IS INITIAL.

*wa_ zbestand aus der Tabelle zbestand neu laden
SELECT SINGLE * FROM zbestand
INTO CORRESPONDING FIELDS OF wa listzeile
WHERE isbn = wa zbestand-isbn.

*Status des Kontrollkastchens, Autorrennamen in
*die Struktur wa listzeile schreiben

wa listzeile-ctrlkaestchen = chkbox.

wa listzeile-name = wa_ zautoren-name.

*die spater zu sortierende Tabelle
*it listzeile laden
APPEND wa listzeile TO it listzeile.
ENDIF.
ENDDO.

*Dynamische Sortierung der internen Tabelle

*it listzeile. Die Variable spalte enth&dlt den
*Namen der Tabellenspalte, nach der die Tabelle
*sortiert werden soll

IF p_sort = 'UP'.

SORT it listzeile BY (spalte).

5 Spezielle Techniken der Listenerstellung

ELSE.
SORT it listzeile BY (spalte)DESCENDING.
ENDIF'.

*Aufbau der sortierten Liste
LOOP AT it _listzeile INTO wa_listzeile.
MOVE-CORRESPONDING

wa listzeile TO wa_zbestand.
chkbox = wa listzeile-ctrlkaestchen.
PERFORM display listzeile USING wa_zbestand.
ENDLOOP.
sy-lsind = 0.
ENDFORM. " sort

5.8
Ein Freund des Programmierers —
Der Debugger

Der Debugger hilft Ihnen, Ihr Programm zu analysieren. Sie konnen
damit sowohl den Programmablauf verfolgen als auch den Inhalt
von Datenobjekten (elementare Datenobjekte, Strukturen, interne
Tabellen ...) anzeigen. In diesem Kapitel soll der Einsatz des De-
buggers am Beispiel des Programmes aus Abschnitt 5.7 ,,Dynami-
sches Sortieren der Ausgabeliste Seite 314 gezeigt werden. Laden
Sie dazu das Programm YKO5DBAS_12 in den ABAP-Editor.

Hinweis:
Das zu debuggende Programm muss aktiviert sein.

5.8.1
Start des Debuggers

Es gibt verschiedene Moglichkeiten, den Debugger einzuschalten.

Start des Debuggers iiber /h im Kommandofeld

Starten Sie das Programm YKOSDBAS_12 und lassen Sie sich die
Grundliste anzeigen. Geben Sie in das Kommandofeld die Zeichen-
kette /h ein und Driicken Sie die Entertaste.

5.8 Ein Freund des Programmierers —
Der Debugger

323

Abb. 5.40
Debugging

einschalten

Abb. 5.41
Debugging aus-
schalten

324

K B 1H 0@ RHKE dnoo BF 0®
recerchheeingeben ENTER-Taste

Iast-Side-Library: Literatur-Rechercheprogramm

tusgabeliste Ausgsbedatum 05.03.2004 Ausgebezeit 09:27:11
ISBEN Titel

©0Q 3528096098 Rechnender Raum

©00 3528096152 Petri-Netze aus Sicht des Ingeneurs

@00 3540523979 EDV-orientierte Betriebswirtschaftslehre

©0Q 3827254388 Internet

©O9 3827258863 SAP R/3

B pK

" e ——

(agugging vurde eingeschaliz—

Stellen Sie jetzt den Cursor in eine sortierbare Spalte der Ausgabe-
liste und wihlen Sie das Symbol ,,Sortieren (aufst.)*. Sie verzweigen
in den Debugger. Die Moglichkeiten, die Thnen dieses Werkzeug
bietet, werden weiter unten in diesem Kapitel behandelt. Beenden
Sie den Debugger iiber das Menii ,,Debugging - Debugging aus®.

Debugging Bearbeite swringen Breakpoint [tellungen Entwicklung System {1Hfe
B Einzelschritt BB le@a DHEB ODhoan BEFE @B
Aysfihren FB
Retumn F7
Weiter (bis zum Cursor) F8
BALPBO-Modul ausfihren - —— -
Datenbank , s || Watchpoints || Aufrufe || Ubersicht || Einstellungen
H Debugging aus [] Festpunktarithrmetik
E MNeustart E 1 S 13 F] a
-—E— Beenden Umsch+F3

AT USER-COMMAND.
CASE sy-ucomm.
» @ WHEN 'VLISTE'. PERFORM detailanzeige.

WHEN 'DISP_SEL'. PERFORM change grundliste.

Start des Debuggers liber einen Breakpoint

Es ist fiir den Programmierer hiufig praktischer, den Debugger tiber
einen Breakpoint, der im ABAP-Editor gesetzt wird, zu starten. Das
Programm verzweigt erst dann in den Debuggingmodus, wenn im
Programmablauf dieser Breakpoint erreicht ist.

Um einen Breakpoint zu setzen, laden Sie das zu debuggende Pro-
gramm in den ABAP-Editor, setzen den Cursor in die Anweisung,
vor deren Ausfithrung der Debuggingmodus eingeschaltet werden
soll und klicken das Symbol ,,Breakpoint setzen /16schen®.

5 Spezielle Techniken der Listenerstellung

Programm Bearbeiten Springen Hilf

Umsch+F5

hbee DHB nnos BE B

Anderes Objekt...
i -> And Strg+F1 o . A
i;’:'f_’:;;m o Ums':: . PBAS_12_F01gnd1. Cursor in die
4 profen | EEE2 | ; . Zeile stellen, |
H Sichem Strg+S 'ﬂ(DSAs in der der)
; e :
[_ Generieren e Breakpomt
4| Aktivieren Strg+F3 gesetzt
[€]_Testen 3 F8 : . werden soll
of SEcE EL S gobe oot ic: * 2, Breakpoint
= Dﬁ;rf:&er SR e (501, setzen
b (& Ereignisse ‘ ..r.OﬁS“.HP.E g 3. Programm
- & li;l:rffframme 1 starten
CH"@GE—GRUNDUSTE I IF sy-subrec <> 0 OR spte IS INITIAL.
E:EII‘I"QJ\J:II-'YEM‘E ||| WRITE: 'Keine sortierbare Spalte'.

Starten Sie dann das Programm. Unmittelbar vor der Ausfiihrung der
Anweisung auf die der Breakpoint gesetzt ist, wird der Debugger
eingeschaltet. Sie konnen diesen Modus, wie in Abb. 5.41 gezeigt,
wieder ausschalten. Den Breakpoint 16schen Sie auf die gleiche Art,
wie Sie Ihn gesetzt haben (Cursor in die Zeile mit dem Breakpoint
setzen und Symbol ,,Breakpoint setzen / 16schen wihlen).

5.8.2
Programm debuggen

Ausfihrungsmodi| c@@ CHE anod B @8
o |Anzeigemodi des Debuggers
. . . [Watchpaint .
Feider [Tabelle | Breakpaints || Watchpoints || Auife || Ubersicht || E
Hauptprogramm DEAS 1 [Fastpunktanthmetik aktuelle
Guelltext von %OSDBAS_ 12_P01 [«] 314 - 327 [+]& Anweisung
MODULE (PB0) %_CTL_INIT ~ anzeigen

Quellcode des zu
debuggenden Programmes

spalte (50},
offset TYPE 1.

Y © oo rme s [NP ppelklick auf Feldname

[3] Feianamen 1-4 Feldinhale
= ausgewahlte Felder mit
Feldinhalt
SY-SUBRC 0 SY-TABIX 1 SY-DBCNT 1

5.8 Ein Freund des Programmierers —
Der Debugger

Abb. 5.42
Breakpoint
setzen

Abb. 5.43
Anzeigemodus
LFelder” des
Debuggers

m 325

326

Nach dem Verzweigen in den Debuggingmodus wird der in Abb.
5.45 dargestellte Anzeigemodus ,Felder bereitgestellt. In der
Quellcodeanzeige des zu debuggenden Programmes ist die Anwei-
sung, die als nichstes ausgefiihrt wird, durch ein schwarzes Dreieck
am linken Zeilenrand gekennzeichnet.

Im Quelltext konnen Sie mit den Bildtasten blittern. Uber die
Schaltflache ,,Aktuelle Anweisung anzeigen springen Sie zuriick
zur néchsten auszufiihrenden Anweisung.

Durch Doppelklick auf den Namen eines Datenobjektes (Feld,
Struktur, interne Tabelle) wird dieses mit seinem aktuellen Inhalt in
den unteren Bildschirmbereich gestellt. Bei elementaren Feldern
konnen Sie hier auch den Inhalt @ndern. Uberschreiben Sie dazu ein-
fach den alten Inhalt und driicken Sie dann das Bleistiftsymbol am
rechten Rand des Eingabefeldes.

Uber die Symbolgruppe ,,Ausfiihrungsmodi“ konnen Sie das De-

bugging steuern. Diese Symbole sind in der folgenden Tabelle er-
klart.

5 Spezielle Techniken der Listenerstellung

Symbolname

Funktion

Einzelschritt

AEE @

Ausfiihren

Return

[&i]

[E]

H]

Weiter (bis zum Cur-

Sor)

[&i]

[

[E]

[

Mit dieser Option wird das Programm An-
weisung fiir Anweisung ausgefiihrt. Spe-
ziell bietet diese Art der Ausfiihrung die
Moglichkeit, in Unterprogramme und
Funktionsbausteine zu verzweigen, so dass
auch diese Anweisung fiir Anweisung ab-
gearbeitet werden konnen. Nach der Abar-
beitung der Unterprogramme und Funkti-
onsbausteine gelangen Sie zu der
Anweisung im Programm, die der aufru-
fenden Anweisung folgt.

Mit der Option wird ein Programm zeilen-
weise abgearbeitet. Alle Arbeitsschritte, die
zu der aktuellen Zeile gehoren, werden zu-
sammengefasst. Wenn Sie sich in einer Zei-
le befinden, die ein Unterprogramm aufruft,
und hier Ausfiihren wahlen, fiihrt der De-
bugger das Unterprogramm aus und geht zu
der Zeile iiber, die dem Unterprogrammauf-
ruf direkt folgt. Auf diese Weise tibersprin-
gen Sie die Anweisungen innerhalb des Un-
terprogramms.

Der Debugger kehrt an die Position zu-
riick, an der ein aufrufendes Programm
wieder die Steuerung iibernimmt. Sie wih-
len diese Option, wenn Sie sich in einem
Unterprogramm, Funktionsbaustein oder
einem gerufenen Programm befinden und
wieder zum rufenden Programm zuriick-
kehren wollen.

Mit dieser Option wird das Programm bis
zum néchsten Breakpoint oder bis zur
Cursor-Position abgearbeitet. Sind im
nachfolgenden Quelltext keine (weiteren)
Breakpoints vorhanden und wurde kein
Cursor gesetzt, so wird der Debuggingmo-
dus beendet und das Programm ausgefiihrt.

5.8 Ein Freund des Programmierers —
Der Debugger

327

Ly

Abb. 5.44
Stand des De-
buggers

nach der
Anweisung
GET
CURSOR...

328 =

1. Setzen Sie im Unterprogramm SORT des Programmes
YKOSDBAS 12 einen Breakpoint auf die Anweisung ,,GET
CURSOR FIELD spalte* und starten Sie das Programm.

2. Doppelklicken Sie im Debugger auf den Feldnamen ,,spalte®
der Anweisung ,,GET CURSOR FIELD spalte*.

3. Klicken Sie auf das Symbol Einzelschritt“. Die Anweisung
,»GET CURSOR FIELD spalte* wird ausgefiihrt.

ebligging Bearbelten Springen.. Breakpoint. Einste

@y 1 0@ e SMHB Nod BF @B

A’AP Debugger
EI O watchpoint
Felder [Tabelle][Breakpoints H ‘Watchpoints " Aufrufe || Ubersicht " Einstellungen
Hauptprogramm YROSDBAS 12 [Festpunktarithmetik E
Quelitext von YKOSDBAS 12 _FO1 |:| 323 |5 336 [:]
FORM SORT
spalte (50},

offset TYPE i.

@ GET CURSOR FIELD
» IF sy-subrc <> 0 OR Spe IS INITIAL.

WRITE: 'Keine sortierbaye Spalte'.

Feldnamen = Feldinhaite
apalte . ZBESTAND-TITEL
SY-SUBRC 0O SY-TABIX 1 SY-DBCNT 1

Strukturen im Debugger

1. Blittern Sie im Quellcode des Unterprogrammes SORT bis zur
Anweisung. Sie konnen dazu die Bild-Tasten benutzen.

2. Setzen Sie den Cursor in diese Anweisung und wihlen Sie das
Symbol ,,Weiter (bis zum Cursor)*.

3. Doppelklicken Sie auf den Namen der Struktur (wa_listzeile).

5 Spezielle Techniken der Listenerstellung

€ / 2 1@ Cc@e LHBE ONnoD R @8
ABAP D gger
] I i Wmcnpoml

Feider | Tabelle | Breakpoits | Watchpoints || Auffe | Obersicht || Einstellungen
Hauptprogramm YROSDEAS 1 O Festpunktanthmetik
Quelitest von YFOSDBAS_12_FO1 [=] 267 - 200 [+]@

FORM SORT .~

ENDIF.

wn_listzeile-ctrlkasstchen = chkbox.

wa listzeile-name = wa_zautoren-name.

APPEND

[B] Feioname.

spalte
wa_listzeils

SY-SUBRC O

Feldinhalte

E

Z28096098 Rechnender Raum

SY-TABIX 1 SY-DBCHT 1

[5 Feld wurde in die Anzeige Gbemommen

@ B Il @ DHE DO BRE @
ABAP Debugger
BEEO
| Felder][Tabelle || Breakpurnls]F ‘Watchpoints || Aufrufe]I Ubersicht || Einstellungen
Hauptprogramm 1] Festpunktarithmetik
Quelitext von [] 311 - s [+]@
FORM SORT
»] APPEND wa_listzeile TO it_listzeile.
ENDIF.
Strukturiertes Feld wa_listzeile
Lange (in Bytes) 191
Nr, Komp yp |Lange |Inhalt H
15BN N | 10 [35280096008 =]
[TITEL Ic | 65 [Rechnender Raum =
seszaio - Ejn Doppelklic j:ﬁ M
=i Komponentenriameh Sffnet den
[KATEGORIE Informatik
srcrs Bildschirm zurl, | 1o bosoncoins
wrorz Komponentenbearbeitung¢Abb. 5.51)
WUTORI 000000000
[VERFUEGBAR 0000
(CTRLEAESTCHEN
[uanE use

5.8 Ein Freund des Programmierers —
Der Debugger

Abb. 5.45
Struktur im De-
bugger (Anzei-
gemodus Fel-
der)

Abb. 5.46
Struktur im
Debugger
(Anzeige der
Komponenten)

m 329
=

Abb. 5.47
Struktur im De- < s I B eea

LM DNo BE @B

bugger (Andern ABAP Debugger
einer Kompo- ~BBEEOD W]

nente) l Felder][Tabelle |! Breakpoints || Watchpoints |I Aufrufe H Ubersicht ” Einstellungen
Hauptprograrmm CHOSDBAS. 1 [Festpunktarithmetik
Quelitext von KOSDBAS_ 12_FO1 [«] 3711 - 383 [+][@
FORM SORT,~

» APPEND wa_listzeile TO it _listzeile.
ENDIF. /

Einzelfeld ba_listzeile-BESTAND
Feldinhalt 00005

Andern der Komponente fiir
das weitere Debugging

Typ

Lange
Ausgabelange
Dezimalstelien

(=N A

Interne Tabellen im Debugger

den Namen der internen Tabelle it_listzeile (Abb. 5.48).

2. Doppelklicken Sie in der Spalte Feldnamen auf den Namen der
internen Tabelle. Sie gelangen in die Tabellenanzeige Abb.
5.49).

3. Doppelklicken Sie in die erste Anweisung nch der DO-Schleife.
Sie setzen damit einen Breakpoint.

4. Stellen Sie den Cursor in die ENDDO-Anweisung und klicken
Sie die Schaltfliache ,,Weiter (bis Cursor)“ so oft an, bis die in-
terne Tabelle gefiillt ist (Abb. 5.49).

5. Doppelklicken Sie in der Debuggeranzeige ein Element der in-
ternen Tabelle. Sie gelangen in einen Bildschirm, in dem Sie
dieses @ndern konnen.

; 1. Doppelklicken Sie in der Quelltextanzeige des Debugger auf

Abb. 5.48
Interne Tabelle i
im Debugger pE@EOD)

] s 1@ con LHKE ODoD BE OB =

(AnzelgemOdUS.' Feider | Tabee | Breakponts | Watchpoints || Autufe || Ubersicht || Einstellungen
Hauptprogramm A [Festpanitarihmetic]
Felder) Queltext von [&] 370 - 383 E@

[FORM SORT

APPEND wa_listeeile TO if_lisezeile.

ENDIF.

L3 BNDDO,
[B] Feranamen 1 - a[=]d Felgnhatis
bpalze TITEL
wa_liste INGEATIATIABAR Objects ﬁ i‘
st_listzeile Table(14x191]
... Ein Doppelklick auf den Namen der internen

[U [BCUSER ** | notebock | M5

330 5 Spezielle Techniken der Listenerstellung

15 oea CHRE Do BE @8

¢ o

ABAP Debugger

8880 WCRHEE

At | i b ” E

Felder | Tabelle M
ks ._.3_..-Hor|zontales Blattern IN [restpunktarthmetc |8
Quelitext von soslder Tabellenanzeige [4] 300 - 3% [+]@

FORM SORT

APPEND wa_listzeile TO it_listzeile.

Format E

Interne Tabelle Typ STANDARD

1 1sen/

mgsm reendel. D@ppelklick in eine Zelle der int. E
szs0s6152 |receshi@aelle 0ffnet den.Bildschirm zu de-
3540523979 | ED\'—?&: .B‘Mﬁgc ‘“bbhrs 54)

3827254388 | Internet

3827258863 |SAP R/3

827311365 |Administration des SAP-Systems R/3

it_listreile
TITEL

& =202 @ B 0@ LHN® NoD BF OB

ABAP Debugger

@S 1O watchpoin |

| Feldar Il Tabelle || Breakpoints || Watchpoints |I Aufrufe Il Ubersicht || Emste-llungen
Hauptprogramm YEOSDBAS 12 [Festpunktanthmetik
Queiltext von YROSDE 370 - 382 El
FORM SORT ~
APPEND wa_listzeile TO it_lisczeile.
ENDIF.

» ENDDO. /
Einzelfeld it_listzeile[1]-ISBN
Feldinhalt 3528096098
v « Andern des Inhaltes einer Zelle
Lange 10 g A A
o ttiogs .- fur das weitere Debugging
Dezimalstellen o

5.9
Ausgabe von Meldungen (Messages)

Unser Literatur-Rechercheprogramm fiir die East-Side-Library hat
jetzt fast den in der Aufgabenstellung beschriebenen Stand erreicht.

Einige Dinge sollten jedoch noch verbessert werden. Meldungen des
Programmes (z.B. ,,Keine sortierbare Spalte*) werden zum Beispiel

5.9 Ausgabe von Meldungen (Messages)

Abb. 5.49
Interne Tabelle
im Debugger
(Anzeigemodus:
Tabelle)

Abb. 5.50
Interne Tabelle
im Debugger
(Anderung einer
Zelle)

® 331
|

Abb. 5.51
Message mit
Langtext

332

iiber WRITE-Anweisungen ausgegeben. Das geht natiirlich, wirkt
aber nicht unbedingt professionell.

AuBerdem ist es nicht besonders originell, dem Benutzer des Pro-
grammes erst durch die Anzeige einer leeren Ausgabeliste darauf
hinzuweisen, dass seine Recherche nicht zum gewiinschten Ergebnis
gefiihrt hat. Der Anwender hat in dieser Situation ein Recht auf eine
mitfithlendere Reaktion des Programmes.

Programmausgaben dieser Art sollten im R/3 nicht iiber WRITE-
Anweisungen sondern iiber Nachrichten, sogenannte Messages, er-
zeugt werden. Nachrichten geben nicht nur Informationen auf den
Bildschirm aus sondern kénnen dariiber hinaus zur Steuerung des
Programmablauf eingesetzt werden — eine Eigenschaft die oftmals
den Programmieraufwand erheblich verringert. Die Ausgabe der
Meldungen erfolgt entweder auf der Statuszeile (Standard) oder in
einem modalen Dialogfenster.

! L e[2]e[m[Z[F[Z]A=[[2] (=]
@ B JB e@@ DHE oo -

East-Side-Library: Literatur-Rechercheprogrami| Trotz intensiver Suche konnte ich
leider keine entspr. Biicher finden. |

ZLIE_TW 001
Auswahlkntenen -
ISBN | #|| Diagnose
Buchtitel U 1 spinne ‘I
In dar Datenbank der East-Side-Librasy konnlen keing
Autorennummer n Bocher gefunden werden, die mit iren Recherchekriterien
= wormelia
Kategorie G| MTer
Vorg
Verandern Sie Ihre Recherchekriterien. Beachten Sie, dass
2 @in Buch, das in dig Ausgabeliste geschrieben wird, alie
e S“‘é:_::“e JFS Il s . eingegebenen Kiiterien aufweizen muss. Uberlegen Sie
@ ney und verligren Sie nichl die Hoinung auf gin bessenes

Ergebnis

Schreiben Sie notfalls das Buch, welches Sie bendsigen,
selbst

In der Abb. 5.51 wird eine Nachricht ausgelost, weil in der Daten-
bank der East-Side-Library kein Buch gefunden wurde, das den Ein-
gaben der Suchmaske entspricht. Diese Nachricht bewirkt, dass der
Anwender nicht in den listenerzeugenden Programmteil (Dis-
play_Grundliste) verzweigt, sondern im Selektionsbild verbleibt und
die Suchkriterien dndern kann. Somit steuert also die Nachricht den
weiteren Programmablauf.

Verwaltung von Nachrichten

Jede Nachricht muss einer Nachrichtenklasse zugeordnet werden.
Die Nachrichtenklasse erhdlt beim Anlegen einen maximal 20-
stelligen alphanumerischen Bezeichner im Kundennamensraum.

5 Spezielle Techniken der Listenerstellung

Dieser Bezeichner ist im R/3-System eindeutig. Fiir die Nachricht
selbst wird ein maximal 3-stelliger freiwdhlbarer alphanumerischer
Bezeichner vergeben. Dieser ist fiir jede Nachrichtenklasse eindeu-

tig.

Nachrichtenklassen und Nachrichten werden in der Tabelle T100
gespeichert. Uber die Transaktion SE91 (Werkzeuge > ABAP
Workbench = Entwicklung = Programmierumfeld - SE91 Nach-
richt) werden sie verwaltet.

Vorgehensweise: Anlegen einer Nachrichtenklasse / Nachricht

ZweckmiBigerweise legen Sie Nachrichtenklassen und Nachrichten
tiber den ABAP-Editor an.

Starten Sie tiber den Object Navigator den ABAP-Editor. Wihlen
Sie dort ,,Programm > Anderes Objekt oder klicken Sie die ent-
sprechende Drucktaste. Lassen Sie sich die Registerkarte ,,Weitere*
anzeigen. Aktivieren Sie den Auswahlknopf ,,Nachrichtennummer*
und geben Sie einen Bezeichner fiir Nachrichtenklasse (ZLIB) und
Nachricht (001) an. Klicken Sie dann die Schaltfliche ,,anlegen®.
Orientieren Sie sich dabei an Abb. 5.52.

> Objektauswah Abb. 5.52
/77 Programm | Funktio ppe | Busi Engineering » Weitere | [<]__I[g] Eingabe der Be-
zeichner fiir
O Entwicklungsklasse Nachrichten-
L2 nelude klasse und
) Dialogbaustein Nachricht

) Transaktion
) Logische Datenbank

O seveeT-Paameter-ic Nachrichten-
O Bffreichsmenus klasse NaChr]Cht

htenklasse

@
O Testfall
) Berechtigungsobjekt
) MiniApp

O Internet Senvice
O URL

- : 2

O Selektmnswewa

nlegen
[¥][=][2][O] =] €8] | |

Im Folgebild ,,Nachrichtenpflege: Nachrichtenklasse dndern* geben
Sie einen Kurztext ein und sichern die Nachrichtenklasse. Danach
gehen Sie in die Registerkarte ,,Nachrichten®.

5.9 Ausgabe von Meldungen (Messages) ®™ 333
|

Abb. 5.53
Anlegen der
Nachrichten-

klasse

Abb. 5.54
Anlegen des
Nachrichten-

textes

334

L= [e@@a piM vooan IR @B
Nachrichtenpflege: Nadlirichtenklasse dndern

EE | | EEE @ &
MNachrichtenkiasse ZLIB neu

" Eigenschaften

Entwickdungskiasse

Letzier Anderer DCUSER

Anderungsdatum D4.03.2004 Anderungszeit 10:35:35
| Adtribute

Originatsprache DE Deutsch

Verantwortlich BCUSER

Kurzest Nachrichien des Projekies Ew—m@

In der Registerkarte ,,Nachrichten“ legen Sie den Nachrichtenkurz-
text an. Ist dieser Kurztext selbsterklidrend, aktivieren Sie das Kon-
trollkdstchen ,,Selbsterklarend”. Das modale Fenster, in dem die
Nachricht angezeigt wird, enthélt dann keine Drucktaste ,,Hilfe*. Si-
chern Sie Thre Nachricht. Wollen Sie einen Hilfetext zu Threr Nach-
richt verfassen, stellen Sie den Cursor in die Nachrichtennummer
und klicken die Drucktaste ,,Langtext‘.

@ @ 1B Ce@@ DHL D0L0 BE @F

Nachrichtenpfiege: Nachrichten dndern
== 2 Markierte | [&] | | | [Cangtext] [Nachste freie | [Nachste belagte | [Anzeigs kompakt | [L
akthvi(berarbe|

Nachrichtenkiasse ZLIB

Eigenschafien,” Machrichten

/712 (8] R)

i } Selbsterkl
_Lw* [Teotz intensiver Suche konnte ich leider kein entspe. Buch finden O B3]
= o=

=]

O

5 Spezielle Techniken der Listenerstellung

pingen_Zuséize F Abb. 5.55
1B Ccee CHB LoD IR @8 Anlegen eines

Nachricht dndern: ZLIB001 Sprache DE Hilfetextes zur
@)@ 7] | ()@@ | [Formate][@ Zeichenormate] (7] | (@) [Z) (&) @) Nachricht
Absatzl T @ Zeichenfoimate AB ABAP Sprachelemente -]
RCAUSES&
In der Datenbank der East-Side-Library konnten keine Bucher gefunden werden, die mit Ihren Recherchekriterien
korrelieren.

&SYSTEM_RESPONSER

SWHAT_TO_DO&

Werandern Sie lhre Recherchekriterien, Beachten Sie, das ein Buch, dass in die Ausgabeliste geschrieben wird,
alle L Kiiteri fweisen muss. Uberl Sie neu und verlieren Sie nicht die Hoffnung auf ein
besseres Ergebnis

Schreiben Sie notfalls das Buch, welches Sie bendtigen, selbst
&SYS_ADMINE

Auslésen von Nachrichten
Nachrichten werden iiber das Schliisselwort MESSAGE ausgelost.

Syntax 1
MESSAGE ID <Klasse> TYPE <Nachrichtentyp>
NUMBER <Nachrichtennummer>.

Syntax 2
MESSAGE <Nachrichtentyp><Nachrichtennummer>(<Klasse>).

Der Nachrichtentyp ist, zusammen mit dem Ereignisblock, in dem
die Nachricht ausgeldst wird, fiir die Steuerung des Programmablau-
fes verantwortlich. Tabelle 5.3 gibt Auskunft iiber die verschiedenen
Nachrichtentypen:

5.9 Ausgabe von Meldungen (Messages) ® 335
|

Typ Kurz- Programmreaktion
beschr.

A Abbruch- Das Programm wird nach Anzeige der Nachricht
meldung in einem Dialogfenster abgebrochen. Das Sys-
(Abend) tem verzweigt nach Bestitigung durch den Be-

nutzer in das vorhergehende Bereichsmenii.

E Fehler- Das Programm wird nach Anzeige der Nachricht
meldung je nach ausléosenden Ereignisblock entweder
(Error) abgebrochen oder mit einem Fehlerdialog fort-

gesetzt.

I Info Das Programm wird nach Anzeige der Nachricht
in einem Dialogfenster und Bestétigung durch
den Benutzer nach der MESSAGE-Anweisung
fortgesetzt.

S Status- Das Programm wird nach der MESSAGE-

meldung Anweisung normal fortgesetzt und die Nachricht
wird in der Statuszeile des folgenden Bild-
schirmbilds angezeigt.

W Warn- Das Programm wird nach Anzeige der Nachricht
meldung je nach auslosenden Ereignisblock entweder
(Warning) abgebrochen oder es wird ein Fehlerdialog ge-

fiihrt.

X Exitmit Das Programm wird ohne Anzeige der Nachricht
Kurzdump mit einem Kurzdump abgebrochen. Programm-

abbriiche mit Kurzdumps treten in der Regel nur

bei Laufzeitfehlern auf. Der Nachrichtentyp X

erlaubt das bewuflte Auslosen solcher Abbriiche.

Der Kurzdump enthilt die Nachrichtenkennung.
Beispiel:

Auslosen der Nachricht ,,001° der Nachrichtenklasse ,,ZIIB*:

MESSAGE ID zlib TYPE e NUMBER '001".

oder

MESSAGE e001(zlib).

Steuerung des Programmablaufes iiber Nachrichten

Wie bereits beim ,,Auslosen von Nachrichten erwihnt, sind Nach-
richtentyp und auslosender Ereignisblock fiir das Programmverhal-
ten ausschlaggebend. Die Nachrichtenklasse und die Nachricht
selbst haben keinen Einfluss auf das Verhalten des Programmes.

336

5 Spezielle Techniken der Listenerstellung

E (Error) W (Warning) Tabelle 5.4
Programmablauf

Initialization Message anzeigen Message anzeigen

(Statuszeile) (Statuszeile) in Abhéngigkeit
des Nachrich-
tentyps und des
auslésenden

Programmabbruch Programmabbruch Ereignisblockes

Start-of-Selection
End-of-Selection

AT User-
Command

Top-of-Page

@ Programmabbruch

;,%

End-of-Page
Load-of-Program

Message anzeigen
{Statuszeile des
Folgebildes)

Programm- 2
fortsetzung gﬁ

-2

AT Selection- Selektionsbild : lezleglshua
Screen %BQP :,: L —
» . . ﬂ Message anzeigen
el (Statuszeile)
Message anzeigen e
; Selektionsbild bleibt| N
(Statuszeile) cingabebereit T
rogramm- 2
rtsetzun, ¥
- =
8

ine- : Message anzeigen Message anzeigen

Abbruch des Abbruch des
Top-of-Page [Verarbeitungsblockes| [Verarbeitungsblockes|
During Line- ,F% ,F%
. & =
Selection
Anzeige der Liste der Anzeige der Liste der
vorherigen vorherigen
Listenstufe Listenstufe

bepriifung ergidnzt werden. Programmieren Sie diese so, dass die
Ausgabeliste nur dann erzeugt wird, wenn die SELECT-Anweisung
in der Tabelle ZBESTAND Daten findet. Andernfalls soll das Se-
lektionsbild wieder angezeigt werden.

Im Rechercheprogramm YKO5DBAS soll jetzt die fehlende Einga- F

5.9 Ausgabe von Meldungen (Messages) ®™ 337

338

1. Legen Sie eine Nachrichtenklasse (ZLIB) und eine Nachricht
(001) mit einem aussagekriftigen Kurz- und Langtext an.

2. Programmieren Sie den Ereignisblock AT SELECTION-
SCREEN und verschieben Sie die SELECT-Anweisung aus
START-OF-SELECTION dorthin.

3. Ergidnzen Sie zur SELECT-Anweisung die Auswertung des
Riickkehrcodes. Losen Sie die unter 1. angelegte Nachricht als
Error-Nachricht aus, wenn der Riickkehrcode sy-subrc der Se-
lect-Anweisung ungleich O ist.

4. Ersetzen Sie auch die WRITE-Anweisung WRITE: 'keine sor-
tierbare Spalte' im Unterprogramm SORT durch eine Nachricht
vom Typ L.

Hinweis: Sie konnen Nachrichten auch in der Vorwértsnaviga
tion anlegen.

5. Lassen Sie sich die Schliisselwortdokumentation zu
~REPORT* anzeigen. Sorgen Sie dafiir, das der Standardsei-
tenkopf unterdriickt wird.

Losung: YKOSDBAS_13

Losung:

* g§&—————--—-" " -\ -\ = *
* INCLUDE YKOS5DBAS 8 EO1 *
* gf&—————-—" - -\ -\ -\ = *

AT SELECTION-SCREEN.
SELECT * FROM zbestand INTO CORRESPONDING
FIELDS OF TABLE it_ZbeStand
WHERE isbn IN so_isbn AND
titel IN so_titel AND
(autorl IN so autor OR
(autor2 IN so_autor AND autor2 > 0) OR
(autor3 IN so_autor AND autor3 > 0)) AND
kategorie IN so_kat.
IF sy-subrc <> 0.
MESSAGE €001 (zlib_tw).

ENDIF.
*& ___ *
*& Form sort *
*& ___ *

FORM sort USING p_sort.

'*************nicht geanderter Quelltext********‘k***********

5 Spezielle Techniken der Listenerstellung

GET CURSOR FIELD spalte.

IF sy-subrc <> 0 OR spalte IS INITIAL.
MESSAGE i002 (zlib).

EXIT.

ENDIF'.

.*************nicht geanderter Quelltext********************

R —————— *
*& Report YKOSDBAS 13 *
R —————— *

REPORT ykO5dbas 13 NO STANDARD PAGE HEADING.

INCLUDE <icon>.

INCLUDE YKO5DBAS_13_TOP.
INCLUDE YKO5DBAS 13 EO1.
INCLUDE YKO5DBAS 13 FO1.

5.10
Modularisierung mit Funktionsbausteinen

Bisher haben wir ofter bendtigte Programmfunktionen, wie z.B.
Aufbau und Ausgabe der Listenzeile, in Unterprogrammen gekap-
selt. Unterprogramme konnen an verschiedenen Stellen des Pro-
grammes aufgerufen und iiber ihre Schnittstellen mit den zu verar-
beitenden Daten versorgt werden. Unterprogramme stellen somit
wiederverwendbare Softwarekomponenten innerhalb eines Anwen-
dungsprogrammes dar. Sie sind durch die folgenden Haupteigen-
schaften gekennzeichnet:

= Unterprogramme sind an ein Rahmenprogramm gebunden,

= gie besitzen eine Schnittstelle, iiber die der Datenaustausch zwi-
schen Rahmenprogramm und Unterprogramm organisiert wird,

= in ihnen deklarierte Datenobjekte sind nur innerhalb des Un-
terprogrammes sichtbar,

= enthalten den Quelltext der gewiinschten Funktionalitit.

Fiir anwendungsiibergreifende, wiederverwendbare Softwarekom-
ponenten werden keine Unterprogramme, sondern Funktionsbau-
steine benutzt. Diese werden im Function Builder angelegt und stel-
len eigenstindige Repository-Objekte dar. Dadurch konnen alle
ABAP-Programme auf diese Funktionsbausteine zugreifen. Wir
konnen uns die Funktionsbausteine letztlich als zentral abgelegte
Unterprogramme vorstellen.

5.10 Modularisierung mit Funktionsbausteinen

339

340

Eigenschaften von Funktionsbausteinen:
= Ein Funktionsbaustein hat einen systemweit eindeutigen Na-
men,

= er wird als eigenstdndiges Objekt im Repository abgelegt,

= Jduft innerhalb eines Rahmenprogrammes, das als Funktions-
gruppe bezeichnet wird,

= besitzt eine fiir alle Programme zugéngliche Schnittstelle,

= in ihm deklarierte Datenobjekte sind nur innerhalb des Funkti-
onsbausteins sichtbar,

= enthilt den Quelltext einer hiufig benttigten Funktionalitit,

= mittels Remote Function Call (RFC) kann ein Funktionsbaustein
auch von anderen SAP-Systemen (R/3- und R/2-Systeme) und
sogar von Fremdsystemen aufgerufen werden.

Jeder Funktionsbaustein ist Teil einer Funktionsgruppe, die
= mehrere Funktionsbausteine,
= einen globalen Deklarationsteil und

= alle iiblichen Verarbeitungsblocke (auBer den Ereignisblocken
INITIALIZATION, START-OF-SELECTION, GET table,
GET table LATE und END-OF-SELECTION)

enthalten kann.

Hinweis:

Wird ein Funktionsbaustein von einem Programm aufgerufen, wird
immer die gesamte Funktionsgruppe in den internen Modus des auf-
rufenden Programmes geladen. Sie sollten deshalb nur inhaltlich zu-
sammengehorige Funktionsbausteine in einer Funktionsgruppe kap-
seln.

Vorgehensweise: Funktionsgruppe anlegen

Jeder Funktionsbaustein ist einer Funktionsgruppe zuzuordnen. E-
xistiert diese noch nicht, so muss sie angelegt werden. Starten Sie
den Object Navigator (SE80). Wihlen Sie als Objekt ,,Funktions-
gruppe aus, und vergeben Sie einen Namen im Kundennamensbe-
reich. Nachdem Driicken der ENTER-Taste konnen Sie die Funkti-
onsgruppe in der Vorwiértsnavigation anlegen.

5 Spezielle Techniken der Listenerstellung

B IHQCeQ BAR HDOD BEE
ABAP Editor: Include YKO5DBAS 13 _F01 anzeigen

el

Funktionsgruppe

BE ENEE EEEE | @)y Foyrue)

YKOSDBAS_13_FO1

Include

LB el (M]o]m] (2] G]E8] [@mE]
L] a |]£Im|@|_ ” FORM display listzeile USING wa

TYPE zst

Geben Sie im Folgebild einen Kurztext fiir die Funktionsgruppe ein.

Funktionsgruppe YLIE
Kurztext Funktionsgruppe z. Projekt East-Side-Lib
Verantwortlicher BCUSER

Ordnen Sie dann die Funktionsgruppe Ihrer Entwicklungsklasse und
Threm Workbenchauftrag zu. Laden Sie dann die Funktionsgruppe in
den Object Navigator und aktivieren Sie sie.

Funktionsgruppe B Incl
[vuB > lse| |[¥]
o[22 [=]a][X]E]9)] =] '
@I Anlegen >
L] Andem
- Anzeigen > LyLIB
Priifen X
Aktivieren
Testsequenz...

5.10 Modularisierung mit Funktionsbausteinen

Abb. 5.56
Funktionsgruppe
anlegen, Einstieg

Abb. 5.57
Kurztext
vergeben und
sichern

Abb. 5.58
Aktivieren der
Funktionsgruppe

" 341

Abb. 5.59

Funktionsbau-
stein anlegen,
Einstieg

Abb. 5.60
Funktions-
bausteinname
und Kurztext
festlegen

342

Vorgehensweise: Funktionsbaustein anlegen

Die Vorgehensweise wird an einem Beispiel erldutert. Die Funktio-
nalitit, die bis jetzt im Unterprogramm DISPLAY_LISTZEILE ge-
kapselt ~ war, soll jetzt durch den Funktionsbaustein
YDISPLAY_ZEILE bereitgestellt werden.

Laden Sie die Funktionsgruppe, in der der Funktionsbaustein ange-
legt werden soll, in den Object Navigator (SE80). Stellen Sie den
Cursor in die Funktionsgruppe (im Beispiel YLIB) und wihlen Sie
iiber das Kontextmenii ,,Anlegen - Funktionsbaustein®.

2 10 0@

Object Navigator
| |§ Objekt bearbeiten |

Funktionsgruppe
jvue > ||
[EE[=2E) [=]a] [&[E]a) (=]
Objektname -,

Funktionsgruppe
Andern Funktionsbaustein
Anzeigen *| Unterprogramm

Geben Sie im Folgebild den Namen fiir den Funktionsbaustein und

einen Kurztext ein. Der Kundennamensbereich fiir den Funktions-

baustein beginnt mi ,,Z_* oder ,,Y_*.
Funktionsbaustein
Funktionsgruppe YLTE

Kurztext Abbilden einer Zeile der Grundliste des Recherchepr.

Danach startet der Function Builder (SE37)

5 Spezielle Techniken der Listenerstellung

g =0 808 0@ OB YnLd FFR @B
Function Builder: Y_DISPLAY ZEILE dndern

EI | | EI | lEI | E“ Muster || Pretty Printer || Fbausleindnkumemalinn|

Funktionsbaustein Y_DISPLAY ZEILE inaktv{Uberarbeitet)
Eigenschaften E/ Import f/ Export }/ Changing [/Tahallen |/ & h V Quelitext |
Klassifizigrung -
Funktionsgruppe YLIB Funktionsgruppe z. Projekt East-Side-Lib
Kurztext Abbilden einer Zelle der Grundliste des Recherchepr
Ablaufart - Allgemeine Daten

BCUSER
BCUSER
259.03.2004

(@) Nomaler Funktionsbaustein Werantwortlicher
letzter Anderer

Anderungsdatum

() Remote fahiger Baustein

) Verbuchungsbaustein

Werfen Sie im Function Builder zunichst einen Blick auf die Regis-
terkarte ,,Eigenschaften”. In der Datengruppe ,,Ablaufart™ sind die
Moglichen Funktionsbausteinarten auswéhlbar:

Ablaufart Erkliarung

Normaler Wird zur externen Modularisierung benotigt.

Funktionsbaustein

Remotefihiger Ein Funktionsbaustein mit dieser Eigenschaft

Baustein (RFC) kann von anderen SAP-Systemen (R/2 u. R/3)
und sogar iiber Fremdanwendungsprogramme
gestartet werden.

Verbucherbaustein Diese Funktionsbausteine werden bendtigt,

um {iiber den Verbucherworkprozess die Da-
tenbank zu aktualisieren.

Die Registerkarten , Import*, ,,Export®, ,,Changing*‘ und ,,Tabellen*
beschreiben die Schnittstelle zwischen aufrufenden Programm und
Funktionsbaustein. Tabelle 5.5 gibt zu den einzelnen Registerkarten
eine kurze Erkldrung.

5.10 Modularisierung mit Funktionsbausteinen

Abb. 5.61
Funktions-
bausteinname
und Kurztext
festlegen

" 343

Abb. 5.62
Importparameter

344

Name Bedeutung

Import Werte, die vom aufrufenden Programm an den Funk-
tionsbaustein iibergeben werden.

Export Werte, die vom Funktionsbaustein an das aufrufende
Programm iibergegeben werden.

Changing Werte, die gleichzeitig als Import- und Exportparame-
ter fungieren. Der Originalwert eines Changing-
Parameters wird vom aufrufenden Programm an den
Funktionsbaustein tibergeben. Der Funktionsbaustein
kann diesen Wert dndern und ihn dann an das aufru-
fende Programm zuriickgeben.

Tabellen Interne Tabellen, die sowohl importiert als auch ex-
portiert werden konnen. Der Inhalt interner Tabellen
wird vom aufrufenden Programm an den Funktions-
baustein tibergeben. Der Funktionsbaustein kann den
Inhalt der internen Tabelle dndern und dann an das
aufrufende Programm zuriickgeben. Die Ubergabe er-
folgt hier immer als Adressiibergabe.

Ausnahmen Fehlersituationen, die bei einem Funktionsbaustein
auftreten konnen. Das aufrufende Programm fragt ii-
ber Ausnahmen ab, ob Fehler im Funktionsbaustein
aufgetreten sind und kann danach geeignet verfahren.

In der Registerkarte ,,Quelltext” wird der Quellcode des Funktions-
bausteins angelegt.

In der Registerkarte ,,Import™ werden die an den Funktionsbaustein
zu iibergebende Datenobjekte festgelegt. Als Bezugstype ist ein ein-
gebauter Datentyp oder ein Dictionary-Datentyp einzutragen.

@ 18 ©@@ DHE oD PP 0
Function Builder: Y_DISPLAY ZEILE dndern

D |] EI | D I Dll\u‘lusier”PleHy F'rlnler”Fhaus'[ei

Funktionsbaustein ¥_DISPLAY ZEILE aktiv
Eigenschaﬂen/y Import E/E:pnrl l/l':hanging]/Tahellen l/Ausnahmen]/Ouelltext |

BDEIEE)
|Parametername [Typi... [Bezugstyp IVorschlag: Optional{Wertibergabe |Kurztext
CHKBOX TYRE [O O
SPALTE_ISBN |TYPE |I 6 [¥] O
SPALTE_TITEL|TYPE [[17 O
SPALTE_AUTOR|TYPE [I les [¥] O

1 [110 &3] H

T — =

SPALTE_KAT |[TYPE
I

5 Spezielle Techniken der Listenerstellung

Die Variable CHKBOX wird vom Funktionsbaustein lediglich in ei-
ner WRITE-Anweisung ausgegeben. Sie wird deshalb im Funkti-
onsbaustein als Importparameter deklariert. Zusitzliche (optionale)
Importparameter werden fiir die Ausgabepositionen angelegt.

Einzelne Komponenten der Struktur, die die Ausgabedaten enthiilt,
und die Variable FARBE werden im Funktionsbaustein gedndert
und miissen deshalb vom aufrufenden Programm als Changingpa-
rameter exportiert werden.

@ » 10 0@ 0HE Do BF @@ Changing-
Function Builder: Y_DISPLAY ZEILE indern parameter
@D | | EI | D I E“N!usler H Pretty Printer H Ft

Funktionsbaustein ¥ _DISPLAY ZEILE aktiv(Uberarbeitet)

Eigenschaften | Import l/E:pon/ Changing }/Tahellen ¥ A h ¥ Quell |

EIDENENEY

|Parametemame Typisierung [Bezugstyp Vorschlagswert Optional [Wertibe.,

s TYPE |zsT_zBESTAND_TW O O

FARBE ITYPE i O O

| (=
Wird eine Struktur an den Funktionsbaustein iibergeben, die keine
Autorennummer (AUTORI1) enthilt, soll eine Ausnahme
»INO_AUTOR* ausgelost werden. Diese ist in der Registerkarte
,,2Ausnahmen‘ zu definieren.

Funktionsbaustein Bearbeiten Springen Hilfsmittel Umfeld System Hilfe Abb. 5.64

o s 18 0@ DHE bnoo @ AU

Function Buifder: Y DISPLAY ZEILE dndern
| EHEE @ E @

Funktionsbaustein ¥ DISPLAY ZEILE inaktiv
Eigenschaften |/ Import f/ Export I/Changing i/TabeIIen / Ausnahmen Quell

m]@ @@ I:] Exceptionklasse

snahme Kurztext |Langtext
NO_AUTOR Feld AUTOR1 der Struktur wa ist leer

Jetzt kann der Quelltext angelegt werden. Er wird im Vergleich zum
Quelltext des urspriinglichen Unterprogrammes nur unwesentlich
gedndert. Die Anderungen sind hervorgehoben.

5.10 Modularisierung mit Funktionsbausteinen 8 345

346

FUNCTION y display zeile.

""Tokale Schnittstelle:
xn IMPORTING

0 REFERENCE (CHKBOX) TYPE C

0 REFERENCE (SPALTE ISBN) TYPE I DEFAULT 6
0 REFERENCE (SPALTE TITEL) TYPE I DEFAULT 17
0 REFERENCE (SPALTE AUTOR) TYPE I DEFAULT 85
0 REFERENCE (SPALTE KAT) TYPE I DEFAULT 110
*" CHANGING

0 REFERENCE (WA) TYPE ZST_ ZBESTAND TW

0 REFERENCE (FARBE) TYPE C

*" EXCEPTIONS

0 NO_AUTOR

L

INCLUDE <icon>.

DATA: icon_autoren TYPE icon-id,
icon verfuegbar TYPE icon-id,
verfuegbar$%$ TYPE p DECIMALS 2,
zeilen TYPE 1,
wa_zautoren TYPE zautoren_ tw.

*IF-Anweisung zur Einstellung der Farbe
IF farbe = '1'.
FORMAT COLOR COL NORMAL INTENSIFIED ON.

farbe = '0'.

ELSE.
FORMAT COLOR COL NORMAL INTENSIFIED OFF.
farbe = '1"'.

ENDIF'.

*Auslosen der Ausnahme NO AUTOR wenn
*wa-autorl leer ist.
IF wa-autorl IS INITIAL.
RAISE no_autor.
ENDIF.
*Auswahl der Ikone fir die Anzahl Autoren
IF wa-autor2 IS INITIAL
AND wa-autor3 IS INITIAL
icon autoren = icon position hr.
ELSE.
icon autoren = icon_shared position.
ENDIF.
*Berechnung der Anzahl verfigbarer Exemplare
wa-verfuegbar = wa-bestand
- wa—ausgeliehen.

5 Spezielle Techniken der Listenerstellung

o)

*Berechnung der Verfiugbarkeit in %
verfuegbars = wa-verfuegbar
/ wa-bestand * 100.
IF wa-verfuegbar <= 0.
icon verfuegbar = icon_red light.
ELSEIF verfuegbars < 5.
icon verfuegbar icon yellow light.
ELSE.
icon verfuegbar
ENDIF.
*SELECT SINGLE-Anweisung zur Selektion des
*Autorenstammsatzes
SELECT SINGLE * FROM zautoren tw
INTO wa_ zautoren
WHERE autorennr = wa-autorl.
WRITE:
/2 icon verfuegbar,
AT spalte_isbn wa-isbn,
AT spalte_ titel wa-titel,
icon_autoren AS ICON,
AT spalte autor wa_zautoren-name,
AT spalte kat(10) wa-kategorie.
IF chkbox <> 'Kein Ankreuzfeld'.
WRITE chkbox AS CHECKBOX.
ENDIF.
WRITE 128 ' '.
HIDE: wa-isbn.
CLEAR wa-isbn.
ENDEFUNCTION.

icon green light.

Aktivieren Sie die Funktionsgruppe (siehe Abb. 5.58).

Damit ist der Funktionsbaustein vollstindig angelegt. Er muss jetzt
noch in das Programm YKOSDBAS eingebunden werden.

Vorgehensweise: Funktionsbaustein aufrufen

Der Funktionsbaustein wird iiber den Funktionsbausteinnamen auf-
gerufen. Es ist nicht sinnvoll, die Syntax fiir den Aufruf ,,per Hand*
in das Quellprogramm einzutragen. Das ist zu fehleranfillig. Auller-
dem miissten Sie vorher erst alle Parameternamen ermitteln.

Laden Sie das Programm, in dem der Funktionsbaustein aufgerufen
werden, in den ABAP-Editor und stellen Sie den Cursor an die Auf-
rufstelle. Klicken Sie dann die Schaltfliche ,,Muster* an.

5.10 Modularisierung mit Funktionsbausteinen

347

Abb. 5.65
Aufruf eines
Funktionsbau-
steins liber
~Muster”
einfiigen

Abb. 5.66
Muster ,,CALL
FUNCTION*
einfliigen

348 =
[
(]

&)

1B @@ DAR o0 BAE
ABAP Editor: Include YKOS5DBAS 14 _F01 dndes 2

EE | PR | EEEEEE | @) (ister] (Fretty Prnter]

@8

Programm & Ai

|‘|’KUSDBA5 2 Include YKOSDBAS 14 FO1 aktiv(iber
e o @
L3 ENDECRM. " Display Grundliste
Objektname il - Form Display Listzeile
= @ YKOSDBAS_14 Ell *s—---- RN

b [Felder

< [Ereignisse
AT LINE-SELECTIOI
AT SELECTION-SCH
AT USER-COMMAN

START-OF-SELECT FORY display listzeile USING wa

TOP-OF-PAGE TYPE zst_zbestand tw.
= & Unterprogramme

AKT_ALL

CHANGE_GRUNDLI || ENDPORM. " Display Listzeile
DAKT_ALL B [e - i e o e
DETAILANZEIGE
Dl

1

Im Folgebild ,,Muster einfiigen™ ist der Name des einzufiigenden
Funktionsbausteins anzugeben und der Auswahlknopf ,,CALL
FUNCTION* auszuwéhlen.

G

Typ E Nummer

(@ CALL FUNCTION y_display zeile|
() Muster zu ABAP Objects
(O MESSAGE ID
() SELECT * FROM
) PERFORM
(O AUTHORITY-CHECK
) WRITE
() CASE zu Status
() Strukturiertes Datenobjekt

(@) mit Feldern aus Struktur

) mit TYPE->Struktur

(O CALL DIALOG

() Anderes Muster

Nachdem Driicken der ENTER-Taste wird die Syntax zum Aufruf
des Funktionsbausteines in das Quellprogramm eingefiigt.

5 Spezielle Techniken der Listenerstellung

K o x Abb. 5.67

* g Form Display Listzeile = Eingefugter
X § = Funktionsbau-
FORM display listzeile USING wa steinaufruf

TYPE zst zbestand tw.
CALL FUNCTION 'Y DISPLAY ZEILE'

EXPORTING
chkbox =
* SPALTE ISBN =6
* SPALTE TITEL =17
* SPALTE AUTOR = 85
* SPALTE KAT = 110
changing
wa =
farbe =
* EXCEPTIONS
* NO_AUTOR =1
* OTHERS = 2

IF sy-subrc <> 0.

* MESSAGE ID SY-MSGID TYPE SY-MSGTY

ENDIF.

ENDFORM. " Display Listzeile

Erklarung:

» Funktionsbausteine werden {iiber die Anweisung CALL
FUNCTION aufgerufen.

= Auf der linken Seite der Zuweisungen des Abschnittes
EXPORTING stehen die in der Registerkarte ,,IMPORT* des
Funktionsbausteins definierten Datenobjekte. Die rechte Seite
der Zuweisungen sind mit den zu exportierenden Datenobjekten
zu ergénzen. Die auskommentierten Zeilen enthalten optional zu
iibergebende Datenobjekte.

= Der Abschnitt CHANGING enthilt die in der Registerkarte
~CHANGING* des Funktionsbausteins definierten Datenobjek-
te. Dieser Abschnitt ist ebenso wie der Abschnitt EXPORTING
zu behandeln.

= Die EXCEPTIONS enthalten die Zuordnung der Ausnahmen
zum Inhalt der Systemvariablen SY-SUBRC. Die angegebenen
Werte sind Vorschlagswerte, die Sie iiberschreiben konnten. Im
Beispiel wiirde beim Auslosen der Ausnahme NO_AUTOR
durch den Funktionsbaustein die Systemvariable SY-SUBRC
mit dem Wert 1 geladen.

5.10 Modularisierung mit Funktionsbausteinen 8 349

Abb. 5.68 % - ____ x

Bearbeiteter * Form Display Listzeile *
Funktionsbau- wg_____________ _______ __ _ ____________ *

steinaufruf FORM display listzeile USING wa

TYPE zst zbestand tw.
CALL FUNCTION 'Y DISPLAY ZEILE'

EXPORTING

chkbox = chkbox
SPALTE ISBN
SPALTE TITEL = 17
SPALTE AUTOR = 85
SPALTE KAT = 110
changing

wa = wa

farbe = farbe
exceptions

no_autor =1

OTHERS = 2

Il
o

* % X %

IF sy-subrc <> 0.
WRITE: / 'Fehler im DS, Autor fehlt'
endif.
ENDFORM. " Display Listzeile

2. Legen Sie einen Funktionsbaustein Y_DISPLAY_ZEILE an.
Dieser soll die Aufgabe, die bisher vom Unterprogramm
DISPLAY_LISTZEILE ausgefiihrt wurde, tibernehmen. Orien-
tieren Sie sich dabei an den Erkldrungen in der Vorgehensweise
,~Funktionsbaustein anlegen.

F 1. Legen Sie eine Funktionsgruppe YLIB an.

3. Programmieren Sie den Aufruf des Funktionsbausteines im Un-
terprogramm DISPLAY_ZEILE. Auch hier ist die Losung in
der Vorgehensweise ,,Funktionsbaustein anlegen‘ beschrieben.

Losung: YKOSDBAS_14

Funktionsgruppe: YLIB_TW

Funktionsbaustein: Y_DISPLAY_ ZEILE TW

350 5 Spezielle Techniken der Listenerstellung

6 Grundlagen der
Dynproprogrammierung

6.1
Zielstellung des Kapitels

Dieses Kapitel legt die Grundlagen der Programmierung von An-
wendungsprogrammen mit Dynpros. Am Beispiel des Recher-
cheprogrammes der der East-Side-Library werden folgende Themen
behandelt:

= Bestandteile eines Dynpros,
= Anlegen eines Dynpros,
= Dynproelemente zur Datenausgabe,
= Textfelder,
= Statusikonen,
= Gruppenrahmen,
= Dynproelemente zur Ein- und Ausgabe,
= Ein- / Ausgabefelder,
= Ankreuzfelder,
= Auswahlknopfgruppen,
= Drucktasten.

Dariiber hinaus werden die Eigenschaften der Dynproelemente zur
Laufzeit des Programmes gedndert und eine Eingabepriifung pro-
grammiert. Abb. 6.1 und 6.2 zeigen die Ausgabebildschirme des in
diesem Kapitel zu erstellenden Programmes.

6.1 Zielstellung des Kapitels

351

Abb. 6.1
Einstiegsbild

des Recherche- East-Side-Library: Rechercheprogramm 4?6UI-Oberfléche
programmes
@® Programmstart 010404 13:08:28 i B =
e
| Angaben zum Buch Gruppenahmen,., o
@ ISBN .
:: = Eingabemaglichkeiten Fa
O Titel E/A-Felder Recherche F5
Autorennummer O Abbrechen F12
Baand Umsch+F3
Agreichngaben zum Suchbereich -
(2} Recherche im Gesamibestand . [0 & geschatzter Bersich
() Recherche im verfugbaren Bestand & offentlicher Bereich
() Recherche im nicht verfagbaren Bestand Ankreuzfelder
n

@ Recherche | [38 Progammeesenden | Drucktasten

Abb. 6.2 il

Ausgabebilddes @ | 5 0H Q@ BHE o0 IR @@
Recherche- Angaben zu Buch und Autor
__Statusikone
programmes

@ geschom
ISBN 35268096098 Auflage 1 Verlag Vieweg Jahr 1969
Buchititel Rechnender Raum
Bestand - veriiehen o
Kategaorie Informatik

Autor 1~

s — Hat das Buch mehrere
oshe] e Autoren, werden hier deren
Vorname2 .

Geburtsdatum Daten angezelgt
Land oE|

Vorbereitende Aufgabe

Fiir die einzelnen Ubungsaufgaben soll das Programm SAPMYKO06
vom Typ Modulpool benutzt werden.

.

Legen Sie einen Modulpool SAPMYKO06 mit TOP-Include an.
Der Name eines Modulpools sollte immer mit der Zeichenkette
SAPM beginnen. Der Folgebuchstabe kennzeichnet den Kun-
dennamensbereich (Z oder Y). Bei Einhaltung dieser Konventi-
on werden die Include-Namen automatisch vorgeschlagen bzw.
ausgewdihlt.

352 W™ 6 Grundlagen der Dynproprogrammierung
|

= Pro gqramm anlegen

Programm SAPMYKOE

2. Bestitigen Sie den vorgeschlagenen Namen fiir das TOP-
Include.
= Programm anlegen
TOP-Include MYKOGTOP %
v (¥ |
3.

Im Bildschirm ABAP-Prorammeigenschaften im Feld TYP der
Modulpool schon als Vorschlagswert eingetragen

Titel
ful ach

East-Side_Library. Rechercheprogramm

Ersteiit 30.03.2004 BCUSER
Letzte Anderung
Status

Atiribute

Typ Modulpool -]
Status

Arwendung
Berechtigungsgruppe

(m] E-Illor;perr? [¥] Festpunktasithmetik

[+ Sichem] (2]] 7] (€]

4. Ordnen Sie Entwicklungsklasse und Workbenchauftrag zu.
Losung: SAPMYKO06_1

Programme vom Typ Modulpool kénnen nicht direkt, sondern nur
iiber einen Transaktionscode ausgefiihrt werden.
Vorgehensweise: Transaktionscode anlegen

Laden Sie das Programm, zu dem der Transaktionscode angelegt
werden soll, in den Object Navigator (SE80), stellen Sie den Cursor
in den Programmnamen, wihlen Sie ,,Anlegen = Transaktion®.

6.1 Zielstellung des Kapitels

353

Abb. 6.3
Transaktions-
code anlegen

(Einstieg)

Abb. 6.4
Transaktions-
code vergeben

Abb. 6.5
Startdynpro
festlegen

354

s IH €@ DM ©has BE
ABAP Editor: Modulpool SAPMYKO06 anzeigen

EE] | Zl)E | .-.. | (&) (&P @) | [@)[uster] [Pretty Printer

Programm

= Modulpool SAPMYKOG
ST | |—|—|—|) @E @@
:- [=]2] — Gmmonresen s
Ohlekt ame Besch *a
Anlegen Brogramm
Andam........... intamranramem
Laschen Transaktion

Transaktionscode

Transaktionsattribute

Kurztext East-Side-Library. Rechercheprogramm]

3) Programm und Dynpro (Dialogtransaktion)

) Programm und Selektionsbild (Reportransaktion)
(O Methode einer Klasse(OO-Transaktion)

) Transaktion mit Variante (Variantentransaktion)

O Transaktion mit Parametern (Parametertransaktion)

(M

Vergeben Sie einen Transaktionscode im Kundennamensbereich
(mit Z oder Y beginnend). Aktivieren Sie ,,Programm und Dynpro*.

Geben Sie zum Schluss einen Transaktionstext (,,East-Side-Lib.:
Recherchepr®) und das Startdynpro (100) ein. Das Startdynpro ist
das Dynpro, das von der Transaktion im Programm gesucht und ge-
startet wird. Sichern Sie den Transakionscode.

[@ TRl Cc@@ DHRB oo R @8
Dialogtransaktion anlegen

[«)(=] | [Z](=] | |

Transaktionscode ZF_01

== Transaktionstext East-Side-Lib..Rechercheprogr. 1
© (@8 includes Programm SAPMYKDE
Cynpronummer 100
Berechtigungsobjelt

6 Grundlagen der Dynproprogrammierung

18 0@ LMK O
Dialogtransaktion dandern
B P EEE | (S
Prograrmm AI

Transaktionscode ZK_01
iy - L,;, Entwicklungsklasse §TMP
[
Ohbjet ne |
< @ SAPMYROB Transaktionstext East-Side-Lib.:Rechercheprogr. 1
p & Includes Programm SAPMYKOSE
¥ & Transaktionen ||| pynpronummer 100
T it
Andern
Anzeigen " lardtransaktionsvariante eraubt
Ausfihren » [Direkt
WA [I

Legen Sie fiir das Programm SAPMYKO06 den Transaktionscode
ZKO06_1 an.

Losung: SAPMYKO06_2

6.2
Dynpros und ihre Komponenten

Der Name ,,.Dynpro* ist die Abkiirzung fiir ,,dynamisches Pro-
gramm®. Dynpros rufen sich, wie spiter gezeigt werden wird, ent-
sprechend der Benutzereingaben selbst auf. Es entscheidet sich also
erst zur Laufzeit des Programmes, d.h. dynamisch, welches Dynpro
tatsichlich ausgefiihrt (prozessiert) wird. Ein Dynpro besteht aus
folgenden Komponenten:

= Ablauflogik
Die Ablauflogik umfasst 4 Ereignisse, die auch als Zeitpunkte
bezeichnet werden:

= PBO - Process Before Output,
= PAI - Process After Input,

= POH - Process On Helprequest (POH wird ausgefiihrt,
wenn der Benutzer die Feldhilfe F1 aufruft),

= POV - Process On Value Request (POV wird ausgefiihrt,
wenn der Benutzer eine F4-Hilfe anfordert).

Der PBO-Teil muss, die anderen Komponenten konnen, im
Dynpro vorhanden sein. POV und POH werden in diesem Buch
nicht behandelt.

6.2 Dynpros und ihre Komponenten

Abb. 6.6
Programmstart
aus dem Object
Navigator

B 355

356

= Layout mit Dynproelementen (Ein-/Ausgabefeldern, Drucktas-
ten, Textfeldern etc).

Process Before Output

Der PBO-Teil der Ablauflogik wird vom Dynpro ausgefiihrt, bevor
das Layout auf dem Bildschirm angezeigt wird. Er dient dazu,

= Inhalte von Variablen in die Dynproelemente zu transportieren,
= gegebenenfalls Eigenschaften der Dynproelemente festzulegen,
= GUI-Status und GUI-Titel zu laden.

Nach dem Durchlaufen dieses Teils der Ablauflogik des Dynpros
wird das Layout, das aus einer Menge von Dynproelementen be-
steht, angezeigt. Jetzt wartet das Dynpro auf Benutzeraktionen. Lisst
sich nun der Benutzer dazu hinreilen, eine Meniiauswahl vorzu-
nehmen, eine Drucktaste zu klicken oder auch nur die ENTER-Taste
zu driicken, fiihrt das Dynpro den PAI-Teil der Ablauflogik aus.

Process After Input
Im PAI wird
= analysiert, welche Aktion der Benutzer ausgefiihrt hat.

= Fine entsprechende Reaktion wird ausgelost (z.B. Aufruf eines
anderen Dynpros, Ausfiihren eines Unterprogrammes).

Layout

Das Layout enthélt Dynproelemente mit deren Hilfe Daten auf dem
Dynpro ein- und ausgegeben und der Bildschirm iibersichtlich ge-
staltet werden kann. Zu den klassischen Dynproelementen gehoren:

= Textfelder,

= Gruppenrahmen,

= Statusikonen,

= Subscreenbereiche,

= Ein- / Ausgabefelder,

= Ankreuzfelder,

= Auswahlknopfe (bzw. Auswahlknopfgruppen),

= Drucktasten,

= Table Controls zur Ein- u. Ausgabe von Daten in Tabellenform,

= Tabstrips zur Ein- und Ausgabe von Daten auf verschiedenen
Registerkarten.

6 Grundlagen der Dynproprogrammierung

Abb. 6.7
/m Bestandteile

Ablauflogik Ablaufiogik eines Dynpros
PBO E PAI
(Process be- ‘. _______ (Process after

vor output) — = W input)

Typische Aufgaben zu PBO

o . P— Typische Aufgaben zu PAI

m Laden des GUI-Status R — |m Ermitteln, welche Benut-
und des GUI-Titels, Warten auf eine Benutzerein- Zeraktion ausgefuhrt

m Dyn.Andern der Attribute | |gabe wurde
der Dynproelemente, m Auslosen der entspre-

m Transport von Variablen- chenden Programmreak-
inhalten in die entspre- tion
chenden Ausgabefelder /m dyn. Aufruf des Folge-
des Dynpros, dynpros

Dynpros sind an ein konkretes Programm gebunden. Dieses

muss nicht unbedingt vom Typ Modulpool sein, ihm kann auch ein ‘00
anderer Programmtyp (z.B. ausfiihrbares Programm) zu Grunde lie- V
gen. Der Modulpool wird fiir umfangreiche Programme verwendet.

6.3
Statischer und dynamischer Dynproaufruf

In den Eigenschaften eines Dynpros kann ein sogenanntes statisches
Folgedynpro angegeben werden. Das dort angegebene Dynpro wird
prozessiert, wenn zur Laufzeit in der Ablauflogik (PAI) kein anderes
Dynpro aufgerufen wird (dynamischer Dynproaufruf). In der Regel
ist als statisches Folgedynpro die Nummer des aktuellen Dynpros
eingetragen. Dadurch wird erreicht, dass nur bei entsprechenden Be-
nutzeraktionen das Dynpro verlassen wird, nicht etwa durch das
Driicken der ENTER-Taste. Der dynamische Dynproaufruf hat im-
mer Vorrang vor dem statischen Aufruf.

6.3 Statischer und dynamischer Dynproaufruf ® 357

Abb. 6.8
statischer und
dynamischer
Dynproaufruf

Abb. 6.9
Aufruf von
Dynprofolgen

358 *®

Ablauflogik Ablauflogik e
PBO PAI

des Dynpros des Dynpros
100 100

Mvenn Drucktaste .Recher-
che” gedrickt wurde:
= Dynamisches Folge

\Typische Aufgaben zu PBO

m | aden des GUI-Status

und des GUI-Titels, Eigenschaften des Dynpros: dynpro 200 setzen
m Dyn. Andern der Attribute | (Statisches Folgedynpro:

der Dynproelemente, 100 sonst
® Transport von Variablen- - kein dynamigches Folge

inhalten in die entspre- dynpro setzen

che Ider

NPros -
e
Ablauflogik
PBO

Dynprofolgen

Wenn sich die Dynpros gegenseitig aufrufen, spricht man auch von
Dynprofolgen oder Dynproketten. Ob der (dynamische) Aufruf eines
Dynpros eine bestehende Dynprokette abschliefit oder eine zusétzli-
che erzeugt, ist von der Programmierung dieses Aufrufes abhingig.
Der Aufruf eines Dynpros mit ,,CALL SCREEN <dynpronr>* er-
zeugt eine neue Dynprokette. Diese wird mit der Anweisung
-LEAVE TO SCREEN 0“ beendet. Das Programm wird mit der
Anweisung, die auf ,,CALL SCREEN <dynpronr>* folgt, fortge-
setzt. Wie in Abb. 6.9 zu sehen ist, konnen Dynpros auch mit der
Anweisung LEAVE TO SCREEN <dynpronr> aufgerufen werden.
Bei diesem Aufruf wird keine neue Dynprokette erzeugt.

Dynpro 100 pro pro
|
Folgedynpro™ 200 ’ Folgedynpro® 300 Felgedynpro 0
PAI-Modul des * Das Folgedynpro kann das statische Folge-
Dynpros 100 dynpro sein oder ein mit LEAVE TO
SCREEN <dynpronr> aufgerufenes.
ICALL SCREEN 110. +— . o
= Mit LEAVE TO SCREEN 0 ward die Dynpro-
< kette beendet.

6 Grundlagen der Dynproprogrammierung

6.4
Dateneingabe und —ausgabe mit Dynpros

Die Ein- bzw. Ausgabe von Daten ist nach folgendem Prinzipien or-
ganisiert:

= Im Dynpro werden fiir alle Ein- bzw. Ausgaben Dynproelemen-
te angelegt.

= Jedem Dynproelement, das Benutzerdaten entgegennimmt oder
zur Programmlaufzeit ermittelte Daten ausgibt, wird genau ein
Datenobjekt zugeordnet, iiber das der Datentransport Dynproe-
lement <> ABAP-Programm erfolgt. Dieses Datenobjekt, im
weiteren auch als korrespondierendes Datenobjekt bezeichnet,
ist im ABAP-Programm (TOP-Include) namensgleich zu ,,sei-
nem“ Dynproelement zu deklarieren.

= Die korrespondierenden Datenobjekte werden durch das Pro-
gramm (im Allgemeinen zu PBO) mit den auszugebenden Wer-
ten geladen. Vor der Layoutanzeige transportiert das Laufzeit-
system diese Werte in die zugehorigen Dynproelemente.

= Alle Benutzereingaben werden zunichst in den Dynproele-
menten gehalten. Zu PAI wird vom Laufzeitsystem der Daten-
transport vom Dynproelement in das korrespondierende Da-
tenobjekt vorgenommen.

Vorgehensweise: Dynpro anlegen

Starten Sie den Object Navigator (SE80) mit dem Programm, zu
dem ein Dynpro angelegt werden soll. Stellen Sie den Cursor in den
Namen des Rahmenprogrammes, wihlen Sie ,,Anlegen = Dynpro®.

& 2 I3 @@ DB o AR @& Dynpro anlegen

ABAP Editor: Modulpool SAPMYKO06 d@ndern

EE] |)] | (@0 @) | (&) P E) | (@) (Muster] (Prety Printer]

| = Modulpool SAPMYED6 aktiv
SAPMYKOG =] -
M]E]m) =l M3 [
[Erogramm
L= Unterprogramm
o Anzeigen *| PBO-Modul
L ¥
[] Prifen * PAModul
Aktivieran Dynpro
Ausfihren v GLI-Status

6.4 Dateneingabe und —ausgabe mit Dynpros 359

Abb. 6.11
Dynpronummer
eingeben

Abb. 6.12
Eigenschaften
des Dynpros
festlegen

360

Geben Sie im Folgebild eine Nummer fiir Thr Dynpro ein. Ublicher-
weise beginnt die Zdhlung mit 100.

(= Dynpro anlegen

Programm SAPMYKO6
Dynpronummer 100 [

Der Screen-Painter, ein grafisches Werkzeug zum Anlegen des
Dynpros und aller Dynproelemente, startet.

@ ' 1B @@ BHNE prod AR @B
Screen Painter: Dynpro zu SAPMYKO06 &r]

EE PE | EEEE | EEFEE | (& o
e

Dynp 100 aktiv
SAFMYKOS = —rY -
] E—] ¥ f ¥ ak |
u|w0|[% i
SESPUSTRIR] (o mvwins
jekinama -
R T o he Tt Entwickdungskiasse Y_ABAP_
b |2 DOIC-Strulduren Letzte Anderung 30.00.2004 11:51:54
b 52 Feiger Letzte Genernerung 30.03.2004 11:55:37
= @ Dynpros
b @ Includes [Dynpeotyp .~ Einstellungen -
R ranan oy @) Nommal [] Halten Daten
() Subscreen [Ausschalten Laufzedkompr
() Modales Dialogfenster [Vorlage - nicht ausfahibar
O Selektionsdynpro [Halten Scrallposition
Weitere Attribute
e (o)
Cursorposition
= =

In der Registerkarte ,,Eigenschaften* werden die allgemeinen Eigen-
schaften des Dynpros, wie z.B.

= Kurzbeschreibung,

= Dynprotyp,

= Finstellungen,

= statisches Folgedynpro und
= Kontextmenii

festgelegt. Tragen Sie eine Kurzbeschreibung und das Folgedynpro
ein. Im Eingabefeld ,,Folgedynpro* ist als statisches Folgedynpro
immer die aktuelle Dynpronummer vorgeschlagen. In den meisten
Fillen ist das auch richtig. Sie wiirden sonst mit jeder PAI auslosen-
den Benutzeraktion, die kein dynamisches Folgedynpro setzt (z. B.
driicken der ENTER-Taste), das aktuelle Dynpro verlassen.

6 Grundlagen der Dynproprogrammierung

Uberpriifen Sie jetzt, ob der ,,Grafische Layout Editor aktiviert ist.
Wihlen Sie dazu das Menii ,,Hilfsmittel = Einstellungen®. Aktivie-
ren Sie gegebenenfalls in der Registerkarte ,,Screen Painter* das ent-
sprechende Kontrollkistchen.

Sichern Sie zum Schluss das Dynpro.

6.4.1
Dynproelemente

In diesem Kapitel werden die Dynproelemente
= Textfelder,

= Gruppenrahmen,

= Ein- / Ausgabefelder,

= Auswahlknopfgruppen,

= Ankreuzfelder,

= Drucktasten und

= Statusikonen

behandelt. Alle Dynproelemente besitzen statische und dynamische
Eigenschaften. Die statischen werden im Layouteditor festgelegt.
Die dynamischen Eigenschaften konnen zur Laufzeit iiber die inter-
ne Tabelle SCREEN geindert werden (siche dynamische Bildmodi-
fikationen).

Der Layouteditor

Alle Dynproelemente werden im Layouteditor angelegt. Rufen Sie
zum Start dieses Werkzeuges den Screen Painter mit dem zu bear-
beitende Dynpro auf. Klicken Sie dann die Schaltfliche ,.Layout®
(Abb. 6.12).

Hinweis: Solange der Layouteditor gedffnet ist, kann in keinem an-
deren Modus gearbeitet werden.

6.4 Dateneingabe und —ausgabe mit Dynpros

361

Abb. 6.13

Grafischer
Layout Editor

362

3 R -
“ B oa@ D6 ¥xmWm| oo B e
TE s B0 4 r | = ok 4= 4
Hame Temt [Bl wl s 2 s[
i‘?] £
- Arbeitsflache
I3
@
D .
3 >Werkzeug|elste
(B2}
=
]
il L
24}
e
)-I | ,:Jﬂ

T ———) lizospx27z s Mes

6.4.2
Dynproelemente zur Ausgabe

Textfelder

Textfelder werden eingesetzt, um einen feststehenden Text auf dem
Dynpro auszugeben. Als Text dient hdufig der Kurz- Mittel oder
Langbezeichner von Datenelementen aus dem ABAP-Dictionary.
Sie konnen die Texte aber auch im Layouteditor ,,manuell* anlegen.
In beiden Fillen ist die zusitzliche Ausgabe einer Ikone moglich.

Zur Laufzeit des Programmes konnen folgende Eigenschaften der
Textfelder gedndert werden (siehe dynamische Bildmodifikationen):

= Helligkeit (intensiv / nicht intensiv),

= Linge,

= Sichtbarkeit (sichtbar oder unsichtbar).

Der Ausgabetext und die Ikone kénnen zur Laufzeit nicht gedndert
werden.

Vorgehensweise: Textfeld anlegen

Ausgangspunkt ist der Layouteditor.

Gehen Sie wie folgt vor:
1. Klicken Sie das Symbol ,,Textfeld” in der Werkzeugleiste an.

2. Schieben Sie den Mauszeiger an die Stelle der Arbeitsfliche
des Layouteditors, an der das Textfeld positioniert werden soll
(dabei darf keine Maustaste gedriickt sein).

6 Grundlagen der Dynproprogrammierung

3. Diriicken Sie die linke Maustaste. Der Beginn des Textfeldes
ist nun durch ein kleines rotes Rechteck gekennzeichnet.

4. Doppelklicken Sie in dieses rote Rechteck. Das Fenster
»screen Painter: Attribute® 6ffnet sich.

5. Fiillen Sie dieses Fenster entsprechend Abb. 6.14 bzw. 6.15
aus und sichern Sie das Dynpro.

T Screen Painte] 'ZScreen PaIter] IT] screen Painter: AttHE
Dynpro Bearbeten Dynpro_BearbetdDje Angabe des

& | @ Namens ist option
I p| Blos|a)Zalai
Name | . Name]T'i e

Quick-Info

Text i |2_ deflLinge I“_
) | EO0E o

"R

Um den Bezeichner eines Datenelementes als Text zu benutzen, ist
der Name des Textfeldes namensgleich zum Datenelement zu wih-
len. Aktivieren Sie das Ankreuzfeld ,,Aus Dict.” und gehen Sie ent-
sprechend Abb. 6.15 vor.

0o ponicr Al crccn ot X O ST el
0.- rE B. Elantyp T Sl @ B Elementyp Testiekd _ alaa
u|pi @ Hame ESTAND_TWVERLAG - g] Home m e
™ [IDynproelementname gleich [-==
Mome [conam 1 o
Y wsie_IDatenelementname —
T Zade F Mlﬁ— T TETTET : PP
—= spatn [T velinge [0 - EOR T
B = = o I_
Eomert 5. das Dictionary Bezug nebmen? @ Guoen | | | |
B | men | % oabecen | @ e || O3 Futode [L |
=T k) Content Meew Fom
® owcnem [® onemen [
| A N [= i af
B Dict | Progamm | Aneige | B Dict | Progpamn | Arceie |
B2 AusDit wosie [] B F AmDit Modie [1 v
E Korrvedtf I_ “ ForrverEwt
Swchbe [Suchhde
% Aot [% Rotmertold || £
Pametedd [Paramesesid
Gruppenrahmen

Mit Gruppenrahmen werden zusammengehorige Dynproelemente
(z.B. eine Gruppe von Ein-/Ausgabefeldern) optisch zusammenge-
fasst. Gruppenrahmen haben folgende allg. Eigenschaften:

6.4 Dateneingabe und —ausgabe mit Dynpros

Abb. 6.14
Textfeld ohne
Bezug zu einem
Datenelement
anlegen

Abb. 6.15
Textfeld mit
Bezug zum
Datenelement
zbestand_tw_
verlag anlegen

" 363

364

Wird einem Gruppenrahmen ein Kontextmenii' zugeordnet,
wird dieses fiir alle im Gruppenrahmen befindlichen Dynproe-
lemente angezeigt, sofern diese keine eigenen Kontextmeniis
besitzen.

Enthilt ein Gruppenrahme nur unsichtbare Dynproelemente und
ist das Dynproattribut , Laufzeitkomprimierung® aktiviert
(Screen Painter, Registerkarte ,,Eigenschaften*), wird der Grup-
penrahmen auch nicht angezeigt.

Ein Gruppenrahmen kann eine Rahmeniiberschrift besitzen.

Zur Laufzeit des Programmes konnen folgende Eigenschaften der
Gruppenrahmen geindert werden (siehe dynamische Bildmodifika-
tionen):

Rahmeniiberschrift

Um die Rahmeniiberschrift dynamisch zu @ndern, aktivieren Sie
das Attribut ,,Ausgabefeld” des Gruppenrahmens und legen eine
zum Gruppenrahmen namensgleiche Textvariable im ABAP-
Programm an (korrespondierendes Datenobjekt). Laden Sie die-
se vor der Layoutanzeige mit der Rahmeniiberschrift.

Sichtbarkeit.

Vorgehensweise: Gruppenrahmen anlegen

Ausgangspunkt ist der Layouteditor.

1.
2.

Klicken Sie im Layouteditor das Werkzeug ,,Rahmen* an,

schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu driicken, an die linke obere Ecke des kiinftigen Rah-
mens,

fixieren Sie den Minirahmen durch driicken der linken Maus-
taste,

ziehen Sie den Minirahmen, mit gedriickter linker Maustaste,
bis zum unteren rechten Rand des kiinftigen Rahmens,

lassen Sie die Maustaste wieder los,

doppelklicken Sie genau auf die Rahmenbegrenzung, damit
sich das Fenster ,,Screen Painter: Attribute® 6ffnet,

bearbeiten Sie das Attribute-Fenster wie in Abb. 6.16. Das Att-
ribut ,,Ausgabefeld” finden Sie im unteren Teil dieses Fensters
in der Registerkarte ,,Programm®.

6 Grundlagen der Dynproprogrammierung

[¥]creen Painter: Aniegen Abb. 6.16

Dyrgea Springen Umfeld Hilfe WQ_ www '_..‘ G h
G| Becee oW il d/coe2H xam| ruppenranmen
| | ; anlegen
Mi HName I
By %j G| |} | [OFrogramstert | T
T T
— l = ' - |1sBN
Buchnml S~ | IPocttitel
= —~ } x imn;mw | —
® ~ ®
Q| =)
[i
a
0 i
*
B B
2 8 CO@ DM XGE B tewetp Ao [7]
DH av oy 4 P o abiabogk o Eign Name F%l
Nae [F1 Test [Angaben_zum_BucH g
toontame [H| b———
ﬁ Clcs ; [] / A@ Dusck-Anfo I—_!
T 25 |""'l'"' zun Buch- # i Zele [3_ M{r
- ISEN - [I o oo
E !.Emhntal . | i e 15_
@ : e [[
Ergebnis:

Abb. 6.16a
) 8 IH @e@ LNE nnos @E @@ Lin/Ausgabe-

; ; - felder mit Grup-
East-Side-Library: Rechercheprogramm penrahmen

® Programmstart 150304 13:43:00

Angaben zum Buch
ISBN [
Buchtitel
Autorennummer

Statusikonen

Statusikonen sind Ausgabefelder mit denen eine Ikone zur Anzeige
gebracht werden kann. Das Besondere an diesem Ausgabefeld ist,

6.4 Dateneingabe und —ausgabe mit Dynpros ®™ 365

366

dass die anzuzeigende lkone erst zur Programmlaufzeit geladen
wird. Sie konnen mit diesem Dynproelement, je nach Programm-
kontext, verschiedene Tkonen ausgeben. Ein Textfeld, mit dem eben-
falls Tkonen ausgegeben werden konnen, leistet das nicht.

Zur Laufzeit des Programmes konnen folgende Eigenschaften der
Statusikonen geédndert werden (siehe dynamische Bildmodifikatio-
nen):

= Helligkeit (intensiv / nicht intensiv),
= Linge (Lédnge des Info-Textes + Linge der Ikone),
= Sichtbarkeit (sichtbar oder unsichtbar).

Vorgehensweise: Statusikone anlegen

1. Legen Sie im ABAP-Programm eine zum Dynproelement na-
mensgleiche Variable an (korrespondierendes Datenobjekt).
Verwenden Sie dazu das Feld TEXT der Struktur ICONS.
DATA ikone TYPE icons-text.

2. Klicken Sie das Symbol ,,Status-Icon in der Werkzeugleiste
des Layouteditors an.

3. Schieben Sie den Mauszeiger an die Stelle der Arbeitsfliache
des Layouteditors, an der Statusikone positioniert werden soll
(dabei darf keine Maustaste gedriickt sein).

4. Driicken Sie die linke Maustaste. Die Statusikone wird als
kleines rotes Rechteck mit einem Platzhalter dargestellt.

5. Doppelklicken Sie in dieses rote Rechteck. Das Fenster
,.Screen Painter: Attribute® 6ffnet sich.

6. Fiillen Sie dieses Fenster entsprechend Abb. 6.17 aus und si-
chern Sie das Dynpro.

6 Grundlagen der Dynproprogrammierung

-5 Abb. 6.17
wwoh&um sMH\Wwommmm Springen [e
p ey Statusikone

] B B (g 9‘
anlegen

PG ab it
Statusikonename gIe|c
N = Varlablenname
X Wit icon
¥ #‘ i

B 5
T T ol 4
L] W | © spate [vilshoe
F3 73 73 s
® ® @® Gupen [| | |
= = [| Facods [fuiw [o]
. > " o
] Attibute)
® ¢$$ Eé Eé Dict mmm|mmm|.iL
i i i L
i] %4 I Nus Ausgabeleid

% %

Eingabshietaste m

Fiillen der Statusikone

Die Auswahl der anzuzeigende Ikone erfolgt programmgesteuert.
Vor der Layoutanzeige ist iiber den Funktionsbaustein
'ICON_CREATE der technische Name der Ikone zu ermitteln und
ein Quick-Infotext zuzuordnen. Beides wird dann, durch den Funk-
tionsbaustein, dem korrespondierenden Datenobjekt iibergeben.

Beispiel: (siehe auch ,,Programmierung der Ablauflogik®, Seite 382)

*& ___ *
*& Include MYKO6 TOP *
*& ___ *

INCLUDE <icon>.
DATA: ikone TYPE icons-text, bereich.

* & Module ikone 0100 OUTPUT *

MODULE ikone 0100 OUTPUT.
IF bereich = '1'.
CALL FUNCTION 'ICON CREATE'
EXPORTING
name = icon flight
text = 'Nutzung des Firmen-Flugzeuges'
IMPORTING
result = ikone.
ELSE.

6.4 Dateneingabe und —ausgabe mit Dynpros ® 367

Abb. 6.18
Dynpro mit
Statusikone

368

C

EN
END

ALL FUNCTION 'ICON CREATE'

EXPORTING

name = icon_railway

text = 'Nutzung des der Firmen-Bahncard'
IMPORTING

result = ikone.

DIF.

MODULE. " ikone 0100 OUTPUT

Ergebnis:

Bereich ="1". Bereich <> 1

-+ L

WECG REKY

sterm

Statusikonen Statusikonen
44 Nutzung des Firmen-Flugzeuges &. Nutzung des der Firmen-Bahncard
6.4.3

Dynproelemente zur Ein-/Ausgabe

Ein- / Ausgabefelder

Ein-
bzw

/ Ausgabefelder werden zur Dateneingabe durch den Benutzer
. zur Datenausgabe durch das Programm benétigt. Sie haben

folgende allgemeine Eigenschaften:

Sie konnen mit Bezug zu Dictionary- oder programmlokal de-
klarierten Datenobjekten angelegt werden.

Es erfolgt immer eine automatische Eingabepriifung hinsichtlich
der datentypgerechten Eingabe (z.B. giiltiges Datumsformat bei
Datumsfeldern)

Bei Eingabefeldern mit Bezug zum ABAP-Dictionary erfolgen
zusitzliche Priifungen (z.B. Fremdschliisselpriifungen, Wertebe-
reichspriifungen)

Bei Ausgabefeldern mit Bezug zum Dictionary erfolgt die Aus-
gabe gegebenenfalls entsprechend der im Dictionary festgeleg-
ten Ausgabekonvertierung.

F1- und F4-Hilfe werden gegebenenfalls aus dem Dictionary
tibernommen.

6 Grundlagen der Dynproprogrammierung

Zur Laufzeit des Programmes konnen folgende Eigenschaften der
Ein- / Ausgabefelder geidndert werden (siehe dynamische Bildmodi-
fikationen):

= GroBe,

= Fingabefihigkeit,

= Musseingabe,

= Helligkeit,

= Sichtbarkeit,

® 2D- oder 3D-Darstellung.

Vorgehensweise: Ein-/Ausgabefeld ohne Bezug zum ABAP-
Dictionary anlegen

Voraussetzung: Fiir das anzulegende Feld ist eine gleichnamige
Variable im ABAP-Programm deklariert. Der Programmteil, indem
die Variable angelegt wurde, ist aktiv.

Wirkungsweise:

Der Datentransport von und zu den Ein-/Ausgabefeldern des
Dynpros erfolgt iiber namensgleiche (korrespondierende) Datenob-
jekte. Die Inhalte der Datenobjekte werden vor der Layoutanzeige in
die namensgleichen Ein-/Ausgabefelder gestellt. Zu PAI werden die
Inhalte der Ein-/Ausgabefelder in ihre korrespondierenten Datenob-
jekte zuriickgeladen.

Starten Sie den Layouteditor. Driicken Sie die Drucktaste
,Dict./Programmfelder-Fenster.

Screen Painter: Andern Dynpro SAPMYKOG6 0100
Dynpro Bearbeiten Springen Hilfsmittel Umfeld Hife

¢ |8coe ol xamss a=u0
Y| ga F BHHE| 4 P | € Ableulogk <3 Eigenschalten 43 Elementiste

Namo | ot | Drucktaste fir das |,
—— = Dict./Programmfelder- |-
X | [© Prosremastert | Fenster

T

[Fsrcenpater ot Pogrammicer pb ~ioix

TabelerFoirame ([)1 E Hiken aus Progiaeen |

v]m|&EE

6.4 Dateneingabe und —ausgabe mit Dynpros

Abb. 6.19
Dict./Programm-
felder-Fenster
offnen

Abb. 6.20
Auswahl
der Felder

" 369

Abb. 6.21

Felder

positionieren

370

Im ,,Dict./Programmfelder-Fenster* gehen Sie wie folgt vor:
1. Variablenname eintragen (* fiir alle Felder),

2. Drucktaste ,,Holen aus Programm* anklicken,

3. Dbenotigte Felder markieren,

4. ENTER driicken.

Das Driicken der ENTER-Taste schlief3t das Dict./ Programmfelder-
Fenster. Sie befinden sich wieder im Layouteditor. Positionieren Sie
die Felder entsprechend Abb. 6.21.

[FF] Screen Painter: ibernehmen .

Dynpro Bearbeiten Springen Hilfsmittel Umfeld Hilfe

P I — Y |

@ | Schieb]eE‘Sie den Mauszeiger (ohne gédrﬂckfe Maus- |
< Eemgtaste) an die Stelle der Arbeitsflache, an der die Felder

positioniert werden sollen.
Name [_

o

k F@ Programmstart | |
Ll '
]
El Screen Painter: Andern Gruppe
Dynpro Bearbeiten Springen Hilfsmittel Umfeld Hilfe

€& [Dricken Sie die linke Maustaste. Die Felder werden
% & |positioniert, sind aber noch miteinander verbunden.
Mit der gedriickten linken Maustaste kdnnen sie noch
Name rgemeinsam verschoben werden.

W |(® Programnstart | |
T

IS

i Nachdem Sie mit der linken Maustaste in die Arbeits-

MRSl ache geklickt haben, wird der Verbund der Felder |
Lynero Baufgehoben. Sie kdnnen nun, mit gedrickter linker
& |Maustaste, einzeln verschoben werden. Der Verbund ||
Wkann wieder hergestellt werden, wenn Sie mit ge-
driickter linker Maustaste einen Rahmen (sogenann-
Name |ﬁtes Lasso) um die zu verbindenden Felder ziehen

| I

6 Grundlagen der Dynproprogrammierung

Nachdem sich nun die Felder an der richtigen Stelle im Layout be-
finden, werden deren Eigenschaften festgelegt. Doppelklicken Sie
dazu in das Ein-/Ausgabefeld. Das Fenster ,,Screen Painter: Attribu-
te* wird gedffnet. In diesem Fenster konnen Sie z.B. die Anzeigeei-
genschaften des Feldes dndern.

S(reenPaer: n.mawrd i 7] screen Painter: Attribute S =] b3 Abb. 6.22

Dynpro Bearbeiten Springen Hilfsmittel Unfeld Hife .

: . : . - Feldeigenschaf-

@ (B[00 CH[Xnm|[pa frr i ton i Attrbute-

T e N [emtOMTON

D5 |gh ¢ @[] (P | ¢oabladiogk ¢ Eigensch L ————— Fenster dndern

D r‘ | vI
I J Mitleon [Rolbar T

7 7 Zeile |1_ ddlangals_

spte [15 vl [F

Hane [T

Gupen [[[[

FiiCode | Ry |_:]
Context Menu Form

ON_CTMENU_

[Adtribute 1
Dict | Programm | Anzeige | 3”
I | Eingabef

Name [STARTDATUM

FT T

IRBEAUIREOD® X 0=~

= |

MuBeingabeleld

Alternativ konnen die Feldeigenschaften auch in der Elementliste ge-
pflegt werden. Das ist vor allem dann ganz praktisch, wenn die Ei-
genschaften mehrerer Felder gedndert werden sollen. In die Element-
liste gelangen Sie vom Layouteditor iiber die Drucktaste Elementlis-
te. Sie konnen auch den Layouteditor schliefen und im Einstiegsbild
des Screen Painters die Registerkarte ,,Elementliste auswihlen.

Abb. 6.23
@ = 10 c@@ CHE 0o AFE @6 Feldeigenschaf-
Screen Painter: Dynpro zu SAPMYKO06 dndern ten in der Ele-
| | |I| | | [= Layou] | @ Attribute | | E Element | mentliste dndern

Dyn BT 100 inaktiv
E haten,” El liste |/ Ablaufagk |
Allg. Atirb. | Texte u. E/A-Schabl. | Spez. Attnb. | Anzeigeatinb. | ppen/F } R
H. [MMName Typ . 2. [S..|d.. p. [H. |ro.. [Format [Ei. A . |Nur. [Di. |Dic... |[Propery-Liste
rl Text 1| 2| 18] 1 1 ol aiig = Properies
ISTARTDATUM 1/0 1190 8 s Jpars (OO O = Properties
[STARTZEIT 1/0 1 28| s & 1[]rms O) O
o o of 20 20 1] ox |}

6.4 Dateneingabe und —ausgabe mit Dynpros ® 371

Abb. 6.24
Dict./Programm-
felder-Fenster
éffnen

372

Vorgehensweise: Ein-/Ausgabefeld mit Bezug zu einer Datenbankta-
belle

Voraussetzung: Im ABAP-Programm (TOP-Include) existiert eine
TABLES-Anweisung zur Datenbanktabelle, deren Felder im Dynpro
abgebildet werden sollen.

Syntax:
TABLES <Datenbanktabelle>.

Durch die TABLES-Anweisung wird eine programmlokale Struktur
mit den Feldern der Datenbanktabelle angelegt. Diese Struktur wird
auch als Standardstruktur bezeichnet, hat den gleichen Namen wie
die Datenbanktabelle und wird in einem besonderen Bereich des Ar-
beitspeichers angelegt.

Wirkungsweise:

Der Datentransport von und zu den Ein-/Ausgabefeldern des
Dynpros erfolgt iiber die (namensgleichen) Komponenten der Stan-
dardstruktur. Die Inhalte der Standardstruktur-Komponenten werden
vor der Layoutanzeige in die korrespondierenden Ein-/Aus-
gabefelder gestellt. Zu PAI werden die Inhalte der Ein-/Aus-
gabefelder in die Standardstruktur zuriickgeladen.

Starten Sie den Layouteditor. Driicken Sie die Drucktaste
,.Dict./Programmfelder-Fenster.

[Screen Painter: Andern Dynpro SAPMYK06 0100 - —
Dynpro Bearbeiten Springen Hilfsmittel Umfeld Hilfe

& | 8 e DH| xmml|» & nqu@
s | da ¢ @ @ | € P | ¢ Abkuiogi

Name | Text |_

Drucktaste fir das
Dict./Programmfelder-

| X | |(® Programmstart || || Fenster

6 Grundlagen der Dynproprogrammierung

[F] screen Paintes: Dict/Progranmieldes
e T

Hoken aus Programe
] G |

||..Ir\|. ® « B * o
I-— QO Ol @15 0200 T _

o @ 4|D'0 o %Mum

IAuswahl des Bezeichners L
(ohne,Kurz, Mittel, Lang...)

Im ,.Dict./Programmfelder-Fenster gehen Sie wie folgt vor:
Name der Datenbanktabelle eintragen,

Drucktaste ,,Holen aus Dict.* anklicken,

gewiinschten Bezeichner auswéhlen,
ENTER driicken.

Schieben Sie dann den Mauszeiger an die Stelle der Arbeitsfldche
des Layouteditors, an der die Felder positioniert werden sollen. Zum
Fixieren der Felder driicken Sie die linke Maustaste. Die Positionie-
rung der Ein-/Ausgabefelder ist in Abb. 6.21 (Seite 370) gezeigt.

1
2
3. Dbenoctigte Felder markieren,
4
5

Ergebnis:

”"| Screen Painter: Andern Dynpro SAPMYKO6 0100
Dynpro Bearbeiten Springen Hifsmittel Umfeld Hife

¢ |Bleo@ oM xmmvs a@m @
PB4 B D] 4P| & Avksulook G Egerschaten <= Elmentit |

Name | Teut [

|@ Programmstart || Il

[1SEN
Buchtitel

© %14

Auswahlknopfgruppen

Auswahlknopfgruppen enthalten mehrere Auswahlknopfe (Radio-
button). Der Benutzer kann aus der Auswahlknopfgruppe genau ei-
nen Auswahlknopf aktivieren.

6.4 Dateneingabe und —ausgabe mit Dynpros

Abb. 6.25
Auswahl der
Tabellenfelder

Abb. 6.26
Dynpro mit
E/A-Feldern

m 373

Abb. 6.27
Anlegen eines
Auswahlknopfes

374

Zur Laufzeit des Programmes konnen folgende Eigenschaften der
Auswahlknopfgruppen geédndert werden (siehe dynamische Bildmo-
difikationen):

= Ein- und Ausgabefihigkeit,

® Sichtbarkeit.

Vorgehensweise: Auswahlknopfgruppe anlegen

Fiir jeden Auswahlknopf ist im ABAP-Programm (TOP-Include) ein
Datenopjekt vom Typ C mit der Linge 1 anzulegen. Datenobjekt
und Auswahlknopf miissen namensgleich sein.

Wirkungsweise:

Vor der Anzeige des Layouts erhilt der Auswahlknopf, dessen kor-
respondierendes Datenobjekt mit 'X' geladen ist, den Status ,,aktiv*.
Zu PAI werden die Werte der Auswahlknopfe in die namensglei-
chen Datenobjekte zuriickgeladen.

Als Datenobjekt wird hiufig eine Struktur verwendet. Die einzelnen
Auswahlknopfe miissen dann namensgleich zur jeweiligen Kompo-
nente der Struktur sein.

DATA.:
wa_rbg, rbl value 'X', rb2, end of wa_rbg.

Legen Sie dann im Layouteditor die Auswahlknopfe an.

Mcreen Poner: & [Jscreen painter Ancd

Dynpro Bearbeken 5P Dynpro Bearbeten Sp Dyrevo Gesbeten U‘eenPdnter'._:_. = [=
. Seg See X
o8 e i@ 98 @ @™ /A_RBGRBT
Text ISEN
_ Name [14 Name [WA_RBGAB1 oo Ql
3| ma [T Gﬁﬂm [} | [@Proszen quckino |
T T| % T| cosan 2% [mf
F e L - e [wsme [
X X Hove [T
& o ® -
g E E fucode [Fatp [o

Klicken Sie das Werkzeug ,,Auswahlknopf™ an.

Schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu driicken, an die Stelle, an die der Auswahlknopf posi-
tioniert werden soll.

N

6 Grundlagen der Dynproprogrammierung

3. Fixieren Sie den Minirahmen durch driicken der linken Maus-
taste.

4. Doppelklicken Sie in den neu entstandenen (roten) Auswahl-
knopf. Das Fenster ,,Screen Painter: Attribute* 6ffnet sich.

5. Fiillen Sie dieses Fenster entsprechend der Abbildung aus.
Achten Sie auf die Namensgleichheit von Datenobjekt und
Auswahlknopf.

6. Legen Sie alle Auswahlknopfe der Auswahlknopfgruppe an.

Im néchsten Schritt werden die Auswahlknopfe zu einer Auswahl-
knopfgruppe zusammengefasst.

Abb. 6.28

Dynpro | Bearbeiten Springen Hilfsmittel Umfeld Hilfe Anlegen einer
Neu zeichnen Enter @& | = 3 & 2
= st) ¥ mW @ o @ @M @ Auswahlknopf
Wiederhalen Strg VY, Ablauflogik €= Eigenschaften <= Elementiist gruppe
Ausschneiden Strg X (Einstieg)
Kopieren Strg C
Einsetzen atrg i

EI.“ [: .

NG < I

T Umwandeln »

L. Modifikationsoperationen » Steploop > oA
Ldschen Umsch F2

[x
Abbrechen Fi2

® 1

[| € ISBN

= C Titel

1. Markieren Sie alle zur Auswahlknopfgruppe gehdrenden

Auswahlknopfe (Klicken Sie jeden Knopf bei gedriickter
Shift-Taste an oder ziehen Sie mit gedriickter linker Maustaste
ein Lasso um die Gruppe).

2. Wihlen Sie das Menii ,,Bearbeiten = Gruppierung > Aus-
wahlknopfgruppe = Definieren.

Soll das Anklicken eines Auswahlknopfes durch den Benutzer PAI
auslosen, ist der Auswahlknopfgruppe ein Funktionscode zuzuord-
nen.

6.4 Dateneingabe und —ausgabe mit Dynpros ®™ 375

Abb. 6.29
Auswahlknopf-
gruppe anlegen
(Einstieg)

376

Screen Painter: Ande

Dynpro Bearbeiten Sprid

Screen Painter: Attribu =107 x|

@

Elementtyp Auswahlknopf

a

Name IW.':‘._RBG-HB'l

P& aa T B
Te [1SBN
NameIIWA"RBG'HB‘I lcon-Name |

I Dg (X) Program Quick-Info |
N TeEN Zeile I4 deflL.ange IB

!5 Ti:ta l] Spalt ird der Auswahlknopfgruppe

0® ==

in Funktionscode zugeordnet,
I6st das Aktivieren eines Aus-
ahlknopfes PAI aus.
- T

T T T
————

FktCode REG ktTyp I vI

Grup,

Doppelklicken Sie in einen Auswahlknopf der Auswahlknopfgrup-
pe. Das ,,Screen Painter: Attribute*-Fenster ¢ffnet sich. Tragen Sie
dort in das Feld FktCode eine beliebige Zeichenkette ein. Beim akti-
vieren eines Auswahlknopfes wird PAI ausgelost und diese Zei-
chenkette in die Systemvariable sy-ucomm und das OK-Feld einge-

tragen.

Soll beim Anklicken eines Auswahlknopfes kein PAI ausgelost wer-
den, vergeben Sie einfach keinen Funktionscode fiir die Auswahl-

knopfgruppe.

Die Auswertung, welcher Auswahlknopf aktiv ist, wird zweckméBig

tiber folgende

CASE 'X'.
when

when

ENDCASE.

CASE-Anweisung vorgenommen:

wa_rbg-rbl.
"wa_rbg-rbl ist aktiv
wa_rbg-rb2.
"wa_rbg-rbl ist aktiv

Ankreuzfelder

Uber Ankreuzfelder kann der Benutzer verschiedene Optionen auf
dem Dynpro auswéhlen.

6 Grundlagen der Dynproprogrammierung

Zur Laufzeit des Programmes konnen folgende Eigenschaften der
Ankreuzfelder gedndert werden (siehe dynamische Bildmodifikatio-
nen):

= Ein- und Ausgabefihigkeit,

® Sichtbarkeit.

Vorgehensweise: Ankreuzfelder anlegen

Fiir jedes Ankreuzfeld ist im ABAP-Programm (TOP-Include) ein
Datenopjekt vom Typ C mit der Linge 1 anzulegen. Datenobjekt
und Ankreuzfeld miissen namensgleich sein.

DATA: chkl, chk2.

Wirkungsweise:

Vor der Anzeige des Layouts erhalten die Ankreuzfelder, deren kor-
respondierende Datenobjekte mit 'X' geladen sind, den Status ,,ak-
tiv. Zu PAI werden die Werte der Ankreuzfelder in die namens-
gleichen Datenobjekte zuriickgeladen.

%] Screen Painter: [P 5creen Painter: AnOHIT| creen Painter: ARt 21o) x|
Dynpro Bearbeits Dynpra \ Dynpro Bearbetten Sprir

| P&t PG @e

12 113 = |‘|AT Name [CHKT
[(@ Feos [[[© 2ees

= [2

T # T Zele [¢ deflangs[2
\ v [| F© geschiitz Spate 2 visLinge IT
x| X X Hahe [I
® ® @ Gruppen]_ I_ I_ I_
= = = FaCode [BOXT Pty [<]

Klicken Sie das Werkzeug ,,Ankreuzfeld* an.

2. Schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu driicken, an die Stelle, an der das Ankreuzfeld positio-
niert werden soll.

3. Fixieren Sie den Minirahmen durch driicken der linken Maus-
taste.

4. Doppelklicken Sie in das neu entstandene Ankreuzfeld. Fiillen

Sie das sich daraufhin 6ffnende Fenster ,,Screen Painter: Attri-
bute* entsprechend der Abbildung aus. Soll beim Anklicken
des Ankreuzfeldes PAI durchlaufen werden, vergeben Sie im

6.4 Dateneingabe und —ausgabe mit Dynpros

Abb. 6.30

Ankreuzfeld

anlegen

377

378

Feld FktCode einen frei wihlbaren Funktionscode. Dieser wird
beim Auslosen der PAI-Ablauflogik in das Systemfeld
sy-ucomm und in das OK-Feld geschrieben.

Da, anders als bei der Auswahlknopfgruppe, jedes Ankreuzfeld aktiv
sein kann, ist die Ermittlung, ob ein Ankreuzfeld aktiv oder inaktiv
ist, nur iiber eine IF-Anweisung fiir jedes Ankreuzfeld moglich.

IF NOT chkl IS INITIAL.
"Ankreuzfeld chkl ist aktiv
ELSE.
"Ankreuzfeld chkl ist inaktiv
ENDIF'.
IF NOT chk2 IS INITIAL.
"Ankreuzfeld chk2 ist aktiv
ELSE.
"Ankreuzfeld chk2 ist inaktiv
ENDIF'.

Drucktasten

Drucktasten werden benutzt, um oft bendtigte Funktionen schnell
aufrufen zu kénnen und das Bildschirmlayout {ibersichtlich zu ges-
talten. Richtig angewendet, konnen sie die Bedienung des Program-
mes erheblich vereinfachen. Einige Empfehlungen zum Einsatz von
Drucktasten:

= Platzieren Sie Drucktasten, die sich auf ein Feld oder eine Feld-
gruppe beziehen, rechts neben dem Feld bzw. Feldgruppe.

= Benutzen Sie Gruppenrahmen, um den Zusammenhang zwi-
schen Drucktaste und Feldgruppe sichtbar zu machen.

= Drucktasten, die sich auf eine Tabellendarstellung im Dynpro
beziehen, sollten unterhalb der Tabelle angeordnet werden.

= Alle iiber Drucktasten auswihlbaren Funktionen sollten auch im
Menii einen entsprechenden Eintrag haben.

Drucktasten konnen einen Text und / oder eine Ikone ausgeben.

Zur Programmlaufzeit konnen folgende Eigenschaften der Drucktas-
ten gedndert werden (siehe dynamische Bildmodifikationen):

= Text/Ikone
Um den Text, der auf der Drucktaste abgebildet wird, dyna-
misch zu dndern, aktivieren Sie das Attribut ,,Ausgabefeld* der
Drucktaste und legen eine zur Drucktaste namensgleiche Text-
variable im ABAP-Programm (TOP-Include) an. Laden Sie die-
se vor der Layoutanzeige mit dem Drucktastentext.

6 Grundlagen der Dynproprogrammierung

= Wird als Schaltertext eine Ikone mit Text verwendet, ist in die-
sem Fall eine Statusikone einzusetzen. Ikonenname und Ikonen-
text sind iiber die Funktion ICON_CREATE vor der Layoutan-
zeige zu laden.

= Sichtbarkeit.

Vorgehensweise: Drucktasten anlegen

Fiir die dynamische Textausgabe ist im ABAP-Programm (TOP-
Include) eine zur Drucktaste namengleiche Variable anzulegen.

Drucktaste mit Variablenname Variablentyp Lénge

Text Namensgleich mit C Linge des
dem Namen der max. Aus-
Drucktaste gabetextes

Text + Ikone icons-text

Ikone icons-text

Die Ikone oder Ikone + Text wird mit der Funktion
TCON_CREATE' erzeugt (sieche Statusikonen).

Beispiel: (Programm: YKO6DBAS_DSchalter)

T T AbD. 6.31

(] taH COe S e s PR COe

Schalter Demo Schalter Demo . Belsple/ fur
dynamisches
Die Drucktaste wird zur Laufzeit mit verschie- Setzen des
denen Texten / lkonen versorgt und I6st ver- Drucktasten-
schieden Funktionen (Anzeige-, Anderungsmo- textes
dus) aus.
158N J85HA114T1 ISEN 3ngsaTIATI
Buchbte! ABAP Dbjects Buchote! ABAP Dibjects
erlag Galilec-Frans erlag Galilec-Fress
Wirkungsweise:

Zu PBO wird die Drucktaste mit dem in der namensgleichen Variab-
le stehenden Text und/oder der Ikone geladen, sofern es sich um ei-
ne ausgabefihige Drucktaste handelt.

Jeder Drucktaste muss ein Funktionscode zugeordnet werden. Beim
Anklicken der Drucktaste wird dieser Funktionscode in das OK-Feld
und in die Systemvariable sy-ucomm geschrieben und PAI ausge-
16st. Der Funktionscode wird in einem PAI-Modul ausgewertet.

6.4 Dateneingabe und —ausgabe mit Dynpros %™ 379

Abb. 6.32
Drucktastentext
dynamisch
setzen

Abb. 6.33
Drucktasten-
attribut
L~Ausgabefeld”
aktivieren

380 W™ 6 Grundlagen der Dynproprogrammierung
u

@ Recherche im Gesamtbestand

& geschitzter Bereich
O Recherche im verfigbaren B & ofentiicher Barsich
OR im nicht verfig! B
@ Recherche [[* Programm beenden]

6.4 Dateneingabe und —ausgabe mit Dynpros

381

382

Diese Auswahlknopfgruppe soll kein PAI auslosen. Es wird daher
kein Funktionscode vergeben.

Ankreuzfelder
Deklarieren Sie fiir die Ankreuzfelder zwei korrespondierende Vari-
ablen.

Variablenname TYPE
chk_protected C, Linge 1
chk_public C, Léange 1 mit 'X' vorbelegt

Verwenden Sie die Icons ICON_LOCKED und ICON_UNLOCKED.
Is Quick-Info konnen Sie eintragen: ,,.Besondere Rechte erforder-
lich* und ,,Jedermannsbereich* eintragen.

Drucktasten
Legen Sie die beiden Drucktasten ,,Recherche* und ,,Programm be-
enden‘ an.

Dynproele- Text Ikonen FktCode

mentname

B1 (optional) Recherche ICON_SEARCH RECHERCHE

B2 (optional) Programm ICON_CANCEL CANCEL
beenden

Hiufigste Fehler
Namensgleichheit nicht beachtet,
Nicht alle Auswahlknopfe gruppiert,
Nicht alle Programmteile aktiviert.

Losung: SAPMYKO06_3

6.5
Programmierung der Ablauflogik

6.5.1
Module und Modulaufruf

Die Ablauflogik wird vom Dynpro-Prozessor abgearbeitet, der keine
ABAP/4-Anweisungen verarbeiten kann. Die Ablauflogik selbst
kann somit keinen ABAP/4-Code enthalten. Sie wird in der Dynpro-
sprache programmiert. In ihr werden lediglich Module aufgerufen,
das sind Programmteile, die eine gewisse Ahnlichkeit mit Unterpro-

6 Grundlagen der Dynproprogrammierung

grammen ohne Schnittstelle aufweisen. Diese Module werden vom
ABAP-Prozessor abgearbeitet und enthalten ABAP/4-Anweisungen.
Das Prinzip dieser Arbeitsweise ist in Abb. 6.34 dargestellt.

Module werden ausschlieBlich in der Ablauflogik von Dynpros auf-
gerufen.

Es ist iiblich, die Module der Ablaufsteuerung in folgenden Includes
zu kapseln:

Module der PBO-Ablauflogik <programmname>001

Module der PAI-Ablauflogik <programmname>I01

6.5 Programmierung der Ablauflogik ® 383

Abb. 6.34

Ablauflogik und

ABAP-
Prozessor

384

I0 CO@ DHE BTt

Screen Painter: Dynpro zu SAPMYKO06 d@ndern

(€2 @)= | (€@ @) | (&) E)PAE | [tayou] | [Must

Dynpronummer 100 aktiv
/Eigenschaﬂan VEIamentIiste/Ablauﬂngik |

R B @E BR)

PROCESS BEFORE OUTFUT.

* MODULE STATUS 0100.

MODULE laden_0100.

PROCESS AFTER INPUT.
* MODULE USER COMMAND 0100.

< TH e B8

G BB Lo

ABAP Editor: Incfude MYK06001 éng

=] | |

[n

| @ [vuster][

Include MYKO6001

aktiv

B EEEE SR E)

Module laden 0100 OUTPUT

module laden 0100 output. 4

startdatum = sy-datum.
endmodule. " laden 0100 ©
|

Syntax: Modulaufruf
MODULE <name>.

6 Grundlagen der Dynproprogrammierung

uT

Syntax: Moduldefinition

Module der PBO-Ablauflogik Module der PAI-Ablauflogik

MODULE <name> OUTPUT MODULE <name> INPUT

ABAP-Anweisungen ABAP-Anweisungen
ENDMODULE ENDMODULE

Vorgehensweise: Modul anlegen

Starten Sie den Screen Painter mit dem Dynpro, dessen Ablauflogik
programmiert werden soll. Wihlen Sie die Registerkarte ,,Ablauflo-
gik®. Programmieren Sie im PBO bzw. PAI-Teil der Ablauflogik
den Modulaufruf. Der Modulname ist frei wihlbar, sollte aber die
Dynpronummer enthalten.

Abb. 6.35
Modulaufruf in
der Ablauflogik

1B 0@ BHE ©nos BE .
Screen Painter: Dynpro zu SAPMYKO06 dndern

celEEREEERERE |

ipmgramm 824 bynpronummer 100 inaktiv(iberarbeit
SAPMYKDB | - > :

o | _>]- Eigenschaften I/Elemanthsie/ Ablauflogik
oo [B]a][&]E,

o= [2]e] CE @@
PROCESS BEFORE OUTZUT. N\ Ablauflogik

YOLE STATUS 0100.

Objektname |B]
< = SAPMYKO6 Mt
b (2 PBO-Module

< (["

b (@ Transaktionen SUCCEES NTTED. TNVUT
P & Includes o MODTLE TEHR. SRR }) PAI

Legen Sie das Modul in der Vorwirtsnavigation (Doppelklick auf
Modulnamen) an. Tragen Sie im Folgebildschirm ,,PBO-Modul an-
legen* (bzw. ,,PAI-Modul anlegen®) in die obere freie Zeile den
Namen des Includes ein, in dem das Modul angelegt werden soll
(<programmname>0O01 bzw. <programmname>I01). Vergessen Sie
dabei nicht, die obere Zeile zu markieren. Existiert das Include be-
reits, ist nur die entsprechende Zeile zu markieren. Bei Programmen
vom Typ ,,Modulpool” sind die Eingabefelder bereits mit Vor-
schlagswerten geladen.

6.5 Programmierung der Ablauflogik ® 385

Abb. 6.36
Include ftir Ab-
lauflogik-Module
anlegen

Abb. 6.37
Modul im
ABAP-Editor
anlegen

386

PBO-Modul

laden_0100

Include-Auswahl

Rahmenprogramm
Include MYKDETOP

KD]

Nach der Zuordnung Threr Entwicklungsklasse und Ihres Workben-
chauftrages gelangen Sie in den ABAP-Editor. Legen Sie dort den
Quelltext fiir das Module an.

18 @@ DM®B oo

HEFE @&

ABAP Editor: Include MYK06001 dndern
EE]] | (&8 (5] () (o2 | (&5 (2] [P0 () | (@) [Muster] [Pretty Printer

[F“mgramm 8= nciude MYKD6001 inat
SAPMYKOG g X
; AR R EE e
Objektname |8]
= 8 SAPMYKOB M
< & Dynpros
0100 Se
b [Transaktionen
b @ Includes ' T oo
MODULE laden_0100 OUTBUT.
startdatum = sy-datum.
ENDMODULE . " laden 0100 OUTPUT

Das Modul ist jetzt fertig angelegt. Aktivieren Sie zum Schluss alle
Programmbestandteile.

1.

Deklarieren Sie im TOP-Include des Programmes SAPMYKO06
eine Variable ,,startdatum* vom Type d und eine Vaiable ,,start-
zeit™ vom Typ t. Aktivieren Sie das TOP-Include.

Legen Sie im Dynpro 100 des Programmes iiber das
,.Dict./Programmfelder-Fenster je ein Ein-/Ausgabefeld fiir die
Ausgabe des Startdatums und der Uhrzeit an. Fiir beide Felder
soll die Eigenschaft ,,Nur Ausgabefeld* aktiviert werden.

Legen Sie in der Ablauflogik PBO des Dynpros 100 ein Modul
laden_0100“ an, in dem die Variablen geladen werden.

6 Grundlagen der Dynproprogrammierung

Speichern Sie dieses Modul im Include MYKO06_O01.
Hinweis: Die Systemvariable sy-datum enthélt das Systemda-
tum und sy-uzeit ist mit der Systemzeit geladen.

Losung: SAPMYKO06_4

Das Programm sollte nun Startdatum und Startzeit ausgeben.

Schwerpunkte der Losung:

Abb. 6.38
Dynpro Bearbeiten Springen Hifsmittel Umfeld _Hife Layouteditor
(V3 B e B yam 2¢| 55 @

|5 | aa ¢ B | < P | o ablautogk 4@ Eigenschaften a Elementiste

Name | Tent | =l

I.K | j@ Programmstart || || w |

Die Eigenschaft ,,Nur Ausgabefeld” bewirkt, dass die Ausgabefelder
wie Textfelder aussehen. Die Eigenschaft kann entweder im Layout-
editor (Screen Painter: Attribute-Fenster) oder in der Elementliste
gesetzt werden (Abb. 6.40).

i /1) 6 59
(] B 1B 0@ BHY BNoO EE @R Elementliste

Screen Painter: Dynpro zu SAPMYKO06 dndern .
EIE' | @| EEH @| | = Layou | | @ Antribute | | (B Element | (a”g Attrlb)

Programm L=

AT Cynip: 100 aktiv
4 | 3 = E /V‘]/ f I
=
T Allg b, | Tente u E/A-Schabl | Spez. Attrib._ | Anzeigeattrib. | Modi unki
= @ SAPMYHOE

b &1 Feider H. [M{MName Typ L. [S..|d. M. |H. |ro. [Forma [Ei |A . |Nur..|Di. |Dic

b & PBO-Module

- & . 1 Tkt 1] 2| 1sf 18] 1 O|CEN\DO

f‘% [sTARTDATIM /o | 1| 19 o] o 1|Opars [O [¥
E;I-:lltluues IS TARTZEIT 1/0 1 28] 8| 8] 1Jrmms D% | B
: Abb. 6.40
e t.@eeeon: anoo mgndeE/A-Schablone |, i
o b ementliste

Screen Painter: Dynpro zu SAPMYKO06 dndern des Feldes ,Startzeit (Texte u
S5 1) G SEEE) s | @] wurde fir die | E/A-Schabl)
e =2 oyme 100_axtiv Ausgabeaufbereitung
(A o} Blateten Eassloer Hand an die 3
EEEE: P €.
[Coemmame)| /A A M Texew Easchanl | Spez 2l nd 6. Stelle ein
= = SAPMYHOG . .

b Wreer b e T Tens sajDoppelpukt eingefligt.f

oaa:p‘us I Text Programmst3 o 0

o _| prasmaid |80 ~ 0
gﬁ;ﬁ:;:?mm lsTaRTZEIT 1/0 =N) m]

6.5 Programmierung der Ablauflogik ® 387

Abb. 6.41
Ablauflogik des
Dynpros

Abb. 6.42
Modul ,la-
den_0100

388 =
[
(]

(] i 10 ce@ BHE D00 AR @8

Screen Painter: Dynpro zu SAPMYKO06 dndern

EHE | FE| EEEE | S S | (S o) | [B Atbe] | [@ Semen]

Programm

b 3 PEO-Module

PROCESS AFTER INPUT.

v @

I @ Transaktionen
b 3 includes

pros

HODULE laden O100.

Dympronummer: 100 aktiv
!W""K% _llj Exgenschaton | Elementhste ” Ablaudog |
@ = & & »
= (= SAPMYHDE |
b & Feider “.c.th. "w" Snpe

Aufruf des Moduls
L,laden_0100“

[B 1B @@ RHR LoD BE @8

ABAP Editor: Include MYK06 001 @ndern

0 PEE @REE) |) i) (P]

Prograrmm @ — Include MYKO6001 aktiv
lcnmavwna Llﬂ w-l |L"" I@l_ﬁ_;' |‘J||al

(-ﬁlr,’n';][%[ﬁ”ﬂ[z JI MYKDECOL .

Objektname I e b e o e s e D

3

[+
14
14
-

v e

6.5.

= 2 SAPMYKD6

& DDIC-Strukturen
& Felder

& PEO-Module

& PAI-Module

‘& Dynpros

& Transaktionen
& Includes

2

tg

startdatum = sy-datum.
startzeit = sy-uzeit.
ENDMODULE .

" laden 0100 OUTPUT

Benutzeraktionen auswerten

Die vom Benutzer ausgewihlte Funktion kann nur dann ausgewertet
werden, wenn durch sie PAI ausgelost wird. Der PAl-auslosende
Funktionscode wird, wie in der Listenprogrammierung auch, in die
Systemvariable sy-ucomm geschrieben.

6 Grundlagen der Dynproprogrammierung

PAI-auslosende Bedingung sy-ucomm und

Aktion OK-Feld
Auswahl eines 16st immer PAI aus. Funktionscode
Meniipunktes des Meniipunktes
Anklicken einer 16st immer PAI aus. Funktionscode
Drucktaste der Drucktaste
Aktivieren bzw. Dem Ankreuzfeld muss ein Funktionscode
Deaktivieren Funktionscode zugeordnet des Ankreuzfeldes
eines Ankreuz- sein. Sonst wird kein PAI

feldes ausgelost.

Aktivieren eines Der Auswahlknopfgruppe Funktionscode der
Auswahlknopfes muss ein Funktionscode Auswahlknopf-
zugeordnet sein. Sonst wird gruppe
kein PAI ausgelost

ENTER 16st immer PAI aus. sy-ucomm und das
OK-Feld werden
nicht geéndert, d.h.
sie behalten den
vorherigen Funkti-
onscode.

Der Inhalt dieser Systemvariablen bleibt solange erhalten, bis der
Benutzer wiederum ein Dynproelement auswihlt, das einen eigenen
Funktionscode besitzt und PAI auslost. In diesem Verhalten lauert
die Programmierfalle. Diese soll am folgenden Beispiel gezeigt wer-
den:

Annahme 1:

Sie befinden sich im Dynpro 200 eines Anwendungsprogrammes
und 16sen dort den Funktionscode ,,BACK* aus. Im Dynpro 200 ist
dieser mit der Anweisung LEAVE TO SCREEN 100, im Dynpro
100 mit LEAVE TO SCREEN 0 verkniipft.

Wirkung:

Sy-ucomm wird mit dem Wert 'BACK' geladen. PAI des Dynpros
200 wird ausgeldst und die Anweisung LEAVE TO SCREEN 100
ausgefiihrt. Sie gelangen in das Dynpro 100, sy-ucomm behilt den
Funktionscode 'BACK'.

Annahme 2:
Im Dynpro 100 driicken Sie (versehentlich) die ENTER-Taste.

6.5 Programmierung der Ablauflogik

389

Wirkung:

PAI des Dynpros 100 wird ausgelost und die Anweisung LEAVE
TO SCREEN 0 ausgefiihrt weil sy.ucomm noch mit dem Funktions-
code 'BACK' geladen ist. Das Programm wird beendet.

Schlussfolgerung:

= Die Variable, die den Funktionscode der PAI-auslésenden Be-
nutzeraktion enthilt, sollte unmittelbar nach ihrer Auswertung
initialisiert werden.

= Die Systemvariable sy-ucomm sollte zur Auswertung des Funk-
tionscodes nicht genutzt werden, weil von der SAP empfohlen
wird, Systemvariablen nur in Ausnahmefillen im Programm zu
iiberschreiben.

Gliicklicherweise wird der PAl-auslosende Funktionscode zusitzlich
vom System in ein Dynprofeld, das sogenannte OK-Feld, geschrie-
ben. Dieses OK-Feld muss in die Elementliste des Dynpros einge-
tragen werden. Es ist iiblich, dafiir den Namen ok_code zu verwen-
den. Zur Auswertung des OK-Feldes ist im ABAP-Programm (TOP-
Include) eine namensgleiche Variable vom Typ sy-ucomm anzule-
gen.

Vorgehensweise: Ausgeldsten Funktionscode zu PAI ermitteln

1. Deklarieren Sie im TOP-Include die Variable ok_code und
ok_save:.

DATA:o0k code TYPE sy-ucomm.
DATA:o0k save TYPE sy-ucomm.

2. Starten Sie den Screen Painter mit dem Dynpro, zu dem die
Ablauflogik programmiert werden soll. Tragen Sie in die Ele-
mentliste den Variablennamen ok_code ein.

3. Dekommentieren Sie den im PAI vorbereiteten Modulaufruf
MODULE user_command <dynpronr>.

4. Legen Sie in der Vorwirtsnavigation diese Modul im
Include ...I01 an.

390 ™ 6 Grundlagen der Dynproprogrammierung

Abb. 6.43
1H Q@ DHB YO0 R @ Deklaration der

ABAP Editor: Include MYKO6TOP dndern \O/I?f?:;tznund
D PEE @REE SENE SiEarm e
= Incluce MYKOETOP fhal
BEH
=
D T
< [PBO-Module PROGRAM SAPMYKOS
LADEN 0100 data: startdatum type d,
b [Dynpros Tt

b & Transaktio ok_code type sy-ucomm,
< & Includes ok_save type sy-ucomm.
MYKOE0

Abb. 6.44
» 10 €0@ DHE DNAD BFE @@ g’/‘—c"del’” die
" " ementliste
Screen Painter: Dynpro zu SAPMYKO06 dndern eintragen
[el[=]| @€ | @@ (&EREok code in die letzte Zeile |
Programm & = oynprorummer eintragen (Typ. OK)
i _’_IL Eigenschaﬂsn/ Elementliste I/Ablauﬂugik]
ojektnams | _/Allg. Attrib. | Texte u. EfA-Schabl. | Spez Attnib. | An
~ [SAPMYKOB
b @ Felder H. [MName Typ .. |Z.. |S..[d... M. H... |rc
= ([PBO-Module br1 Text 1 1] 13] 13] 1
= EBAD;';SUWD ISTARTDATUM 1/0 1| 15| e 8| 1f[
] IT 1/0 1| 24| s s [
b @ Transaktionen ok_code) oK o of zof zo| 1[
= & Includes < = >
MYKO06001
MYKOE TOP

6.5 Programmierung der Ablauflogik ® 391
|
|

Abb. 6.45
PAI-Module
USER_
COMMAND
aufrufen

Abb. 6.46

Im Modul
USER_
COMMAND auf
Benutzeraktion
reagieren

392 =

& g I8 @@ DHEE ©noas BE

Screen Painter: Dynpro zu SAPMYKO06 dndern

= --I--D-I-..-Il* Layout] | [Muster][Pretty P

Programm

Dynpronummer 100 aktiv(iberarbeitet

L[E Eigenschaften VEfemenlllsta/ Ablauflogik
I o]=] (2] o) (@@

Objektname |
= [SAPMYKOD6
e obuie staTus 0100,
< (B AR, .
& PBO-Moule. il g
< @ Dynpros
PROC

MODULE USER_COMMAND_0100.

b @ Transaktionen
= & Includes

» 18 0@ RHM® noLa BHE @F
ABAP Editor: Include MYK06101 dndern

:w%

= Incluce MYKO6101
I%I =] 2] [Balke) @)

INPUT
| Objektname || — ————
< [@ SAPMYKD6 MODULE user_command 0100 INPUT.

b [Felder ok_save = ok_code.

< (@ PBO-Module CLEAR ok_code.
LADEN D100 CASE ok_save.

» @ PA-Module WHEN 'BACK'.

< [@ Dynpros LEAVE TO SCREEN 0.
0100 WHEN 'EXIT'.

b @ Transaktionen LEAVE TO SCREEN 0.

< & Includes WHEN 'CANCEL'.

LEAVE TO SCREEN O.

MYKO6001 ENDCASE.
MYKOBTOP ENDMODULE. " USER_COMMAND 0100 INPUT

Hinweise zum MODULE user_command_0100 INPUT

= Dieses Modul wird fiir die Auswertung der Benutzereingaben
benutzt und ist von der SAP deshalb auch schon in die Ablauf-
logik eingetragen. Sie miissen den Modulaufruf nur noch de-
kommentieren und das Modul anlegen (Vorwirtsnavigation).

Der Funktionscode der ausgewihlten Funktion wird vom Lauf-
zeitsystem in das OK-Feld geschrieben, welches der Variablen
ok_code zugeordnet wurde (Abb. 6.45). Damit enthélt letztend-
lich diese Variable den ausgewihlten Funktionscode.

6 Grundlagen der Dynproprogrammierung

Wie wir in der Einleitung dieses Kapitels erfahren haben, soll
die Variable, die den Funktionscode erhilt, zum néchstmogli-
chen Zeitpunkt initialisiert werden. Dazu wird der Funktionsco-
de in die Variable ok_save geschriecben und die Variable
ok_code wird mit CLEAR ok_code zuriickgesetzt.

In der CASE-Anweisung wird die Variable ok_save untersucht
und die fiir die ausgewdhlte Funktion richtige Programmreak-
tion ausgelost.

In der folgenden Aufgabe wird das Programm SAPMYKO06 so er-
weitert, dass die Auswahl der Drucktasten eine entsprechende Pro-
grammreaktion auslost und das Programm nur noch iiber die Druck-
taste ,,Programm beenden* verlassen werden kann.

1.

Legen Sie im TOP-Include des Programmes die Variablen
ok _code und ok_save mit Bezug zur Systemvariablen sy-
ucomm an.

Ordnen Sie in der Elementliste des Dynpros 100 dem OK-Feld
die Variable ok_code zu.

Dekommentieren Sie in der PAI-Ablauflogik des Dynpros 100
den Modulaufruf des Moduls ,,user_command_0100* und le-
gen Sie dieses iiber die Vorwirtsnavigation im Include
MYKO6IO1 an.

Vergewissern Sie sich im Layout, dass die Funktionscodes
-RECHERCHE® bzw ,,CANCEL® in das Feld FktCode der
Drucktasten eingetragen sind.

Schreiben Sie den Quelltext zum Modul ,,user_command_
0100*. Die Drucktaste ,,Programm beenden‘ soll iiber die An-
weisung ,,LEAVE TO SCREEN 0 das Programm beenden.
Die Drucktaste ,,Recherche® gibt die Nachricht ,Hier wird
spiter das Dynpro 200 aufgerufen‘ aus. Legen Sie diese Nach-
richt in der Nachrichtenklasse ZLLIB an.

Tragen Sie in der Registerkarte ,,Eigenschaften” des Dynpros
100 als Folgedynpro die Nummer 100 ein. Damit ruft sich das
Dynpro nach PAI immer wieder selbst auf, es sei denn, Sie
driicken die Drucktaste ,,Programm beenden‘. Diese setzt, bei
fehlerfreier Programmierung, dynamisch das Folgedynpro 0.

Kontrollieren Sie, ob alle Auswahlkndpfe und Kontrollkést-
chen aktiviert werden konnen und ob die Auswahlknopfgruppe
»~Angaben zum Buch® wirklich PAI auslost. Setzen Sie dazu
einen Breakpoint in das Modul ,,user_command_0100°.

6.5 Programmierung der Ablauflogik

393

Losung:

PROGRAM sapmyk06 5.

DATA: startdatum type d,
startzeit type t.

DATA: ok_code type sy-ucomm,
ok_save type sy-ucomm.

DATA: begin of wa rbgl,
isbn value 'X',
titel,

end of wa rbgl,

begin of wa rbg2,
ges value 'X',
ver,
nver,

end of wa rbgz,

chk protected, chk public value 'X'.
tables: zbestand tw.

394 W™ 6 Grundlagen der Dynproprogrammierung
u

Q| 1B c@@ LCHE nNno0 BEE @B

Screen Painter: Dynpro zu SAPMYKO06 dndern

E| |.[:|.[.... | [= Layoul” E Atlnbute”l_ Element |

| 100 aktiv
SAPMYKOB -
J | _l— igensc aﬂen/ Elementliste]/ Ablauflogik |
3 ENF _ _ _
looername] Allg. Attrib. | Texte u. E/A-Schabl. | Spez. Attrib. |~ Anzeigeattr
= & SAPMYKD6

b @ DDIC-Strukturen H. |M{n typ .. Jz. Is..Jd.. M. H.. |ro...|[Form

b & Felder MA_RBGZ-NVER Radic| 10| 5| 1| 1 1 |cHAR

Eﬁgi?m.‘;gﬂ:‘lele MA_REGZ-NVER Radio| 10 7| 38| 38| 1

< &5 Dynpros B1 Push | 12| 3| 21| 19] 1

ol T rE——ry i X R T I
- . -
E’;I‘Lﬁ:::smnnen lok_cone oK o| zo| zo| 1] ox

& r J@e@@ QAR HnO0 AR @@

Screen Painter: Dynpro zu SAPMYKO06 dndern

I | @ | l I" Layout | | |Muster[Pretty Printerl

[SAF'MYK!JB i Dynpronummer 100 aktiv
' / Eigenschafien | Elememlisle/ Ablauflogik

E- =] I: :
Objektname i !
= & SAPMYKD6

b & DDIC-Strukturen powissmalipan il

b @ Felder DULE:SEATOS_B10U.

b @ PBO-Module ; !

b :EPN-MOG'UIB MODULE laden 0100.

i ﬁwm_ PROCESS AFTER INPUT.

b @8 Transaktionen MODULE user_command_0100.

b @ Includes
* §—————— . *
*& Module wuser command 0100 INPUT *
* §—————— - *
MODULE user command 0100 INPUT.

(o) save = O coae.

k k cod

CLEAR ok code.
CASE ok_save.
*Achtung: FktCode in GroBbuchstaben
WHEN 'RECHERCHE'.
MESSAGE 1003 (zlib_ tw).

WHEN 'CANCEL'.
LEAVE TO SCREEN 0.
ENDCASE.
ENDMODULE. " user command 0100

6.5 Programmierung der Ablauflogik

INPUT

Abb. 6.47
Elementliste des
Dynpros 100 der
Ubungsaufgabe

Abb. 6.48
Ablauflogik des
Dynpros 100 der
Ubungsaufgabe

m 395
=

6.6
GUI-Status und GUI-Titel des Dynpros

GUI-Status und GUI-Titel, werden in der Ablauflogik PBO geladen.
Zum Zeitpunkt PAI wird dann die vom Benutzer ausgeloste Aktivi-
tit ermittelt und auf sie reagiert.

Vorgehensweise: GUI-Status und GUI-Titel in die PBO-Ablauflogik
einbinden

Voraussetzung: Das Dynprofeld OK-Code ist mit der korrespondie-
renden Variable (ok_code) des Dynpros verbunden. Siehe dazu 6.5.2
,,Benutzeraktionen auswerten* Seite 388.

Starten Sie den Screen Painter mit dem Dynpro, zu dem GUI-Status
und GUI-Titel eingebunden werden sollen. Wéhlen Sie die Regis-
terkarte ,,Ablauflogik”. Dekommentieren Sie den FEintrag
,,MODULE status_<dynpronr>.“. Legen Sie in der Vorwirtsnaviga-
tion dieses Modul im Include <programmname>Q001 an.

Abb. 6.49 EE eras il s i
Aufruf des 1B @@ DRE o AR @B
Moduls ,sta- Screen Painter: Dynpro zu SAPMYKO06 dndern
tus_0100 EE D= | [= Layout] | [Muster] [Pretty Printer]
Frogramim B~ bynpronummer 100 aktiv
[saPMYKOB = Eigenschaten | & T ryE
‘I | 5 igenschaften ement |5te/ lauflogik |
G E|=HE| | >
(i e e
= @ SAPMYKD6 PROCESS BEFORE OUTPUT.
I (B DDIC-Strukturen
b [Felder
b B PBO-Mpdyle
= MODULE laden 0100.
g "ﬂ PN'# PROCESS AFTER INPUT.
- > s MODULE user command 0100.
Abb. 650 R T
Modul mit Aufruf 18 e@@ LM o R @8

des GUI-Stat_us ABAP Editor: Include MYK06001 dndern
und GUI-Titls (@) | 7 3]) | ()) | ()) | (@) o) oty P

Programm

= Include MYKO6001 aktiv
aPVYs_ LR B BE R
mw_
Objektname _l ‘
= (2 SAPMYKO6 MODULE status 0100 OUTPUT.
b ([DDIC-Strukturen SET PP-STATUS 'DYNPRO_0100'.
b (& Felder SET TITLEBAR 'DYNPRO_0100'.
b @ PBO-Module ENDMODULE . " STATUS 0100 OUTPUT
b & PA-Module Status u. Titlebar in der Vorwarts-
= & Dynpros . .
navigation anlegen.

396 W™ 6 Grundlagen der Dynproprogrammierung
|
|

1. Legen Sie im Programm YKO6DBAS einen GUI-Status ent-
sprechend der nachfolgenden Abbildung an.

o » 1B 0@ CHE fhos BE
Status DYNPRO_0100 der Oberflache SAPMYKO06 pflegen

== EEEE EEDE ¥EREEE

oOberfléche SAPMYKO6 Aktiv

@ Mormen einmischen

Bearbeiten Springen
Code Text Code Text
EXIT Beenden RECHERCHE Recherche
BACK Zurick
CANCEL Abbrechen

Drucktastenleiste =]

Positionen 1 - 7 RECHERCHE

G
Funktionstasten =5 oo
Symbolleiste

BACK EXIT CANCEL

V] B8 L] @ 54 a
Frei belegbare Funktio ten
|F5 RECHERCHE Recherche &

2. Sorgen Sie mit einem entsprechenden GUI-Titel dafiir, dass in
die Titelzeile des Dynpros ,,East-Side-Library: Recherchepro-
gramm** geschrieben wird

3. Dekommentieren Sie in der Ablauflogik des Dynpros den Auf-
ruf des Moduls ,,Status_0100* und legen Sie dieses Modul in
der Vorwirtsnavigation an.

4. Binden Sie GUI-Stautus und GUI-Titel in das Modul ,,Sta-
tus_0100* ein und sorgen Sie in ,,User_command _0100* da-
fiir, dass das Programm auf die Mentiauswahl reagiert. Bei al-
len 3 Meniipunkten soll das Programm beendet werden.

5. Falls noch nicht geschehen, setzen Sie fiir das Dynpro 100 in
der Registerkarte ,,Eigenschaften” des Screen Painters das
Folgedynpro 100.

Hinweis: Denken Sie daran, alle Programmteile zu aktivieren.

Losung: SAPMYKO06_6

6.6 GUI-Status und GUI-Titel des Dynpros

397

Abb. 6.51
Ablauflogik ! : 10 0@ DHE nnos BE @B

Dynpro 1 - X
ynpro 100 Screen Painter: Dynpro zu SAPMYKO06 dndern
[CE] | (][| (6805 @)E= | (&S] | [tayou] | (Moster] [Prety Printer]
oA 8 2 bynpronummer 100 aktiv
ESAPIMYKGB | LIL Eigenschaften VEIamenlIisle/ Ablauflogik |
(-EI@-Ei |3|ﬁ |ﬁ%|[§r
Objektname | ®[o]m] [2]e] &)
< & SAPMYKDB PROCESS BEFORE OUTPUT.
b @ DDIC-Strukturen MODULE STATUS_0100.
b (@ Felder MODULE laden 0100.
b @ PBO-Madule
- PROCESS AFTER INPUT.
2 g A.I—BDES!UIE MODULE user_command_0100.
PBO-Modul =~ *g—————————— e *
»status_0100" *g Module STATUS 0100 OUTPUT *
* gf&—————--—-——-—-— -\ -\ = *
MODULE status 0100 OUTPUT.
SET PF-STATUS 'DYNPRO 0100'.
SET TITLEBAR 'DYNPRO 0100'.
ENDMODULE . " STATUS 0100 OUTPUT
PBO-Modul =~ *g—————————— o *
,status_0100" *g Module wuser command 0100 INPUT *
* Sf&—————-—" " -\ -\ = *

MODULE user command 0100 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.
WHEN 'RECHERCHE'.
MESSAGE 1003 (zlib tw).
WHEN 'CANCEL' OR 'EXIT' OR 'BACK'.
LEAVE TO SCREEN 0.
ENDCASE.
ENDMODULE. " user command 0100 INPUT

398 W™ 6 Grundlagen der Dynproprogrammierung
|
|

6.7
Eigenschaften der Dynproelemente
dynamisch andern

Bestimmte Eigenschaften von Dynproelementen kann man dyna-
misch, d.h. zur Programmlaufzeit, andern. So ist es z.B. moglich,
Eingabebereitschaft oder Sichtbarkeit bestimmter Dynproelemente
ein- bzw. auszuschalten.

Der dynamischen Anderung von Dynproelementattributen liegt fol-
gende Technologie zu Grunde:

1. Das Laufzeitsystem initialisiert zu Beginn der PBO-
Ablauflogik die Systemtabelle SCREEN mit den, im Layout-
editor festgelegten, statischen Eigenschaften der Dynproele-
mente des anzuzeigenden Dynpros. Fiir jedes Dynproelement
wird in SCREEN eine Zeile erzeugt.

2. Nach dem Laden dieser Tabelle erfolgt der Aufruf der PBO-
Module. Diese haben Zugriff auf die Systemtabelle SCREEN
und tibernehmen die dort eingetragenen Eigenschaften.

3. Auf der Grundlage der aktuellen Daten der Systemtabelle
SCREEN erfolgt jetzt die Anzeige des Layouts.

\Ausschnitt der Tabelle SCREEN nach der Initialisierung Abb. 6.52
. Y i
Name des | Group1]| Eigenschaften des Dynpro- Layout, das auf Grund der Dynamische
Elaynprot; elements statischen rElmrtrit:ru!_e r:ngezagt Anderung der
elemen required input werden wurde
zhestand-isbn A [O(kein 1 (Eingabefeld) Dynproelemente
Mussfeld) Angaben zum Buch
zhestand-titel B |D(kein 0 (kein Eingabe @) 15BN
Mussfeld) feld) ©) Buchtitel
zbestand-autor1 B 0 (kein 0 (kein Eingabe Autorennummer o

Mussreld) feld)

In einem PBO-Modul wird die Eigenschaft ,input’ der Datenelemente mit
Group1 = ,B" auf 1" und die der Group1 = A" auf ,0" gesetzt.
(Groupl ist ein statisches Attribut eines Dynproelements, Sie konnen es zur Gruppierung von
Dynproelementen nutzen, deren Attribute gemeinsam geandert werden sollen)

=
Qusschnitt der Tabelle SCREEN nach der Abarbeitung der PBO—MOUU_IE‘,

——
Name des | Groupl| Eigenschaften des Dynpro- Layout, das auf Grund der dy-
Dynpro- elements namisch geanderten Attribute
elements required input angezeigt wird
zbestand-isbn A 0 (kein 0 {kein Eingabe
Mussfeld) | feld) ngabon zui Bch
zhestand-titel B |0 (kein 1 (Eingabefeld) Q1seN o
Mussfeld) {3)Buchtitel
Zhestand-autori | B |0 (kein 1 (Eingabefeld) e
Mussfeld)

6.7 Eigenschaften der Dynproelemente dynamisch éndern ® 399

Tabelle 6.1 Zuordnung statischer Eigenschaften zu Feldern der
Systemtabelle SCREEN

Screen Painter: Attribute

Feldname in der
internen Tabelle

Verwendung

SCREEN
(7] Screen Painter: Attrib al

LB PERE NAME Name des Dynproelements

Elementtyp EinfAusgabefeld

Name [ZBESTANDISEN I Sichtbare Lénge des Dynproe-

Ted | — LENGTH lements

] [] screen-length = <Linge in

Mitleon [Rolbar [Zeichen>

spte [5 velage [0 | GROUPI Uber diese Felder konnen

Hoe [T Dynpro-elemente zusammen-
I GROUP2 .
Guppen P T = gefasst werden, deren Eigen-
> GROUP3) X
e]_> schaften den gleichen Ande-
[amaee GROUP4 :
D | P vesios | =»| rungen unterliegen sollen.
I Adqudistanzschi Intensive Darstellung:
I Hel . o
i Ly screen-intensified = 1.
:: ', 4 INTENSIFIED Normale Darstellung:
B screen-intensified = 0.
I &ls Bezeichnes rechts
I™ Doppekiick-sensiiy Ly INVISIBLE Siehe Tabelle 6.1
D | P | v | | 3D—Dars§,llulng: "y
5 Ersbaiald > DISPLAY-3D screen-display-3d = 1.
7 Ausgabefeld 2D-Darstellung:
IE :{" 2 _ screen-display-3d = 0.
P Eingabekiie o .
i o > INPUT Siehe Tabelle 6.1
= G
E pwmcl) » |OUTPUT Siehe Tabelle 6.1
[~ *Eingabe
™ Ohne Riicknahme Mussfeld:
™| e Schablone screen-required = 1.
- > kein Mussfeld:
> REQUIRED :

ARENAIR] Q screen-required = 0.
Dieses Feld hat keine Ent-
sprechung im Screen Painter.

ACTIVE Es dient der Vereinfachung
der Anderungen
siehe Tabelle 6.1
400 ®™ 6 Grundlagen der Dynproprogrammierung

Die Felder active, input, output und invisible

Wie in Tabelle 6.1 zeigt, ist das Feld ACTIVE keinem statischen
Dynproattribut direkt zugeordnet. Es wird eingesetzt, um mit einer
einzigen Anweisung die Sichtbarkeit eines Dynproelementes dyna-
misch zu dndern. Zu Beginn der PBO-Ablauflogik wird dieses Feld
fiir alle Dynproelemente mit dem Wert ,,1* geladen.

Das Setzen von ACTIVE = 0 bewirkt, dass die Felder INPUT = 0,
OUTPUT = 0 und INVISIBLE = 1 automatisch fiir diese Tabellen-
zeile gesetzt werden. Damit ist das betreffende Dynproelement un-
sichtbar. Umgedreht bewirkt das Setzen von INPUT = 0,

OUTPUT = 0 und INVISIBLE = 1 auch dass Setzen von

ACTIVE = 0. Andere Zuweisungen an diese Felder werden igno-
riert.

Wird das Feld ACTIVE nicht auf ,,0¢ gesetzt, bestimmen die Felder
INPUT, OUTPUT, und INVISIBLE iiber die Sichtbarkeit eines
Dynproelements. Verschiedene Varianten der Sichtbarkeit enthélt
Tabelle 6.2.

ACT. INP. OUT. INV. Beschreibung der Sichtbarkeit Tabelle 6.2
Sichtbarkeits-
1 0 0 0 Das Dynproelement varianten

= wird angezeigt, wenn nicht sta-
tisch mit der Eigenschaft ,,Nur
Ausgabefeld angelegt,

= ist nicht eingabebereit,

= zeigt keine Ausgabedaten an.
1 0 0 1 Diese Belegung gibt es nicht. Bei
INPUT =0, OUTPUT =0 und

INVISIBLE = 0 wird ACTIVE auto-
matisch auf 0 gesetzt

1 0 1 0 Das Dynproelement
= wird angezeigt,

= gibt den Inhalt des korrespondie-
renden Datenobjektes aus,

= ist nicht eingabebereit.

1 0 1 1 Das Dynproelement
= st inaktiv (unsichtbar).

6.7 Eigenschaften der Dynproelemente dynamisch éndern ® 401

402

ACT. INP. OUT. INV. Beschreibung der Sichtbarkeit
1 1 0 0 Das Dynproelement

= wird angezeigt, wenn nicht sta-
tisch mit der FEigenschaft ,Nur
Ausgabefeld angelegt,

= ist eingabebereit,
= zeigt keine Ausgabedaten an.

1 1 0 1 Das Dynproelement

= wird angezeigt, wenn nicht sta-
tisch mit der Eigenschaft ,Nur
Ausgabefeld angelegt,

= Ausgabe durch Sterne (*) mas-
kiert,

= Fingabebereit, Benutzereingabe
durch * maskiert.

1 1 1 0 Das Dynproelement
= wird angezeigt,
= gibt den Inhalt des korrespondie-
renden Datenobjektes aus,

= ist eingabebereit, wenn nicht sta-
tisch mit der FEigenschaft ,Nur
Ausgabefeld* angelegt.

1 1 1 1 Das Dynproelement

= wird angezeigt, wenn es nicht sta-
tisch mit der Eigenschaft ,Nur
Ausgabefeld angelegt ist,

= zeigt Keine Ausgabedaten an,

= Fingabebereit, Benutzereingabe
durch * maskiert.

Das Setzen von INPUT = 1 wird fiir Felder, die statisch als Nur
Ausgabe gekennzeichnet sind, ignoriert. Fiir solche Felder gilt im-
mer INPUT = 0. Das Unsichtbarmachen von Benutzereingaben
durch Sterne (*) kann fiir die Eingabe von Passwortern verwendet
werden.

6 Grundlagen der Dynproprogrammierung

Programmtechnische Umsetzung

Um Dynproelementattribute zur Laufzeit zu dndern, ist in der PBO-
Ablauflogik eine Schleife iiber die interne Tabelle SCREEN zu pro-
grammieren. In dieser Schleife wird genau die Zeile des zu dndern-

den Dynproelements geéndert.

Beispiel:

Die Ankreuzfelder CHK_PROTECTED und CHK_PUBLIC sollen
auf dem Dynpro 100 nicht angezeigt werden. Das wire zum Beispiel
dann sinnvoll, wenn dem Benutzer keine Rechte fiir den geschiitzten

Bibliotheksbereich eingerdumt wurden.

1. In der PBO-Ablauflogik ist ein Modul (z.B.

»Attribu-

te_setzen_0100*) aufzurufen, in dem die dynamische Ande-
rung der Dynproattriubute programmiert wird.

90 0@ RDHE fhod BE QB

Screen Painter: Dynpro zu SAPMYKO06 d@ndern

D | | D | | [= Layout] | [Muster|[Pretty Printer|

Programm N

SAPTIE —| Dynpronummer 100 aktiv
! ;[L Eigenschaften | El te) Ablauflogih
BRI EIEED

Objektname

J

= [SAPMYKD6
(B DDIC-Strukturen
= Felder

2 PBO-Module
= PA-Module
‘= Dynpros

doooe

(B GUI-Status

E GUI-Titel

2 Transaktionen
& Includes

ME P BE 2R

PROCESS BEFORE OUTPUT.
MODULE status_0100.
MODULE laden 0100.

MODULE attribute_setzen 0100.

PROCESS AFTER INPUT.
MODULE user_command 0100.

2. Im Modul ,,Attribute_setzen_0100° wird die Tabelle SCREEN
in einer LOOP-Schleife geidndert. Bei der SCREEN-Tabelle
handelt es sich um eine interne Tabelle mit Kopfzeile, d.h. die
sonst zur Bearbeitung einer internen Tabelle notwendige
Struktur (Arbeitsbereich) ist in die Tabelle (als sogenannte
Kopfzeile) integriert. Die Kopfzeile sprechen Sie iiber den
Namen der internen Tabelle an. Das Feld ACTIVE z.B. wiirde
iiber SCREEN-ACTIVE adressiert werden.

MODULE attribute setzen 0100 OUTPUT.

*Die INTO-Klausel der LOOP-Anw.
*int. Tabellen mit Kopfzeile.

entfallt bei
Fir jedes

6.7 Eigenschaften der Dynproelemente dynamisch &ndern

403

*Dynproelement ein Schleifendurchlauf.
LOOP AT SCREEN.
*Auswahl der zu &ndernden Dynproelemente
*iiber eine if-Anweisung.
IF screen-name = 'CHK PROTECTED' OR
screen-name = 'CHK PUBLIC'.
*Anderung der Kopfzeile
screen-active = 0.
*gednderte Kopfzeile in Tabelle eintragen
MODIFY SCREEN.
ENDIF.
ENDLOOP.
ENDMODULE . " attribute setzen 0100 OUTPUT

Die Eingabemoglichkeiten im Programm SAPMYKO06 sind noch

ﬁ unvollkommen. Gibt man die ISBN an, sind Angaben zu Titel und
Autor nicht notwendig, weil ein Buch eindeutig durch die ISBN
identifiziert wird. Die Datengruppe ,,Angaben zum Buch* soll des-
halb so programmiert werden, dass entweder das Eingabefeld
-ISBN*“ oder die Eingabefelder ,,Titel“ und ,,Autorennummer* ein-
gabefihig sind. Welche dieser beiden Eingabemoglichkeiten genutzt
werden kann, steuert die Auswahlknopfgruppe ISBN / Titel.

Angaben zum Buch - 2

Autorennummer O

Angaben zum Buch -~
) I1SBN o

Autorennummer

1. Ordnen Sie dem E/A-Feld ZBESTAND-ISBN in der Gruppel
die Zeichenkette ,,AI“, den anderen die Zeichenkette ,,AT* zu.

(7 screcn ot BRGNS ' it ATMREMIRT=TET [crccn ot At =
Elementlyp Ein/busgabeleid Elementtyn EnfAusgabaield Elementtyp Einffunsgabateld
Hame FBESTAND_TWISEH Hame FBESTAND_TW.-TITEL Namm {EBESTAND_TwW-AUTORY

G FOI 1 |G FOT T T | Gam FOI_ [T
mcoie [Paw [2] | macess [et [| Pacese [T paw [
Context Meru Form Cortest Menu Foem Contest Menu Form

ON_CTMENU_ ON_CTMENU_ I ON_CTMENU_ I

- Albue F 7 A
Dict | Programen | Anzeige | 3 A;Phwm|m| | Progianm | Anzesge | =
¥ Eingabeleld | Engabeleld Eingabelekd |

F Ausgabeield F F

2. Deaktivieren Sie fiir ZBESTAND-TITEL und ZBESTAND-
AUTORI die statische Eigenschaft ,,Eingabefeld*.

404 W™ 6 Grundlagen der Dynproprogrammierung

3. Programmieren Sie in der PBO-Ablauflogik den Aufruf des
Moduls, in dem die Anderungen der Dynproelementattribute
erfolgen sollen (Namensvorschlag: ,.attribute_setzen_0100)

4. Programmieren Sie dieses Modul entsprechend der Aufgaben-
stellung.

Losung: SAPMYKO06_7

Losung:

* & ___ *
*& Module attribute setzen 0100 OUTPUT

* & ___ *

MODULE attribute setzen 0100 OUTPUT.
LOOP AT SCREEN.

*Ermittlung des aktiven Auswahlknopfes

*in der CASE-Anweisung

CASE 'X'.
WHEN wa_rbgl-isbn.

IF screen-groupl = 'AI'.
*Kopfzeile filir Dynproelemente der
*Gruppel = 'AI' &ndern

screen-input = 1.

ELSEIF screen-groupl = 'AT'.
*Kopfzeile filir Dynproelemente der
*Gruppel = 'AT' &ndern

screen-input = 0.

ENDIF.

MODIFY SCREEN.
WHEN wa_ rbgl-titel.

IF screen-groupl = 'AI'.
screen-input = 0.
ELSEIF screen-groupl = 'AT'.
screen-input = 1.
ENDIF.
*Anderungen in die Systemtabelle SCREEN
*eintragen
MODIFY SCREEN.
ENDCASE.
ENDLOOP.
ENDMODULE. " attribute setzen 0100 OUTPUT

6.7 Eigenschaften der Dynproelemente dynamisch &ndern

405

406

Der Modulaufruf wurde in der PBO-Ablauflogik ergénzt.

PROCESS BEFORE OUTPUT.
MODULE status 0100.
MODULE laden 0100.
MODULE attribute setzen 0100.

PROCESS AFTER INPUT.
MODULE user command 0100.

6.8
Eingabeprufungen mit der FIELD-
Anweisung

Einzelfelder (iberpriifen

Zum Uberpriifen der in das Dynpro eingegebenen Daten konnen
Module in der PAI-Ablauflogik iiber die Field-Anweisung aufgeru-
fen werden.

Syntax
FIELD <Ein-/Ausgabefeld> MODULE <Modulname>.

Wirkung:

1. Der Inhalt des <Ein-/Ausgabefeldes> wird an das gleichnami-
ge Datenobjekt iibergeben.

2. Das Modul <Modulname> wird ausgefiihrt.

3. Eine Message vom Typ ,,E* oder ,,W*, ausgegeben im Modul
<Modulname>, beendet die Abarbeitung der PAI-Ablauflogik.
Das Dynpro wird, ohne das PBO durchlaufen wird, erneut an-
gezeigt. Dabei ist nur das <Ein-/Ausgabefeld> eingabebereit.

Beispiel:

Im Programm SAPMYKO6 soll verhindert werden, dass bei der Re-
cherche nach Titel und Autor der Suchvorgang ausgelost wird, wenn
der Benutzer keinen Buchtitel eingegeben hat.

Dazu wird zu PAI iber die Field-Anweisung das Modul

PRUEFEN_0100“ mit dem Ein-/Ausgabefeld ZBEZUG-TITEL
aufgerufen.

6 Grundlagen der Dynproprogrammierung

B IH @@ DHE D000 AR @@
Screen Painter: Dynpro zu SAPMYKO06 andern

| | | | [= Layout] | [Muster || Pretty Printer |

Programm]
[sAPMYKOB

Dynpronummer 100 aktiv

Ll— Eigenschaften l/EIarnentIiste/ Ablauflogik |
E»

4| |»

< (@ SAPMYKO6
b & DDIC-Strukturen PROCESS BEFORE OUTPUT.
b (& Felder MODULE status_0100.
= MODULE laden 0100.
b & PBO-Module -
b & PA-Module MODULE attribute setzen 0100.
=2 Dynpids PROCESS APTER INPUT.
b @ GUK-Status _
el @bm titel MODULE pruefen_0100.
b 3 Transaktionen MODULE user comwand 0100.
b @ Includes - -

Die Programmierung des Moduls PRUEFEN_0100 sieht so aus:

e g————— — — —_ —_ —_ —_ — = *
*& Module Pruefen 0100 INPUT
K g————— — — —_ —_ — —_ = *

MODULE pruefen 0100 INPUT.

*Die Fehlernachricht e004 darf nicht ausgegeben
*werden, wenn der Benutzer gerade den
*Auswahlknopf ISBN oder TITEL aktiviert hat, er
*h&tte sonst keine Gelegenheit mehr, vor der
*Fehlerprifung, Titel bzw. ISBN einzugeben.
*Deshalb wird die Fehlermeldung nur dann
*ausgegeben, wenn PAI nicht durch den
*Funktionscode RBG1l, der diesen Auswahlknopfen
*iiber die Auswahlknopfgruppe zugeordnet ist,
*ausgeldst wird.

*Hinweis: Der Funktionscode steht in OK CODE

IF wa_rbgl-titel = 'X'
AND ok code <> 'RBG1'.
IF zbestand-titel IS INITIAL.
CLEAR ok code.
MESSAGE €004 (z1lib_ tw) .
ENDIF.
ENDIF.
ENDMODULE .

" Pruefen 0100 INPUT

6.8 Eingabepriifungen mit der FIELD-Anweisung

Abb. 6.53
FIELD-
Anweisung mit-
Modulaufruf

= 407

Das Programm zeigt jetzt das folgende Verhalten:

Der Benutzer aktiviert den Auswahlknopf ,,Titel* und klickt, ohne
einen Titel einzugeben, auf eine beliebige Schaltflache. PAI wird
ausgelost und das Modul PRUEFEN_0100 aufgerufen. Nach der
Bestitigung der entsprechenden Fehlermeldung wird das Dynpro er-

neut angezeigt. Es ist nur das Feld ,,ZBESTAND_TITEL* eingabe-
bereit.

. edBE ¢ 0HR OUND RO
East-Side-Library: Rechercheprogramm
Der Benutzer hat den
® programmstat 210304 155701 Auswahlknopf , Titel” aktiviert

[Angaben zum Buch und, ohne einen Titel
QO 1seN o anzugeben, eine beliebige

Schaltflache gedriickt.

Autorennummer

Aereichngaben zum Suchbereich . 4

(@) Recherche im Gesamibestand O & geschitzter Bereich
) Recherche im verfugbaren Bestand & offentlicher Bereich

(O Recherche im nicht verfugbaren Bestand

(E@ Recherche | |38 Programm beenden |

@ s M e0@ CHE ON08 BE @8

Ea&r— Side-Library: Rechercheprogr .36:ng Benutzer bestatlgt die dar-

aufhin-ausgegebene Fehlermel-—

@ Programmstart 210304 21:54:37

Angaben zum Buch - du“g H“d muss d’a'n'n'eme'n'- Titel
L L] - -
© 15BN 0 eingeben, auch wenn der eir
@ el gentliche Fehler das Aktivijren
Autorennummer
des Auswahlknopfes war.

Aereichngaben zum Suchbereich

© Recherche im Gesamtbestand

(2 Recherche im verfugbaren Bestand
) Recherche im nicht verfagbaren Bestand @

Bitte geben Sie sinen Tiel sin

@ Recherche | | # Programm beender

Optimal ist das Verhalten des Programmes noch nicht. Es treten
zwei Bedienungsprobleme auf:

408 W™ 6 Grundlagen der Dynproprogrammierung

1. Es kann sein, dass der Auswahlknopf WA_RBGI-TITEL ver-
sehentlich aktiviert wurde. Um den Eingabefehler zu korrigie-
ren, muss zunidchst mindestens ein Zeichen in das Ein-
/Ausgabefeld WA_ZBESTAND-TITEL eingegeben und PAI
erneut ausgelost werden (z.B. durch driicken der ENTER-
Taste).

2. Auch die Drucktaste ,,Programm beenden kann im Fehlerfall
vom Anwender nicht so benutzt werden, wie er sich das
wiinscht. Bevor er das Programm schlieen kann, muss er den
Fehler korrigieren.

In unserem Beispiel miissten also, um ein optimales Programmver-
halten zu erreichen, die Dynproelemente

= WA_RBGI-ISBN (Auswahlknopf),
= WA_RBGI-TITEL (Auswahlknopf) und
= ZBESTAND-TITEL (Ein-/Ausgabefeld)

nach einer fehlerhaften Anwendereingabe eingabebereit geschaltet
werden. Das ist mit der FIELD-Anweisung in der bisher behandelten
Form nicht erreichbar, weil immer nur ein Dynproelement angege-
ben werden kann.

Mehrere Felder (iberpriifen

Um mehrere voneinander abhéngige Felder zu iiberpriifen oder/und
diese Felder nach einer fehlerhaften Benutzereingabe zur Korrektur
bereitzustellen, werden die FIELD-Anweisungen in einer Verarbei-
tungskette zusammengefasst.

Syntax:
CHAIN.
FIELD: f1, f2, f3 MODULE <Modulnamel>.
[FIELD: f4, £5 MODULE <Modulname2>.]
ENDCHAIN.

Wirkung:

1. Die erste FIELD-Anweisung wird abgearbeitet und die Inhalte
der Dynproelemente f1, f2 und f3 werden in die namensglei-
chen Datenobjekten transportiert.

2. Das Modul <Modulnamel> wird ausgefiihrt.

3. Lost dieses Modul eine Nachricht vom Typ ,,E* oder ,,W* aus,
wird PAI beendet und das Dynpro ohne PBO-Durchlauf erneut

6.8 Eingabeprifungen mit der FIELD-Anweisung

409

410

angezeigt. Alle Felder der Verarbeitungskette (f1, f2, f3, 4,
f5) sind eingabebereit.

4. Die zweite FIELD-Anweisung wird abgearbeitet und die In-
halte der Dynproelemente f4 und f5 werden in die namensglei-
chen Datenobjekten transportiert.

Das Module <Modulname2> wird ausgefiihrt.

6. Lost dieses Modul eine Nachricht vom Typ ,,E* oder ,,W* aus,
wird PAI beendet und das Dynpro ohne PBO-Durchlauf ange-
zeigt. Alle Felder der Verarbeitungskette (f1, f2, f3, f4, £5)
sind eingabebereit.

Beispiel:

Im Programm YKO6DBAS soll verhindert werden, dass bei der Re-
cherche nach Titel und Autor der Suchvorgang ausgeldst wird, wenn
kein Buchtitel eingegeben wurde. Der Benutzer soll jedoch die Mog-
lichkeit erhalten, auf eine entsprechende Fehlermeldung mit dem
Aktivieren des Auswahlknopfes WA_RBG1-ISBN zu reagieren.

Dazu wird zu PAI eine Verarbeitungskette programmiert, die die In-
halte der Dynproelemente

= WA_RBGI-ISBN,
= WA_RBGI-TITEL und
= ZBESTAND-TITEL

an die namensgleichen Datenobjekte iibergibt und das Modul
PRUEFEN_0100 aufruft. Ist das Ein-/Ausgabefeld ZBESTAND-
TITEL nicht ausgefiillt, gibt das Modul eine Nachricht vom Typ ,,E*
aus.

6 Grundlagen der Dynproprogrammierung

Abb. 6.54

¢ » 18 ©0@ DHE NnLD DE O I‘(/:l;tszeitung&

Screen Painter: Dynpro zu SAPMYKO06 dndern

CIElFEE] HEIE | (2] (58] P[] | (= Loyou] | [uster] [Pretty Priner]

g;;graf:lg; =~ Dynpronummer 100 aktiv
MY 7
|| »f | Eigenschaft | Elementliste)~ Ablauflogik |
ﬁlll;'}l_ |3|ﬁ| |nm
Objekiname | 2R 2] G @)
7 (2 SAPMYKO6

v (3 DDIC-Strukturen

> & Felder

b & PBO-Module

b & PA-Module / t zbest.and—.!.shn,

< & Dynpros ‘ wa_rbgl-titel,

P wa_rbgl-isbn

b & GU-Status \ MODULE pruefen 0100,

b @ GUI-Titel

b & Transaktionen MODULE user command 0100.

b & Includes = =

Das Module PRUEFEN_0100 wurde nicht geéndert. Seinen Quell-
text konnen Sie auf Seite 411 analysieren.

Das Programm zeigt jetzt dieses Verhalten:

Der Benutzer aktiviert den Auswahlknopf ,,Titel*“ und klickt, ohne
einen Titel einzugeben, auf eine beliebige Schaltfliche. PAI wird
ausgelost und das Modul PRUEFEN_0100 aufgerufen Nach der
Bestitigung der entsprechenden Fehlermeldung wird das Dynpro er-
neut angezeigt. Die Dynproelemente ZBESTAND_TITEL,
WA_RBGI1-ISBN und WA_RBGI-TITEL sind eingabebereit.

IH @@ DHE DDhL0 B @@
East-Side-Library: Rechercheprogramm
Der Benutzer hat den

® programmstart 210304 155701 Auswahlknopf , Titel“ aktiviert

| Angaben zum Buch und, ohne einen Titel
e o anzugeben, eine beliebige
@ i s .
QI Schaltfliche gedriickt.
Autarennummer

Aereichngaben zum Suchbereich

(@) Recherche im Gesamibestand O & geschitzter Bereich
) Recherche im verfugbaren Bestand & offentlicher Bereich
(O Recherche im nicht verfugbaren Bestand

E] Recherche | |8 Programm beenden |

6.8 Eingabepriifungen mit der FIELD-Anweisung ® 411
|
|

412

(V] s MH Caa DHE 000 BE @

East-Side-Library: Rechercheprograﬁ:g}r Benutzer bestétigt dio

lar

@ Programmstart 210304 21:54:37 c

Angaben zum Buch - v A A 3
O 15BN 0 entweder einen Titel eingeben
AL oder den Auswahlknopf , ISBN“

Autorennummer

aktivieren.

Agreichngab Suchbereich
Gus al.

Bitte geben Sie enen Tiel ein

m Recherche | | ¥ Programm beander

Programmieren Sie im Programm SAPMYKO06 folgende Eingabe-
priifungen:

= st der Auswahlknopf WA_RBGI-ISBN aktiviert, soll die Re-
cherche nur ausgefiihrt werden, wenn der Benutzer eine ISBN
eingegeben hat. Bei leerem Eingabefeld ZBESTAND-ISBN ist
eine Message vom Typ ,,E“ (Text: ,,Bitte eine ISBN angeben‘)
auszugeben. Die Dynproelemente = WA_RBGI1-TITEL,
WA_RBGI-ISBN und ZBESTAND-ISBN sind eingabefihig
bereitzustellen.

= Ist der Auswahlknopf WA_RBGI-TITEL aktiviert soll der An-
wender gezwungen werden, Titel und Autorennummer an-
zugeben. Hat der Benutzer nicht beide Ein-/Ausgabefelder aus-
gefiillt, soll ebenfalls eine Message vom Typ ,.E* ausgegeben
werden (Text: ,Bitte Titel und Autorennummer angeben®).
WA_RBGI1-ISBN, WA_RBG-TITEL, ZBESTAND-TITEL
und ZBESTAND-AUTORI sind eingabefzhig bereitzustellen.

= Fine letzte Priifung soll verhindern, dass die Recherche ausge-
fiihrt wird, wenn keines der Ankreuzfelder (geschiitzter Be-
reich, offentlicher Bereich) aktiv ist. Auch hier ist eine ent-
sprechende Message auszugeben. Die Ankreuzfelder sind ein-
gabefihig anzuzeigen.

Fiihren Sie die Priifungen in 3 Modulen (PRUFUNGI1_0100,
PRUEFUNG2_0100 und PRUEFUNG3_0100) durch.

Losung: SAPMYKO06_8

6 Grundlagen der Dynproprogrammierung

Losung:

PROCESS AFTER INPUT. PAI-Ablauflogik
*Alle Inhalte der in den Verarbeitungsketten
*angegebenen Dynproelemente stehen im jweils
*aufgerufenen Modul zur Verfigung. Wird im
*Modul eine Message vom Typ "E" od. "W" aus-
*geldst, stehen alle Dynproelemente der Ver-—
*arbeitungskette auf dem Dynpro
*eingabebereit zur Verfiigung
CHAIN.
FIELD: zbestand tw-isbn,
wa_rbgl-titel, wa rbgl-isbn
MODULE pruefenl 0100.
ENDCHAIN.
CHAIN.
FIELD: zbestand tw-titel,
zbestand tw-autorl,
wa_rbgl-isbn, wa rbgl-titel
MODULE pruefen2 0100.
ENDCHAIN.
CHAIN.
FIELD: chk protected,
chk public
MODULE pruefen3 0100.
ENDCHAIN.
MODULE user command 0100.
R —— JEN e * Modul
g Module Pruefenl 0100 INPUT * PRUEFENT_
N = 0100
MODULE pruefenl 0100 INPUT.
IF wa _rbgl-isbn = 'X' AND ok code <> 'RBGl'.
IF zbestand tw-isbn IS INITIAL.
CLEAR ok code.
MESSAGE e005(zlib_tw).
ENDIF.
ENDIF.
ENDMODULE . " Pruefenl 0100 INPUT
Modul PRUEFENZ
0100

*& Module Pruefen2 0100 INPUT *

MODULE pruefen2 0100 INPUT.

6.8 Eingabepriifungen mit der FIELD-Anweisung ® 413

IF wa _rbgl-titel = 'X' AND ok code <> RBGl'.
IF zbestand tw-titel IS INITIAL OR
zbestand tw-autorl IS INITIAL.

CLEAR ok code.
MESSAGE €004 (z1ib_ tw) .

ENDIF.
ENDIF.
ENDMODULE . " Pruefen2 0100 INPUT
Modul % gmmmm e e e x
PRUEFEN3_ g Module Pruefen3 0100 INPUT *
0100 »g—— *

MODULE pruefen3 0100 INPUT.
IF chk protected IS INITIAL AND chk public IS
INITIAL.
CLEAR ok code.
MESSAGE €006 (zlib_ tw).
ENDIF.
ENDMODULE . " Pruefen3 0100 INPUT

6.9
Bedingtes bzw. vorrangiges Ausfuhren
von Modulen

Bisher haben wir beim Anlegen von Dynproelementen zwar einen
Funktionscode vergeben, dem Funktionstyp jedoch keine Beachtung
geschenkt. Der Funktionstyp informiert den Dynproprozessor beim
Auslosen eines Funktionscodes dariiber, wie dieser zu interpretieren
ist. In speziellen Fillen entscheidet nicht der Funktionscode sondern
der Funktionstyp dariiber, welches Modul abgearbeitet wird. Tabelle
6.3 zeigt die Funktionstypen und ihre Wirkung auf die Ablauflogik
des Dynpros.

414 ®™ 6 Grundlagen der Dynproprogrammierung

Tabelle 6.3

Funktionstypen

Funktionstyp Wirkung auf die Ablaufsteuerung
E Das Modul mit dem Zusatz AT EXIT
(Exitkommando) COMMAND wird ausgefiihrt.
H Module in der Ablauflogik POH (Process on
(Help) Help Request) wird ausgefiihrt.
S Eine Systemfunktion wird aufgerufen. Die-
(Systemfunktion) ser Funktionstyp wird in der Regel nur in
SAP-Programmen benutzt.
T Eine Transaktion wird aufgerufen
(Transaktion) Beispiel:
Funktionscode einer Drucktaste: SE80
Funktionstyp: T
Beim Anklicken der Drucktaste wird die
Transaktion SE80 ausgefiihrt.
P Lokales Blittern im Tabstrip
leer Standard, normale PAI-Abarbitung

Uber Zusitze beim Aufruf eines Moduls kann erreicht werden, dass

* Ein Modul, unabhéngig von seiner Stellung in der Ablauflogik,
vorrangig aufgerufen wird, wenn der Anwender eine Drucktaste
oder einen Meniipunkt mit bestimmten Eigenschaften (Funkti-
onstyp ,,E*) ausgewihlt hat,

= ein Priifmodul nur dann aufgerufen wird, wenn der Benutzer
Eingaben oder Anderungen in einem zu priifenden Feld vorge-

nommen hat.

6.9 Bedingtes bzw. vorrangiges Ausfilihren von Modulen ® 415

Tabelle 6.4

. Zusatz
Zusétze zur

Anwendung

MODULE- AT EXIT-
Anweisung COMMAND

ON INPUT

ON CHAIN-
INPUT

ON REQUEST

ON CHAIN-
REQUEST

MODULE flucht AT EXIT-COMMAND.
Eine Drucktaste bzw. ein Meniipunkt mit dem
Funktionstyp ,,E* ,,springt* genau das Modul
FLUCHT an.

Hinweise

= Das Modul FLUCHT wird nur ausgefiihrt,
wenn es iiber eine Schaltfliche bzw. einem
Meniipunkt mit dem Funktionstyp ,,E* auf-
gerufen wird. Bei anderen Funktionstypen
wird dieses Modul von der PAI-
Ablauflogik iibersprungen.

= Enthilt das Modul FLUCHT keine Anwei-
sung zum Verlassen des aktuellen Dynpros,
werden nachfolgen die Priifmodule und
dann die ,,normalen* PAI-Module prozes-
siert.

FIELD xy MODULE pruef ON INPUT.
Nur wenn sich der Wert von XY von seinem
Initialwert unterscheidet, wird PRUEF ausge-
fiihrt.

CHAIN.

FIELD: ax, bx

MODULE pruef ON CHAIN-INPUT.
ENDCHAIN.

Nur wenn sich der Wert fiir AX oder BX vom
Initialwerten unterscheidet, wird das Module
PRUEEF prozessiert.

FIELD x MODULE pruef ON REQUEST.
Nur wenn sich der Wert fiir X geédndert hat,
wird PRUEF ausgefiihrt.

CHAIN.

FIELD: ax, bx

MODULE pruef ON CHAIN-REQUEST.
ENDCHAIN.

Nur wenn sich der Wert fiir AX oder BX
gedndert hat, wird das Module PRUEF prozes-
siert.

416 W™ 6 Grundlagen der Dynproprogrammierung

In dieser Aufgabe soll das Programmverhalten so gedndert werden,
dass mit dem Funktionscode CANCEL das Programm beendet wird, ﬁ
ohne das die Priifmodule ausgefiihrt werden.
1. Legen Sie im Attributefenster der Drucktaste ,,Programm be-

enden® und im GUI-Status ,,DYNPRO_0100* fiir den Funkti-

onscode CANCEL den Funktionstyp ,,E* (Exit) fest

7] 5crcen Painter Andern Orucktadte [[7] Screen pamtersats = =loi=|
L Ed <
prei Detrbel . Il 1} |

[8 @ D6l XM e | @ Fementn Duckale

Pt gh ¢ a0 4 P | ¢ Ablstiophk ¢ Eipenachalien » Name B2

Teat Presgamm_baerden__

Homa [BZ Teu [Frogramm_beenden_ s [=

- I [EoR_CanCEL 0| i

! |(® Programnstart || : [=

} S e = Duschdrde achan

T i 1SEN[Zede 12 delliange [23

— ic Inell } Spabe [B sialiinge [T

; T
= utorennumner e [T
© hssten zun : = e [[
o im = d i
= i in verfugbaren Besfanfl| | FhCode [CANCEL
= iC Recherche im nicht werfiigl Bestand|
Comiest Morw Fom
)| Tl—recnecns] | J¢ - Proraun: besnan ON_CTMENU.
00 R, -st
Dt A T Transaktion
50 | Progeamm | Araeige | 5
& | " dH e DR oONLa EFE DE

Status DYNPRQO_0100 der Oberfliche SAPMYKO6 pflegen

= |) | EE))= | () () 50) | [5) [5)) (6 (6) | 28 Funktionscode) (7] [Teiken sachen]|

Cherflachs BAPHYEDE Akri
Menileiste EH @ .8
Driicktnstanleists | M) o8 : °
Funktdonatastan 5 @ .2

Symbolleiste T 1 - ; ; ;
- @ @ ‘u '

mpfohl Funkionscode CANCEL

4 Funktionstyp B Exitkommanto

Umach
Tmeck-

Funktionstes Anbrechen
Ikonenname ICOM_CANCEL =
rs IKOnEntest
BS Infotext
.—.L Direktanwahi

b [wP][Toxtart andom | [3]
=

T

2. Fiigen Sie in die PAI-Ablauflogik die Anweisung
MODULE beenden AT EXIT-COMMAND ein.

3. Legen Sie das Modul BEENDEN per Vorwirtsnavigation an.

Beenden Sie im Modul BEENDEN das Programm mit der
Anweisung LEAVE TO SCREEN 0.

6.9 Bedingtes bzw. vorrangiges Ausfiihren von Modulen ™ 417

418

5. Fiihrt der Funktionscode CANCEL direkt zum Modul
BEENDEN? Testen Sie Thr Programm.

Losung: SAPMYKO06_9
Losung:
PROCESS AFTER INPUT.

MODULE beenden AT EXIT-COMMAND.

*& ___ *
*& Module Dbeenden INPUT *
*& ___ *

MODULE beenden INPUT.
LEAVE TO SCREEN O.
ENDMODULE . " beenden INPUT

Zum Abschluss dieses Kapitels sollen nun die Daten des im Selekti-
onsdynpro ausgewihlten Buches in einem zweiten Dynpro angezeigt
werden. Prinzipielles zum Aufruf von Dynpros und zu Dynproket-
ten ist schon in Kapitel 6.3 auf Seite 357 ausgefiihrt worden. Die
Abb. 6.55 zeigt fiir unser Beispielprogramm den Aufruf des
Dynpros 200 iiber die Anweisung CALL SCREEN 0200, die eine
neue Dynprokette aufruft, und den Riicksprung iiber die Anweisung
LEAVE TO SCREEN 0, die die neue Dynprokette beendet und zur
Aufrufstelle (zuriick)verzweigt.

6 Grundlagen der Dynproprogrammierung

ROCESS BEFORE OUTPUT.

MODULE status_0100.

HODULE laden D100.

HODULE attribute setzen 0100.

d

B O 08 OmE ool

PROCESS BEFORE OUTPUT.
— MNODULE stacus_0200.
HODULE laden 0200.
HODULE attribute seczen D200.

East-Side-Library: Rechercheprogramm

L B IH SO0 DIE DDOD

Angaben zu Buch und .mf(E

o pehies
24008 084034 s
- MoHEM a1 vy Yiews
134056050
Bucreel Fechoarae i
o
Ertr 3 vanenen (]
B o) (K Pgen] bategre [r—

E PROCESS AFTER INPUT.
MODULE user command 0100.
MODULE xyz.

eenden AT EXIT-COMMAND.

MODULE user command 0100 INPUT.
ok_save = ok_code.
CLEAR ok_code.
CASE ok_;mre.
WHEN 'RECHERCHE'.

El PROCESS AFTER INPUT.
MODULE user_command 0200.
MODULE xyz.

MODULE beenden AT EXIT-COMMAND.

MODULE user_command 0200 INPUT.
ok_save = ok_code.
CLEAR ok_codz.
CASE ok_save.

d

WHEN 'EXIT' OR 'BACK'.
CALL SCREENW 0200. LEARVE TOD 0.
WHEN 'EXIT' OR 'BACK'. ENDCASE.
LEAVE TO SCREEW O. *Anweisung xyz
ENDCASE. ERDMODULE.
*anweisung xyz &
——ENDMODULE.

Abbilung 6.56 zeigt den Aufruf des Dynpros 200 iiber die Anwei-
sung LEAVE TO SCREEN 0200 und den Riicksprung vom Dynpro

200 in Dynpro 100, iiber die Anweisung LEAVE TO SCREEN

0100.

PROCESS BEFORE OUTPUT.
MODULE scacus 0100.

FROCESS BEFORE OUTPUT.

g — HMODULE =cacus 0200.
MODULE laden 0100. HODULE laden_0200.
MODULE actribute seczen 0100. HODULE actribute seczen 0200.
P
e D (L. > o
East-Side-Library: Rechercheprogramm Angaben i Buch
@ Progammitat 340304 (4004 8w
[Argptn rm whacn = 1 IO e 1 verag Vieew
[18
O Tast et Frchoerein Faam
e il
Britar . —— o
B Ftianne][5 Pgmmmisenan | LT et
PROCESS RFTER INPUT. E| PROCESS AFTER INPUT.
MODULE user command 0100. MODULE user command 0Z00.
MODULE xyz. MODULE xyE.
MODULE beenden AT EXIT-COMMAND. MODULE beenden AT EXIT-COMMAND.
MODULE user command 0100 INPUT. MODULE user command 0200 INPUT.
ok_save = ok_code. ok_save = ok _code.
CLEAR ok_code. CLEAR ok_code.
CASE ok_save. CASE ok_save.
WHEN 'RECHERCHE'. E| WHEN ‘EXIT' OR 'BACK'.
LEAVE TO SCREEN 0200. El
WHEN 'EXIT' OR 'BACK'. ——— LEAVE TO0 SCREENW 0100.
LEAVE TO SCREENW O.
ENDCASE. ENDCASE.
*Anweisung Xy *Anweisung xyz
ENDMODULE. ENDMODULE.
6.9 Bedingtes bzw. vorrangiges Ausfiihren von Modulen ®

Abb. 6.55
Aufruf einer
Dnprokette liber
CALL SCREEN.

Abb. 6.56
Dynproaufruf mit
LEAVE TO
SCREEN <scr>

419

ol

420

Der gegenseitige Dynproaufruf iiber LEAVE TO SCREEN <scr> ist
sicher die geeignetere Methode fiir unser Beispielprogramm.

Legen Sie im Programm SAPMYKO06 ein Dynpro mit der
Dynpronummer 200 an. In diesem Dynpro sollen Angaben
zum ausgewihlten Buch und dessen Autor(en) angezeigt wer-

den. Orientieren Sie sich am folgenden Layout:

=] |Statusikone + <ZBESTAND-BEREICH>
ISEN [| [suflage [T | [Verlag [Jabr! [
| Buchtite]l |
: Felder aus der Daten-
e Lo [banktabelle ZBESTAND

hutor 1
Hane

| Wernane?
Geburtsdatum
Land

Autor 2

Thutar 3

I

[Komponenten aus WA AUTOR1...WA AUTORS3|

2. Legen Sie einen GUI-Status DYNPRO_200 an. Ordnen Sie in
der Symbolleiste die Funktinscodes BACK, EXIT und
CANCEL den entsprechenden Symbolen zu.

Symbolleiste

V]

2]

BACK

¢

EXIT

@

CANCEL

(] '

Legen Sie GUI-Titel DYNPRO_0200 an. Tragen Sie als Titel
,~Angaben zu Buch und Autor* ein.

Programmieren Sie in der PBO-Ablauflogik des Dynpros 200
einen Modulaufruf MODULE status_0200. Legen Sie dieses
Modul in der Vorwirtsnavigation an und rufen Sie dort GUI-
Status und GUI-Titel auf.

Programmieren Sie in der PAI-Ablauflogik des Dynpros 200
den Modulaufruf MODULE user_command_0200. Sorgen Sie
in diesem Modul dafiir, dass fiir die Funktionscodes BACK
und EXIT das Dynpro 100 aufgerufen wird. Der Funktionsco-
de CANCEL soll das Programm beenden.

Programmieren Sie im Module USER_COMMAND_0100 des
Dynpros 100 den Aufruf des Dynpros 200. Aktivieren Sie alle
Programmteile und testen Sie Ihr Programm.

6 Grundlagen der Dynproprogrammierung

7. Legen Sie in der PBO-Ablauflogik des Dynpros 200 ein Mo-
dul LADEN 0200 an. Laden Sie dort die Standardstruktur
ZBESTAND mit den Daten des Buches, das durch die Einga-
ben in Dynpro 100 selektiert wurde. Beriicksichtigen Sie da-
bei:
= Die Ankreuzfelder (geschiitzter bzw. offentlicher Bestand).

Welche Biicher zum ,,geschiitzten” bzw ,,6ffentlichen Be-
reich gehoren, entscheidet sich im Feld ,,Bereich* der Ta-
belle ZBESTAND. Dort gibt es die Eintrige ,0ffentlich
und ,,geschiitzt™.

= Die Auswahlfelder (Gesamtbestand, verfiigbarer / nicht ver-
fligbarer Bestand)

Hinweis: Lesen Sie dazu zuerst iiber eine SELECT SINGLE-
Anweisung den Datensatz aus der Datenbanktabelle
ZBESTAND. Untersuchen Sie danach, ob der Datensatz den
Bedingungen des Auswahl- und der Ankreuzfelder entspricht.

Laden Sie die Strukturen WA_AUTOR1, WA_AUTOR2 und
WA_AUTOR3 mit den entsprechenden Daten aus der Daten-
banktabelle ZAUTOREN.

5. Legen Sie in der PBO-Ablauflogik des Dynpros 200 ein weite-
res Modul ,,ATTRIBUTE_SETZEN_ 0200 an. In diesem Mo-
dul soll die Statusikone in Abhingigkeit vom Feld BEREICH
der Datenbanktabelle ZBESTAND wie folgt geladen werden:

Bereich Ikone
offentlich ICON LED GREEN
geschiitzt ICON LED RED

Sorgen Sie in diesem Modul auch dafiir, dass die Ein-/Aus-
gabefelder fiir die Datengruppen Autor2 und Autor3 nur dann
sichtbar sind, wenn im Bestandsdatensatz des anzuzeigenden
Buches die Felder AUTOR2 bzw AUTOR3 nicht leer sind.

Losung: YKO6DBAS_10

Losung:

*& ___ *
*& Include MYKO6 10TOP *
*& ___ *

PROGRAM SAPMYKO06 10

6.9 Bedingtes bzw. vorrangiges Ausflihren von Modulen

421

tables: zbestand tw.

DATA: wa_autorl type zautoren tw,
wa_autor2 type zautoren tw,
wa_autor3 type zautoren tw,
anzeige,
anzahl type zbestand tw-bestand,
iconl type icons-text.

DATA: startdatum type d, startzeit type t.

DATA: ok code type sy-ucomm,
ok save type sy-ucomm.

DATA: begin of wa_ rbgl,

isbn value 'X',
titel,
end of wa rbgl,
begin of wa rbg2,
ges value 'X',
ver,
nver,
end of wa rbg2,
chk protected, chk public value 'X'.

Dynpro 100

A —————— — *
*& Module wuser command 0100 INPUT *
A —————— *

MODULE user command 0100 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.
WHEN 'RECHERCHE'.
LEAVE TO SCREEN 0200.
WHEN 'EXIT' OR 'BACK'.
LEAVE TO SCREEN 0.
ENDCASE.
ENDMODULE . " user command 0100 INPUT

Dynpro 200

Hinweis: In Punkt 5 der Aufgabenstellung sollen die Ausgabefelder
fiir die Autoren 2 und 3 unsichtbar geschaltet werden, wenn Autor 2
bzw. Autor 3 nicht vorhanden ist. Es ist deshalb ganz praktisch, die
Felder in der Elementliste mit unterschiedlichen Eintrdgen in
,,Gruppe 1% zu versehen.

422 ®m 6 Grundlagen der Dynproprogrammierung

(] 1B ce@ CHE D000 AR @8

Screen Painter: Dynpro zu SAPMYKO06 dndern
EE | FE EEEE | (&S [o] | [@ Aubve] | [T Eemen]

Dynpronummer 200 aktiv

Eig o / El m I/ Ablauflogik I

Allg Attrib. | Texte u. E/A-Schabl. | Spez. Attrib. | Anzeigeattiib. »~ ModifGruppen/Funkti b Refen

H. {hj. Typ ... [Gruppel |Gruppe2 |Gruppe3 |Grupped |Eing... [Wen...|Eing... [Funktionsc. ..
n2 Frameh2 1 _
R3 Prame(A3 Name Gr1 |
T1 Text
MA_AUTOR1-HAME 1/0 R2 A2 o
MA_AUTOR2-NAME 1/0 [az R3 A3 T
WA_AUTOR3-HAME /0 A3 wa_autor2-name A2 |
2 rERY wa_autor3-name A3 [
WA_AUTOR1-VORNAMEL |I/0 tor2 AD]
WA_AUTORZ-VORNAMEL [I/0 [a2 Wa_autors-vorname
uaA_AUTORI-VORNAME1 |[1/0 [a3 wa_autor3-vorname |A3 T
T3 Text wa_autor2-gebdat A2 |
B wa_autor3-gebdat [A3 |-
WA_AUTORZ-VORNAMEZ /0 a2
Wh_AUTOR3I-VORNAMEZ [I/0 [3 wa_autor2-land A2 :
T4 Text wa_autor3-land A3
WA_RUTOR1-GEBDAT 1/0 | I EEIE]] [

[I

Ablauflogik Dynpro 200

PROCESS BEFORE OUTPUT.
MODULE status 0200.
MODULE laden_ 200.
MODULE attribute setzen 0200.

PROCESS AFTER INPUT.

MODULE user command 0200.
*Das Modul BEENDEN, urspringlich angelegt im
*Dynpro 100, kann von jedem anderen Dynpro aus
*aufgerufen werden. Das gilt auch fiir andere
*Module

MODULE beenden AT EXIT-COMMAND.

*& ___ *
*& Module STATUS 0200 OUTPUT *
*& ___ *

MODULE status 0200 OUTPUT.
SET PF-STATUS 'DYNPRO 0200°'.
SET TITLEBAR 'DYNPRO 0200'.
ENDMODULE. " STATUS 0200 OUTPUT

6.9 Bedingtes bzw. vorrangiges Ausfihren von Modulen

423

*& Module 1laden 200 OUTPUT
*& ___
MODULE laden 200 OUTPUT.

anzeige = '0'.

IF NOT wa rbgl-isbn IS INITIAL.
SELECT SINGLE * FROM zbestand tw
INTO zbestand tw
WHERE isbn = zbestand tw-isbn.
IF sy-subrc = 0.anzeige = 'l'.ENDIF.
ELSE.
SELECT SINGLE * FROM zbestand tw
INTO zbestand tw
WHERE titel = zbestand tw-titel AND

(autorl = zbestand tw-autorl OR
autor2 = zbestand tw-autorl OR
autor3 = zbestand tw-autorl).

IF sy-subrc = 0.anzeige = 'l'.ENDIF.

ENDIF.

*ANZEIGE = 1: DBTab. enthdlt gesuchte Daten

IF anzeige = '1'.
anzahl = zbestand tw-bestand -
zbestand tw-ausgeliehen.
CASE 'X'.
WHEN wa_rbg2-ver.
IF anzahl <= 0.anzeige = '0O'.ENDIF.

*Anzeige auf '0O' gesetzt, wenn nur der ver-
*fiigbare Datenbestand angezeigt werden soll,
*das Buch jedoch nicht verfiigbar ist.
WHEN wa_rbgZ2-nver."nicht verfiig. Best.
IF anzahl > 0.anzeige = 'O'.ENDIF.

*Anzeige auf '0O' gesetzt, wenn nur der nicht
*verfligbare Datenbestand angezeigt werden soll,
*das Buch jedoch verfigbar ist.

ENDCASE.
*Bertlicksichtigung der Ankreuzfelder

IF chk protected IS INITIAL AND

zbestand tw-bereich = 'geschiutzt'.
*Buch im nicht-anzuzeigenden (gesch) Bereich
anzeige = '0'.
ENDIF'.
IF chk public IS INITIAL AND
zbestand tw-bereich = 'offentlich'.

424 ®m 6 Grundlagen der Dynproprogrammierung

anzeige = '0'.
*Buch im nicht-anzuzeigenden (6ffentl) Ber.
ENDIF.
ENDIF.
IF anzeige = '1'.
CLEAR: wa_autorl, wa autor2, wa autor3.
SELECT SINGLE * FROM zautoren tw
INTO wa_ autorl
WHERE autorennr = zbestand tw-autorl.

SELECT SINGLE * FROM zautoren tw
INTO wa_autor2
WHERE autorennr = zbestand tw-autor2.

SELECT SINGLE * FROM zautoren tw

INTO wa_autor3

WHERE autorennr = zbestand tw-autor3.
ELSE.

MESSAGE 1007 (zlib_tw) .

LEAVE TO SCREEN 100.

ENDIF.
ENDMODULE. " laden 200 OUTPUT
R —————— *
*& Module attribute setzen 0200 OUTPUT *
R —————— *

MODULE attribute setzen 0200 OUTPUT.
*Statusikone laden

IF zbestand tw-bereich = 'geschiitzt'.
CALL FUNCTION 'ICON CREATE'
EXPORTING
name = 'ICON_LED RED'
IMPORTING
result = iconl.
ELSE.
CALL FUNCTION 'ICON CREATE'
EXPORTING
name = 'ICON LED GREEN'
IMPORTING
result = iconl.
ENDIF.

*Anzeigefelder fir nicht vorhandene Autoren
*unsichtbar schalten
LOOP AT SCREEN.
IF screen—-groupl = 'A2' AND

6.9 Bedingtes bzw. vorrangiges Ausflihren von Modulen

425

wa_autor2-autorennr IS INITIAL.

screen-invisible = 1.
ENDIF'.
IF screen-groupl = 'A3' AND
wa_autor3-autorennr IS INITIAL.
screen-invisible = 1.
ENDIF'.
MODIFY SCREEN.
ENDLOOP.
ENDMODULE. " attribute_setzen_0200 OUTPUT
*& ___
*& Module USER_COMMAND_OZOO INPUT
*& ___

MODULE user command 0200 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.
WHEN 'EXIT' OR 'BACK'.
LEAVE TO SCREEN 0100.
ENDCASE.
ENDMODULE . " USER_COMMAND 0200 INPUT

426 W™ 6 Grundlagen der Dynproprogrammierung

7 Subscreens, Listen und
Tabellen in Dynpros

7.1
Zielstellung des Kapitels

In diesem Kapitel werden folgende ABAP-Programmiertechniken
behandelt:

= Anzeige von Dynpros in einem Trigerdynpro (Subscreentech-
nik),

= Anzeige von Listen in Dynpros,
= Anzeige von Daten in Table Controls.

Das Rechercheprogramm der East-Side-Library wird weiterentwi-
ckelt und sieht nach der Bearbeitung der Aufgaben dieses Kapitels
wie folgt aus:

Abb. 7.1
A B 90 CQ@ CHE DDLD AR @8 Dyan’O 100 mit
East-Side-Library: Rechercheprogramm Selektionsbild
[

@ Programmstart 060404 16:45.28

Angaben zum Buch
= e E Selektionsbild
3.
Autorennummer] als Subscreen
Kategorie bis El
| Angaben zurn Suchbereich
(@) Recherche im Gesamtbestand O & geschitzter Bersich
) Recherche im verfbgbaren Bestand El e effontiicher Bereich

) Recherche im nicht verfigharen Bestand

Anzeigeoplionen @ Rucherche | | # Programm beenden
@ Anzeige als Liste

() Anzeige als TableControl

) Anzeige ALV-Grid

7.1 Zielstellung des Kapitels ® 427

Abb. 7.2
Datenausgabe
in Listenform auf
einem Dynpro

Abb. 7.3
Datenausgabe
im Table
Control,
Detailangaben
im Subscreen-
dynpro

428

(] p 90 @@ CHE vhod R @3

East-Side-Library: Rechercheprogramm

@80 3540523979 EDV-orientierte Betriebswirtschaftslehre 8 scheer
©0Q 3827254388 Internet B saaro
OB 3827258863 SAP R/3 RBrokot
O 3827311365 Administration des SAP-Systems R/3 Buill
©0Q 3827313724 ABAP/4 Die Programmiersprache des SAP R/3-Systems B matzke
©DQ 3827314011 SAP R/3 prozeBorientiert anwenden axeller:
©0O 3827314569 SAP R/3 dynamisch einfilhren Beeis
©0Q 3827316464 SAP R/3 Der schnelle Einatieg &ullrich
©09 3827317886 Programmierung von Internet-Anwendungskomponenten & umlautf
©DQ 3827317894 ABAP-Ubungsbuch 8 vmlauff
©00 3877917410 SAP R/3 Basissystem S Herth
©DQ 3898421473 ABAP Objects ml{eller
@ B 0H CoQ LNR bnLD BF @B @

East-Side-Library: Rechercheergebnisse (Sicht TC)

HED [Bochtesl [Kategone Mame
1540523979 ECNV-orienberte Betrebswirtscnafsienrs Jeovime Bohesc
3827254388 jternet |tnternat Saaco
182 7250862 [SAP RIS v Fakot

[freamaniaeslaministration aes SAP-Systems Ri3_ o jm
15;7213121}-\5;\5}4 i Programmiersprache oes SAP Ri3-Systems :Fw :H-xx).g
1827314011 5AP R/3 prozedorientien anwenden v Wellee

3827314569,

3927316464 SAP R/3 Der schnele Einstieg Blirich

FEFSER von intermet. = miautt
Moo I <
Datadangaban zum susgewahiten Buch ™~
9 oentach D‘,’n pro 20
15BN JOITIIASED mumage 1 venag Addison-Mesley aus pit | 6
Bucresel SAP RY3 gynamisch eintlnren - | .
Bestand 10 veriehen] ategorie v W"'d In einem
\
Fa ey ¢"Subscreenbe-
Name Geis solyaiak N
Vormame 1 Marcus Roland relch ang i
Nl zeigt
Geburtsdatum e e

Vorbereitende Aufgaben

Dieses Kapitel baut auf dem in Kapitel 6 entwickelten Modulpool
auf. Kopieren Sie Thr Programm SAPMYKO06 oder das Programm
SAPMYKO06_10 der Buch-CD nach SAPMYKO07 und legen Sie zu
diesem Programm den Transaktionscode ZKO07_1 an.

Vorgehensweise: Programm kopieren

Laden Sie das zu kopierende Quellprogramm (SAPMYKO06) in den
Object Navigator.

Achtung:

das Quellprogramm muss aktiv sein.

Wihlen Sie im Kontextmenii des Rahmenprogrammes den Menii-
punkt ,,Kopieren*.

7 Subscreens, Listen und Tabellen in Dynpros

&

ITHCee DHB SO0 FE @

Object Navigator

IIII.W

Programm |

= DDIC-Strukturen

[

b & Felder £ndsm

b [Dynpros i

b & GUI-Status pilimarey

v & GUL-Titel Ausfhren =
b & Transaktionen Kopieren..

[W R e

Im Folgebild , Programm <Quellprogramm> kopieren* tragen Sie
den Namen des Zielprogrammes (SAPMYKO07) ein.

Quellprogramm

Zielprogyamm

SAPMYKO6_ 10
SAPMYKO7

O Source

[] Textelemente
Dokumentation
Varianten

Oberflache Alle Ankreuzfelder
Dynpros aktivieren
lnclu#s2

IV Kopieren ||Auﬁr§ge (Organizer) I

1

Die Includes, die kopiert werden sollen, miissen im Folgebild aus-
gewdhlt werden. Wenn Sie sich an die Namenskonvention
(SAPM...) halten, sind die Felder bereits richtig vorbelegt.

MYKO6_ 10101
MYKO6_10001

MYKQ§/ 10TOP

MYKO7101
MYKO7001
MYKO07TOP

7.1 Zielstellung des Kapitels

Abb. 7.4
Modulpool
kopieren,
Einstieg

Abb. 7.5
Zielprogramm
angeben

Abb. 7.6

Zu Kopierende
Programmkom-
ponenten aus-
wéhlen

Abb. 7.7
Includes
kopieren

" 429

Abb. 7.8
Anlegen eines
Subscreen-

bereiches

430

Ordnen Sie anschlieBend der Kopie Entwicklungsklasse und Work-
benchauftrag zu.

7.2
Subscreenbereiche und
Subscreendynpros

Ein Subscreenbereich ist ein Bereich in einem Dynpros der fiir die
Anzeige von Subscreendynpros oder Selektionsbildern reserviert ist.
Ein Subscreendynpro ist ein Dynpro, das wie ein normales Dynpro
angelegt und verwaltet wird, jedoch nur innerhalb eines Subscreen-
bereiches eines anderen Dynpros (Trdgerdynpro) abgebildet werden
kann.

Vorgehensweise: Subscreenbereich anlegen

Starten Sie den grafischen Layouteditor mit dem Dynpro, in dem der
Subscreenbereich angelegt werden soll.

1. Klicken Sie im Layouteditor das Werkzeug ,,Subscreen-
Bereich* an.

2. Schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu driicken, an die linke obere Ecke des kiinftigen Sub-
screenbereiches.

3. Ziehen Sie den Minirahmen, mit gedriickter linker Maustaste,
bis zum unteren rechten Rand des kiinftigen Subscreenberei-
ches.

4. Lassen Sie die Maustaste wieder los. Doppelklicken Sie in den
Subscreenbereich. Tragen Sie in dem sich darauthin 6ffnenden
Attributefenster einen Namen fiir den Subscreenbereich ein.

[Exlscreen Painter: Avtegen ___________[I¥|Screen Rakitiers Kadern Submcrenn-Berich
Qo Bewbeten Sprgen HEsmitel Unfeld Hie - -
[B CcCo@ LM um @ B ce@ D0 ¥ unOEEETTrETT =loilx
S g B 4 P | ¢ stiuiogh Elesenihy SubgeenBeech
e | e ;v (B
Test L
Gukine [
= kel ze [e[
& X N T
® ® e [T
=] o e [[
] 1] FiCode | FhiTyp I_L|
& Cortest Mo Fom
[| oncmem [
i i I ok =

7 Subscreens, Listen und Tabellen in Dynpros

Vorgehensweise: Subscreendynpro anlegen

Ein Subscreendynpro wird wie ein normales Dynpro angelegt. Akti-
vieren Sie in der Registerkarte ,,Eigenschaften” den Auswahlknopf
,»Subscreen.

@

T & 10 00@ REE Bho

O EFR e

Screen Painter: Dynpro zu SAPMYKOT dndern

EE] | (#8680 | 66 E)E @) | (5 Groa)

Programm | [e) 210 neufiberarbeitet]
[SAPMYKOT
l Eigenschaten | Elementiste | Absuflogik |
:I: - -: Hurzbeschreitung [Bubscreenaynpro
Objektnarme . -
= [SAPMYKDT Ez Entwickiungskiasse
b @ DOSC-Strusturen Letzte Angerung 00:00:00
b & Feiger Letrte Generierung 00:00:00
b & PBO-Moouie
b S PALMooule .
< Dynpfityp Einstellngen
glgg fj PPnal [Halten Daten
b S GL-Status @) Subscraen [Ausschaton Laufzeitkompr
b & Gue-Trel () Modales Dialoglenster [Vertage - nicks susibubas
b = Transaktionen N Tt
b N ickides O Sslektonsdynpro [Halten Scrolipostion
Waiters Attribute
Foigedynpro 210
Cursorpostion
Biiagruppe
ZeilervSpalten Belegt 0 a
Plege 27 120
Contextmenu FORM ON CTMENU

Einschrdnkungen fiir Subscreendynpros

Fiir Subscreendynpros bestehen folgende Einschriankungen:

Layout,

Sie diirfen nicht zwischen LOOP / ENDLOOP und CHAIN
/ ENDCHAIN aufgerufen werden.

Ein Subscreendynpro darf kein OK-Feld besitzen (kein Ein-
trag im OK-Feld der Elementliste).

Objektnamen miissen iiber alle Subscreendynpros, die in
einem Tréagerdynpro aufgerufen werden, eindeutig sein.

Ein Subscreendynpro darf kein Modul mit dem Zusatz ,,AT
EXIT-COMMAND* enthalten.

Die Anweisungen SET SCREEN.. und LEAVE
SCREEN... bzw. LEAVE TO SCREEN... sind nicht er-
laubt und fiihren zu Laufzeitfehlern.
(CALL SCREEN ... ist erlaubt).

Ablauflogik und Module eines Subscreendynpros werden,

unter Beachtung der Einschrénkungen fiir Subscreendynpros, genau
so angelegt wie bei normalen Dynpros.

7.2 Subscreenbereiche und Subscreendynpros

Abb. 7.9

Anlegen eines
Subscreen-
dynpros

® 431

Abb. 7.10
Statischer
Aufruf eines
Sybscreens

432 =

Subscreendynpro in Subscreenbereich einbinden

Das Subscreendynpro bzw. das Selektionsbild, das in einem Sub-
screenbereich angezeigt werden soll, wird in der Ablaufsteuerung
des Trigerdynpros aufgerufen. PBO und PAI des Subscreens wer-
den ebenfalls von der Ablauflogik des Trigerdynpros ausgelost.

Syntax:

Aufruf des Subscreens und Auslésen von PBO:
PROCESS BEFORE OUTPUT.

CALL SUBSCREEN <sub>

INCLUDING <programm> <dynpronummer>.

PAI des Subscreens auslosen:
PROCESS AFTER INPUT.
CALL SUBSCREEN <sub>.

sub Name des Subscreenbereiches im Tragerdynpro

programm Name des Programmes, indem das Subscreen-
dynpro angelegt ist. Es konnen auch Subscreen-
dynpros aus anderen Programmen in den Sub-
screenbereich des Triagerdynpros geladen werden.

dynpronummer Nummer des Subscreens. Kann statisch als Literal
(z.B. 200") oder dynamisch als Variable angege-
ben werden.

Statischer Aufruf eines Subscreens

Tragerdynpro 110 Subscreendynprd 200

Eigenschaften |/Elsmantltsie Ablauflogik

Dynpronummer 110 aktiwv -
% -
" PROCESS BEFORE
OUTPUT.

'PROCESS BEFORE OUTPUT.
CALL SUBSCREEN sub

INCLUDING sy-dynnr '
. Dynpronummer 200 aktiv
| Eigenzchaften i/Elemen:hsle/ Ablauflogik

PROCESS AFTER INPUT. -
CALL SUBSCREEN sub.
«

_ L} PROCESS AFTER

INPUT.

sub: Name des
Subscreenbereiches

7 Subscreens, Listen und Tabellen in Dynpros

Dynamischer Aufruf eines Subscreens

DATA dynnr TYPE sy-dynnr. Subscreendynpr Abb. 7.11

\
ce Ve) Aok | Dynamischer
dynnr = '200'. Aufruf eines
Eigenschaften F Elemenﬁlsle/ Ablaufiogik : Subscreens
= PROCESS BEFORE
B OUTPUT.

PROCESS BEFORE OUTPUT.
CALL SUBSCREEN sub

ING sy-dynnr } '
(dynnr. Dynpronummer 200 aktiv
Eigenschaten | Elamentiste) Ablauogic |

PROCESS AFTER INPUT.
CALL SUBSCREEN sub.
<

; L> PROCESS AFTER

INPUT.

sub: Name des
Subscreenbereiches L——

Das anzuzeigende Subscreendynpro wird erst zur Programmlaufzeit
ausgewdhlt.

Selektionsbilder als Subscreens

In der Listenprogrammierung konnen iiber die Konstruktion

SELECTION-SCREEN BEGIN OF SCREEN <dynnr>.
* Anweisungen zur Gestaltung des Selektionsbildes
SELECTION-SCREEN END OF SCREEN <dynnr>.

Selektionsbilder als eigenstindiges Dynpro programmiert werden.
Mit der Anweisung CALL SELECTION-SCREEN <dynnr>. wird
das so definierte Selektionsbild aufgerufen. Weitere Hinweise dazu
finden Sie in der Schliisselwortdokumentation zu CALL
SELECTION-SCREEN.

Die Anweisung zur Definition des Selektionsbildes kann mit der
Klausel ,,AS SUBSCREEN*“ erweitert werden. Sie konnen den Se-
lektionsbildschirm dann wie ein Subscreendynpro einsetzen. Dieses
Verfahren wird in der néchsten Aufgabe eingesetzt.

7.2 Subscreenbereiche und Subscreendynpros ® 433

434 : 7 Subscreens, Listen und Tabellen in Dynpros
|

7.2 Subscreenbereiche und Subscreendynpros : 435

Losung:

K *
*& Include MYKO7TOP
K *

PROGRAM sapmykQ7

TABLES: zbestand.

SELECTION-SCREEN BEGIN OF SCREEN 1100

AS SUBSCREEN.

SELECT-OPTIONS:
so_isbn FOR zbestand-isbn NO INTERVALS,
so_titel FOR zbestand-titel LOWER CASE

NO INTERVALS,

so_autor FOR zbestand-autorl NO INTERVALS,
so_kat FOR zbestand-kategorie LOWER CASE.

SELECTION-SCREEN END OF SCREEN 1100.

'**********‘k**nicht geanderter Quelltext******‘k*‘k****‘k******

*& ___ *
*& Ablauflogik Dynpro 100
*& ___ *

PROCESS BEFORE OUTPUT.

CALL SUBSCREEN subl
INCLUDING sy-cprog '1100'.
MODULE status 0100.

MODULE laden 0100.

PROCESS AFTER INPUT.

CALL SUBSCREEN subl.

MODULE beenden AT EXIT-COMMAND.

CHAIN.

FIELD: chk protected, chk public

MODULE pruefen3 0100.

ENDCHAIN.

MODULE user command 0100.

436 7 Subscreens, Listen und Tabellen in Dynpros

Ergebnis:

Ll

n JH Sea DHE nnon BE @R

East-Side-Library: Rechercheprogramm

@ Programmstart 070404 20:25:34

Angaben zum Buch
r
son E [®
Titel n
Autorennummer B
Kategorie bis
_Angaben zum Suchbereich
@) Recherche im Gesamtbestand & geschitzter Bereich
) Rechercha im gbaren B cF offentlicher Bereich
() Recherche im nicht verfigharen Bestand

@ Recherche | |3¢ Programm beenden |

Die Moglichkeiten des Selektionsbildes lassen Recherchen zu, die
mehr als einen Datensatz der Datenbanktabelle ZBESTAND identi-

fizieren.

Zur Darstellung des Rechercheergebnisses auf einem

Dynpro gibt es 3 prinzipielle Moglichkeiten:

7.3

Ausgabe als Liste. Damit steht zwar die Funktionalitit der
Standardliste zur Verfiigung, eine Auszeichnung fiir mo-
dernes Design ist aber eher nicht zu erwarten.

Ausgabe als Tabelle mittels Table Control. Das ist etwas
aufwendiger als die Liste, entspricht aber eher den Vorstel-
lungen des WINDOWS gewohnten Benutzers.

Ausgabe als Tabelle mittels ALV-GRID-CONTROL. Diese
Technik setzt das Beherrschen von ABAP-Objects, also ob-
jektorientiertes Programmieren, voraus. Grundlagen dazu
finden Sie in Kapitel 10.

Ausgabe von Listen auf einem Dynpro

Fiir die Listenausgabe auf Dynpros gelten folgende Grundsiitze:

Die Anweisungen WRITE, SKIP, ULINE fiillen, wie bei
der normalen Listenprogrammierung, einen Listenpuffer.

Fiir jede Dynprokette steht ein Listenpuffer zur Verfiigung,
d.h. iiber eine CALL-Ebene hinweg, gibt es keinen gemein-
samen Listenpuffer.

Die Listenanzeige wird am Ende des Dynpros prozessiert,
in dessen Ablauflogik LEAVE TO LIST-PROCESSING

7.3 Ausgabe von Listen auf einem Dynpro

437

programmiert ist. Durch diese Anweisung wird ein Flag ge-
setzt, das sicherstellt, dass der Inhalt des Listenpuffers aus-
gegeben wird, sobald das Dynpro verarbeitet wurde.

Abb. 7.12 [Pinprofoige 1 | Fstenpufter | Bynproroige 2 | [Estenputrer
Listenausgabe nprooigeit rofolge 2

auf Dynpros Dynpro 100 > Dynpro 300
MODULE | MOBULE lses
MODULE 0200 rbzeile 11| MODULE i ~zelle 3
Izele2 || FAusgabe Listens :
MODULE listel i ODULE liste3 !
WRITE / *Zeile 1" -—= l: RITE / ‘Zeile 3'. ———=!
ENDMODULE. h LEAVE TO LIST-PROCESSING.
| IENDMODULE.
—MLOE.E»’RU\-"‘EEET%Z’gDCRE EN 200. :
ENDMODLLE,) 1 EAVE 10 SCREENO.
, ENDMODULE
ynpro 200 1
blauflogik : .Anzel e des Listenpuffers der
OOULE lte2 ! R ptiige’®
‘Ausgabe Listenpuffer :
MODULE liste2... |
WRITE / ‘Zeile 2'. -==
LEAVE TO LIST-PROCESSING.
ENDMODULE.
—
ODULE D300
\CALL SCREEN
ENDMODULE
N Anzeigebl;e:pl;:le;f:lel;:t:ﬁers der
Abbildung 7.12 veranschaulicht die Grundprinzipien der Listenaus-
gabe auf Dynpros. Im grafischen Beispiel ist zu erkennen:

= Im Modul LISTE1 des Dynpros 100 wird durch den
WRITE-Befehl die Zeichenkette ,,Zeile 1° in den Listen-
puffer der Dynprokette 1 geschrieben. Eine Ausgabe des
Listenpuffers erfolgt im Dynpro 100 nicht, weil weder im
PBO noch im PAI die Anweisung LEAVE TO LIST-
PROCESSING programmiert ist.

* Im Modul LISTE2 des Dynpros 200 ist ebenfalls eine
WRITE-Anweisung programmiert. Diese bewirkt, dass in
den Listenpuffer der Dynprokette 1 die Zeichenkette ,,Zeile
2 eingetragen wird.

= Im Modul D300 des Dynpros 200 wird mit CALL
SCREEN 300 eine neue Dynprokette erzeugt.. Diese
Dynprokette hat ihren eigenen Listenpuffer. Das Modul
LISTE3 des Dynpros 300 trigt die Zeichenkette ,,Zeile 3 in

438 7 Subscreens, Listen und Tabellen in Dynpros

diesen Listenpuffer ein. AnschlieBend wird durch die An-
weisung LEAVE TO LIST-PROCESSING sichergestellt,
dass am Ende des Dynpros 300 der Inhalt des Listenpuffers
der Dynprokette 2 angezeigt wird.

= Nachdem Dynpro 300 abgearbeitet ist, werden die restli-
chen Anweisungen des Dynpros 200 ausgefiihrt. Durch
LEAVE TO LIST-PROCESSING im Modul LISTE2 des
Dynpros 200 wird am Ende des Dynpros 200 der Listenpuf-
fer angezeigt.

Um Listen wihrend der Dynproverarbeitung anzuzeigen, empfiehlt
die SAP, fiir jedes aufzurufende Listensystem ein eigenes Dynpro zu
definieren. Dieses Dynpro kapselt die Erstellung der Grundliste und
ihre Anzeige. Es kann durch CALL SCREEN von beliebiger Stelle
aus aufgerufen werden.

Cynpro 100 (Programm Cynpro 110 (Programm Dynpro 120
SAPNMYKOT) SA MYK (Systemprogramm

PED (110] | T —
ODULE x.
ODULE y

MODULE x OUTPUT PMODULE y OUTPUT
LEAVE TO LIST-PROCESSING | [* Erzeugen der Liste
AND RETURN TO 0. H* (WRITE, SKIF, ULINE)
[SET PF-STATUS space

o i: PBO (110) | S
h MODULE x
* § MODULE y
Dynpro 100
[MODULE x OUTPUT DDULE y OUTPUT
LEAVE TO LIST-PROCESSING Erzengen der Liste
[AND RETURN TO D. (WRITE, SKIP, ULINE)
SUPPRESS DIALOG.

[EET PF-STATUS space

Das Bildschirmbild dieses Dynpros kann leer bleiben. Im einfachs-
ten Fall wird in der Ablauflogik nur ein PBO-Modul benétigt. In
diesem Modul wird die Grundliste des Listensystems definiert und
der Listenprozessor aufgerufen. Fiir eine bessere Ubersichtlichkeit
sollten Sie aber mehrere Module anlegen.

Vorgehensweise: Listenausgabe auf Dynpros
= Legen Sie fiir die auszugebende Liste ein leeres Dynpro an.

= Setzen Sie im Modul STATUS_<scr> iiber die Anweisung
SET PF-STATUS SPACE den Standardlistenstatus oder
iiber SET PF-STATUS <status> einen eigenen Listenstatus.

= Programmieren Sie (evtl. in einem eigenen Modul)

7.3 Ausgabe von Listen auf einem Dynpro

Abb. 7.13

439

440

= LEAVE TO LIST-PROCESSING AND RETURN TO 0,
um am Ende des Dynpros zur Listenanzeige zu verzweigen
und nach Verlassen der Listenverarbeitung hinter die Auf-
rufstelle des Dynpros zuriickzukehren und

= SUPPRESS DIALOG um das Trigerdynpro nicht anzuzei-
gen (siehe Abb. 7.13).

= Erzeugen Sie alle Komponenten Ihrer Liste (Grundliste,
Verzweigungsliste, Ereignisblocke) wie in Kapitel 4 und 5

beschrieben.

Anweisungen zur Listenausgabe auf Dynpros

Anweisung
LEAVE TO LIST-
PROCESSING.

LEAVE-TO-LIST-
PROCESSING AND
RETURN TO
SCREEN 0.

LEAVE-TO-LIST-
PROCESSING AND
RETURN TO <scr>.

SET PF-STATUS
SPACE

SUPPRESS DIALOG
LEAVE LIST-
PROCESSING

Wirkung

Bewirkt, dass am Ende des Dynpros, in
dem diese Anweisung programmiert ist, der
Inhalt des Listenpuffers der jeweiligen
Dynprofolge angezeigt wird.

Wird die Anzeige der Liste beendet (durch
€ @ @ oder programmgesteuert durch
LEAVE LIST-PROCESSING) wird das
Programm eine Anweisung nach dem Auf-
ruf des Tragerdynpros fortgesetzt.

Wird die Anzeige der Liste beendet (durch
€ @ @ oder programmgesteuert durch
LEAVE LIST-PROCESSING) wird PBO
des Dynpros <scr> ausgefiihrt.

Der Standardlistenstatus wird gesetzt.

Das Tréagerdynpro wird nicht angezeigt.
Anweisung zum programmgesteuerten
Verlassen der Listverarbeitung.

Die Ausgabe der

Rechercheergebnisse des Programmes

SAPMYKO7 wird jetzt an den Einsatz des Selektionsbildes ange-
passt. Die Suchergebnisse sollen mit Hilfe des Funktionsbausteines
Y_DISPLAY_ZEILE bzw. Y_DISPLAY_ZEILE_TW als Liste

ausgegeben werden.

1. Deklarieren Sie im TOP-Include folgende Datenobjekte:

7 Subscreens, Listen und Tabellen in Dynpros

2.

Datenobjekt Bezug Verwendung

IT ZBESTAND | DBTabelle Die interne Ta-

WA ZBESTAND bzw. belle wird spiter

ZBESTAND ZBESTAND_TW mit den anzuzei-
genden Daten-
sitzen der Tabel-
le ZBESTAND
geladen werden

WA_ globaler Strukturtyp | Schnittstelle zum

ZBESTAND_FB | ZST_ZBESTAND Funktionsbau-

(aus Kap. 4) bzw stein
ZST_BESTAND_T
W%

FARBE C (einstellig) Schnittstelle zum
Funktionsbau-
stein,

Auswahl der
Darstellungsart

Legen Sie fiir die Ausgabe der Ergebnisliste ein Dynpro mit
der Dynpronummer 110 (statisches Folgedynpro: 110) an.
Programmieren Sie die Ablauflogik.

Ablauflogik PBO:

Modul STATUS_0110

In diesem Modul wird iiber die Anweisung

SET PE-STATUS SPACE der Standardstatus einer Liste ge-
setzt.

Modul EINSTELLUNGEN_0110

In diesem Modul wird iiber die Anweisung

LEAVE TO LIST-PROCESSING AND RETURN TO
SCREEN 0.

der Listenprozessor eingeschaltet und mit SUPPRESS
DIALOG datiir gesorgt , dass das Dynpro 110 nicht angezeigt
wird.

Modul LADEN_INT_TAB

Das Modul l4dt die interne Tabelle IT_ZBESTAND mit den
anzuzeigenden Datensitzen der Datenbanktabelle
ZBESTAND. Programmieren Sie eine Select-Anweisung als
Schleife, die die Datensétze der Datenbanktabelle entprechend
der Selektionskriterien liest.

7.3 Ausgabe von Listen auf einem Dynpro

441

SELECT * FROM zbestand INTO wa_zbestand

WHERE isbn IN so_isbn AND

titel IN so_titel AND

(autorl IN so_autor OR

(autor2 IN so_autor AND autor2 > 0) OR

(‘autor3 IN so_autor AND autor3 > 0)) AND kategorie IN
so_kat.

ENDSELECT

Priifen Sie innerhalb der SELECT-Schleife, ob der Datensatz
auch den Anforderungen der anderen Kriterien

= Ankreuzfelder
CHK_PROTECTED (geschiitzter Bereich),
CHK_PUBLIC (6ffentlicher Bereich).

= Auswabhlfelder
WA_RBG2-GES (Recherche im Gesamtbestand)
WA_RBG2-VER (Recherche im verfiigbarer Bestand)
WA_RBG2-NVER (Rech. im nicht verfiig. Bestand)

geniigt. Tragen Sie ihn gegebenenfalls in die interne Ta-
belle IT_ZBESTAND ein.

Ablauflogik PAI

Modul AUSGABE_0110

In diesem Modul wird der Inhalt der internen Tabelle
IT_ZBESTAND ausgegeben.

= Programmieren Sie eine LOOP-Schleife iiber die interne
Tabelle IT_ZBESTAND
(LOOP at it_zbestand INTO wa_zbestand.).

= Laden Sie innerhalb der Schleife mit der Anweisung
MOVE-CORRESPONDING die Struktur
WA_ZBESTAND_FB mit den korrespondierenden Kom-
ponenten der Struktur WA_ZBESTAND.

= Berechnen Sie die Anzahl verfiigbarer Exemplare und tra-
gen Sie diese in die Komponente WA_ZBESTAND_FB-
VERFUEGBAR ein.

= Rufen Sie iiber die Drucktaste ,,Muster* den Funktions-
baustein Y_DISPLAY_ZEILE bzw.
Y_DISPLAY_ZEILE_TW auf und iibergeben Sie die
Struktur WA_ZBESTAND_FB und die Variable FARBE.

442 ®m 7 Subscreens, Listen und Tabellen in Dynpros

Als Exportparameter fiir CHKBOX tragen Sie 'Kein An-
kreuzfeld' ein.

3. Ersetzen Sie im Modul USER_COMMAND_0100 den
Dynproaufruf LEAVE TO SCREEN 0200 durch die Anwei-
sung CALL SCREEN 110.

4. Testen Sie Ihr Programm

Losung: SAPMYKO07_2

Losung:

* g&—————- - -\ -\ -\ = *
*& Include MYKO7TOP

* g&—————-———-—-— -\ -\ -\ *

PROGRAM sapmykQ7 NO STANDARD PAGE HEADING.

TABLES: zbestand tw.

DATA: it zbestand TYPE TABLE OF zbestand,
wa_zbestand TYPE zbestand,
wa_zbestand fb TYPE zst_ zbestand,
farbe, ds.

'************‘knicht geanderter Quelltext***‘k*‘k****‘k*********

*& ___ *
*& Ablauflogik Dynpro 110
*& ___ *

PROCESS BEFORE OUTPUT.
MODULE status 0110.
MODULE einstellungen 0110.
MODULE laden_ int tab.

PROCESS AFTER INPUT.
MODULE ausgabe 0110.

R *
*& Module STATUS 0110 OUTPUT
R *

MODULE status 0110 OUTPUT.
SET PF-STATUS space.

7.3 Ausgabe von Listen auf einem Dynpro

443

ENDMODULE. " STATUS 0110 OUTPUT
*& Module einstellungen 0110 OUTPUT

MODULE einstellungen 0110 OUTPUT.
LEAVE TO LIST-PROCESSING AND
RETURN TO SCREEN 0.

SUPPRESS DIALOG.

ENDMODULE. " einstellungen 0110 OUTPUT

e —————
*& Module laden int tab OUTPUT

e ————
MODULE laden int tab OUTPUT.

ds = '0".

REFRESH it zbestand.
SELECT * FROM zbestand INTO wa zbestand
WHERE isbn IN so_isbn AND titel IN so_titel
AND
(autorl IN so_autor OR
(autor2 IN so_autor AND autor2 > 0) OR
(autor3 IN so_autor AND autor3 > 0))
AND kategorie IN so kat.
anzeige = '1'.
anzahl = wa zbestand-bestand -
wa_zbestand-ausgeliehen.
CASE 'X'.
WHEN wa_rbg2-ver.

IF anzahl <= 0O.anzeige = '0O'.ENDIF.
*Anzeige auf '0O' gesetzt, wenn nur der ver-
*fiigbare Datenbestand angezeigt werden soll,
*das Buch jedoch nicht verfligbhar ist.

WHEN wa_ rbg2-nver."nicht verfig. Best.

IF anzahl > 0O.anzeige = '0O'.ENDIF.
*Anzeige auf '0' gesetzt, wenn nur der nicht
*verfligbare Datenbestand angezeigt werden
*soll, das Buch jedoch verflighar ist.

ENDCASE.
*Bertlicksichtigung der Ankreuzfelder
IF chk protected IS INITIAL AND

wa_zbestand-bereich = 'geschutzt'.
*Buch im nicht-anzuzeigenden (gesch) Bereich
anzeige = '0'.
ENDIF'.

IF chk public IS INITIAL AND

444 7 Subscreens, Listen und Tabellen in Dynpros

wa_zbestand-bereich = 'o0ffentlich'.
anzeige = '0'.
*Buch im nicht-anzuzeigenden (6ffentl)
*Bereich
ENDIF.
IF anzeige = '1'.
APPEND wa_ zbestand TO it zbestand.
ds = "1".
ENDIF.
ENDSELECT.
IF ds = '0'.
MESSAGE 1007 (zlib_ tw) .
LEAVE TO SCREEN 100.

ENDIF.

ENDMODULE. " laden int tab OUTPUT

e —————— *
*& Module wuser command 0100 INPUT

R —————— *

MODULE user command 0100 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.
WHEN 'RECHERCHE'.
CALL SCREEN 110.
WHEN 'EXIT' OR 'BACK'.
LEAVE PROGRAM.
ENDCASE.
ENDMODULE. " user command 0100 INPUT

7.4
Datenausgabe mit Table Controls

Ein Table Control ist ein Bereich in einem Dynpro, indem grofe Da-
tenmengen in Tabellenform angezeigt werden. Innerhalb eines Table
Controls konnen

= programmlokale Datenobjekte,

= Dictionaryelemente,

= Ankreuzfelder,

= Auswahlknopfe und Auswahlknopfgruppen und

= Drucktasten

7.4 Datenausgabe mit Table Controls

445

Abb. 7.14
Mégliche
Aktivitdten im
Table Control

Abb. 7.15
Erstellen einer
Table Control-

Variante

446 =
|
| |

verwendet werden. Das Aussehen des Table Controls kann zur
Laufzeit konfiguriert und als Variante gespeichert werden.

Spalte(n) auswahlen/ Einstellungen speicha&n,

Verschieben TC konfigurieren
ISEN Suchtitel wegon'n- Marne
[3540523972 EDV-Orientierte Be, - I ! 1DV BWL E
827254386 Jntemet Spaltenbreite andern Intecnet &
[bezm2sesssfsar ris oV
Be g N ey lems Ri3 v
—Zeile(n) auswahlen < RI3-Systems oV
[Wlaz7314011 R3 prozetorientiert armwenden EDV
927314569
8273164 64[SAP I3 Der schnelle Einstieg v =
|_|pez7317e86fp von Internet Snenten Evv =
La[e 1 Jax]

Feststehende Fiihrungsspalten

v 08 €00 DHR HNLS DF O

East-5ide-Library: Rechercheergebnisse (Sicht TC) ‘
IED Buchtitel Jiategone i-m. w g
1_5‘05.1.39"9. E(_J\.f-memer_‘e E.E\(IFE.IS.H"“SEN?HSIEHIIE :xw.- I,‘.

[Jrezn2sasesjoternet [teteenet [Namnien syeablon,”
MR pes—————" T
3827211365]r Adiita Emsieirg - g &
bien b |2 Pesi aege orai
pazTaLA0LL et proemw B pe [OVNEN | eser i
1827314565 [Buchios Ermienm 8w | (| P
T e prm e 6| | i
T) brrimenvm W P |0 —— | [s Standardenstetung verwenden

0 s e e e e L I I] —

s
Schiatian | [V Ubametiman | [Admisstrator | {0] 3]
. =1. Gewiinschte Feldreihen-
[0]] m— = D)

folge im TC herstellen
2. TC konfigurieren
3. Variantennamen eintra-
gen

4. Ubernehmen
Bston] |10 8 DG 7| Basse | veron [Bpurc.| Elidtarh. | oo |

Programm SAPMIHDT_3
Corol TC1

(2] Towrwissan hengeetal
] Tonrwshsan wortial
Arai Tt Spaten

[Systemesnarss ramante

e ey [e [

LR i

7.4.1
Anlegen eines Table Controls

Um ein Table Control anzulegen, sind folgende Schritte notig:

= Table Control-Bereich anlegen,
Dieser Bereich, der als ,,Container* das anzulegende Table
Control beherbergt, wird im Layout des Dynpros erzeugt.

7 Subscreens, Listen und Tabellen in Dynpros

= Figenschaften des Table Controls festlegen,
z.B. mit Trennlinien, mit Zeilenmarkierung, mit Spalten-
markierung etc.

= Felder des Table Controls definieren,
in diesem Schritt wird festgelegt, welche Felder in den
Spalten des Table Controls anzeigt werden sollen.

= Table Control deklarieren,
tiber eine CONTROLS-Anweisung wird ein Datenobjekt
vom Typ TABLEVIEW angelegt. Dieses Datenobjekt ent-
sprichtt dem im Dictionary definierten = Typ
CXTAB_CONTROL (Typgruppe CXTAB) und enthilt zu-
nichst die beim Anlegen des Table Controls statisch festge-
legten Eigenschaften.

Hinweis:

Die Komponenten, die zur Typgruppe CXTAB gehoren, finden
Sie im Dictionary (SE11). Wihlen Sie im Einstiegsbild des Dic-
tionaries das Menii ,,Hilfsmittel > Weitere Dictionary-Elemen-
te“. Aktivieren Sie dann den Auswahlknopf ,,Typgruppe®, tra-
gen Sie im dazugehorigen Eingabefeld den Namen CXTAB ein
und klicken Sie auf das Symbol ,,Anzeigen®.

Vorgehensweise: Table Control anlegen

Starten Sie den grafischen Layouteditor mit dem Dynpro, in dem das
Table Control angelegt werden soll.

1.

Klicken Sie im Layouteditor das Werkzeug ,,Table Control*
an.

Schieben Sie den Mauszeiger (Minirahmen), ohne eine Maus-
taste zu driicken, an die linke obere Ecke des kiinftigen Table
Controls.

Ziehen Sie den Minirahmen, mit gedriickter linker Maustaste,
bis zum unteren rechten Rand des kiinftigen Table Controls.

Lassen Sie die Maustaste wieder los. Doppelklicken Sie in den
Table Control-Bereich. Tragen Sie in dem sich daraufhin 6ft-
nenden Attributefenster einen Namen fiir das Table Control
ein und legen Sie dessen Eigenschaften fest.

Jetzt sichern Sie das Layout, schlieBen den grafischen Layout-
editor und laden das TOP-Include in den ABAP-Editor. Pro-
grammieren Sie die CONTROLS-Anweisung und deklarieren
Sie gegebenenfalls eine mit dem Zeilenmarkierungselement
namensgleiche Variable vom Typ C (Lénge 1) an.

7.4 Datenausgabe mit Table Controls

447

Abb. 7.16
Anlegen eines
Table Controls

mit Markie-
rungsspalte

448

Syntax der CONTROLS-Anweisung:

CONTROLS <Name des TC> TYPE TABLEVIEW USING
SCREEN '<Dynpronummer>'.

¥|Screen Pointer: Anlegen gm =0l
Qo feabeten Srrgen Wit Unfeld MFe
o W Coe oM xm & @ eoenn xu P -
P st BaH| 4P| ey
Hiame [Mams [TC1
EY
-
- L
3 3
® ®
= =
B B
& &
[Cl|
=
i
]
)
ABAP Editor: Inclufle MYKO?TOP ndern
I =] | R |

PROGRAM \
< CONTROLS TCl fYPE TABLEVIEW USING SCREEN 120. >

6. Kehren Sie in den Layouteditor zuriick. Die Table-Control-

Felder werden iiber die Funktion ,Dict/Programmfelder-
Fenster* geladen. Geben Sie im Eingabefeld dieser Funktion
den Namen der Struktur an, mit deren Komponenten die Fel-
der des Table Controls angelegt werden sollen. Wéhlen Sie
dann ,Holen aus Dict* bzw ,Holen aus Programm®. Die
Komponenten der gewidhlten Struktur werden angezeigt. Mar-
kieren Sie die benotigten Komponenten und driicken Sie dann
den Schalter ,,Ubernehmen*.

7 Subscreens, Listen und Tabellen in Dynpros

1. Dict/Progr.felderfenster’s Abb. 7.17

8 C00 CH Xxam wa &

[P] .
[l ¢ Bal 4 P o sinook ¢n Egmechutien 48 Elonetine | [Loschen anklicken Felder des
o oo | mjafe izl eE Table Controls
auswéhlen

2‘ Strukturnamen eintragen 3. Herkunftsort ausv\ihlen

[[5erren Famter e cogranntekies === =l
i | ST [HommsDet | oo e Proganm

Tod T o |
[y [Ty ey [y § L s e |

Komponenten
swahl

AT [el | 5. Ubernehmen

Klicken Sie dann mit der Maustaste in das Table Control. Fiir
jede ausgewihlte Komponente wird eine Spalte eingerichtet.
Bei Strukturen, die aus dem Dictionary geholt werden, er-
scheint der Datenelementtext als Spalteniiberschrift.

ElsoeemrPunten lmamebemen aleix

°e'.-°;' m-n?;;;f:--mm--w g Abb. 718
D R : | g Felder im Table
Lol (e ol Control positio-
nieren

]
é
=
S
]
B

C0Q DHl Nan @x FaE @ :
M| S e Chn L Fewie 10N i -
) e— | Y Y

IECUAA04% §

Das Table Control ist fertig angelegt. Es muss jetzt zeilenweise mit
Daten gefiillt werden. Die Spalten konnen Sie per Drag and Drop
verschieben. Klicken Sie dazu in die erste Zeile nach der Spalten-
iiberschrift.

7.4 Datenausgabe mit Table Controls ® 449

7.4.2
Datentransport zum Table Control und zuriick

Wie bei allen anderen Dynproelementen zur Ein- und Ausgabe auch,
wird der Transport der im Table Control anzuzeigenden Daten zum
Table Control und zuriick zum ABAP-Programm iiber namensglei-
che Datenobjekte organisiert. Fiir jede Spalte des Table Controls
wird ein korrespondierendes, d.h. namensgleiches, Datenobjekt be-
notigt. Sie miissen deshalb die Struktur, mit der das Table Control
angelegt wurde, im ABAP-Programm deklarieren. Uber diese Struk-
tur wird der Datentransport vorgenommen. Dieser wird in je einer
Loop-Schleife zu PBO bzw. PAI programmiert. Abb. 7.19 verdeut-

licht das.
Abb. 7.19 -
Programmierung - — ' =T
des Datentrans- . B QQIO@QIQ@B&I@
ports (Prinzip) . 3e
Screen Painter: Dynpro zu SAPMYTC andern
| [| [22 T
R 2 < | | o | =Y S
Dynpronurrner 100 aktiv
/Eigenschaﬂen I/Elementliste/Ablauflugik l
BAE R EE EEE)
PROCESS BEFORE OUTPUT.
MODULE laden_interne_ tabelle.
LOOP AT it_tc INTO wa_tc WITH CONTROL tcl.
Zeilenweiser Transport der im Table Control
anzuzeigenden Daten vom ABAP-Programm in das
* Table Contorl tcl.
ENDLOOP.
PROCESS AFTER INPUT.
LOOP AT it_tc.
* Zeilenweiser Transport der Daten des
* Table Controls tel in die namensgleichen Daten-—
* objekte im ABAP-Progrsaman. Die Daten des Table
* Controls konnen vom Benutzer ge&ndert worden
* seini{z.B. Markieren einer Zeile des TC,
* Anderung von Daten innerhalb des TC).
ENDLOOP.
450 7 Subscreens, Listen und Tabellen in Dynpros

Transport der Daten in das Table Control

Der Transport der Daten in das Table Control erfolgt iiber eine in-
terne Tabelle. Diese enthilt idealerweise fiir jede aus ihr zu fiillende
Spalte des Table Controls, eine namensgleiche Komponente. Uber
eine LOOP-Schleife in der PBO-Ablauflogik des jeweiligen
Dynpros wird das Table Control zeilenweise geschrieben.

[Schieifenkorper Abb. 7.20
Das Table Control TC1
wurde mit der Struktur Versorgung der
- [interne Tabelle T_TC ZST_ZBESTAND angelegt Table Control-
: 1 Zeilen zu PBO
5 3827316464|EDV 3 @lﬂur WA _TC 1 E [kategorie
LOOP| 3827317886 |EDV g < 1827316464 DV
3827317894 |EDV) > 3 3827317986 [EDV
3877917410{EDV :’ 1827317894 DV
38964214T3EDV ISBN _KATECORIEN 14 e o miolov
—_— 858421473 EDV
ISBN KATEGORIE Bl
LOOP AT IT_CT INTO WA _TC 5| =l
WITH CONTROL TC1. —_— B
“Schieifenkar > ZST_IBESTAND- IST_ZBESTAND-
ENDLOOP. 5 ISEN KATEGORIE, USBN KATEGORIE,
PBO-Schleife zum Fullen des mnespondiere_rE Datenobjekte Dynproelemente
Table Controls des ABAP-Programmes

1.2, ... 5Schleifendurchlauf

Der Transport der Daten vom korrespondierenden Datenobjekt
(Struktur ZST_BESTAND) zum Table Control (TC1) erfolgt nach
jedem Schleifendurchlauf. Der Datentransport zu den restlichen
Dynprofeldern erfolgt nach dem Fiillen der Zeilen des Table
Controls.

Beachten Sie beim Programmieren folgende Grundsétze:

1. Dem Table Control muss die Zeilenanzahl der internen Tabelle
mitgeteilt werden. Diese wird iiber DESCRIBE in das Attribut
<TableControl>-LINES eingetragen.

DESCRIBE TABLE <it> LINES <Name des TC>-LINES.
2. Zu PBO und PAI wird je eine LOOP-Schleife benotigt.
Syntax der LOOP-Schleife zu PBO:

LOOP AT <int. Tabelle> INTO <Struktur>
WITH CONTROL <Name des Table Controls>.
* zeilenweise in Table Control ausgeben
ENDLOOP.

Syntax der LOOP-Schleife zu PBO:
LOOP AT <int. Tabelle>.

* gzeilenweise int. Tabelle aktualisieren
ENDLOOP.

7.4 Datenausgabe mit Table Controls ® 451

452

Das in Abb. 7.20 dargestellte Beispiel konnte wie folgt program-
miert werden:

*& ___ *
*& Include MYTCTOP *
*& ___ *
PROGRAM sapmytc .

TABLES zst_zbestand."korrespond. Datenobjekt
TYPES: BEGIN OF st tc,
isbn TYPE zbestand-isbn,
kategorie TYPE zbestand-kategorie,
END OF st tc.
CONTROLS tcl TYPE TABLEVIEW
USING SCREEN '100'.
DATA: wa tc TYPE st tc,
it tc TYPE TABLE OF st tc,
mark. "fUr die Zeilenmarkierung

*& ___ *
*& Ablauflogik *
*& ___ *

PROCESS BEFORE OUTPUT.
MODULE laden interne tabelle.
LOOP AT it tc INTO wa_tc WITH CONTROL tcl.
MODULE tc_zeile laden.
ENDLOOP.
PROCESS AFTER INPUT.
LOOP AT it tc. ENDLOOP.

e ———— *
*& Module laden interne tabelle OUTPUT *
e ———— *

MODULE laden interne tabelle OUTPUT.
SELECT * FROM zbestand
INTO CORRESPONDING FIELDS OF TABLE it_tc
WHERE isbn >= 3827316464.
DESCRIBE TABLE it tc LINES tcl-lines.

ENDMODULE . " laden interne tabelle OUTPUT

e ————— *
*& Module tc _zeile laden OUTPUT *
e —— *

MODULE tc_zeile laden OUTPUT.
MOVE-CORRESPONDING wa_ tc TO zst zbestand.
ENDMODULE . " tc_zeile laden OUTPUT

7 Subscreens, Listen und Tabellen in Dynpros

Transport der Daten vom Table Control in die interne
Tabelle

Andert der Benutzer Daten im Table Control, miissen die Anderun-
gen in die interne Tabelle, mit der das Table Control geladen wurde,
eingetragen werden. Spéter kann mit der internen Tabelle die Daten-
banktabelle aktualisiert werden. Die Anderungen des Table Controls
werden in der PAI-Schleife zeilenweise in die interne Tabelle einge-
tragen. Abb. 7.21 veranschaulicht das Wirkungsprinzip.

Das Table Control TC1 BoheTeniame
wurds mit der Struktur | s Abb. 7.21

ZST_ZEESTAND angelegt W‘ Datentransport
Son__ [Rawgoe W 4 LEESTAD 1 Table Control
hi827316464 m0V —t 5 - TN 3827316464 EDV > ABAP-
/ bsara1es ejrov — —-.w.?g 3827317886]EDV
LOOP 3827317804 E0V 3 ZST_ZBESTAMND- N . gg%gg:;ﬁ ’g EDdV PrOgramm
BETT917410 Anderung KAT R o nderung . .
3898421473 DV 5 M - 38984214‘ 3 EDV (PrInZIp)
= korrespondierende 5
g Datenobjekte des ABAP-
B Programmes

T, ST i
ZST_ZBESTAND-
ISBN KATEGORIE
_————

Dymproelemente
LOOP [AT IT_TC] .

L >

WA TC-ISBN WA_TC-
FALSchleife KATEGORIE
Die Inhalte des Table Controls
werden zeilenweise in die
namensgleichen Datenobjekte
des AB?;-ngrm'nmEs gestelit

ENDLOOP,

1,2, ... 5Schleifendurchlauf

Prinzip:

= Zu PAI wird iiber das Table Control eine LOOP-Schleife
gelegt. Diese bewirkt, dass die Inhalte der Spalten des Table
Controls automatisch zeilenweise in die namensgleichen
Datenobjekte (im Beispiel in die Komponenten der Struktur
ZST_BESTAND) transportiert werden. Pro Schleifendurch-
lauf erfolgt der Datentransport zu einer Zeile des Table
Controls.

= Im Schleifenkorper wird mit diesen Daten die interne Ta-
belle (im Beispiel IT_TC) aktualisiert. Hat die korrespon-
dierende Struktur (ZST_BESTAND) ein anderes Format als
die Struktur des Arbeitsbereiches der internen Tabelle, sind
die Daten iiber MOVE-CORRESPONDING in den Ar-
beitsbereich der internen Tabelle zu kopieren.

7.4 Datenausgabe mit Table Controls ® 453

Wenn Benutzereingaben in das Table Control zugelassen werden, ist
das Programm zu erweitern:

*& ___ *
*& Ablauflogik *
*& ___ *

PROCESS BEFORE OUTPUT.
MODULE laden interne tabelle.
LOOP AT it tc INTO wa_ tc WITH CONTROL tcl.
MODULE tc zeile laden.
ENDLOOP.

PROCESS AFTER INPUT.
LOOP AT it tc.
MODULE aktualisieren interne tabelle.

ENDLOOP.
e ———— *
*&Module aktualisieren interne tabelle INPUT *
e —————— *

MODULE aktualisieren interne_ tabelle INPUT.
*Felder der (automatisch geladenen) Struktur
*zst bestand in den Arbeitsbereich der in
*ternen Tabelle kopieren.

MOVE-CORRESPONDING zst zbestand TO wa_tc.
*interne Tabelle mit den Daten aus dem
*Arbeitsbereich aktualisieren
*tcl-current line enth&dlt den aktuellen
*Schleifendurchlauf

MODIFY it tc FROM wa_tc

INDEX tcl-current line.

ENDMODULE. "aktualisieren interne tabelle

Diese Losung hat den Nachteil, dass das Modul AKTUALI-
SIEREN_INTERNE_TABELLE fiir jede Zeile des Table Controls
durchlaufen wird. Alternativ konnte das Modul nur fiir die im Table
Control markierten Zeilen prozessiert werden. Es liegt auf der Hand,
das dieses Vorgehen einen positiven Einfluss auf die Performance
hat. Eine markierte Zeile ist daran zu erkennen, dass die Variable,
die mit Zeilenmarkierelement korrespondiert, nicht mehr mit ihrem
Initialwert geladen ist. Im Beispiel ist das die Variable MARK (sie-
he Abb. 7.16). Es ist also ein bedingter, vom Inhalt der Variablen
MARK abhingiger Modulaufruf zu programmieren.

454 7 Subscreens, Listen und Tabellen in Dynpros

PROCESS BEFORE OUTPUT.
MODULE laden interne tabelle.
LOOP AT it tc INTO wa_ tc WITH CONTROL tcl.
MODULE tc zeile laden.
ENDLOOP.

PROCESS AFTER INPUT.
LOOP AT it tc.
FIELD mark
MODULE aktualisieren interne_ tabelle
ON REQUEST.
ENDLOOP.

Im Programm SAPMYKO7 sollen die Rechercheergebnisse nicht
nur in Listenform, sondern auch in einem Table Control ausgege-
ben werden konnen. Eine neue Auswahlknopfgruppe soll dafiir

sorgen, dass der Benutzer zwischen verschiedenen Anzeigeformen
wihlen kann.

1. Ergénzen Sie im Layout des Dynpros 100 entsprechend der
folgenden Grafik eine Auswahlknopfgruppe.

G'| 8 0H C0Q LDHE LoD AE @R

East-Side-Library: Rechercheprogramm

]

@ Prog 050404 115611

Angaben zum Buch

ISEN G

Titel

Autorennummer

Kategorie bis E

Angaben zum Suchbereich

(8) Recherche im Gesamibestand
) Recherche im verfigbaren Bestand
() Recherche im nicht verfigbaren Bestand

[0 & geschitzier Bereich
[' offentlicher Bereich

Anzeigeoptionen

(3) Anzeige als Liste

) Anzeige als TableControl
) Anzeige ALV-Grid

m Recherche

I |8 Programm beanden I

Legen Sie dazu im TOP-Include eine Struktur WA_RBG3 mit
den Komponenten LISTE, TC und ALV an. Wird der Funkti-

7.4 Datenausgabe mit Table Controls

455

B 7 Subscreens, Listen und Tabellen in Dynpros
u
|

Programmieren Sie die Ablauflogik fiir das Dynpro 120.

Ablauflogik PBO:

PROCESS BEFORE OUTPUT.
MODULE status 0120.
MODULE laden int tab.
MODULE zeilenanzahl setzen 0120.
LOOP AT it zbestand INTO wa zbestand
WITH CONTROL tcl.
MODULE move to tcl.
ENDLOOP.

Modul STATUS_0120

In diesem Modul wird der Status DYNPRO_120 gesetzt. Die-
ser Status ist dabei in der Vorwirtsnavigation anzulegen.

Funktionstasten = [/] GUI-Status fiur Dynpro 120

Symbolleiste

<

BACK EXIT CANCEL

B © @ @ (=1 {

Beachten Sie, dass CANCEL mit dem Funktionstyp ,,E* ange-
legt wird. Tragen Sie den ok_code in die Elementliste ein.

Modul laden_int_tab

Dieses Modul wurde in der vorigen Aufgabe fiir Dynpro 110
angelegt. Es ladt die interne Tabelle IT_ZBESTAND mit den
im anzuzeigenden Datensétzen der Tabelle ZBESTAND.

Modul zeilenanzahl_setzen_0120

Die Anzahl der Zeilen der Tabelle IT ZBESTAND wird an
die Komponente TC1-LINES des Table Controls iibergeben.
Nutzen Sie dazu die DESCRIBE TABLE-Anweisung.

Modul move_to_tcl

Dieses Modul wird fiir jede Zeile der internen Tabelle aufgeru-
fen. Fiir jede Zeile des Table Controls werden die namensglei-
chen Datenobjekte geladen. Dazu sind mit der MOVE-
CORRESPONDING-Anweisung die Inhalte der Komponenten
der Struktur WA_ZBESTAND in die Struktur ZST _TC1 zu
schreiben. Danach wird iiber eine SELECT SINGLE-
Anweisung der Name des Autorsl in ZST_TCI1 geladen, die
verfiigbare Anzahl Exemplare berechnet und in die Kompo-
nente ZST _TC1-VERFUEGBAR eingetragen.

7.4 Datenausgabe mit Table Controls

457

458

Losung:

K) *
*& Include MYKO7TOP *
K) *

PROGRAM sapmyk07 NO STANDARD PAGE HEADING.
TABLES: zbestand, zst_tcl.
DATA: BEGIN OF wa rbg3,
liste, tc, alv,
END OF wa rbg3.

CONTROLS TC1l TYPE TABLEVIEW USING
SCREEN 120.

DATA: it zbestand TYPE TABLE OF zbestand,
wa zbestand TYPE zbestand,
wa_ zbestand fb TYPE zst zbestand,
farbe, ds, mark.

_*************nicht geanderter Quelltext********************

*& ___ *
*& Ablauflogik Dynpro 120 *
*& ___ *

7 Subscreens, Listen und Tabellen in Dynpros

PROCESS BEFORE OUTPUT.
MODULE status 0120.
MODULE laden int tab.
MODULE zeilenanzahl setzen 0120.
LOOP AT it zbestand INTO wa zbestand
WITH CONTROL tcl.
MODULE move to tcl.
ENDLOOP.

PROCESS AFTER INPUT.
LOOP.ENDLOOP.
MODULE user command 0120.
MODULE beenden AT EXIT-COMMAND.

R —————— *
*& Module zeilenanzahl setzen 0120 OUTPUT *
R —————— *

MODULE zeilenanzahl setzen 0120 OUTPUT.
DESCRIBE TABLE it zbestand LINES tcl-lines.
ENDMODULE.

e —————— *
*& Module move to tcl OUTPUT *
R —————— *

MODULE move to tcl OUTPUT.
MOVE-CORRESPONDING wa zbestand TO zst tcl.

*Name des Autors aus ZAUTOREN laden
SELECT SINGLE * FROM zautoren

INTO CORRESPONDING FIELDS OF zst tcl
WHERE autorennr = zst tcl-autorl.

*Berechnung der verfigbaren Exeplare
zst tcl tw-verfuegbar = zst tcl tw-bestand
- zst _tcl tw-ausgeliehen.

ENDMODULE.

e —————_——_—_—— *
*& Module laden int tab OUTPUT *
K —————_———_—— *

In diesem Modul wurde nichts ge&dndert. Siehe
Seite 444.

7.4 Datenausgabe mit Table Controls

459

*& Module wuser command 0120 INPUT *

MODULE user command 0120 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.
WHEN 'EXIT' OR 'BACK'.
LEAVE TO SCREEN 0100.

ENDCASE.
ENDMODULE.
e —————— *
*& Module wuser command 0100 INPUT *
e ————— *

MODULE user command 0100 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.
WHEN 'RECHERCHE'.
CASE 'X'.
WHEN wa_rbg3-liste.
CALL SCREEN 110.
WHEN wa_ rbg3-tc.
CALL SCREEN 120.
WHEN wa rbg3-alv.
MESSAGE 1008 (zlib tw).
ENDCASE.
WHEN 'EXIT' OR 'BACK'.
LEAVE PROGRAM.
ENDCASE.
ENDMODULE.

In das Dynpro 120, in dem das Table Control abgebildet wird, soll

ﬂ in einem Subscreenbereich das Dynpro 200 integriert werden. Das
Dynpro 200 wurde im Kapitel 6 angelegt und zeigt Detailangaben
zu einem ausgewdhlten Buch an.

460 7 Subscreens, Listen und Tabellen in Dynpros

Trerigran | 13

>-Tab;le C?Pntrol

0|0}

wird als
>-Subscreen im
Dynpro 120
angezeigt

D.ynp%o 200

T [BOUSER = | netebock | INS

Gewiinschtes Programmverhalten:

Der Benutzer markiert eine Zeile im Table Control und driickt
zum Auslosen der PAI-Ablauflogik die ENTER-Taste. Da als
statisches Folgedynpro das Dynpro 110 selbst angegeben ist,
wird PBO des Dynpros 110 und des Subscreendynpros 200
durchlaufen und damit das Subscreendynpro mit den Detailan-
gaben des im Table Control markierten Buches aktualisiert.

Ermitteln Sie die ISBN der im Table Control markierten Zeile.

Deklarieren Sie im TOP-Include des Programmes
SAPMYKO7 eine Variable TCISBN mit Bezug zum Feld
ZBESTAND-ISBN.

Programmieren Sie fiir das Dynpro 120 die LOOP-
Schleife der PAI-Ablauflogik. Fiir jede Zeile des Table
Controls findet ein Schleifendurchlauf statt. Wurde vom
Benutzer fiir die sich im Schleifendurchlauf befindliche
Zeile das Zeilenmarkierungselement MARK aktiviert, ist
das Modul MARKIEREN_0120 aufzurufen.

Legen Sie das Modul MARKIEREN_0120 in der Vor-
wirtsnavigation an und laden Sie dort die Variable
TCISBN mit der ISBN der ausgewihlten Zeile
(ZST_TCI1-ISBN).

Legen Sie im Dynpros 120 einen Subscreenbereich SUB2 an.

7.4 Datenausgabe mit Table Controls

461

462

P v it Arsdere Sy e ferent
Dyfers Bewbetmn Sprrgen Misinel Usield Hiw

algix
a

L HCo DM NLE =« S@E @

PR g @etE | 4 P 4o sindeg §B Egmchiten 9 Eleeriive | [Lichen

e [o [o T W[z
ﬁ | Buchtitel | Eategorse | Hane irm-um.]_
T 1

-

=

(o

=]

B

L

o

m -

= Subscreenbereich SUB2

Y

Laden Sie den Subscreenbereich SUB2 mit Dynpro 200.
PROCESS BEFORE OUTPUT.

CALL SUBSCREEN sub2
INCLUDING sy-cprog

PROCESS AFTER INPUT.
CALL SUBSCREEN sub?2.
LOOP AT it zbestand.

'200".

FIELD mark MODULE markierung ON REQUEST.

ENDLOOP.

9. Wandeln Sie das Dynpro 200 zum Subscreendynpro um”.

Zu loschende Komponente
im Dynpro 200

Begriindung

OK-CODE in Elementliste

Subscreendynpros diirfen kein
eigenes OK-Feld besitzen

Modul STATUS_0200 und

Fiir Subscreendynpros kann kein

'USER_COMMAND_0200
und dessen Aufruf,

Aufruf des Moduls
BEENDEN

dessen Aufruf eigener PE-STATUS angelegt
werden
Modul Dieses Modul enthilt lediglich

einen dynamischer Dynproaufruf
(LEAVE TO SCREEN 0). Die-
ser wird nicht mehr benotigt.
AuBerdem sind dynamische
Dynproaufrufe in Subscreen-
dynpros nicht erlaubt.

Wihlen Sie in der Registerkarte ,,Eigenschaften* des Dynpros

7 Subscreens, Listen und Tabellen in Dynpros

200 als Dynprotyp ,,Subscreen* aus.

10. Laden Sie die Felder des Subscreendynpros mit den Detailan-
gaben des markierten Buches.
Im Modul LADEN_0200 ist in einer SELECT SINGLE-
Anweisung die Struktur ZBESTAND (Standardstruktur, mit
der einige Felder des Dynpros 200 verbunden sind) mit dem
Datensatz der Tabelle ZBESTAND zu laden, der im Feld
ISBN mit der Variablen TCISBN tibereinstimmt. Anschlie-
Bend sind die Stukturen WA_AUTOR1, WA_AUTOR?2 und
WA_AUTORS3 zu laden.

Losung: SAPMYKO07_4

Losung:

* §—————— - *
*& Include MYKO7TOP *
* §—————— - *

PROGRAM Sapmyk07_4 NO STANDARD PAGE HEADING
TABLES: zbestand, zst tcl.
DATA: tcisbn TYPE zbestand tw-isbn.

.*************nicht geanderter Quelltext********************

*& ___ *
*& Ablauflogik Dynpro 120 *
*& ___ *

PROCESS BEFORE OUTPUT.
CALL SUBSCREEN sub2
INCLUDING sy-cprog '200'.

MODULE status 0120.
MODULE laden_ int tab.
MODULE zeilenanzahl setzen 0120.
LOOP AT it zbestand INTO wa zbestand
WITH CONTROL tcl.

MODULE move to tcl.
ENDLOOP.

PROCESS AFTER INPUT.
CALL SUBSCREEN sub2.

7.4 Datenausgabe mit Table Controls

463

LOOP AT it zbestand.
FIELD mark MODULE markieren 0120
ON REQUEST.

ENDLOOP.

MODULE user command 0120.
MODULE beenden AT EXIT-COMMAND.

PROCESS BEFORE OUTPUT.
MODULE laden_ 200.
MODULE attribute setzen 0200.

PROCESS AFTER INPUT.

*& Module laden 200 OUTPUT

MODULE laden 200 OUTPUT.
SELECT SINGLE * FROM zbestand
INTO zbestand

WHERE isbn = tcisbn.

CLEAR: wa_autorl, wa autor2, wa_ autor3.
SELECT SINGLE * FROM zautoren INTO wa autorl
WHERE autorennr = zbestand-autorl.

SELECT SINGLE * FROM zautoren INTO wa autor2
WHERE autorennr = zbestand-autor?2.

SELECT SINGLE * FROM zautoren INTO wa autor3
WHERE autorennr = zbestand-autor3.

ENDMODULE.

e —————_—_—_—_——
*& Module attribute setzen 0200 OUTPUT

e —————_—_—_—_——

MODULE attribute setzen 0200 OUTPUT.
*Statusikone laden

464 7 Subscreens, Listen und Tabellen in Dynpros

IF zbestand tw-bereich = 'geschiitzt'.
CALL FUNCTION 'ICON_CREATE'

EXPORTING name = 'ICON_LED RED'
IMPORTING result = iconl.
ELSE.

CALL FUNCTION 'ICON_CREATE'
EXPORTING name = 'ICON _LED GREEN'
IMPORTING result = iconl.

ENDIF.
LOOP AT SCREEN.

IF screen—-groupl = 'A2' AND

wa_autorZ2-autorennr IS INITIAL.

screen-invisible = 1.

ENDIF.

IF screen—-groupl = 'A3' AND

wa_autor3-autorennr IS INITIAL.

screen-invisible = 1.
ENDIF.
MODIFY SCREEN.
ENDLOOP.
ENDMODULE .

Das Programm SAPMYKO7 weist noch eine kleine Unzulénglich-
keit auf. Ist bei der Table Control-Ansicht (Dynpro 120) keine Zei-
le des Table Controls markiert, wird trotzdem die Detailsicht (ohne
Werte) angezeigt. Das soll dadurch verhindert werden, dass im
Subscreenbereich SUB2 ein anderes Subscreendynpro angezeigt
wird, wenn die Variable TCISBN mit ihrem Initialwert geladen ist.

T Abb.7.22

Dynamisches

Laden eines

= Euzhiitel imagonia
ik

3540523979 EDV-onientierte Betricossrtschaftsiehne Jenvs

Tengn | IO Subscreen-
bereiches

| I -

< des SAP RA3.SystEms
4011/SAF R/3 prozeanenier anwencen

m
{ajn] 0/

82 I Jt
o [I

[Datadangaben 2um susgewshian Buch

Sie kannen 2u einem Buch Detstangaben anceigen. Markieren Ske daru n der Tabelle das Buch
Dviicken See dann die ENTER- Taste

7.4 Datenausgabe mit Table Controls ® 465

466

1. Legen Sie dazu ein Subscreendynpro (Dynpronr. 210) an. Ge-
ben Sie iiber ein Textfeld den Text ,,Sie konnen zu einem Buch
Detailangaben anzeigen. Markieren Sie in der Tabelle das
Buch. Driicken Sie dann die ENTER-Taste* aus.

2. Deklarieren Sie im TOP-Include des Programmes
SAPMYKO7 die Variable DYNNR mit Bezug zur Systemva-
riablen SY-DYNNR an.

3. Ergénzen Sie in der PBO-Ablauflogik des Dynpros 120 den
Aufruf des Moduls DYNPROAUSWAHL,_0120.

PROCESS BEFORE OUTPUT.
MODULE dynproauswahl 0120.
CALL SUBSCREEN sub2

4. Programmieren Sie das Modul DYNPROAUSWAHL. Steht in
der Variablen TCISBN der Initialwert, laden Sie die Variable
DYNNR mit der Zeichenkette '210', sonst mit '200'.

5. Andern Sie den Aufruf des Subscreendynpros in
CALL SUBSCREEN sub?2
INCLUDING sy-cprog dynnr.

6. Setzen Sie im Modul LADEN_0200 nach der SELECT-
Anweisung die Variable TCISBN auf ihren Initialwert
(CLEAR tcisbn).

Losung: SAPMYKO07_5

Losung:

* §————— - - *
*& Include MYKO7TOP *
* §————— - - *

PROGRAM sapmyk07 5 NO STANDARD PAGE HEADING.
TABLES: zbestand tw,zst tcl tw.
DATA: dynnr TYPE sy-dynnr.

Lkxkkxkkkkkkxk*nicht geanderter QuUEelltext * &k &k kkkkkxokxkxkxk

*& ___ *
*& Ablauflogik Dynpro 120 *
*& ___ *

PROCESS BEFORE OUTPUT.

7 Subscreens, Listen und Tabellen in Dynpros

MODULE dynproauswahl 0120.

CALL SUBSCREEN sub2
INCLUDING sy-cprog dynnr.

MODULE status 0120.
MODULE laden_ int tab.

MODULE zeilenanzahl setzen 0120.
LOOP AT it zbestand INTO wa zbestand
WITH CONTROL tcl.

MODULE move to tcl.
ENDLOOP.

PROCESS AFTER INPUT.

CALL SUBSCREEN sub2.

LOOP AT it zbestand.
FIELD mark MODULE markieren 0120
ON REQUEST.

ENDLOOP.

MODULE user command 0120.

MODULE beenden AT EXIT-COMMAND.

*& ___ *
*& Module dynproauswahl 0120 OUTPUT
*& ___ *

MODULE dynproauswahl 0120 OUTPUT.
IF tcisbn IS INITIAL.
dynnr = '210"'.

ELSE.
dynnr = '200"'.
ENDIF.
ENDMODULE.
e —————_——_—_—— *
*& Module laden 200 OUTPUT *
K —————_———_—— *

MODULE laden 200 OUTPUT.
SELECT SINGLE * FROM zbestand tw
INTO zbestand tw
WHERE isbn = tcisbn.
*tcisbn hat seine Aufgabe erfillt. Die Vari-

7.4 Datenausgabe mit Table Controls

467

*able wird auf ihren Initialwert zuriick-
*gesetzt. Damit ist sie das Kriterium, ob der
*Benutzer eine Zeile des Table Controls
*aktiviert hat, denn sie wird im Modul
*MARKIEREN 0120 gesetzt. Dieses Modul wird
*nur durchlaufen, wenn der Benutzer eine Zeile
*im Table Control markiert hat.
*(FIELD mark MODULE markieren 0120
* on request)

CLEAR tcisbn.

CLEAR: wa_ autorl, wa autor2, wa autor3.

SELECT SINGLE * FROM zautoren tw

INTO wa_ autorl

WHERE autorennr = zbestand tw-autorl.

SELECT SINGLE * FROM zautoren tw
INTO wa_autor2
WHERE autorennr = zbestand tw-autor2.

SELECT SINGLE * FROM zautoren tw
INTO wa_autor3

WHERE autorennr = zbestand tw-autor3.
ENDMODULE .
e ————
*& Dynpro 210
e ——————
Abb. 7.23 S -
Eigenschaften " 18 e0e JNE LoLns DR @B

Screen Painter: Dynpro zu SAPMYKOT dndern

des Subscreen- R FE @EDEE EEOE) 00

dynpros e 210 akesy
4 El nthst Abl ik
festlegen e
Hurmheschrebung @r Darsteliung von Zu:amﬂ@
g e
Lette Anderung 14.04.2004 23:15:28
Letrte Genenenung 14.04.7004 23:46:19

Enstelungan .

[Halten Daten

[Ausschalten Lauzeitkompr
[Vortage - nicht sustotebar
O Maten Scrolipantion

Waitare Attriute
Foigeaynpeo
Cursorpostion
BAgruppe
ZellersSpalten Belegt 3 104
Piege 27 120
Contextrnenu FORM ON CTMENU

468 W™ 7 Subscreens, Listen und Tabellen in Dynpros
|
|

Abb. 7.24
Layout des Sub-
screendynpros

7.4 Datenausgabe mit Table Controls ® 469
u

8 Tabstrips

8.1
Zielstellung des Kapitels

In diesem Kapitel wird der Einsatz von Tabstrips behandelt. Das Re-
chercheprogramm der East-Side-Library wird so geéndert, dass die
Dynpros auf je einer Registerkarte eines Tabstrip abgebildet werden.

@ Pagdicae DUB nnoan BF O
East-Side-Library: Rechercheprogramm

Suchhrteran | Recherchesgebnisse | Detatangaben |
© Programmstart 150404 134027

Angasen zum Buch,
1san Ed
Teet 2
Autoranrummer |-#]
ategorie Eov =35 E
Angabsen Tum Suchbemich
(@) Recharche im Gesamibastand & geschitzter Bersich
) Fechesche im verfigbaren Bestand ol ofenticher Bereich
) Recheche im nicht verigbaren Bestand

X Programm bessdan
(@ Anzege als TabluControl
) Anzege ALV-Geid

s 1H eae SR D00 IR of
East-Side-Library: Rechercheprogramm

/ d o 1
= Em [ategorie Em [Werfigbsre
[Fez L] oy Fakot 3 =
[hezaniaespamns SAP-Sysems R3 ™ oy m L=
haz7an Die Proge prache 083 SAP RISy jeov Pt ke kS H
827314011 SAP R/ prozedorientien anwencen gV Fellec p
1827314565 5AP RI3 dynamisch enfufren 0w foert d
{18273 16464 5AP R/ Der schnete Enstieg Eov Bileich 141
h82731 oy Fmlaut i
PETIRITAI0EAR R oV esth g7
185342 1473 RBAP Oidjects oy o llec ks

hlofs

8.1 Zielstellung des Kapitels

Abb. 8.1
Registerkarte
»Suchkriterien”

Abb. 8.2
Registerkarte
»~Recherche-
ergebnisse*

u 471

Abb. 8.3
Registerkarte
LDetailangaben*

472

8 0H 0@ CHE DDO0 AR 0N

(]
East-Side-Library: Rechercheprogramm

V ¥
o [difeiiticn]

1588 IO Aufiage 1 verlag Addison-uessley Jahe 2001
Buchiitel ABAP-{Ibungsbuch

Bestand 0 veriensn 5 Kategorie v

Autor 1./

Name lauff

Vorname1 Michanl

Vorname2 3

Gebutadatum e

Vorbereitende Aufgaben

Kopieren Sie Ihr Programm SAPMYKO7 oder das Programm
SAPMYKO07_5 der Buch-CD nach SAPMYKOS.

8.2
Allgemeine Eigenschaften
Einsatzbedingungen

m Mit Tabstrips lassen sich verschiedene Teilobjekte einer An-
wendung, die auf verschiedene Dynpros verteilt sind, {ibersicht-
lich darstellen. Thre intuitive Bedienbarkeit vermindert den
Lernaufwand des Anwenders,

m Erleichtern die Navigation,

m sind leicht zu programmieren und fithren zu modernen Oberfla-
chen.

Tabstrips diirfen nicht eingesetzt werden, wenn

m auf den einzelnen Registerkarten unterschiedliche Mentiis, Titel,
Drucktaste erforderlich sind,

m die Anzahl der Registerkarten nicht statisch angegeben werden
kann.

8 Tabstrips

8.3

Tabstrip-Elemente
A Aktueller Tab-Reiter Abb. 8.4
_ /" Suchkitenan, | Rechorchesgebnisse [} __@ . Bestandteile der
¥ Suchkritanen Scrollen durch weitere B .
® Programmstart 150404 150344 Rechercheergebnisse Tab-Reiter Oberfléche ei-
[ERA T B, Gefakiogin . . . nes Tabstrips
Sl ' Tab-Reiter-Ubersicht

Tael
AUtOFERNUMATET \Tabstrip Rahmen

Kategone

[Angaben zum Suchbereich —/ Registerkarte
(@) Recherche im Gesamtbestand Lauﬂeiste

) Recherche im verfigbaren Bestand

() Recherche im nicht verfiigbaren Bestand

An:elgéDDllUnen
(@) Anzeige ats TableControl
) Anzeige ALV-Grid

an 1 <[]

m in Tabstrip besteht aus mehreren Registerkarten.
m Jede Registerkarte besitzt einen einzeiligen Tab-Reiter.

m KoOnnen beim Anlegen eines Tabstrips im Layouteditor aus
Platzgriinden nicht alle Registerkarten angezeigt werden, wird
automatisch eine Blitterleiste erzeugt.

m Laufleisten werden bei Bedarf automatisch angelegt.

Programmtechnische Sicht auf das Tabstrip

Aus programmtechnischer Sicht besteht eine Registerkarte des
Tabstrips aus einer Drucktaste, einem Subscreenbereich und einem
Subscreendynpro.

.Suchkritarieﬂ‘ : Drucktaste Abb 85
: Technische
Subscreenbereich Bestandteile

eines Tabstrips

ISBN

Buchtitel
Verlag
‘Autorennunmer

Subscreendynpro

8.3 Tabstrip-Elemente ™ 473

474

8.4
Blattern im Tabstrip

Blittern im Tabstrip bedeutet, durch Anklicken des Tab-Reiters, die
mit ihm verbundene Registerkarte zur Anzeige zu bringen. Der aus-
gewihlte Tab-Reiter wird dabei als ,,aktiv** gekennzeichnet (sieche
Abb. 8.4). Die Blitterfunktion kann iiber zwei verschiedene Metho-
den implementiert werden:

Statische Methode

Beim Auswihlen eines Tab-Reiters wird PAI nicht durchlaufen.
Jede Registerkarte muss deshalb fest mit einem Subscreen-
dynpro verbunden sein. Die Anzeige wird beim Blittern nicht
aktualisiert. Diese Methode wird auch als ,,lokales Blittern‘ be-
zeichnet.

Dynamische Methode

Bei dieser Methode wird beim Bléttern PAI durchlaufen. Es
wird nur ein Subscreenbereich fiir das gesamte Tabstrip ange-
legt. In der Ablauflogik muss der Programmierer dafiir Sorge
tragen, dass der Subscreenbereich mit dem fiir die jeweils aktive
Registerkarte vorgesehenen Subscreendynpro geladen wird.

8.4.1
Tabstrip mit statischer Blatterfunktion

Tabstrips mit statischer Bldtterfunktion sind durch folgende Eigen-
schaften charakterisiert:

Jedem Tab-Reiter ist ein eigener Subscreenbereich zugeordnet.

Blittern 16st kein PAI aus, es wird am Frontend ausgefiihrt. Das
bedeutet, dass beim Blittern keine Kommunikation zwischen
Prisentations- und der Applikationsebene stattfindet. Alle
Subscreendynpros des Tabstrips werden zu PBO des Triger-
dynpros an das Frontend iibertragen.

Jede Aktion auf dem Triagerdynpro des Tabstrips, die PAI aus-
16st, fiihrt zur Abarbeitung der PAI-Blocke aller Subscreen-
dynpros des Tabstrips.

Die Tab-Reiter sind mit dem Funktionstyp P anzulegen. Dieser
16st kein PAT aus.

8 Tabstrips

8.4.2
Tabstrip mit dynamischer Blatterfunktion

Tabstrips mit dynamischer Blitterfunktion sind durch folgende Ei-
genschaften charakterisiert:

m Alle Registerkarten benutzen den gleichen Subscreenbereich.
m Die Auswahl eines Tab-Reiters 16st PAI aus.

m Zu PAI wird festgestellt, welcher Tab-Reiter ausgewihlt wurde
und eine Variable mit dessen Funktionscode geladen.

m Zu PBO wird der (einzige) Subscreenbereich des Tabstrips mit
dem Subscreendynpro geladen, das dem aktiven Tab-Reiter zu-
geordnet ist.

= Am Ende der PBO-Verarbeitung erfolgt der Datentransport zum
(aktiven) Subscreendynpro.

m Das zu PBO geladene Subscreendynpro wird im Tabstrip ange-

zeigt.
Verbunden mit Verbunden mit Abb. 8.6
Subscreen- Subscreen- Dynamisches
dynpro 100 dynpro 120 Bléttern im Tab-
strip (Prinzip)
Suchkniterien | |m Suthl:lrlansn/ Rechercheergebnisse n] |_m3
@ Programmstart 160404 07:32:49 Sllb— (SBN uchtitel
Angaben zum Buch 382 3
ISBN screen- 827311365 Administration des SAP-Systems F
Titel . 3827313724 ABAF/M Die Programmiersprache
Autorennummer bE:I'CICh 3827314011 SAP R/3 prozefiorientiert anwend
Kategorie EDV 38273 1430AP R/3 dynamisch eintanren
‘_‘_ 1527316464 /SAP /3 Der schnelie Einstieg
Angaben zum Suchbareich Sy 8 SUBI T |_[P827317886 Programmierung von Intermet-Arm
(®) Recherche im Gesamibestand peam 175“@'“ bungsbuch
() Recherche im verfigbaren Bestand T IO:SAP R/3 Basissystem
O Recharche im nicht verfigbaren Bestand 3898421473 ABAP Objects

1T

PAI - PBO
Feststellen, welcher Tab- Subscreendynpro 120 in
Reiter ausgewahlt wurde den Subscreenbereich

SUB1 laden

,Rechercheergebnisse®
als aktiven Tab-Reiter
setzen

8.4 Blittern im Tabstrip W™ 475

476

Das Anlegen eines Tabstrips verlduft in 3 Etappen:

m Layout anlegen und Eigenschaften fiir Tab-Reiter und Register-
karte definieren,

m Deklaration des Tabstrips im TOP-Include des ABAP-
Programmes,

m Programmierung der Ablauflogik des Triagerdynpros.

8.5
Tabstrip anlegen

Um ein Tabstrip anzulegen, sind folgende Schritte notig:

m Tabstrip im Layout des Triagerdynpros anlegen.

m FEigenschaften des Tabstrips definieren (z.B. Anzahl der Tab-
Reiter).

m Eigenschaften der Tab-Reiter festlegen (z.B. Funktionscode und
Funktionstyp).

m Subscreenbereich(e) anlegen.

m Tabstrip deklarieren.

Uber eine CONTROLS-Anweisung wird ein Datenobjekt vom
Typ TABSTRIP angelegt. Dieses Datenobjekt entspricht dem
im Dictionary definierten Typ CXTAB_TABSTRIP (Typgrup-
pe CXTAB). Die Komponente ACTIVETAB dieser Struktur
enthélt den Funktionscode des aktiven Tab-Reiters.

Hinweis:

Die Komponenten, die zur Typgruppe CXTAB gehoren, finden
Sie im Dictionary (SE11). Wihlen Sie im Einstiegsbild des Dic-
tionaries das Menii ,,Hilfsmittel > Weitere Dictionary-Elemen-
te*“. Aktivieren Sie dann den Auswahlknopf ,,Typgruppe®, tra-
gen Sie im dazugehorigen Eingabefeld den Namen CXTAB ein
und klicken Sie auf das Symbol ,,Anzeigen®.

m Programmierung der Ablauflogik.

Die Subscreendynpros sind natiirlich auch noch anzulegen.

Vorgehensweise: Tabstrip anlegen

Starten Sie den grafischen Layouteditor mit dem Dynpro, in dem der
Tabstrip angelegt werden soll.

1. Schieben Sie den Mauszeiger, ohne eine Maustaste zu drii-
cken, an die linke obere Ecke des kiinftigen Tabstrips.

8 Tabstrips

2. Ziehen Sie den Minirahmen, mit gedriickter linker Maustaste,
bis zum unteren rechten Rand des kiinftigen Tabstrips.

3. Doppelklicken Sie in den Tabstrip. Tragen Sie in dem sich
daraufhin 6ffnenden Attributefenster den Namen des Tabstrips
ein und legen Sie die Anzahl der Tab-Reiter fest. Alternativ
konnen Sie auch das Werkzeug ,,Drucktaste” der Werkzeug-
leiste aktivieren und mit der Maus an die Stelle der Tab-
Reiterleiste klicken, an der der Reiter positioniert werden soll.

4. Jetzt sichern Sie das Layout, schlielen den grafischen Layout-
editor und laden das TOP-Include in den ABAP-Editor. Pro-
grammieren Sie die CONTROLS-Anweisung.

Syntax der CONTROLS-Anweisung:
CONTROLS <Name des Tabstrips> TYPE TABSTRIP

oo Pomser ek T —— e
@roro Besbelen Sprngen Hifagitel Umisld Hife - [Bl:corati Rl Abb. 8.7
[W coa oM xmi 0 00@ D) Xihm Swne L

Anlegen eines
Tabstrips

g8 C o | 4 P G abiniog g Mome

RS

5 9 =i

Contat Mprss Foom

ON_CTMENU_
Atrtdn
Tatflste =
Fassng

ABAP Editor: Incilude MYKO08TOP dndern

| PiE)E | EEEE | S E R |
Include MYK‘DBT&% aktiv

3 (R) A Y 3 B

PROGRAM ‘
@-::’hstnp TYPE mnsmm.ﬁ\

\/

Diesen Punkt konnen Sie natiirlich auch erst dann durchfiih-
ren, wenn Sie alle Arbeiten im Layouteditor erledigt haben.

5. Kehren Sie in den Layouteditor zuriick. Die Eigenschaften der
Tab-Reiter und die Subscreenbereiche miissen jetzt festgelegt
werden. Hier bestehen Unterschiede beim Anlegen eines
Tabstrips mit statischer bzw. dynamischer Blitterfunktion.

8.5 Tabstrip anlegen W™ 477

Abb. 8.8
Anlegen eines
Subscreenbe-

reiches im
Tabstrip

Abb. 8.9
Eigenschaften
des Tab-Reiters
pflegen

478 =

6. Legen Sie in der ersten Registerkarte einen Subscreenbereich

7.

an.
Mame I5U31 Te
T ‘"Tah1|m2| Flenertp, SubscreeBerech

- Name UB1

X e [
® SUBH e [|

Quickir |

- zde [f cellange[B
m Spalle |5_ visLange |29—
@ Hae [5

Pflegen Sie die Eigenschaften des Tab-Reiters Tabl.

| Suchkriterier|Tabz|
i SUB1

statisches dynamisches
Blattern Blattern
7] crccn painter: AtteibutEINS (] 7] | 7] 5cr<en Painter: AUSGIERI =/
Eleenttyn Druckiaste: Elemertiyp Druktaste
Mame |uer7_ N fum—_
fovmen | Ted [Fuchiibeien [
Iconrtiame [_E;l Tcorrtlame gl
DQuackArdo I—_ OusckAnda [
E S (RS | E | - i | E
spte [T vilsnoe |5 | sese [T wetsme [l
wae [woe I
- mmmal ==
FhCode [SELECT pm FiiCode [SELECT Rl
Atribatn Altnbute
Dt | Prograne | Anceigs |] Dict | Prograem | Anzege | =
Fomst [Gen =] Feemat [Gan =
o AmDict Modiz [=] I AnDiet Modie []
Keed [KorvetEst [
Suchhite | sewde [
"-""»[5”5‘ Relerercield [SUBT
sl @ IR]]

Bei der statischen Blitternfunktion ist als Funktionstyp der Typ
,,P* auszuwihlen. Er unterbindet, dass der Tab-Reiter PAI aus-

16st.

Beim dynamischen Blittern ist SUB1 der Subscreenbereich, der
von allen Registerkarten gemeinsam genutzt wird.

Pflegen Sie die Eigenschaften der 2. Registerkarte.

8 Tabstrips

statisches Blattern dynamisches
Blattern

Suchkri terier Tabz| [Suchiriveried T [0E Suchkriterier T]ﬂﬂ:
e AR | 1 crces rorter T T e e
Elementyp SubsciesnBesich Elemerityp Druckiaste Elementtyp Druckisste
Mame [SUBZ Mame [T2BZ Hame [ThB2
o || Fe—— - I
lontiame []| Teonttams | o ontons [[
uicknfo i— Grsind | o RS2 [—
zie [e || Ao [FESOT mw(ﬂ) faCode [ESOLT m:w@

L O | I e e - Ot | P | rese| 22
al4 @ Foonat [oer 3] Fomat ETCI
Fiir jede Regis-| & - ﬁm Ewion) I""il_!!
terkarte ist ein| s —
Subscreenbereich || e [s022 e (
anzulegen. CIRI=] '— IR =] o

Geben Sie im ,,Re-
ferenzfeld* den
Namen des ge-

1. Legen Sie einen Subscreenbereich
fiir die Registerkarte an.

2. Pflegen Sie die Eigenschaften des

Tab-Reiters. Geben Sie im ,Refe- | Meinsamen Sub-
renzfeld“ den Namen des unter 1. | Screenbereiches an
angelegten Subscreenbereiches an (S.UB 1).

(SUB2). Funktionstyp ist wieder- | Siche Punkt7 der
um P. Vorgehensweise

9. Wiederholen Sie Schritt 8 fiir jede weitere Registerkarte.

Das Layout ist nun fertig angelegt. Fehlt noch die Programmierung
des Tabstrips.

Programmierung des Tabstrips mit statischer Blétter-
funktion

Bei Tabstrips mit lokaler Blitterfunktion ist die Programmierung der
Ablauflogik recht einfach. Sie miissen zur PBO des Triagerdynpros
nur dafiir sorgen, dass die Subscreendynpros die Sie auf den Regis-
terkarten anzeigen wollen, den richtigen Subscreenbereichen zuge-
ordnet werden. Losen Sie zu PAI des Triagerdynpros noch die PAI-
Vorginge der Subscreendynpros aus, wird Thr Tabstrip perfekt funk-
tionieren.

8.5 Tabstrip anlegen

Abb. 8.10
Subscreen-
bereich mit
Tab-Reiter
verknipfen

u 479

Abb. 8.11

Ablauflogik ftr

Tabstrip mit
lokaler Blétter-
funktion

480

Beispiel:

Der in der ,,Vorgehensweise: Tabstrip anlegen* layoutete Tabstrip
MYTABSTRIP soll in der Registerkarte ,,Suchkriterien das Subsc-
reendynpro 100 und in der Registerkarte ,,Rechercheergebnisse‘ das
Subscreendynpro 120 anzeigen. Dazu ist die Ablauflogik des
Dynpros 300 wie folgt zu programmieren:

Screen Painter: Dynpro zu SAPMYKO08 andern
[el=] | | | |

Dynpronummer 300 aktiwv
/Eigenschaﬂen VEIementliste/Ablauﬂngik |

M[om] (2] BIE (2=

PROCESS BEFORE OUTPUT.

CALL SUBSCREEN subl INCLUDING sy-cprog '0O100'.
CALL SUBSCREEN subZ2 INCLUDING sy-cprog '0120'.

PROCESS AFTER INPUT.
CALL SUBSCREEN subl.
CALL SUBSCREEN subZ.

Voraussetzungen:
m Alle Tab-Reiter wurden mit dem Funktionstyp ,,P* angelegt.

m Jede Registerkarte hat ihren eigenen Subscreenbereich (subl,
sub2).

m Im Top-Include wurde der Tabstrip mit
CONTROLS mytabstrip TYPE TABSTRIP.
deklariert.

Programmierung des Tabstrips mit dynamischer Blétter-
funktion

Die Programmierung eines Tabstrips mit dynamischer Blétterfunkti-
on ist etwas aufwendiger. Das Prinzip ist in Abb. 8.6 auf Seite 475
dargestellt. Zu PAI wird ermittelt, welcher Tab-Reiter ausgewéhlt
wurde. Zu PBO wird dann das entsprechende Subscreendynpro in
den Subscreenbereich geladen.

8 Tabstrips

Beispiel:

Der in der ,,Vorgehensweise: Tabstrip anlegen angelegte Tabstrip
MYTABSTRIP soll in der Registerkarte ,,Suchkriterien* das Sub-
screendynpro 100 und in der Registerkarte ,,Rechercheergebnisse
das Dynpro 120 anzeigen. Die im Subscreendynpro 120 auszuge-
benden Rechercheergebnisse sind abhingig von den Eingaben im
Subscreendynpro 100, deshalb kann kein Tabstrip mit lokaler Blit-
terfunktion verwendet werden.

Screen Painter: Dynpro zu SAPMYKO08 andern
(=] | (l(w) | [sa)(F] @)= | [&][S)E] | [Layou]

Dynpronummer 300 aktiv
/Eigenschaﬂen |/Element|iste/y Ablauflogik |

HEEIREEEEE

PROCESS BEFORE OUTPUT.
MODULE lade_ dynnr. [ABAP

MODULE lade dynnr OUTPUT. L =77 |
CASE mytabstrip-activetab.
WHEN 'SELECT'. dynnr = '0100'.
WHEN 'RESULT'. dynnr = '0120'.
WHEN OTHERS.
mytabstrip-activetab\= 'SELECT'.
dynnr = '0100"'.
ENDCASE.

CALL SUBSCREEN subl INCLUDING sy-cprog dynnr.

PROCESS AFTER INPUT.

CALL SUBSCREEN subl.
MODULE user_command 0300.

| ABAP

MODULE user command 0300 INPUT.

ok save = ok code.

CLEAR ok code.

CASE ok _save.
WHEN 'SELECT' OR 'RESULT'.
mytabstrip-activetab = ok_save.
WHEN

ENDCASE.

ENDMODULE .

8.5 Tabstrip anlegen

481

482

Voraussetzungen:
m Alle Tab-Reiter wurden mit dem Funktionstyp ,,leer “ angelegt.

m Alle Registerkarten nutzen den gleichen Subscreenbereich
(SUBL).

m Im Top-Include wurde der Tabstrip mit
CONTROLS mytabstrip TYPE TABSTRIP.
deklariert.

m Im Top-Include wurde eine Variable deklariert, die mit einer
Dynpronummer geladen werden kann. Im Beispiel ist das die
Variable DYNNR.

ABAP Editor: Include MYKO08TOP andern
| | | &ED@ | @[

Include M¥KO8 TOP aktiv

] @] (2] G5 (@)

Mykus .
CONTROLS mytabstrip TYPE TABSTRIP.

ATA: dynnr TYPE sy-dynnr.

Die Dynpros des Programmes SAPMYKO08 (Kopie von
SAPMYKO07_5 oder SAPMYKO07) sollen in einem Tabstrip mit 3
Registerkarten angezeigt werden.

e = iR C0e R ODNoD PR o
East-Side-Library: Rechercheprogramm

1 4

(B Programmstart 150404 1340027

Angaben zum Buch

= |

Tael

Auorennumimer -

Katrgorie B 3 =

Anguben Tum Suckbsesch

() Recharche im Gesamebestand [0& geschotzter Bersch
) Recherche im vergbaren Bustand Elf ofunticher Borsich
{21 Recharcha im richt werdaghaen Bagtand

. [Frozamm besnden]
@ Anzoige als TableContrl
) Anseige ALV-Grid

8 Tabstrips

Die Ergebnisausgabe erfolgt nur noch als Table Control. Auf die
Ausgabe als Liste (z.Z. Dynpro 110) wird verzichtet.

Dazu sind folgende Programmierarbeiten auszufiihren:

m Dynpro 100 und 120 sind in Subscreendynpros umzuwandeln.

m Das Trigerdynpro (Dynpronummer 300) fiir den Tabstrip und

der Tabstrip selbst ist anzulegen.

m Die Ablauflogik (dynamische Blitterfunktion) ist zu pro-
grammieren.

1. Dynpro 100 in ein Subscreendynpro umwandeln.

Ort Aktivitat Begriindung

Ablauf- |Anweisung Subscreendynpros diirfen

logik MODULE keinen eigenen Status besit-
status_0100. zen.
16schen.

Anweisung Das Modul enthilt die An-
MODULE weisung LEAVE TO
beenden ... SCREEN 0 die in Subscreens
16schen. nicht erlaubt ist.
Anweisung Dieses Modul wird nicht
MODULE mehr benotigt. Die Funkti-
user_com- onsauswahl (z.B. RECHER-
mand_0100. CHE) erfolgt tiber die Aus-
l6schen. wahl der Tab-Reiter.
Drucktaste Das Auslosen dieser Funkti-
,,RECHERCHE* on wird tiber die Auswahl
l1oschen. des entspr. Tab-Reiters aus-
gelost.

Layout | Auswahlknopf Auf die Anzeige der Recher-
,,Anzeige als Liste* |cheergebnisse als Liste wird
(WA_RBG3-LISTE) | verzichtet, der Auswahlknopf
16schen. wird also nicht mehr bent-

tigt.

Element- | OK-Feld 16schen. Ein Subscreendynpro besitzt

liste kein eigenes OK-Feld.

Register | Auswahlknopf

,»Eigen- |,.Subscreen‘

schafen® |aktivieren.

8.5 Tabstrip anlegen

483

2. Dynpro 120 in Subscreendynpro umwandeln.

Ort AKktivitit Begriindung
Anweisung Dieses Modul entscheidet,
MODULE ob Dynpro 200 oder 210
status_0120. angezeigt wird. Diese Ent-
16schen. scheidung muss aber im
Tragerdynpro des Tabstrips
erfolgen.
Anweisungen Die Anzeige der bisher in
CALL SUBSCREEN |SUB?2 abgebildeten
sub2 INCLUDING | Dynpros 200 bzw. 210 er-
sycprog dynnr. folgt kiinftig in einer eige-
CALL SUBSCREEN nen Reglsterka.rte. Der
" Subscreenbereich SUB2
sub2. 16schen. . ..
wird gel6scht.
ﬁ)bliiuf_ Anweisung Subscreendynpros diirfen
& MODULE keinen eigenen Status be-
status_0120. sitzen.
16schen.
Anweisung Bisher wird iiber dieses
MODULE Modul das Programm be-
user_com- endet. Das Beenden des
mand_0120. Programmes erfolgt kiinftig
16schen. nur iiber den Status des
Tabstrip-Trigerdynpros.
Anweisung Das Modul enthilt die in
MODULE Subscreens nicht erlaubte
beenden... Anweisung LEAVE TO
16schen. SCREEN.
Subscreenbereich Die Anzeige der bisher hier
SUB2 l6schen. abgebildeten Dynpros er-
Layout .. .
folgt in einem eigenen Re-
gister.
Element- | OK-Feld 16schen. Ein Subscreendynpro be-
liste sitzt kein eigenes OK-Feld.
Register | Auswahlknopf ,,Sub-
»Bigen- |screen® aktivieren.
schafen*
484 W 8 Tabstrips

3.

Legen Sie das Triagerdynpro des Tabstrips (Dynpronummer
300) an (Statisches Folgedynpro: 300, OK_CODE in Element-
liste eintragen).

Erstellen Sie im Layout des Dynpros 300 den Tabstrip. Wih-
len Sie als Tabstripnamen TS1. Legen Sie innerhalb des
Tabstrips den Subscreenbereich SUBTS1 an und pflegen Sie
dann im Attributefenster die Eigenschaften der Tab-Reiter.
(FKTCODE entsprechend nachfolgender Tabelle,
REFERENZFELD ist fiir jeden Tab-Reiter der Subscreenbe-
reich SUBTS1).

Pos. der |Text des anzuzei- Bemerkung

Regis- | Tab-Reiters gendes

terkarte |(Funktionscode) |Dynpro
Suchkriteri

! uc erien 100
(SELECT)

2 Recherche- Nur anzeigen,
ergebnisse 120 wenn Treffermen-
(RESULT) ge > 0.

3 200/210 200 nur anzeigen,
Detailangaben weni 1 LDyiigir

DETAILS 120 ein Buch mar-
() kiert wurde, sonst
210.

Programmieren Sie die Ablauflogik des Dynpros 300.

Hinweise:

m Falls noch nicht geschehen, tragen Sie die Anweisung
CONTROLS TS1 TYPE TABSTRIP. in das TOP-Include
ein.

m Legen Sie folgende Module an:
PBO:

m STATUS_0300.
Verwenden Sie als Status des Dynpros 300 den Status
DYNPRO_0120 und als Titlebar DYNPRO_0100.

s LADEN_DYNNR
Laden Sie in diesem Module die bereits deklarierte
Variable DYNNR mit der Nummer des im Sub-
screenbereich SUBTS1 anzuzeigenden Dynpros.

8.5 Tabstrip anlegen

485

486

PAI:

m USER_COMMAND_0300
Laden Sie im Module USER_COMMAND_0300 die
Komponente ACTIVETAB der Struktur TS1, die tiber
die Anweisung CONTROLS: TS1 TYPE TABSTRIP
deklariert wurde, mit dem Funktionscode des ausge-
wihlten Tab-Reiters.

Entsprechend der Aufgabenstellung soll die Registerkarte
»Rechercheergebnisse (Subscreendynpro 120) nur ange-
zeigt werden, wenn die Menge der anzuzeigenden Biicher
grofer O ist. Es ist daher zweckméiBig, die interne Tabelle
IT_ZBESTAND unmittelbar vor der Auswahl des anzu-
zeigenden Dynpros zu laden. Programmieren Sie deshalb
den Modulaufruf MODULE LADEN_INT_TAB im PBO
des Dynpros 300 (vor LADEN_DYNNR) und I6schen ihn
aus der Ablauflogik des Dynpros 120. An Hand der Bele-
gung der Variablen DS, die in diesem Modul geladen
wird, konnen Sie erkennen, ob Datensitze anzuzeigen sind
(DS ="1") oder nicht (DS ="'0")

Loschen Sie Anweisung LEAVE TO SCREEN 100 im Modul
LADEN_INT_TAB.

Programmieren Sie nach dem Aufruf des Moduls
LADEN_DYNNR die Anweisung

CALL SUBSCREEN subtsl] INCLUDING sy-cprog
dynnr.

und zu PAI die Anweisung
CALL SUBSCREEN subts1.

6. Legen Sie fiir das Programm SAPMYKO08 den Transaktions-
code ZKO08_1 (Startdynpro 300) an und testen Sie Ihr Pro-

Losung: SAPMYKOS_1

Losung:

PROCESS BEFORE OUTPUT.
CALL SUBSCREEN subl
INCLUDING sy-cprog '1100'.

8 Tabstrips

* MODULE status 0100.
MODULE laden 0100.
PROCESS AFTER INPUT.
CALL SUBSCREEN subl.
* MODULE beenden AT EXIT-COMMAND.

CHAIN.
FIELD: chk protected,
chk public
MODULE pruefen3 0100.
ENDCHAIN.

* MODULE user command 0100.

*& ___ *
*& Ablauflogik Dynpro 120 *
*& ___ *

PROCESS BEFORE OUTPUT.

* MODULE dynproauswahl 0120.
* CALL SUBSCREEN sub2 INCLUDING sy-cprog
* dynnr.
* MODULE status 0120.
* MODULE laden int tab.

MODULE zeilenanzahl setzen 0120.

LOOP AT it zbestand INTO wa_ zbestand

WITH CONTROL tcl.

MODULE move to tcl.
ENDLOOP.
PROCESS AFTER INPUT.

* CALL SUBSCREEN sub2.

LOOP AT it zbestand.

FIELD mark MODULE markieren 0120
ON REQUEST.

ENDLOOP.
* MODULE user command 0120.
* MODULE beenden AT EXIT-COMMAND.
R —————_——— *
*& Ablauflogik Dynpro 300 *
e ———————— *

PROCESS BEFORE OUTPUT.
MODULE status_ 0300.
MODULE laden int tab.
MODULE laden dynnr.
CALL SUBSCREEN subtsl INCLUDING sy-cprog
dynnr.

8.5 Tabstrip anlegen

487

PROCESS AFTER INPUT.
CALL SUBSCREEN subtsl.
MODULE user command 0300.
MODULE beenden AT EXIT-COMMAND.

*& ___ *
*& Module STATUS 0300 OUTPUT *
*& ___ *

MODULE status 0300 OUTPUT.
SET PF-STATUS 'DYNPRO 0120'.
SET TITLEBAR 'DYNPRO 0100'.

ENDMODULE.

e *
* & Module 1laden int tab OUTPUT *
A ——— *

MODULE laden int tab OUTPUT.

.*************nicht geanderter Quelltext********************

IF ds = '0'.
MESSAGE 1007 (zlib_ tw).

* LEAVE TO SCREEN 100.

ENDIF.
ENDMODULE . " laden int tab OUTPUT
G ——— *
* & Module laden dynnr OUTPUT *
G ——— *

MODULE laden dynnr OUTPUT.
*im Module LADEN INT TAB wird ds geladen
*ds = 1 --> Es gibt Biicher, die den Such-

* kriterien entsprechen
*ds = 0 --> Es gibt keine Bilicher, die den
* Suchkriterien entsprechen

IF ds > 0.

CASE tsl-activetab.
WHEN 'SELECT'.
dynnr = '0100"'.
WHEN 'RESULT'.
dynnr = '0120"'.
WHEN 'DETAIL'.
*TCISBN enthdalt eine ISBN, falls der
*Benutzer eine Zeile des Table Controls
*markiert hat. Anderenfalls ist TCISBN mit

488 W™ 8 Tabstrips

*dem Initialwert geladen.
IF NOT tcisbn IS INITIAL.
dynnr = '0200"'.
ELSE.
dynnr = '0210"'.
ENDIF.
WHEN OTHERS.
tsl-activetab = 'SELECT'.
dynnr = '0100"'.
ENDCASE.
ELSE.
tsl-activetab = 'SELECT'.
dynnr = '0100"'.
ENDIF.
ENDMODULE.

*& Module USER COMMAND 0300 INPUT *

MODULE user command 0300 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.
WHEN 'SELECT' OR 'RESULT' OR 'DETAIL'.
tsl-activetab = ok save.
WHEN 'EXIT' OR 'BACK'.
LEAVE PROGRAM.
ENDCASE.
ENDMODULE .

8.5 Tabstrip anlegen ®™ 489

9 Datenbankanderungen
programmieren

9.1
Zielstellung des Kapitels

Schwerpunkte dieses Kapitels sind:
m Datenbankéindernde Anweisungen,
m Die Organisation von Datenbankénderungen und

m Das SAP-Sperrkonzept:

Die Thematik wird am Programm SAPMYKO09_Bestand_1 erarbei-
tet. Dieses Programm befindet sich auf der Buch-CD. Es besteht aus
den nachfolgend abgebildeten Dynpros und der in Abb. 9.3 darge-
stellten Ablauflogik, die im Verlaufe des Kapitels noch ergénzt wer-
den wird.

X Abb. 9.1
(] s 9l Ccea DN anos BN ol =
East-Side-Library: Bestandspflege Buch dndern SAPMYKOQ—
[5]]E2 Bestand_1
Rgebin 7 Bk 7 (Dynpro 100
ISBN 3927317094 Bestandspflege)
Buchtited ABAP-UDungsouch
Erscheinungsjahe 2001
Aumage 1
Verlag ADDISON-WESSLEY
Autoren,
Neu
Autor 1 O 116 Zum Andern dier Daten #ings Autors,
T Aneren SIe 033 endspr. ANKTEuTTEld una
Augor 3 O drlicken die ENTER-Taste
Ebaiand
Bestand 20
wveriehen
Einordnung.
Hategorie EDV
Bereich GFPENTLICH

9.1 Zielstellung des Kapitels ® 491

AbD. 9.2 aicoa 0l DE 0@
= ACoe DR ONON EE
SAPMYKOQ— East-Side-Library: Bestandspflege-Autoren 3827317894

Bestand_1
(Dynpro 100 T
Autorenpflege) T
Vomame | Michasel
Vomame 2 a
Geburtsdat
Land bE
Autor 27
Autorennummer o
MName
Vomame 1
Vormame 2
Geburtsdat
Land
Abb. 9.3 Start Programm SAPMYID9_bestand (Bestandspflege))
Ablauflogik ¥
(Prinzip) | Modus="'Anlegen’ |
Dynpro 0100
Bildschirmmodifikation
entsprechend des Modus

Eingabefelder Initialisieren

T

&
Dynpro 0100
anzeigen

¥y

4 'l:arrel'? > 'Anlegen)‘—('Andern'? >

{ Ende) |Modus="Anlegen’ | | Modus = "Andem’ |

v
Daten-
eingabe { 'save? >—e ENTER? >—)

'

le—| Fehler- Titel angegeben? > < Autoren-Ankreuzfelder aktiviert? >_
meldung ; ‘ul

Alle neuen Autoren \ Dynpro 0200 anzeigen
angelegt? / (Autoren anlegen / dndem)

le— Fa-l':ler- Autor! vorhanden? > Daten- 'Cancel?
eingabe
T

A 4

!

Alle angegebenen = .
o Fablar Autoren in ZAUTOREN SAE? Je——(EtAme

14

vorhanden?

Autorennummern emitteln fiir neue
Autoren

Bestandsdaten in
Datenbanktabelle v
Autorendaten in Deterbanktabelle

ZBESTAND sintragen
ZAUTOREN eintragen

Neue Autorennummem dem Buch
Zuordnen

Dynpro 0200~

492 ® 9 Datenbankénderungen programmieren

Vorbereitende Aufgaben

1. Machen Sie sich mit dem Programm SAPMYKO09_Bestand_1
vertraut. Als Hilfe zum Navigieren im Programm und zur Ana-
lyse des Quelltextes steht Ihnen der Programmablaufplan in
Abb. 9.3 zur Verfiigung. Die dort hervorgehobenen Aufgaben
»~Autorendaten in Datenbanktabelle ZAUTOREN eintragen
und ,,Bestandsdaten in Datenbanktabelle ZBESTAND eintra-
gen“ sind noch nicht realisiert.

2. Wenn Sie mit Ihren eigenen Tabellen ZAUTOREN und
ZBESTAND arbeiten wollen, nehmen Sie bitte die zwei klei-
nen Anderungen, die im TOP-Include des Programmes
SAPMYKO09_Bestand_1 beschrieben sind, vor.

9.2
Datenbankandernde Anweisungen

In diesem Buch werden die im Open-SQL-Sprachumfang enthalte-
nen datenbankidndernden Anweisungen

m INSERT,

m UPDATE,

= MODIFY und
m DELETE

besprochen. Jede dieser Anweisungen kann, je nach verwendeter
Syntax, zur Bearbeitung eines Einzelsatzes (Einzelsatzzugriff) oder
einer Menge von Datensitzen (Mengenzugriff) benutzt werden.
Mengenzugriffe sind, gegeniiber der gleichen Anzahl von Einzel-
zugriffen, immer performanter.

Alle diese Anweisungen laden die Systemvariablen SY-SUBRC
und SY-DBCNT. SY-SUBRC wird stets mit 0 geladen, wenn die
Aktion erfolgreich verlaufen ist. SY-DBCNT enthilt die Anzahl Da-
tensdtze, fiir die die gewiinschte Datenbankoperation tatséichlich
durchgefiihrt wurde. Diese Information ist natiirlich nur bei Men-
genzugriffen von Bedeutung. Details zur Belegung der Systemvari-
ablen SY-SUBRC werden in jeweiligen Abschnitten, in denen die
Anweisungen erklidrt werden, gegeben.

Bei allen Anweisungen, mit Ausnahme von MODIFY, gibt es ei-
ne Syntaxvariante, bei der die zu bearbeitenden Datensiitze iiber eine
WHERE-Klausel mit einer logischen Bedingung ausgewéhlt wer-
den. Dabei konnen iiber ... WHERE <feld> LIKE '<Suchmaske>'
auch Platzhalter verwendet werden ('_' fiir genau ein Zeichen, '%' fiir
eine Zeichenkette).

9.2 Datenbankéndernde Anweisungen

493

Abb. 9.4

INSERT

Einzelsatz
anlegen

494

9.2.1
Die INSERT-Anweisung

Einzelsatz anlegen

WA_ZBESTAND
\ . J
ISBN Titel Autor! Autor2 Vorgehensweise:
Struktur (Arbeitsbereich)
5526096098 17 mit Werten fallen
INSERT ausfihren
SY-SUBRC prifen

Rechnender Raum

Voraussetzung
- WA_ZBESTAND hat den

ISBN Titel Autor1 Autor2 gleichen Zeilenaufbau wie
3827317894 |ABAP-Ubungsbuch [116 ZBESTAND
3898421473 |ABAP-Objects 101 102
L J
L
ZBESTAND

Syntax:
DATA: wa_zbestand TYPE zbestand.

wa_zbestand-isbn = 3528096098,
wa_zbestand-titel = 'Rechnender Raum'.
wa_zbestand-autor! = 117.

INSERT INTO zbestand VALUES wa_zbestand.
oder.
INSERT zbestand from wa_zbestand.

Syntax:
INSERT INTO <datenbanktabelle> [CLIENT SPEZIFIED]
VALUE <Struktur>.

Alternative:
INSERT <datenbanktabelle> [CLIENT SPECIFIED]
FROM <struktur>.

Voraussetzung: Die Struktur hat den gleichen Zeilenaufbau wie die
Datenbanktabelle.

Die Klausel CLIENT SPECIFIED bewirkt, dass nicht nur Datensit-

ze im aktuellen Mandanten angelegt werden konnen, die Struktur
kann die Komponente MANDANT besitzen.

9 Datenbankénderungen programmieren

Systemvariable Belegung Erklirung
SY-SUBRC 0 Datensatz konnte eingefiigt werden.

4 Datensatz konnte nicht eingefiigt
werden (z.B. Weil ein anderer Daten-
satz mit gleiche Schliisselfeldbele-
gung bereits vorhanden ist).

Menge von Datensétzen anlegen

. IT_ZBESTAND , Abb. 9.5

= INSERT

ISBN Titel Autor1 Autor2 Vorgehensweise:
- Zellen der internen Tabelle mehrere Daten-

3528086098 | Rechnender Raurmn [117 - o
nternet o] e Nertemilion sétze anlegen
TR =7 o7] - INSERT ausfuhren

- SY-SUBRC prifen
- SY-DBCNT prifen

Voraussetzun
Titel auort Auorz | EERE R B
3827317894 |ABAP-Ubungsbuch [116 gleichen Zeilenaufbau wie
3898421473 |ABAP-Objects 101 102 ZBESTAND

ZBESTAND

Syntax:

DATA: wa_zbestand TYPE zbestand,
it_zbestand TYPE TABLE OF zbestand.

wa_zbestand-isbn = 3528096098.

wa_zbestand-titel = "Rechnender Raum'.

wa_zbestand-autorl = 117.

append wa_zbestand TO it_zbestand.

append wa_zbestand TO it zbestand.
append wa_zbestand TO it_zbestand.

INSERT zbestand FROM TABLE it zbestand.

Syntax:

INSERT <datenbanktabelle> [CLIENT SPECIFIED]
FROM TABLE <interne Tabelle>
[ACCEPTING DUPLICATE KEYS].

Voraussetzung: Die interne Tabelle hat den gleichen Zeilenaufbau
wie die Datenbanktabelle.

Die Klausel CLIENT SPECIFIED bewirkt, dass nicht nur Datensiit-

ze im aktuellen Mandanten angelegt werden konnen. Die interne
Tabelle kann eine Spalte MANDANT haben.

9.2 Datenbankédndernde Anweisungen B 495

496

Kann mit einer Zeile der internen Tabelle kein Datensatz in der Da-
tenbanktabelle angelegt werden (weil z.B. in der Datenbanktabelle
bereits ein Datensatz mit gleicher Schliisselfeldbelegung vorhanden
war), wird ein Laufzeitfehler ausgelost. Dadurch erfolgt ein Daten-
bank-Rollback, d.h. die Datenbankinderungen, die der INSERT-
Befehl ausgefiihrt hat, werden zuriickgesetzt. Dieses Verhalten kon-
nen Sie mit der Klause]l ACCEPTING DUPLICATE KEYS é&ndern.
Bei Verwendung dieser Klausel

m ecrfolgt kein Laufzeitfehler (kein Riicksetzen der Datenbank).
m SY-SUBRC wird mit 4 geladen.

Systemvariable Belegung Erklirung

SY-SUBRC 0 Alle Datensatz konnten eingefiigt
werden
4 Mindestens ein Datensatz konnte

nicht eingefiigt werden (z.B. Weil ein
anderer Datensatz mit gleiche Schliis-
selfeldbelegung bereits vorhanden
ist). Dazu muss die Klausel
ACCEPTING DUPLICATE KEYS
eingesetzt werden. Sonst wird ein
Laufzeitfehler ausgelost.

SY-DBCNT Enthilt die Anzahl der tatsdchlich an-
gelegten Datensitze.

9.2.2
Die UPDATE-Anweisung

Zum Andern eines Datensatzes bzw. einer Menge von Datensitzen
stehen jeweils zwei Methoden zur Verfiigung. Einzelsitze konnen
iiber eine Struktur oder iiber eine logische Bedingung, eine Menge
von Datensitzen iiber eine interne Tabelle oder ebenfalls iiber eine
logische Bedingung, geindert werden.

9 Datenbankénderungen programmieren

Einzelsatz iiber Arbeitsbereich 4ndern

WA_ZBESTAND
L v ! \orgehensweise: ﬁ%%}f—ﬁE
ISBN Titel Auort Autorz S SUTIGERIEDMSICH) -
mit Werten follen, die Einzelsatz
| Rechnender Raum | 117 | | Schlusselfelder -

identifizieren den zu andern

2 andernden Datensatz (1),
der anschliefend mit den
Inhalten der
Strukturkomponenten

ISBN Titel Aut Oberschrieben wird (2).

UPDATE ausfuhren

SY-SUBRC prafen

3827317894 |ABAP-Lhungsbuch | 11
3888421473 | ABAP-(gpjects 104
3528096098 | Counter Room 11
\

Voraussetzung

- WA_ZBESTAND hat den
gleichen Zeilenaufbau wie
ZBESTAND

Y
ZBESTAND

Syntax:

DATA: wa_zbestand TYPE zbestand.

SELECT SINGLE * FROM zbestand
WHERE ISBN = '3528096098".

wa_zbestand-titel = "Rechnender Raum’.

UPDATE zbestand from wa_ zbestand.
IF SY-SUBRC << 0.

Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]
FROM <struktur>.

Voraussetzung: Die Struktur hat den gleichen Zeilenaufbau wie die
Datenbanktabelle.

Die Klausel CLIENT SPECIFIED bewirkt, dass nicht nur Datensiit-
ze des aktuellen Mandanten geédndert werden konnen, die Struktur
kann die Komponente MANDANT besitzen, so dass auch Datensiit-
ze mit anderen Mandantennummern geéndert werden kdnnnen.

Systemvariable Belegung Erkldrung
SY-SUBRC 0 Datensatz konnte geédndert werden.

4 Datensatz konnte nicht gedndert wer-
den (z.B. Weil kein Datensatz mit
gleicher Schliisselfeldbelegung exis-
tiert).

9.2 Datenbankdndernde Anweisungen W 497

Abb. 9.7
UPDATE
Einzelsatz (iber
log. Bedingung
dndern

498 =

Einzelsatz liber log. Bedingung dndern

UFDATE zbestand

SET autorz = ' ' Vorgehensweise:
titel = 'Rechnender Raum' — - UPDATE ausfahren
isbn = '3528096098° - SY-SUBRC prifen

HERE isbn = "35ZB096099". |

1 2 2 2
I$BN Tifel Autor1 AL|ior2
B27417694 |ABAP-Ublingsbuch | 116

Counter Room 17 118

|
hBBgﬁM?B ABAP-Olgects 101 10%
\

Y
ZBESTAND

———

Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]
SET <tab_feld1> = <inhaltl>
<tab_feld2> = <inhalt2>

<tab_feldn> = <inhaltn>
WHERE <log. Bedingung mit allen Schliisselfeldern>.

Uber die logische Bedingung wird genau ein Datensatz in der Da-
tenbanktabelle identifiziert. Deshalb sind alle Schliisselfelder, mit
Ausnahme des Mandanten, einzubeziehen. Den Mandanten konnen
Sie nur bei gesetzter CLIENT SPECIFIED-Klausel angeben. Wird
iiber die WHERE-Anweisung ein Datensatz spezifiziert, werden die
in der SET-Klausel angegebenen Felder mit dem, ebenfalls in der
SET-Klausel festgelegten, neuen Inhalt tiberschrieben.

Hinweis:
Als <inhalt> kann die SET-Klausel auch eine Berechnung enthalten.

UPDATE zbestand

SET bestand = bestand + 10

WHERE ...
Voraussetzung dafiir ist, dass das so zu dndernde Feld ein numeri-
sches Feld ist.

Systemvariable Belegung Erklirung
SY-SUBRC 0 Datensatz konnte geidndert werden.

4 Datensatz konnte nicht gedndert wer-
den (z.B. weil kein Datensatz mit glei-
cher Schliisselfeldbelegung vorhan-
den ist).

9 Datenbankénderungen programmieren

Menge von Datensétzen (iber eine interne Tabelle
éndern

IT_ZBESTAND
\ ~] Vorgehensweise:
- Zeilen der int Tabell
ISBN Titel Autor! Kategorie m?{&]er,earn'?ﬂigf” b
3528096038 Rechnender Raurn | 117 MATH - UPDATE ausfihren
—1 3827254388 Internet 109 INTERNET] - SY-SUBRC prufen
(3827258863 |SAP Ria 07 SAP - SY-DBCNT prfen
~— 1 Voraussetzung
— 1
- IT_ZBESTAND hat den
Titel Autor1l [Hateao gleichen Zeilenaufbau wie
13BN If g ZBESTAND
1 3927258063 |SAP R/3 107 ECV]]Y
3827317894 | ABAP-Ubungsuch [116 EDV
3898421473 | ABAP-Objects 101 EDV
136827254388 | Internet 09 EOV
3528006008 | Rechnender R¥um | 117 El
! g]
— ZBESTAND R
Syntax:

DATA: wa_zbestand TYPE zbestand,
it_zbestand TYPE TABLE OF zbestand.

wa_zbestand-isbn = "3528096098".

wa_zbestand-titel = "Rechnender Raum'.

wa_zbestand-kategorie = "MATH'.

append wa_zbestand TO it_zbestand.

append wa_zbestand TO it_zbestand.
append wa_zbestand TO it_zbestand.

UPDATE zbestand FROM TRBLE it zbestand.

Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]
FROM TABLE <interne Tabelle>.

Die interne Tabelle wird durch den UPDATE-Befehl zeilenweise
abgearbeitet. Zuerst wird tiber die in der aktuellen Zeile der internen
Tabelle stehenden Schliisselfelder der zu dndernde Datensatz in der
Datenbanktabelle gesucht. Konnte ein entsprechender Datensatz ge-
funden werden, wird dieser mit der aktuellen Zeile der internen Ta-
belle tiberschrieben.

9.2 Datenbankéndernde Anweisungen

Abb. 9.8
UPDATE
mehrere Daten-
sétze (ber
interne Tabelle
dndern

" 499

Abb. 9.9
UPDATE
mehrere Daten-
sdtze (ber log.
Bedingung
dndern

500

Systemvariable Belegung Erklirung

SY-SUBRC 0 Alle in der internen Tabelle stehen-
den Datensitze konnten in der Daten-
banktabelle gedndert werden.

4 Mindestens ein Datensatz konnte
nicht geéndert werden (z.B. Weil kein
Datensatz mit gleicher Schliisselfeld-
belegung vorhanden ist).

SY-DBCNT Enthélt die Anzahl der tatséchlich ge-
dnderten Datensitze.

Menge von Datensétzen iiber eine logische Bedingung
dndern

UPDATE zhestand

SET kategorie = "ABAR/4' T Vorgehensweise:

- UPDATE ausfohren
HERE isbn = '3827317894" or - SY-SUBRC prifen
isbn = '3898421473". - SY-DBCNT prifen

ISBN Titel Autor? Kal'gone

3827317894 |ABAP-Ubungsbuch | 116 EDV
3898421473 | ABAP-Objects 01 EDV
3528096098 [Rechnender Raum [117 EDV
L

Y
ZBESTAND

Im ersten Schritt werden durch die WHERE-Klausel die
beiden gekennzeichneten Datensatze der Tabelle
ZBESTAND identifiziert. Im 2. Schritt werden die Inhalte
des Feldes KATEGORIE (EDV) dieser beiden
Datensatze mit dem in der SET-Klausel festgelegten
Wert (ABAP/4) Gberschrieben,

Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]
SET <tab_feld1> = <inhaltl>
<tab_feld2> = <inhalt2>

<tab_feldn> = <inhaltn>
WHERE <log. Bedingung>.

Uber die logische Bedingung wird eine Menge von Datensatzen in
der Datenbanktabelle identifiziert. In allen durch die WHERE-
Klausel spezifizierten Datensitzen werden die in der SET-Klausel
angegebenen Datenbankfelder mit den, ebenfalls in der SET-Klausel
festgelegten, Inhalten tiberschrieben.

9 Datenbankénderungen programmieren

Hinweis:
Als <inhalt> kann in der SET-Klausel auch eine Berechnung stehen.

UPDATE zbestand

SET bestand = bestand + 10

WHERE ...
Voraussetzung dafiir ist, dass das so zu dndernde Feld ein numeri-
sches Feld ist.

Systemvariable Belegung Erklirung

SY-SUBRC 0 Mindestens ein Datensatz der Daten-
banktabelle wurde geindert.

4 Es wurde kein Datensatz geédndert.

SY-DBCNT Enthilt die Anzahl der tatséchlich ge-
dnderten Datensitze.

9.2.3
Die MODIFY-Anweisung

Die MODIFY-Anweisung fasst die beiden Anweisungen INSERT
und UPDATE zusammen. Existiert der durch die MODIFY-
Anweisung zu bearbeitende Datensatz in der Datenbanktabelle, ver-
hilt sich MODIFY wie die UPDATE-Anweisung, existiert der Da-
tensatz nicht, entspricht das Verhalten der MODIFY-Anweisung
dem der INSERT-Anweisung.

Syntax:

Fiir Einzelsatzzugriff:

MODIFY <datenbanktabelle> [CLIENT SPECIFIED]
FROM <struktur>.

Systemvariable Belegung Erklirung

SY-SUBRC 0 Datensatz angelegt bzw. geédndert.
4 Datensatz nicht angelegt bzw. geédn-
dert.
Fiir Mengenzugriff:

MODIFY <datenbanktabelle> [CLIENT SPECIFIED]
FROM TABLE <interne Tabelle>.

9.2 Datenbankéndernde Anweisungen

501

Abb. 9.10
DELETE
Einzelsatz 16-
schen

502

Systemvariable Belegung Erklirung

SY-SUBRC 0 Alle zu bearbeitenden Datensiitze
angelegt bzw. geiindert.

4 Die Bearbeitung mindestens eines
Datensatzes ist fehlgeschlagen.

SY-DBCNT Enthilt die Anzahl der tatséchlich ge-
dnderten Datensitze.

9.24
Die DELETE-Anweisung

Einzelsitze konnen iiber eine Struktur oder eine logische Bedingung
geloscht werden. Das Loschen mehrerer Datensétze erfolgt iiber eine
interne Tabelle oder ebenfalls iiber eine logische Bedingung.

Einzelsatz iiber Arbeitsbereich I6schen

WA_ZBESTAND
L Y } Vorgehensweise:
- Struktur (Arbeitsbereich)
ISEN Titel Autor! Autor2 mit der Schlisselfeldbele-
| | | gung des zu ldschenden
Datensatzes laden.
- DELETE ausfuhren
- SY-SUBRC profen
Voraussetzung
ISEN Titel Autor1 Autor2 - WF__ZBEZSTAND r;smen
leichen Zeilenaufbau wie
3627317894 _|ABAP-Ubungsbuch | 116 TEESTAND
3898421473 |ABAP-Objects 101 102
3528096098 |Rechnender Raum | 117
\
v)
ZBESTAND
Syntax:
DATA: wa_zbestand TYPE zbestand.
wa_zbestand-isbn = "3528096098".
DELETE zbestand from wa_zbestand.
IF SY-SUBRC <> 0.
Syntax:
UPDATE <datenbanktabelle> [CLIENT SPECIFIED]

FROM <struktur>.

Voraussetzung: Die Struktur hat den gleichen Zeilenaufbau wie die
Datenbanktabelle.

9 Datenbankénderungen programmieren

Die Klausel CLIENT SPECIFIED bewirkt, dass nicht nur Datensiit-
ze des aktuellen Mandanten geldscht werden konnen, die Struktur
kann die Komponente MANDANT besitzen, so dass auch Datensit-
ze mit anderen Mandantennummern geéndert werden konnnen.

Systemvariable Belegung Erklirung
SY-SUBRC 0 Datensatz konnte geloscht werden.

4 Datensatz konnte nicht geloscht wer-
den (z.B. Weil kein Datensatz mit
gleiche Schliisselfeldbelegung exis-
tiert).

Einzelsatz liber log. Bedingung I6schen

DELETE FROM zbestand Vorgehensweise:
(WHERE isbn = '3528096098". - DELETE ausfihren Abb 911

- SY-SUBRC profen DELETE

R e Einzelsatz (iber

n der -Klausel sin .

alle Schiusselfelder log. Bedingung
ISBN Titel Autor! Autor2 anzugeben I6schen

3827317894 | ABAP-Ubungsbuch [116
3898421473 | ABAP-Objects [101 102
3528096098 | Rechnender Raum | 117
[

¥
ZBESTAND

Syntax:
DELETE FROM <datenbanktabelle> [CLIENT SPECIFIED]
WHERE <log. Bedingung mit allen Schliisselfeldern>.

Uber die logische Bedingung wird genau ein Datensatz in der Da-
tenbanktabelle identifiziert und dann geldscht.

Systemvariable Belegung Erklirung
SY-SUBRC 0 Datensatz konnte geloscht werden.

4 Datensatz konnte nicht geloscht wer-
den (z.B. weil durch die WHERE-
Klausel kein Datensatz identifiziert
wurde).

9.2 Datenbankédndernde Anweisungen ® 503

Abb. 9.12
DELETE

mehrere Daten-
sétze Uber int.
Tabelle I6schen

504

Menge von Datensétzen liber eine interne Tabelle
lé6schen

IT_ZBESTAND
1 v J ‘U'UI., h ® .
3 Zeilen der internen Tabelle
ISBN Titel Autorl Kategorie mit den
3528096058 Schlisselfeldbelegungen
3827254388 der zu loschenden
3827258863 Datensatze fallen
- DELETE ausfuhren
__'_"_"---...\ .
=i - SY-SUBRCoprufen
- SY-DBCNT prifen
ISBM Titel Autor1 Kategorie
3827258863 |SAP R/3 107 EDV Yornmastrina
q - [T_ZBESTAND hat de
3827317894 _| ABAP-Ubungsbuch [116 [EDV Hakhi TalemartaL e
3898421473 | ABAP-Objects 101 EDV ZBESTAND
3827254388 |Internet 109 EDV
3528096098 |Rechnender Raum [117 EDV
ZBESTAND J
i ey

Syntax:
DATA: wa_zhestand TYPE zbestand,
it zbestand TYPE TABLE OF zbestand.

wa_zbestand-isbn = "3528096098".
append wa_zbestand TO it zbestand.

wa_zbestand-isbhn = '3827254388".
append wa_zbestand TO it zbestand.

wa_zbestand-isbn = "3827258863".
append wa_zbestand TO it zbestand.

DELETE zbestand FROM TABLE it zbestand.

Syntax:
DELETE <datenbanktabelle> [CLIENT SPECIFIED]
FROM TABLE <interne Tabelle>.

Die interne Tabelle wird durch den DELETE-Befehl zeilenweise
abgearbeitet. Wird in der Datenbanktabelle ein Datensatz gefunden,
der mit der Schliisselfeldbelegung der aktuellen Zeile der internen
Tabelle tibereinstimmt, wird dieser geloscht.

Systemvariable Belegung Erklirung

SY-SUBRC 0 Alle in der internen Tabelle stehenden
Datensitze konnten in der Datenbank-
tabelle geloscht werden.

4 Mindestens ein Datensatz konnte
nicht geloscht werden (z.B. Weil kein
Datensatz mit gleicher Schliisselfeld-
belegung vorhanden ist).

SY-DBCNT Enthélt die Anzahl der tatsédchlich ge-
16schten Datensitze.

9 Datenbankénderungen programmieren

Menge von Datensétzen (iber eine logische Bedingung
I6schen

DELETE zhestsnd Vorgehensweise: Abb. 9.13

WHERE isbn = "3827317894" or T
- DELETE ausfuhren
isbn = '3898421473°. - SY-SUBRC prifen DELETE

- SY-DBCNT prafen mehrere Daten-
sdtze dber log.
Bedingung
I6schen

ISBN Titel Autor! Kategorie
3827317894 | ABAP-Ubungsbuch | 118 EDV
3898421473 | ABAP-Objects 101 EDV
3528096098 | Rechnender Raum | 117 EDV

|}

Y
ZBESTAND

Syntax:
DELETE FROM <datenbanktabelle> [CLIENT SPECIFIED]
WHERE <log. Bedingung>.

Die iiber die logische Bedingung spezifizierte Menge von Datensit-
zen wird aus der Datenbanktabelle geloscht.

Systemvariable Belegung Erklirung

SY-SUBRC 0 Mindestens ein Datensatz der Daten-
banktabelle wurde geloscht.

4 Es wurde kein Datensatz geloscht.

SY-DBCNT Enthélt die Anzahl der tatsichlich ge-
16schten Datensitze.

Mit der Anweisung
DELETE FROM <datenbanktabelle> WHERE <feld> LIKE '%'.

loschen Sie bei mandantenunabhéngigen Tabellen alle Datensiitze,
bei mandantenabhéngigen Tabellen alle Datensitze des aktuellen
Mandanten.

Wollen Sie alle Datensitze einer mandantenabhéngigen Tabelle 16-
schen, benutzen Sie die Anweisung

DELETE FROM <datenbanktabelle> CLIENT SPECIFIED
WHERE <feld> LIKE '%'.

Dabei ist <feld> ein beliebiges Feld der Tabelle, aus der die Daten-
sdtze geloscht werden sollen. Beachten Sie dabei jedoch, dass ein
Wiederherstellen der Datensidtze, zumindest mit einem ABAP-
Programm, nicht moglich ist.

9.2 Datenbankédndernde Anweisungen ® 505

506

Im Programm SAPMYKO09_ Bestand 1 sollen jetzt neu angelegte
oder geidnderte Bestands- bzw. Autorendaten in die Datenbankta-
bellen ZBESTAND und ZAUTOREN (bzw. ZBESTAND_TW
und ZAUTOREN_TW) eingetragen werden.

3. Tabelle ZBESTAND bzw. ZBESTAND_TW aktualisieren
Wihlt der Benutzer die Funktion SICHERN (Funktionscode
SAVE) im Dynpro 100, wird nach der Priifung der eingege-
benen Daten, im PAI-Modul USER_COMMAND 0100 das
Unterprogramm BESTANDSDATEN_SICHERN aufgerufen.
Die Daten, mit der die Datenbanktabelle aktualisiert werden
soll, befinden sich in der Struktur WA_ZBESTAND, mit der
auch das Layout des Dynpros 100 angelegt wurde. Diese
Struktur besitzt den gleichen Zeilenaufbau wie die zu aktuali-
sierende Tabelle. Um zu entscheiden, ob ein Datensatz dieser
Tabelle gedndert (UPDATE) oder neu angelegt (INSERT)
werden muss, steht Thnen die Variable MODUS zur Verfiigung

m MODUS = 'Buch anlegen'(006) > INSERT
m MODUS = 'Buch éindern'(007) > UPDATE

Keine Abfrage des MODUS brauchen Sie, wenn Sie die
MODIFY-Anweisung benutzen.

Programmieren Sie die Aktualisierung der Datenbanktabelle
ZBESTAND bzw. ZBESTAND_TW im Unterprogramm
BESTANDSDATEN_SICHERN.

4. TabelleZAUTOREN bzw. ZAUTOREN_TW aktualisieren

Der Benutzer kann Autoren dndern oder neu anlegen. Die in-
terne Tabelle IT_ZAUTOREN_CHANGED wird im Unter-
programm AUTOREN_AENDERUNGEN_ERMITTELN mit
den Daten der zu dndernden Autoren des bearbeiteten Buches
geladen. Diese Tabelle hat den gleichen Zeilenaufbau wie die
zu aktualisierende Datenbanktabelle ZAUTOREN bzw.
ZAUTOREN_TW. Programmieren Sie im Unterprogramm
AUTOREN_AENDERUNGEN_SICHERN die Datenbankén-
derungen.
Die Daten der neu anzulegenden Autorensitze befinden sich in
der internen Tabelle IT_ZAUTOREN_NEW, die im Unter-
programm AUTOREN_NEUE_ERMITTELN geladen wird.
Programmieren Sie das Anlegen der neuen Autoren im Unter-
programm AUTOREN_NEUE_ANLEGEN.

Losung: SAPMYKO09_Bestand_2

9 Datenbank&nderungen programmieren

N e e e *
*& Form bestandsdaten sichern *
e e el *

FORM bestandsdaten sichern.
*Hier werden die gednderten bzw. neu angelegten
*Bestandsdaten in die Tabelle ZBESTAND bzw.
*ZBESTAND TW eingetragen
IF modus = 'Buch anlegen' (006) .
INSERT (t_bestand) FROM wa_zbestand.
IF sy-subrc <> 0. MESSAGE a018(zlib tw).
ENDIF.
ENDIF.
IF modus = 'Buch andern' (007).
UPDATE (t_bestand) FROM wa_zbestand.
IF sy-subrc <> 0. MESSAGE a019(zlib tw).

ENDIF.
ENDIF.
ENDFORM.
K m m m e e e e e e e — *
*& Form autoren aenderungen sichern *
e e el *

FORM autoren aenderungen sichern.
*it zautoren changed enthdlt die Angaben zu den
*zu andernden Autoren.
UPDATE (t_autoren)
FROM TABLE it zautoren changed.
IF sy-subrc <> 0. MESSAGE a019(zlib tw).
ENDIF.

ENDFORM.

e e e e *
*& Form autoren neue anlegen *
e el e *

FORM autoren neue anlegen.
*it zautoren new enthdlt die Angaben zu den neu
*anzulegenden Autoren.
insert (t_autoren)
FROM TABLE it zautoren new.
IF sy-subrc <> 0. MESSAGE a020(zlib tw).
ENDIF.
ENDFORM.

9.2 Datenbankéndernde Anweisungen

507

508

9.3
Datenbankanderungen organisieren

Was passiert eigentlich, wenn im Dynpro 200 des Programmes
SAPMYKO09_Bestand_1 ein neuer Autorenstammsatz erfolgreich
angelegt wurde, das Anlegen des dazugehorigen Datensatzes in der
Datenbanktabelle ZBESTAND jedoch scheitert. Wir haben dann ei-
nen Autorenstammsatz der keinem Buch zugeordnet ist. Das ist nun
fiir unser Bibliotheksprogramm nicht unbedingt schlimm, denken
Sie aber an andere Anwendungen (z.B. Umbuchen eines Geldbetra-
ges vom Konto A nach Konto B), wird schnell klar, dass solche Ri-
siken vom Programm abgefangen werden miissen.

Das Problem kann auch abstrakter ausgedriickt werden: Zu Pro-
grammbeginn befinden sich die Datenbanktabellen in einem konsi-
stenten (d.h. fehlerfreien) Zustand. Zur Laufzeit des Programmes
kommt es zwangsldufig zu inkonsistenten Zustidnden in den beteilig-
ten Datenbanktabellen. Diese dauern solange, bis alle Datenbankén-
derungen ausgefiihrt sind. Durch die Organisation der Datenbank-
dnderungen muss der Programmierer dafiir sorgen, dass die Ausfiih-
rung des Programmes die Datenbank von einem konsistenten Zu-
stand in einen anderen konsistenten Zustand iiberfiihrt. Dieses
Prinzip darf auch bei Programmabstiirzen, nicht fehlerfrei ausge-
fiihrten datenbankéndernden Anweisungen etc. nicht durchbrochen
werden. Dieses Kapitel befasst sich mit den Programmiertechniken,
die dazu eingesetzt werden.

9.3.1
Das LUW-Konzept

Unter einer LUW (Logical Unit of Work) ist die Zeitspanne zu ver-
stehen, in der die Datenbank von einem konsistenten Zustand in ei-
nen anderen konsistenten Zustand iiberfiihrt wird. Jede LUW endet
entweder mit einem sogenannten COMMIT-Befehl, der die Ande-
rungen in die Datenbank eintrigt oder mit einem Datenbank-
Rollback, der den Zustand der Datenbank vor der LUW wiederher-
stellt (weil eben z.B. eine Datenbankédnderung fehlgeschlagen ist).
Innerhalb einer LUW werden entweder alle Datenbankinderungen
oder iiberhaupt keine ausgefiihrt (Alles oder Nichts-Prinzip). Fiir un-
ser eingangs geschildertes Beispiel heifit das, dass beim Fehlschla-
gen des Anlegens des Bestandsdatensatzes die dazugehorigen Auto-
renstammsitze nicht in die Datenbank geschrieben werden.

9 Datenbankdnderungen programmieren

Datenbankanderung 1| |Datenbankénderung 2 Abb. 9.14

(z.B.INSERT ...} (zB. UPDATE...) Dateenbankéan-
derungen (Alles
oder Nichts-

Datenbank Datenbank Prinzip)

konsistenter konsistenter
Zustand 1 Zustand 2

Datenbank-Rollback COMMIT

DB-LUW

Die Datenbank-LUW ist ein vom SAP-System unabhingiger Me-
chanismus des Datenbanksystems. Er fiihrt, wie auch in Abb. 9.14
dargestellt, entweder alle Datenbankénderungen aus oder iiberhaupt
keine. Die Frage ist, wann eine solche Datenbank-LUW ausgefiihrt
wird und wie im Fehlerfall ein Rollback ausgeldst wird. Um den ers-
ten Teil der Frage beantworten zu kdnnen, miissen wir uns mit dem
Prinzip der Abarbeitung der Datenbankinderungen durch das SAP-
System beschiftigen. Fiir einen Dialogschritt, also dem Abarbeiten
der PAI-Ablauflogik bis zum Senden des Folgedynpros nach PBO,
wird dem Programm vom SAP-Systemkern ein sogenannter Work-
prozess (im Dialogbetrieb ist das der Dialogworkprozess) zur Ver-
fligung gestellt. Dieser Dialogworkprozess fiihrt u.a. die Datenbank-
dnderungen aus bzw. stoBt einen anderen Workprozess, den
sogenannten Verbucher, an, der das tut. Die Anzahl der Workpro-
zesse ist begrenzt, es steht also nicht fiir jedes aktive Programm ein
eigener Workprozess zur Verfiigung, vielmehr wird jedem Dialog-
schritt ein, mehr oder weniger zufillig, freier Workprozess zugeord-
net. Es ist auch nicht gewihrleistet, dass dem néchsten Dialogschritt
der gleiche Workprozess zugeordnet wird wie dem aktuellen. Da der
Workprozess aber fiir die Durchfiihrung der Datenbankinderungen
verantwortlich ist, muss also nach jedem Dialogschritt eine Daten-
bank-LUW ausgelost werden, damit der Workprozess dieser Ver-
antwortung auch gerecht werden kann.

Eine DB-LUW wird also immer dann ausgelost, wenn der dem Dia-
logschritt zugeordnete Workprozess beendet wird. Das ist der Fall

= wenn ein neuer Bildschirm gesendet wird (Achtung: auch beim
Senden einer Message) oder

m die Programmausfiihrung durch einen anderen Workprozess
fortgesetzt wird (z.B. beim Aufruf von und der Riickkehr aus
RFC-Funktionsbausteinen).

Kommen wir zum zweiten Teil der eingangs gestellten Frage: wie
wird ein Datenbank-Rollback ausgelost?

9.3 Datenbankénderungen organisieren ® 509

Abb. 9.15
Ausldsen eines
Datenbank-
Rollbacks

510

Das Datenbank-Rollback wird vom ABAP-Programm ausgelGst.
Dafiir gibt es zwei Moglichkeiten:

1. Nach dem Feststellen eines Fehlers bei der Durchfiihrung der
Datenbankinderung wird eine Message vom Typ A (Abbruch)
oder X (Kurzdump) gesendet. Bei diesen Messagetypen wird
das laufende Programm abgebrochen und die Datenbank zu-
rlickgesetzt.

2. Im Programm wird die Anweisung ROLLBACK WORK abge-
arbeitet. Diese Anweisung verursacht ein Datenbankrollback,
ohne das Programm zu beenden. Hier ist allerdings Vorsicht ge-
boten, weil der Programmkontext nicht zuriickgesetzt wird (alle
Datenobjekte behalten Ihre Werte).

ABAP-Programm
ZBESTAND
UPDATE zbestand From wa_zbestand | >
IF sy-subrc <= 0. And k sy-subrc=0.
MESSAGE a001(z|'m}_<“ SCTE Ot By -SUING
ENDIF.
ZAUTOREN

INSERT zautoren FROM wa_zautoren.

IF sy-subrc <> 0. Fehler: sy-subrc =4.
MESSAGE aDDQ(zlib}.< L

ENDIF. K

Bei der zweiten Datenbankanderung (INSERT...) ist ein Fehler aufgetreten. SY-SUBRC
wird auf 4 gesetzt. Daraufhin sendet das ABAP-Programm eine Message vom Typ A. Da
die Datenbankanderungen in der selben Datenbank-LUW durchgefihrt wurden (zwischen
UPDATE und INSERT erfolgte kein Bildwechsel) werden beide Datenbankanderungen
Zuriickgesetzt.

Datenbank-Rollback

SAP-LUW

Widmen wir uns jetzt wieder unserem Bestandspflegeprogramm
SAPMYKO09_Bestand_1. Es besteht aus dem Dynpro 100, in dem
die Tabelle ZBESTAND gepflegt wird und dem Dynpro 200, das
die Autorentabelle ZAUTOREN aktualisiert. Gebe es nur das Prin-
zip der Datenbank-LUW, diirften die Datenbankénderungen nur im
Dynpro 100 programmiert werden, weil die Anderungen sonst in
zwei verschiedenen Datenbank-LUWSs erfogten und im Fehlerfall
nicht gemeinsam zuriickgesetzt werden konnten. Hier kommt nun
die SAP-LUW ins Spiel. Die SAP-LUW klammert die Schritte, die

9 Datenbankénderungen programmieren

zu einem betriebswirtschaftlichen Prozess gehoren, zusammen. In
unserem Beispiel die Bestands- und die Autorenpflege. In einem an-
deren Beispiel evtl. das Abbuchen eines Geldbetrages vom Konto A
und die Gutschrift in Konto B.

Innerhalb der Datenbank-LUWSs der einzelnen Bildschirmbilder, die
von der SAP-LUW geklammert werden, finden keine Datenbank-
dnderungen statt. Die Anderungen werden nur ,,vorgemerkt®. Sie
werden erst am Ende der SAP-LUW, in einer einzigen Datenbank-
LUW, ausgefiihrt. Damit werden alle Anderungen des betriebswirt-
schaftlichen Prozesses beim Auslosen eines Datenbank-Rollbacks
zuriickgesetzt. Das Ziel, die Datenbank von einem konsistenten Zu-
stand in einen anderen, ebenfalls konsistenten Zustand zu iiberfiih-
ren, ist damit unter allen Umstinden gewihrleistet. Die Anderungen
werden also in der SAP-LUW auf die letzte DB-LUW gebiindelt.
Die SAP-LUW wird im ABAP-Programm mit der COMMIT
WORK Anweisung abgeschlossen.

» SAPLUW . Abb.9.16
SAP-LUW
DYNPRO 100 DYNPRO 200 DYNPRO 300
PAIIFPBO PAIPBO PAIPBO
Datenbankande- Datenbankande- Datenbankande-
rung 1 rung 2 rung 3
(vorgemerkt) (vorgemerkt) (vorgemerkt)
v v T
DB-LUw DB-LLvY CEAvAIT A OR
(kei_ne Daten- (kei_ne Daten- DE-LUVY
bankanderungen) bankanderungen) DaterGariande
rung 1 ausfihren
o " _ Oatenbankande-
DB-LUW o Gl DB-LUW b rung 2 ausfihren
Datenbankande-
rung 3 ausfihren

Die Biindelung der Datenbankinderungen auf die letzte Datenbank-
LUW der SAP-LUW kann tiber 3 Wege erreicht werden:

m Direkt, d.h. die Anweisung zur Datenbankénderung wird erst im
letzten Dialogschritt programmiert (Dynpro 300 in Abb. 9.16).
Damit ist die Einschrinkung verbunden, dass Dynpro 300 in je-
dem Fall durchlaufen werden muss.

m Durch verzogert abzuarbeitende Unterprogramme. Bei dieser
Methode werden die Datenbankénderungen in Unterprogram-
men gekapselt. Die Unterprogramme werden an der richtigen

9.3 Datenbankénderungen organisieren % 511

Abb. 9.17
Biindelung
durch Unterpro-
gramme

512

Stelle aufgerufen jedoch erst nach der Anweisung COMMIT
WORK ausgefiihrt.

m Uber den Verbucherworkprozess. Dieser Workprozess ist ein
Systemprogramm, das durch das ABAP-Programm angestof3en
wird und die Datenbankinderungen durchfiihrt. Der Anstof3 des
Workprozesses erfolg iiber die Anweisung COMMIT WORK.

9.3.2
Bindelung durch Unterprogramme

Prinzip: Die Datenbankinderungen werden in Unterprogrammen
gekapselt. Der Unterprogrammaufruf erfolgt in dem Dialogschritt, in
dem der Benutzer die Anderung anweist. Durch die Klausel ON
COMMIIT beim Aufruf des Unterprogrammes wird dieses jedoch
nicht ausgefiihrt, sondern in eine Systemtabelle eingetragen. Stof3t
das ABAP-Programm auf die Anweisung COMMIT WORK werden
die der Systemtabelle stehenden Unterprogramme nach dem FIFO-
Prinzip (First In — First out) abgearbeitet.

SAP-LUW
DYNFRO 100 DYNPRO 200 DYNPRO 200
PAIPEO PAIPBO PAIPBO
FAIL Al PAL
MODULE weiter. LE aendern. MODULE sichem.
Y E v v
ACDULE weester INFUT WMODULE aendern INFUT MODULE sichern INPUT.
ERFORM anlegen ON COMMIT. | PERFORM update ON COMMIT. | PERFORM sichern ON COMMIT
L y COMMIT WORK.
DELLW DE-LUW I Ausfuhren der in der Systemta-
(keine Daten- (keine Daten- "belle stehendan Unterprogramme
bankanderungen) bankénderungen)
DE-LLW
atenbankanderung aus Unterpro-
mm ANLEGEN
ystamistalis tenbankandel
rung aus Linterpro-
fNr. . Unterpregramm ramm UPDATE
Lyl 1 ankegen
4 update Datenbankanderung aus Unterpro-
a sichern mm SICHERN

Achtung: Zur Datenbankinderung werden die globalen Daten des
Programmes genutzt. Entscheidend fiir die Aktualisierung der Da-
tenbank ist deren Inhalt zum Zeitpunkt der Ausfiihrung der daten-
bankidndernden Anweisungen, nicht der Zeitpunkt des Unterpro-
grammaufrufs iiber PERFORM ... ON COMMIT.

9 Datenbankénderungen programmieren

Hinweis:

Der ganze Aufwand niitzt Thnen nichts, wenn Sie vergessen, iiber ei-
ne Abbruchmeldung im Unterprogramm das Datenbank-Rollback
auch auszulosen, wenn Fehler beim Aktualisieren der Datenbank

aufgetreten sind.

1.

Andern Sie das Programm SAPMYKO09_Bestand_1 so, dass
die Datenbankinderungen erst ausgefiihrt werden, wenn der
Benutzer im Dynpro 100 die Funktion sichern auslost. Nutzen
Sie dafiir die Methode PERFORM ... ON COMMIT. Beim

Auftreten von Fehlern bei der Datenbankinderung soll die Da-
tenbank zuriickgesetzt werden.

Setzen Sie einen Breakpoint im Unterprogramm

AUTOREN_AENDERUNGEN_SICHERN, starten Sie das
Programm und &ndern Sie fiir ein beliebiges Buch dessen Au-
tor. Dann sichern Sie die Autorendaten, kehren zuriick zu

Dynpro 100 und sichern dort die Bestandsdaten. Erst jetzt wird

der Breakpoint im Unterprogramm erreicht. Die Biindelung
der Datenbankidnderungen auf die letzte DB-LUW funktio-
niert.

Andern Sie den GUI-Status DYNPRO_0200. Im Dynpro 200
soll nicht mehr das Symbol SICHERN (Diskette) sondern
ZURUCK (griiner Pfeil) die Datenéinderungen in die System-
tabelle schreiben und die Datenbank aktualisieren. Danach soll
das Programm in das Dynpro 100 verzweigen.

Losung: SAPMYKO09:Bestand:3

Lo

sung:

Module USER COMMAND 0200 INPUT *

MODULE user command 0200 INPUT.

*U
*s

ok save = ok code.
CLEAR ok code.
CASE ok_save.
WHEN 'BACK'.
PERFORM autoren aenderungen ermitteln.
IF ok = "1".
nterprogramm nicht sofort ausfihren,
ondern in Systemtabelle schreiben

9.3 Datenbankédnderungen organisieren

Ly

513

PERFORM autoren aenderungen sichern
ON COMMIT.
ENDIF.
PERFORM autoren neue ermitteln.
IF ok = '1"'".
PERFORM autoren neue anlegen
ON COMMIT.
ENDIF.
LEAVE TO SCREEN 0.
ENDCASE.
ENDMODULE .

FORM autoren aenderungen_ sichern.
*Die Tabelle it zautoren changed enthdlt
*die Angaben zu den zu &ndernden Autoren.
UPDATE (t_autoren)
FROM TABLE it zautoren changed.
IF sy-subrc <> 0.
MESSAGE a0l19(zlib tw).
ENDIF.
ENDFORM.

FORM autoren neue anlegen.
*Die Tabelle it zautoren new enthalt die
*Angaben zu den neu anzulegenden Autoren.

insert (t_autoren)

FROM TABLE it zautoren new.
IF sy-subrc <> 0.
MESSAGE a020 (zlib_ tw).

ENDIF.

ENDFORM.

*& Module USER COMMAND 0100 INPUT

MODULE user command 0100 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.

514 ® 9 Datenbankénderungen programmieren

WHEN 'SAVE'.

IF ok = '1'.
PERFORM bestandsdaten sichern
ON COMMIT.
COMMIT WORK.
geladen 200 = '0'".
ENDIF.
* .« . .
ENDCASE.
ENDMODULE.

9.3.3
Bundelung durch Verbucherbausteine

Eine weitere Moglichkeit zur Biindelung der Datenbankénderungen
ist die Benutzung des Verbucherworkprozesses, einem Systempro-
gramm dessen Aufgabe es ist, die Datenbank zu aktualisieren. Bei
dieser Methode werden die datenbankindernden Anweisungen in
Verbucherfunktionsbausteinen gekapselt. Durch den Aufruf der Ver-
bucherfunktionsbausteine iiber die Anweisung CALL FUNCTION
<Name> IN UPDATE TASK wird dieser nicht sofort ausgefiihrt,
sondern in die sogenannte Protokolltabelle geschrieben. Nach dem
Abschluss der SAP-LUW durch COMMIT WORK, werden die in
der Protokolltabelle dieser SAP-LUW zugeordneten Funktionsbau-
steine abgearbeitet. Standardmé@Big arbeitet das Verbucherprogramm
unabhiingig von Threm ABAP-Programm (asynchrone Verbuchung).

9.3 Datenbankédnderungen organisieren

515

Abb. 9.18
Nutzung des
Verbucher-
programmes

516 =

ABAP/M-Anwendungsprogramm
(z.B. SAPMY K0S_Bestand_1)

Protokolitabelle

[Funkiion |Daten |
CALL FUNCTION z_anlegen | 0 |z snlogon BtREE S
fin UPDATE TaSK i -
EXPORTING = name ='Umlauff'
autoreninr = 217"
0 Z_8 m =
name = 'Meier'. el e
TOW-
ICALL FUNCTION z_aendern - HEADER
SAP- IIN UPDATE TASK
Luw EXPORTING
VE-Key < autorennr = 117 v
500 name ="Umlauff. | Verbucherprogramm
CALL FUNCTION z_sichern |
IIN UPDATE TASK n=1
EXPORTING
isbn ='123456789"
& i Setz n mit VB-Key 500 der ProtokoMtabel
le lesen
ICOMMIT WORK *

Den in Zeile n stehenden Verbucher funkti-
onshaustein mit den Daten aus dieser Zei-
le starten. Tritt ein Verbuchungsfehler auf,
wird vom Funktionsbaustein das Rollback
ausgeldst,

glle Datensétze
der Protokolttabel-
le mit VB-Key =
500 als fehlerhaft
kennzeichnen

Yerbuchung
fehlerfrei aus-
gefithrt

weitere Ver-
buchungen?
! n=n+1 |

Verarbeitete Da-
tensatze aus der
Protokolldatei 15-
schen

Erkldrung zur Abb. 9.18

Jede SAP-LUW bekommt bei dieser Methode vom SAP-
System einen eindeutigen Verbuchungsschliissel (VB-Key) zu-
geordnet.

Um diese Technik anwenden zu kdnnen, miissen Sie (mindes-
tens) einen Verbucherfunktionsbaustein anlegen. Der Aufruf
dieses Funktionsbausteins erfolgt mit der Klausel IN UPDATE
TASK. Dadurch wird der Funktionsbaustein mit den Exportpa-
rametern in die Protokolltabelle eingetragen.

Die Anweisung COMMIT WORK schlie3it die SAP-LUW. Es
wird ein Header-Eintrag in der Protokolltabelle erzeugt.

Durch den Header-Eintrag in der Protokolltabelle erkennt das
Verbucherprogramm, dass die Daten verbucht werden konnen
und beginnt mit der Verbuchung.

9 Datenbankénderungen programmieren

5. Wird durch einen Verbucherbaustein ein Fehler bei der Daten-
bankidnderung erzeugt, 16st dieser das Rollback aus. Der Verbu-
cher kennzeichnet alle Eintrige der SAP-LUW in der Protokoll-
tabelle als fehlerhaft und bricht die Verbuchung ab. Diese
Datensitze konnen Sie mit der Transaktion SM13 bearbeiten.

6. Verlduft der Verbuchungsprozess fehlerfrei, werden die Daten-
sitze der SAP-LUW aus der Protokolltabelle gelscht.

Datensatzsperren (siehe folgendes Kapitel) werden im Standard vom
ABAP-Programm an das Verbucherprogramm vererbt und nach der
Verbuchung vom Verbucherprogramm zuriickgesetzt.

Hinweis:

Das Verbucherprogramm arbeitet zeitlich unabhéngig (asynchron)
von lhrem ABAP-Programm. Sie sollten deshalb in Threm Pro-
gramm die Daten, die es gerade in die Protokolltabelle eingetragen
hat, nicht iiber SELECT ... neu einlesen, weil sie das Verbuchungs-
programm eventuell noch nicht in die Datenbanktabelle eingetragen
hat. Sollte das notwendig sein, arbeiten Sie mit COMMIT WORK
AND WAIT (synchron).

COMMIT WORK Abb. 9.19
Arwendungsprogramm | asynchrone asyi nchrone und
| Arbeitsweise Synchrone
Verbuchungsprogramm m- '_l Arbeitsweise

COMMIT WORK AND WAIT

Anwendungsprogramm I synchrone
Arbeitsweise

Verbuchungsprogramm pe.

Vorgehensweise: Verbucherfunktionsbaustein anlegen

Das Anlegen von Verbucherfunktionsbausteinen unterscheidet sich
im Prinzip nicht vom Anlegen eines normalen Funktionsbausteins
(siehe Kapitel 5). Es sind allerdings einige Details zu beachten.

In der Registerkarte Eigenschaften ist der Auswahlknopf VER-
BUCHUNGSBAUSTEIN auszuwihlen. Sie kénnen verschiedene
Eigenschaften einstellen:

9.3 Datenbankénderungen organisieren % 517

518

Eigenschaft

Erklirung

Start sofort

Start sofort — nicht
nachverbuchbar

Start verzogert

Sammellauf

Die Verbuchung wird zum néchstmoglichen
Zeitpunkt ausgefiihrt. Ist ein Verbuchungsfeh-
ler aufgetreten (Datenbank wurde zuriickge-
setzt), konnen Sie diese Verbuchungen ,,ma-
nuell“ tiber die Transaktion SM13 auslosen
(nachverbuchen). Dabei ist Vorsicht geboten,
weil zwischenzeitlich durchgefiihrte Anderun-
gen nicht beriicksichtigt werden konnen. Diese
Art der Verbuchung wird auch V1 Verbu-
chung genannt.

Die Verbuchung wird zum néchstmoglichen
Zeitpunkt ausgefiihrt, nachverbuchen wird
nicht erlaubt. Diese Art der Verbuchung wird
auch V1 Verbuchung genannt.

Die Verbuchung erfolgt erst, wenn alle V1-
Verbuchungen erfolgreich ausgefiihrt wurden.
Diese Art der Verbuchung wird auch V2 Ver-
buchung genannt.

Eine Anzahl gleicher Funktionsbausteine, die
bisher in der V2-Verbuchung einzeln jeder fiir
sich liefen, konnen zu einem Sammellauf zu-
sammengefalit werden.

Weitere Informationen konnen in der ABAP-
Dokumentation unter IMPORT FROM
LOGFILE und VERBUCHUNG gefunden
werden.

9 Datenbankénderungen programmieren

Abb. 9.20

D 1B Q@ BB Hno0 AR @B Eigenschaften
Function Builder: Z ANLEGEN_TW &dndern festlegen
E] | @ I @ I | IMusler" Pretty Printer " Fbausmindokumsnlation]
Fur Istein Z_| | TW aktiv
_//F' haft }/lmpm't l/ Export]/_Chang'lng VTaheH!n I/ & V Cuelitext I
Klassifiziarun
Funktionsgruppe TLIB_TW Funktionsgruppe z. Projekt East-Side-Lib
Kurztext Werbucherbaustein, Anlegen von Autoren
Ablaufart Allgemeine Daten
) Normaler Funktionsbaustein ‘Verantwortlicher BCUSER
) Remote fahiger Baustein |etzter Anderer BCUSER
@ Ve Anderungsdatum 30.04.2004
@ Entwicklungskiasse Y_ABAP_TRAINING TW
O Stant sofort-nicht nachverbuchbar Programmname SAFLYLIB TW
) Stant verzogent Includename LYLIB_TWUOZ
O Sammellauf Originalsprache DE

Importparameter miissen zwingend als Wert iibergeben werden. Ei-
ne Adressiibergabe ist nicht moglich. Wenn Sie bedenken, dass die
Verbucherbausteine in aller Regel asynchron arbeiten, konnte es bei
der Adressiibergabe dazu kommen, dass zwischenzeitlich andere
Werte, als die zu verbuchenden, auf dieser Adresse gespeichert wor-
den sind. Deshalb ist nur die Wertiibergabe erlaubt.

€ 1 10 @@ SHB ODL0 AR @@ Importparameter
Function Builder: Z ANLEGEN_TW &dndern festlegen

D | | D | D | Dl Muster H Pratty Printer HFbausleindokumemanonI

Funitionsbaustein 2_ANLEGEN_TW akthv
Elgenscha&en/y Import V Export | Changing | Tabellen | Ausnshmen | Quelitext |

¥[w]=) B=E]
P Typi... |B ¥p {Vorschlagswert (Optional [WertGbergabe |[Kurztext
IT_ZAUTOREN |[TYPE [ZINT_ZAUTOREN_TW (] v Tabellentyp flr Tabellen n

]]

T il

Export- und Changing-Parameter gibt es fiir Verbucherfunktions-
bausteine nicht. Auch das ist durch die asynchrone Arbeitsweise si-
cher leicht einzusehen.

Der Funktionsbaustein muss beim Auftreten eines Verbuchungsfeh-
lers eine Message vom Typ A oder X ausgeben. Der Fehler wird in
der Registerkarte AUSNAHMEN definiert.

9.3 Datenbankénderungen organisieren % 519

Abb. 9.22
Ausnahmen
festlegen

Abb. 9.23
Quelltext
anlegen

520

& B 1B @@ CHEBE vnhod PR @R
Function Builder: Z_ANLEGEN_TW dndern

[:I | | lI‘ | E”EI | E“ Mustar |[Pretty Printer || Fbausteindokumentation |

Funktionsbaustein Z_ANLEGEN_TW akthy
Eigenschaften [/lmparl F/Expon]/Changing VTahsIIen/ Ausnahmen V@usllls:l]

[¥%]@]@] BE] O exceptionkiasse
snahme urztext L
[VERBUCHUNGSFEHLER IFenler beim Anlegen neuer Autoren in ZAUTOREN_TW %

Und jetzt noch der Quelltext. Hier ist unbedingt die Abbruchmel-
dung auszugeben, falls ein Verbuchungsfehler aufgetreten ist.

& | s 18 @@ DHE i BE @8

Function Builder: Z_ ANLEGEN_TW dndern

EID | | B | D | | Muster || Pretty Prinler" Fbausteindokumenlallunl

Funktionshaustein Z_ANLEGEN TW aktly
Eigenschaften | Import | Export | Changing |/ Tabellen | Ausnahmen *” Quelitext |
EEE

PUNCTION z_anlegen_ tw.

INSERT zautoren tw
FROM TABLE it_zautoren.
IF ay-subrc <> O.
MESSAGE a020(zlib_tw) RAISING verbuchungsfehler.
ENDIF.
ENDFUNCTION.

Aktivieren — und fertig.

9.4
Das SAP-Sperrkonzept

Wenn das Bestandspflegeprogramm SAPMYKO09_Bestand_1 von
mehreren Anwendern gleichzeitig benutzt werden soll, brauchen wir
einen Mechanismus, der verhindert, das mehrere Benutzer (bzw.
mehrere Programme) zur gleichen Zeit den selben Datensatz dndern.
Wiirden wir das nicht ausschlieBen, konnten Anderungen verloren
gehen. Zur Losung des Problems hat die SAP ein eigenes Sperrkon-
zept entwickelt. Natiirlich sperrt das Datenbanksystem wéhrend ei-

9 Datenbankénderungen programmieren

ner Datenbank-LUW den Datensatz gegen weitere Anderungen.
Durch das SAP-Sperrkonzept kann der Datensatz aber iiber die ge-
samte SAP-LUW gesperrt werden.

9.4.1
Prinzip des SAP-Sperrkonzepts

Kern des SAP-Sperrkonzeptes ist die Sperrtabelle. Wenn ein Daten-
satz zum Bearbeiten bereitgestellt werden soll, muss das Anwen-
dungsprogramm vorher priifen, ob sich der Datensatz bereits in der
Sperrtabelle befindet. Ist das nicht der Fall, wird er dort eingetragen
und das Programm kann diesen Datensatz zum Bearbeiten bereitstel-
len. Hat der Datensatz jedoch bereits einen Eintrag in der Sperrtabel-
le, wird das dem Programm {iiber die Systemvariable SY-SUBRC
mitgeteilt. Der Datensatz darf dann nicht zur Bearbeitung bereitge-
stellt werden, der Benutzer bekommt in diesem Fall eine Meldung
die besagt, dass sich der gewiinschte Datensatz z.Z. in Bearbeitung
befindet. Am Ende der Bearbeitung wird der Eintrag des Datensat-
zes in der Sperrtabelle wieder geloscht, d.h. der Datensatz wird fiir
weitere Bearbeitungen wieder freigegeben. Das SAP-Sperrkonzept
sperrt die Datensétze logisch, nicht physisch. Es funktioniert nur
dann, wenn alle Programme das Sperrkonzept bedienen. Die Ver-
antwortung dafiir liegt beim Programmierer. Syntaxfehler oder
Laufzeitfehler werden durch eine vergessene Sperre nicht erzeugt.

(Start Anwendu ngsprogramm)

v
Soll ein Datensatz zur
Bearbeitung bereitge-
stellt werden?

Befindet sich der bereit- :
Zustellende Datensatz in D,-an?:gs::]z il L
der Sperrtabelle? +

Datensatz zur Bearbei-
ung bereitstellen

IMeldung ,Datensatz z.7.
n Bearbeitung” ausge-
lben

Datensatz be-
arbeiten

Datensatz aus Sperta-
v belle loschen

(Ends j‘*

9.4 Das SAP-Sperrkonzept

Abb. 9.24
Prinzip des
Sperrkonzeptes

m 521

522

Die Verwaltung der Sperrtabelle wird durch einen eigenen
Workprozess, dem Enqueue-Workprozess, iibernommen.

9.4.2
Grundsatzliche Arbeitsweise beim Sperren und
Freigeben

Fiir das Setzen bzw. Entfernen von Datensatzsperren ist folgende
Reihenfolge anzuwenden:

1. Sperren des Datensatzes.

2. Lesen des Datensatzes, wenn die Sperre gesetzt werden konnte.
3. Andern.

4. Aktualisierung der Datenbank.

5. Lbschen der Sperre.

Diese Reihenfolge gewihrleistet, dass

m die Anderungen vollstindig unter dem Schutz der Sperre ablau-
fen,

m Keine Anderungen zu Datensitzen durchgefiihrt werden kon-
nen, die durch andere Benutzer gerade gedndert werden.

Voraussetzung ist allerdings, dass alle Programme das Sperrkonzept
verwenden.

Sie sollten dariiber hinaus die zu dndernden Datensétze so zeitig wie
moglich sperren. Idealerweise zu Beginn der SAP-LUW.

9.4.3
Technische Realisierung

Um Sperren setzen zu konnen, benétigen Sie ein Sperrobjekt. In
diesem wird festgelegt, in welcher Tabelle, bzw. in welchen Tabel-
len, Sperren gesetzt werden sollen. Auflerdem wird im Sperrobjekt
definiert, welche Datensitze zu sperren sind. Sie konnen genau ei-
nen Datensatz sperren oder eine Menge von Datensitzen. Durch das
Aktivieren des Sperrobjektes werden zwei Funktionsbausteine an-
gelegt, der ENQUEUE-Funktionsbaustein zum Setzen, und der
DEQUEUE-Funktionsbaustein zum Loschen der Datensatzsperren.
Diese Funktionsbausteine miissen an den entsprechenden Stellen des
Anwendungsprogrammes aufgerufen werden. Als Exportparameter
iibergibt das Anwendungsprogramm die Schliisselfelder des zu sper-
renden Datensatzes. Der ENQUEUE-Funktionsbaustein versucht
dann, den entsprechenden Datensatz zu sperren, gelingt das nicht,

9 Datenbankdnderungen programmieren

16st er eine Ausnahme aus, auf die das Anwendungsprogramm rea-
gieren muss.

Vorgehensweise: Sperrobjekt anlegen

Sperrobjekte werden im ABAP-Dictionary angelegt. Starten Sie die-
ses Werkzeug (Transaktionscode SE11). Der Name eines Sperrob-
jektes beginnt mit dem Buchstaben E. Das zweite Zeichen kenn-
zeichnet den Namensbereich (z oder y fiir den Kundennamensbe-
reich). Die Vorgehensweise wird am Beispiel des Sperrobjektes
EZZBESTAND_TW gezeigt, das Datensidtze in der Tabelle
ZBESTAND_TW sperren soll.

Tragen Sie den Namen des Sperrobjektes im Einstiegsbild des
ABAP-Dictionarys ein und aktivieren Sie den Auswahlknopf
SPERROBJEKT.

ABAP Dictionary: Einstieg Abb. 9.25
Sperrobjekt an-

| legen, Einstieg

() Datenbanktabelle
O View

() Datentyp

() Domane
(O Suchhilfe
(@ Sperrabjekt EZZBESTAND_TW E:'

|@$’ Anzeigen] [? Andern | |D Anlegen |

Im Folgebild ,,Sperrobjekt pflegen geben Sie eine ausagekriftige
Kurzbeschreibung und den Namen der Tabelle, in der Sperren ge-
setzt werden sollen, sowie den gewiinschten Sperrmodus ein.

9.4 Das SAP-Sperrkonzept ®m 523

Abb. 9.26
Tabelle und
Sperrmodus
festlegen

Abb. 9.27
Sperrparameter
festlegen

524 =

] 1B @@ SHE DDLD AR @B
Dictionary: Sperrobjekt pflegen

EE EEE EED@

Sperrobjekt EZZBESTAND_TW neu(iberarbeitet)
Kurzbeschrelbung Einzelsatzsperre in Tabelle ZBESTAND_TW setzen

Eigenschaﬂan/ Tabellen }/Spenparamalar

Primartabelle
Name ZBESTAND TW
Sperrmodus Schreibsperre B

Eine Erkldrung zu den Sperrmodi (hier ,,Schreibsperre®) finden Sie
unter Hilfe = Hilfe zur Anwendung (Link: ,,Sperrmodi*‘).

Werfen Sie noch einen Blick auf die Registerkarte ,,Sperrparame-
ter.

Dictionary: Sperrobjekt pflegen
FIE] | R | & EE | EE D>

Sperrobjekt EZZBESTAND_TW neufuberarbeitet)
Kurzbeschreibung Einzelsatzspere in Tabelle ZBESTAND_TW setzen

Eigenschaﬂen| Tabellen/v Sperparameter [

G [Sperparameter [Tabelle [Feid

MANDANT EHESTA'HD ™ MANDANT E.]
=] [rsen BESTAND TW M i &
O ' H

In dieser Registerkarte stehen die Schliisselfelder der Tabelle, in
der Datensatzsperren gesetzt werden sollen. Uber die Ankreuzfelder
legen Sie die Importparameter der Sperrfunktionsbausteine (EN-
QUEUE und DEQUEUE) dieses Sperrobjektes fest. Wollen Sie ge-
nau einen Datensatz sperren, sind alle Schliisselfelder der Tabelle als
Sperrparameter auszuwihlen.

Aktivieren Sie zum Schluss das Sperrobjekt. Dieser Vorgang be-
wirkt, dass die Funktionsbausteine ENQUEUE_EZZBESTAND_TW
(Sperrfunktionsbaustein) und DEQUEUE_EZZBESTAND_TW (Frei-
gabefunktionsbaustein) angelegt werden. Die Namensgebung erfolgt
nach dem Muster ENQUEUE_<Name des Sperrobjektes> bzw.
DEQUEUE_<Name des Sperrobjektes>.

9 Datenbankénderungen programmieren

Legen Sie die Sperrobjekte EZZBESTAND zum Setzen einer
Schreibsperre in der Tabelle ZBESTAND (bzw. ZBESTAND_TW) m
und EZZAUTOREN zum Setzen einer Schreibsperre in der Tabelle
ZAUTOREN (bzw. ZAUTOREN_TW) an.

Vorgehensweise: Sperrbausteine einbinden

Um einen Datensatz zu sperren bzw. die gesetzte Sperre wieder auf-
zuheben, werden die beim Anlegen des Sperrobjektes generierten
Funktionsbausteine ENQUEUE_<Name des Sperrobjektes> bzw.
DEQUEUE_<Name des Sperrobjektes> aufgerufen und ihnen die
Schliisselfeldbelegung des zu sperrenden Datensatzes tibergeben.
Stellen Sie dazu den Cursor an die Stelle IThres Programmes, an der
die Sperre gesetzt bzw. wieder aufgehoben werden soll. Beachten
Sie dabei, dass der Datensatz erst gesperrt und dann, im Erfolgsfall,
gelesen wird. Erzeugen Sie tiber die Schaltfliche MUSTER die Syn-
tax zum Aufruf der Sperrbausteine.

ABAP Editor: Iinclude MYK09_BESTANDIOT andern Abb. 9.28

Sperrfunktions-
D | | | | baustein aufru-
fen (1)

Include MYKO09_BESTANDIOL inaktiv(Uberarbeitet)

(] o]®) 2l (Gl @)

PERFORM bestandsdaten_sichern ON COMMIT.
COMMIT WORK.
geladen 200 = '0'.
ENDIF.
WHEN OTHERS.
IF modus = 'Buch &ndern'
AND NOT wa_zbestand-isbn IS INITIAL.

*x*Jperre setzen’

SELECT SINGLE * FROM (t_bestand) INTO wa_ zbestand
WHERE isbn = wa_zbestand-isbn.
IF NOT wa_autor_neu IS INITIAL.
CALL SCREEN 200.
ENDIF.
ENDIF.

ENDCASE.
ENDMODULE. " USER_COMMAND_0100 INPUT

9.4 Das SAP-Sperrkonzept ®m 525

Abb. 9.29
Sperrfunktions-
baustein aufru-

fen (2)

526 ™

[= Muster einfigen

(8) CALL FUNCTION ENQUEUE_EZZBESTAND _TW
() Muster zu ABAP Objects

=

() Anderes Muster

48

Die Syntax des Funktionsbausteinaufrufes wird in Ihr Programm ge-
laden. Ubergeben Sie im Abschnitt EXPORTING die Sperrparame-
ter. Der Sperrbaustein 16st folgende Ausnahmen aus:

FOREIGN_LOCK Datensatz durch anderen Benutzer bzw.
durch ein anderes Programm gesperrt.

SYSTEM_FAILURE Systemfehler, Datensatz konnte nicht ge-
sperrt werden

OTHERS anderer Fehler, Datensatz konnte nicht ge-
sperrt werden

Stellen Sie den Datensatz nur dann zum Bearbeiten bereit, wenn
vom Funktionsbaustein keine Ausnahme ausgelost wurde. An dem
folgenden Quelltextausschitt konnen Sie sich orientieren.

Die Freigabe der gesperrten Datensétze programmieren Sie auf die
gleiche Art und Weise, mit dem DEQUEUE-Funktionsbaustein. Im
Unterschied zum ENQUEUE-Funktionsbaustein 16st dieser keine
Ausnahmen aus.

Wollen Sie alle Sperren, die durch das Programm gesetzt wurden,
aufheben, konnen Sie auch den Funktionsbaustein DEQUEUE_ALL
aufrufen.

IF modus = 'Buch &andern'
AND NOT wa_ zbestand-isbn IS INITIAL.

*****************Sperre Setzen******************

CALL FUNCTION 'ENQUEUE EZZBESTAND TW'
EXPORTING

mode zbestand tw = 'E'

mandant = sy-mandt

isbn = wa_zbestand-isbn
EXCEPTIONS

foreign lock =1

9 Datenbankénderungen programmieren

system failure 2
OTHERS = 3.
*Nur wenn sy-subrc = 0, konnte Sperre gesetzt
*werden
IF sy-subrc = 0.
SELECT SINGLE * FROM (t bestand) INTO
wa_zbestand
WHERE isbn = wa_ zbestand-isbn.
IF NOT wa_ autor neu IS INITIAL.
CALL SCREEN 200.
ENDIF.
ELSE.
*Sperre konnte nicht gesetzt werden
MESSAGE i020(zlib tw) WITH wa_ zbestand-isbn.
ENDIF.
ENDIF.

1. Programmieren Sie im Bestandspflegeprogramm
SAPMYKO09_Bestand_1 die notwendigen Datensatzsperren.
Wihlt der Benutzer ein Buch zum Andern aus, wird der ent-
sprechende Datensatz in der Tabelle ZBESTAND (bzw.
ZBESTAND_TW) gesperrt. Auerdem sollen auch die Daten-
sitze der Autoren des ausgewdhlten Buches in der Tabelle
ZAUTOREN (bzw. ZAUTOREN_TW) gesperrt werden.

2. Loschen Sie die Sperren, wenn der Benutzer im Dynpro 100
die Anderungen gesichert hat oder sie verwirft.

Losung: SAPMYKO09_Bestand_4

Losung:

* §—————— - *
*& Module USER COMMAND 0100 INPUT *
* §—————— - *

MODULE user command 0100 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok_save.

WHEN 'NEW'.

*eventuell gesetzte Datensatzsperren freigeben
CALL FUNCTION 'DEQUEUE ALL'.

9.4 Das SAP-Sperrkonzept

527

modus = 'Buch anlegen' (006) .
CLEAR wa_zbestand.

CLEAR wa_autor neu.

geladen 200 = '0'.

WHEN 'CHANGE' .
*eventuell gesetzte Datensatzsperren freigeben
CALL FUNCTION 'DEQUEUE ALL'.
modus = 'Buch andern' (007).
CLEAR wa_zbestand.
CLEAR wa_autor neu.
geladen 200 = '0'.

WHEN 'SAVE'.
PERFORM alle neuen autoren angelegt.

IF ok = '0'.
MESSAGE 1009 (zlib tw) .
geladen 200 = '0'.
CALL SCREEN 200.
ok = '0'.

ENDIF.

IF ok = '1'.

PERFORM bestandsdaten sichern ON COMMIT.
COMMIT WORK. "Datenbank wird aktuali-
siert
*Datensatzsperren freigeben;
*Nur bei der Methode 'PERFORM...ON COMMIT.
*Bei CALL FUNCTION ... IN UPDATE TASK wirde
*der Verbucher die Sperren "erben" und nach der
*Verbuchung freigeben
CALL FUNCTION 'DEQUEUE ALL'.
CLEAR wa_zbestand.

geladen 200 = '0'.
ENDIF.
WHEN OTHERS.
IF modus = 'Buch andern'

AND NOT wa_zbestand-isbn IS INITIAL.

*Sperren setzen
CALL FUNCTION 'ENQUEUE EZZBESTAND TW'

EXPORTING

mode zbestand tw = 'E'

mandant = sy-mandt
isbn = wa_zbestand-isbn

528 W 9 Datenbankénderungen programmieren

EXCEPTIONS
foreign lock
system failure
OTHERS = 3.
IF sy-subrc = 0.
*Bestandsdatensatz konnte gesperrt werden
SELECT SINGLE * FROM (t bestand)
INTO wa zbestand
WHERE isbn = wa_ zbestand-isbn.
ok = '0".
*Zugehotrige Autorendatensdtze sperren
PERFORM autor sperren
USING wa zbestand-autorl.
IF ok = '0'
AND NOT wa_ zbestand-autor2 IS INITIAL.
PERFORM autor sperren
USING wa zbestand-autor2.
ENDIF.
IF ok = '0'
AND NOT wa_ zbestand-autor3 IS INITIAL.
PERFORM autor sperren
USING wa zbestand-autor3.
ENDIF.
IF ok <> '0'.
*Mindestens ein Autorendatensatz konnte nicht
*gesperrt werden
MESSAGE 1022 (zlib tw).
*eventuell bereits gesperrte Datensatze
*freigeben

nmn
N R

CALL FUNCTION 'DEQUEUE ALL'.
CLEAR wa zbestand.
ELSE.
IF NOT wa_autor neu IS INITIAL.
CALL SCREEN 200.
ENDIF.
ENDIF.
ELSE.
MESSAGE 1021 (zlib_tw)
WITH wa_ zbestand-isbn.
CLEAR wa zbestand.
ENDIF.
ENDIF.
ENDCASE.
ENDMODULE .

9.4 Das SAP-Sperrkonzept

529

*& Form autor sperren *
e ———— *
FORM autor_ sperren USING p_autor.
CALL FUNCTION 'ENQUEUE EZZAUTOREN TW'
EXPORTING
mode zautoren tw = 'E'
mandant = sy-mandt
autorennr = p_autor
EXCEPTIONS
foreign lock =1
system failure =2
OTHERS = 3.
IF sy-subrc <> 0.
ok = "1".
ENDIF.
ENDFORM.
9.4.4

Die Sperrtabelle

Wie Sie bereits an friiherer Stelle erfahren haben, werden alle Sper-
ren in die Sperrtabelle eingetragen. Sie konnen sich die Sperrtabelle
tiber die Transaktion SM12 (Werkzeuge - Administration > Ver-
waltung > Monitor = SM12 Sperreintrige) anzeigen lassen.

(SAPMYKO09_Bestand_1) und lassen Sie sich den Bestandsda-
tensatz zum Buch ,,Administration des SAP-Systems R/3“
(ISBN 3827311365) im Anderungsmodus anzeigen.

2. Starten Sie in einem neuen Modus die Transaktion SM12.

ﬁ 1. Starten Sie das Bestandspflegeprogramm

3. Lassen Sie sich Ihre Sperreintriige anzeigen.

4. Wihlen Sie im Programm SAPMYKO09_Bestand_1 die Funk-
tion ,,Neues Buch* aus und frischen Sie die Anzeige der Sperr-
tabelle auf.

530 W™ 9 Datenbankdnderungen programmieren

Abb. 9.30
Sperrtabelle

¢ TH e DHEB ONAD FE

anzeigen
Sperreintrage selektieren
Tabellen-Name
Sper-Argument
Mandant 0oo
Benutzer-Name BCUSER
Liste der Sperreintrige Abb. 9.31
Liste der Sperr-
[Aufrischen | [&F Details (@] eintréage
Man Benutzer Zeitpunkt Shared Tabelle Sperrarqument
000 BCUSER 09:01:14 ZAUTOREN_T 0000000000110
000 BCUSER 09:01:14 ZAUTOREN_T 0000000000111
000 BECUSER 09:01:14 ZAUTOREN_T 0000000000112
000 ECUSER 09:01:14 ZBESTAND_T 0003827311365
Selektierte Sperreintrage: 4

Das Sperrargument setzt sich aus den Schliisselfeldern des zu sper-
renden Datensatzes zusammen. Achten Sie penibel darauf, dass das
Sperrargument korrekt gebildet wird, nicht etwa Doppelkreuze (#)
enthélt. Sonst wird nicht nur der eine Datensatz gesperrt, sondern
mehrere.

Nach dem Auslosen der Funktion ,,Neues Buch* (oder einer beliebi-
gen anderen Funktion) im Programm SAPMYKO09_Bestand_1 wer-
den die Sperren zuriickgesetzt.

Liste der Sperreintrage

Autiischen | (& Details | (]

Man Benutzer Zeitpunkt Shared Tabelle Sperrargument

Es wurden keine Sperreintrage gefunden.

9.4 Das SAP-Sperrkonzept ®™ 531

532

9.5
Nummernkreise

Beim Anlegen neuer Autoren im Programm SAPMYKO09_ Be-
stand_1 werden automatisch Autorennummern vergeben. Das ge-
schieht im Unterprogramm AUTOREN_NEUE_ ERMITTELN. Zur
Zeit wird dazu die hochste bisher vergebene Autorennummer ermit-
telt und um 1 erhoht (incrementiert). Dagegen ist an sich nichts ein-
zuwenden, wenn nicht mehrere Benutzer gleichzeitig neue Autoren
anlegen. Ist das jedoch der Fall, kann diese Methode nicht mehr oh-
ne Weiteres angewendet werden, weil nicht ausgeschlossen ist, dass
Benutzer B eine neue Autorennummer ermittelt, bevor Benutzer A
,,seinen® neuen Autor in die Datenbanktabelle eingetragen hat. Das
fiihrt dazu, dass der vom Benutzer B anzulegende Autor die gleiche
Autorennummer zugeordnet bekdme, wie der von Benutzer A. Die
INSERT-Anweisung schldgt dann fehl und die Datenbank wird zu-
riickgesetzt.

Zur Losung des Problems konnen Sie ein sogenanntes Nummern-
kreisobjekt benutzen. Ein Nummernkreisobjekt verwaltet eine An-
zahl von Nummern fiir ein Objekt (z.B. fiir die Autorennummer).
Das Anwendungsprogramm holt sich dann fiir dieses Objekt eine
Nummer aus diesem Nummernkreisobjekt.

In diesem Kapitel werden wir die Autorennummernvergabe {iber ein
Nummernkreisobjekt programmieren. Dazu legen wir zunichst ein
Nummernkreisobjekt fiir die Autorennummer an und holen im An-
wendungsprogramm {iiber einen Funktionsbaustein, fiir die neu anzu-
legenden Autoren, die Autorennummern aus diesem Nummern-
kreisobjekt.

Vorgehensweise: Nummernkreisobjekt anlegen

Starten Sie die Transaktion SNRO (Werkzeuge - ABAP Work-
bench = Entwicklung - SNRO Nummernkreise). Vergeben Sie im
Einstiegsbild einen Namen fiir das Nummernkreisobjekt im Kun-
dennamensbereich.

9 Datenbankdnderungen programmieren

Nummemkreisobjekipfiege Abb. 9.32

Nummernkreis-

- = objekt

Lo | NMummernkreise I anlegen
Objekname zAutor [@
Fiillen Sie das Folgebild , NrKreisObjekt: Anlegen* entsprechend
Abb. 9.33 aus.

Abb. 9.33
@ s 10 0@ LHE Sno0 BE @@ Elgenschaften
g —" des Nummern-
AV AT objektes pflegen

Objekiname ZAUTOR Es existieren keine Intervalle zum NrkreisObjekt

Kurztext Autorennummer

Langtent automnatische Vergabe von Autorennummem

Intervalleigenschaten

Datenelement Unterobjekt

Bis-Geschaftsjahr-Kz. O

Domane fir Nummemlange YRVP_NR_TW

Kein Rollieren der Intervalle O

Customizingangaben

Mummernkreistransaktion ZNFR_AUTOR

Proz. Warnung 10

Hauptspeicher-Pufferung D Anzahl Nummem im Puffer 10

Sichern Sie dann Ihr Nummernkreisobjekt. Nach dem Sichern steht
Thnen eine Drucktaste ,,Nummernkreise® zur Verfiigung. Klicken
Sie die Drucktaste ,,Nummernkreise* und wihlen Sie im Folgebild-
schirm ,,Intervalle dndern®.

9.5 Nummernkreise ® 533

Abb. 9.34 S Springen_ System _ i
Nummernkreise g 8 I8 C0Q SRR BDLD BE Of
anlegen (1) NrKKreis Objekt: Andemn

[Anderungsbelege | [Nummenmkreise |

Objekiname ZAUTOR Es existieren keine Intervalle zum NrikreisObjekt
Kurztext Autorennurmmer

Langtext automatische Vergabe von Autorennummern

[Intervalleigenschafen |
I

Abb. 9.35
Nummernkreise
anlegen (2)

JH e DHE ONDOD BE @6
automatische Vergabe von Autorennummern

]

| intervalle | | Stand

Wihlen Sie im Bild ,,Nummernkreisintervalle pflegen® die Druck-
taste ,,Intervall” aus und legen Sie im Folgebild ,,Intervall einfiigen*
die Intervallgrenzen fest, in denen der Nummernbereich liegen soll.

Abb. 9.36
Nummernkreis
anlegen (3)

@ tJBCoQ BRR 000N HE QB

Nummemkreisintervalle pflegen
= Intervail

Nummembreisobjet Autorennummer

=
Intervalle Neues Intervall
Nr [von Nummer INr :"OH Nummer Bis Nummer Nummemstand lB{t U
1 200 1000 0 DE |
0 g
Mn]
I 3®

534 ® 9 Datenbankénderungen programmieren

Driicken Sie dann die ENTER-Taste. Das Bild ,,Intervalle einfiigen*
schlieBt sich. Sichern Sie im Bild ,,Nummernkreisintervalle pfle-

113

gen®.

Vorgehensweise: Nummern aus Nummernkreisobjekt holen

Mit Hilfe des Funktionsbausteins NUMBER_GET_NEXT konnen
Sie eine oder mehrere Nummern aus dem Nummernkreisobjekt ho-
len. Beachten Sie, dass einmal geholte Nummern nicht mehr in das
Nummernkreisobjekt zuriickgestellt werden konnen. Es ist deshalb
zweckmiBig, die Nummern erst dann zu holen, wenn sicher ist, dass
sie auch verwendet werden. Fiigen Sie den Funktionsbausteinaufruf
iiber die Drucktaste MUSTER in Thr Quellprogramm ein. Im fol-
genden Beispiel wird eine Nummer aus dem Nummernkreisobjekt
ZAUTOR geholt und auf die Variable NR geschrieben.

DATA: nr TYPE zautoren-autorennr.

CALL FUNCTION 'NUMBER GET NEXT'

EXPORTING
nr_range nr = '1l'" "Intervallnummer
object = '"ZAUTOR'

IMPORTING
number = nr

EXCEPTIONS

IF sy-subrc <> 0.
* MESSAGE ...
ENDIF.

9.5 Nummernkreise

535

leihe und die Riickgabe von Biichern unterstiitzt. Dieses Programm
soll jetzt erstellt werden. Dazu sind folgende Arbeitsschritte not-
wendig:

ﬂ Unserem Bibliotheksprojekt fehlt noch ein Programm, das die Aus-

1. Um dem Benutzer die Arbeit zu erleichtern, sollten Sie eine
neue Suchhilfen anlegen.

m Suchhilfename: ZISBN_AUSLEIHE
m Selektionsmethode: ZAUSLEIHE

m Parameter

Suchhilfeparameter Import |Export [LPos |SPos
ISBN M) 1 1
KUNDENNR M | 2 2
AUSLEIHDAT | 3 3
RUECKGABEDAT %} 4 4
ANZAHL 5

Binden Sie diese Suchhilfe an die Felder ISBN und
KUNDENNR der Tabelle ZAUSLEIHE an.

2. Legen Sie ein Programm SAPMYKO09_Ausleihe als Modulpool
und den Transaktionscode ZK09_AUSLEIHE an. Startdynpro
ist Dynpro 100.

3. Erstellen Sie das Dynpro 100 mit dem abgebildeten Layout. Es
soll spiter fiir die Buchriickgabe genutzt werden.

F Angaben zum Buch

ISEN | Hach der Eingabe ENTER driicken
Buchtitel 2
Nane= 3

|-Kundendaten
[Kundennummer |4 | [Nach der Eingabe ENTER driicken
{Hame
Straie 5
|Plz < Ort 1)

Auslei hdaten

|Anzahl 6 8 9
[Riickgabedatun } 7

|{Ausleihdatum

536 W™ 9 Datenbankdnderungen programmieren

ABAP Editor: Moduipool SAPMYK09_AUSLEIHE dndemn

@) S@ma)

9.5 Nummernkreise

537

5. Im Dynpro 100, das fiir die Buchriickgabe genutzt werden soll,
wird fiir die Felder ISBN und KUNDENNR die im Punkt 1
angelegte Suchhilfe angezeigt. Das erfolgt automatisch, weil
die Suchhilfe im Punkt 2 der Aufgabenstellung diesen Feldern
zugeordnet wurde. Im Dynpro 200, das fiir die Buchausleihe
benutzt werden soll, niitzt uns diese Suchhilfe nichts. Sie zeigt
nur die bereits ausgelichenen Biicher und die dazugehorigen
Kunden. Fiir die Buchausleihe brauchen wir jedoch Suchhil-
fen, mit denen aus der Menge aller Kunden bzw. aller ISBN
ausgewidhlt werden kann. Die Suchhilfen ZISBN_TW und
ZKUNDEN_TW erfiillen diese Anforderung und sollen im
Dynpro 200 dem Benutzer anstelle der Suchhilfe
ZISBN_AUSLEIHE zur Verfiigung gestellt werden. Diese
Anderung lisst sich im Layout des Dynpros 200 programmie-
ren. Die Abbildung zeigt die Vorgehensweise.

"] Screen Painter: Andern Fin/Ausgabeleld 7] ereen painter: Att =loix]
Dynpro Bearbedten Springen Hifsmittel Umfeld Hife
(] 0 ©C0@ ol Xxam o« @@ "
D[B | 4 b | Ao e Eomerang | N PSS
S1 —
Name f?,;usmnc 1584 .
- . ; pre =
E A;;;:“ — #Jg Wach der Eingabs | °°* | Progranm | Anzege | 2 ||
Buchtitel I Fomat m
b S ! I~ us Diet. wosiz []
(G " Kundendaten m
o :E_:::-m_lnnn_nyr Hach der Eingabe —r
| | Sezaia — C
= ELEialos I I SET Paramaier
[J ! Ausleihdaten I” GET Parametet
Anzahl . fi— = .
B Hackgebedatun I — I Gioh uKisinachosdg
P R R —
e 4] @
6. Erzeugen Sie einen GUI-Status GESAMT mit folgenden
Funktionen:
Funktionscode Funktionstext Funktionstyp
SAVE Sichern
AUSLEIHE Ausleihe (F5)
RUECKGABE Riickgabe (F6)
CANCEL Abbrechen E

7. Damit Sie spater das Programm ohne Probleme beenden kon-
nen, sollten Sie jetzt ein PAI-Modul BEENDEN anlegen und
dort iiber die Anweisung LEAVE TO SCREEN 0 das Beenden
des Programmes vorsehen. Rufen Sie dieses Modul in den
PAI-Ablaufsteuerungen der Dynpros 100 und 200 mit der
Klausel AT EXIT-COMMAND auf.

538 =

9 Datenbankénderungen programmieren

8. Legen Sie die GUI-Titel
DYNPRO_0100: ,,East-Side-Library: Buchriickgabe”
DYNPRO_0200: ,,East-Side-Library: Buchausleihe* an.

10.

11.

Programmieren Sie in der PBO-Ablauflogik der Dynpros den
Aufruf der Module STATUS_0100 bzw. STATUS_0200 und

laden Sie dort GUI-Status und GUI-Titel.

Die Drucktasten sollen folgende Funktionalitit erhalten:

Taste Dynpro |Funktion
Riickgabe |100 Alle Eingabefelder des Dynpros 100
werden auf ihren Initialwert gesetzt.
200 Aufruf des Dynpros 100.
Ausleihe |100 Aufruf des Dynpros 200.

Programmieren Sie diese Funktionalitit in den Modulen
USER_COMMAND_0100 bzw. 0200.

Legen Sie ein PBO-Modul LADEN_0100 an, in dem die beno-
tigten Strukturen und Variablen geladen werden.

Struktur Bedingung Inhalt

ZAUSLEIHE |Eine in Tabelle Entsprechender
ZAUSLEIHE vorhan- |Datensatz der
dene Kombination Tabelle
ISBN/Kundennummer |ZAUSLEIHE.
wurde eingegeben.

ZKUNDEN |Eine in Tabelle Daten des Kunden
ZAUSLEIHE vorhan- |aus ZKUNDEN.
dene Kundennummer
wurde eingegeben.

ZBESTAND |Eine in Tabelle Entsprechender
ZAUSLEIHE vorhan- |Datensatz der Ta-
dene ISBN wurde ein- |belle ZBESTAND.
gegeben.

Variable Inhalt

ANZEIGE_ANZAHL

Anzahl vom Kunden ausgeliehener
Biicher dieser ISBN.

TEXT

vom Kunden ausgeliehen.

9.5 Nummernkreise

539

12. Da der Benutzer im Dynpro 100 sowohl die ISBN als auch die
KUNDENNR per Hand eingeben kann, miissen die Eingaben
in diesen Feldern gepriift werden. Folgende Priifungen sind zu
programmieren:

Ist vom Benutzer nur die Kundennummer eingetragen
worden (ISBN noch leer), ist zu priifen, ob diese in der
Tabelle ZAUSLEIHE vorhanden ist.

Ist vom Benutzer nur die ISBN eingetragen worden
(KUNDENNR noch leer), ist zu priifen, ob diese in der
Tabelle ZAUSLEIHE vorhanden ist.

Hat der Benutzer sowohl ISBN als auch KUNDENNR
eingegebene, ist zu priifen, ob es in der Tabelle
ZAUSLEIHE einen Datensatz gibt, in dem diese Kombi-
nation vorkommt.

Die Anzahl der zuriickgegebenen Biicher ist nicht grofer
als die der ausgeliehenen.

13. Legen Sie ein PBO-Modul LADEN_0200 an, in dem die beno-
tigten Strukturen und Variablen geladen werden.

Struktur Bedingung Inhalt

ZKUNDEN |Eine in Tabelle Daten des Kunden

ZKUNDEN vorhandene |aus ZKUNDEN
Kundennummer wurde
eingegeben.

ZBESTAND |Eine in Tabelle Entsprechender

ZBESTAND vorhande- |Datensatz der Ta-
ne ISBN wurde einge- |belle ZBESTAND

geben.
Variable Inhalt
ZAUSLEIHE- aktuelles Datum + 28 Tage
RUECKGABEDAT
ZAUSLEIHE-AUSLEIHDAT |aktuelles Datum
ANZEIGE_ANZAHL verfligbarer Bestand
TEXT verfiigbarer Bestand

14. Auch im Dynpro 200 kann der Benutzer ISBN und
KUNDENNR eintippen. Anders als im Dynpro 100 (Buch-
riickgabe), in dem die FEingaben gegen die Tabelle
ZAUSLEIHE gepriift wurden, werden sie im Dynpro 200 ge-
gen die Tabellen ZBESTAND und ZKUNDEN gepriift. Diese

9 Datenbank&nderungen programmieren

Priifungen werden jedoch automatisch durchgefiihrt, weil diese
die Felder ISBN und
KUNDENNR der Tabelle ZAUSLEIHE eingetragen sind.
Im Dynpro 200 sollte gepriift werden, ob beim sichern der Da-

Tabellen als

ten

m Die Anzahl der zu verleihenden Biicher nicht groBer als

Priiftabellen fiir

der verfiigbare Bestand ist.

m Sowohl ISBN als auch KUNDENNR ausgefiillt sind,

wenn der Benutzer die Daten sichern will.

15. Die Funktion ,,Sichern® ist in den Dynpros 100 und 200 unter-

schiedlich zu programmieren.

Dyn

Bedingung

Funktionalitit

100

Anzahl = ZAUSLEHE _ANZAHL

Loschen des Da-
tensatzes in
ZAUSLEIHE.

Anzahl <>
ZAUSLEHE_ANZAHL

Aktualisieren des
Datensatzes in
ZAUSLEIHE.

200

Anzahl <= verfiigbare Anzahl

Es existiert noch kein Datensatz
mit gleicher Belegung der Felder
ISBN, KUNDENNR und
AUSLEIHDAT in der Tabelle
ZAUSLEIHE. (Kunde leiht das
erste Buch mit dieser ISBN an die-
sem Tag).

Anlegen eines
Datensatzes in
ZAUSLEIHE.

Anzahl <= verfiigbare Anzahl

Es existiert bereits ein Datensatz
mit gleicher Belegung der Felder
ISBN, KUNDENNR und
AUSLEIHDAT in der Tabelle
ZAUSLEIHE. (Kunde leiht ein
weiteres Buch mit dieser ISBN an
diesem Tag).

Aktualisieren des
vorhandenen Da-
tensatzes (Die
Anzahl ausgelie-
hener Biicher ist

zu kummulieren).

Unabhingig davon, ob ein Buch ausgeliehen oder zuriickgege-

ben wird, Feld AUSGELIEHEN der Tabelle

ist das

ZBESTAND zu aktualisieren.

9.5 Nummernkreise

541

542

16. Datensitze sperren und freigeben

Hinweis zum Setzen und Loschen der Sperren:

Zum Setzen und Loschen der Sperren stehen die Sperrobjekte
EZZBESTAND_TW und EZZAUSLEIHE TW zur Vertii-
gung. Sie konnen also die Funktionsbausteine
ENQUEUE_EZZBESTAND_TW,
ENQUEUE_EZZAUSLEIHE_TW,
DEQUEUE_EZZBESTAND_TW und
DEQUEUE_EZZAUSLEIHE_TW nutzen.

Sperren setzen im Dynpro 100 (Buchriickgabe)

Sie konnen alle notwendigen Sperren im Modul LADEN_0100
bzw. LADEN_0200 setzen. Wurde vom Benutzer die ISBN
des zuriickgegebenen/auszuleihenden Buches eingegeben, ist
der entsprechende Datensatz in der Tabelle ZBESTAND zu
sperren. Zu beachten ist, dass der Benutzer die Eingabe der
ISBN korrigieren kann. Andert der Benutzer die ISBN, ist ein
eventuell vorher gesperrter Datensatz wieder freizugeben. Um
dieses Problem zu losen, konnen Sie eine Variable, z.B.
ISBN_ALT, deklarieren und diese nach dem erfolgreichen
Sperren eines Datensatzes mit dessen ISBN laden. Vor dem
Sperrvorgang 16schen Sie eine vorher gesetzte Sperre iiber den
DEQUEUE-Funktionsbaustein. Der Sperrparameter steht in
ISBN_ALT.

Wurde vom Benutzer ISBN und KUNDENNR eingegeben, ist
auch der entsprechende Datensatz in der Tabelle ZAUSLEIHE
zu sperren. Auch hier ist zu berticksichtigen, dass der Benutzer
seine Eingaben korrigieren kann.

Alle Sperren werden zuriickgesetzt, wenn der Benutzer die
Funktionscodes AUSLEIHE, RUECKGABE oder SICHERN
ausgelost hat. Beim Sichern sind die Sperren natiirlich erst
nach dem Sichern Aktualisieren der Datenbanktabelle zu 16-
schen.

Losung: SAPMYKO09_Ausleihe TW

Losung:

L e T *
*& Include MYK0S AUSLEIHETOP *
L T e e *

9 Datenbanké&nderungen programmieren

PROGRAM sapmyk09 ausleihe
TABLES: zausleihe tw, zkunden tw,
zbestand tw,
zautoren tw.
DATA: ok _code TYPE sy-ucomm,
ok save TYPE sy-ucomm,
wa_zausleihe alt TYPE zausleihe tw,
isbn alt TYPE zbestand tw-isbn,
ok TYPE sy-subrc,
anzeige anzahl TYPE zbestand tw-bestand,
anzahl (3) TYPE n,
text (22) VALUE 'verfigbarer Bestand'.

e e *
*& Ablauflogik Dynpro 100 (Buchrlckgabe) *
L e e it *

PROCESS BEFORE OUTPUT.
MODULE status 0100.
MODULE laden 0100.

PROCESS AFTER INPUT.
MODULE beenden AT EXIT-COMMAND.
CHAIN.
FIELD: zausleihe tw-isbn,

zausleihe tw-kundennr
MODULE pruefenl 0100
ON CHAIN-INPUT.

ENDCHAIN.

FIELD anzahl MODULE pruefen2 0200.

MODULE user_ command_ 0100.

L N e e e e *
*§& Ablauflogik Dynpro 200 (Ausleihe) *
e el e *

PROCESS BEFORE OUTPUT.
MODULE status 0200.
MODULE laden 0200.

PROCESS AFTER INPUT.
MODULE beenden AT EXIT-COMMAND.
FIELD: anzahl MODULE pruefen2 0200.
CHAIN.
FIELD: zausleihe tw-isbn,
zausleihe tw-kundennr

9.5 Nummernkreise

543

MODULE pruefenl 0200.
ENDCHAIN.
MODULE user_ command_0200.

H o - *
***INCLUDE MYKO09 AUSLETIHEOO1 *
H o o *
2 *
*& Module STATUS 0100 OUTPUT *
H m m m m e o e *

MODULE status 0100 OUTPUT.
SET PF-STATUS 'GESAMT'.
SET TITLEBAR 'DYNPRO 0100'.

ENDMODULE . " STATUS 0100 OUTPUT
L T el *
*& Module laden 0100 OUTPUT *
L T e e e *

MODULE laden 0100 OUTPUT.
*Laden der Struktur ZAUSLEIHE TW
text = 'vom Kunden ausgeliehen'.
IF NOT zausleihe tw-kundennr IS INITIAL.
SELECT SINGLE * FROM zkunden tw
WHERE kundennr = zausleihe tw-kundennr.
ENDIF.
IF NOT zausleihe tw-isbn IS INITIAL.
*Datensatz in ZBESTAND TW sperren.
PERFORM sperren zbestand.
*ok wird im Unterprogramm mit sy-subrc geladen
IF ok = 0.
SELECT SINGLE * FROM zbestand tw
WHERE isbn = zausleihe tw-isbn.
SELECT SINGLE * FROM zautoren tw
WHERE autorennr = zbestand tw-autorl.
ELSE.
*Datensatz konnte nicht gesperrt werden
CLEAR: zausleihe tw-isbn,
zautoren tw,
zbestand tw,
anzahl,
anzeige anzahl.
ENDIF.
ENDIF.
IF NOT zausleihe tw-isbn IS INITIAL AND

544 ® 9 Datenbankénderungen programmieren

NOT zausleihe tw-kundennr IS INITIAL.
*Datensatz in ZAUSLEIHE sperren
PERFORM sperren zausleihe.
*ok wird im Unterprogramm mit sy-subrc geladen
IF ok = 0.
SELECT SINGLE * FROM zausleihe tw
WHERE kundennr = zausleihe tw-kundennr AND
isbn = zausleihe tw-isbn.
*Das Ausleihdatum, welches ebenfalls ein
*Schliisselfeld ist, bleibt unberticksichtigt.
*Sollte mehr als ein Datensatz mit der gleichen
*Belegung der Felder ISBN und KUNDENNR in der
*Tabelle vorhanden sein (Kunde hat das gleiche
*Buch an verschiedenen Tagen ausgeliehen), wird
*der dlteste Datensatz ausgewdhlt.
anzeige anzahl = zausleihe tw-anzahl.
ELSE.
*Datensatz konnte nicht gesperrt werden
PERFORM initialisieren.

ENDIF.
ENDIF.
ENDMODULE. " laden 0100 OUTPUT
e —————— *
*& Module status 0200 OUTPUT *
R —————— *

MODULE status 0200 OUTPUT.
SET PF-STATUS 'GESAMT'.
SET TITLEBAR 'DYNPRO 200'.

ENDMODULE . " status_ 0200 OUTPUT
*& ___ *
*& Module laden 0200 OUTPUT *
*& ___ *
MODULE laden 0200 OUTPUT.

text = 'verfigbarer Bestand'.

IF NOT zausleihe tw-isbn IS INITIAL.
*Datensatz in Tabelle ZBESTAND TW sperren
PERFORM sperren zbestand.
*ok wird im Unterprogramm mit sy-subrc geladen
IF ok = 0.
SELECT SINGLE * FROM zbestand tw
WHERE isbn = zausleihe tw-isbn.
SELECT SINGLE * FROM zautoren tw

9.5 Nummernkreise

545

WHERE autorennr = zbestand tw-autorl.
zausleihe tw-rueckgabedat = sy-datum + 28.
zausleihe tw-ausleihdat = sy-datum.
anzeige anzahl = zbestand tw-bestand -
zbestand tw-ausgeliehen.
ELSE.
*Datensatz konnte nicht gesperrt werden
CLEAR: zausleihe tw-isbn,
zbestand tw,
zautoren tw,
anzahl,
anzeige anzahl.
ENDIF.
ENDIF.
IF NOT zausleihe tw-kundennr IS INITIAL.
SELECT SINGLE * FROM zkunden tw
WHERE kundennr = zausleihe tw-kundennr.
ENDIF.
IF NOT zausleihe tw-isbn IS INITIAL AND
NOT zausleihe tw-kundennr IS INITIAL.
PERFORM sperren zausleihe.
IF ok <> 0.
*Datensatz konnte nicht gesperrt werden.
*Kann nur vorkommen, wenn der Kunde am gleichen
*Tag mehrere gleiche Blcher in verschiedenen
*Ausleihvorgdngen ausleiht.
PERFORM initialisieren.
ENDIF.
ENDIF.
ENDMODULE. " laden 0200 OUTPUT

*& Module beenden INPUT

MODULE beenden INPUT.
LEAVE TO SCREEN O.

ENDMODULE . " beenden INPUT

A m m e e e e e e —
*& Module wuser command 0100 INPUT

L T T

546 9 Datenbankénderungen programmieren

MODULE user command 0100 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.
WHEN 'AUSLEIHE'.
CALL FUNCTION 'DEQUEUE ALL'.
LEAVE TO SCREEN 200.
WHEN 'RUECKGABE'.
CALL FUNCTION 'DEQUEUE ALL'.
PERFORM initialisieren.
WHEN 'SAVE'.
PERFORM sichern rueckgabe.
CALL FUNCTION 'DEQUEUE ALL'.

ENDCASE.
ENDMODULE. " user command 0100
INPUT
R —————— - *
*& Module pruefenl 0100 INPUT *
e —————— *

MODULE pruefenl 0100 INPUT.
IF ok code <> 'AUSLEIHE'.
IF NOT zausleihe tw-isbn IS INITIAL AND
NOT zausleihe tw-kundennr IS INITIAL.
SELECT SINGLE * FROM zausleihe tw WHERE
isbn = zausleihe tw-isbn AND
kundennr = zausleihe tw-kundennr.
IF sy-subrc <> 0.
MESSAGE €023 (zlib_ tw)
WITH zausleihe tw-isbn
zausleihe tw-kundennr.
ENDIF.

ELSEIF NOT zausleihe tw-isbn IS INITIAL.
SELECT SINGLE * FROM zausleihe tw
WHERE isbn = zausleihe tw-isbn.

IF sy-subrc <> 0.
MESSAGE €024 (z1ib_ tw)
WITH zausleihe tw-isbn.
ENDIF.

ELSEIF NOT zausleihe tw-kundennr IS INITIAL.
SELECT SINGLE * FROM zausleihe tw
WHERE kundennr = zausleihe tw-kundennr.
IF sy-subrc <> 0.

MESSAGE €025 (zlib_ tw)

9.5 Nummernkreise

547

548

WITH zausleihe tw-kundennr.

ENDIF.
ENDIF.
ENDIF.
ENDMODULE. " pruefenl 0100
INPUT
e ————
*& Module wuser command 0200 INPUT
e —————

MODULE user command 0200 INPUT.
ok save = ok code.
CLEAR ok code.
CASE ok _save.
WHEN 'AUSLEIHE'.
CALL FUNCTION 'DEQUEUE ALL'.
PERFORM initialisieren.
WHEN 'RUECKGABE'.
CALL FUNCTION 'DEQUEUE ALL'.
LEAVE TO SCREEN 100.
WHEN 'SAVE'.
PERFORM sichern ausleihe.
CALL FUNCTION 'DEQUEUE ALL'.

ENDCASE.
ENDMODULE. " user command 0200
INPUT
e —————— *
*& Module pruefenl 0200 INPUT *
e —————— *
MODULE pruefenl 0200 INPUT.

IF ok code = 'SAVE'.

IF zausleihe tw-isbn IS INITIAL

OR zausleihe tw-kundennr IS INITIAL.
CLEAR ok code.
MESSAGE €028 (z1lib_ tw) .

ENDIF.
ENDIF.
ENDMODULE. " pruefen3 0200
INPUT
e —————_—_—_—_—— *
*& Module pruefen2 0200 INPUT *

9 Datenbankénderungen programmieren

MODULE pruefen2 0200 INPUT.
IF ok code = 'SAVE'.
*Das Feld zbestand tw-titel wird in der
*if-Anweisung abgefragt, um sicher zu sein,
*dass der Benutzer die ENTER-Taste gedrlckt
*und dadurch die Variable anzeige anzahl
*geladen wurde.
IF anzahl > anzeige anzahl OR anzahl = 0
OR zbestand tw-titel IS INITIAL.
CLEAR ok_code.
MESSAGE e029(zlib tw) .

ENDIF.
ENDIF.

ENDMODULE . " pruefen4 0200

INPUT

K e e e e e e e e - *
***INCLUDE MYK09 AUSLEIHEF01 *
e *
K m m m e e e e e e e — *
*& Form initialisieren *
e e el *

FORM initialisieren.

CLEAR: zausleihe tw,
zkunden_tw,
zbestand tw,
zautoren tw,
anzeige anzahl,anzahl.

ENDFORM. " initialisieren

e e *
*& Form sichern rueckgabe *
e el e *

FORM sichern rueckgabe.
DATA: kundennr TYPE zausleihe tw-kundennr.
kundennr = zausleihe tw-kundennr.
zbestand tw-ausgeliehen =
zbestand tw-ausgeliehen - anzahl.

UPDATE zbestand tw FROM zbestand tw.
IF sy-subrc <> 0.

MESSAGE a030(zlib_ tw)

WITH 'Update in Tabelle ZBESTAND TW'.
ENDIF.
IF anzahl = anzeige anzahl.

9.5 Nummernkreise

549

DELETE zausleihe tw FROM zausleihe tw.
IF sy-subrc <> 0.
MESSAGE a030(zlib tw)
WITH 'Delete in Tabelle ZAUSLEIHE TW'.
ENDIF.
ELSE.
zausleihe tw-anzahl =
zausleihe tw-anzahl - anzahl.
UPDATE zausleihe tw FROM zausleihe tw.
IF sy-subrc <> 0.
MESSAGE a030(zlib tw)
WITH 'Update in Tabelle ZAUSLEIHE TW'.
ENDIF.
ENDIF.
MESSAGE 1031 (zlib tw)
WITH zausleihe tw-kundennr zausleihe tw-isbn
zausleihe tw-ausleihdat.
CLEAR: zausleihe tw,
zbestand tw,
zautoren tw,
anzahl,
anzeige anzahl.
zausleihe tw-kundennr = kundennr.
ENDFORM. " sichern rueckgabe

FORM sichern ausleihe.
DATA: kundennr TYPE zausleihe tw-kundennr,
wa_zausleihe TYPE zausleihe tw.
kundennr = zausleihe tw-kundennr.
zbestand tw-ausgeliehen =
zbestand tw-ausgeliehen + anzahl.
UPDATE zbestand tw FROM zbestand tw.
IF sy-subrc <> 0.
MESSAGE a030(zlib tw)
WITH 'Update in Tabelle ZBESTAND TW'.
ENDIF.
SELECT SINGLE * FROM zausleihe tw
INTO wa_zausleihe
WHERE isbn = zausleihe tw-isbn AND
kundennr = zausleihe tw-kundennr AND
ausleihdat = zausleihe tw-ausleihdat.

550 W™ 9 Datenbankdnderungen programmieren

IF sy-subrc = 0.
zausleihe tw-anzahl =
anzahl + wa_ zausleihe-anzahl.
UPDATE zausleihe tw FROM zausleihe tw.
IF sy-subrc <> 0.
MESSAGE a032(zlib_ tw)
WITH 'Update in Tabelle ZAUSLEIHE TW'.
ENDIF.
ELSE.
zausleihe tw-anzahl = anzahl.
INSERT zausleihe tw FROM zausleihe tw.
IF sy-subrc <> 0.
MESSAGE a032(zlib_ tw)
WITH 'Insert in Tabelle ZAUSLEIHE TW'.
ENDIF.
ENDIF.
MESSAGE 1033 (zlib tw)
WITH zausleihe tw-kundennr zausleihe tw-isbn
zausleihe tw-ausleihdat.
CLEAR: zausleihe tw,
zbestand tw,
zautoren tw,
anzahl,
anzeige anzahl.
zausleihe tw-kundennr = kundennr.

ENDFORM. " sichern ausleihe

e el *
*& Form sperren zausleihe *
K m m m e e e e e e — *

FORM sperren zausleihe.
*Sollte dieses Programm bereits ein anderen
*Datensatz in der Tabelle ZAUSLEIHE TW gesperrt
*haben, wird dieser freigegeben. Das kann vor-
*kommen, wenn der Benutzer eine fehlerhafte Ein
*gabe im Feld ISBN oder KUNDENNR korrigiert. Die
*Daten des gesperrten Datensatzes stehen in der
*Struktur WA ZAUSLEIHE ALT.

CALL FUNCTION 'DEQUEUE EZZAUSLEIHE TW'

EXPORTING

mode zausleihe tw = 'E!'

mandant = gy-mandt

isbn = wa_zausleihe alt-isbn
kundennr = wa_zausleihe alt-kundennr

9.5 Nummernkreise

551

ausleihdat = wa zausleihe alt-ausleihdat.

*Um den neuen Satz zu sperren, muss das Ausleih
*datum ermittelt werden

SELECT SINGLE * FROM zausleihe tw

WHERE kundennr = zausleihe tw-kundennr AND

isbn zausleihe tw-isbn.

*Datensatz sperren

CALL FUNCTION 'ENQUEUE EZZAUSLEIHE TW'

EXPORTING
mode zausleihe tw = 'E'
mandant = sy-mandt
isbn = zausleihe tw-isbn
kundennr = zausleihe tw-kundennr
ausleihdat = zausleihe tw-ausleihdat
EXCEPTIONS
foreign lock =1
system failure =2

OTHERS = 3.
IF sy-subrc <> 0.
MESSAGE ID sy-msgid TYPE 'W' NUMBER sy-msgno
WITH sy-msgvl sy-msgv2 sy-msgv3

sy-msgvé.

ELSE.

*Merken, welcher Datensatz gesperrt wurde
wa_zausleihe alt = zausleihe tw.

ENDIF.

ok = sy-subrc.
ENDFORM. " sperren zausleihe
e —————— *
*& Form sperren zbestand *
e ———_——_—_—_—_—— *

FORM sperren zbestand.

*Sollte dieses Programm bereits ein anderen
*Datensatz in der Tabelle ZBESTAND TW gesperrt
*haben, wird dieser freigegeben. Das kann vor-
*kommen, wenn der Benutzer eine fehlerhafte Ein-
*gabe im Feld ISBN korrigiert.

*Die Daten des gesperrten Datensatzes stehen in
*der Struktur WA ZBESTAND ALT.

*Datensatz sperren

CALL FUNCTION 'DEQUEUE EZZBESTAND TW'
EXPORTING

552 W 9 Datenbankénderungen programmieren

mode zbestand tw = 'E'
mandant = sy-mandt
isbn = isbn alt.

CALL FUNCTION 'ENQUEUE EZZBESTAND TW'

EXPORTING

mode zbestand tw = 'E'

mandant = sy-mandt

isbn = zausleihe tw-isbn
EXCEPTIONS

foreign lock =1

system failure =2

OTHERS = 3.

IF sy-subrc <> 0.
MESSAGE ID sy-msgid TYPE 'W' NUMBER sy-msgno
WITH sy-msgvl sy-msgv2 sy-msgv3

sy-msgvié.
ELSE.
*Merken, welcher Datensatz gesperrt wurde
isbn _alt = zausleihe tw-isbn.
ENDIF.
ok = sy-subrc.
ENDFORM. " sperren zbestand

Die folgende Aufgabe besteht darin, ein Programm zu entwickeln,
mit der die Kunden der East-Side-Library gepflegt werden konnen.
Dieses Programm soll aus einem Dynpro bestehen, mit dem Kun-
dendaten angelegt und gedndert werden konnen. Die Kundennum-
mern sollen iiber ein Nummernkreisobjekt automatisch vergeben
werden.

1. Legen Sie ein Programm SAPMYKO09_Kunden als Modulpool
und den Transaktionscode ZK09_Kunden an. Startdynpro ist
Dynpro 100.

2. Erstellen Sie Dynpro 100 mit dem abgebildeten Layout. Es soll
spater fiir das Anlegen und Andern der Kundendaten genutzt
werden.

9.5 Nummernkreise

553

554

A/ Feld TEXT. Im

Kundennumer || 4 Programm mit

. DATA text(25).
Nane deklarieren
'Jc.\rnalg 1
Vornane 2

Alle Eingabe-

! Anschrift fei'der stam-
Land — men aus der
= Tabelle
Stxobs ZKUNDEN.

T Komaunikation ¥
Tel=fon [—
=-Mail |

Erzeugen Sie einen GUI-Status DYNPRO_0100 mit folgenden
Funktionen:

Funktionscode | Funktionstext Funktionstyp
SAVE Sichern
AENDERN Andern (F5)
ANLEGEN Anlegen (F6)
CANCEL Abbrechen E

Damit Sie spéter das Programm ohne Probleme beenden kon-
nen, sollten Sie jetzt ein PAI-Modul BEENDEN vorsehen und
dort iiber die Anweisung LEAVE TO SCREEN 0 das Beenden
des Programmes vorsehen. Rufen Sie dieses Modul in der
PAI-Ablaufsteuerung mit der Klausel AT EXIT-COMMAND
auf.

Legen Sie einen GUI-Titel DYNPRO_0100: , East-Side-Lib-
rary: ,,&1” an.

,,& 1 ist dabei ein Platzhalter, der beim Aufruf des Titels iiber
die WITH-Klausel (SET TITLEBAR 'DYNPRO_0100' WITH
'Kunden anlegen'.) iibergeben wird.

Um im Programm zu unterscheiden, ob gerade Kundenda
ten angelegt oder gedndert werden, legen Sie eine Variable
STATUS (Type C, einstellig) an und laden diese mit 'A" (An-
legen). Wechselt der Benutzer in den Anderungsmodus, wird
diese Variable auf 'C' gesetzt.

Programmieren Sie in der PBO-Ablauflogik den Aufruf des
Moduls STATUS_0100 und laden Sie dort GUI-Status und
GUI-Titel in Abhéngigkeit zur Variable STATUS.

9 Datenbankénderungen programmieren

8. Die Drucktasten sollen folgende Programmreaktionen auslo-

sen:

Taste Funktion

Anlegen m Der Titel ,,East-Side-Library: Kunden an-
legen* wird gesetzt.

m Alle Eingabefelder werden auf ihren
Initialwert gesetzt.

m Dem Feld KUNDENNR wird die Einga-
bebereitschaft entzogen. Alle anderen
Felder sind eingabebereit.

m Im Dynprofeld TEXT wird die Zeichen-
kette ,,wird automatisch vergeben* ange-
zeigt.

Andern m Titel ,,East-Side-Library: Kunden dndern*

wird gesetzt.

m Alle Eingabefelder werden auf ihren Initi-
alwert gesetzt.

m Im Dynprofeld TEXT wird die Zeichen-
kette ,,ENTER driicken* angezeigt.

m Das Feld KUNDENNR wird zum Einga-
befeld. Alle anderen Felder sind nicht
eingabebereit. Erst wenn der Benutzer ei-
ne giiltige Kundennummer eingegeben
und ENTER gedriickt hat, werden die
restlichen Felder zur Eingabe freigege-
ben. Dafiir ist das Feld KUNDENNR
nicht mehr eingabebereit.

Programmieren Sie diese Funktionalitit. Laden Sie beim Aus-
l6sen des Funktionscodes ANLEGEN die Variable STATUS
mit 'A’, beim Funktionscode AENDERN mit 'C'. Initialisieren
Sie in beiden Fillen die Standardstruktur ZKUNDEN. Fiir das
Andern der Eigenschaften des Feldes KUNDENNR benstigen
Sie ein PBO-Modul (Namensvorschlag DYBBILDMOD (Dy-
namisch Bildschirmmodifikation) indem die interne Tabelle
SCREEN, die die Eigenschaften der Dynproelemente enthiilt,
innerhalb einer LOOP-Schleife bearbeitet wird. Entscheiden
Sie iiber die Variable STATUS, welche Felder Eingabefelder
bzw. Ausgabefelder sind. Sie konnen sich die Arbeit erleich-
tern, wenn Sie dem Feld KUNDENNR in der Elementliste des
Dynpros einen anderen Eintrag in einer Modifikationsgruppe

9.5 Nummernkreise W 555

556

10.

11.

12.

13.

(z.B. Gruppel) zuordnen als den restlichen Feldern.

Erogrammieren Sie ein PBO-Modul LADEN_0100, in dem im
Anderungsmodus (STATUS = 'C') die Struktur ZKUNDEN
mit den Daten des ausgewihlten Kunden geladen wird.

Legen Sie ein Nummernkreisobjekt ZKNR an.

Hinweis: Das Feld KUNDENNR benutzt die Domine
YRVP_NR (oder YRVP_NR_TW). Diese ist beim Anlegen
des Nummernkreisobjektes in das Feld ,,Doméne fiir Num-
mernlidnge* einzutragen.

Legen Sie ein Nummernkreisintervall von 1500 bis 3500 an.

Im nichsten Schritt wird die Funktion ,,Sichern® (Funktions-
code SAVE) angelegt. Hier muss wieder unterschieden wer-
den, ob im Anlege- oder im Anderungsmodus gearbeitet wird.
Kriterium ist die Variable STATUS.

Status Inhalt der Funktion Sichern

A m Holen einer Kundennummer aus dem

(Anlegen) Nummernkreisobjekt ZKNR iiber den
Funktionsbaustein

NUMBER_GET_NEXT.

m Anlegen eines neuen Datensatzes in der
Tabelle ZKUNDEN. In das Feld
EINTRITTSDADTUM soll das aktuelle
Datum gespeichert werden.

C m Aktualisieren des Kundendatensatzes in
(Andern) der Tabelle ZKUNDEN.

Legen Sie ein Modul PRUEFEN_0100 an. In diesem Modul
soll gepriift werden, ob beim Auslosen des Funktionscodes
SAVE die Felder NAME, VORNAMEI1, PLZ, WOHNORT
und STRASSE ausgefiillt sind. Ist das nicht der Fall, soll eine
Fehlermeldung ausgegeben werden und diese Felder eingabe-
bereit geschaltet werden. Legen Sie in der Ablauflogik eine
entsprechende CHAIN-Kette an.

Zuletzt setzen Sie noch die erforderliche Sperre. Im Ande-
rungsmodus wird der zu @ndernde Datensatz gesperrt, wenn
der Benutzer die Kundennummer ausgewihlt und die ENTER-
Taste gedriickt hat. Legen Sie einen Sperrbaustein
EZKUNDEN an und binden Sie den ENQUEUE-Funk-
tionsbaustein (ENQUEUE_EZKUNDE) in das Modul

9 Datenbank&nderungen programmieren

LADEN_0100 ein. Setzen Sie die Sperre zuriick, wenn der
Funktionscode ANLEGEN oder AENDERN ausgelost wurde.
Nach dem Sichern ist die Sperre ebenfalls zu 16schen und die
Struktur ZKUNDEN zu initialisieren.

Losung: SAPMYKO09_KUNDEN_TW

Losung:

* R e *
*& Include MYKO9 KUNDENTOP *
* e *

PROGRAM sapmyk09 kunden

TABLES: zkunden tw.

DATA: ok_code TYPE sy-ucomm,
ok save TYPE sy-ucomm,
ok type sy-subrc,
text (25),
status VALUE 'A'.

*& ___ *
*& Ablauflogik Dynpro 100 *
*& ___ *

PROCESS BEFORE OUTPUT.
MODULE status_0100.
MODULE dynbildmod.
MODULE laden 0100.
*
PROCESS AFTER INPUT.
MODULE beenden AT EXIT-COMMAND.
CHAIN.

FIELD: zkunden tw-name, zkunden tw-vornamel,
zkunden_ tw-plz, zkunden_ tw-wohnort,
zkunden_ tw-strasse

MODULE pruefen 0100.

ENDCHAIN.

MODULE user_ command 0100.
K o e e e e e e e e e — - *
*%** INCLUDE MYK09 KUNDEN TWOO1 *
K o e e e e e e e e — - *
L Y e *
*& Module dynbildmod OUTPUT *
L e e *

9.5 Nummernkreise

557

MODULE dynbildmod OUTPUT.
IF status = 'A'.
LOOP AT SCREEN.
IF screen-groupl = 'K'.
*Feld KUNDENNR ausschalten
screen-input = 0.screen-output = 1.
ELSE.
*alle anderen Felder einschalten
screen-input = 'l'.screen-output
ENDIF.
screen-invisible = 0.
MODIFY SCREEN.
ENDLOOP.
IF zkunden tw-name IS INITIAL.
SET CURSOR FIELD 'ZKUNDEN TW-NAME'.
ENDIF.
ENDIF.
IF status = 'C'.
LOOP AT SCREEN.
IF zkunden tw-kundennr IS INITIAL.
*Feld KUNDENNR einschalten
IF screen-groupl = 'K'.
screen-input = l.screen-output = 1.
ELSE.
*alle anderen Felder ausschalten
screen-input = '0'.screen-output = 1.
ENDIF.
ELSE.
IF screen-groupl = 'K'.
*Feld KUNDENNR ausschalten
screen-input = 0.screen-output = 1.
ELSE.
*alle anderen Felder ausschalten
screen-input = 'l'.screen-output = 1.
ENDIF.
ENDIF.
screen-invisible = 0.
MODIFY SCREEN.
ENDLOOP.
IF zkunden tw-kundennr IS INITIAL.
SET CURSOR FIELD 'ZKUNDEN TW-KUNDENNR'.
ENDIF.
ENDIF.
ENDMODULE . " dynbildmod OUTPUT

Il
=

558 W™ 9 Datenbankdnderungen programmieren

*& Module STATUS_ 0100 OUTPUT *

MODULE status 0100 OUTPUT.
SET PF-STATUS 'DYNPRO 0100'.
IF status = 'A'.
SET TITLEBAR 'DYNPRO 0100'
WITH 'Kunden anlegen'.

text = 'wird automatisch vergeben'.
ELSE.
SET TITLEBAR 'DYNPRO 0100' WITH 'Kunden
andern'.
text = 'ENTER driucken'.
ENDIF.
ENDMODULE. " STATUS 0100 OUTPUT
e e *
*& Module 1laden 0100 OUTPUT *
e e e e *
MODULE laden 0100 OUTPUT.
IF status = 'C'.
PERFORM sperren_ zkunde.
IF ok = 0.

SELECT SINGLE * FROM zkunden tw
WHERE kundennr = zkunden tw-kundennr.
IF sy-subrc <> 0.

MESSAGE 1034 (z1lib tw)

WITH zkunden tw-kundennr.

CALL FUNCTION 'DEQUEUE ALL'.

ENDIF.
ELSE.
CLEAR zkunden tw.
ENDIF.
ENDIF.
ENDMODULE . " laden 0100 OUTPUT
K e e e e e e e e - *
*** INCLUDE MYKO09 KUNDEN TWIO1 *
K e e e e e e - *
e e e e *
*g Module USER COMMAND 0100 INPUT *
L e e e e *

MODULE user_ command 0100 INPUT.
ok save = ok_code. CLEAR ok code.

9.5 Nummernkreise

559

560

CASE ok_save.
WHEN 'ANLEGEN'.
status = 'A'.
CLEAR zkunden tw.
CALL FUNCTION 'DEQUEUE ALL'.
WHEN 'AENDERN' .
status = 'C'.
CLEAR zkunden tw.
CALL FUNCTION 'DEQUEUE ALL'.
WHEN 'SAVE'.
PERFORM sichern.
CLEAR zkunden tw.
CALL FUNCTION 'DEQUEUE ALL'.
ENDCASE.

ENDMODULE . " USER_COMMAND 0100 INPUT
*& ___ *
*& Module beenden INPUT *
*& ___ *
MODULE beenden INPUT.

LEAVE TO SCREEN O.
ENDMODULE . " beenden INPUT
*& ___ *
*& Module pruefen 0100 INPUT *
*& ___ *

MODULE pruefen 0100 INPUT.
IF ok code = 'SAVE'.
IF zkunden tw-name IS INITIAL.

MESSAGE e039(zlib tw) WITH 'Name'.

ENDIF.

IF zkunden tw-vornamel IS INITIAL.

MESSAGE e039(zlib tw) WITH 'Vorname 1'.

ENDIF.
IF zkunden tw-plz IS INITIAL.

MESSAGE e039(zlib tw) WITH 'Plz'.

ENDIF.
IF zkunden tw-wohnort IS INITIAL.

MESSAGE e039(zlib tw) WITH 'Wohnort'.

ENDIF.
IF zkunden tw-strasse IS INITIAL.

MESSAGE e039(zlib tw) WITH 'Strasse'.

ENDIF.
ENDIF.

9 Datenbankénderungen programmieren

ENDMODULE. " pruefen 0100 INPUT

K e e e e e e e - *
***INCLUDE MYK09 KUNDEN TWFO1 *
P *
L e e e *
*& Form sichern
L N e e T *
FORM sichern.
IF status = 'A'.
CALL FUNCTION 'NUMBER GET NEXT'
EXPORTING
nr range nr = '1'
object = 'ZKNR TW'
IMPORTING
number = zkunden_ tw-kundennr

EXCEPTIONS
interval not found =
number range not intern =
object not found =
quantity is 0 =
quantity is not 1 =
interval overflow =
OTHERS =
IF sy-subrc <> 0.
MESSAGE ID sy-msgid TYPE sy-msgty
NUMBER sy-msgno
WITH sy-msgvl sy-msgv2 sy-msgv3 sy-msgvé.
ELSE.
INSERT zkunden tw FROM zkunden tw.
IF sy-subrc <> 0.
MESSAGE a035(zlib tw).
ELSE.
MESSAGE 1036 (z1lib tw)
WITH zkunden tw-kundennr.
ENDIF.
ENDIF.
ELSE.
UPDATE zkunden tw FROM zkunden tw.
IF sy-subrc <> 0.
MESSAGE a037(zlib_ tw).
ELSE.
MESSAGE 1038 (zlib tw)
WITH zkunden tw-kundennr.

<N 0 U W N

9.5 Nummernkreise ® 561

*& Module STATUS 0100 OUTPUT *

MODULE status 0100 OUTPUT.
SET PF-STATUS 'DYNPRO 0100°'.
IF status = 'A'.
SET TITLEBAR 'DYNPRO 0100'
WITH 'Kunden anlegen'.
text = 'wird automatisch vergeben'.
ELSE.
SET TITLEBAR 'DYNPRO 0100' WITH 'Kunden
dndern'.

text = 'ENTER dricken'.
ENDIF.
ENDMODULE . " STATUS 0100 OUTPUT
e —————— *
*& Module laden 0100 OUTPUT *
R —————— *
MODULE laden 0100 OUTPUT.
IF status = 'C'.
PERFORM sperren zkunde.
IF ok = 0.
SELECT SINGLE * FROM zkunden tw
WHERE kundennr = zkunden tw-kundennr.

IF sy-subrc <> 0.
MESSAGE 1034 (zlib_ tw)
WITH zkunden tw-kundennr.
CALL FUNCTION 'DEQUEUE ALL'.

ENDIF.
ELSE.
CLEAR zkunden tw.
ENDIF.
ENDIF.
ENDMODULE. " laden 0100 OUTPUT
g g *
***INCLUDE MYKOO9KUNDEN TWIO1 *
g g *
K —————_——_—_—— *
*& Module USER COMMAND 0100 INPUT *
K —————_———_—— *

MODULE user command 0100 INPUT.
ok save = ok code. CLEAR ok code.

9.5 Nummernkreise

559

560

CASE ok _save.
WHEN 'ANLEGEN'.
status = 'A'.
CLEAR zkunden tw.
CALL FUNCTION 'DEQUEUE ALL'.
WHEN 'AENDERN'.
status = 'C'.
CLEAR zkunden tw.
CALL FUNCTION 'DEQUEUE ALL'.
WHEN 'SAVE'.
PERFORM sichern.
CLEAR zkunden tw.
CALL FUNCTION 'DEQUEUE ALL'.
ENDCASE.

ENDMODULE. " USER_COMMAND_OlOO INPUT
*& ___ *
*& Module Dbeenden INPUT *
*& ___ *
MODULE beenden INPUT.

LEAVE TO SCREEN 0.
ENDMODULE. " beenden INPUT
*& ___ *
*& Module pruefen 0100 INPUT *
*& ___ *

MODULE pruefen 0100 INPUT.
IF ok code = 'SAVE'.
IF zkunden tw-name IS INITIAL.

MESSAGE e03%zlib tw) WITH 'Name'.

ENDIF.

IF zkunden tw-vornamel IS INITIAL.

MESSAGE e03%zlib tw) WITH 'Vorname 1'.

ENDIF.
IF zkunden tw-plz IS INITIAL.

MESSAGE e03%zlib tw) WITH 'Plz'.

ENDIF.
IF zkunden tw-wohnort IS INITIAL.

MESSAGE e03%zlib tw) WITH 'Wohnort'.

ENDIF.
IF zkunden tw-strasse IS INITIAL.

MESSAGE e03%zlib tw) WITH 'Strasse'.

ENDIF.
ENDIF.

9 Datenbankénderungen programmieren

ENDMODULE. " pruefen 0100 INPUT

*& Form sichern

FORM sichern.
IF status = 'A'.
CALL FUNCTION 'NUMBER GET NEXT'
EXPORTING
nr_range nr 'l
object = "ZKNR TW'
IMPORTING
number
EXCEPTIONS
interval not found
number range not intern =
object not found =
gquantity is 0 =
guantity is not 1 =
interval overflow =
OTHERS =
IF sy-subrc <> 0.
MESSAGE ID sy-msgid TYPE sy-msgty
NUMBER sy-msgno
WITH sy-msgvl sy-msgv2 sy-msgv3 sy-msgvié.
ELSE.
INSERT zkunden tw FROM zkunden tw.
IF sy-subrc <> 0.
MESSAGE a035(zlib_ tw).
ELSE.
MESSAGE 1036 (zlib_ tw)
WITH zkunden tw-kundennr.
ENDIF.
ENDIF.
ELSE.
UPDATE zkunden tw FROM zkunden tw.
IF sy-subrc <> 0.
MESSAGE a037(zlib_ tw).
ELSE.
MESSAGE 1038 (zlib_ tw)
WITH zkunden tw-kundennr.

~N o U w N

9.5 Nummernkreise

zkunden tw-kundennr

561

ENDIF.

ENDIF.
ENDFORM. " sichern
e ————— *
*& Form sperren zkunde *
e ————— *

FORM sperren zkunde.
CALL FUNCTION 'ENQUEUE EZKUNDEN TW'

EXPORTING
mode zkunden tw = 'E'
mandant = sy-mandt
kundennr = zkunden tw-
kundennr
EXCEPTIONS
foreign lock =1
system failure = 2

OTHERS = 3.
IF sy-subrc <> 0.
MESSAGE ID sy-msgid TYPE 'I' NUMBER sy-msgno
WITH sy-msgvl sy-msgv2 sy-msgv3 sy-msgvé.
ENDIF.
ok = sy-subrc.
ENDFORM. " sperren zkunde

562 W 9 Datenbankénderungen programmieren

10 Ausblick: ABAP Objects

10.1
Zielstellung des Kapitels

Dieses Kapitel soll Thnen den Einstieg in die Objektorientierte Pro-
grammierung erleichtern. Am Beispiel des Rechercheprogramms der
,-Bast-Side-Library” werden wichtige Grundbegriffe und ihre pro-
grammtechnische Realisierung mit ABAP Objects gezeigt. Zum tie-
feren Eindringen in die objektorientierte Programmierwelt ist z.B.
das Buch ,,ABAP Objects*“ von Horst Keller und Sascha Kriiger
(ISBN 3-89842-147-3, Verlag: SAP Press) gut geeignet.

AuBlerdem wird fiir das in Kapitel 7 entwickelte Recherchepro-
gramm, die Datenausgabe mittels ALV Grid Control programmiert.

@ s JH Q@ DHE oo BR @B Selektionsbild
East-Side-Library: Rechercheprogramm aus Kapn‘e/ 7
(& Programmstant 250504 081648
Angaben zum Buch
ISBN
Tite!
Autorennummer
Kategaria EDV bis
[Angakeni U Sichbiarolch”
(3) Recherche im Gesamibestand & gescnater Bereich
() Recherche im verfigbaren Bestand [¥] & offensiicher Bereich
"} Recherche im nicht verfigbaren Bestand

Anzeigecptionen @ Recherche | |3 Programm beenden
{7) Anzelge als Liste
} Anzeige als TableConbrol

o Grid |

10.1 Zielstellung des Kapitels ® 563

Abb. 10.2
Ergebnisaus-
gabe mit ALV

Grid Control

564

¢ B OH COQ DR ON0Ls R oR

East-Side-Library: Rechercheergebnisse (Sicht ALV Grid)

[G][BFE¥a] [EE[wE] [O]d s =]] [E]

Verlag

istration des SAP-Systems Ri3 il Addison-Wesley-Longman |

1 |8AP Rr3 dynamisch einfhoen Geill Addison-Wesley
T {Frosrarmienng o Hsmet AR R [Umd [AadenWesss
3827317894 1 | ABAP. R Unkaufl Addison-Wessiey
FaTT91 Nlﬂj 1|SAP Ri3 Basissystem Herdh [Marki=Technik
JIRARNATI| 2[ABAP Cbjects Fieller [Galitec-Press
aol 1 {O|0]

10.2
Ein Wort zu ABAP-Objects

ABAP Objects ist keine neue Programmiersprache. Es ist die ob-
jektorientierte Komponente von ABAP. Anweisungen aus dem
Sprachumfang von ABAP Objects konnen Sie auch in Thren ,.kon-
ventionellen” Programmen verwenden. Andererseits konnen Sie
auch Anweisungen des klassischen ABAP/4 in ABAP Objects Pro-
grammen benutzen. ABAP Objects zeichnet sich durch folgende Ei-
genschaften aus:

m Es wurden nur objektorientiert Konzepte verwendet, die sich in
anderen objektorientierten Sprachen bewihrt haben,

m ABAP Objects Anweisungen konnen auch in klassischen, d.h.
nicht objektorientierten, ABAP-Programmen eingesetzt werden,

m klassische ABAP-Anweisungen konnen in ABAP Objects Pro-
grammen verwendet werden, allerdings sind einige Kurzformen
von Anweisungen nicht erlaubt. Die Syntaxpriifung deckt sol-
che Probleme aber auf.

10 Ausblick: ABAP Objects

In ABAP Objects Korrekte Syntax

verboten
TABLES dbtab DATA wa TYPE dbtab.
SELECT ... SELECT ... FROM dbtab INTO wa.
FROM dbtab...
TABLES dbtab DATA wa TYPE dbtab.
INSERT dbtab. INSERT dbtab FROM wa.
oder
INSERT INTO dbtab VALUES wa.
TABLES dbtab DATA wa TYPE dbtab.
UPDATE dbtab UPDATE dbtab FROM wa.
oder
UPDATE dbtab SET
TABLES dbtab DATA wa TYPE dbtab.
DELETE dbtab. DELETE dbtab FROM wa.
oder
DELETE FROM dbtab WHERE ...
TABLES dbtab DATA wa TYPE dbtab.
MODIFY dbtab. MODIFY dbtab FROM wa.

Wie Sie sehen, betreffen die Verbote die Kurzanweisungen, die
eine mit der TABLES-Anweisung erzeugte Standardstruktur
voraussetzen. Der Grund dafiir ist einfach: Um eine bessere
Lesbarkeit der ABAP Objects Programme zu erreichen, ist die
TABLES-Anweisung im ABAP Objects Umfeld auch verboten.
Sie konnen diese Anweisung also nicht in Klassendefinitionen,
die weiter unten behandelt werden, verwenden.

m In ABAP Objects werden ,schirfere Typpriifungen als im
klassischen ABAP durchgefiihrt.

10.3
Objekte, Attribute, Methoden und Klassen

Im Mittelpunkt der objektorientierten Denkweise stehen Objekte.
Dabei konnen wir ein Objekt als Modell eines konkreter ,,.Dinges*
der realen Welt auffassen, wie z.B.:

m ein bestimmtes Buch,
m ein bestimmter Autor,
m ein bestimmter Kunde,

m ein bestimmtes Haus etc.

10.3 Objekte, Attribute, Methoden und Klassen

565

Abb. 10.3
Objekte

566

Objekte der gleichen Art, z.B. verschiede Biicher, unterscheiden sich
in ihren Eigenschaften, die in der objektorientierten Welt Attribute
genannt werden. Attribute fiir Buchobjekte konnen sein:

ISBN, Titel, Autor, Kategorie etc. Objekte der gleichen Art werden
durch gleiche Attribute beschrieben, deren Inhalt natiirlich unter-
schiedlich sein kann (dhnlich wie Datensitze einer Datenbanktabel-
le, die die gleichen Felder aber eine unterschiedliche Feldbelegung
haben).

Zu einem Objekt gehoren aber nicht nur die Daten (Attribute) son-
dern auch Programme, die diese Daten verarbeiten. So konnten wir
im Objekt ,,Buch® ein Programm integrieren, das die ISBN, den Ti-
tel, den Autor und die Kategorie auf dem Bildschirm ausgibt. Die
Programme, die in einem Objekt integriert sind, heilen Methoden.

Wie in der realen Welt, konnen verschiedene Objekte (z.B. Objekt
,,Buch® und Objekt ,,Autor) miteinander in Beziehung stehen.

Zusammenfassung:
m Objekte sind Modelle von konkreten Dingen der realen Welt.

m Objekte bilden eine Einheit aus Daten (Attributen) und den da-
zugehorigen Funktionen (Methoden).

Objekt ,Buch® Objekt ,Autor*

Set_ Autorennr. =

_ Set
SBN = — }
Attribute 109

ttribute
3827254388
Get_Attribute

privater offentlicher Offentlicher privater
Bereich Bereich Bereich Bereich

An Abbildung 10.3 konnen Sie noch einige typische Eigenschaften
von Objekten erkennen. Objekte sind in mehrere Bereiche geglie-
dert. In der Abbildung ist das der offentliche Bereich (engl. public
section) und der private Bereich (engl. privat section). Der offentli-
che Bereich stellt die Schnittstelle des Objektes zur Auflenwelt, als
z.B. zum ABAP-Programm oder einem anderen Objekt, dar. Er ent-
hilt in der Regel nur Methoden, die auf die Daten im privaten Be-

10 Ausblick: ABAP Objects

reich zugreifen konnen. Man sagt, die Daten werden gekapselt. Der
offentliche Bereich darf auch Attribute enthalten. Sie sollten aber
solche offentlichen Attributen sehr sparsam einsetzen.

So, die Begriffe Objekt, Attribut und Methoden sind geklért. Was
aber ist eine Klasse? Eine Klasse ist der ,,Bauplan® fiir ein Objekt. In
diesem Bauplan wird definiert, welche Attribute und Methoden ein
Objekt dieser Klasse besitzt und welchen Bereichen Attribute und
Methoden zugeordnet sind. Ein anderer Teil der Klasse enthilt dann
den Quelltext der Methoden. Aus der Klasse wird im Programm ein
Objekt erzeugt. Diesen Vorgang nennt man Instanzierung. Gelegent-
lich wird fiir den Begriff Objekt auch der Begriff Instanz benutzt.

10.4
Klassen in ABAP Objects

In ABAP Objects besteht eine Klasse aus den Definitions- und dem
Implementationsteil. Der Definitionsteil enthélt die Definition der
Attribute und Methoden und ihre Einordnung in die Bereiche

m PUBLIC SECTION (6ffentlicher Bereich),

m PROTECTED SECTION (Bereich auf den Unterklassen zugrei-
fen konnen — wird in diesem Buch nicht behandelt) und

m PRIVATE SECTION (privater Bereich, nur die Methoden des
Objektes haben Zugriff auf diesen Bereich).

Fiir die Methoden werden im Definitionsteil nur die Namen und die
Schnittstellenparameter festgelegt. Den Quellcode, also die Funktio-
nalitit der im Definitionsteil benannten Methoden, enthilt der
Implementationsteil. Abbildung 10.4 gibt einen Uberblick iiber De-
finitions- und Implementationsteil in ABAP Objects:

10.4 Klassen in ABAP Objects

567

Abb. 10.4
Definitionsteil CL ‘enae) CEFRITION.
einer Klasse L Dl
ENDCLASS.
Abb. 10'.5 CLASS <Klassenname> IMPLEMENTATION.
Implementati- P e
onsteil einer ' e
Klasse
ENDCLASS.

Die Klasse ,,Buch® wiirde fiir unser Bibliotheksprojekt so angelegt:

CLASS buch DEFINITION.

568 W™ 10 Ausblick: ABAP Objects

PUBLIC SECTION.
METHODS: set attributes IMPORTING
im isbn TYPE zbestand tw-isbn
im titel TYPE zbestand tw-titel
im autorl TYPE zbestand tw-autorl
im kategorie TYPE zbestand tw-
kategorie
im bestand TYPE zbestand tw-bestand
im ausgeliehen TYPE zbestand tw-
Bestand,
ausgabe.
private section.
DATA: isbn TYPE zbestand tw-isbn,
titel TYPE zbestand tw-titel,
autorl TYPE zbestand tw-autorl,
kategorie TYPE zbestand tw-kategorie,
verfuegbar TYPE zbestand tw-bestand.

ENDCLASS.

K *
* CLASS buch IMPLEMENTATION

K *

CLASS buch IMPLEMENTATION.
METHOD set attributes.
isbn = im isbn.
titel = im titel.
autorl = im autorl.
kategorie = im kategorie.
verfuegbar = im bestand - im ausgeliehen.
ENDMETHOD .
METHOD ausgabe.
WRITE: / isbn, titel, autorl, kategorie,
verfuegbar.
ENDMETHOD .
ENDCLASS.

Erklarung wichtiger Teile des Programms:

Die Klasse stellt den Bauplan fiir ein Objekt ,,Buch® dar, nicht das
Objekt selbst. Um ein Objekt ,,Buch® zu erzeugen, muss es instan-
ziert werden. Nach diesem Vorgang gibt es ein Objekt ,,Buch®, des-
sen Attributen jedoch in einem Folgeschritt noch Werte iibergeben.
werden miissen. Dafiir ist die Methode SET_ATTRIBUTES vorge-
sehen. Diese Methode ist aufgrund ihrer Importschnittstelle und ih-
rer Zuordnung zur PUBLIC SECTION in der Lage, Werte vom
ABAP-Programm fiir die Attribute entgegenzunehmen. Die Attribu-

10.4 Klassen in ABAP Objects

569

570

te selbst (ISBN, TITEL,AUTORI1 etc) sind fiir das ABAP-
Programm (bzw. fiir andere Objekte) nicht erreichbar, weil sie der
PRIVATE SECTION zugeordnet sind.

Im Implementationsteil der Klasse ist die Funktionalitit der Metho-
de SET_ATTRIBUTES hinterlegt. Die iiber die Schnittstelle iiber-
gebenen Werte werden von dieser Methode in die Attribute geladen.

Die Methode AUSGABE gibt die Attribute anderer Objekte seiner
Klasse (also eines Buches) auf dem Bildschirm aus.

10.5
Instanz- und statische Methoden, Instanz-
und statische Attribute

Beim Instanzieren wird ein Objekt einer bestimmten Klasse ange-
legt. Entsprechend des bisher gesagten, enthilt dieses Objekt die
Methoden und Attribute, die in der Klassendefinition festgelegt sind.
Methoden und Attribute die beim Instanzieren den Objekten liberge-
ben werden, nennt man auch Instanzmethoden bzw. Instanzattribute.
Zusitzlich gibt es noch statische Methoden und Attribute. Diese
werden nicht an die Objekte iibergeben sondern verbleiben in der
Klasse. Sie werden deshalb auch als Klassenmethoden bzw. -attri-
bute bezeichnet. Eine typische Anwendung fiir solche Methoden und
Attribute ist das Anlegen von Zihlern. Wenn Sie z.B. wissen wollen,
wie viele Objekte einer Klasse angelegt wurden, kann Thnen ein ein-
zelnes Objekt dariiber keine Auskunft geben, weil es vom Anlegen
des Objektes nicht informiert wird. Es ist aber leicht moglich, beim
Instanzieren eine Klassenmethode aufzurufen, die einen als stati-
sches Attribut definierten Zihler inkrementiert. Klassenmethoden
werden mit dem Schliisselwort CLASS-METHODS, Klassenattribu-
te mit dem Schliisselwort CLASS-DATA im Definitionsteil der
Klasse angelegt.

10 Ausblick: ABAP Objects

CLASS <Klassenname= DEFINITION.

PUBLIC SECTION.
METHODS:
<Methodenname1> [IMPORTING <Importparameter=]
[EXPORTING <BExportparameter=]
[CHANGING <Changingparameter=]
[RETURNING <Retumningparameter=]
[EXCEPTIONS <Exception=],
<Methodenname2> . .
CLASS-METHODS:

<Methodenname5> [IMPORTING <Importparameter>]
[EXPORTING <Exportparameter>]

[CHANGING <Changingparameter>]
[RETURNING <Returningparameter>]
[EXCEPTIONS <Exception>].
PRIVAT SECTION.
METHODS:
<Methodenname3> [IMPORTING <Importparameter=]
[EXPORTING <Exportparameter=]
[CHANGING <Changingparameter=]
[RETURNING <Returmingparameter=]
[EXCEPTIONS <Exception=],
<Methodennamed> .. .
DATA: <Name1= TYPE <Type=,
<Name2> TYPE <Type=.
CLASS-DATA: <Name3> TYPE <Type>.
ENDCLASS.
10.6

Methoden in ABAP Objects

In der Schnittstelle der Methoden konnen folgende Parameter ver-
wendet werden:

Importing-Parameter

Mit IMPORTING legen Sie einen oder mehrere Eingabepara-
meter fest (Parameter, die von der Methode importiert werden,
z.B von einem anderen Objekt oder vom ABAP-Programm).

Exporting-Parameter

Mit EXPORTING legen Sie einen oder mehrere Ausgabepara-
meter fest (Parameter, die von der Methode exportiert werden,
z.B an ein anderes Objekt oder an das ABAP-Programm).

Changing-Parameter

Mit CHANGING legen Sie einen oder mehrere Parameter fest,
die sowohl Eingabe- als auch Ausgabeparameter sein konnen.

einen Returning-Parameter

10.6 Methoden in ABAP Objects

Abb. 10.6
Definitionsteil ei-
ner Klasse mit
Klassenmethode
und Klassen-
attribut

u 571

572

Jede Methode kann maximal einen Returningparameter besizen.
Dieser Parameter iibergibt, wie der Exporting-Parameter auch,
Werte z.B. an ein anderes Objekt oder an das Hauptprogramm.
Durch die Nutzung des Returningparameters ergeben sich syn-
taktische Vereinfachungen im importierenden Programm. Me-
thoden, die einen Returning-Parameter benutzen, werden funk-
tionale Methoden genannt. Sie diirfen keine Exporting- und
Changingparameter besitzen.

10.7
Anlegen von Objekten

Um ein Objekt anzulegen, wird eine Variable benotigt, die mit der
Speicheradresse des Objektes geladen werden kann. Diese Variable
wird Referenzvariable, die Speicheradresse des Objektes Objektrefe-
renz genannt. Gelegentlich wird die Referenzvariable auch als Zei-
ger bezeichnet.

Syntax zum Anlegen einer Referenzvariablen:

DATA <Referenzvariable> TYPE REF TO <Klasse>.

<Name> Name der Referenzvariablen.

Hinweis: Um n Objekte (Instanzen) einer Klasse
anzulegen, benotigen Sie n Referenzvariable oder
Sie speichern die Objektreferenzen in einer internen
Tabelle ab, was an spiterer Stelle gezeigt wird.

<Klasse> Bauplan, nach dem das Objekt angelegt wird.

Syntax zum Anlegen eines Objektes:
CREATE OBIJECT <Referenzvariable>.

Beispiel:
CLASS buch DEFINITION.
. (siehe Seite 568
ENDCLASS.
CLASS buch IMPLEMENTATION.
. (siehe Seite 569)
ENDCLASS.

*Deklaration der Referenzvariable

10 Ausblick: ABAP Objects

DATA: r buchl TYPE REF TO buch.
*Anlegen eines Objektes der Klasse buch
* (Instanzierung)

CREATE OBJECT r buchl.

10.8
Methodenaufrufe

10.8.1
Aufruf einer Instanzmethode

Eine Instanzmethode wird iiber die Referenzvariable des Objektes
und dem Operator ,->*“ aufgerufen. Beim Aufruf werden die
Schnittstellenparameter iibergeben.

Syntax zum Aufruf einer Instanzmethode:

CALL METHOD <Referenzvariable>-><Methode>

[EXPORTING <Importparameter 1> =<Wert 1>
<Importparameter 2> = <Wert 2>
<Importparameter n> = <Wert n>]

[IMPORTING <Exportparameter 1> = <Wert 1>
<Exportparameter 2> = <Wert 2>
<Exportparameter n> = <Wert n>]

[CHANGING <Changingparameter 1>= <Wert 1>
<Changingparameter 2> = <Wert 2>
<Changingparameter n> = <Wert n>]

[EXCEPTIONS <Exceptionl> = <Wert 1>
<Exception 2> = <Wert 2>
<Exception n> = <Wert n>
OTHERS = <Wert y>].

Beispiel:

CLASS buch DEFINITION.
. (siehe Seite 568)
ENDCLASS.
CLASS buch IMPLEMENTATION.
. (siehe Seite 569)
ENDCLASS.
*Deklaration der Referenzvariable
DATA: r_buchl TYPE REF TO buch.
*Anlegen eines Objektes der Klasse buch

10.8 Methodenaufrufe

573

CREATE OBJECT r buchl.

*Setzen der Attribute des Objekts

CALL METHOD r_ buch->set attributes

EXPORTING im isbn = '1234567890'
im titel = 'ABAP-Objects'

*Ausgabe der Attribute des Objekts

CALL METHOD r_ buch->ausgabe.

10.8.2
Aufruf einer Klassenmethode

Eine Klassenmethode wird iiber den Namen der Klasse und dem
Operator ,,=>* aufgerufen. Beim Aufruf werden die Schnittstellen-
parameter iibergeben.

Syntax zum Aufruf einer Klassenmethode:

CALL METHOD <Klassenname>=><Methode>

[EXPORTING <Importparameter 1> =<Wert 1>
<Importparameter 2> = <Wert 2>
<Importparameter n> = <Wert n>]

[IMPORTING <Exportparameter 1> =<Wert 1>
<Exportparameter 2> = <Wert 2>
<Exportparameter n> = <Wert n>]

[CHANGING <Changingparameter 1> = <Wert 1>
<Changingparameter 2> = <Wert 2>
<Changingparameter n> = <Wert n>]

[EXCEPTIONS <Exceptionl> = <Wert 1>
<Exception 2> = <Wert 2>
<Exception n> = <Wert n>
OTHERS = <Wert y>].

Beispiel:

CLASS buch DEFINITION.
PUBLIC SECTION.
. (siehe Seite 568)
CLASS-METHODS counter.
PRIVATE SECTION.
. (siehe Seite 568)
CLASS-DATA: anzahl TYPE I.
ENDCLASS.
CLASS buch IMPLEMENTATION.

574 10 Ausblick: ABAP Objects

. (siehe Seite 569)
METHOD counter.
anzahl = anzahl + 1.
ENDMETHOD .
ENDCLASS.
DATA: r buchl TYPE REF TO buch.
CREATE OBJECT r buchl.
CALL METHOD r buch->set attributes
EXPORTING im isbn = '1234567890"'
im titel = 'ABAP-Objects'.
*Aufruf der Klassenmethode COUNTER
CALL METHOD buch=>counter.

10.9
Externer Zugriff auf offentliche Attribute

Der Zugriff auf 6ffentliche Methoden von auflerhalb der Klasse, z.B.
vom ABAP-Programm oder von einer anderen Klasse, erfolgt iiber
folgende Syntax:

Zugriff auf Instanzattribute: <Refernzvariable>-> <Instanzattribut>.
Zugriff auf Klassenattribut: <Klassenname>=><Klassenattribut>.

Beispiel:

CLASS zcl buch DEFINITION.
PUBLIC SECTION.
DATA: bestand TYPE i.
CLASS-DATA: buchanzahl TYPE i.

ENDCLASS.
CLASS zcl buch IMPLEMENTATION.

ENDCLASS.
DATA: buchanzahl gesamt TYPE i,
exemplare TYPE 1,
r buch TYPE REF TO zcl buch.
*Zugriff auf das Klassenattribut buchanzahl
* (Gesamtanzahl der Blcher der Bibliothek)

buchanzahl gesamt = zcl_buch=>anzahl buecher.
CREATE OBJECT r buch.

10.9 Externer Zugriff auf 6ffentliche Attribute

575

576

*Zugriff auf das Instanzattribut bestand (Anzahl
*der Biucher zu einer ISBN.)
exemplare = r buch->bestand

10.10
Funktionale Methoden

Funktionale Methoden sind Methoden, die einen RETURNING-
Parameter besitzen. Dieser ist immer als Wertparameter zu pro-
grammieren (siche Beispiel). EXPORTING- oder CHANGING-
Parameter sind nicht erlaubt. Die Definition des RETURNING-
Parameters erfolg durch das Schliisselwort RETURNING (siehe
Abb. 10.6, Seite 571) im Definitionsteil der Klasse. Der Vorteil
funktionaler Methoden ist die Mdglichkeit, sie direkt in logischen
und arithmetischen Ausdriicken und Zuweisungen benutzen zu kon-
nen. Auflerhalb dieser Ausdriicke kann der Aufruf einer solchen Me-
thode mit dem Schliisselwort RECEIVING programmiert werden.

Beispiel:
CLASS zcl buch DEFINITION.
PUBLIC SECTION.
CLASS-METHODS ausgabe_ist gesamt RETURNING
VALUE (ist_bestand gesamt) TYPE i.
METHODS ausgabe_ist exemplar RETURNING
VALUE (ist_bestand exemplar) TYPE i.

PRIVATE SECTION.

CLASS-DATA: buchanzahl gesamt TYPE i,
ausgeliehen gesamt TYPE 1,
ist bestand gesamt TYPE 1i.

DATA: bestand exemplar TYPE i,

ausgeliehen exemplar TYPE 1,
ist bestand exemplar TYPE 1i.
ENDCLASS.
CLASS zcl buch IMPLEMENTATION.
METHOD ausgabe ist gesamt.
ist bestand gesamt =
buchanzahl gesamt - ausgeliehen gesamt.
ENDMETHOD.
METHOD ausgabe ist exemplar.
ist bestand exemplar =
buchanzahl exemplar - ausgeliehen exemplar.

10 Ausblick: ABAP Objects

ENDMETHOD.
ENDCLASS.

DATA r buch TYPE REF TO zcl buch.
buchbestand gesamt TYPE i.

*Zuweisung des Returningparameters der Klassen-

*methode ausgabe ist gesamt an

*buchbestand gesamt.

*Langform

CALL METHOD zcl buch=>ausgabe ist gesamt
RECEIVING ist bestand gesamt = buchbe-

stand gesamt

*Kurzform

buchbestand gesamt =

zcl_buch=>ausgabe ist gesamt.

CREATE OBJECT r buch.
IF r buch->ausgabe ist exemplar <= 10.

WRITE: 'Mindestbestand unterschritten'.
ENDIF.

In der folgenden Aufgabe soll die Klasse ZCL_BUCH angelegt, ein

Objekt dieser Klasse erzeugt und initialisiert werden. Anschlieend ﬂ
soll eine Methode aufgerufen werden, die die Attribute des Objek-

tes auf dem Bildschirm ausgibt.

1. Legen Sie ein ausfiihrbares Programm YK10 an.

2. Legen Sie das Top-Include YK10TOP und das Ereignisinclude
YKI10EO1 an.

3. Legen Sie im Top-Include die Klasse ZCL._BUCH an. Orientie-
ren Sie sich dabei an der Klasse BUCH auf Seite 568/569.

4. Deklarieren Sie eine Referenzvariable R_BUCH mit Bezug zur
Klasse ZCL_BUCH.

5. Programmieren Sie im Include YK10EO1 den Ereignisblock
START-OF-SELECTION und instanzieren Sie ein Objekt der
Klasse ZCL_BUCH.

6. Rufen Sie die Methode SET_ATTRIBUTES dieses Objektes
auf und iibergeben Sie der Methode sinnvolle Werte fiir deren
Importparameter.

7. Rufen Sie die Methode AUSGABE auf.

Losung: YK10_1

10.10 Funktionale Methoden ® 577

CLASS zcl buch DEFINITION.
PUBLIC SECTION.
METHODS: set attributes
IMPORTING
im isbn TYPE zbestand tw-isbn
im titel TYPE zbestand tw-titel
im autorl TYPE zbestand tw-autorl
im kategorie TYPE zbestand tw-
kategorie
im bestand TYPE zbestand tw-bestand
im ausgeliehen TYPE zbestand tw-
bestand,
ausgabe.
PRIVATE SECTION.
DATA: isbn TYPE zbestand tw-isbn,
titel TYPE zbestand tw-titel,
autorl TYPE zbestand tw-autorl,
kategorie TYPE zbestand tw-kategorie,
verfuegbar TYPE zbestand tw-bestand.
ENDCLASS.

CLASS zcl buch IMPLEMENTATION.
METHOD set attributes.
isbn = im isbn.
titel = im titel.
autorl = im autorl.
kategorie = im kategorie.
verfuegbar = im bestand - im ausgeliehen.
ENDMETHOD.
METHOD ausgabe.
WRITE: / isbn, titel, autorl,
kategorie, verfuegbar.
ENDMETHOD.
ENDCLASS.

578 W™ 10 Ausblick: ABAP Objects

DATA: r buch TYPE REF TO zcl buch.

K o *
* INCLUDE ZK10 1EO1 *
K o *

START-OF-SELECTION.
*Objekt instanzieren
CREATE OBJECT r buch.

*Methodenaufrufe
CALL METHOD r buch->set attributes
EXPORTING
im isbn = '1234567890"
im titel = 'ABAP-Objects'
im autorl = '110'
im kategorie = 'SAP'
im bestand = '10'
im ausgeliehen = '6'.

CALL METHOD r buch->ausgabe.

10.11
Der Konstruktor, eine besondere Methode

Nach dem Anlegen eines Objektes besitzt das Objekt die Methoden
und Attribute, die in der Klasse definiert wurden. Die Attribute sind
im Folgeschritt mit Werten geladen sollen. Das erfolgte im
Beispielprogramm iiber die Methode SET_ATTRIBUTES, die
im Programm iiber die Anweisung CALL METHOD r->buch
EXPORTING ... aufgerufen wurde. Im Allgemeinen erfolgt die Ini-
tialisierung der Attribute jedoch nicht iiber eine ,,normale* Methode,
sondern iiber eine Methode mit dem Namen CONSTRUCTOR. Im
Definitions- und Implementationsteil gibt es, mit Ausnahme des
vorgebenen Namens, keine Unterschiede zu anderen Methoden. Der
Aufruf dieser Methode erfolgt jedoch nicht durch einen Methoden-
aufruf im Programm sondern wird vom Laufzeitsystem nach dem
vollstindigen Erzeugen des Objektes ausgefiihrt. Die Parameter
werden mit der CREATE OBJECT-Anweisung an das Objekt iiber-
geben.

Beispiel:
CREATE OBJECT r buch EXPORTING
im isbn = '1234567890"'
im titel = 'ABAP-Objects'.

10.11 Der Konstruktor, eine besondere Methode

579

580

Benennen Sie im Programm YKIO die = Methode
SET_ATTRIBUTES der Klasse ZCL_BUCH in CONSTRUCTOR
um. Ubergeben Sie die Werte fiir die Attribute in der CREATE
OBJECT-Anweisung und l6schen Sie den Aufruf der Methode
SET_ATTRIBUTES.

Losung: YK10_2

Losung:

K e e ——_——_——_——_———————————————————— *
* INCLUDE ZK10_ ltop *
K e e ——_——_————_————_————————————————— *
* CLASS zcl buch DEFINITION *
K e e —_——————_———————————————————— *

CLASS zcl buch DEFINITION.
PUBLIC SECTION.
METHODS: constructor
IMPORTING
im isbn TYPE zbestand tw-isbn
im titel TYPE zbestand tw-titel

ENDCLASS.

H *
* CLASS zcl buch IMPLEMENTATION *
K *

CLASS zcl_buch IMPLEMENTATION.
METHOD constructor.
isbn = im isbn.
titel = im titel.

ENDMETHOD.

ENDCLASS.

DATA: r buch TYPE REF TO zcl buch.

K o e *
* INCLUDE ZKlO_lEOl *
K o *

START-OF-SELECTION.
CREATE OBJECT r buch EXPORTING
im isbn = '1234567890"'

im titel = 'ABAP-Objects'
im autorl = '110'
im kategorie = 'SAP'

10 Ausblick: ABAP Objects

im bestand = '10'
im ausgeliehen = '6'.
CALL METHOD r buch->ausgabe.

10.12
Objekte I6schen

Objekte belegen Platz im Hauptspeicher und sind deshalb zu 16-
schen, wenn sie nicht mehr benétigt werden. Das Loschen der Ob-
jekte und die Freigabe des Speicherbereiches wird durch den soge-
nannten Garbage Collector (Miillabfuhr) iibernommen. Alle Objek-
te, auf die keine Referenz mehr zeigt, werden vom Garbage Collec-
tor geloscht und der von ihnen allokierte Speicherbereich wird frei-
gegeben. Um ein Objekt zu 16schen, ist also die Referenzvariable,
die auf das Objekt zeigt, zu initialisieren. Den Garbage Collector
miissen Sie nicht aufrufen, das besorgt das Laufzeitsystem.

10.13
Referenzen in internen Tabellen speichern

Referenzen konnen auch in internen Tabellen gespeichert werden. In
einer LOOP-Schleife konnen dann die Methoden und Attribute der
Objekte aufgerufen werden, deren Referenzen in der internen Tabel-
le gespeichert sind. Diese Methode ist immer dann giinstig, wenn
auf mehrere artgleiche Objekte zugegriffen werden soll, z.B. bei der
Listenausgabe. Haufig wird solch eine interne Tabelle durch eine
Klasssenmethode, die beim Anlegen bzw. Loschen eines Objektes
vom Konstruktor aufgerufen wird, gepflegt. Die Listenausgabe sollte
dann ebenfalls als Klassenmethode implementiert werden.

Die interne Tabelle ist iiber die folgende Syntax zu deklarieren:

DATA: <int.Tabelle> TYPE REF TO <Klasse>.

<int. Tabelle> Name der internen Tabelle

<Klasse> Klasse der Objekte, deren Referenzen in der in-
ternen Tabelle gespeichert werden sollen.

10.12 Objekte I6schen

581

ZBESTAND ein Objekt der Klasse ZCL._BUCH angelegt werden.
Unmittelbar nach dem Anlegen des Objektes wird dessen Referenz
in die interne Tabelle IT_ZCL_BUCH gespeichert. Am Schluss des
Programmes wird fiir jedes Objekt, dessen Referenz in der internen
Tabelle abgelegt ist, die Methode AUSGABE aufgerufen.

F In dieser Aufgabe soll fiir jeden Datensatz der Datenbanktabelle

1. Deklarieren Sie im TOP-Include des Programms YKI10 die in-
terne Tabelle IT_ZCL_BUCH zum Speichern von Referenzen
der Klasse ZCL._BUCH.

2. Programmieren Sie eine SELECT-Schleife iiber die Tabelle
ZBESTAND. Erzeugen Sie in dieser Schleife ein Objekt dieser
Klasse und laden Sie dessen Attribute mit den Werten aus dem
Datensatz des aktuellen SELECT-Schleifendurchlaufes.

3. Ubernehmen Sie die Referenz iiber eine APPEND-Anweisung
in die interne Tabelle.

4. Programmieren Sie eine LOOP-Schleife (LOOP AT it_cl_buch
INTO r_buch) und rufen Sie innerhalb der Schleife die Metho-
de AUSGABE auf.

Losung: YK10_3

Losung:

K e e e —_—_———————————————————— — e — *
* CLASS zcl buch DEFINITION *
K e e e —_—_—_————————————————— — *

CLASS zcl buch DEFINITION.
PUBLIC SECTION.
METHODS:
constructor
IMPORTING
im isbn TYPE zbestand tw-isbn
im titel TYPE zbestand tw-titel
im autorl TYPE zbestand tw-autorl
im kategorie TYPE zbestand tw-kategorie
im bestand TYPE zbestand tw-bestand
im ausgeliehen TYPE zbestand tw-
ausgeliehen,
ausgabe.
PRIVATE SECTION.
DATA: isbn TYPE zbestand tw-isbn,
titel TYPE zbestand tw-titel,

582 ® 10 Ausblick: ABAP Objects

autorl TYPE zbestand tw-autorl,

kategorie TYPE zbestand tw-kategorie,

verfuegbar TYPE zbestand tw-bestand.
ENDCLASS.

CLASS zcl buch IMPLEMENTATION.
METHOD constructor.
isbn = im isbn.
titel = im titel.
autorl = im autorl.
kategorie = im kategorie.
verfuegbar = im bestand - im ausgeliehen.
ENDMETHOD.
METHOD ausgabe.
WRITE: / isbn, titel,
autorl, kategorie, verfuegbar.
ENDMETHOD.
ENDCLASS.

DATA: r buch TYPE REF TO zcl buch,
it _zcl buch TYPE TABLE OF REF TO zcl_buch,
wa_zbestand TYPE zbestand tw.

START-OF-SELECTION.
*Loschen der Zeilen der internen Tabelle
REFRESH it zcl buch.
SELECT * FROM zbestand tw INTO wa_ zbestand.
CREATE OBJECT r_buch EXPORTING
im isbn = wa_zbestand-isbn
im titel = wa_zbestand-titel
im autorl = wa_zbestand-autorl
im kategorie = wa_zbestand-kategorie
im bestand = wa_zbestand-bestand
im ausgeliehen = wa_ zbestand-
ausgeliehen.
APPEND r buch TO it_zcl buch.
ENDSELECT.

10.13 Referenzen in internen Tabellen speichern

583

584

LOOP AT it_zcl buch INTO r buch.
CALL METHOD r_ buch->ausgabe.
ENDLOOP.

10.14
Globale Klassen

Bisher haben wir Klassen im Programm definiert. Sie sind damit
programmlokal angelegt. Ein Zugriff auf diese Klassen durch andere
Programme ist nicht moglich. Wird eine Klasse in mehreren Pro-
grammen bendétigt, sollte sie global im Class Builder angelegt wer-
den.

Vorgehensweise: Globale Klasse anlegen

In dieser Vorgehensweise soll die globale Klasse ZCL_BUCH mit
den gleichen Methoden und Attributen angelegt werden wie die na-
mensgleiche programmlokale Klasse.

Starten Sie den Class Builder iiber Werkzeuge - ABAP Work-
bench - Entwicklung - SE24 Class Builder oder im Object Navi-
gator iiber das Symbol ,,Anderes Objekt“ - Registerkarte Klassen-
bibliothek.

Hilfe

8 dH @@ DHR BDOHO)

Class Builder: Einstieg

CEEEENEE

Objekttyp ZCL_BUCH (=

|&¢ Anzeigen || Andem | [[3 Anlegen |

Tragen Sie im Einstiegsbild in das Eingabefeld Objekttyp den Na-
men der anzulegenden Klasse ein und aktivieren Sie im Folgebild
den Auswahlknopf ,,Klasse*.

10 Ausblick: ABAP Objects

Name ZCL_BUCH

Klasse ZCL_BUCH

Beschreibung Buch
Inst- Erzeugung Public]
Jv]lFial T

D Persistent (Abstimmung erforderlich)
[] nNur Madelliert

[T

Geben Sie eine Kurzbeschreibung ein. Das Ankreuzfeld ,,Final
kann aktiviert bleiben (Eine finale Klasse ist eine Klasse, zu der kei-
ne Unterklassen angelegt werden konnen). Sichern Sie dann die
Klasse.

180 ee@ DHY Do BEE @8
Class Builder: Klasse ZCL_BUCH dndern

BN E=E) .El.. | f Twenltﬁ imp.] (€3 Makos ||

Klassenschnittstelle ZCL_BUCH il b
Eigenschaften | Interfaces |~ Attribute /” Methoden |/Erelgnisse ¥ Inteme Typen | Aliases

E IR EIREE e

[\ Parameter | B Ausnahm...|E

[Methoden Sichtbark.. [Nu... |M... Iaeschra ibung
CONSTRUCTOR Instance Method [Public E] CONSTRUCTOR
AUSGABE Instance Method [Public] Ausgabe aller Attribute der Klasse

Sie gelangen in den Bildschirm ,,Class Builder: Klasse ZCL_BUCH
dndern“. Tragen Sie in der Registerkarte ,,Methoden* Namen, Me-
thodenart und Sichtbarkeitsbereich der zur Klasse gehoérenden Me-
thoden ein. Den FEintrag fiir den Konstruktor erzeugen Sie iiber die
Drucktaste Konstruktor.

Um die Parameter einer Methode festzulegen, stellen Sie den Cursor
in die betreffende Methode und Klicken die Drucktaste ,,Parameter.

10.14 Globale Klassen

585

586

1 I8 @@ SHE o0 AR @@

Class Buiider: Klasse ZCL_BUCH andern

Pe- @lE HEDEa|
Klassenschnitistelle ZCL_BUCH realisiert/ inaktiv

_/ Eigenschaften | Interf: V" Atiribute /” Methoden | Ereig V" Inteme Typen | Aliases
xaﬁi'ﬂ @]_I_| [] Fitter

EEzm|

K Parameter [8@ Ausnanm. i)

IMethoden |Art Sic... |Nu... [M... [Beschreibung

CONSTRUCTOR| Insta_[pub | [] |qfe[cONSTRUCTOR

AUSGABE Insta.[Pub. D Ausgabe aller Attribute der Klasse
I

(4 T Il @@ BHE ©DOD HE @B

Class Builder: Klasse ZCL_BUCH dndemn

E= | S | (&80 (P)E | B e [E ol (6 waioos](

Klassenschnitistelle ZCL_BUCH realisient / inakiiv
Eigenschafien | Interfaces | Attribute ** Methoden |~ Ereignisse | Inteme Typen | Aliases

Parameter zu Methode CONSTRUCTOR

42 Methoden [B} Ausnahm.. ﬁ ﬂ == rﬁlj

|Parameter W...|O... [Typisie..|Bezugstyp Default..[Beschreibung

IM_ISEN O|Crype [zBESTAND_TU-ISEN ISEN

IM_TITEL OO0 rype |[zBESTAMD_TW-TITEL Titel

IM_AUTORL O|Cfrype [ZBESTAND_TU-AUTORL Iutorennummer
IM_KATEGORIE OO0 rype [ZBESTAND_TW-KATEGORIE Kategarie

IM_BESTAND CJ|C])rype |[zBESTAMD_TW-BESTAMD tand
m_avsceLIEHEN |[J|[CJirype [ZBESTAND_TU-AUSGELIEHEN lAnzahl ausgeliener Bicher

Uber die Drucktaste ,,Methode** gelangen Sie wieder in den Bild-
schirm, in dem Sie die Methoden der Klasse eingetragen haben.

) B I @@ BHE DL0 FE @B

Class Builder: Klasse ZCL_BUCH andem

O FRE | @S | SIS0 | B e @ w8 e ||

Kiassenschnitistelle ZCL_BUCH realisiert/ inaktiv(berarbeitef)
_/ Elgenschaften | Interfaces | Atiribute >~ Methoden | Ereignisse | Inteme Typen |~ Aliases

[Parameter | B Ausnahm. ﬁ W - ¥ [mf™ E[Fl_l [Filter
Sichtbark.. [Nu... [M... |Beschreibung

CONSTRUCTOR [Instance Method [Public | [] |fe|CONSTRUCTOR

(AUSGABE Instance Method [Public D Ausgabe aller Aftribute der Klasse

Durch Doppelklick auf den Methodennamen verzweigt das Pro-
gramm in den Editor.

10 Ausblick: ABAP Objects

(3 = 18 e6a QHER “Vo0 BE @8

Class Builder: Klasse ZCL_BUCH dndem

CE PRE | EEE | SE D | (@ s Fre o |

Typisianung
TYPE ZBESTAND_TWH-ISBN
[l [w_TITEL TYPE ZBESTAND_TW-TITEL
[k [w_AUTORT TYPE ZBESTAND_TW-AUTORT
< |M_KATEGORIE TYPE ZBESTAND_TW-KATEGORIE [Kategorie

IM_BESTAND TYPE ZBESTAND_TW-BESTAND Bestand
¢ |IM_ALISGELIEHEN TYPE ZBESTAND_TW-AUSCELIEHEN Anzahl ausgelieher Blcher

inakti

METHOD constructor.

ishn = im_isbn.

ritel = in_rieel,

sutorl = im_sutorl.

kategorie = im kategorie.

verfuegbar = im_bestand - im_susgelichen.
ENTMETHOD .

J@ Q@ DHE BT O8I
Class Builder: Klasse ZCL_BUCH andern
(=] | [(%8) (=] | (e ()) | () (5] (20 () | (@ [uster] [Prety Printer]

Methode AUSGABE inaktiv(Uberarbeitet)

e B @ B

METHOD ausgabe.
WRITE: / isbn, titel, autorl, kategorie, verfuegbar.
ENDMETHOD.

Zum Schluss sind noch die Attribute der Klasse festzulegen. Dazu
steht die Registerkarte ,,Attribute* zu Verfiigung.

@| T 1B Q@ DHE DNa0 BE @B

Class Builder: Klasse ZCL_BUCH d@ndem

U FRE eHEE @E0Ea| D) Kassekonsi

Klassenschniftstelle ZCL_BUCH realisient/ inaktiv
Eigenschafien | Interfaces * Attribute | Meth Ja ¥ Inteme Typen | Aliases |
[Fitter
Nu... |Re... |Typisi_. |Bezugstyp Beschreil
15E0 Instance Attribute [Private (1|1 rype [ppEsTaND_Tu-138N0 B
TITEL Instance Attribute [Private [1|] rype [zpESTAND_TW-TITEL Titel
AUTORL Instance Attibute [Private [1| [] rype |[ZBESTAND_TW-AUTORL Wutorennummer
[RATEGORIE Jnstance Attribute |[Private [1| [] rype |[ZBESTAND_TW-RATEGORIE gorie
[VERFUEGBAR jnstance Aftribute |[Private [1|[] rype |[ZBESTAND_TW-BESTAND estand
[111 frvoe
Aktivieren Sie die Klasse.
10.14 Globale Klassen

587

Die globale Klasse ZCL_BUCH ist damit fertig angelegt. Sie kon-
nen diese Klasse in Threm Programm genau so benutzen, wie die lo-
kale Klasse. Legen Sie eine Referenzvariable an und erzeugen Sie
damit ein Objekt.

DATA r_buch TYPE REF TO zcl_buch.

CREATE OBJECT r_buch EXPORTING ...

Methoden und Attributen an, wie die namensgleiche lokale
Klasse im Programm YKT10. Orientieren Sie sich dabei an der
Vorgehensweise ,,Globale Klasse anlegen®.

F 1. Legen Sie die globale Klasse ZCL_BUCH mit den gleichen

2. Kommentieren Sie den Definitions- und Implementationsteil
der lokalen Klasse ZCL_BUCH im Programm YKI10 aus, da-
mit das Programm YK10 mit der globalen Klasse arbeitet.

Losung: Klasse ZCL_BUCH_TW

Programm: YK10_4

10.15
Vererbung und Polymorphie

In der East-Side-Library sollen nicht nur Biicher sondern auch CDs
verwaltet werden. Um an diesen Beispiel die Begriffe Vererbung
und Polymorphie zu erkldaren, wird eine neue Klasse
ZCL_MEDIUM angelegt. Diese enthilt alle Attribute und Metho-
den, die fiir beide Medien, also Biicher und CDs, benétigt werden.

K e e e *
* CLASS zcl medium DEFINITION *
K e e e *

CLASS zcl medium DEFINITION.
PUBLIC SECTION.
METHODS:
neues_medium hinzufuegen
IMPORTING im referenz
TYPE REF TO zcl medium,
ausgabe.
PROTECTED SECTION.
CLASS-DATA it medien
TYPE TABLE OF REF TO zcl_medium.
PRIVATE SECTION.
DATA r referenz TYPE REF TO zcl medium.
ENDCLASS.

588 ® 10 Ausblick: ABAP Objects

CLASS zcl medium IMPLEMENTATION.

METHOD neues medium hinzufuegen.

APPEND im referenz TO it medien.

ENDMETHOD.

METHOD ausgabe.
*Alle Biicher und CDs werden in einem fir jedes
*Medium spezifischen Format ausgegeben werden.
*Der Quelltext ist weiter unten in diesem
*Abschitt erlautert.

LOOP AT it medien INTO r_ referenz.

CALL METHOD r_referenz->ausgabe.

ENDLOOP.

ENDMETHOD .
ENDCLASS.

Die Klassen fiir Biicher (ZCL_BUCH) und CDs (ZCL_CD) werden
durch Vererbung der Klasse ZCL_MEDIUM erzeugt. Damit stehen
den Klassen ZCL_BUCH und ZCL_CD, die Unterklassen der Klas-
se ZCL_MEDIUM sind, alle Attribute und Methoden der Klasse
ZCL_MEDIUM (Oberklasse) zur Verfiigung. In den Unterklassen
sind nur die Anderungen gegeniiber der Oberklasse zu programmie-
ren. Es konnen sowohl neue Methoden und Attribute definiert und
implementiert, als auch der Implementationsteil der von der Ober-
klasse vererbten Methoden geéndert werden.

Eine Klasse wird zur Erbin einer Oberklasse durch die Syntax:

CLASS <Unterklasse> DEFINITION
INHERITING FROM <Oberklasse>.

Damit stehen der Unterklasse alle Methoden und Attribute der Ober-
klasse zur Verfiigung. Soll eine geerbte Methode gedndert werden,
ist der Methodenname in den Definitionsteil der Unterklasse aufzu-
nehmen (gleicher Sichtbarkeitsbereich wie in der Oberklasse) und
durch das Schliisselwort REDEFINITION zu kennzeichnen. Die
Parameter diirfen dabei in ABAP Objects nicht geidndert werden. In
unserem Beispiel wird die Methode SET_ATTRIBUTES in den Un-
terklassen ergénzt und die geerbte Methode AUSGABE geiindert.

K *
* CLASS zcl buch DEFINITION *
K *

10.15 Vererbung und Polymorphie

589

CLASS zcl_buch DEFINITION INHERITING FROM
zcl medium.

PUBLIC SECTION.
METHODS: set attributes IMPORTING
im isbn TYPE zbestand tw-isbn
im titel TYPE zbestand tw-titel,
ausgabe REDEFINITION.
PRIVATE SECTION.
DATA: isbn TYPE zbestand tw-isbn,

titel TYPE zbestand tw-titel.
ENDCLASS.

CLASS zcl buch IMPLEMENTATION.
METHOD set attributes.
isbn = im isbn.
titel = im titel.
ENDMETHOD.
METHOD ausgabe.
WRITE:
/ 'Medium: Buch',6'ISBN: ',isbn,
' Titel: ',titel.
ENDMETHOD .
ENDCLASS.

CLASS zcl_cd DEFINITION INHERITING FROM
zcl medium.

PUBLIC SECTION.
METHODS: set attributes IMPORTING
im cdnr TYPE i
im titel TYPE zbestand tw-titel,
ausgabe REDEFINITION.
PRIVATE SECTION.

DATA: cdnr TYPE I,

titel TYPE zbestand tw-titel.
ENDCLASS.

CLASS zcl cd IMPLEMENTATION.
METHOD set attributes.

590 W™ 10 Ausblick: ABAP Objects

cdnr = im_cdnr.

titel = im titel.

ENDMETHOD.
METHOD ausgabe.

WRITE:

/ 'Medium: CD','CD-Nr.: ',cdnr, 'Titel:

',titel.

ENDMETHOD .
ENDCLASS.

*Das Programm soll je 2 Objekte der Klasse
*7ZCL _BUCH und der Klasse ZCL CD erzeugen. Danach
*s0ll eine Liste mit allen Objekten der Klassen
*7ZCL _BUCH und ZCL _CD ausgegeben werden. Die
*Ausgabe soll dabei immer tber die Methode
*AUSGABE der jeweiligen Klasse erfolgen.
DATA: r medium TYPE REF TO zcl medium,
r buch TYPE REF TO zcl buch,
r cd TYPE REF TO zcl cd.
START-OF-SELECTION.
CREATE OBJECT r_medium.
*Objekte erzeugen, Referenzen in der Tabelle
*it medien eintragen
*1. Buch
CREATE OBJECT r buch.
CALL METHOD r buch->set attributes EXPORTING
im isbn = '3827258863' im titel = 'SAP R/3'.
CALL METHOD r buch->neues medium hinzufuegen
EXPORTING im referenz = r buch.
*2. Buch
CREATE OBJECT r buch.
CALL METHOD r buch->set attributes
EXPORTING im isbn = '3827254388"'
im titel = 'Internet'.
CALL METHOD r buch->neues medium hinzufuegen
EXPORTING im referenz = r buch.

10.15 Vererbung und Polymorphie

591

*1. CD
CREATE OBJECT r cd.
CALL METHOD r cd->set attributes
EXPORTING im cdnr = '100'
im titel = 'Lieder'.
CALL METHOD r cd->neues medium hinzufuegen
EXPORTING im referenz = r_cd.
*2. CD
CREATE OBJECT r cd.
CALL METHOD r cd->set attributes
EXPORTING im cdnr = '101'
im titel = 'Songs'.
CALL METHOD r cd->neues medium hinzufuegen
EXPORTING im referenz = r_cd.

*Ausgabe aller Objekte im Ausgabeformat, das in
*der Methode AUSGABE der jeweiligen Unterklasse
*festgelegt ist durch Aufruf der Methode AUSGABE
*der Klasse ZCL MEDIUM (Oberklasse).

CALL METHOD r medium->ausgabe.

Ergebnis:

Programm YK10 VERERBUNG

Medium: Buch ISBN: 3827258863 Titel: SAP R/3
Medium: Buch ISBN: 3827254388 Titel: Internet
Medium: CD CD-Nr.: 100 Titel: Lieder
Medium: CD CD-Nr.: 101 Titel: Songs

Hinweis: Das Programm ist auf der Buch-CD unter dem Namen
YK10_Vererbung zu finden.

Hinweise zum Programm:

m Die Oberklasse ZCL_MEDIUM enthilt als Klassenattribut die
interne Tabelle IT_MEDIEN. In dieser Tabelle konnen Refe-
renzen auf Objekte der Klasse ZCL_MEDIUM und ihrer Unter-
klassen (ZCL._BUCH, ZCL_CD) gespeichert werden.

m Die Methode NEUES_MEDIUM_HINZUFUEGEN wird un-
mittelbar nach dem Anlegen eines Objektes aufgerufen und
trigt dessen Referenz in IT_MEDIEN ein. Die interne Tabelle
enthilt somit Referenzen zu Objekten der Klasse ZCL_BUCH
und ZCL_CD.

592 m 10 Ausblick: ABAP Objects

m Die Methode AUSGABE ist in den Unterklassen durch Rede-
finition so geédndert worden, dass sie die Attribute eines Objek-
tes, in einer fiir die jeweilige Klasse spezifischen Form, auf dem
Bildschirm ausgibt.

m In der Methode AUSGABE der Oberklasse wird fiir jede in der
internen Tabelle eingetragene Referenz (Zeiger auf ein Objekt
der Klassen ZCL_BUCH oder ZCL_CD) die Methode
AUSGABE des jeweiligen Objektes aufgerufen.

it_medien] Abb. 10.7
LOOP AT it_medien INTO r_referenz. Grafische
Refe- Inhalt v refcrciz
renzva- = Darstellung
: zeigt auf -
L R — Objelt der Abléufe
- Ohjr:;: e (1.Schleifendurchiauf) der Methode
1.Buch —1Buch CALLMETHOD METHOD ausgabe. AUSGABE der
r_referenn->ausgabe WVWRITE:
Ifwﬁiuﬁf BuchISBI: ' jsbn Oberklasse
el titel.
ENDMETHOD. ZCL_MEDIUM

Nedium: Buch ISBN: 3827258863 Titel: SAF R/

r_buch |[Adresse des

Objektes (2.Schleifendurchiaut)
2Buch ——»2Buch CALLMETHCD METHOD ausgabe.
r_referenn->ausgabe WRITE:
#'Medium: Buch' 1SBN: *jsbn,’
Titel ' titel.
ENDMETHOD.

Hedium: Buch ISEN: 3827254388 Titel: Internec

r_cd Adresse des

Objekles (3. Schleifendurchiauf)
1.CD —p.1.CD CALL METHOD METHOD ausgabe.
> r_referenn->ausgabe WRITE:
I Medium: CD''CD-Nr.
' cdnr,'Tiel: " titel.
ENDMETHOD.
Hedium: CD CD-Nr.: 100 Titel: Lieder
r_cd Adresse des
Objektes (4. Schleifendurchiauf)
2CD 1 2.CD CALLMETHOD METHOD ausgabe.

r_referenn->ausgabe VWRITE:
! ‘Medium: CD''CD-Nr.
' cdnr,'Titel: " ttel.
ENDMETHOD.

Nedium: CD CD-Nr.: 101 Titel: Songs

ENDLOOP

Wie in Abb. 10.7 zu sehen ist, reagieren die Objekte auf den Metho-

denaufruf CALL METHOD r_referenz->ausgabe, entsprechend ih- ‘90
rer Klassenzughorigkeit, unterschiedlich. Dieses Verhalten wird als V
Polymorphie bezeichnet.

10.15 Vererbung und Polymorphie ® 593

594

10.16 _
Kurzer Uberblick Giber GUI-Controls am
Beispiel des ALV-Grid-Controls

Die klassischen Controls, Tabstrip und TableControl, sind Software-
komponenten der Laufzeitumgebung, mit denen der Programmierer
komfortable Dynprooberflichen entwickeln kann. Dem gleichen
Zweck dienen die GUI-Controls. Das sind eigenstindige Software-
komponenten, die jedoch nicht Teil der ABAP-Laufzeitumgebung
sind. Sie werden zusammen mit der SAPGUI auf der Prisentations-
ebene installiert und laufen auch dort ab. Die Funktionalitidt der
GUI-Controls, wie z.B. das Blittern in Listen, findet vollstindig auf
der Prasentationsebene (Frontend) statt und entlastet somit die An-
wendungsebene. Allerdings ist die Netzbelastung hoher, weil grofe
Datenmengen zwischen Frontend und Applikationsserver transpor-
tiert werden miissen.

GUI-Controls sind nicht an den klassischen Datenstrom zwischen
Anwendungsebene und Prisentationsebene angeschlossen. Der Da-
tentransport findet tiber das sogenannte Control Framework (CFW),
das in diesem Buch nicht weiter behandelt wird, statt. Fiir jedes
GUI-Control existiert in der Klassenbibliothek eine globale Klasse.
Mochte der Programmierer ein GUI-Control in einem Dynpro be-
nutzen, legt er ein sogenanntes Stellvertreterobjekt der Klasse des
gewiinschten GUI-Controls an. Der Datenaustausch zwischen Stell-
vertreterobjekt auf der Applikations- und GUI-Control auf der Pri-
sentationsebene wird durch das CFW organisiert.

Tabelle 10.1 gibt Auskunft iiber bis zu Version 4.7 realisierte GUI-
Controls.

10 Ausblick: ABAP Objects

GUI-Control

Funktion

Toolbar-
Control

Picture-Control

HTML-Control

Textedtit-

Control

Tree-Control

ALV-Grid-
Control

Ermoglicht die Programmierung einer vom GUI-
Status unabhiéngigen Drucktastenleiste.

Stellvertreterklasse: CL_GUIL_ TOOLBAR

Damit konnen Sie Bilder mit den Formaten BMP,
JPG oder GIF in ihr Dynpro einbinden.
Stellvertreterklasse: CL_GUI_PICTURE

Erlaubt das Einbinden von HTML-Seiten.
Stellvertreterklasse: CL_GUI_HTML_VIEWER

Mit diesem Control konnen Sie einen Texteditor
mit den tiblichen Funktionen wie z.B. Suchen und
Ersetzen, Markieren, in ein Dynpro einbinden.

Stellvertreterklasse: CL_GUI_TEXTEDIT.

Hierarchische Zusammenhinge konnen mit die-
sem Control in Form einer Baumstruktur
(mehrspaltiger Baum oder Listenbaum) grafisch
dargestellt werden.

Stellvertreterklasse: CL_GUI_SIMPLE_TREE

Bietet die Moglichkeit, komfortable Tabellen zu
programmieren.

Stellvertreterklasse: CL_GUI_ALV_GRID

Abbilden eines GUI-Controls auf einem Dynpro (Prinzip)

Anders als ein klassisches Control kann ein GUI-Control nicht direkt
auf dem Dynpro platziert werden. Auf dem Dynpro wird im Layout-
editor lediglich ein Bereich fiir einen Container, der im Programm
mit dem GUI-Control verbunden wird, angelegt. Abbildung 10.8
stellt das Prinzip grafisch dar.

10.16 Kurzer Uberblick (iber GUI-Controls am Beispiel des ALV-

Grid-Controls

595

Abb. 10.8
Abbilden eines Oberfliche des Tréagerdynpros
GLZ},?:,Z%;S% Containerbereich
7 b
Container

(& (B (S [S&e A] i) (6]
I (T

Container sind Objekte einer Containerklasse. Die folgende Tabelle
enthélt die derzeit zur Verfiigung stehenden Containerklassen.

Containerklasse Kurzbeschreibung
CL_GUI_CUSTOM_ Die Objekte dieser Containerklasse
CONTAINER werden wie in Abb. 10.8 eingesetzt.
CL_GUI_DOCKING_ Die Containerbereiche von Containern
CONTAINER dieser Klasse sind an die Ridndern

(links, rechts, oben oder unten) von
Dynpros angeheftet (angedockt)

CL_GUI_SPLITTER _ Der Container kann horizontal und/oder

CONTAINER vertikal geteilt werden. In jedem Teil
kann dann ein GUI-Control geladen
werden.

CL_GUI_DIALOGBOX __ Die Containerbereiche von Containern

CONTAINER dieser Klasse sind eigenstindige amo-

dale Dialogfenster.

596 ® 10 Ausblick: ABAP Objects

Vorgehensweise: Anzeigen von Daten mit dem ALV-Grid-Control

Voraussetzungen:
m Es wurde eine interne Tabelle mit den im im ALV-Grid-Control
anzuzeigenden Daten geladen.

m Der Zeilentyp der internen Tabelle ist im ABAP-Dictionary de-
finiert. Das vereinfacht das Anlegen des ALV-Grid-Controls.

Laden Sie das Dynpro, auf dem das GUI-Control platziert werden
soll, in den grafischen Layouteditor. Legen Sie den Containerbereich
entsprechend der folgenden Abbildung an.

[screen Pasnter: Anlegen [sarcen pamiter: Andern Custom Control] scrren Puinter; Al S Tal |
Tmoro Bewbeten Sorngen Hismitel Unfeld e - o 14 .
@ B CO@ 0H vam|<z & 8 Ce@ 0N xam @
Y@ o B@ 4P @W«:T:‘ =
Hame | Hame | e
b Guckrdo
2]; E R R SN
ot [[] - spte [T e [F
3 ® ("
= =3 Fhilode it [=]
e 5 i
E E — =
B B Pt 2 [
ﬂﬁ[i ™ hosieonid Sulmmnl_
B
¥ :
L L7

o

Klicken Sie im Layouteditor das Werkzeug ,,Custom Control*.

N

Schieben Sie den Mauszeiger, ohne eine Maustaste zu driicken,
an die linke obere Ecke des Containerbereiches.

3. Ziehen Sie den Minirahmen, mit gedriickter linker Maustaste,
bis zum unteren rechten Rand des kiinftigen Bereiches.

4. Lassen Sie die Maustaste wieder los. Doppelklicken Sie in den
Containerbereich. Tragen Sie in dem sich daraufhin 6ffnenden
Attributefenster einen Namen fiir den Containerbereich ein.

Deklarieren Sie im ABAP-Programm je eine Referenzvariable fiir
den Container und das ALV-Grid-Control.

Beispiel fiir eine Referenz auf ein Objekt der Klasse
CL_GUI_CUSTOM_CONTAINER:

DATA: my container TYPE REF TO
cl gui custom container.

Beispiel fiir eine Referenz auf ein Objekt der Klasse
CL_GUI_ALV_GRID:

10.16 Kurzer Uberblick (iber GUI-Controls am Beispiel des ALV-
Grid-Controls

w597

DATA: my alv TYPE REF TO
cl gui alv grid.

Legen Sie ein PBO-Modul an, indem das Containerobjekt und das
ALV-Grid-Objekt erzeugt wird. Das Containerobjekt wird beim An-
legen mit dem Containerbereich, das ALV-Grid-Objekt mit dem
Container verbunden. Dem ALV-Grid-Objekt wird die interne Ta-
belle mit den abzubildenden Daten und der Zeilentyp, der idealer-
weise im ABAP-Dictionary definiert ist, {ibergeben. Orientieren Sie
sich an der folgenden Syntax:

MODULE init create control 0130 OUTPUT.
*Container und ALV Grid Control nur einmal
*anlegen
IF my container IS INITIAL.
*Container MY CONTAINER anlegen
CREATE OBJECT my_ container
EXPORTING
*Als Exportparameter wird der Name der Contai
*nerbereiches MY CC angegeben
container name = 'MY CC'
EXCEPTIONS
cntl error =
cntl system error =
create error =
lifetime error =
lifetime dynpro dynpro link =
others =
IF sy-subrc <> 0.
*Container konnte nicht angelegt werden
MESSAGE
ENDIF'.
*ALV Grid Control angelegen, ebenfalls nur
*einmal und nicht bei jedem PBO-Durchlauf.
CREATE OBJECT my alv
EXPORTING
*Als Exportparameter wird der Name der
*Containerobjektes MY CONTAINER angegeben
i parent my container
EXCEPTIONS
error_cntl create =
error _cntl init
error cntl link =
error _dp create =

o U W N

Sw N

598 ® 10 Ausblick: ABAP Objects

others = b.
IF sy-subrc <> 0.
*ALV Grid Control konnte nicht angelegt werden
MESSAGE
ENDIF.
*Methode SET TABLE FOR FIRST DISPLAY aufrufen.
*Das ALV-Grid-Objekt wird mit der internen
*Tabelle, die die anzuzeigenden Daten enthalt,
*und dem Zeilentyp, der z.B. die Spaltennamen
*enthalt, verbunden.
CALL METHOD my alv->set table for first display
EXPORTING
*der Zeilentyp wird als Exportparameter
*ibergeben
1 _structure name = '<Zeilentyp>'
CHANGING
*interne Tabelle als CHANGING-Parameter
*Uibergeben
it outtab = <int. Tabelle>
EXCEPTIONS
invalid parameter combination =
program _error =
too many lines =
OTHERS =
IF sy-subrc <> 0.
*Methode konnte nicht ausgefiihrt werden
MESSAGE
ENDIF.
ELSE.
*Existiert beim PBO-Durchlauf das ALV-Grid-
*Objekt bereits, wird lediglich die Anzeige
*aktualisiert.
CALL METHOD my alv->refresh table display.
ENDIF.
ENDMODULE .

DSw N

Erinnern Sie sich an die Aufgabe in Kapitel 7, bei der das Ergebnis
einer Literaturrecherche als Liste und als TableControl ausgegeben
wurde? In diesem Programm haben Sie schon die Ausgabe als
ALV-Grid-Control vorbereitet. In folgender Aufgabe wird das Pro-
gramm vervollstindigt.

1. Kopieren Sie das Programm SAPMYKO07_3_TW nach
SAPMYKI10_1. Aktivieren Sie das Programm und legen Sie

10.16 Kurzer Uberblick (iber GUI-Controls am Beispiel des ALV-
Grid-Controls

599

600

den Transaktionscode ZK10_1 zu diesem Programm an (Start-
dynpro 100).

. Legen Sie das Dynpro 130 mit einem Containerbereich

MY_CC an.

Legen Sie einen neuen GUI-Status (Namensvorschlag
DYNPRO_0130) an. Programmieren Sie in diesem Status nur
die Funktionstaste EXIT. Rufen Sie den Status im Dynpro 130
im Modul STATUS_0130 auf.

Ersetzen Sie im PAI-Modul USER_COMMAND_0100 die
Anweisung MESSAGE 1008(zlib) durch die Anweisung CALL
SCREEN 130.

Legen Sie im Top-Include je eine Referenzvariable fiir ein Ob-

jekt der Klasse CL_GUI_ALV_GRID und der Klasse

CL_GUI_CUSTOM_CONTAINER an. Auflerdem benotigen
Sie eine interne Tabelle mit Bezug auf die Dictionary-Struktur
ZST _TC1_TW

DATA: my alv TYPE REF TO cl gui alv grid,
my container
TYPE REF TO cl gui custom container,
it tel tw TYPE TABLE OF zst tcl tw.

Rufen Sie im PBO des Dynpros 130 das bereits vorhandene

‘ Modul LADEN_INT TAB auf. In diesem Modul wird die in-

terne Tabelle IT_ZBESTAND mit den durch die Selektionskri-
terien identifizierten Daten der Tabelle ZBESTAND geladen.

Programmieren Sie Dynpro 130 nach dem Aufruf des Moduls

LADEN_INT _TAB den Aufruf eines Moduls (Namensvor-

schlag: LADEN_ALV_INT_TAB), in dem die Daten der inter-
nen Tabelle IT_ZBESTAND in die namensgleichen Felder der
Tabelle IT_ TC1_TW gespeichert werden. Das Feld Name der
internen Tabelle IT_TC1_TW wird mit dem Namen des Au-
tors1 aus Datenbanktabelle ZAUTOREN geladen. Diese Tabel-
le und der zugehorige Zeilentyp ZST _TC1_TW wird spater an
das ALV-Grid-Control iibergeben.

Programmieren Sie ein Modul (Namensvorschlag:
INIT_CREATE_CONTROL_0130) in dem das Containerob-
jekt und das ALV-Grid-Obijekt angelegt werden. Ubergeben Sie
an das ALV-Grid-Objekt die interne Tabelle IT_TC1_TW und
deren Zeilentyp ZST_TCI1_TW. Orientieren Sie sich dabei am
Syntaxbeispiel der Vorgehensweise ,,Anzeigen von Daten mit
dem ALV-Grid-Control“. Rufen Sie dieses Modul im PBO des
Dynpros 130 auf.

10 Ausblick: ABAP Objects

9. Programmieren Sie das PAI-Modul
AT_USER_COMMAND_130 wie folgt:

MODULE user command 0130 INPUT.
LEAVE TO SCREEN 0100.
ENDMODULE .

Bemerkung:

Das Modul muss ohne die Auswertung des OK_CODE-Feldes
auskommen. Aufgrund der anderen Arbeitsweise der GUI-
Controls wird dieses Feld nicht geladen. Die Alternative ist die
Ereignissteuerung, die aber im Rahmen dieser kurzen Einfiih-
rung in ABAP-Objects nicht behandelt wird.

Losung: SAPMYKI10_1

Losung:

* g&—————- - -\ -\ -\ = *
*& Include MYK10 1TOP *
* g&—————-———-—-— -\ -\ -\ *

PROGRAM sapmykl10O 1 NO STANDARD PAGE HEADING.
TABLES: zbestand tw,zst tcl tw.
DATA: my alv TYPE REF TO cl gui_alv_grid,
my container TYPE REF TO
cl gui custom container,
it_tcl_tw TYPE TABLE OF zst tcl_tw.

*************nicht geanderter Quelltext****‘k*‘k****‘k*********

*& ___ *
*& Ablauflogik Dynpro 0130 *
*& ___ *

PROCESS BEFORE OUTPUT.

MODULE status 0130.

MODULE laden_ int tab.

MODULE laden_alv_int tab.

MODULE init create control 0130.

PROCESS AFTER INPUT.
MODULE user command 0130.

*& ___ *
*& Module STATUS 0130 OUTPUT *
*& ___ *

MODULE status 0130 OUTPUT.
SET PF-STATUS 'DYNPRO 0130°'.

10.16 Kurzer Uberblick (iber GUI-Controls am Beispiel des ALV-
Grid-Controls

601

SET TITLEBAR 'DYNPRO 0130'.

ENDMODULE.

e ———— *
*& Module laden alv_int tab OUTPUT *
e ————— *

MODULE laden alv_int tab OUTPUT.
REFRESH it tcl tw.
LOOP AT it zbestand INTO wa_ zbestand.
MOVE-CORRESPONDING wa zbestand TO zst tcl tw.

SELECT SINGLE * FROM zautoren tw INTO
CORRESPONDING FIELDS OF zst tcl tw

WHERE autorennr = zst tcl tw-autorl.

zst tcl tw-verfuegbar =
zst tcl tw-bestand - zst tcl tw-ausgeliehen.

APPEND zst tcl tw TO it tcl tw.

ENDLOOP.
ENDMODULE.
e ————— *
*& Module init create control 0130 OUTPUT *
e —————— *

MODULE init create control 0130 OUTPUT.
*Container und ALV Grid Control nur einmal
*anlegen
IF my container IS INITIAL.
CREATE OBJECT my_ container
EXPORTING
container name = 'MY CC'
EXCEPTIONS
cntl error =
cntl system error =
create error =
lifetime error =
lifetime dynpro dynpro link =
others =
IF sy-subrc <> 0.
*Container konnte nicht angelegt werden
MESSAGE ID sy-msgid TYPE sy-msgty
NUMBER sy-msgno
WITH sy-msgvl sy-msgv2 sy-msgv3 sy-msgvié.

o U W N

602 W™ 10 Ausblick: ABAP Objects

ENDIF.

CREATE OBJECT my alv
EXPORTING
1 _parent = my container
EXCEPTIONS
error_cntl create
error cntl init =
error cntl link
error dp create
others =
IF sy-subrc <> 0.
*ALV Grid Control konnte nicht angelegt werden
MESSAGE ID sy-msgid TYPE sy-msgty
NUMBER sy-msgno
WITH sy-msgvl sy-msgv2 sy-msgv3 sy-msgvié.
ENDIF.
*Methode SET TABLE FOR FIRST DISPLAY aufrufen
CALL METHOD my alv->set table for first display
EXPORTING

Il
g W N e

i structure name = 'zst tcl tw'
CHANGING
it outtab = it tcl tw
EXCEPTIONS

DSw N

invalid parameter combination

program error =

too many lines =

OTHERS =
IF sy-subrc <> 0.

*Methode konnte nicht ausgefiihrt werden
MESSAGE ID sy-msgid TYPE sy-msgty
NUMBER sy-msgno
WITH sy-msgvl sy-msgv2 sy-msgv3 sy-msgvié.

ENDIF.
ELSE.
CALL METHOD my alv->refresh table display.
ENDIF.
ENDMODULE .

10.16 Kurzer Uberblick (iber GUI-Controls am Beispiel des ALV-
Grid-Controls

603

Anlage

Installation des Ubungsszenarios

Die Dateien R900115.MBS, D900115.MBS und K900115.MBS der
Buch-CD enthalten die Entwicklungsklasse (Paket) ,,Y_ABAP_
TRAINING_TW*, in der sich die Losungen der Ubungsaufgaben
befinden. Die Ubernahme der Entwicklungsklasse und der dazuge-
horigen Entwicklungsobjekte in Ihr R/3-System erfolgt mittels eines
Transportes. Dazu sind zunéchst die Dateien in das Transportver-
zeichnis des R/3-Systems zu kopieren.

Datei (auf Buch-CD) R/3-Zielverzeichnis

R900115.MBS <LW>:\<R3-System>\trans\data
D900115.MBS
K900115.MBS <LW>:\<R3-System>\trans\cofiles

Wenn Sie Zugang zum SAP-R/3-Server haben bzw. mit dem Mini-
SAP arbeiten, konnen Sie den Kopiervorgang wie gewohnt durch-
fiilhren. Anderenfalls gehen Sie entsprechend der Vorgehensweise
,,Upload Transportdateien vor.

Bei einem Transport in ein ,,echtes* R/3-System sollten Sie vorher
Thren Systemadministrator konsultieren.

Vorgehensweise: Upload Transportdateien
1. Legen Sie die Buch-CD in Ihr CD-Laufwerk ein.

2. Starten Sie Ihr R/3-System, rufen Sie die Transaktion SE38
auf.

3. Legen Sie das Programm ZTP_UPLOAD an. Gehen Sie dabei
entsprechend der nachfolgenden Abbildungen vor.

Installation des Ubungsszenarios

605

Abb. A.1
ABAP Editor:
Einstiegsbild

Abb. A.2
ABAP Editor:
Programm-
eigenschaften
festlegen

Abb. A.3
Programm als
lokales Objekt

sichern

606 ™=
]

ABAP Editor: Einstieg
| |CB Debugging ”(3 it Variante |E

= eUISChn

Jrigin che Eia)

Anwendung
Berechtigungsgruppe
Logische Datenbank
Selektionshildvarsion
] Editorsperre [#] Fastpunktarithmetik
[Start iiber Variants

Entwicklungsklasse
Verantwortlicher

Originalsystern
Originalsprache

| Lokales Objekt| 2 Sperribersicht

Installation des Ubungsszenarios

4. Laden Sie die Datei ZTP_UPLOAD der Buch-CD in einen
Texteditor und kopieren Sie den gesamten Text in die Zwi-
schenablage.

5. Verzweigen Sie wieder in den ABAP-Editor und fiigen Sie
den Quelltext aus der Zwischenablage ein.

eld Systern Hilfe Abb. A.4
OME o 0oe @mE Quelltextaus
. - Zwischenablage
ABAP Editor: Report ZTP_UPLOAD1 d@ndern einfiigen

G| s gatEe | &S Y E | @ Muster PretlyPrinter

Report ZTF_UPLOADL aktiv

(] nlml 2]e (Gales) @lE)
REPORT ztp_wpload NO STANDARD PAGE HEADING.
: Dowmload Daceien vom Praszentacionsserver zum R/3-Transportverzeichnis
TYPES: BEGIN OF it_type,

zeichen TYPE x,
END OF it_type.

DATA: itab TYPE TABLE OF it_type,
wa TYPE it_type,
pach(s0),
laenge TYPE i,
dirname (75) TYPE c,
quelle_data_r TYFE rlgrap-filename,
quelle data d TYPE rlgrap-filename,
quelle_cofile TYPE rlgrap-filename,

Achten Sie darauf, dass der Anfang Thres Programms so aus-
sieht, wie in Abb. A.4. Loschen Sie gegebenenfalls die zusétz-
lich entstandene Zeile ,,REPORT ztp_upload.*.

Sichern Sie das Programm (Symbol ,,Diskette*).

Fiihren Sie das Programm aus (Menii Programm -> Testen).
Tragen Sie im Einstiegsbild das Laufwerk der Buch-CD ein.
Die anderen Eingabefelder miissen nur im Ausnahmefall ge-
dndert werden.

Klicken Sie das Symbol ,,Ausfiihren®.

Installation des Ubungsszenarios ™ 607

Abb. A.5
Programm
ZTP_UPLOAD
ausfiihren

Abb. A.6
Upload-Protokoll

608 ™=

(] 2/98 €@ DHE Y000 BR @@

/
Uﬁ ad Transportdateien
@

Ri3-Server-T is fir D
BINFILE1 Mransidata

RI3-Server-T is far
BINFILEZ Atrangicofilest

Laufwark der Buch-CD
QUELL_LW @

8. Als Ergebnis wird Thnen ein Transportprotokoll angezeigt.

3 dH @ BHE BDhoo HE
Upload Transportdateien

Dacei
. \transidata\R900115.HES
Lénge 431.370 Byte erfolgreich gespeichert

Datei
.\trans\daca\D900115.MBS
Lange 17.093 Byte erfolgreich gespeichert

Datei
.\trans\cofiles\K900115. MBS
Lénge 308 Byte erfolgreich gespeichert

9. Sie konnen mit der Transaktion AL11 (SAP-Directories) iiber-
priifen, ob die 3 Dateien im Transportverzeichnis vorhanden
sind. Doppelklicken Sie im Einstiegsbild dieser Transaktion
den Eintrag ,DIR_TRANS*“ und danach ,DATA® bzw.
,COFILES“ und kontrollieren Sie, ob die Dateien
R900115.MBS, D900115.MBS und K900115.MBS in den
Verzeichnissen zu finden sind.

Nach dem erfolgreichen Upload der Transportdateien in das Trans-
portverzeichnis konnen Sie den Transport der Entwicklungsobjekte
in Thr R/3-System entsprechend der Vorgehensweise ,, Transport aus-
fiihren*.

Installation des Ubungsszenarios

Vorgehensweise: Transport ausfiihren

1. Starten Sie die Transaktion STMS (Transport Management
System)

g Impore nlleeelama&aenaalmlel
Arbeitgvorral F&

| Srsterne Urnsch+Fé
& Transportwege UrnscheFT

Umsch+F3

2. Wihlen Sie im Einstiegsbild das Menii Ubersicht = Importe.

< IH 0@ QHE NoD PR @B
Importiibersicht: Domane DOMAIN_MBS
Qay BEs8 &6

5 Anzahl Importqueues: 1

Doppelklicken Sie in der Importiibersicht Thr R/3-System.

4. Waibhlen Sie im Folgebild das Menii Zusitze - Weitere Auf-
trige = Anhingen.

| EI a H || Lepende StrgeUmscheFd l

Importqueue: System MBS

1&""‘[@4?“[0’3‘1_:::&"“;“”9:9“ fremiden Gruppen suthe
Imiportiente Aufirhge 1Gschen

u Aufrrige far MBS: O 08.08.2004 19:39:26

= =]

Tragen Sie im folgenden Dialogfenster in das Eingabefeld
» L ransportauftrag” die Zeichenkette MBSKO00115 ein (auch
wenn Thr R/3-System nicht MBS heif3t).

Installation des Ubungsszenarios

Abb. A.7
Mendauswahl!
im Einstiegsbild
des Transport
Management
Systems

Abb. A.8
Auswabhl der Im-
portqueue in der
Importiibersicht

Abb. A.9
Mendauswahl in
der Importqueue

" 609

Abb. A.10
Eintragen des
Transport-
auftrages

Abb. A.11
Auslésen des
Imports

Abb. A.12
Import beginnen

610 ™=
[
(]

uwbsk900115
P ——

Beantworten Sie die folgende Sicherheitsabfrage ,,Transport-
auftrag MBSK900115 an Importqueue ... anhidngen* mit ,,Ja*.

Wihlen Sie, falls moglich, das Menii Queue —> Offnen. Sie
miissten jetzt folgendes Bildschirmbild erzeugt haben:

Importqueue: System MBS

QavxaTe ¥R | ORN ES @B

Aufirag imporieren_ CH1sF11
B huftcage tor MBS: 1 00.08, 2004 20:10:15
Wummer | Auftrag Inhaber Furztext St
1 | EETIENE | scusR ABAP-Trainingabush Y

Stellen Sie den Cursor in den Transportauftrag und klicken Sie
die Schaltfldche ,,Auftrag importieren.

Tragen Sie im Folgebild als Zielmandanten den Mandanten
ein, an dem Sie angemeldet sind.

@ Sofortstart

O Mit Startzeit
geplanter Start 08.08.2004 (O 20:23:39
kein Startnach @ @ |
() Mach Ereignis
Ereignis

Parameter

vaax

Installation des Ubungsszenarios

Index

ABAP-Anweisungen

APPEND 193
CALL FUNCTION 349, 350
CALL SCREEN 358, 418
CALL SELECTION SCREEN
433
CALL SUBSCREEN 432
CASE-Anweisung 226
CHAIN 409
CHANGING 265, 267
CLEAR 294
COMMIT WORK 511, 512,
516
COMMIT WORK AND
WAIT 517
CONDENSE 177
CONSTANTS 166
CONTROLS 448
TYPE TABLEVIEW 448
DATA 160
DELETE 206, 502
DESCRIBE 215
DIV 170
DO n TIMES-Schleife 230
DO-Schleife 229
FIELD 406
FIELD-SYMBOLS 167
FORM 264
FORMAT 151
FREE 214
GET CURSOR FIELD 315
HIDE 292
IF-Anweisung 225
INCLUDE 270
INSERT 194, 494
LEAVE TO LIST-
PROCESSING 440

LEAVE TO SCREEN 358,
419

LIKE 267

LOOP 210

MATCHCODE 248

MESSAGE 335

MOD 170

MODIFY 202, 501

MODIFY CURRENT LINE
312

MOVE 213

OVERLAY 177

PARAMETERS 248

PERFORM 264
PERFORM <up> ON

COMMIT 512

RAISE 346

READ 195

READ LINE 309

REFRESH 214

REPLACE 175

SEARCH 175

SELECT Siehe SELECT

SELECT-OPTIONS 250

SET TITLEBAR 298

SET-PF-STATUS 305

SHIFT 176

SKIP 137

SORT 214

SORT (dyn. sortieren einer int.
Tabelle) 316

SUPPRESS DIALOG 44

Syntax von ~ 136

TABLES 372

TYPES 160

ULINE 137

UPDATE 496

USING 265

WHILE-Schleife 232

Index

611

612

WINDOW STARTING AT...
295
WRITE 143
WRITE ... AS CHECKBOX
308
WRITE ... AS ICON 281
ABAP-Dictionary 79
Datenbanktabelle 82
Datenelement 82
Doméne 82
Sperrobjekt 84
Struktur 83
Suchhilfe 83
Tabellentyp 83
View 82
ABAP-Objects 564
Attribute 566
Externer Zugriff 575
Control Framework 594
GUI-Controls 594
Klassen 567
Definitionsteil 567
globale Klassen 584
Implementationsteil 568
Konstruktor 579
Methoden 566
Aufrufe 573
Changing-Parameter 571
Exporting-Parameter 571
Funktionale Methoden 576
Importing-Parameter 571
Instanzmethode 570
Klassenmethode 570
Parameter 571
Redefinition 589
Returning-Parameter 571
statische Methode 570
Objekte 565
Anlegen 572
16schen 581
Polymorphie 593
Redefinition 589
Referenzvariable 572
in interne Tabelle speichern
581
verbotene Anweisungen 565
Vererbung 588
Ablauflogik 382
Adressiibergabe 265
Aktualparameter 264
AND 233

Index

Anderungsebenen 6
Erweiterungen 6
Kundenentwicklungen 6
Modifikationen 7

Anderungsstrategien 8
mandantenabhéngige Daten 8
mandantenunabhéngige

Daten 9

Ankreuzfelder 376

Anwendungsdaten Siehe
Datenstruktur (R/3-System)

Anwendungsschicht 2

APPEND 193

Append-Struktur 97

Arbeitsbereich 193

Arithmetische Operationen 168

Arithmetische Operatoren 168

ARRAY-Fetch 243

asynchrone Verbuchung 517

AT LINE-SELECTION 140, 286

At Selection-Screen 137, 139

AT USER-COMMAND 139,
286, 306

Attribute 566
Externer Zugriff 575

Aufgaben
Kapitel 10

Datenausgabe mit ALV-
Grid-Control 599
Globale Klassen anlegen
588
Lokale Klassen anlegen 577
Konstruktor verwenden 580
Methoden aufrufen 577
Referenzen in interne
Tabelle speichern 582
Kapitel 3
Datenelemente anlegen 92
Dominen anlegen 88
Fremdschliisselbeziechungen
definieren 118
Suchhilfen anbinden 124
Suchhilfen anlegen 121
Tabellen anlegen 114
Kapitel 4
ARRAY-Fetch 245
FORMAT 154
globale Datentypen 224
interne Tabelle 217
Kettenanweisungen 147
Parameters 249

Programm YKO4DBAS
anlegen 140

Select-Options 253

Selektionstexte/Rahmen
257

Strukturen 181

Textsymbole 150

WRITE 145

Kapitel 5

Andern des Listenpuffers
313

dynamische Zeilenauswahl
(Teil 1) 308

dynamische Zeilenauswahl
(Teil 2) 311

dynamisches Sortieren der
Ausgabeliste 317

Funktionsbaustein anlegen
und einbinden 350

GUI-Titel anlegen und
einbinden 299

Ikonen in Listen 282

Includes anlegen 273

Nachrichtenausgabe 337

PF-Status anlegen und ein-
binden 306

Programm debuggen
(Teil 1) 326

Programm debuggen
(Teil 2) 328

Programm debuggen
(Teil 3) 330

Programm kopieren 272

Unterprogramme anlegen
und einbinden 277

Verzweigungsliste (Teil 1)
287

Verzweigungsliste (Teil 2)
288

Verzweigungslisten (Teil 3)
292

Verzweigungslisten (Teil 4)
293

Verzweigungsliste in
modaler Dialogbox 296

Kapitel 6

Bedingte Modulausfiihrung
417

Drucktasten programmieren
393

Dynamische Anderung von
Dynproelementattributen
404

Dynamische Dynproaufrufe
420

Dynpro-Layout anlegen
380

Ein-/Ausgabefelder zu PBO
laden 386

Eingabepriifungen 397

GUI-Status und GUI-Titel
in Dynpros setzen 397

Modulpool anlegen 352

Transaktionscode anlegen
355

Kapitel 7

Listenausgabe auf Dynpros
440

Selektionsbild als Subscreen
einsetzen 434

Subscreendynpro einbinden
(dynamisch) 465

Subscreendynpro einbinden
(statisch) 461

Table Control (Auswertung
markierte Zeile) 460

Table Control
(Datenausgabe) 455

Kapitel 8

Biindelung durch
Unterprogramme 513

Datenbankinderungen pro-
grammieren 506

Datensatzsperren 16schen
527

Datensatzsperren setzen
527

Programm zur Ausleihe und
Riickgabe von Biichern
(Komplexe Wiederho-
lung) 536

Programm zur Kundenpfle-
ge (Komplexe Wiederho-
lung) 553

Sperrobjekt anlegen 525

Sperrtabelle anzeigen 530

Tabstrip mit dynamischer
Blitterfunktion 482

Ausgabe von Texten 140
Auswahlknopfgruppe 373

Index

613

614

automatische Aufzeichnung von
Anderungen 12,18, 43

B

Bedingte Verzweigungen 225
Belieferungsweg Siehe
Transportweg
Benutzeraktionen
Reagieren auf ~ 305
Benutzerdaten Siehe
Datenstruktur (R/3-System)
Biindelung
der Datenbankénderungen 511
durch Unterprogramme 512
durch Verbucherbausteine 515

Cc

CALL SCREEN 358, 418

CALL SELECTION-SCREEN
433

Call-by-reference Siehe Wert-
iibergabe

Call-by-value Siehe Wertiiber-
gabe

Call-by-value-and-result Siehe
Wertiibergabe

CASE-Anweisung 226

CFW Siehe Control Framework

CHANGING 265, 267

Client-Server-Architektur 1
Hardwareorientierte Sicht 2
softwareorientierte Sicht 1

Clustertabelle 95

COMMIT 508, 509

COMMIT WORK 511, 512,516

CONDENSE 177

CONSTANTS 166

Control Framework 594

CONTROLS 448

Customizing 5, 8, 12, 15, 16, 19,
20, 21, 23, 27,43
Projekt-IMG 20
Referenz-IMG 19

Customizingauftrag 12, 16, 17,
18, 25, 26, 27, 28, 30, 43, 50,
61

Customizingdaten Siehe
Datenstruktur (R/3-System)

Index

D

DATA 160
Datenbankindernde Anweisungen
Datenbankschicht
COMMIT WORK 511,513
DELETE 502
INSERT 494
MODIFY 501
UPDATE 496
Datenbank-LUW 509
Datenbanktabelle 82
Datenelement 82
Datenobjekt 158
Deklaration 158
Deklarationsbeispiele 161,
164, 165
Datenstruktur (R/3-System) 3
Anwendungsdaten 5
Benutzerdaten 5
Customizingdaten 5
Mandant 4
mandantenunabhéngiges
Customizing 5
Repository 5
Datentyp 156
Eingebaute Datentypen 156
global 220
Unvollstindige Datentypen
156
Vollstindige Datentypen 156
Datumsarithmetik 174
Debugger 323
Breakpoint setzen / 16schen
324
Programm debuggen 325
interne Tabellen im
Debugger 330
Strukturen im Debugger 328
Start des Debuggers 323
DELETE 206, 502
Dequeue-Funktionsbaustein 522
DESCRIBE 215
DIV 170
DO n TIMES-Schleife 230
Domain Controller 44, 48
Domine 82
DO-Schleife 229
Drucktasten 378
Dynpro
Ablauflogik 355, 382

Bedingte Modulaufrufe 414
ON CHAIN-INPUT 416
ON CHAIN-REQUEST

416
ON INPUT 416
ON REQUEST 416

Bestandteile 355

Dynamische Anderung der
Dynproelementattribute
399

Dynproaufrufe 418, 419

Dynproelemente
Ankreuzfelder 376
Auswahlknopfgruppe 373
Datentransport 368
Drucktasten 378
Ein-/Ausgabefelder 368
Gruppenrahmen 363
Statusikonen 365
Textfelder 362

Eingabepriifungen
Einzelfelder priifen 406
mehrere Felder priifen (Ver-

arbeitungskette) 409

Funktionstypen 414

GUI-Status 396

GUI-Titel 396

Layout 356

OK-Feld 390

PAI 356
PAl-auslosende Benutzerak-

tionen 388

PBO 356

Process After Input 356

Process Before Output 356

SCREEN 399

sy-ucomm 390

Dynproaufruf
dynamisch 357
statisch 357
Dynproexit Siehe Erweiterungen
Dynprofolgen
CALL SCREEN 358
LEAVE TO SCREEN 358
Dynprosprache 382

E

Ein-/Ausgabefelder 368
Eingebaute Datentypen 156
End-of-Page 140

End-of-Selection 139

Enqueue-Funktionsbaustein 522

Entwicklungsklasse 43,51, 52,
53, 54,55, 56, 59

Entwicklungssystem 9, 11, 40,
44, 46, 47

Ereignisblocke 137
in Verzweigungslisten 286

Erweiterungen Siehe auch
Anderungsebenen
Dynproexit 7
Funktionsbausteinexit 7
Meniiexits 7

F

Feldsymbol 167, 196, 197, 199,
200, 202, 204, 205

Festpunktarithmetik 170

FIELD-SYMBOLS 167, 197,
200, 202, 204, 205

FORM 264

Formalparameter 264

FORMAT 151

FREE 214

Freigabe
Customizingaufgabe 27
Customizingauftrag 28
Workbenchaufgabe 58
Workbenchauftrag 40, 58

Fremdschliissel 101

From 236

Funktionsbaustein 339

Funktionsbausteinexit Siehe
Erweiterungen

Funktionscodes und ihre Wirkung
303

Funktionsgruppe 340

Funktionstyp 414

G

Ganzzahlarithmetik 170
GET CURSOR FIELD 315
Gleitpunktarithmetik 171
Globale Datentypen 220
Grundaufbau ABAP-Programm
136
Ereignisblocke 137
globaler Deklarationsteil 137
prozeduraler Teil 137

Index

615

Unterprogramme 138
Gruppenrahmen 364
GUI-Controls 594
GUI-Status 297, 396

Funktionsprinzip 299
GUI-Titel 297, 396

H

HIDE-Bereich
HIDE 292
Prinzip 291

Icons 281
IF-Anweisung 225
Ikonen 281
Import 39, 40, 41, 42, 62
Importqueue 40, 41, 42, 56, 58,
61, 62
INCLUDE 269, 270
Einbindung in das Laufzeitob-
jekt 270
INSERT 194, 494
interaktive Listen Siehe Verzwei-
gungslisten
Interne Tabellen 186
Anlegen 189
APPEND 193
Arbeitsbereich 193
DELETE 206
DESCRIBE 215
FREE 214
INSERT 194
LOOP 210
mit Bezug zum ABAP-Dict.
192
mit implizitem Tabellentyp
190
mit lokalem Tabellentyp 189
MODIFY 202
MOVE 213
READ 195
REFRESH 214
SORT 214
Standard Table 187
Tabellenarten 187
Tabellenoperationen 212
Zeilenoperationen 192
INTO 236

Index

INTO CORRESPONDING
FIELDS OF CORRESPON-
DING FIELDS OF 239

INTO TABLE 243

K

Kettenanweisungen 147
Klassen 567
globale Klassen 584
Kommetare 146
Konsolidierungsweg Siehe
Transportweg
Konstruktor 579
Kontrollstrukturen 225
Bedingte Verzweigungen 225
CASE-Anweisung 226
DO n TIMES-Schleife 230
DO-Schleife 229
IF-Anweisung 225
Programmschleifen 228
WHILE-Schleife 232
Kostanten 166
Kundenentwicklungen Siehe An-
derungsebenen

L

Laufzeitobjekt 270
Layout Siehe Dynpro
LEAVE TO LIST-PROCESSING
440
LEAVE TO SCREEN 358, 419
Lebensdauer von Datenobjekten
267
LIKE 267
Listenausgabe auf Dynpros 437
Listenpuffer
Lesen im Listenpuffer 309
Listenpuffer andern 312
Listensystem 285
Load-of-Program 139
Logische Ausdriicke 232
AND 233
logische Operatoren 233
NOT 233
OR 233
Vergleichsoperatoren 232
Verkniipfungsoperatoren 233
Verkniipfungsregeln 233
logische Operatoren 233

LOOP 210
LUW
Datenbank-LUW 509
Datenbank-Rollback 508, 509,
510
SAP-LUW 510, 511

Mandant Siehe Datenstruktur
(R/3-System)
Mandantendeklaration Siehe
Vorgehensweise
Mandantenkopie Siehe
Vorgehensweise
mandantenunabhéngiges
Customizing Siehe
Datenstruktur (R/3-System)
MATCHCODE 248
Meldungen Siehe Nachrichten
Meniiexit Siehe Erweiterungen
Methoden 566
Aufrufe 573
Changing-Parameter 571
Exporting-Parameter 571
Funktionale Methoden 576
Importing-Parameter 571
Instanzmethode 570
Klassenmethode 570
Parameter 571
Redefinition 589
Returning-Parameter 571
statische Methode 570
MOD 170
MODIFY 202, 501
MODIFY CURRENT LINE 312
Modul 383
Modularisierung 260
durch Includes 260
durch Unterprogramme 260
MOVE 213

N

Nachrichten 331
MESSAGE-Anweisung 335
Nachrichtenklasse 332
Nachrichtentypen 335
Programmablaufsteuerung tiber

den Nachichtentyp 336

Verwaltung von Nachrichten
332
NOT 233
Nummernkreise 532

(o)

Objekte 565

Anlegen 572

1oschen 581
OK-Feld 390
ON CHAIN-INPUT 416
ON CHAIN-REQUEST 416
ON INPUT 416
ON REQUEST 416
OR 233
ORDER BY 241
OVERLAY 177

P

PARAMETERS 248
MATCHCODE 248
Parameteriibergabe
Adressiibergabe 265
An Unterprogramme 264
Wertiibergabe 264
Wertiibergabe mit Riickgabe
266
PERFORM 264
PERFORM <up> ON
COMMIT 512
Polymorphie 593
Pooltabelle 94
Prisentationsschicht 2
Primirindex 98
Process After Input 356
Process Before Output 356
Produktionssystem 11, 42, 44
Programmoberfldche 297
GUI-Status 297
GUI-Titel 297
Programmschleifen 228
Projekt-IMG Siehe Customizing
Pufferung 102
Einzelsatzpufferung 106
Entscheidungsbaum 104
generische Pufferung 105
Synchronisation 107
vollstandige Pufferung 105

Index

617

	front-matter_015
	fulltext_015
	fulltext_015_001
	fulltext_015_002
	fulltext_015_003
	fulltext_015_004
	fulltext_015_005
	fulltext_015_006
	fulltext_015_007
	fulltext_015_008
	fulltext_015_009
	back-matter_015

