Ralf Kirsch
Uwe Schmitt

Programmieren
inC

Eine mathematikorientierte
Einflhrung

#include <math.h>
e S o puvstip
#define EPS 1-el2
Ll_l:_,_l1 DO IE OO S]]
typedef float {'mlfuni (f

wikeyh |_|| [ERiEE . BEINE] & O
float mmltlut X8, rea
{ L:__L_I_I--l_l- DI

float xn = ll + I*IFE]

@Springer

Kirsch - Schmitt
Programmieren in C

Ralf Kirsch - Uwe Schmitt

Programmieren
in C

Eine mathematikorientierte Einfiihrung

Mit 24 Abbildungen und 13 Tabellen

@ Springer

Dr. rer. nat. Ralf Kirsch
Dr. rer. nat. Uwe Schmitt

Fachrichtung 6.1 Mathematik
Universitit des Saarlandes
Postfach 15 11 50

66041 Saarbriicken

E-mail: kirsch@num.uni-sb.de
schmitt@num.uni-sb.de

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet iiber http://dnb.d-nb.de abrufbar.

Mathematics Subject Classification (2000): 68-01, 68N15, 65Y99

ISBN 978-3-540-45383-3 Springer Berlin Heidelberg New York

Dieses Werk ist urheberrechtlich geschiitzt. Die dadurch begriindeten Rechte, insbesondere die der
Ubersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funk-
sendung, der Mikroverfilmung oder der Vervielfiltigung auf anderen Wegen und der Speicherung in
Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Ver-
vielfaltigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen
der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom
9.September 1965 in der jeweils geltenden Fassung zuldssig. Sie ist grundsitzlich vergiitungspflichtig.
Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Springer ist ein Unternehmen von Springer Science+Business Media
springer.de
© Springer-Verlag Berlin Heidelberg 2007

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk
berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne
der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wiren und daher von
jedermann benutzt werden diirften. Text und Abbildungen wurden mit gréfiter Sorgfalt erarbeitet.
Verlag und Autor kénnen jedoch fiir eventuell verbliebene fehlerhafte Angaben und deren Folgen
weder eine juristische Verantwortung noch irgendeine Haftung {ibernehmen.

Umschlaggestaltung: WMXDesign GmbH, Heidelberg

Herstellung: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig

Satz: Datenerstellung durch die Autoren unter Verwendung eines Springer TgX-Makropakets
Gedruckt auf sdurefreiem Papier 175/3100YL-543210

Eine Einleitung in Frage und Antwort

Welches Ziel hat das Buch, und an wen richtet es sich?

Ziel dieses Buches ist die Vermittlung von Grundlagen der Programmie-

rung unter besonderer Beriicksichtigung mathematischer Aufgabenstellungen
und den hierfiir charakteristischen Aspekten der Softwareentwicklung. Die
Umsetzung mathematischer Konzepte zu einem lauffihigen Programm wird
meist anhand von einfach nachzuvollziehenden Beispielen demonstriert.
Da solche Kenntnisse nicht nur fiir angehende Mathematiker von Interesse
sind, wendet sich das Buch an alle, die sich mit der rechnergestiitzten Bear-
beitung mathematischer Probleme beschéftigen. Dies sind z.B. Naturwissen-
schaftler und Ingenieure, aber auch Teilnehmer entsprechend ausgerichteter
wirtschaftswissenschaftlicher Studiengénge.

Muss ich schon Programmiererfahrung oder spezielle mathematische Vor-
kenntnisse haben, um den Inhalt nachvollziehen zu kénnen?

Programmierkenntnisse setzen wir {iberhaupt nicht voraus. Wir nehmen
lediglich an, dass die Leserinnen und Leser etwas Erfahrung im Umgang mit
dem PC unter WINDOWS oder LINUX haben. Hinsichtlich der Auswahl der
Beispiele und der mathematischen Vorkenntnisse haben wir uns darum be-
miiht, dass das Buch vom ersten Semester an verwendet werden kann. Was an
Mathematik vielleicht noch nicht bekannt ist, wird — vor allem in den ersten
Kapiteln — an Ort und Stelle erklart.

Wozu eine ,mathematikorientierte” Einfihrung?

Das Erlernen einer Programmiersprache ist fiir die meisten Studierenden
einer mathematisch-naturwissenschaftlichen oder technischen Disziplin, {ibli-
cherweise innerhalb des ersten Studienjahrs, ein etablierter Bestandteil des
Studienplans.

Bei der Vorbereitung einer solchen Vorlesung fiel uns auf, dass die ein-
fiihrenden Lehrbiicher zur Programmierung fast gar nicht auf die speziellen
Aspekte der Programmierung in Zusammenhang mit mathematischen Auf-
gaben eingehen. So wird z.B. erklirt, wie Gleitpunktzahlen in Programmen

VI Eine Einleitung in Frage und Antwort

verwendet werden, aber nicht, was eine Gleitpunktzahl eigentlich ist und wann
Verfdlschungen der Ergebnisse durch Rundungsfehler auftreten kénnen. Auf
der anderen Seite existiert sehr viel Literatur zur Programmierung von mathe-
matischen Algorithmen, besonders zur Numerik. Diese erwarten aber in der
Regel vom Leser gewisse Vorkenntnisse in einer hoheren Programmiersprache.
Diese Liicke m&chten wir mit dem vorliegenden Buch schlieffen: Wir ver-
binden das Erlernen einer Programmiersprache mit der Darstellung von Her-
angehensweisen, die recht typisch fiir die Behandlung mathematischer Aufga-
benstellungen sind. Das bietet u.a. folgende Vorteile: Die einfiihrenden Vor-
lesungen konnen ohne Umschweife mit der Vermittlung und Diskussion der
Verfahren beginnen und die Studierenden kénnen sich bei der Bearbeitung
der praktischen Programmieraufgaben ganz auf die spezifischen Aspekte der
numerischen Verfahren konzentrieren. Techniken wie Ein- und Ausgabefunk-
tionen oder das Speichermanagement stehen dann als Handwerkszeug bereits
zur Verfiigung. Aufterdem haben wir die Erfahrung gemacht, dass das Experi-
mentieren mit Programmen dem Verstédndnis von Begriffen wie Stabilitdt und
Kondition dienlich ist und so die theoretische Betrachtung unterstiitzt.

Warum wird ausgerechnet C behandelt?

Es sind didaktische und ganz praktische Griinde, die uns bewogen haben,
bei der Ausbildung auf eine prozedurale Programmiersprache zu setzen und
C auszuwéhlen.

Aus didaktischer Sicht denken wir, dass man als Anfinger zuerst eine pro-
zedurale Programmiersprache lernen sollte. Prozedurale Sprachen vermitteln
ein Grundverstindnis fiir die Funktionsweise eines Computers, der Wechsel
von einer prozeduralen Sprache zu einer anderen besteht dann zu 90 % aus
dem Lernen neuer ,Vokabeln“, denn wichtige Konzepte wie Zeiger, Funktionen
und Strukturen kommen in fast allen prozeduralen Sprachen vor. Der Zeit-
raum von einem Semester ist unseres Erachtens nach zu kurz, um Einsteigern
eine objektorientierte Sprache wie C++ adiquat zu vermitteln.

Aus praktischer Sicht spricht fiir C, dass es eine sehr weit verbreitete proze-
durale Sprache ist und es daher fiir eine Vielzahl von Aufgaben entsprechende
C-Bibliotheken gibt. C ist dariiber hinaus eine Teilmenge von Weiterentwick-
lungen wie z.B. C+-+, JAvA, oder C# und viele mathematische Softwarepa-
kete bieten eine Schnittstelle fiir eigene C-Programme an. MATLAB ist hierfiir
ein bekanntes Beispiel.

Worauf legt dieses Buch besonderen Wert?

Dieses Buch ist weder ein weiterer klassischer C-Kurs noch ein Kompendi-
um und soll auch keins von beiden sein. Vielmehr ist uns an der Vermittlung
anhand von Beispielen gelegen, die wir, wo immer mdglich und sinnvoll, ge-
meinsam mit dem Leser entwickeln und diskutieren.

Im Sinne einer iiberschaubaren Darstellung scheuen wir uns daher nicht,
einige Feinheiten und abstrakte Details der Programmiersprache wegzulassen
oder nur kurz anzureiffen. Ziel ist, moglichst ziigig zu den Techniken im ma-

Eine Einleitung in Frage und Antwort VII

thematischen Kontext vorzustofsen und dabei den Umfang des Buches so zu
halten, dass ein Durcharbeiten der wesentlichen Themen innerhalb eines Se-
mesters moglich ist. Wir waren aber zugleich bemiiht, ein Buch zu verfassen,
das auch noch in fortgeschritteneren Phasen des Studiums zum Nachschlagen
verwendet werden kann.

Ferner erscheint uns im Hinblick auf die Praxis wichtig, dass es mit der
erfolgreichen Implementierung eines eigenen (Unter-)Programms oft nicht ge-
tan ist: Wir zeigen daher auch, wie man z.B. in Dateien gespeicherte Werte-
tabellen mit Hilfe von GNUPLOT visualisiert, wie man ,fremden* FORTRAN-
Programmecode in ein eigenes C-Programm einbindet und geben einen ersten
Einblick, wie man Mehrdateiprojekte realisiert. Damit wollen wir u.a. vermei-
den, dass sich Studierende erst im Rahmen ihrer Abschlussarbeit mit diesen
Aspekten vertraut machen miissen. Aus demselben Grund haben wir bei der
Themenwahl versucht, verschiedene spezielle Konzepte der numerischen Pro-
grammierung in einem Buch zu versammeln. Viele davon mussten wir selbst
uns iiber Jahre selbst erarbeiten oder aus den verschiedensten Quellen zusam-
mensuchen.

Wie ist das Buch aufgebaut?

Kapitel 1 stellt die Grundlagen fiir alles Weitere vor und soll gleichzeitig
das Bewusstsein fiir einen wesentlichen Punkt schaffen: Programmierung be-
ginnt nicht am Computer, sie wird dort zu Ende gefiihrt. Die Vorstufen wie
etwa die Modellierung und die Entwicklung von Algorithmen sind mindestens
so wichtig wie die spéatere funktionsfihige Realisierung auf einem Rechner.

Die folgenden drei Kapitel konzentrieren sich vornehmlich auf die Einfiih-
rung der grundlegendsten Sprachelemente in C. Die Mathematik tritt hier
meist nur in Form einfacher Beispielprogramme auf und einige Beispiele sind
rein didaktischer Natur. Die Aufgabe dieser Kapitel besteht darin, moglichst
rasch so viel C-Vokabular zu vermitteln, wie man zur Behandlung mathema-
tischer Probleme mit Hilfe der Programmiersprache mindestens bendotigt.

In Kapitel 5 halten wir daher die Vermittlung von C-Sprachelementen
kurz an und {iberzeugen uns davon, dass wir mit dem Erlernten bereits ein-
fache Varianten wichtiger numerischer Konzepte implementieren kénnen. Im
Zusammenspiel mit den entsprechenden mathematischen Algorithmen wer-
den einerseits die bis dahin erworbenen Kenntnisse der Programmiersprache
vertieft, andererseits kann man schon im Vorgriff auf entsprechende Mathe-
matikvorlesungen durch das Experimentieren mit diesen Programmen erste
praktische Erfahrungen sammeln.

Im Anschluss werden die noch fehlenden Bestandteile der Programmier-
sprache C vorgestellt, wobei sich der Schwerpunkt allm&hlich von den Sprach-
elementen zu den mathematisch-konzeptionellen Fragen verlagert. Dazu zdh-
len u.a. Methoden des speichereffizienten Umgangs mit Matrizen und die Er-
zeugung von Zufallszahlen gemaf einer Verteilung. Themenauswahl und Glie-
derung sind immer eine Frage des personlichen Geschmacks, wir hoffen aber,
dass genug Niitzliches und Interessantes fiir jeden dabei ist.

VIII Eine Einleitung in Frage und Antwort

In Kapitel 13 lassen wir das Erlernte in exemplarische Projekte einfliefen.
Dabei wird noch einmal das Zusammenspiel von Modell, Algorithmus und
Programm deutlich.

Wozu die Kontrollfragen und Aufgaben? Welche Software bendtige ich zum
Mitmachen?

Ebensowenig wie man Kochen durch blofses Zuschauen erlernt, kann man
sich das Programmieren durch ausschliefliches Lesen von Beispielprogrammen
aneignen. Deshalb empfehlen wir besonders jenen Leserinnen und Lesern, die
das Buch zum Selbststudium verwenden mdchten, das aktive Nachvollziehen
der Beispielprogramme und die Bearbeitung der Aufgaben am Ende der Kapi-
tel. Um den Ubergang vom Studium neuer Sprachelemente und Herangehens-
weisen zum aktiven Losen der Aufgaben fliefsender zu gestalten, finden sich in
fast allen Kapiteln Kontrollfragen, mit denen man den eigenen Lernerfolg te-
sten kann. Man sollte keine Scheu davor haben, mit den Beispielprogrammen
zu experimentieren, z.B. indem man Werte verdndert oder sogar absichtlich
Fehler einbaut. Durch Beobachtung des gednderten Laufzeitverhaltens eines
Programms kann man hiufig sehr viel iiber eine Programmiersprache und den
Compiler lernen.

Ein Buch wie dieses bietet sicher nicht den Raum, zu den gestellten Pro-
grammieraufgaben Losungsvorschlidge anzubieten. Wir stellen daher Losungen
unter

Www.prog-c-math.de

zum Download zur Verfiigung.

Hinsichtlich der bendtigten Software beschrinken wir uns auf Werkzeuge des
GNU-Projekts, z.B. den C-Compiler gcc. Dieser ist unter LINUX und un-
ter WINDOWS (durch das cYGWIN-Paket) frei verfiigbar und entspricht dem
ANSI-C-Standard, den wir fiir unsere Programme zugrunde legen. Mit den
damit verbundenen technischen Fragen lassen wir niemanden allein: Wir be-
schreiben die Installation von CYGWIN und gcc unter Windows im Anhang
des Buches.

Ein Buchprojekt wie dieses kann ohne Unterstiitzung nicht realisiert wer-
den. Fiir wertvolle Hinweise und Vorschldge danken wir Herrn Dr. Roman
Miiller und Herrn Achim Domma. Der erste Autor mdchte besonders seiner
Frau Eva fiir ihr Verstdndnis und tatkraftige Unterstiitzung herzlich danken.
Des Weiteren danken wir Herrn Prof. Dr. A.K. Louis und Herrn Prof. Dr. S.
Rjasanow sowie unseren Arbeitsgruppen fiir das produktive Umfeld und die
Ermutigung zu diesem Projekt. Nicht zuletzt danken wir den Mitarbeiterinnen
und Mitarbeitern des Springer-Verlags fiir die kooperative und konstruktive
Betreuung wihrend der Erstellung des Manuskripts.

Saarbriicken, Ralf Kirsch
Januar 2007 Uwe Schmitt

Inhaltsverzeichnis

Eine Einleitung in Frage und Antwort A%
1 Vorbereitungen i 1
1.1 Modellierung und Algorithmen 1

1.2 Komplexitdt und O-Notationcciiviiina.. 11

1.3 Kondition eines Problems. 16

1.4 Rechnerarithmetik 18
1.4.1 Zahldarstellungo i i 18

1.4.2 Rundung und Gleitpunktrechnung 20

1.4.3 Binére Realisierung o it 23

1.5 Stabilitdt . .. oo 26

1.6 Vom Problem zum Programm — und zuriick................. 28

1.7 Kontrollfragen zu Kapitel 1o, 30

1.8 Ubungsaufgaben zu Kapitel 1 32

2 Elementare C-Programmierung............................ 35
2.1 Editieren und Ubersetzen am Beispiel: ,Hallo Welt! 36

2.2 Datentypent e 38

2.3 Variablen und ihre Deklaration............... 40

2.4 Konstantenc.oouuiiiiiiiiii i 42

2.5 OPEratOrenottt e e e 43
2.5.1 Allgemeines zu Operatorenc.oovoe... 43

2.5.2 Zuweisungsoperator und schreibgeschiitzte Variablen ... 43

2.5.3 Arithmetische Operatoren 45

2.5.4 Arithmetische Zuweisungsoperatoren................. 47

2.5.5 Inkrement- und Dekrementoperatoren................ 47

2.5.6 Vergleichende und logische Operatoren 48

2.5.7 Typumwandlung durch Casts o1

2.6 Einfache Ein- und Ausgabe 51
2.6.1 Ausgabe mit printf() il 52

2.6.2 Eingabe mittels scanf() 54

X

Inhaltsverzeichnis

2.7 Programmflusskontrolleo oL, 56

2.7.1 Anweisungsblockeo 56

2.7.2 Bedingte Ausfithrung 57

2.7.3 Wiederholte Ausfithrung 60
2.8 Felder....... oo 65
2.9 Beispiel: Der Euklidische Algorithmus...................... 67
2.10 Kontrollfragen zu Kapitel 2 69
2.11 Ubungsaufgaben zu Kapitel 2ccoivuinian.... 75
Funktionen 7
3.1 Deklaration und Definition von Funktionen 78
3.2 Callby Value 83
3.3 Mathematische Funktionen 85
3.4 Giiltigkeit von Variablen 88
3.5 Beispiel: Entfernungsmessung durch Peilung 92
3.6 Kontrollfragen zu Kapitel 3 95
3.7 Ubungsaufgaben zu Kapitel 3ccoiiin.... 99
Zeiger und ihre Anwendungen 103
4.1 Zeigero 104

4.1.1 Elementare Operationen mit Zeigern 104

4.1.2 Der Datentyp void*cco ... 106
4.2 Call by Reference.t 107
4.3 Zeiger und Felder: Zeigerarithmetik 109
4.4 Dynamische Speicherverwaltung 113
4.5 Dynamische Implementierung von Matrizen................. 118

4.5.1 Implementierung iiber Doppelzeiger.................. 118

4.5.2 Implementierung durch Indextransformation 120
4.6 Typische Fehlerquellen 122
4.7 Kontrollfragen zu Kapitel 4 125
4.8 Ubungsaufgaben zu Kapitel 4 129
Numerisches Zwischenspiel 131
5.1 Nullstellenbestimmung o i, 132
5.2 Interpolation.......... ... i 137
5.3 Numerische Integration......... o .. 142
5.4 Kontrollfragen zu Kapitel 5 145
5.5 Ubungsaufgaben zu Kapitel 5 147
Zeichen und Strings i 149
6.1 Zeichen e 149
6.2 SIS . v ettt e 153

6.2.1 Initialisierung und Terminierung 153

6.2.2 Bibliotheksfunktionen fiir Strings 154
6.3 Beispiel: Einfache Kryptographie 158

10

11

Inhaltsverzeichnis XI

6.4 Kontrollfragen zu Kapitel 6 161
6.5 Ubungsaufgaben zu Kapitel 6 162
Fortgeschrittene Ein- und Ausgabe 163
7.1 Arbeiten mit Dateien i 163

7.1.1 ASCII-Formatccoiiiiiniiniiiinan, 165

7.1.2 Binire Ein- und Ausgabe........... 168
7.2 Kommandozeilenargumente i 171
7.3 Beispiel: Unbeschrianktes Bakterienwachstum................ 174
7.4 Kontrollfragen zu Kapitel 7 o .. 177
7.5 Ubungsaufgaben zu Kapitel 7 178
Fortgeschrittene Datentypen............................... 181
8.1 Strukturen 181
8.2 Anwendungsbeispiele flir Strukturen L. 187

8.2.1 ZeltmeSSUNZ .. .vvii it e 187

8.2.2 FEinfach verkettete Listen 188
8.3 Benennung eigener Datentypen mit typedef 192
8.4 Zeiger auf Funktionen....... i, 193
8.5 Beispiele fiir zusammengesetzte Deklarationen............... 195
8.6 Weitere Datentypen: enum und union 197
8.7 Kontrollfragen zu Kapitel 8 198
8.8 Ubungsaufgaben zu Kapitel 8 200
Rekursiont i 203
9.1 Rekursive Programmierung oo 203
9.2 Effiziente Such- und Sortieralgorithmen 206
9.3 Kontrollfragen zu Kapitel 9 215
9.4 Ubungsaufgaben zu Kapitel 9 217
Speicher- und laufzeiteffiziente Datenstrukturen 219
10.1 Symmetrische Matrizen o i 219
10.2 Das dyadische Produkt.......... 221
10.3 Diinn besetzte Matrizen i 223

10.3.1 Bandmatrizen........o, 223

10.3.2 Unstrukturierte diinn besetzte Matrizen 225
10.4 Permutationen und Indexfelder................, 228
10.5 Kontrollfragen zu Kapitel 10 oo 230
10.6 Ubungsaufgaben zu Kapitel 10coveivenn.n... 231
Mehrdateiprojekte, Bibliotheken und Makefiles 233
11.1 Die Ubersetzung mehrerer Quelldateien zu einem Programm . . 234
11.2 Organisation des Quelltextes coiiieiin .. 236
11.3 Eigene Bibliotheken.......... o i i 238
11.4 Automatisierte Ubersetzung mit make 240

11.5 Einbindung von FORTRAN-Programmen 243

XII Inhaltsverzeichnis

11.6 Kontrollfragen zu Kapitel 11 o i .. 245

11.7 Ubungsaufgaben zu Kapitel 11 248

12 Pseudozufallszahlen............. 249

12.1 Ein wenig ,Mathematik des Zufalls“......... 250

12.2 Pseudozufallszahlen....... o i i 256

12.3 Erzeugung von Zufallszahlen gemé&f einer Verteilung 259

12.4 Einfache Monte-Carlo-Methoden 261

12.5 Ubungsaufgaben zu Kapitel 12oviiinianan... 265

13 Programmierprojekte 269

13.1 Projekt 1: Simulation von Warteschlangen 269

13.1.1 Der grundlegende Algorithmus 269

13.1.2 Der Zufallszahlengenerator 272

13.1.3 Das Hauptprogrammc.ccuiiiuninen .. 273

13.1.4 Zwei Beispielrechnungen............. 274

13.2 Projekt 2: Planetenbahnen.............. 276
13.2.1 Das mathematische Modell: Newtons

Gravitationsgesetzo 276

13.2.2 Grundlegende Datenstrukturen...................... 277

13.2.3 Implementierung des Euler-Verfahrens 280

13.2.4 Erste Simulation 282

13.2.5 Zweite Simulation 284

13.2.6 Die Planetenbahnen als Animation 286

13.3 Ubungsaufgaben zu Kapitel 13cveir ... 288

Installation von Cygwin, 289

Die Kommandozeile von LINUX 291

Kurze Einfiihrung in gnuplot 297

Reservierte Worter und Operatoren in C 301

Losungen zu den Kontrollfragen 305

Literaturverzeichnis i, 307

Sachverzeichnis e 309

1

Vorbereitungen

Im Rahmen dieses Buches verstehen wir unter einem Programm eine zusam-
mengefasste Folge von Anweisungen, die ein Computer zu einem bestimmten
Zweck ausfiihren soll.

Uber die vom Programm zu bewiltigende Aufgabe und die dazu notwen-
digen Anweisungen sollte, ja muss man sich vor der eigentlichen Implementie-
rung des Programms im Klaren sein. Dies flihrt dazu, dass spétestens bei der
rechnergestiitzten Losung umfangreicherer Probleme einiges an Vorbereitun-
gen notwendig wird. Wie man zur Aufgabenstellung gelangt und was unter
einer klar formulierten Vorgehensweise zu verstehen ist, bildet den Ausgangs-
punkt fiir unsere Betrachtungen in diesem Kapitel. Anschliefsend beschéftigen
wir uns mit der Frage, nach welchen Kriterien man verschiedene Losungsstra-
tegien fiir eine bestimmte Aufgabe objektiv bewerten und einordnen kann.
Dies fiihrt auf die Begriffe Komplexitit und Stabilitét.

Insbesondere bei der Entwicklung von Programmen zur Behandlung von
mathematischen Aufgabenstellungen spielt es eine grofie Rolle, wie stark die
Losung von den Parametern abhéngt, die das Problem bestimmen und wel-
chen Einfluss die Rechnerarithmetik auf die Losung hat. Um nicht zu viel
an mathematischen Vorkenntnissen zu bendtigen, werden wir diese Aspekte
meist in Form von einfachen Beispielen behandeln. Die Techniken zur syste-
matischen Untersuchung werden in einfiihrenden Vorlesungen zur numerischen
Mathematik sowie der zugehdrigen Literatur vermittelt (siehe etwa [2], [13]).

1.1 Modellierung und Algorithmen

Modellierung

Bei der Planung und Konstruktion von Flugzeugen und Schiffen hat man
schon immer auf das Experimentieren mit mafistabsgetreuen Modellen zuriick-
gegriffen, um bereits vor dem Bau von Prototypen moglichst viele Konstrukti-
onsfehler auszumerzen und damit vermeidbare Entwicklungskosten einzuspa-

2 1 Vorbereitungen

ren. Mit der zunehmenden Leistungsfihigkeit von Rechnern hat sich die Mog-
lichkeit erdffnet, solche Tests zu einem erheblichen Teil in Form von Compu-
tersimulationen durchzufiithren, was zu einer weiteren Kostenreduktion fiihrt.
Voraussetzung hierfiir ist natiirlich, dass man die wesentlichen physikalisch-
technischen Aspekte wie z.B. Aerodynamik und Materialeigenschaften mog-
lichst realistisch in den Computer tibertrégt. Es ist also naheliegend, den Mo-
dellbegriff entsprechend zu verallgemeinern:

Unter einem Modell versteht man eine abstrahierte, klar formulierte
Darstellung eines Teils der Wirklichkeit.

Um ein konkret gegebenes Problem i{iberhaupt iiberblicken und lésen zu kon-
nen, ist die Modellierung sehr oft mit einer Vereinfachung verbunden. Als
Folge weicht das Modell in manchen Aspekten von den tatsichlichen Gege-
benheiten ab und es treten Modellierungsfehler auf. Die Kunst bei der Bildung
eines guten Modells besteht also darin,

e die fiir das interessierende Phinomen weniger relevanten Aspekte zu er-
kennen und im Modell nicht zu beriicksichtigen,

e und die wesentlichen Aspekte des Phinomens im Modell méglichst einfach
und korrekt herauszuarbeiten.

Aus der Klarheit der Formulierung des so gebildeten Modells folgt, dass die
interessierende Frage, das Problem, ebenfalls klar formulierbar ist. In Abb. 1.1
ist der Weg von der ,Realitédt” {iber das Modell hin zur konkreten Aufgaben-
stellung illustriert.

»Welt / Realitét*

Phinomen

Erfahrung
Experimente
Hypothesen
Vereinfachung
Abstraktion

(mathematisches) Modell

(mathematisch) exakte
Formulierung des Problems

Abb. 1.1. Modellierung: Von der Frage zur Aufgabenstellung

1.1 Modellierung und Algorithmen 3

Durch die Abstraktion erreicht man, dass Modelle, die sich in einem be-
stimmten Anwendungsbereich bereits gut bewéhrt haben, mit vergleichswei-
se geringen Modifikationen auf andere Anwendungen mit &hnlicher Struktur
iibertragen werden koénnen. Um die Ubertragbarkeit zu vereinfachen und die
Klarheit in der Formulierung zu gewéhrleisten, gibt es so genannte Modellie-
rungssprachen. Fiir die Darstellung von Geschéftsprozessen in einem Unter-
nehmen ist z.B. die Unified Modeling Language (UML) weit verbreitet. UML
ist noch sehr jung, verglichen mit einer anderen Modellierungssprache, die sich
bereits seit Jahrtausenden in unzdhligen Anwendungsbereichen bewéhrt hat
und immer noch intensiv weiterentwickelt wird: Gemeint ist die Mathematik.
Die beiden folgenden Beispiele illustrieren, wie man bei der Modellierung von
bestimmten Phinomenen 7zu universell verwendbaren mathematischen Objek-
ten gelangt, die uns im Verlauf dieses Buchs immer wieder begegnen werden:

Beispiel 1.1 (Bakterien und gewohnliche Differentialgleichungen).
Zum Zeitpunkt tg besteht eine Zellkultur im Labor aus Ny Bakterien. In je-
dem Zeitintervall [t, ¢ + At] (t > tg, At > 0) vermehrt sich ein Teil der Zellen,
wahrend andere Zellen absterben. Wir wollen die recht verniinftige Annah-
me treffen, dass fiir hinreichend kurze Zeitintervalle sowohl Zuwachs als auch
Abnahme der Anzahl an Zellen in der Kultur proportional zu der aktuellen
Anzahl N(t) und der Liange At des Zeitintervalls sind. Als mathematische
Formel liest sich das folgendermafien:

AN(t) = N(t+ At) — N(t) = At (A4 — A_) N(2). (1.1)

Dabei ist A4 die Zuwachs- und A_ die Sterberate in der Zellkultur. Zur wei-
teren Abkiirzung setzen wir

A=Ay —A_.

Wir kiitmmern uns bei der Gleichung (1.1) nicht weiter darum, dass die Grofe
N eigentlich ganzzahlig sein miisste, sondern nehmen sogar an, dass N eine
differenzierbare reellwertige Funktion der Variablen ¢ ist. Dividieren wir in
(1.1) auf beiden Seiten durch At und betrachten den Grenziibergang At — 0,
so erhalten wir

N'(t) = AN(t), (1.2)

wobei N'(t) die Ableitung der Funktion N im Punkt ¢ bezeichnet. In Form
dieser Differentialgleichung steht uns nun ein mathematisches Modell fir die
zeitliche Entwicklung der Populationsgréfse N zur Verfiigung. Die so genannte
Anfangsbedingung

N (to) = No (1.3)

erganzt die Differentialgleichung (1.2) zum Anfangswertproblemn. Die durch
unser mathematisches Modell klar formulierte Aufgabe lautet, das Anfangs-
wertproblem zu l6sen, d.h. eine differenzierbare Funktion N zu finden, die
sowohl die Differentialgleichung (1.2) als auch die Anfangsbedingung (1.3)

4 1 Vorbereitungen

erfiillt. Durch Differenzieren iiberzeugt man sich sofort davon, dass die Expo-
nentialfunktion
N(t) = Nye*t—to) (1.4)

eine Losung ist. Mit elementaren Methoden kann man sogar nachweisen, dass
es sich dabei um die einzige Losung handelt (Aufgabe 1.1).

Die gefundene Losung (1.4) ist grob gesehen schon recht verniinftig, denn
fiir A > 0 (d.h. Ay > A_) wichst die Population und fir A < 0 (d.h. Ap < A_)
schrumpft sie. Aber bereits die Tatsache, dass nach (1.4) die Zahl der Zellen
fiir A > 0 mit der Zeit jede beliebige Schranke iibersteigt, deutet bereits auf
einen Modellierungsfehler hin, denn es kdnnen ja auch nach noch so langer Zeit
t nicht beliebig viele Zellen auf begrenztem Raum existieren. Der Grund fiir
diesen Fehler ist, dass Wachstums- und Sterberate als konstant angenommen
wurden. Ein realistischeres Modell miisste berticksichtigen, dass

e)\ und A_ von duferen, zeitabhingigen Einfliissen abhingen (z.B. Um-
gebungstemperatur, Lichtverhéltnisse), wir haben es also eigentlich mit
zeitabhingigen Raten Ay (¢) und A_(t) zu tun, die im Allgemeinen unter-
schiedlich auf diese Einfliisse reagieren;

e), und A_ auch von N(t) selbst abhiingen, denn eine grofe Zellenanzahl
bedeutet ja unter anderem, dass z.B. Raum- und Néahrstoffangebot knap-
per werden. Daher ist anzunehmen, dass mit grofer werdendem N die
Wachstumsrate A4 abnimmt und A_ anwéchst.

Insgesamt muss man also davon ausgehen, dass man statt einer Konstanten
A eher eine Funktion

A(t, N () = Ay (t, N (1)) — A (¢, N(t))

betrachten muss, die eine komplizierte Gestalt haben kann. Die Differential-
gleichung (1.2) wird hiermit zu

N'(t) =Xt N()) N(t). (1.5)

An diesen Uberlegungen sieht man, dass das Studium allgemeiner Anfangs-
wertprobleme der Form

y'(t) = fty®) . ylte) =wo, (1.6)

mit tg,yo € R lohnenswert ist. Im Beispiel der Bakterienkultur ist N die
gesuchte Funktion, so dass f dort die spezielle Form

f(, N(@) = At N(t)) N(¢)

besitzt. Durch die Einfiihrung einer Funktion f, die ,irgendwie* von ¢ und
y abhingt, gewinnt man wesentlich an Flexibilitdt bei der mathematischen
Modellierung zeitabhéngiger Phénomene (siehe etwa [5]). Die Beantwortung
der Fragen nach Existenz und Eindeutigkeit einer Losung des Anfangswert-
problems (1.6) gestaltet sich vergleichsweise einfach (siehe [16]), die konkrete

1.1 Modellierung und Algorithmen)

Berechnung von Losungen ist allerdings nur sehr selten wie in (1.4) durch
scharfes Hinsehen mdoglich. Wir kommen im néchsten Unterabschnitt darauf
zuriick. O

Beispiel 1.2 (Funknetzwerke, Vektoren und Matrizen).

Bei einem lokalen Funknetzwerk (WLAN), wie man es z.B. in Flughifen
und Universititen findet, werden mehrere so genannte Zugangspunkte (ac-
cess points) zum Senden und Empfangen von Datenpaketen an n bestimmten
Positionen installiert. Diese Positionen beschreiben wir jeweils als Punkte in
der Ebene mit den kartesischen Koordinaten

2 =@ 20 firj=1,...n.

Um festzustellen, ob damit ein flichendeckender Zugang zum Netzwerk ge-
wahrleistet ist, soll an m stichprobenartig ausgewahlten Messpositionen mit
Koordinaten o

y® = (il),yél)) firi=1,...m,

die von den access points jeweils empfangene Signalstérke r; gemessen werden.
Wir wollen ein mathematisches Modell aufstellen, das diesen Vorgang theo-
retisch beschreibt. Dabei hilft uns die Physik weiter:

1. Die Signalstirke nimmt umgekehrt proportional zum Quadrat des Ab-
stands zwischen Sender und Empfanger ab. Ist p; die Signalstérke des
Senders an der Position z;, so kommt das Signal dieses access points an
der Stelle y; mit der Intensitit

C

_c .
a7 "

R —
Y

firi=1,....,m,j5=1,...,n, (1.7)

an. In dieser Gleichung steht || - || fir den euklidischen Abstand zweier
Punkte in der Ebene:

ly— 2zl = V(1 —21)2 + (y2 — 22)2, @ = (21,22), ¥y = (y1,72)-

Hinter der Proportionalitdtskonstanten C' > 0 verbergen sich alle Ein-
fliisse auf die Signaliibertragung, die mit den 6rtlichen Gegebenheiten zu-
sammenhingen (Lage und Beschaffenheit von Trennwénden usw.). Man
beachte, dass wir fiir alle moglichen Paarungen von Sendestationen und
Messpunkten die gleiche Konstante zu Grunde legen. Wir nehmen also
zur Vereinfachung bei der Modellierung an, dass die dufseren Einfliisse auf
die Signaliibertragung fiir alle Richtungen gleich sind.

2. Die Sender iiberlagern sich, ohne sich gegenseitig zu beeintréchtigen. D.h.
die Gesamtstirke des Empfangs am Ort y; ergibt sich als Summe der
Beitréige aller Sender:

ri =R+ Ria+ -+ Rin = Y _ Ry (1.8)
j=1

6 1 Vorbereitungen

I L
| 7 ‘Wand
0 _ G 7
Yo m2y Ny = a4l
(@)
'3
()

Abb. 1.2. Zur Modellierung des Funknetzwerks. Die Positionen der access points
sind durch (((0))) markiert, der Messpunkt durch &.

Beachten wir, dass die Gleichung (1.8) fiir alle : = 1,...,m gilt und setzen
wir in Anlehnung an (1.7)

C

:m7 fﬁri:L...,m,j:l,...,n,
? J

Qi
so ist wegen (1.7) R;; = a;; p; und wir erhalten:

n
T = Qi1 P1 +ai2p2+-~-+ampn:Zaijpj, 1=1,...,m. (1.9)
=1

Das aber ist nichts anderes als das Produkt der Matriz

ai; a2 ... Qin || C ||2 || C ||2

az1 Q22 a2n u .x1 u _mn
...... : C C

(a2 o Tom =21 " Ty — 2all®

mit dem (Spalten-) Vektor

DPn

(siehe 7.B. [7]). Fassen wir die an den Punkten y; gemessenen Signalstirken
r; zum Spaltenvektor

1.1 Modellierung und Algorithmen 7

1

T2

T'm

zusammer, so lasst sich die Gleichung (1.9) kurz und elegant schreiben als
Ap=r, peR", reR™, AeR™", (1.10)

wobei R™ (bzw. R™) die Menge aller Spaltenvektoren mit m (bzw. n) reellen
Komponenten bezeichnet und R™*™ fiir die Menge aller reellen Matrizen mit
m Zeilen und n Spalten steht.

Durch das Matriz- Vektor-Produkt (1.10) kann man also die an den Posi-
tionen y; ankommende Signalstérke r berechnen, wenn C' und p € R™ bekannt
sind. Umgekehrt kann man auch einen gewiinschten Empfang r € R™ vorge-
ben und nach der dazu notigen Sendeleistung p fragen. In diesem Fall fasst
man (1.10) als lineares Gleichungssystem mit Systemmatrix A und rechter Sei-
te r auf. Eine andere Fragestellung konnte lauten: Wie groft miissen die Werte
der Komponenten p; mindestens sein, damit die Komponenten r; eine gewisse
Schranke nicht unterschreiten? Das bedeutet, dass man ein funktionstiichti-
ges Netzwerk mit einer minimalen Funkwellenbelastung bereitstellen will und
man muss eine Optimierungsaufgabe 16sen.

Gleichungen der Art (1.10) treten immer dann auf, wenn ein linearer Zu-
sammenhang zwischen bekannten und gesuchten Grofen besteht und das ist
in vielen Anwendungsproblemen der Fall. Wir werden uns daher in diesem
Buch immer wieder mit der datentechnischen Handhabung von Matrizen und
Vektoren beschéftigen. Fiir die Beantwortung der Frage, wie man die oben
genannten Aufgaben 16st, verweisen wir auf die entsprechenden Vorlesungen
der linearen Algebra, der Numerik und der Optimierung. a

Algorithmen

Ist nach abgeschlossener Modellierung die Aufgabe klar umrissen, so kann man
sich an die Entwicklung und Formulierung einer Losungsstrategie machen.

Ein Algorithmus ist eine eindeutig formulierte Vorschrift zur Lisung
einer Aufgabe bzw. eines Aufgabentyps.

Die Eindeutigkeit der Formulierung soll nicht nur die korrekte Anwendung der
Losungsmethode sicher stellen, sondern ermoglicht auch die Untersuchung der
Korrektheit des Algorithmus beziiglich der gestellten Aufgabe, d.h. ob die Vor-
gehensweise auch wirklich die Losung des Problems liefert. Aufierdem ist die
exakte Darstellung der Verfahrensschritte unabdingbar, wenn man verschie-
dene korrekte Algorithmen zur Lésung ein und derselben Aufgabe vergleichen
und beurteilen will.

8 1 Vorbereitungen

Mit anderen Worten: Wie ein Kochrezept beschreibt ein Algorithmus, was
man wie womit tun soll, um die Aufgabe zu 16sen. Das beinhaltet speziell, dass
die einzelnen Anweisungen auch durchfiihrbar sein miissen. Das kann z.B.
dadurch gewéhrleistet sein, dass die vorzunehmenden Arbeitsschritte ganz
elementarer Natur sind und nicht weiter erldutert werden miissen. Dazu ein
einfaches Beispiel:

Beispiel 1.3 (Vertauschen von Koordinaten).

1. Lies die Koordinaten (z,y) ein.
2. Setze
h=y , y:=a , z:=h.

3. Liefere die neuen Koordinaten (z,y) zuriick.

Aus geometrischer Sicht beschreibt der Algorithmus, wie man einen Punkt
(z,y) in der Ebene an der ersten Winkelhalbierenden spiegelt. a

Dabei verwenden wir in Algorithmen die Bezeichnung := fiir eine Wertzuwei-
sung, um sie von der Gleichheit im mathematischen Sinn zu unterscheiden.
Bereits an dem einfachen Beispiel 1.3 kann man erkennen, welche Informatio-
nen ein Algorithmus im Einzelnen beinhaltet:

e Die Eingabedaten, auch Parameter genannt, die zur Durchfithrung des Al-
gorithmus bendétigt werden (im Beispiel die Zahlen x und y).

e Die Ausgabedaten, d.h. das vom Algorithmus gelieferte Ergebnis (im Bei-
spiel die getauschten Koordinaten (z,y)).

e Die Beschreibung der Schritte, die durchgefiihrt werden sollen, um das
richtige Resultat zu erhalten (im Beispiel die Zuweisungen der x- und y-
Koordinaten).

e Die fiir die korrekte Durchfiihrung nétigen Hilfsgrifien, die weder zu den
Eingabe- noch zu den Ausgabedaten zéhlen. In Beispiel 1.3 ist h eine solche
Hilfsgrofse und man macht sich leicht klar, dass auf diese Hilfsgrofe nicht
verzichtet werden kann.

Die Durchfiihrbarkeit eines Algorithmus kann auch dadurch gewahrleistet
sein, dass neben elementaren Arbeitsschritten auch bereits existierende Al-
gorithmen zum Einsatz kommen, deren Korrektheit bekannt ist. Diese Un-
terprogramme miissen natiirlich mit den geeigneten Eingabedaten versorgt
werden:

Beispiel 1.4 (Aufsteigendes Sortieren eines Zahlenpaares).

1. Lies die Zahlen x und y ein.
2. Falls « < y: liefere (x,y) zuriick,
andernfalls: filhre den Algorithmus aus Beispiel 1.3 fiir (z,y) durch.

1.1 Modellierung und Algorithmen 9

Durch den Einsatz bereits bestehender Algorithmen bei der Entwicklung von
neuen Verfahren bietet sich die Moglichkeit der Partitionierung eines Pro-
blems. Man unterteilt die Aufgabenstellung in Teilprobleme und analysiert,
fiir welche der Teilaufgaben bereits Losungsmethoden existieren. Dadurch
kann man sich voll und ganz auf die Entwicklung neuer Verfahren fiir die
noch nicht behandelten Problembestandteile konzentrieren und spart Zeit.
Zum Schluss werden alle Unterprogramme zu einer Losungsmethode der ur-
spriinglichen Aufgabe zusammengefasst.

Algorithmen lassen sich zunéchst dem Inhalt nach, d.h. nach ihrem Aufga-
bengebiet einteilen: So gibt es z.B. Sortieralgorithmen, Suchalgorithmen, oder
Losungsalgorithmen fiir Gleichungen der unterschiedlichsten Art. Eine andere
Art der Unterscheidung wird hinsichtlich der Eigenschaften eines Algorithmus
bei der Durchfiithrung vorgenommen: Da wir uns in diesem Buch mit der Pro-
grammierung auseinander setzen, beschrinken wir uns auf die Betrachtung
von statisch finiten Algorithmen, d.h. solchen Handlungsvorschriften, die aus
endlich vielen Schritten bestehen. Oft enthalten Algorithmen die Anweisung,
bestimmte Schritte so oft zu wiederholen, bis bestimmte Bedingungen erfiillt
sind. Dann stellt sich die Frage, ob der Algorithmus terminierend ist, d.h.
ob seine Durchfithrung stets nach endlicher Zeit abgeschlossen ist. Auf diese
Eigenschaft legen wir sicher grofen Wert, wenn wir die Losung einer Aufga-
be berechnen wollen. Dass nicht alle Algorithmen terminierend sind, ist z.B.
bei der regelmifigen automatischen Abfrage von neuer E-Mail erwiinscht.
Hochgradig unerwiinscht dagegen sind unbeabsichtigte Endlosschleifen in Be-
rechnungsprogrammen!

Man koénnte meinen, dass nach Definition jeder Algorithmus determiniert
ist, also bei gleichen Eingabedaten stets das gleiche Ergebnis liefert. Die Defi-
nition verbietet allerdings nicht, dass ein Algorithmus Zufallselemente enthélt,
die den konkreten Ablauf der Handlungsanweisungen und damit das Ergebnis
verdndern konnen.

Bei den Beispielen 1.3 und 1.4 kann man sich unmittelbar von Korrektheit
und Determiniertheit iiberzeugen. Weniger offensichtlich ist dies fiir das fol-
gende klassische Verfahren zur Bestimmung des grofiten gemeinsamen Teilers
zweier Zahlen:

Beispiel 1.5 (Euklidischer Algorithmus).

1. Lies ag,a; € N ein.
2. Dividiere mit Rest
ap =qa;+r

und setze
ap :=ar , a1 :=7T,

solange, bis a; = 0.
3. Liefere ggT(ag, a1) = ap zuriick.

10 1 Vorbereitungen

Der Nachweis, dass fiir beliebige natiirliche Zahlen ag,a; € N nach endlich
vielen Divisionen mit Rest der Fall a; = 0 eintritt und a9 dann auch tat-
sdchlich der grofite gemeinsame Teiler aus den beiden Eingabeparametern ist,
findet sich z.B. in [1]. O

Wir wenden uns wieder der Losung von Anfangswertproblemen der Form (1.6)
zu und tiberlegen uns eine Methode, die weitgehend unabhingig von der kon-
kreten Gestalt der Funktion f Ergebnisse liefert. Als Preis zahlen wir dafiir,
dass das Ergebnis nur eine Ndherung an die exakte Losung darstellt.

Beispiel 1.6 (Das Euler-Verfahren). Die Idee, die hinter dem FEuler-
Verfahren zur ndherungsweisen Losung des Anfangswertproblems

y'(t) = ft,y®), ylto) = o,

steckt, ist die folgende: Wir ndhern in der Differentialgleichung die Ableitung
y'(to) durch den Differenzenquotienten

y(to+h) —y(to) ylto+h)—wo

h h

an, wobei h > 0 eine von uns gewahlte Schrittweite ist. Da wir nach einer
differenzierbaren Losung y suchen, wird diese Ersetzung fiir geniigend klein
gewéhltes h keinen allzu grofien Fehler verursachen. Wir erhalten formal

y(to +h) =yo + h f(to,y0) ,

wobei die rechte Seite dieser Gleichung nur bekannte Grofen enthélt und
sich ohne Weiteres berechnen ldsst. Weil wir aber die Ableitung durch den
Differenzenquotienten ersetzt haben, steht auf der linken Seite eben nicht der
exakte Wert y(to + h) der gesuchten Losung, sondern nur ein Naherungswert,
den wir y; nennen wollen. Setzen wir weiter

ti=to+h,

dann koénnen wir die Vorgehensweise mit (¢1,y1) als neuem Startpunkt wie-
derholen und erhalten

yo =y1 +h f(t1,y1)

als Naherungswert fiir y(t2) mit to = t; + h = ¢ + 2h. Abbildung 1.3 illu-
striert diese Vorgehensweise und es wird ersichtlich, warum die Methode auch
Eulersches Polygonzugverfahren heifst.

Die Schrittweite muss nicht fiir alle Ndherungen gleich sein. M6chte man
eine Ndherung an der Stelle ¢ > ¢y berechnen, so kann man durch Wahl einer
Zerlegung

to<t1 < - <th1 <tp=t,

jeweils als Schrittweite

hi:ti_ti—l fﬁri:L...,n.

1.2 Komplexitit und O-Notation 11

(t2,92)

(to, yo)

t

Abb. 1.3. Das Euler-Verfahren zur Approximation der exakten Losung y.

vorgeben. Das Euler-Verfahren zur Berechnung der Naherungen yi,...,yn
lautet dann:

Yir1 = Yi + i1 f(ti,yi) firi=0,...,n—1. (1.11)

a

1.2 Komplexitidt und O-Notation

Bei der Beurteilung der Qualitat eines Algorithmus sind folgende Aspekte zu
beriicksichtigen:

Laufzeitkomplexitdt: Sie gibt an, wieviele Arbeitsschritte der Algorithmus zur
Bewiéltigung der Aufgabe bendétigt. Da ein Computerprozessor nur eine
bestimmte Anzahl von Operationen pro Zeiteinheit ausfithren kann, wird
man versuchen, die Anzahl der zur Losung erforderlichen Arbeitsschritte
zu minimieren.

Speicherkomplexitit: Der Computerprozessor greift iiber einen schnellen Hilfs-
speicher (Cache) auf die im Hauptspeicher gelegenen Daten zu. Wegen
der begrenzten Speicherkapazitit kommen fiir die Praxis nur solche Al-
gorithmen in Frage, die zu jedem Zeitpunkt der Ausfilhrung mit einer
beschrankten Datenmenge arbeiten. Der 6konomische Umgang mit Spei-
cherressourcen ist ein weiteres Ziel bei der Entwicklung von Algorithmen.

Qualitdt der Ergebnisse: Speziell bei Approximationsalgorithmen wie dem
Euler-Verfahren in Beispiel 1.6 ist zu untersuchen, wie nahe die berechne-
ten Niherungswerte dem exakten Ergebnis kommen.

12 1 Vorbereitungen

Die jeweilige Gewichtung der einzelnen Kriterien richtet sich nach den Er-
fordernissen der konkreten Problemstellung. Rechenzeit und Speicher kosten
letztlich Geld und so bezeichnet man Algorithmen mit langer Laufzeit bzw.
groflem Speicherbedarf auch als tewer. Natiirlich will man {iber die Komple-
xitét eines Algorithmus gern im Bilde sein, bevor man ihn implementiert und
sich im schlimmsten Fall iiber unertriglich lange Laufzeiten drgert. Zu diesem
Zweck analysiert man die benétigten Operationen und den Speicherbedarf mit
mathematischen Methoden.

Wenn man verschiedene Algorithmen zur Lésung ein und derselben Auf-
gabe objektiv miteinander vergleichen will, dann miissen Eigenschaften der
Algorithmen wie Laufzeit oder Speicherbedarf in Beziehung gesetzt werden
zu den Grofen, die das Problem charakterisieren. Dazu ein klassisches Bei-
spiel:

Beispiel 1.7 (Polynomauswertung).
Fiir die Auswertung eines Polynoms vom Grad n € N

P(z) = Zak z*
k=0

an einer Stelle ¢y € R kann man folgende ,naive” Methode verwenden:
1. Setze pg := ap.
2.Firk=1,2,...,n
o setze Hilfsgrofke M := ay,
e Firm=1,...,k berechne M := M - xg.
e po:=py+ M.
3. Liefere py zuriick.

In jedem der n Schritte werden jeweils eine Addition und & Multiplikationen
durchgefiihrt. Da wir den Zeitaufwand fiir die Zuweisungen gegeniiber den
arithmetischen Operationen vernachlissigen kdnnen, ist die Gesamtanzahl der
Operationen

. - 1 1 3
Op(n):Z(k+l):n+Zk:n+ 5n(n+1):§n2+§n.
k=1 k=1

Mit ein wenig Vorarbeit kénnen wir die Anzahl der Operationen reduzieren:
Schreiben wir das Polynom in Form ineinander geschachtelter Linearfaktoren,

P(z) = ((((anx—l—an_l)m+an_2)x+an_3) -~->a:+ao7

so bietet sich folgende Methode an, die auch Horner-Schema genannt wird:

1.2 Komplexitit und O-Notation 13

1. Setze Hilfsgrofe py := a,, .
2. Fir k=n—1,...,0 berechne

Do = Ppo - To + Q.
3. Liefere pg zuriick.

Diese Vorgehensweise ist nicht nur kiirzer in der Formulierung: In jedem der
n Schritte werden lediglich eine Addition und nur eine Multiplikation vorge-
nommen, so dass fiir diese Methode Op(n) = 2n folgt.

Sprachlich driickt man diesen Sachverhalt dadurch aus, dass der erste Al-
gorithmus von quadratischer und der zweite von linearer Komplexitét ist. Der
Speicherbedarf beider Algorithmen ist vergleichbar: Beide benétigen die n
Koeffizienten des Polynoms und verwenden pg, zuséitzlich benétigt die naive
Methode die Hilfsgréfse M. Daraus ergibt sich fiir beide Methoden eine lineare
Speicherkomplexitit. O

Beispiel 1.8 (Matrizen und Vektoren).

a) Um einen Vektor z € R™ abzuspeichern, ben6tigt man fiir die n Kompo-
nenten natiirlich n Speicherplitze.

b) Fiir eine Matrix A € R™*" hat man entsprechend mn Eintrige abzuspei-
chern. Im speziellen Fall einer quadratischen Matriz A € R™*™ bendtigt
man n? Speicherpliitze, es liegt also quadratische Speicherkomplexitiit vor.

c¢) Das euklidische Skalarprodukt zweier Vektoren z,y € R™ ist definiert als

n
<l’7y> = leyla
i=1

d.h. die Berechnung erfordert n Multiplikationen und n — 1 Additionen.

d) Aus Beispiel 1.2 wissen wir, dass das Produkt einer Matrix A € R™*™ und
einem Vektor x € R™ wieder ein Vektor ist, den wir mit y € R™ bezeichnen.
Die Komponenten von y sind definiert durch

n
Yi = E aijmj, z:1,...7m7
j=1

wobei a;; die Matrixeintrage sind und z; die j-te Komponente des Vektors
x ist. Wir haben also fiir jede der m Komponenten n Multiplikationen und
n—1 Additionen zu berechnen, d.h. der Gesamtaufwand des Matrix-Vektor-
Produkts y = Az betragt

Op(m,n) =m(2n—1).

14 1 Vorbereitungen

Die O-Notation

Wir konnten im Beispiel 1.7 die exakte Anzahl der bené6tigten arithmetischen
Operationen leicht berechnen, da beide Algorithmen sehr einfacher Natur sind.
Fiir kompliziertere und umfangreicher formulierte Algorithmen wird die ex-
akte Berechnung der Laufzeitkomplexitit sehr miihselig und ist auch aus ei-
nem weiteren Grund eine eher undankbare Aufgabe: Der Unterschied in der
Laufzeit der beiden Verfahren zur Polynomauswertung wird mit wachsendem
Polynomgrad n erst richtig spiirbar, da dann der quadratische Summand in
der Komplexitat der naiven Methode dominiert und man den linearen Anteil
vernachléssigen kann.

Fiir einen Vergleich der Komplexitat von Algorithmen geniigt also oft be-
reits die Kenntnis der Gréffenordnungen von Laufzeit- und Speicherkomplexi-
tit. Der folgende Begriff ist eine mathematische Préizisierung hiervon:

Definition 1.9 (O-Notation, LANDAU-Symbole).
Es sei I C R ein Intervall und

fg: I —R

seien zwei Funktionen.

a) Sei zp € R. Die Funktion f heifit von der Ordnung O(g(x)) fir x — xo,
wenn es eine Konstante C' > 0 und ein § > 0 gibt, so dass die folgende
Ungleichung gilt:

|f(z)] <Clg(x)| fiir alle z € I mit | —xo| < 0. (1.12)

Die Funktion f heit von der Ordnung O(g(x)) fir z — oo (bzw. x — —00),
wenn es eine Konstante C' > 0 und ein M € R gibt, so dass die folgende
Ungleichung gilt:

If(z)] < Clg(x)| firallex € mitz>M (bzw. x < M). (1.13)

b) Sei 2o € R. Die Funktion f heift von der Ordnung o(g(x)) fir x — xo,
wenn gilt:
[f(@)] _

im =
=0 |g ()]

Entsprechend heifit die Funktion f von der Ordnung o(g(z)) fiir z — oo

bzw. © — —o0, wenn gilt:

. |f(@)] . f (@)
lim =0 bzw. lim =
v—o0 |g()| e——oc |g(z)]

Bemerkung 1.10. Man beachte, dass in der Definition nicht gefordert wird,
dass xg € I gilt, so dass die Funktionen f und g an dieser Stelle gar nicht
definiert sein miissen. Es geniigt, dass man der Stelle g € R mit Punkten aus
dem Intervall I beliebig nahe kommen kann. Mdchte man daher eine Aussage
iiber das Verhalten einer Funktion fiir x — +oo treffen, so muss [natiirlich
unbeschréinkt sein.

1.2 Komplexitit und O-Notation 15
Beispiel 1.11 (O-Notation).

a) Fir die naive Polynomauswertung in Beispiel 1.7 ist

und fiir das Horner-Schema gilt
Op(n) = O(n).
Der Speicherbedarf beider Algorithmen ist
Mem(n) = O(n).

Wir folgen hier der Konvention, dass man bei der O-Notation fiir Gréfen
wie die Anzahl der bendétigten Operationen bzw. den Speicherbedarf stets
zu Grunde legt, dass man das Verhalten fiir n — oo beschreibt.

b) Ein Polynom vom Grad n,

n
= E aksck
k=0

ist fiir £ — oo von der Ordnung O(z™) bzw. fiir jedes € > 0 von der Ordnung
o(z"*¢). Das Gleiche gilt offensichtlich auch fiir z — —oc.
c) Fiir beliebige n € N gilt

" =o(e®) firz — oco.

Man sagt hierzu auch: ,Die Exponentialfunktion wéchst echt schneller als
jede Potenz von x.“ O

Natiirlich ist stets f(z) = O(f(z)) und aus der Definition liest man sofort die
Giiltigkeit von

f(z) =o(g(x)) = f(z)=0(y(z))
ab. Wir fassen weitere Eigenschaften in dem folgenden Satz zusammen:

Satz 1.12. Fir das Landau-Symbol O gilt:
a) Fir alle K € R\ {0} gilt

f(@) = O(Kyg(z)) < f(z)=0(g(z)).

b) f(2) = O(g(x) + h(z)) und hz) = O(g(x)) = f(z) = O(g(x)).
¢) Wenn fi(z) = O(g1(x)) und fo(z) = Olga(x)), dann gilt

fi(@) fa(z) = O(g1(2) g2(2)) -

Den Beweis iiberlassen wir als Ubung (Aufgabe 1.3).

16 1 Vorbereitungen

x xT

Abb. 1.4. Abweichung des Ergebnisses bei der Schnittpunktbestimmung in Abhén-
gigkeit vom Schnittwinkel.

1.3 Kondition eines Problems

Bereits bei der Entwicklung einer Losungsstrategie fiir ein Problem sollte man
die gestellte Aufgabe auf ihre ,Gutartigkeit hin untersuchen. Damit ist ge-
meint, wie sich Datenfehler in den Eingabeparametern (z.B. Mess- und Uber-
tragungsfehler) auf die Resultate auswirken.

Die Kondition eines Problems gibt an, wie stark sich Anderungen an
den FEingabedaten auf die Lésung auswirken. Die Kondition ist eine
Eigenschaft des Problems und unabhéingig von einer konkreten Lé-
sungsmethode.

Ein einfaches Paradebeispiel hierfiir ist die Bestimmung des Schnittpunkts
zweier Geraden. Verschiebt man eine der Geraden etwas, so weicht die neue
Position des Schnittpunkts umso stirker von der alten ab, je mehr die Stei-
gungen der sich schneidenden Geraden iibereinstimmen (sieche Abb. 1.4). Im
Falle eines solchen ,schleifenden Schnitts wirken sich kleine Anderungen in
den Eingabedaten (Steigung und Achsenabschnitte) erheblich auf das Resultat
(Schnittpunktkoordinaten) aus.

Bezeichnen wir mit = € R den korrekten Wert einer Gréfse und mit Z einen
hiervon abweichenden, so wird

eabs(T) = |z — | (1.14)
absoluter Fehler in x und fiir z # 0 der Quotient

rT—T
erel(x) = | |

(1.15)

||

relativer Fehler in x genannt.

1.3 Kondition eines Problems 17

Wir nennen ein Problem gut konditioniert, wenn sich relative Fehler
in den Eingangsdaten nur méfkig auf den relativen Fehler im Ergebnis
auswirken, andernfalls nennen wir das Problem schlecht konditioniert.
Kénnen selbst kleinste relative Fehler in den Eingabedaten beliebig
grofse relative Abweichungen im Ergebnis hervorrufen, so heit das
Problem schlecht gestellt.

Selbst eine so einfache Aufgabe wie die Addition zweier Zahlen a,b € R kann
mitunter tiickisch sein. Beschrénkt man sich auf die Betrachtung des absoluten
Fehlers, so liefert die Dreiecksungleichung

(a+b)— @+5) < la—a +[p—b <2max{la—al.p- 5}, (1.16)

d.h. der absolute Fehler im Ergebnis ist hochstens doppelt so grofs wie der
maximale absolute Fehler in den Summanden. Bevor wir uns aber beruhigt
zuriicklehnen, werfen wir noch einen Blick auf den relativen Fehler bei der
Addition:

Beispiel 1.13 (Konditionsanalyse der Addition). Bei der Analyse der
Verstiarkung des relativen Fehlers bei der Berechnung von a + b nehmen wir
zundchst an, dass a,b € R\ {0}. Ist nur der Summand b fehlerbehaftet, so
lautet der absolute Fehler im Ergebnis

(@ +b) — (a+b)| =[b—b|
und daraus folgt fiir die relativen Fehler die Beziehung

(a+b) = (a+D) |b]
- (D).
@+ b| la b€ 1(b)

Analog finden wir fiir den Fall, dass nur a fehlerbehaftet ist, die Gleichung

[(a+0b)—(a+b) |a
la+ 0] “lat+b erei()-

Wir kénnen nun den allgemeinen Fall behandeln: Wenn die absoluten Fehler
in a und b hinreichend klein sind, liefert die Dreiecksungleichung die folgende
recht brauchbare Abschitzung nach oben:

l(a+b)— (a+b)=|(@a+b)— (a+b)+ (a+b)— (a+b)
<|(a+b)—(a+Db)|+|(a+b)—(@+b).
Daraus erhalten wir durch Einsetzen der obigen Gleichungen

[(a+b) —(a+ B)| < |b] ere(b) + |a] erei(a) _

1.17
la + b - la + b ()

erel(a + b) =

Mit Blick auf die rechte Seite dieser Fehlerabschitzung stellen wir fest, dass
die relativen Fehler in den Summanden extrem verstirkt werden, wenn |a+ b
sehr klein ist. Anders ausgedriickt:

18 1 Vorbereitungen

Die Addition zweier Zahlen a,b € R ist schlecht konditioniert, wenn
gilt:
ar~ —b.
Andernfalls handelt es sich um eine gut konditionierte Aufgabe. Wenn die
Summanden gleiches Vorzeichen haben, so gilt |a + b| = |a| + [b] und die
Datenfehler werden wegen

oy

|a|
<1
la+ b —

la+ b —

)

im Ergebnis sogar gedampft. a

Auf dhnliche Art und Weise iiberzeugt man sich davon, dass die Multipli-
kation zweier Zahlen sowie das Ziehen der Quadratwurzel gut konditionierte
Aufgaben sind (Aufgabe 1.4).

1.4 Rechnerarithmetik

Die Datenfehler sind nicht die einzigen Stérfaktoren auf dem Weg zum Ergeb-
nis. Die endlichen Ressourcen eines Computers haben zur Folge, dass man nur
mit endlich vielen Zahlen arbeiten kann, was sich natiirlich auch auf die Art
des Rechnens mit ihnen und somit auf die Ergebnisse auswirkt. Um uns der
Fallstricke, die hinter dieser Tatsache lauern, bewusst zu werden, miissen wir
uns mit der Darstellung von Zahlen und der Rechnerarithmetik etwas genauer
befassen.

1.4.1 Zahldarstellung

Sei B € N mit B > 2. Dann existiert zu jeder ganzen Zahl z eine Darstellung
der Form

N
r= (-1 x; B, (1.18)
j=0
wobei
NeNg, z;€{0,...,B—1}fir j=1,...,N, s € {0,1}.
Fiir # 0 ist diese Darstellung eindeutig, wenn man
TN 7£ 0

verlangt. Ist die so genannte Basis B festgelegt, so geniigt die Kenntnis der
Ziffern x;. Die Zifferndarstellung der Zahl x zur Basis B lautet

Xr = INLZJNfl....T(”B,

wobei wir fiir den Fall der Dezimaldarstellung (B = 10) die Angabe der Basis
weglassen.

1.4 Rechnerarithmetik 19

Beispiel 1.14. Die dezimale Zifferndarstellung der Zahl x sei 30. Dann lautet
die

Bindrdarstellung (Dualzahl, B = 2): x = 11110y,

Oktaldarstellung (B = 8): x = 363,

hexadezimale Darstellung (B = 16): x = 1E)5 .

Dabei stehen zur Darstellung die Ziffern 0,...,9, 4, B,C, D, E, F zur Ver-
fligung. O

Dieses Konzept lisst sich auf die rellen Zahlen iibertragen, denn es gilt allge-
mein der folgende Satz (siehe etwa [15]):

Satz 1.15 (B-adische Zahldarstellung). Sei B € N, B > 2. Dann kann
jede Zahl x € R\ {0} auf die folgende Art dargestellt werden:

z=(-1)*B" Y 2, B7". (1.19)
n=0

Dabei ist N € Z, x, € {0,...,B—1} und s € {0,1}.
Die Darstellung ist eindeutig, wenn gilt xo # 0 und wenn zu jedem m € N ein
n > m existiert mit x,, # B — 1.

Die zweite Bedingung fiir die Eindeutigkeit tragt der Tatsache Rechnung, dass
7.B. 0.99999 - - - = 0.9 und 1 identisch sind.

Beispiel 1.16 (Umwandlung in die Binédrdarstellung). Die Binirdar-
stellung der Dezimalzahl 12.75 lautet 1100.11),. Die Umwandlung der ,harm-
losen Dezimaldarstellung 0.2 in eine Dualzahl fiihrt allerdings auf die unend-
liche Darstellung

0.0011001100110011 5 - - = 0.00115 .

Gibt man nun die Maschinendarstellung von 0.2 aus, so erhilt man je nach
Genauigkeit und Maschine z.B. 0.20000000000000001, was falschlicherwei-
se hiufig als Fehler der Programmiersprache oder des Rechners interpretiert
wird. a

Darstellungen mit unendlich vielen Stellen wie in (1.19) sind weder auf einem
Computer mit seinen begrenzten Ressourcen realisierbar noch werden sie fiir
die Praxis bendtigt. Statt dessen arbeitet der Rechner mit einer endlichen
Teilmenge, den normalisierten Gleitpunktzahlen

P-1
r=(-1)"B” Y 2,B™", (1.20)
n=0

wobei P € N fest gewdhlt ist und der Ezponent E nur die ganzen Zahlen
zwischen zwei vorgegebenen Schranken F.,;, und Fy,. durchlduft. Die Nor-
malisierung der Darstellung besteht darin, dass auch in (1.20)

20 1 Vorbereitungen

.%‘0750

gefordert wird. Die Zahl
P—1
m=>Y z,B7" (1.21)
n=0

heifst Mantisse von x. Bei festgelegter Basis B schreibt man die Mantisse
auch als
m=2x9.%1...Tp_1 (1.22)

und bezeichnet die festgelegte Anzahl P der signifikanten Stellen als Man-
tissenldinge. Eine normalisierte Gleitpunktzahl zur Basis B mit Vorzeichen
(—1)%, Mantisse m und Exponent FE ist also vollstdndig durch das folgende
Tripel beschrieben:

= (s,m E)p. (1.23)

1.4.2 Rundung und Gleitpunktrechnung

Durch die Mantissenldnge P und die Schranken F,,;, und E,,,x ist die Menge
G aller zuldssigen normalisierten Gleitpunktzahlen festgelegt. Speziell gilt fiir
alle x € G:

BEwmin < |g| < BPmaxtl (1.24)

Bei der Ausfiihrung von Programmen muss der Computer aber hiufig Zahlen-
werte handhaben, die nicht zu G gehoren. Diese Werte konnen z.B. extern in
Form von Messwerten entstanden sein. Solche Zahlenwerte werden aber auch
durch arithmetische Operationen vom Computer selbst erzeugt: An einfachen
Beispielen macht man sich leicht klar, dass fiir x, y € G weder die Summe z+y
noch das Produkt x y wieder in G liegen miissen. Es ist damit notwendig, re-
elle Zahlen in die Menge G der normalisierten Gleitpunktzahlen abzubilden.
Diesem Zweck dient die so genannte Rundung.

Rundung und Rundungsfehler. Unter der Rundung kann man zunéchst
eine Abbildung
rd: R—G

verstehen, die die Eigenschaft
rd(z) =z fir allex € G

besitzt. Diese Abbildung kann auf mehrere Arten realisiert sein. Die gebrauch-
lichste Rundungsvorschrift basiert auf der normalisierten Darstellung

z=(-1)*Bf zg.z125 ...

fiir x # 0, die ja nach Satz 1.15 existiert und lautet

1.4 Rechnerarithmetik 21

B
T0.L1..-Tp_1 ,falls xp <)

rd(z) = (—1)*BF 5 (1.25)
(.%‘0..%‘1...37P—1+B_(P_1)) , falls xp > 3

Diese Rundungsvorschrift besitzt offensichtlich die Eigenschaft,
|z —rd(z)] < |z —y|fir alley € G,

d.h. die Rundung von x ist diejenige normalisierte Gleitpunktzahl, die z am
nichsten liegt (round to nearest). Die Fallunterscheidung schafft Eindeutig-
keit, wenn x genau in der Mitte zwischen zwei Gleitpunktzahlen liegt. Wir
setzen dabei fiir den Moment noch voraus, dass F zwischen Ey,i, und Fyax
liegt und gehen weiter unten auf die anderen Fille ein.

Neben (1.25) gibt es noch die so genannten gerichteten Rundungsvorschrif-
ten wie Auf- bzw. Abrunden (round to (minus) infinity) sowie das Abschnei-
den, bei dem alle Ziffern ab der P-ten Stelle verworfen werden, d.h. man wahlt
als Rundung die néchst gelegene Gleitpunktzahl mit kleinerem Betrag (round
to zero).

Der absolute Fehler bei der Rundung hingt offensichtlich vom Exponenten
E ab und ist daher nicht besonders aussagekriftig, so dass man den relativen
Rundungsfehler betrachtet. Bei Verwendung der Rundungsvorschrift (1.25)
gilt fiir x € R\ {0} mit BFwmin < |z| < BEmaxt1 die Ungleichung

lo —rd(@)| < lB—(P—l)) (1.26)
|| 2

Gleitpunktrechnung. Der Ausdruck auf der rechten Seite der Fehlerab-

schitzung (1.26) ist eine obere Schranke fiir die relative Maschinengenauigkeit,

die wir mit eps bezeichnen wollen:

_lpg--p
eps = 2B .
Diese Grolse bestimmt auch die Genauigkeit, mit der arithmetische Operatio-
nen in G durchgefiihrt werden. Wie eingangs erwéhnt, konnen exakt gebildete
Summen, Produkte und auch Quotienten von normalisierten Gleitpunktzah-
len aufserhalb von G liegen. Deshalb miissen diese arithmetischen Operationen
durch entsprechende Gleitpunktoperationen &, ® und @ ersetzt werden, die
die folgenden Minimalbedingungen erfiillen: Fiir alle xz,y € G gilt

r@y, zr0yundzoyeG. (1.27)

Es liegt nahe, die Umsetzung dieser Forderungen mit der Rundungsvorschrift
zu verkniipfen und fiir x, y € R zu fordern, dass nach Moglichkeit die folgenden
Gleichheiten gelten:

22 1 Vorbereitungen

rd(z) ®rd(y) = rd(z +y),
rd(z) @ rd(y) =rd(zy), (1.28)
rd(z) @ rd(y) = rd(z/y) .

Mit anderen Worten: Die Anwendung einer Gleitpunktoperation auf die gerun-
deten Groflen sollte dquivalent zu der Rundung des Ergebnisses der entspre-
chenden exakten Operation sein. Im Allgemeinen sind Gleitpunktoperationen
weder assoziativ noch distributiv, wie einfache Beispiele zeigen.

Da die Operanden der Gleitpunktoperationen Eingabedaten sind, die
durch die Rundung mit einem relativen Fehler behaftet sind, gibt die Kon-
dition der jeweiligen arithmetischen Operation schon einen Hinweis darauf,
ob und wann Probleme zu erwarten sind. Aus Beispiel 1.13 wissen wir, dass
die Subtraktion zweier ndherungsweise gleicher Zahlen eine schlecht kondi-
tionierte Aufgabe darstellt. Wie zu befiirchten ist, sind die Auswirkungen auf
das Ergebnis der entsprechenden Gleitpunktoperation bei dieser Konstellation
erheblich:

Beispiel 1.17 (Ausléschung signifikanter Stellen). Wir wihlen als Basis
B = 10. Die Summe der reellen Zahlen

z=1.004, y=—0.9986

ist 5.4 - 1072, Die normalisierte Gleitpunktdarstellung sei durch die Mantis-
senldnge P = 3 und Ep,i, = —4 charakterisiert. Dann gilt nach (1.25)

rd(z) = 1.00-10°, rd(y) = —9.99- 107!,

und es wird
rd(z) +rd(y) = 1.00- 103

berechnet. Dieses Ergebnis weist gegeniiber dem exakten Resultat einen relati-
ven Fehler von ungefihr 0.8148 auf, was in etwa 81.5 % entspricht. Vergleicht
man das mit dem Rundungsfehler der Summanden von jeweils etwa 0.4%,
so stellt man eine Verstirkung um mehr als das 200fache fest. Diesen Effekt
nennt man Ausléschung signifikanter Stellen.

Bei dieser Betrachtung ist noch zu beachten, dass die Addition der gerun-
deten Werte exakt ausgefiihrt wurde, was nicht unbedingt so sein muss. Bei
der Gleitpunktaddition & werden zunéchst die Exponenten der Summanden
angeglichen, indem in der Mantisse des Summanden mit kleinerem Expo-
nenten entsprechend viele Nullen von links eingefiigt werden. Wenn fiir die
Berechnung die Mantissenldnge um die entsprechende Anzahl von Stellen ver-
langert wird, gelangt man zu dem obigen Resultat. Behilt man aber etwa die
Mantissenlénge P = 3 bei, so gilt

rd(z) @ rd(y) = (1.00 + (—0.99)) - 10° = 1.00 - 102,

und es ergibt sich ein relativer Fehler von ungefihr 85.2%. Ubrigens ist in
keinem der beiden Félle die erste Forderung in (1.28) erfiillt. O

1.4 Rechnerarithmetik 23
1.4.3 Binire Realisierung

Die kleinste Informationseinheit auf einem Digitalrechner ist das Bit', das nur
die Werte 0 und I annehmen kann. Im Folgenden soll G stets fiir eine Menge
normalisierter Gleitpunktzahlen zur Basis B = 2 stehen.

Ganze Zahlen (integer). Die Menge der durch (1.18) darstellbaren ganzen
Zahlen ist durch die hierfiir reservierte Bitlinge eingegrenzt, wobei ein Bit
den Wert von s und damit das Vorzeichen speichert (Vorzeichenbit). Betrigt
die Bitlinge z.B. 32 Bit, so kénnen damit alle ganzen Zahlen z zwischen —23!
und 23! — 1 dargestellt werden, wobei die 0 durch z; = 0 fiir alle j = 0,...,31
gegeben ist.

Sofern das Ergebnis innerhalb des durch die Bitlange festgelegten Bereichs
liegt, werden ganzzahlige Addition sowie Multiplikation exakt und unter Ein-
haltung von Assoziativitdt und Distributivitit ausgefiihrt. Liegt das Ergeb-
nis aber auferhalb, so spricht man von einem ganzzahligen Uberlauf (integer
overflow). Zum ganzzahligen Uberlauf kommt es z.B. auch, wenn eine be-
tragsmakig zu grofse Gleitpunktzahl in das ganzzahlige Format umgewandelt
wird.

Gleitpunktzahlen (floating point number). Bei der normalisierten Gleit-
punktdarstellung im Bindrsystem folgt aus x¢ # 0 sofort g = 1, d.h. die
Mantisse hat die Gestalt

m:1.x1...xp_1:1.f,

mit dem gebrochenen Anteil f (fraction). Das fithrende Bit mit Wert 1 wird
daher meist gar nicht explizit abgespeichert und man spricht vom impliziten
Bit. Dadurch wird eine weitere Stelle der Mantisse frei fiir den gebrochenen
Anteil, so dass nun P Stellen fiir f zur Verfiigung stehen. Das Tripel (1.23)
zur Darstellung einer normalisierten Gleitpunktzahl wird also im Bin&rsystem
durch

Tr = (S7 f, E)g mit f = f1 ‘e fP (129)

ersetzt. Die Rundung auf die néchst gelegene Gleitpunktzahl 1dsst sich fiir das
Binérsystem recht einfach realisieren: Liegt = genau in der Mitte zwischen zwei
benachbarten Gleitpunktzahlen, so liefert (1.25) diejenige der beiden Zahlen,
fiir die fp = 0 gilt. Wegen B = 2 und der Verlangerung des gebrochenen
Anteils um eine Stelle leitet sich aus der Rundungsfehlerabschitzung (1.26)
die Ungleichung

|z — rd(z)|

] < 9~ (P+1) (1.30)

ab. Wir betrachten zwei iibliche Beispiele fiir dieses Zahlenformat:

L Abkiirzung fiir binary digit (Binarziffer).

24 1 Vorbereitungen

Beispiel 1.18 (Standard-Gleitpunktzahlen). Um Gleitpunktoperationen
schnell ausfithren zu kénnen, verwenden die meisten Computer einen speziellen
Hardwarebaustein, die so genannte FPU (floating point unit). Um fiir die un-
terschiedlichen Computerarchitekturen eine weit gehende Transparenz in den
berechneten Resultaten zu gewdhrleisten und eine einheitliche Schnittstelle zu
den Programmiersprachen zu schaffen, definiert der Industriestandard IEEE
754-1985 u.a. die beiden folgenden Typen von Gleitpunktzahlen:

Einfache Genauigkeit (single precision): Fiir diesen Typ von Gleitpunktzah-
len betragt die Bitlinge 32 Bit. Ein Bit enth< das Vorzeichen, 8 Bit
sind fiir den Exponenten reserviert und die verbleibenden 23 Bit fiir die
Mantisse. Dabei ist

Emin = _126; Emax = 1277

wobei der Exponent nicht mit Hilfe eines Vorzeichenbits dargestellt wird,
sondern durch Verschiebung um einen konstanten Wert b (Bias):

Ey=FE+b. (1.31)

Bei diesem Gleitpunkttyp gilt b = 127. So wird z.B. E,,;, = —126 als
Ey = —126 + 127 = 1 dargestellt und dem Exponenten E = 73 entspricht
Ep = 200.

Doppelte Genauigkeit (double precision): Die Bitlinge betragt 64 Bit. Neben
dem Vorzeichenbit werden 11 Bit fiir den Exponenten und 52 fiir die Man-
tisse verwendet. Es ist

Emin = —1022, Epax = 1023,

und der Bias-Wert fiir den Exponenten betrdgt hier b = 1023. a

An den beiden Beispielen féllt auf, dass die jeweilige Bitlinge des Exponenten
durch die Grenzen Eyi, und Ep.x nicht ganz ausgeschopft wird: Die beiden
verbliebenen mdéglichen Exponenten Ep = 0 und Ep = Fax + b+ 1 werden
nicht fiir die Darstellung normalisierter Gleitpunktzahlen verwendet. Diese
reservierten Exponenten sorgen dafiir, dass die Forderungen (1.27) nach Mé6g-
lichkeit auch in arithmetischen ,Grenzsituationen” erfiillt werden (siche Ta-
belle 1.1). Speziell beachte man, dass die Zahl 0 zwar als Ergebnis der Summe
2@ (—z) mit z € G auftreten kann, jedoch nicht als normalisierte Gleitpunkt-
zahl mit implizitem Bit darstellbar ist. Tabelle 1.1 gibt einen Uberblick iiber
die Verwendung der reservierten Exponenten. Dabei steht f = 0 fiir eine Man-
tisse, die ausschliefslich bindre Nullen enthélt. inf wird z.B. bei der Division
einer Zahl x # 0 durch 0 als Ergebnis geliefert. NaN dient u.a. als Hinweis auf
,dubiose Operationen” wie 0 @ 0 oder inf@inf. Die in der Tabelle definier-
ten denormalisierten Gleitpunktzahlen sind eigentlich Festkommazahlen, denn
ihre Darstellung beinhaltet einen konstanten Exponenten:

x = (—1)*2Fmin 0. f .

1.4 Rechnerarithmetik 25

Tabelle 1.1. Die Verwendung der reservierten Exponenten.

Fall Name | Bedeutung
E,=0
f#0 x denormalisiert
f=0 inf xz = +oo (je nach Vorzeichenbit)
Eb = Emax + b + 1
f#£0 nan x ist keine Zahl“ (not a number)

Wiéhrend die positiven normalisierten Gleitpunktzahlen mit fallendem Expo-
nenten E immer ndher zusammenriicken, fiillen die denormalisierten Zahlen
den Bereich zwischen 25min=F und 2Fmin gleichmifig aus (siehe Abb. 1.5).
Eine wichtige Konsequenz hieraus ist, dass die relativen Fehler sowohl der
Rundung als auch der arithmetischen Operationen umso grofser werden, je
mehr man sich in diesem Bereich der 0 n&dhert.

Uber- und Unterlauf. Ahnlich wie bei den ganzen Zahlen, kann es auch
bei den Gleitpunktzahlen zu einem Gleitpunktiberlauf kommen. Damit ist ge-
meint, dass der Exponent einer Maschinenzahl F,,,, iibersteigt. Dies kann
z.B. wihrend der Multiplikation zweier Gleitpunktzahlen geschehen, wenn die
Summe ihrer Exponenten dem Betrag nach zu groR ist, oder der Uberlauf
wird erst durch die Rundung der Mantisse mit anschliefsender Anpassung des
Exponenten verursacht. Das Ergebnis des Exponenteniiberlaufs durch Run-
dung ist + inf (siehe Tabelle 1.1), d.h. der Wert des Vorzeichenbits bleibt
bestehen. Entsprechend kommt es zu einem Unterlauf, wenn der Betrag des
Exponenten FE,,;, unterschreitet. Auch bei Rundung zu 0 bleibt der Wert des
Vorzeichenbits bestehen, so dass man durchaus -0 erhalten kann. Ist dass Er-
gebnis der Rundung nicht 0, sondern die néchstgelegene denormalisierte Zahl,
so spricht man auch von einem allmdhlichen Unterlauf (gradual underflow).
Neben der geringeren Rechengenauigkeit besteht eine weitere Tiicke dieses
Zahlenbereichs darin, dass die Bildung des Kehrwerts einer denormalisierten
Zahl zu einem Uberlauf fithrt. Fiir eine detailliertere Darstellung der Gleit-
punktarithmetik verweisen wir auf [4].

Abb. 1.5. Die Lage der denormalisierten (o) und normalisierten (o) Gleitpunkt-
zahlen.

26 1 Vorbereitungen
1.5 Stabilitit

Die in der Gleitpunktarithmetik auftretenden Rundungsfehler fiihren bei der
konkreten Realisierung eines Algorithmus dazu, dass man selbst bei fehlerfrei-
en Eingabedaten x nicht die exakte Losung f(x) des Problems f erhélt, son-
dern ein davon abweichendes Resultat f (). Zu den Rundungsfehlern gesellen
sich in vielen Algorithmen noch die Verfahrensfehler, die dadurch entstehen,
dass man das urspriingliche Problem durch ein anderes ersetzt, das leichter zu
16sen ist. Die Abb. 1.3 zum Euler-Verfahren aus Beispiel 1.6 illustriert diesen
Effekt.

Ein Algorithmus heifit stabil, wenn sich Rundungs- und Verfahrens-
fehler nur méfig auf das Resultat auswirken.

Waihrend die Kondition eine Eigenschaft des zu losenden Problems ist, cha-
rakterisiert die Stabilitdt also das angewendete Losungsverfahren im Hinblick
auf die Qualitit der gelieferten Ergebnisse.

An der Tatsache, dass die Gleitpunktoperationen weder assoziativ noch
distributiv sind, kann man bereits erahnen, dass es nicht egal ist, welche arith-
metischen Operationen in welcher Reihenfolge durchgefiihrt werden.

Beispiel 1.19 (Summenberechnung). Wir wollen die Summe
s=a+b+c

dreier Gleitpunktzahlen a,b,c € G berechnen. Da die Gleitpunktaddition
nicht assoziativ ist, bieten sich uns zwei Moglichkeiten:

Algorithmus 1: z:=a®b, s :=zxdc

Algorithmus 2: y:=b®c, sy:=ady.

Wir beginnen mit der Betrachtung von Algorithmus 1. Der Quotient
(a®b)—(a+b) x—(a+b)

€] = =

a+b a+b

ist die relative Abweichung des berechneten Werts x vom exakten Ergebnis,
wobei das Vorzeichen beachtet wird. Bezeichnen wir mit e; die entsprechende
relative Abweichung von s, so gilt offensichtlich

r=(a+b)(1+e), si=(x+c)(l+e).
Durch Zusammenfassen ergibt sich
s1=(s+(a+b)er)(l+e)=s+ses+ (a+ber(l+ea),
und damit fiir den relativen Fehler im Endergebnis:

|s — s1] (a+0b)
=leg+ — "¢
2 la+ b+ ¢

|5| 1(1+62) .

1.5 Stabilitét 27

Da alle relativen Rundungsfehler nach oben durch eps beschrinkt sind, er-
halten wir mit Hilfe der Dreiecksungleichung

|s — s1] la + 0]
— <eps|l4+ ———
R la+b+

1ome)).

Die Untersuchung von Algorithmus 2 fithren wir auf die gleiche Art und Weise
durch und erhalten

|s — s2| |b+ |
—<eps|l+————(1+eps) .
ls|] — p |a+b+c|(Ps)

Die stabilere Methode beginnt die Summation also mit den Zahlen, deren
Summe betragsméfig die kleinere ist. O

In anderen Fillen kann man durch geeignetes Ersetzen von mathematischen
Ausdriicken die Stabilitéit einer Methode verbessern. Dies konnen fquivalente
Ausdriicke sein oder aber sogar solche, die nur ndherungsweise gleich sind.
Dazu jeweils ein Beispiel:

Beispiel 1.20 (Lésung der quadratischen Gleichung). Die Losungen der
quadratischen Gleichung

22+ pr+qg=0
sind fiir p? > 4¢ durch

2
x+:—§+\/ﬁ,x,:f§—\/ﬁ mitD:%*q>07 (1.32)

gegeben. Wir betrachten den folgenden Fall:
dlq| < p* = \/5%“3’ :

Dann liegt die betragsmiifig kleinere Losung in der Ndhe der 0 und bei der
Verwendung der entsprechenden Formel in (1.32) ist Ausloschung zu befiirch-
ten: Die Berechnung dieser Losung ist instabil.

Ratsamer ist es, zuerst die betragsméfig groftere Nullstelle mit Hilfe von

T = 7<§ + sgn(p)\/ﬁ)
zu berechnen, wobei

1 Lfallsp>0
sgn(p) = 0 ,fallsp=0
-1 Lfallsp<0

das Vorzeichen (Signum) von p ist. Die beiden Summanden haben in diesem
Fall das gleiche Vorzeichen, so dass Ausléschung vermieden wird. Der Satz

28 1 Vorbereitungen

von Vieta besagt, dass ¢ das Produkt der beiden Losungen ist. Daher wird
die instabile zweite Formel in (1.32) gar nicht bendtigt, denn die Berechnung
durch
Tr9 = —
z1

verursacht keine Probleme. O

Beispiel 1.21 (Auswertung von sinh). Die hyperbolische Sinusfunktion
(Sinus hyperbolicus) ist fiir x € R definiert durch

sinh(z) = ¢

Offensichtlich gilt

e ~e P a0,

so dass bei Verwendung der Definition als Auswertungsmethode fiir betrags-
mafsig kleine x wegen der Ausloschung fiihrender Stellen ein instabiles Verhal-
ten zu erwarten ist. Dabei spielt es auch keine Rolle, wie exakt die Exponenti-
alfunktion ausgewertet wird. Im Gegenteil: Fiir x ~ 0 kann man eine stabilere
Methode erhalten, wenn man die Exponentialfunktion nur anndhert. In der
Analysis lernt man, dass fiir alle z € R gilt:

n
k 1‘2 1‘3

+E

Wihlen wir die Summe mit n = 3 als Ndherung fiir e* und e™7, so lautet die
entsprechende Approximation fiir die hyperbolische Sinusfunktion fiir x = 0:

3
sinh(z) = = + % .

Die Summanden haben gleiches Vorzeichen und Ausléschung wird vermieden.

1.6 Vom Problem zum Programm — und zuriick

Die binére Realisierung von Zahlen auf Digitalrechnern zeigt, dass der Compu-
ter eine ,eigene Sprache spricht®. Das Formulieren von Algorithmen in dieser
Maschinensprache erfordert eine Ubersetzungstitigkeit durch den menschli-
chen Programmierer und stellt eine entsprechend zeitaufwendige Angelegen-
heit dar. Es ist bequemer und zeitsparender, die auszufithrenden Anweisungen
in einer dem Menschen eher zugénglichen Programmiersprache zu formulieren.
Dieser Quelltext muss vor der Ausfiihrung vom Computer in seine eigene Ma-
schinensprache iibersetzt werden. Zu diesem Zweck muss die zu iibersetzende
Sprache standardisiert sein, um einen automatisierten Ubersetzungsvorgang
zuverlassig durchfithren zu kénnen.

1.6 Vom Problem zum Programm — und zuriick 29

Beobachtung Betrachtetes Phinomen
mathematisches Modell
Formulierung der Aufgabe Modellfehler
(Eindeutige) Losbarkeit
. . Datenfehler
Vergleich Kondition des Problems
Stabilitit des Rundungsfehler
Algorithmus’ Verfahrensfehler
Ergebnis Implementierung des semantische
— Programms Fehler

Abb. 1.6. ,Gefahren* auf dem Weg vom Problem zur rechnergestiitzten Losung.

Bei den so genannten Interpretersprachen wird das Programm Anweisung
fiir Anweisung auf seine syntaktische Korrektheit iiberpriift und ausgefiihrt.
Programmierfehler jeglicher Art machen sich bei dieser Variante erst zur Lauf-
zeit des Programms bemerkbar.

Im Unterschied dazu wird bei den Compilersprachen (wie z.B. C) der in
einer oder mehreren Dateien enthaltene Quelltext zuerst als Ganzes von ei-
nem Compiler-Programm analysiert und anschliefsend in die Maschinenspra-
che iibersetzt. Dabei konnen nicht nur eventuelle Fehler im Quelltext bereits
im Vorfeld aufgespiirt werden, sondern durch die Betrachtung des gesamten
Programms bietet sich auch die Mdoglichkeit, das Programm moglichst optimal
der Computerarchitektur anzupassen. Hierbei ist aber zu beachten, dass bei
der Analyse des Quelltextes lediglich syntaktische Fehler im Quelltext ausfin-
dig gemacht werden konnen. Schlieflich kann der Compiler nicht wissen, ob
die Anweisungen auch exakt dem entsprechen, was man beim Verfassen des
Codes im Sinn hatte. Solche semantischen Fehler bleiben also meist von den
automatischen Helfern unentdeckt und der Entwickler muss sie selbst finden
und beheben. Gelingt dies nicht, so wird der Algorithmus nicht korrekt aus-

30 1 Vorbereitungen

gefiihrt und es kommt zu Laufzeitfehlern (run time error) wie z.B. falschen
Ergebnissen oder Programmabstiirzen.

Ist die Implementierung als Programm jedoch korrekt, so muss man bei
unbefriedigenden Ergebnissen den Algorithmus noch einmal auf seine Stabili-
tit bzw. Korrektheit iiberpriifen und entsprechende Anderungen vornehmen.
Hilft auch das nichts, so muss sogar das zugrundeliegende mathematische Mo-
dell wieder auf den Priifstand.

Es ist also ein langer, von vielerlei Fehlerquellen gesdumter Weg von der
gestellten Aufgabe bis zu ihrer rechnergestiitzten Losung. In Abb. 1.6 ist dieser
Prozess zusammenfassend dargestellt. Die Auflistung von mdoglichen Schwie-
rigkeiten soll keinesfalls entmutigend wirken, trégt aber hoffentlich ein wenig
dazu bei, dass man die Arbeit der Entwickler von gut funktionierenden Com-
putersimulationen zu wiirdigen weifs.

1.7 Kontrollfragen zu Kapitel 1

Frage 1.1
Welche der folgenden Aussagen trifft nicht zu?
a) Die Kondition ist eine Eigenschaft des Problems und nicht der verwendeten Lo-

sungsmethode. O
b) Auch zu gut konditionierten Problemen kénnen instabile Losungsverfahren exi-

stieren. a
¢) Ein statisch finiter Algorithmus ist stets terminierend. O
d) Ein determinierter Algorithmus liefert bei gleichen Eingabedaten immer das glei-

che Ergebnis. O
e) Ein Algorithmus darf auf bereits existierende Algorithmen zuriickgreifen, wenn

diese korrekt sind. a
Frage 1.2

Welche der folgenden Aussagen zur O-Notation ist zutreffend?

) Fiir hinreichend grofie n € N gilt: e = O(z") fiir z — oo.

) Wenn f(z) = O(g(z)) fiir x — zo gilt, so auch f(z) = o(g(x)) fiir z — xo.
) 2% = O(x) fiir 2 — oo.

) Fiir alle n € Z gilt: e = O(z") fiir x — —o0.

)

ooooo

1.7 Kontrollfragen zu Kapitel 1 31

Frage 1.3
Die Funktion sin(z) kann fiir kleine z durch die Funktion

1‘3

fl@)=a-&
approximiert werden. Wie grof ist der relative Fehler bei Verwendung dieser Appro-
ximation fiir # = 2.0 (in Radiant), auf vier Nachkommastellen gerundet?

a) 0.2668
0.3639
0.2426

b)
c)
d) 0.2886
)

Oooooag

e) 0.2425

Frage 1.4

Wenn die Dezimaldarstellung einer Gleitpunktzahl durch 12.125 gegeben ist, so lau-
tet ihre Bin&rdarstellung:

a) 1010.101),
b) 1100.001)
) 1100.01},
) 1010.101)5
) 1110.111),

[="Ns)
OoOoooo

@

Frage 1.5

Bei welcher Operation in Gleitpunktarithmetik kann die ,, Ausléschung® fithrender
Stellen auftreten?

a) Bei der Addition a + b, wobei a &~ b im Rahmen der Maschinengenauigkeit. O
b) Bei der Multiplikation zweier Zahlen unabhingig von deren Vorzeichen,

wenn deren Betridge stark voneinander abweichen.]
c¢) Bei der Division zweier Zahlen, deren Betrag fast identisch ist. O
d) Bei der Subtraktion zweier Zahlen mit gleichem Vorzeichen, deren Betrige

stark voneinander abweichen.]
e) Bei der Addition zweier Zahlen mit unterschiedlichem Vorzeichen, deren

Betrige fast identisch sind. m]
Frage 1.6

Welche der folgenden Aussagen zu den Gleitpunktoperationen trifft nicht zu?

a) Das Distributivgesetz gilt.

b) Die Addition ist kommutativ.

¢) Die Multiplikation ist kommutativ.

d) Die Division durch 0 liefert inf oder NaN.
)

Die Addition ist nicht assoziativ.

Oooooag

e

32 1 Vorbereitungen

1.8 Ubungsaufgaben zu Kapitel 1

1.1 (Eindeutigkeit der Lésung fiir die Bakterienkultur).
Zeigen Sie, dass
y(t) = yoe 1)

tatsdchlich die einzige Losung des Anfangswertproblems
y'(t)=My(t) , y(to) =1y

ist. Nehmen Sie dazu an, dass z eine weitere Losung ist und betrachten Sie die
Ableitung des Quotienten z(¢)/y(t).

1.2 (Aufwand fiir die Berechnung des Matrizenprodukts).

Das Produkt einer Matrix A € R™*™ mit Eintrigen a;; und einer Matrix B € R"*P
mit Eintrégen b;; ist folgendermafien definiert:

Das Produkt aus A und B ist eine Matrix C € R™*?, deren Eintréige berechnet
werden durch

n
Cik = E aijbjr, t=1,....m, k=1...,p.
=1

Berechnen Sie den Gesamtaufwand an Operationen fiir die Berechnung von C' = AB.

1.3 (Eigenschaften der Landau-Symbole).
Beweisen Sie die Aussagen in Satz 1.12. Welche dieser Aussagen gelten auch fiir das
Symbol o(-)?

1.4 (Konditionsanalyse fiir Quadratwurzel und Produkt).

a) Zeigen Sie, dass das Ziehen der Quadratwurzel ein gut konditioniertes Problem
ist: Fiir alle z > 0 gilt
erel(\/g) S eT’el(:l:)y
d.h. der relative Fehler wird sogar geddmpft.

b) Zeigen Sie, dass fiir den relativen Fehler bei der Multiplikation zweier reeller
Zahlen a, b # 0 gilt:

eret(ab) < erei(a) + eret(b) + erei(a) erer(b) .

1.5 (Eigenschaften der Gleitpunktoperationen).
Zeigen Sie anhand einfacher Beispiele von Gleitpunktzahlenmengen G und entspre-
chenden Elementen x,y,z € G, dass im allgemeinen gilt:

a)z+y &G bzw. xy & G;
b) Gleitpunktoperationen @ und © sind im Allgemeinen weder assoziativ noch dis-
tributiv. Verwenden Sie dabei die iibliche Rundungsvorschrift (1.25).

1.6 (,,Reichweite der Gleitpunktzahlen).
Schétzen Sie jeweils die obere und untere Schranke der Zahlenbereiche, die durch die
IEEE-Gleitpunktzahlen aus Beispiel 1.18 in normalisierter Form darstellbar sind.

1.8 Ubungsaufgaben zu Kapitel 1 33

1.7 (Relative Maschinengenauigkeit).

a) Leiten Sie aus der Rundungsvorschrift (1.25) die Fehlerabschitzung (1.26) ab und
folgern Sie fiir die Bindrdarstellung mit implizitem Bit die Giiltigkeit von (1.30).

b) In der Literatur findet sich hiufig eine alternative Definition der relativen Ma-
schinengenéuigkeit: eps ist das kleinste positive € € G, fiir das 1 & € # 1 gilt.
Ist diese Definition &dquivalent?

¢) In Priifungen bekommt man hin und wieder zu horen, dass die relative Maschinen-
genauigkeit identisch mit der kleinsten darstellbaren Gleitpunktzahl ist. Machen
Sie sich klar, warum das im Allgemeinen nicht so ist!

1.8 (Differenz zweier Quadratzahlen).

Zur Berechnung von d = x? — y? bieten sich die folgenden beiden Algorithmen an:
Algorithmus 1: a1 =20z, b1 =y Oy, di = a® (—b).

Algorithmus 2: a2 =z @y, ba =z ® (—y), d2 =a O b.

Uberlegen Sie sich, wann die Aufgabe schlecht konditioniert ist und welche der bei-
den Methoden dann stabiler ist.

2

Elementare C-Programmierung

Die Formulierung von Algorithmen muss zwar unmissversténdlich sein, aber
technische Details zu ihrer Realisierung auf einem Computer bleiben natiir-
lich aufsen vor, um die Universalitit der Losungsvorschrift nicht zu beein-
trichtigen. Beim Ubertragen eines Algorithmus in einen C-Quelltext, auch
(Quell-) Code genannt, miissen aber z.T. deutlich genauere Angaben gemacht
werden, wie der Computer etwas tun soll. Dies erfordert mehr syntaktische
Strukturierung, die sich u.a. dadurch ausdriickt, dass man in Anweisungen
bzw. Programmteilen folgende Elemente unterscheidet:

Reservierte Worter: Sowohl ihre Bedeutung als auch die Art ihrer Verwen-
dung ist fest vorgegeben.!

Bezeichner: Das sind Namen fiir die unterschiedlichsten Objekte (Variablen,
Funktionen usw.), die vom Autor des Quelltextes vergeben werden. Man
darf natiirlich keine reservierten Worte als Namen vergeben.

Konstanten: Wie der Name schon sagt, handelt es sich dabei um fixierte Wer-
te, die in Form von Buchstaben, Ziffern oder Kombinationen davon ange-
geben werden.

Operatoren: Sie dienen in Anweisungen dazu, Operationen mit Variablen und
Konstanten durchfiihren zu lassen. Das konnen arithmetische Operatio-
nen wie Addition und Multiplikation sein, aber auch der Vergleich von
Werten miteinander fillt in diese Kategorie. Anweisungsteile, die sich auf
Operationen beziehen, werden wir auch Ausdriicke nennen.

Trennzeichen: Dazu zdhlen Worttrenner wie das Leerzeichen oder der Tabu-
lator sowie Zeilenumbriiche.

Wir werden nacheinander alle ,Zutaten“ fiir einfache C-Programme kennen
lernen und in kleinen Beispielen den Umgang mit ihnen {iben. Am Ende des
Kapitels sind wir in der Lage, die Algorithmen des ersten Kapitels als Com-
puterprogrammme zu realisieren.

! Eine Liste der reservierten Worter findet sich in Anhang D.

36 2 Elementare C-Programmierung

2.1 Editieren und Ubersetzen am Beispiel: ,,Hallo Welt!“

Wir befassen uns zunéchst mit einigen Aspekten der Erstellung von Quell-
texten und deren Umwandlung in ein lauffihiges Programm. Dazu betrachten
wir ein einfaches, klassisches Beispiel.

Erstellen der Quelltextdatei

Unser erstes C-Programm soll bei seiner Ausfiihrung lediglich die Begriifung
»Hallo, Welt!*

auf den Bildschirm schreiben. Da die Aufgabenstellung — vorsichtig ausge-
driickt — recht iiberschaubar ist, konnen wir uns vollig darauf konzentrieren,
was ein C-Programm mindestens beinhalten muss. Wir entwickeln den Quell-
text dieses Programms Schritt fiir Schritt:

e Das Programm soll ja eine Botschaft auf den Bildschirm schreiben und
diesen Text setzen wir zundchst in Anfiihrungsstriche:

"Hallo, Welt!"

e Der Text soll auf den Bildschirm geschrieben werden. Fiir solche Aufgaben
existiert bereits eine fertige Funktion in C. Da frither Programmausgaben
ausgedruckt wurden, heifit die Funktion auch heute noch printf ():

printf("Hallo, Welt!");
Wie bei Funktionen in der Mathematik wird das Argument — in unserem
Beispiel der auszugebende Text — in Klammern gesetzt. Man beachte auch
das Semikolon am Ende: Dieses Zeichen signalisiert, dass an dieser Stelle
die Anweisung beendet ist.

e Zusammengehorige Anweisungen werden in einem Anweisungsblock zusam-
mengefasst. Ein solcher Block beginnt mit einer 6ffnenden und endet mit
einer schliefenden geschweiften Klammer.

1 {

2 printf ("Hallo, Welt!");

3}

Dabei stehen die Zahlen am linken Rand nicht im Quelltext! Wir fiihren
sie ab jetzt ein, damit wir uns bei der Erlduterung von Quelltexten leichter
auf die jeweiligen Zeilen beziehen kénnen.

e Wenn das fertige Programm startet, muss die Stelle im Quelltext festgelegt
sein, an welcher die Ausfiihrung beginnt. Dazu dient das Schliisselwort
main(). Wie die Klammern andeuten, handelt sich auch bei main() in
Wahrheit um eine Funktion, wenn auch um eine besondere. Wir werden
uns spéter noch eingehend damit beschéftigen; fiir den Moment begniigen
wir uns damit, main() als Startmarkierung fiir die Programmausfiihrung
zu verstehen.

2.1 Editieren und Ubersetzen am Beispiel: ,Hallo Welt!“ 37

main()

{
printf("Hallo, Welt!");

B W N -

}

e Bei der Ubersetzung des Quelltextes werden meist noch zusétzliche Infor-
mationen, z.B. iiber Funktionen wie printf (), bendtigt. Diese sind in den
so genannten Headerdateien gespeichert. Um auf diese Informationen zuzu-
greifen, verwendet man die Priprozessordirektive #include. Im Falle von
printf () heifst die zustéindige Headerdatei stdio.h und diesen Namen
gibt man in < > gesetzt an:

#include <stdio.h>
main()

{
printf("Hallo, Welt!");

O O W N

3

e Auch wenn unser Programm sehr einfach ist: Man sollte nicht zu geizig mit
Kommentaren sein. Dabei handelt es sich um erlduternde Textpassagen,
die mit /* beginnen und mit */ enden. Auch bei sehr kurzen Programmen
sollte man den Quelltext mit einem Kommentar beginnen, der beschreibt,
was das Programm tut:

printf("Hallo, Welt!");

1 /* hallo.c -- gibt Begruessung auf Bildschirm aus */
2 #include <stdio.h>

3

4 main()

5 {

6

7

3

Damit ist unser erster C-Quelltext erstellt. Um unser Werk zu sichern, spei-
chern wir das Ganze in einer Datei namens hallo.c ab. Dabei folgen wir der
Konvention, dass C-Quelltextdateien die Dateinamensendung . c tragen.

Ubersetzen des Quelltextes mit dem gee

Vor der Umwandlung in ein ausfiihrbares Programm muss der Quelltext auf
syntaktische Fehler untersucht werden, d.h. es wird festgestellt, ob die gram-
matikalischen Regeln der Programmiersprache eingehalten werden. Dies erle-
digt der Compiler gcc, den wir an der Kommandozeile folgendermafen auf-
rufen:

$ gcc hallo.c -o hallo

38 2 Elementare C-Programmierung

Der Compiler meldet jeden Fehler, den er im Quelltext findet. Ist der Quelltext
syntaktisch korrekt, so erzeugt der Compiler aus der Quelltextdatei hallo.c
ein ausfiihrbares Programm namens hallo 2. Wir starten das Programm und
erhalten die gewiinschte Ausgabe:

$./hallo
Hallo, Welt!

Bemerkung. Im Gegensatz zu manch anderen Programmiersprachen ist C
sehr grofiziigig, wenn es um die Formatierung des Quelltextes geht. So kann
man in unserem Beispiel die Zeile 3 weglassen, die Einrlickung in Zeile 6 ist
ebenfalls nicht zwingend erforderlich, und die Klammer in Zeile 5 kann auch
an das Ende von Zeile / verschoben werden.

Man sollte diese Freiheiten allerdings dazu nutzen, den Quelltext diber-
sichtlich und fiir andere in mdglichst leicht nachvollziehbarer Form zu ver-
fassen! Als Faustregel kann in diesem Zusammenhang gelten, dass man nicht
mehr als eine Anweisung pro Quelltextzeile schreibt, denn andernfalls droht
die Gefahr, dass wichtige kurze Anweisungen von umfangreicheren ,yversteckt*
werden, was sowohl das Verstdndnis des Quelltextes als auch die Fehlersuche
erheblich erschwert.

2.2 Datentypen

Im ersten Kapitel haben wir hdufig von ,,Daten“ gesprochen und dabei im Zu-
sammenhang mit Algorithmen zwischen Eingabedaten, Ausgabedaten sowie
den Hilfsgrofien unterschieden. Bei der konkreten Realisierung eines Algorith-
mus mit Hilfe einer Programmiersprache kommen zu den eher theoretisch-
mathematischen Betrachtungen noch die technischen Aspekte hinzu, denn
der Computer muss schlieflich bei der Ausfilhrung wissen, welche Art von
Information verarbeitet werden soll. Zu diesem Zweck legt die Programmier-
sprache unterschiedliche Datentypen fest.

Die Festlegung eines Datentyps klart die folgenden Fragen:

o Wie grof$ ist ein Datenobjekt des betreffenden Typs, d.h. wieviel Platz be-
ansprucht es im Speicher? Die Grofle wird meistens in Bytes ausgedriickt,
wobei jeweils 8 Bit zu einem Byte zusammengefasst werden.

e Wie wird der abgespeicherte Wert bindr dargestellt? Anders ausgedriickt:
Wie ist fiir einen bestimmten Datentyp die Bitfolge zu interpretieren?

e Welche Operationen sind fiir einen bestimmten Datentyp zulédssig? Fiir
ganze Zahlen etwa macht der Begriff der Division mit Rest Sinn, fiir Gleit-
punktzahlen hingegen nicht.

2 Unter cyawIN wird hier eine Datei hallo.exe anstelle von hallo erzeugt. Wir
werden im weiteren Verlauf des Buches diesen Unterschied als bekannt vorausset-
zen und nicht mehr erwahnen.

2.2 Datentypen 39

Sind Grofe und Darstellungsform festgelegt, so ergibt sich daraus sofort die
Menge aller Werte, die auf diese Weise darstellbar sind. Wir kénnen also
zusammenfassen:

Ein Datentyp wird festgelegt durch einen Wertebereich und die darauf
anwendbaren Operationen.

Als Beispiel hierfiir haben wir in Beispiel 1.18 die Gleitpunktzahlen mit einfa-
cher und doppelter Genauigkeit kennen gelernt und uns mit den Eigenschaften
und Tiicken der Gleitpunktoperationen auseinandergesetzt. Diese Gleitpunkt-
zahlen gehoren zu den elementaren Datentypen, die C bereitstellt:

e char dient der Aufnahme von Zeichen wie z.B. Buchstaben und Ziffern,
int wird fiir ganzzahlige Werte unter Beriicksichtigung des Vorzeichens
verwendet,
float nimmt Gleitpunktzahlen mit einfacher Genauigkeit auf,
double dient der Verarbeitung von Gleitpunktzahlen mit doppelter Ge-
nauigkeit.

Diese elementaren Datentypen konnen teilweise durch so genannte Typmodi-
fizierer angepasst werden. Hinsichtlich der Grofe der jeweiligen Datenobjekte
sind dies:

short int: Ganzzahliger Datentyp, der hochstens den Wertebereich von int
besitzt, dessen Grofe aber mindestens 2 Bytes betrédgt. In der Typbezeich-
nung kann int weggelassen werden.

long int: Ganzzahliger Datentyp, der mindestens den Wertebereich von int
besitzt, dessen Grofe aber mindestens 4 Bytes betrégt. In der Typbezeich-
nung kann int weggelassen werdern.

long double: Gleitpunkt-Datentyp mit erweiterter Genauigkeit, der aller-
dings je nach System mit double identisch sein kann.

long long int: Dieser erweiterte ganzzahlige Typ ist auf manchen Systemen
verfligbar, kann aber identisch mit long sein. In der Typbezeichnung kann
int weggelassen werden.

char und die ganzzahligen Datentypen kénnen auch hinsichtlich der Beriick-
sichtigung des Vorzeichens modifiziert werden. Dazu wird der jeweiligen Da-
tentypbezeichnung einer der beiden folgenden Modifizierer vorangestellt:

unsigned: Das Vorzeichenbit wird fiir die Darstellung des positiven Zahlen-
werts frei.
signed: Ein Bit wird fiir die Darstellung des Vorzeichens reserviert.

Wie man aus der Beschreibung der einzelnen Datentypen ersehen kann,
ist die jeweilige Grofe nicht verbindlich vorgeschrieben. Um die Ressourcen
einer Rechnerarchitektur besser nutzen zu kénnen, variieren die vom Compiler
zu Grunde gelegten Grofen. In Tabelle 2.1 kann man am Beispiel des gcc
erkennen, welche Grofen die obigen Datentypen in Abhéngigkeit von der PC-
Architektur besitzen. Tabelle 2.2 zeigt die zugehorigen Wertebereiche auf einer
32-Bit-PC-Architektur.

40 2 Elementare C-Programmierung

Tabelle 2.1. Grofe in Bytes der elementaren Datentypen (gcc).

Datentyp GroRe (PC, 32 Bit) | GroRe (PC, 64 Bit)
char 1 Byte 1 Byte
int 4 Bytes 4 Bytes
short 2 Bytes 2 Bytes
long 4 Bytes 8 Bytes
long long 8 Bytes 8 Bytes
float 4 Bytes 4 Bytes
double 8 Bytes 8 Bytes
long double 12 Bytes 16 Bytes

Tabelle 2.2. Wertebereiche der elementaren Datentypen (gcc, 32-Bit PC).

Typ kleinster Wert | grofiter Wert
char —128 127
unsigned char 0 255
short int —32768 32767
unsigned short int 0 65535

int —231 2% -1
unsigned int 0 232 1
long long —263 203 _ 1
unsigned long long 0 264 1
float ~ —3.40-10% | ~ +3.40-10%
double ~—1.79-10°"® | = +1.79 - 10°%

2.3 Variablen und ihre Deklaration

In der Regel werden wir von einem Programm natiirlich mehr verlangen, als
nur eine freundliche Botschaft auf den Bildschirm zu schreiben. Als Realisie-
rung eines Algorithmus auf einem Computer soll das Programm Daten ein-
lesen, verarbeiten und wieder ausgeben (E-V-A-Prinzip). Daher miissen wir
beim Verfassen des Quelltextes dafiir sorgen, dass Speicherplatz fiir die Auf-
nahme dieser Daten reserviert und eine Schnittstelle fiir den Zugang zu diesen
Daten geschaffen wird.

Realisiert wird dies iiber die so genannten Variablen. Ganz analog zur Ma-
thematik sind Variablen Gebilde, die mit einem Namen versehen sind und fiir
einen gewissen Wert bzw. Inhalt stehen. Aus technologischer Sicht verstehen

2.3 Variablen und ihre Deklaration 41

wir darunter Datenobjekte eines bestimmten Typs, denen fiir eine gewisse
Zeit — etwa fiir die gesamte Laufzeit des Programms — ein fester Platz im
Computerspeicher reserviert wird. Uber den Variablennamen verschaffen wir
uns im Quelltext den Zugang zum Inhalt der betreffenden Speicherstellen.

Beim Ubersetzungsvorgang werden sowohl die Anweisungen zur Reser-
vierung von Speicherplitzen in den Maschinencode eingefiigt, als auch die
Verkniipfung dieser Speicherstellen mit dem Variablennamen angelegt. Der
Compiler nimmt uns also viel Detailarbeit ab und damit er das tun kann,
muss er dem Quelltext Typ und Namen der Variablen entnehmen kénnen.

Diese Angaben machen wir bei der Deklaration der Variablen, die wir ver-
stédndlicherweise vornehmen miissen, bevor wir zum ersten Mal im Programm
mit den betreffenden Datenobjekten etwas anstellen. So deklariert die Anwei-
sung

unsigned int a, b;

zwei Variablen mit Namen a und b vom Typ unsigned int. Die allgemeine
syntaktische Struktur einer Variablendeklaration ist die folgende:

Eine Variablendeklaration besteht aus der Angabe eines Datentyps
sowie einer Liste von Variablennamen, die jeweils ein Datenobjekt
dieses Typs bezeichnen:

Datentyp Variablennamel, Variablenname2, ...;

Die Variablendeklaration erfolgt
e vor der ersten Verwendung der Variablen im Quelltext
e zu Beginn eines Anweisungsblocks.

Fiir den Variablennamen oder -bezeichner gilt in C:

e Ein Variablenname darf im Prinzip beliebig lang sein, wobei mindestens
die ersten 31 Zeichen beachtet werden. Es kann also passieren, dass zwei
Variablennamen, die sich erst ab der 32ten Stelle unterscheiden, vom Com-
piler als gleich angesehen werden.

e Der Name besteht aus Buchstaben, Ziffern und dem Unterstrich (_). Um-
laute und Sonderzeichen (wie z.B. % oder &) sind nicht erlaubt, es wird
zwischen Grof- und Kleinschreibung unterschieden.

e Der Name darf nicht mit Ziffern beginnen. Der Unterstrich ist an erster
Stelle erlaubt, sollte dort aber nicht verwendet werden, da Bibliotheks-
funktionen oft solche Namen verwenden.

Beispiel 2.1 (Deklaration von Variablen).

a) Mit den folgenden Anweisungen werden eine int-Variable namens a sowie
zwei Gleitpunkt-Variablen x1, x2 deklariert:
int a;
float x1, x2;

42 2 Elementare C-Programmierung

b) Die folgende Deklaration scheitert wegen des ungiiltigen Variablennamens:

double 1zahl;

¢) In dieser Vereinbarung ist zwar der Variablenbezeichner zulissig, allerdings
existiert der Datentyp nicht:

unsigned double x_1;
Die Typmodifizierer fiir das Vorzeichen diirfen ja nur fiir ganzzahlige Da-
tentypen und Zeichen (char) verwendet werden.

d) In einer Deklaration darf nur eine Datentypangabe zu Beginn der Dekla-
ration erfolgen. Daher wird der C-Compiler die folgenden ,,Deklarationen®
nicht akzeptieren:

double _x1, int N;
float f1, float f2;

2.4 Konstanten

Neben Variablen treten in Programmen Kostanten auf, die man u.a. zur Bele-
gung von Variablen mit Werten verwendet. Konstanten werden je nach ihrem
Format den verschiedenen Datentypen zugeordnet.

Ganzzahlige Konstanten. Ganzzahlige Werte konnen auf mehrere Arten
dargestellt werden. Dezimalzahlen wie 235 oder -19 werden als Konstanten
vom Typ int aufgefasst. Liegt der auf diese Weise geschriebene Wert nicht
mehr im int-Wertebereich, so wird die Konstante so behandelt, als sei sie
vom Typ long.

Um explizit zu signalisieren, dass die Zahl 235 als Konstante vom Typ
long betrachtet werden soll, wird dem Zahlwert ein 1 oder L angefiigt, z.B.
235L.

Ohne weitere Angaben werden ganzzahlige Konstanten als signed behan-
delt. Vorzeichenlose Konstanten markiert man durch Anfiigen von u oder U.
Die vorzeichenlose Darstellung von 235 als long-Konstante lautet also 235uL.

Ganzzahlige Konstanten kénnen alternativ auch zur Basis 8 (oktal) oder
zur Basis 16 (hezadezimal) dargestellt werden. Eine Oktaldarstellung ist da-
durch gekennzeichnet, dass die Konstante mit 0 beginnt, die hexadezimale
Schreibweise wird mit 0x oder 0X eingeleitet. Demzufolge schreibt sich 27
in Oktaldarstellung 033, die Hexadezimalform ist 0x1B (oder 0x1b) und als
vorzeichenlose long-Konstante lautet die hexadezimale Darstellung Ox1BulL.
Gleitpunktkonstanten. Die Darstellung von Gleitpunktkonstanten erfolgt
im Dezimalsystem. Sie enthilt einen Punkt, kann aber auch durch die Ex-
ponentenschreibweise erfolgen. So stehen die Darstellungen 0.19, 19e-2 und
1.9e-01 alle fiir dieselbe Gleitpunktkonstante vom Typ double. Steht ledig-
lich eine 0 vor dem Punkt, so kann diese weggelassen werden, d.h. auch .19
ist eine giiltige Darstellung dieser Konstanten.

Um die Konstante dem Typ float bzw. long double zuzuordnen, wird £
oder F bzw. 1 oder L angefiigt.

2.5 Operatoren 43

Zeichenkonstanten. Konstanten vom Typ char sind Einzelzeichen, die in
einfache Anfiihrungsstriche gesetzt werden, z.B. *a’, >Z’ oder *4’. Wir wer-
den uns in Kapitel 6 noch eingehend mit einigen wichtigen Aspekten im Um-
gang damit beschiftigen.

Eine wichtige Konstante ist >\n’, diese steht fiir einen Zeilenumbruch. So
wiirde das ’\n’ in

printf("Hallo,\nWelt!\n");
zu der zweizeiligen Ausgabe

Hallo,
Welt!

fiihren. Mit dem zweiten ’\n’ erreicht man, dass eine anschliefende Ausgabe
in einer neuen Zeile beginnt.

2.5 Operatoren

Nachdem wir uns mit Grofen und Darstellungsvarianten der grundlegendsten
Datentypen beschéftigt haben, wenden wir uns einigen wichtigen Operationen
zu. Uber so genannte Operatoren erhalten wir die Mdglichkeit, z.B. Variablen
mit Inhalten zu belegen oder die in ihnen gespeicherten Werte zu verdndern.

2.5.1 Allgemeines zu Operatoren

Operatoren lassen sich zundchst danach einteilen, wieviele Operanden sie be-
sitzen. Undre Operatoren besitzen lediglich einen, bindre dagegen zwei Ope-
randen. Operatoren mit drei Operanden werden terndr genannt und sind in
C eine absolute Seltenheit.

Operatoren in Préifizform stehen vor ihrem bzw. ihren Operanden, solche
in Postfixform dahinter. Bei den bindren Operatoren werden wir hier nur der
Infizform begegnen, d.h. der Operator steht zwischen den beiden Operanden.

2.5.2 Zuweisungsoperator und schreibgeschiitzte Variablen

Ein erstes wichtiges Beispiel eines Operators ist der Zuweisungsoperator =, bei
dem es sich um einen bindren Operator handelt. Wie der Name schon andeu-
tet, dient dieser Operator dazu, Variablen mit Inhalten zu belegen. Betrachten
wir dazu die folgenden Quelltextzeilen:

int a;
a = 1;

44 2 Elementare C-Programmierung

Zuerst deklarieren wir eine Variable vom Typ int mit Namen a. Anschlieend
weisen wir der Variablen a den ganzzahligen Wert 1 zu. Wird a zum ersten
Mal mit einem Wert belegt, so spricht man auch von der Initialisierung der
Variablen. In C ist es erlaubt, Deklaration und Initialisierung in einem Schritt
durchzufiihren, d.h. zu den beiden obigen Zeilen ist die folgende dquivalent:

int a = 1;
Der Zuweisungsoperator arbeitet von ,rechts nach links“, d.h. er weist der
Variablen links von ihm den Wert rechts von ihm zu. Dabei muss es sich nicht

um einen konstanten Wert handeln. Man kann den Zuweisungsoperator auch
zum Kopieren von Variableninhalten verwenden. Das sieht dann z.B. so aus:

int a=0xA;

int b;

b = a;
Diesmal wird a mit dem Wert 10 in hexadezimaler Schreibweise initialisiert.
Die Variable b erhilt anschliefsend per Zuweisungsoperator den gleichen Wert
wie a. Solche Zuweisungsketten kénnen auch abgekiirzt werden, denn der Zu-

weisungsoperator hat die Eigenschaft, die ihm {ibergebenen Werte ,weiterzu-
leiten‘:

Der Wert eines Zuweisungsausdrucks ist gleich dem zugewiesenen
Wert.

Daher belegt die Anweisung
a=(b=1);
sowohl a als auch b mit dem Wert 1. Da der Zuweisungsoperator von rechts
nach links abgearbeitet wird, kann man auch
a=b=1;
schreiben. Man sagt: ,,Der Zuweisungsoperator ist rechtsassoziativ.*

Das reservierte Wort const. Man kann eine Variable davor schiitzen, dass
ihr Wert nach der Initialisierung verdndert wird. Dazu muss sie wie folgt
vereinbart werden:

const Typ Variablenname = Wert;

Man sieht, dass die Variable bei der Deklaration initialisiert werden muss.
Der Compiler warnt im Allgemeinen nicht, wenn dies unterbleibt, verweigert
aber in jedem Fall die Belegung mit einem Wert nach der Deklaration. Wir
betrachten ein kleines Beispiel hierzu:

int i = 1;

const int k = i;

Durch diese beiden Deklaration erreicht man, dass k den Initialisierungswert
von i ,konserviert®.

2.5 Operatoren 45
2.5.3 Arithmetische Operatoren

Wir werden sehr hdufig Variablen solche Werte zuweisen, die aus einer Berech-
nung hervorgegangen sind. Die von C zur Verfiigung gestellten arithmetischen
Operatoren sind in Tabelle 2.3 aufgelistet, wobei Op! und Op2 jeweils fiir eine
Konstante oder eine Variable stehen konnen. Folgende Aspekte sind hierbei
zu beachten:

e Haben die Operanden eines bindren arithmetischen Operators den gleichen
Typ, so ist auch das Ergebnis von diesem Datentyp.

e Sind die Operanden eines arithmetischen Operators von unterschiedlichem
Typ, so wird der Operand, der vom ,ungenaueren Typ* ist, zuerst zum
ygenaueren Typ* konvertiert. Addiert man z.B. einen int-Wert zu einem
Wert vom Typ float, so wird ersterer zuerst nach float konvertiert, das
Ergebnis ist dann auch von diesem Typ.

Beispiel 2.2. a) Das unére Minus dient dazu, das Vorzeichen eines Variablen-
inhalts umzukehren. So kann man z.B. durch die Anweisungen
float x=4.0f;
X = -X;
gleichzeitig das Vorzeichen des in der float-Variablen x abgelegten Wertes
4.0 umkehren und den neuen Wert -4.0 wieder in x ablegen. Man bendtigt
also keine Hilfsvariablen fiir das Uberschreiben des alten Variablenwerts.
b) Addition, Subtraktion, Multiplikation und Division beachten die Regel
,Punkt- vor Strichrechnung®, deshalb wird in der dritten Zeile von

Tabelle 2.3. Die wichtigsten arithmetischen Operatoren

Name Verwendung | Operandentyp | Operator liefert
zzahli
Minus (unér) - Opt ganzzaltie, Vorzeichenwechsel
Gleitpunkttyp
hli
Plus Opl + Op2 ganzzalle, Summe
Gleitpunkttyp
hli
Minus (bindr) | Opl - Op2 ganzzaliie, Differenz
Gleitpunkttyp
zzahli
Multiplikation | Opl * Op2 ganzzalle, Produkt
Gleitpunkttyp
Division Op1 / Op2 ganzzahlig ganzzahlige Div.
Gleitpunkttyp Quotient
Modulo Op1 % Op2 | ganzzahlig Rest bei ganzzahliger Div.

46

c)

2 Elementare C-Programmierung

float x=4.0f, y=3.5f, z=-2.0f;

float X;

X = xt+y*z;
zuerst das Produkt der Werte in den Variablen y und z gebildet und zum
Wert der Variablen x addiert. Das Ergebnis wird in der Variablen X gespei-
chert.
Die arithmetischen Operatoren sind linksassoziativ. Das bedeutet, dass in

X=x+y+z;
erst die Summe x+y berechnet und dann der Wert von z addiert wird. Die
Summationsreihenfolge dndert man entweder durch Umstellen der Sum-
manden oder — wie in der Mathematik auch — durch entsprechendes Setzen
von Klammern:

X=x+(y+2) ;
Im ersten Kapitel haben wir gesehen, dass wegen der Rundung die Gleit-
punktoperationen nicht assoziativ sind und daher die letzten beiden An-
weisungen nicht auf exakt den gleichen Wert in X fiihren miissen.
Die Division ganzzahliger Werte ist tiickisch. Da bei gleichem Operanden-
typ auch das Ergebnis vom selben Typ ist, folgt:

Bei der Division von ganzzahligen Werten werden alle Nachkom-
mastellen des exakten Ergebnisses verworfen.

So besitzt etwa nach Ausfiihrung von

int a=3,b=2;

float c;

c = a/b;
die Variable c nicht den Wert 1.5, sondern 1 und das, obwohl ¢ vom Typ
float ist. Wir werden in Abschnitt 2.5.7 sehen, wie wir dieses Problem
beheben kénnen. a

Das unter Punkt ¢) im vorangegangenen Beispiel beschriebene Verhalten ist
aber algebraisch durchaus sinnvoll und kann oft vorteilhaft sein. Eine Anwen-
dung zeigt das folgende Beispiel:

Beispiel 2.3 (Ganzzahlige Division mit Rest).
Wir deklarieren die Variablen

int a,b,q,r;

und belegen sie mit ganzzahligen Werten, wobei der Wert von b nicht 0 sei.
Wir erhalten durch die Anweisungen

q = a/b;
r = alb;

diejenigen eindeutig bestimmten Zahlen ¢, r € Z, fiir die gilt:

a=gqb+r , [r|<]b].

2.5 Operatoren 47

Tabelle 2.4. Die arithmetischen Zuweisungsoperatoren.

Operation | Bezeichnung aquivalent zu

Opl1 += Op2; | Additionszuweisung Opl = Op1+0p?2;

Opl -= Op2; | Subtraktionszuweisung Opl = Op1-0Op?2;

Opl *= Op2; | Multiplikationszuweisung | Opl = Op1*Op2;

Opl1 /= Op2; | Divisionszuweisung Opl = 0Opl1/0p2;

Opl %= Op2; | Modulozuweisung Opl = OpIlhOp2;

2.5.4 Arithmetische Zuweisungsoperatoren

Ist einer der Operanden eines arithmetischen Operators eine Variable, so kann
man das Ergebnis der Operation mit Hilfe des Zuweisungsoperators in dieser
Variablen abspeichern. Betrachten wir z.B. eine Variable a vom Typ double,
so sorgt die Anweisung

a = atl;

dafiir, dass der in a gespeicherte Wert um 1 erhoht wird. Man beachte, dass
man nicht unbedingt das Format 1.0 (double-Konstante) verwenden muss,
da ja bei Operanden unterschiedlichen Typs die entsprechende Umwandlung
in den genaueren Typ vorgenommen wird. An die Stelle der Konstanten 1 in
diesem Beispiel kann auch eine Variable b treten, d.h. durch die Anweisung

a = atb;

wird der Wert von a um den Wert von b erhoht. Da solche Anweisungen
recht hiufig benotigt werden, existiert zu jedem arithmetischen Operator ein
entsprechender Zuweisungsoperator, der die obigen Anweisungen abkiirzt, in
unserem Beispiel ist das die Additionszuweisung:

a+=1; bzw. at+=b;

Eine Liste der arithmetischen Zuweisungsoperatoren findet sich in Tabelle 2.4.

2.5.5 Inkrement- und Dekrementoperatoren

Bei ganzzahligen Datentypen kommt es recht hdufig vor, dass ihr Wert nicht
beliebig, sondern lediglich um 1 erh6ht oder erniedrigt werden muss. Die Er-
hohung erledigt der Inkrementoperator ++, die Erniedrigung der Dekremen-
toperator --. Diese uniiren Operatoren stellen jeweils eine Kurzschreibweise
fiir die Additions- bzw. Subtraktionszuweisung dar. Fiir eine int-Variable i
sind die folgenden drei Anweisungen dquivalent:

48 2 Elementare C-Programmierung

i = i+1;
i+=1;
it++g

s

Entsprechendes gilt fiir den Dekrementoperator --. Eine Besonderheit die-
ser Operatoren besteht darin, dass sie sowohl in der Préfix- als auch in der
Postfixform auftreten.

In der Prifixform werden sie in einer Anweisung als erstes ausgefiihrt, in
ihrer Postfixform als letztes. So haben nach Ausfiihrung von

int a, b, c;
a = 3;

b = ++a * 3;
c = at+ * 3;

die Variable b den Wert 12, c ebenfalls den Wert 12 und a den Wert 5. Man
sollte solche ,Spitzfindigkeiten* allerdings nach Mdéglichkeit vermeiden, indem
man solche Anweisungen aufspaltet. So liefert der folgende Code das gleiche
Ergebnis, ist aber leichter nachzuvollziehen und auch weniger fehleranfillig:

int a, b, c;
a = 3;
a++; /* oder ++a *x/

at+; /* oder ++a */

2.5.6 Vergleichende und logische Operatoren

Im Gegensatz zu den meisten anderen hoheren Programmiersprachen hat
ANSI-C keinen eigenen Datentyp zur Darstellung boolescher Werte, d.h. es
fehlt ein Datentyp mit Wertebereich { False, True }.

In C wird der Wert 0 in allen Ausprdgungen (also auch 0.0£ oder OL)
als False (falsch) interpretiert und Werte ungleich 0 als True (wahr).

Vergleichende Operatoren. Die in Tabelle 2.5 dargestellten Vergleichsaus-
driicke haben jeweils den int-Wert 0, wenn die entsprechende Aussage falsch
ist, andernfalls tragen sie den int-Wert 1.

Man beachte den Unterschied zwischen a=b und a==b: Der erste Ausdruck
weist den Wert der Variablen b der Variablen a zu, wihrend letzterer die
Werte der betreffenden Variablen auf Gleichheit untersucht. Auf diese typische
Fehlerquelle werden wir spéter nochmals eingehen.

Der Operator == vergleicht die Darstellung der Werte Bit fiir Bit. Wegen
der Rundung von reellen Zahlen in den Wertebereich der Gleitpunktzahlen
ist der direkte Vergleich solcher Datentypen unabhingig von der verwendeten
Genauigkeit mit allergrofiter Vorsicht zu geniefsen!

2.5 Operatoren 49

Tabelle 2.5. Vergleichsoperatoren in C.

Notation in C | mathematische Notation
a<b a<b
a>b a>b
a<=b a<b
a>b a>b
a==>b a=1b
a!=b a#b

Logische Operatoren. Mit Hilfe von logischen Operatoren kénnen Aus-
driicke (arithmetische, vergleichende oder zuweisende) als Aussagen mitein-
ander verkniipft oder verneint werden. Auch hier gilt, dass der entstehende
Ausdruck den Wert 1 hat, wenn er als Aussage wahr ist, und ansonsten dem
Wert 0 entspricht. Die in C zur Verfiigung stehenden logischen Operatoren
sind in Tabelle 2.6 aufgefiihrt. Zu beachten ist hierbei, dass es sich bei ||
um ein einschliefliches ,oder handelt. Das bedeutet, dass die ganze Verkniip-
fung wahr ist, sobald mindestens einer der beteiligten Ausdriicke einen Wert
ungleich 0 hat.

In C werden logische Ausdriicke mittels short circuit evaluation ausge-
wertet. Das heifst, dass die Abarbeitung eines logischen Ausdrucks abbricht,
sobald der endgiiltige Wert dieses Ausdrucks unabénderlich feststeht. So wird
z.B. in

0 && (a=3)

der Zuweisungsoperator niemals angewendet werden, da die 0 zu Beginn dazu
fiilhrt, dass der Wert des logischen Ausdrucks immer 0 sein wird, genauer
gesagt liefert 0 && X unabhingig vom Wert des Ausdrucks X immer den Wert
0. Analog wird die Zuweisung in

111 (a=3)

nie ausgefithrt, da die Konstante 1 schon garantiert, dass die Verkniipfung
wabhr ist.

Tabelle 2.6. Logische Operatoren in C.

Notation in C | math. Notation Bedeutung
A && B ANB Und
A1l B AV B (einschliefliches) Oder
14 -a Negation von A

50 2 Elementare C-Programmierung

Sowohl die Vergleichsoperatoren als auch die logischen Operatoren
sind linksassoziativ.

Betrachten wir zu diesen Operatoren eines kleines Beispiel: Fiir die Variablen

int a=1, b=-1;
float c=-0.5f;

gilt:
Ausdruck ‘Wert ‘ ‘ Ausdruck ‘Wert ‘
a 1 b<c<a 0
'a 0 b < (c < a) 1
! (a-b) 0 (a>c) && b 1
! (a<b) 1 || (@==0) Il (b>c) | ©

Der bedingte Ausdruck. In C gibt es lediglich einen terniren Operator,
den so genannten bedingten Ausdruck. Dieser rechtsassoziative Operator hat
die Form

A?B:C

Der bedingte Ausdruck entspricht B, falls A als Aussage wahr ist, ansonsten
entspricht er C. So ist der Wert der Variablen even in

even = (a % 2==0) 271 : 0;

genau dann 1 wenn der Wert von a gerade ist. Ein weiteres Beispiel ist die
Bestimmung des Maximums von a und b:

maxab = (a > b) ? a : b;

In beiden Beispielen sind die Klammern nicht notwendig, fiihren aber zu einer
besseren Lesbarkeit.

Auch dieser Operator wird mittels short circuit evaluation ausgewertet,
was bedeutet, dass in

A?B:C

der Wert des Ausdrucks C gar nicht ermittelt wird, wenn 4 als Aussage wahr
ist. Umgekehrt spielt der Wert von B keine Rolle, wenn A einer falschen Aus-
sage entspricht. Beispielsweise wird in

incmin = (a < b) 7 ++a : ++b;

nur a um 1 erhoht, wenn a<b bzw. nur b, wenn a >= b.

2.6 Einfache Ein- und Ausgabe 51

2.5.7 Typumwandlung durch Casts
Ein Cast hat die Syntax

(Typ) Term

Auf diese Art wird der Ausdruck Term — der auch als Konstante oder in Form
einer Variablen vorliegen kann — zum Datentyp Typ konvertiert. Hierdurch
konnen auch Informationen verloren gehen: So werden z.B. durch den Cast in

float zahl = 3.141;

int vorkomma = (int) zahl;

die Nachkommastellen von 3.141 verworfen, d.h. vorkomma hat den Wert 3.
Umgekehrt setzt man Casts ein, um bei der Division ganzzahliger Daten-
typen den Verlust von Nachkommastellen zu verhindern:
int a=3, b=6;
float quotient = (float) a/b;
Die Variable quotient hat jetzt den Wert 0.5 und nicht etwa 0. Es geniigt, le-

diglich eine der Variablen zu casten, da der Compiler in diesem Fall b ebenfalls
passend konvertiert, wie wir in Abschnitt 2.5.3 bereits erwdhnt haben.

Casts werden bei der Auswertung vor den arithmetischen Operationen
ausgefiihrt.

Obige Zeile ist also gleichbedeutend zu
((float) a)/b;

float quotient
und nicht etwa zu
float quotient = (float) (a/b);

Im diesem letzten Fall hatten wir nichts gewonnen, denn die Division wird
zuerst ausgefiihrt und liefert wegen der ganzzahligen Operanden 0. Der Cast
weist quotient diesen Wert lediglich in der Form 0.0f zu.

Bei den arithmetischen Operatoren und den Casts konnten wir sehen, dass
es ,Vorfahrtsregeln“ zur Bestimmung der Reihenfolge gibt, in der verschiedene
Operatoren zur Anwendung kommen. In Anhang D sind die C-Operatoren
nach ihrer Rangfolge geordnet aufgelistet. Auch die jeweilige Richtung der
Assoziativitat ist dort angegeben.

2.6 Einfache Ein- und Ausgabe

Es ist an der Zeit, eine Schnittstelle zum Anwender unserer Programme zu
schaffen. Wir haben bis jetzt nur erldutert, wie man Platz fiir Daten anlegt und
ihre Inhalte manipulieren kann, aber die Teile ,Eingabe“ und ,,Ausgabe“ des
E-V-A-Prinzips wurden kaum behandelt. In diesem Abschnitt werden wir uns
damit beschéftigen, wie man Variableninhalte auf den Bildschirm schreiben
und Benutzereingaben von der Tastatur einlesen kann.

52 2 Elementare C-Programmierung
2.6.1 Ausgabe mit printf()

Zu Beginn dieses Kapitels haben wir die Funktion printf () bei der Ausgabe
eines fest vorgegebenen Textes kennen gelernt. Wir wissen aufserdem, dass wir
zu ihrer Verwendung die Zeile

#include <stdio.h>

zu Beginn des Programms in den Quelltext schreiben miissen. Die allgemeine
Syntax der Funktion printf () lautet

printf (Formatstring, Parameterliste);

Die Parameterliste ist optional und kann leer gelassen werden, wie es im Bei-
spiel hallo.c in Abschnitt 2.1 der Fall ist. Sie kann Konstanten, Variablen
oder Ausdriicke enthalten.

Der Formatstring besteht aus gewohnlichem Text, in den man Platzhalter
zur Ausgabe von Variableninhalten einfiigen kann. Diese Platzhalter beginnen
immer mit einem Prozentzeichen %. Wir betrachten dazu ein einfaches Beispiel:

int a=1, b=2;
printf("a hat den Wert %d, b hat den Wert ’%d.\n", a, b);

Der Platzhalter %d steht fiir ganzzahlige Werte. Der erste Platzhalter wird
mit dem Wert von a ersetzt, der zweite mit dem Wert von b. Die Ausgabe
lautet dann:

a hat den Wert 1, b hat den Wert 2.

Diese Platzhalter dienen nicht nur der Benennung des auszugebenden Da-
tentyps, sondern auch der Angabe des Ausgabeformats. So fiihrt der Platz-
halter im Beispiel

float £=1.0;
printf ("f ist %7.2f,\n",f);

zu der folgenden Ausgabe:
f ist uuul.oo

Der Platzhalter %7.2f teilt printf () mit, dass die Ausgabe einer Gleitpunkt-
zahl mit mindestens 7 Zeichen erfolgen soll, wobei 2 Ziffern fiir die Nachkom-
mastellen verwendet werden. 1.00 belegt nur 4 Zeichen, so dass 3 Leerzeichen
vor der ersten Ziffer eingefiigt werden, die wir mit |, sichtbar gemacht haben.
Allgemein haben die Platzhalter im Formatstring die folgende Struktur:

hlflags][weite] [.genauigkeit] [modifizierer]typ

Die Angaben in eckigen Klammern sind hierbei optional, nur die Angabe von
typ ist zwingend. Wir beschrinken uns in der folgenden Beschreibung auf die
fiir unsere Zwecke wichtigsten Varianten und verweisen fiir eine umfassendere
Darstellung auf [6].

2.6 Einfache Ein- und Ausgabe 53

typ spezifiziert den auszugebenden Datentyp. In Tabelle 2.7 ist eine Auswahl
der moglichen Angaben aufgelistet.

modifizierer bezieht sich auf den Wert von typ und kann die Werte h, 1
und L annehmen:

e Die Angabe von h zusammen mit dem Typ d bzw. i interpretiert den
entsprechenden Wert in der Parameterliste als short (int).

e Die Angabe von 1 zusammen mit den Gleitpunkttypen £, e und g fasst
den entsprechenden Wert als double auf. Zusammen mit i bzw. d wird
der Wert als long int interpretiert.

e Der Modifizierer L zusammen mit der Typangabe f, e oder g behandelt
den Wert vom Format her als long double.

genauigkeit gibt die Anzahl an Nachkommastellen an. Hat die entsprechen-
de Zahl weniger Nachkommastellen, so wird mit Nullen aufgefiillt. Ohne
eine solche Angabe werden 6 Nachkommastellen ausgegeben.

weite ist eine ganze Zahl und gibt die Mindestanzahl der Zeichen bei der

Ausgabe an. Ist die Ausgabe kiirzer, so wird mit Leerzeichen aufgefiillt,

ist sie langer, so wird diese Angabe einfach ignoriert.

Ein Angabe der Form On fithrt dazu, dass bei einer Ausgabe von weniger

als n Zeichen mit Nullen nach links aufgefiillt wird.

Fehlt die Angabe dieser Grofe, so wird der Wert 0 angenommen.

flags: Hier kommen -, + und , in Frage:

e Das - fiihrt dazu, dass die Ausgabe linksbiindig erfolgt. Ansonsten ist
die Ausgabe stets rechtsbiindig.

e Die Angabe von + hat zur Folge, dass das Vorzeichen immer mit aus-
gegeben wird, was normalerweise nur bei negativen Zahlen geschieht.

e Bei Angabe von ., wird bei positiven Zahlen ein Leerzeichen anstel-
le des Vorzeichens ausgegeben und ein Minuszeichen - bei negativen
Zahlen.

Tabelle 2.7. Typangaben im Formatstring

Kiirzel | Ausgabe Beispiel
d ganzzahlig 4711
i dquivalent zu d 4711
e wissenschaftlich 4.711e3
f Gleitpunktzahl 4711.0
g die kiirzere von %e und %f | 4711.0
s Zeichenketten hallo

54 2 Elementare C-Programmierung

Beispiel 2.4 (Formatierte Ausgabe mit printf()).
Die folgende Tabelle zeigt, wie sich die Ausgabe durch den Platzhalter im
Formatstring steuern l&sst.

Anweisung Ausgabe
printf ("%d\n", 20); 20

printf ("%4\n", 20); Lu20

printf ("%04d\n", 20); 0020

printf ("%2d\n", 2000); 2000

printf ("%f\n", 20.01); 20.000000
printf ("%.2f\n", 20.0f); 20.00

printf ("%7.2f\n", 20.0f); Lu20.00
printf ("%-7.2f\n", 20.0f); 20.00.,
printf ("%+7.2f\n", 20.0f); u+20.00
printf ("%+7.2f\n", -20.0f); L-20.00
printf ("%6.2f\n", 123.4567); 123.46
printf ("%e\n", 20.01); 2.000000e+01
printf ("%g\n", 20.0f); 20

printf ("%e\n", .000001234); 1.234000e-06
printf ("%g\n", .000001234); 1.234e-06

2.6.2 Eingabe mittels scanf ()

Die Funktion scanf () ist das Gegenstiick zu printf () und auch ihre Ver-
wendung setzt <stdio.h> voraus. Sie dient dazu, Benutzereingaben von der
Tastatur einzulesen und an Variablen weiterzuleiten. Sie hat syntaktisch die-
selbe Struktur wie printf ():

scanf (Formatstring, Parameterliste);

Im Gegensatz zu printf () macht hier eine leere Parameterliste nur selten
Sinn, da wir ja die Funktion zum Einlesen von Variableninhalten verwenden
wollen und daher die entsprechenden Variablennamen angeben miissen. Die
folgende Anweisung veranlasst das Programm dazu, auf die Eingabe eines
ganzzahligen Wertes zu warten und den eingegebenen Wert der int-Variablen
X zZuzuweisen:

2.6 Einfache Ein- und Ausgabe 55

scanf ("%d", &x);

Man beachte, dass dem Variablenbezeichner ein & vorangestellt werden muss.
Dieser Operator bestimmt die Adresse der Variablen x, um den eingegebenen
Wert, dort abzulegen. Weitere Details hierzu werden wir in Kapitel 4 behan-
deln. Auch in der Formatangabe bei scanf ()

% [weitel] [modifizierer]typ

markieren die eckigen Klammern optionale Elemente. Die Angaben haben fast
alle dieselbe Bedeutung wie bei der Funktion printf (). Auf zwei Ausnahmen
miissen wir allerdings hinweisen:

e Wihrend man bei der Funktion printf() einen double-Wert auch mit
der Formatangabe %f ausgeben lassen kann, ist dies fiir scanf () nicht der
Fall: Zum Einlesen eines double-Wertes muss man %1f verwenden.

e Die Formatangabe %s fiir Zeichenketten verhélt sich bei scanf () anders als
bei printf (). Die Funktion printf() gibt Zeichenketten inklusive aller
Leerzeichen aus, wohingegen scanf () eine Zeichenkette nur bis zum ersten
auftretenden Leerzeichen einliest.

Beispiel 2.5 (Ein erstes Rechenprogramm).
Wir kénnen jetzt ein erstes einfaches Rechenprogramm schreiben:

1 #include <stdio.h>

2

3 main()

4 1

5 float zahl;

6 printf("Bitte geben Sie eine Zahl ein: ");

7 scanf ("%f", &zahl);

8 printf ("%f zum Quadrat ist %f\n", zahl, zahl*zahl);
9 printf ("5 mal %f ist %.8f\n", zahl, 5*zahl);

Das Programm liest eine Zahl von der Tastatur ein (Zeile 7) und gibt
sowohl deren Quadrat (Zeile 8) als auch das Fiinffache der Zahl (Zeile 9) mit
8 Nachkommastellen aus. Man sollte das Programm auf jeden Fall eingeben,
selbst iibersetzen und testen.

Man wird feststellen, dass bei der Eingabe von 0.2 das Programm nicht
exakt 1.0 als fiinffachen Wert ausgibt. Das bedeutet nicht etwa, dass der
Computer kaputt ist, es zeigt sich vielmehr die Auswirkung der Rundung von
reellen Zahlen auf Gleitpunktwerte, wie wir es in Beispiel 1.16 schon gesehen
haben. O

56 2 Elementare C-Programmierung
2.7 Programmflusskontrolle

Algorithmen, bei deren Ausfithrung alle Schritte linear abgearbeitet werden,
sind recht selten. Die meisten Algorithmen enthalten Verzweigungspunkte, an
denen entschieden werden muss, welche Schritte als nédchstes durchzufiihren
sind. Viele Algorithmen enthalten auch so genannte Schleifen, in denen eine
bestimmte Schrittfolge zu wiederholen ist. Ein Beispiel hierfiir ist der Eukli-
dische Algorithmus (Beispiel 1.5), in dem die ganzzahlige Division so lange zu
wiederholen ist, bis sich bei der Division der Rest 0 ergibt.

2.7.1 Anweisungsblécke

An dieser Stelle gehen wir etwas ausfiihrlicher auf den Begriff des Anweisungs-
blocks ein.

Die einfachste Form eines Anweisungsblocks besteht aus einer einzel-
nen Anweisung zusammen mit dem abschliefenden Semikolon. Mehre-
re Anweisungen werden zu einem Anweisungsblock verbunden, indem
man sie mit einer éffnenden geschweiften Klammer { und einer schlie-
fenden geschweiften Klammer } umfasst. Mit Hilfe der geschweiften
Klammern kénnen solche Blocke wiederum mit Anweisungen oder an-
deren Anweisungsblécken zu iibergeordneten Blocken zusammenge-
fasst werden.

Wir weisen noch einmal darauf hin, dass Variablendeklarationen zu Beginn
eines Anweisungsblocks, d.h. nach der 6ffnenden geschweiften Klammer, vor-
zunehmen sind.

Wir betrachten drei Beispiele:

printf ("Ich bin ein Anweisungsblock.\n");

ist die einfachste Form. Ein Block aus zwei Anweisungen hat dann folgende
Gestalt:

{
printf("Ich bin ein Anweisungsblock\n");
printf("und ich bin die zweite Zeile darin.\n");

}

Aus den beiden Beispielen kann man einen neuen Anweisungsblock zusam-
menstellen:

{
printf("Ich bin im iibergeordneten Block!\n");
{
printf("Ich bin ein Anweisungsblock\n");
printf("und ich bin die zweite Zeile darin.\n");
}

2.7 Programmflusskontrolle o7

Prinzipiell kann man auch eine einzelne Anweisung als Block in geschweifte
Klammern setzen, wovon man je nach Situation zur Vermeidung von Missver-
stdndnissen auch Gebrauch machen sollte.

2.7.2 Bedingte Ausfithrung

Bei der bedingten Ausfithrung werden Anweisungsblécke nur unter bestimm-
ten Umstédnden ausgefiihrt. Diese Umstinde werden zumeist in Form von lo-
gischen Ausdriicken spezifiziert. Wir stellen zwei Sprachelemente vor, die man
hierzu verwenden kann.

Bedingte Ausfithrung mit if

Die if-Anweisung verwendet man, wenn eine Anweisung nur unter bestimm-
ten Bedingungen ausgefiihrt werden soll. Die einfachste Form einer solchen
,Wenn-Dann“-Anweisung sehen wir im folgenden Beispiel:

if (a>0)
printf("a ist positiv.\n");

Hier wird die printf ()-Funktion nur ausgefiihrt, falls der Wert der Variablen
a auch wirklich grofer als 0 ist. Dies lésst sich erweitern zu einer ,Wenn-Dann-
Andernfalls“-Unterscheidung:

if (a>0)
printf("a ist positiv\n");
else
printf("a ist nicht positiv\n");

Die Anweisung nach else wird genau dann ausgefithrt, wenn die Bedingung
in den Klammern der if-Anweisung nicht erfiillt ist. Fiir dieses Konstrukt
gibt es also die beiden folgenden Mdglichkeiten:

if (Bedingung)

Anweisungsblock

oder

if (Bedingung)
Anweisungsblockl
else

Anweisungsblock2

Beide Moglichkeiten stellen wiederum eine Anweisung dar, so dass Schachte-
lungen moglich sind. Davon machen wir im folgenden Beispiel Gebrauch:

58 2 Elementare C-Programmierung

Beispiel 2.6 (Schaltjahre).
Der gregorianische Kalender definiert das Schaltjahr folgendermafien:

Alle Jahre, die durch 4 ohne Rest teilbar sind, sind Schaltjahre.
Ausnahme: Alle Jahre, die durch 100 ohne Rest teilbar sind, sind aber
keine Schaltjahre.

e Ausnahme hiervon: Alle Jahre, welche durch 400 ohne Rest teilbar sind,
sind Schaltjahre.

Wir setzen diese Definition in einen C-Quelltext um:

1 if (jahr % 4 == 0)

2 {

3 if (jahr % 100 == 0)

4 {

5 if (jahr % 400 == 0)

6 printf ("%d ist Schaltjahr.\n", jahr);
7 else

8 printf ("%d ist kein Schaltjahr.\n", jahr);
9 3

10 else

11 printf("%d ist Schaltjahr.\n", jahr);
12 }

13 else

14 printf("/d ist kein Schaltjahr.\n", jahr);

Die Einriickungen sind fiir den C-Compiler nicht von Bedeutung, erleich-
tern aber das Lesen des Quelltextes. In diesem Beispiel héitten wir auch die
Klammerung der Anweisungsblocke unterlassen kénnen, allerdings beugt sie
Missverstindnissen vor. In diesem Zusammenhang empfehlen wir die Bear-
beitung der Aufgabe 2.3. O

Bemerkung 2.7. Durch Tippfehler kann es leicht passieren, dass in der
if-Bedingung der Zuweisungsoperator = anstelle des Vergleichsoperators ==
steht. Da der Wert einer Zuweisung der zugewiesene Wert selbst ist, wird in

if (x=0)
der zugehorige Anweisungsblock nie, in
if (x=1)

dagegen immer ausgefiihrt. Beide Anweisungen sind syntaktisch korrekt, so
dass der Compiler keinen Grund hat, sie zu beanstanden. Sofern die Wirkung
derartiger if-Anweisungen nicht beabsichtigt ist, handelt es sich um typische
Beispiele fiir semantische Fehler. Eine Moglichkeit zur Vermeidung solcher
Fehler ist die folgende: Bei Vergleichen von Variableninhalten mit Konstan-
ten wahlt man die Konstante als ersten Operanden. Die Vergleiche x==0 und

2.7 Programmflusskontrolle 59

0==x sind ndmlich &quivalent und werden vom Compiler nicht beméngelt. Die
Anweisung

if (0=x)

hingegen fiihrt zu einer Fehlermeldung des Compilers, da man einer Konstan-
ten keinen Wert zuweisen darf. Auf diese Weise wird ein irrtiimlich gesetzter
Zuweisungsoperator aufgedeckt.

Bedingte Ausfithrung mit switch

Mehrfach ineinander geschachtelte if-Anweisungsblocke sind recht miihse-
lig zu implementieren und zu lesen. Fiir solche Aufgaben empfiehlt sich das
switch-case-Konstrukt, das wir in dem folgenden Beispiel vorstellen:

1 switch (zahl % 3)

2 {

3 case O:

4 printf("%d ist ein Vielfaches von 3\n", zahl);

5 break;

6 case 1:

7 printf ("%d geteilt durch 3 hat den Rest 1\n", zahl);
8 break;

9 case 2:

10 printf ("%d geteilt durch 3 hat den Rest 2\n", zahl);
11 break;

12 }

Zuerst wird in Zeile 1 der Wert von zahl % 3 berechnet. Dann wird die
case-Anweisung gesucht, die zu diesem Wert passt. So wird bei Rest 0 die Ver-
arbeitung in Zeile 4 fortgesetzt. Durch das reservierte Wort break wird die
Verarbeitung des switch-Blocks abgebrochen und die Ausfiihrung des Pro-
gramms hinter der schlieftenden Klammer in Zeile 12 fortgesetzt. Man sieht
an dem Beispiel, dass man im Gegensatz zum if-else-Konstrukt mehrzeili-
ge Anweisungsfolgen in einem case-Zweig nicht klammern muss. Die break-
bzw. die nachste case-Anweisung markiert das Ende des Anweisungsblocks.

Die break-Anweisung ist dabei nicht zwingend vorgeschrieben. Unterldsst
man sie aber, so werden nachfolgende case-Zweige bis zur néichsten break-
Anweisung bzw. bis zur schlieRenden geschweifenden Klammer ausgefiihrt.
Dies ist nur in seltenen Fallen erwiinscht und stellt oft eher eine Fehlerquelle
dar. Eine sinnvolle Anwendung diese Verhaltens zeigt das folgende Beispiel:

1 switch (zahl % 5)

2 {

3 case O:

4 printf("%d ist ein Vielfaches von 5\n", zahl);

60 2 Elementare C-Programmierung

5 break;

6 case 1:

7 case 2:

8 case 3:

9 printf ("%d ist nicht durch 5 teilbar\n", zahl);

10 break;

11 case 4:

12 printf("%d geteilt durch 5 hat den Rest 4\n", zahl);
13 break;

14 }

Hier sind die Anweisungsblocke zu den case-Anweisungen in den Zeilen
6-7 leer. Da kein break auftaucht, wird bei einem Divisionsrest von 1, 2 oder
3 die Zeile 9 ausgefiihrt.

Die allgemeine Syntax der switch()-Anweisung lautet wie folgt:

switch(Ausdruck)
{

case Konstantel:
Anweisungen
[break;]

[case Konstante2:
Anweisungen
[break;] 1

[case KonstanteNl:
Anweisungen
[break;] 1]

[default:
Anweisungen]

}

Auch hier sind die Angaben in eckigen Klammern optional. Der default-
Zweig wird dann ausgefiihrt, wenn Ausdruck einen Wert besitzt, der mit kei-
nem der case-Werte iibereinstimmt. Hinter case muss immer ein konstanter
Ausdruck stehen. Angaben wie case x>0 sind also nicht zuldssig und werden
vom Compiler beanstandet.

2.7.3 Wiederholte Ausfiihrung

Euler-Verfahren (Beispiel 1.6) und Euklidischer Algorithmus sind Beispiele fiir
iterative Algorithmen. Diese sind dadurch gekennzeichnet, dass man so lange
dieselbe Vorgehensweise wiederholt, bis eine bestimmte Bedingung erfiillt ist
(z.B. beim Euler-Verfahren das Erreichen des Intervallendes). Dabei dient das

2.7 Programmflusskontrolle 61

Ergebnis eines gerade abgeschlossenen Schritts (einer Iteration) als Ausgangs-
wert flir den néchsten Schritt. Zur Programmierung solcher Schleifen bietet
C drei Wiederholungsanweisungen an.

Die while- und die do-Schleife

Zur Funktionsweise der while-Anweisung betrachten wir das folgende Bei-
spiel:

1 int i=10;

2 while (i>0)

3 {

4 printf("%d ", 1i);
5 i-—;

6

}

Hier wird der Anweisungsblock von Zeile 8 bis Zeile 6 wiederholt ausge-
fithrt, solange die Vergleichsbedingung in Zeile 2 erfiillt ist. Dieses Programm-
fragment sorgt also dafiir, dass die Zahlen 10 bis 1 in absteigender Reihenfolge
auf den Bildschirm geschrieben werden.

Allgemein hat die while-Anweisung die folgende Form:

while (Bedingung)

Anweisungsblock

Der in einer Schleife zu wiederholende Anweisungsblock wird auch Schleifen-
rumpf genannt.

Schleifen kénnen auch mit der do-while-Anweisungimplementiert werden,
deren syntaktische Struktur folgendermafsen lautet:

do
Anweisungsblock

while (Bedingung) ;

Bei der do-Schleife wird der Anweisungsblock mindestens ein Mal ausgefiihrt,
da erst jeweils am Ende der Verarbeitung des Schleifenrumpfs iiberpriift wird,
ob die Bedingung noch erfiillt ist. Man beachte aufferdem das Semikolon am
Ende der Anweisung.

Fiir einen beliebigen Anweisungsblock X ist also

do
X
while (Bedingung);

dquivalent zu

62 2 Elementare C-Programmierung

X
while (Bedingung)
X

Wir zeigen ein typisches Anwendungsbeispiel:

Beispiel 2.8 (Wiederholte Aufforderung).

1 int i;

2 do {

3 printf ("Bitte positive Zahl eingeben: ");
4 scanf ("%d", &i);

5 } while(i<=0);

Hier wird der Benutzer so lange dazu aufgefordert, eine positive Zahl einzu-
geben, bis er dieser Aufforderung auch nachkommt. a

Die for-Schleife

Mit der for-Anweisung kénnen haufig anzutreffende while-Konstrukte abge-
kiirzt werden. So ist das eingangs gezeigte Beispiel zur while-Schleife dquiva-
lent zum folgenden Quelltext:

1 int i;
2 for (i=10; i>0; i--)
3 printf("%d ", i);

Auch diese kiirzere Formulierung fithrt zur Ausgabe der natiirlichen Zahlen
von 10 bis 1.
Die allgemeine Struktur der for-Anweisung lautet:

for (Initialisierung; Erhaltungsbedingung; Update)

Anweisungsblock

e Die Initialisierung wird genau einmal zu Beginn ausgefiihrt. In unserem
Beispiel wird i der Wert 10 zugewiesen.

e Der Anweisungsblock wird so lange ausgefiihrt wie die Erhaltungsbedin-
gung erfiillt ist. Die Uberpriifung findet zu Beginn des Blocks statt. Das
bedeutet in unserem Beispiel, dass der Anweisungsblock ausgefiihrt wird,
bis i>0 nicht mehr gilt.

e Die Update-Anweisung wird jeweils nach Verarbeitung des Anweisungs-
blocks ausgefiihrt. Im unserem Beispiel wird der Zdhler 1 um 1 erniedrigt.
Im Gegensatz zu einigen anderen Sprachen kénnen in C beliebige Mani-
pulationen an der Schleifenvariablen vorgenommen werden.

2.7 Programmflusskontrolle 63

Da zuerst die Erhaltungsbedingung tiberpriift wird, kann es vorkommen, dass
der Anweisungsblock gar nicht zur Ausfiihrung kommt. Daher ist die for-
Anweisung dquivalent zur folgenden while-Schleife:

Initialisierung;
while (Erhaltungsbedingung)
{
Anweisungsblock
Update;
3

Bemerkung 2.9. Bei der Arbeit mit den Wiederholungsanweisungen ist fol-
gendes zu beachten:

a) Kleine Unachtsamkeiten konnen sehr schnell zu Endlosschleifen fiihren. Be-
trachten wir als Beispiel die folgende for-Anweisung;:
for (i=10; i=1; i--)
printf ("/%d\n", 1i);

Der in der Erhaltungsbedingung irrtiimlich gesetzte Zuweisungsoperator

hat zwei Auswirkungen:

e Der Ausdruck i=1 hat als Zahlenwert den zugewiesenen Wert, also 1.
Da alle Zahlenwerte ungleich Null als ,wahr interpretiert werden, ist
die Erhaltungsbedingung immer erfiillt.

e Vor jedem neuen Schleifendurchlauf wird der Wert von i auf 1 gesetzt
und die Dekrementierung bleibt wirkungslos.

Zur Laufzeit wird dieser syntaktisch absolut korrekte Programmteil also

eine endlose Ausgabe von Einsen auf den Bildschirm veranlassen.

b) Bei for- und while-Anweisungen kann ein ungliicklich platziertes Semiko-
lon die Schleife aufler Kraft setzen. In
for (i=10; i>0; i--);
printf ("%d\n", 1i);

ist die for-Anweisung mit dem abschlieffenden Semikolon komplett, d.h.

der Compiler interpretiert sie als Schleife mit leerem Rumpf. Die Update-

Anweisung wird aber korrekt nach jedem Durchlauf ausgefiihrt, also bis i

den Wert 0 hat. Die printf ()-Anweisung hat mit der Schleife nichts zu

tun und schreibt lediglich einmal den aktuellen Wert O der Variablen i auf
den Bildschirm.

Alle gezeigten Schleifen konnen natiirlich auch ineinander geschachtelt oder
mit bedingten Anweisungen kombiniert werden. Wir werden hierfiir noch ge-
niigend Beispiele betrachten.

Steuerung von Wiederholungsanweisungen

Um die Ausfiihrung der Wiederholungsanweisungen zusétzlich steuern zu kon-
nen, gibt es die folgenden C-Befehle:

64 2 Elementare C-Programmierung

break: Ein break im Schleifenrumpf fiihrt dazu, dass die aktuelle Wiederho-
lungsanweisung abgebrochen wird. Passiert dies in ineinander geschach-
telten Wiederholungsanweisungen, so ist davon nur die Schleife betroffen,
in deren Rumpf sich die break-Anweisung befindet.

continue: Die Ausfithrung von continue fithrt dazu, dass der Rest des
betreffenden Schleifenrumpfs fiir den aktuellen Durchlauf iibersprungen
wird.

Beispiel 2.10 (Das Collatz oder (3n + 1)-Problem).
Bei diesem Problem bildet man zu beliebigem a¢ € N die Folge

an /2 , falls a,, gerade,
Up41 = .
3a, +1 , sonst.

Die Berechnung wird beendet, sobald a1 den Wert 1 annimmt. Das — theo-
retisch noch ungeldste — Problem besteht darin, festzustellen, ob die Folge fiir
alle ag endlich ist.

Wir lassen die Folge nach der obigen Vorschrift fiir den festen Startwert
ag = 33 exemplarisch berechnen. Um eine zu lange Ausgabe zu vermeiden,
brechen wir nach 100 Iterationen ab:

1 int a = 33;

2 int zaehler = 0;

3 while (a !'= 1)

4 A

5 zaehler++;

6 if (zaehler > 100)
7 {

8 printf ("Abbruch.\n");
9 break;

10 }

11 printf ("%d\n", a);
12 if (a%2 == 0)

13 {

14 a /= 2;

15 continue;

16 }

17 a = 3*a+l;

18 }

Zeile 2, Zeilen 5-10 : Wir deklarieren einen Zihler, der die Iteration der Vor-
schrift nach spatestens 100 Durchldufen beendet. Wir verwenden in Zeile
9 die break-Anweisung zum Verlassen der while-Schleife.

Zeilen 12-17 : Es wird die Fallunterscheidung gemifs der Definition der Zah-
lenfolge umgesetzt. Um die Wirkung der continue-Anweisung (Zeile 15)

2.8 Felder 65

zu demonstrieren, haben wir hier nicht else benutzt, was ebenso méglich
und eigentlich vorzuziehen wire, da der Quelltext dadurch lesbarer wird.
Der Einsatz von continue empfiehlt sich aber zur eleganten Implemen-
tierung komplexer Algorithmen. O

2.8 Felder

Analog zu den mathematischen Objekten Vektor und Matrix bietet C den
indizierten Datentyp Feld an. In der Literatur findet sich zuweilen auch die
Bezeichnung Vektor fiir diesen Datentyp. Beispielsweise deklariert

float x[3];

ein Feld x der Léange 3, dessen Eintrige vom Typ float sind. Der Zugriff auf
die Feldeintrédge, in Anlehnung an die Vektoren der Mathematik auch Kompo-
nenten genannt, erfolgt durch Angabe des Indexes in eckigen Klammern [].
Auf die 3 Eintréige des oben vereinbarten Feldes wird also durch

x[0], x[1] wund x[2]
zugegriffen. Man beachte:

Die Indizierung von Feldeintridgen beginnt in C stets mit der 0.
Folgenden Einschriankungen gibt es bei der Arbeit mit Feldern:

e Felder sind im Speicher sequentiell und ohne Liicken abgelegt. Die Grofse
eines Feldes ist durch die Deklaration fest vorgegeben und kann wéhrend
der Ausfithrung des Programms nicht gedndert werden.

e Die bei der Deklaration verwendeten Grenzen miissen konstant sein. Eine
Deklaration wie

unsigned int laenge;

double vektor[laenge];
wird vom Compiler zuriickgewiesen. Wir werden in Abschnitt 4.4 sehen,
wie diese Einschrankung zu umgehen ist.

e Felder, bei denen die Komponenten von verschiedenem Typ sind, sind
in C nicht moglich. Fiir solche Datenobjekte miissen die so genannten
Strukturen verwendet werden, mit denen wir uns in Kapitel 8 befassen.

Man kann auch mehrdimensionale Felder deklarieren:
float A[4][3];

Hier erhélt man eine Matrix mit 4 Zeilen und 3 Spalten. Eine Verallgemeine-
rung davon lautet wie folgt:

Typ Name[dim_1] ... [dim_N1];

66 2 Elementare C-Programmierung

N bestimmt in dieser Deklaration die Dimension des Feldes. Insbesondere
erhalten wir fiir N = 1 Vektoren und fiir N = 2 Matrizen mit Eintrigen des
angegebenen Typs.

Matrixelemente sind Zeile fiir Zeile abgelegt. Fiir die Beispielmatrix A be-
deutet das, dass ihre Eintrédge in der folgenden Reihenfolge im Speicher liegen:

Afol[o] .. Afo0I[2], A[11[0] .. A[11[2], A[2]1[0] .. A[3][2]
Im allgemeinen Fall N-dimensionaler Felder liegt das Element
Ali10E2]. . Lin]
im Speicher an der Stelle
N k—1
Z (ik H diml> .
k=1 I=1
Zu beachten ist die folgende Eigenart von C-Compilern: Beim Zugriff auf

Felder wird nicht die Giiltigkeit der Indizes iiberpriift! So wird der Compiler
die Zeilen

float x[10];
x[10] = 1.0f;

ohne Fehlermeldung akzeptieren, obwohl bei der Ausfiihrung des entsprechen-
den Programms der Zugriff auf x[10] undefiniert ist. Bestenfalls stiirzt das
Programm an dieser Stelle ab, ansonsten kommt es zu fehlerhaften Ergebnis-
sen, deren Ursache schwer zu finden ist.

Man kann Felder bei ihrer Deklaration auch initialisieren, so belegt

float a[3] = { 1.0f, 2.0f, 3.0f };
die Elemente des Feldes sukzessive mit den Zahlen 1, 2 und 3. Die Anweisung
float a[] = { 1.0f, 2.0f, 3.0f };

ist hierzu dquivalent, da aus der Anzahl der Werte auf die Grofe des Feldes
geschlossen werden kann. Auch mehrdimensionale Felder kénnen initialisiert
werden: Durch die Deklaration

float a[2]1[3] = { { 1.0f, 2.0f, 3.0f },
{ 4.0f, 5.0f, 6.0f } };

123
456/
Da es sehr umsténdlich ist, grofere bzw. mehrdimensionale Felder auf diese

Art zu initialisieren, wird man dies im allgemeinen mit Hilfe von Wiederho-
lungsanweisungen durchfithren, wie es das folgende Beispiel zeigt:

erzeugt man die Matrix

Beispiel 2.11 (Eingabe von Matrixeintrigen).
Der folgende Programmteil fordert den Benutzer auf, die ganzzahligen Ein-
trige einer (2x 3)-Matrix nacheinander einzugeben:

2.9 Beispiel: Der Euklidische Algorithmus 67

int 1i,j;
int A[2][3];

for (i=0; i<2; i++)
for (j=0; j<3; j++)
{
printf ("A[%d] [%4d] = ",i,j);
scanf ("%d",&A[i]1 [§]1);

© 00 N O O d W N =

Man beachte wieder die Verwendung von & in der scanf ()-Funktion. Als
kleine Ubung mache man sich klar, warum bei dieser Schachtelung von for-
Schleifen keine Klammerung um die innere for-Anweisung notig ist.

2.9 Beispiel: Der Euklidische Algorithmus

Mit dem, was wir bis hierher gelernt haben, kdnnen wir ohne Weiteres den
Euklidischen Algorithmus aus Beispiel 1.5 in ein C-Programm iibertragen. Es
schadet ganz sicher nicht, wenn man den Algorithmus zuerst mit ein paar
einfachen Zahlenbeispielen auf dem Papier durchfiihrt, zumal man dann Ver-
gleichsergebnisse fiir die stichprobenartige Uberpriifung der vom Programm
gelieferten Resultate zur Hand hat.

1 #include <stdio.h>

2

3 int main()

4 {

5 int a0, ail;

6 int weiter;

7

8 do { /* schleife fuer mehrfache berechnungen */

9

10 printf ("Berechnung des ggT von positiven "

11 "Zahlen\n\n") ;

12

13 do {

14 printf ("Geben Sie die erste Zahl ein : ");
15 scanf ("%d", &a0);

16 } while (a0<=0);

17

18 do {

19 printf ("Geben sie die zweite Zahl ein: ");

20 scanf ("%d", &al);

68

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2 Elementare C-Programmierung
} while (al<=0);
/* hier kommt der eigentliche algorithmus */
while (a1l != 0)
{
int r;
r = a0 % al;
a0 = al;
al = r;
}
printf ("\nDer ggT ist %d.\n", a0);
printf ("\nFiir eine weitere Rechnung geben Sie 1"
" ein, ansonsten 0: ");
scanf ("%d", &weiter);
}
while(weiter);
}

Der Benutzer wird in den Zeilen 13-16 und 18-21 zur Eingabe positiver
Zahlen aufgefordert.

Der eigentliche Algorithmus wird in den Zeilen 24-30 ausgefiihrt.

Der Anwender hat die Moglichkeit, mehrere Berechnungen nacheinander
durchfiihren zu lassen. Dies geschieht mit Hilfe der do-while-Schleife in
den Zeilen 8-38. Die Aufforderung zu einer entsprechenden Benutzerein-
gabe findet sich in den Zeilen 34-36.

In Zeile 26 haben wir davon Gebrauch gemacht, Variablen zu Beginn eines
inneren Anweisungsblocks zu deklarieren. Da wir r nur in diesem Schlei-
fenrumpf bendtigen, ist dies durchaus sinnvoll.

In den Zeilen 10-11 und 84-35 sieht man eine weitere Besonderheit von C:
Aufeinanderfolgende Zeichenketten werden automatisch zusammengefiigt.
Trennzeichen, wie das Leerzeichen oder auch der Zeilenumbruch haben
keinen Einfluss, erlauben jedoch eine iibersichtliche Quelltextstruktur.
Das doppelte "\n’ in Zeile 11 fiihrt zur Ausgabe einer leeren Zeile.

An Zeile 38 sieht man wieder, dass der Wert 0 als falsch, der Wert 1 als
wahr interpretiert wird.

2.10 Kontrollfragen zu Kapitel 2

2.10 Kontrollfragen zu Kapitel 2

Frage 2.1

Eine der folgenden Deklarationen ist nicht korrekt, welche?

a) short zahl;

b

c
d

) long int grossezahl;
) unsigned float wert;
) unsigned nummer;

69

Ooooo

Frage 2.2

Nur ein einziger der folgenden Variablennamen ist giiltig. Welcher?

int

o T
NN INS

int
int

oL

int
int

@

zahler;
2tezahl;
anzahl¥;
punkt_1;
arith-mittel;

Oooooag

Frage 2.3
Der Bruch

n+2
n2+n

soll in der Programmiersprache C formuliert werden. Welcher der folgenden Aus-
driicke leistet dies?

a) (n+2)/(n**2+n)

b
c
d

e

) (n+2)/(n*(n+1))

) n+2/(n*n+n)

) (1+2/n)*(n+1)

) Keiner der Ausdriicke a) - d).

Oooooag

Frage 2.4

Welche der folgenden C-Anweisungen fiihrt fiir a,b € Z die Division mit Rest

a=qb+r

zur Bestimmung von ¢ und r durch?

a) a/=b; rih=a;

o o o
NN NI

g=a/b; r=ajb;

r=a/b; q=alb;

gq=a/b; r=q-a/b;

Keine der Anweisungen a)-d).

Ooooao

70 2 Elementare C-Programmierung

Frage 2.5

Das arithmetische Mittel zweier int-Variablen soll berechnet und der float-Va-
riablen mittel zugewiesen werden. Welche der folgenden Aussagen trifft auf die
Anweisung

mittel = (float) ((a+b)/2);

a) Die Anweisung ist syntaktisch nicht korrekt. O

b) Die dufere Klammerung in ((a+b)/2) ist notig, da der Cast sonst wirkungs-
los bleibt.

c) Die dufere Klammerung in ((a+b)/2) fiihrt i.A. zu einem falschen Ergebnis.

d) Man muss im Nenner stets 2.0 statt 2 verwenden.

e) Der Variablen mittel wird mit der obigen Anweisung immer der Wert 0 zu-
gewiesen. O

OooOood

Frage 2.6

zahl und n seien vom Typ int. Sind die Anweisungen
(float) =zahl/n+1;
und
(float) (zahl/n)+1.0;
vom Ergebnis her dquivalent?
a) Ja.
) Nein, weil in der zweiten Anweisung 1.0 statt 1 steht.
) Nein, weil die erste Anweisung syntaktisch falsch ist.
) Ja. In der zweiten Anweisung hitte man allerdings den Cast wegen der 1.0
weglassen kénnen. O
e) Nein, weil die Klammern um den Quotienten in der zweiten Anweisung den
Cast wirkungslos werden lassen. O

OooOood

Frage 2.7

Betrachten Sie die int-Variablen a mit Wert 2 und b mit Wert 0. Welcher der
folgenden logischen Ausdriicke besitzt nicht den Wert 17
a) 'b

b) (a<3 || b!=0)

c) (a<=2 || a>4) && b

d) tall 'b

) (a-b) > 0

ooooo

e

Frage 2.8

a und b seinen int-Variablen. Welche der folgenden Anweisungen weist b denselben
Wert zu wie die Anweisung b-=(a-1);7
a) b-=(--a);
b) b=-(a--);
c) b-=(-a);
d) b=-a-1;

) -b=a-1;

Oooooo

e

2.10 Kontrollfragen zu Kapitel 2 71

Frage 2.9

Ein befreundeter Programmierer behauptet: ,Logische Ausdriicke entsprechen doch
ganzzahligen Werten — dann ist es doch auch egal, ob ich nun

if ((a==0) && (b<1)) oder if((a==0)*(b<1))

verwende.“ Was wiirden Sie ihm antworten, wenn Sie es gut mit ihm meinen?

a) ,Das iibersetzt der Compiler zwar, aber das Programm wird abstiirzen.” O
b) ,Die Sache mit den ganzzahligen Werten stimmt zwar, aber rechnen kann
man mit logischen Ausdriicken sicher nicht.“ O
¢) ,Vom Ergebnis her ist das zwar gleich, aber die short circuit evaluation der lo-
gischen Operatoren ist fiir bestimmte Werte bestimmt schneller.” O
Frage 2.10

Im Anschluss an a=-1; b=-2; c¢=-3; werden die folgenden Anweisungen ausge-
fiihrt:

d=c¢c<b<a;
e=ac< (b<c);
f=a>b>c;

Welche Werte werden dadurch zugewiesen?

I]
O O = =

1:
0:
1:

Fh Fh o Hh Hh
oooo

e
e
e
e

Frage 2.11

Fiir den Ausdruck !(a<b || a) ist eine dquivalente Formulierung ohne Negation
gesucht. Welcher der folgenden Ausdriicke leistet dies?

a) (a>=b) || a

b) (a>=b) || (a==0)

c) (a>=b) && (a==0)

d) Keiner der Ausdriicke a)-c) leistet dies.

Ooooo

Frage 2.12

Bei der Ausgabe einer Gleitpunktzahl mit Hilfe der printf ()-Anweisung soll Platz
fiir ein etwaiges negatives Vorzeichen und fiir 10 Nachkommastellen gelassen werden.
Wissenschaftliche Notation ist nicht gewiinscht. Welche Formatangabe tut dies?

a) %h10f
%+.10f

)
)
) % .10f
)
)

=3

(=" e

%10. f
% 10f

Oooooag

e

72 2 Elementare C-Programmierung

Frage 2.13

Welchen Wert hat die Variable p nach Durchlaufen der folgenden for-Schleife?

int i, p;

p=3;

for (i=0; i<n; ++i)
P *= p;

ooood

Frage 2.14
Welche Ausgabe erzeugt die folgende for-Schleife?
for (i=0; i<10; ++i)

printf ("%i ", ++i);

6789 10
10

o T
[T Y SOV]

45
6 8
79
6 8

O = O =
N W NN

[oW
D

ooood

Frage 2.15
Welche Ausgabe erzeugt der folgende Quellcode?

for (i=0; i<13; i++)
if (1(i%4)) printf("%i ", i+1);

[ary

3
9 10 11 12 13

= O O
N N ©

8
3
ine. D

eime.

=P IR =N 4
2

WO(J‘II—k

ie in der if-Anweisung abgefragte Bedingung wird nie erfiillt.

Ooooo

Frage 2.16
Welche Ausgabe erzeugt das folgende Programm?
short int i;
for (i=0; i<=5; ++i)
if ((i+1)%2>0)
printf("%4d ", i+1);

oooog

2.10 Kontrollfragen zu Kapitel 2 73

Frage 2.17
Welche der folgenden for-Schleifen ist zu

i=0;

do {

i+=1;

} while (i<=10);
dquivalent?
a) for (i=0; i<10; i++) { ... } O
b) for (i=0; i<10; i+=1) { ... } O
¢) for (i=0; i<10; i=i+1) { ... }]
d) for (i=0; i<=10; i=i+1) { ... }]
e) Keine der for-Schleifen in a) - d) ist dquivalent. O
Frage 2.18
Welchen Wert hat die Variable wert nach Durchlaufen der Schleife?

i=0;

wert=0;

while (i<n)

wert += (++1i);

a) 2n O
b) 2n+1 O
c) n? O
d) n(n+1)/2 O
e) Es handelt sich um eine Endlosschleife. O
Frage 2.19

Das folgende Programm soll eigentlich in Abh&ngigkeit von einer eingelesenen Zahl
n € N alle natiirlichen Zweierpotenzen < n ausgeben. Warum tut es dies nicht, bzw.

was tut es stattdessen?

#include <stdio.h>

int main()

{
int i, n;
scanf ("%1i", &n);
if (n>0)
for (i=0; i<=n; 1*=2)
printf ("%i\n", 1i);
}

a) Welil filschlicherweise i<=n statt i<n in der for-Schleife steht.

b) In einer Endlosschleife wird die Zahl 0 ausgegeben.

¢) Der Ausdruck i*=2 in der for-Schleife ist syntaktisch unzuléssig.
d) Das Programm gibt die geraden natiirlichen Zahlen < n aus.

Ooooag

74 2 Elementare C-Programmierung

Frage 2.20

Welches Verhalten verursacht der folgende Quelltext zur Laufzeit?

int i=0;
while (i<5);
{
printf ("%d ",2%(++1));
}

a) Es werden endlos Nullen auf den Bildschirm geschrieben.
b) Es wird 2 4 6 8 10 ausgegeben.

c) Eswird 0 2 4 6 8 ausgegeben.

) Das Programm héngt in einer Endlosschleife fest.

Ooooog

d

Frage 2.21
Die Eintrdge der durch double A[3][4]; deklarierten Matrix sollen durch

for (i=0; i<2; i++)
for (j=0; j<3; j++)
{
printf ("A[%d1[%d] = ",i,j);
scanf ("%f",&A[1]1[1);
}

durch den Benutzer eingegeben werden. Bei der Kontrollausgabe der Matrix erschei-
nen aber irgendwelche willkiirlichen Werte auf dem Bildschirm. Wie kommt das?

a) Weil die geschweiften Klammern um die innere for-Anweisung fehlen. a

b) Weil das Zeichen & in der printf ()-Anweisung fehlt. a

¢) Weil zum Einlesen von double-Werten in der scanf ()-Anweisung %1f verwen-
det werden muss. a

d) Welil statt & in der scanf ()-Anweisung ein $ stehen muss. a

2.11 Ubungsaufgaben zu Kapitel 2 75

2.11 Ubungsaufgaben zu Kapitel 2

2.1 (Funktioniert bei Ihnen alles?).

Testen Sie, ob Ihre C-Entwicklungsumgebung auch funktioniert! Geben Sie dazu den
Quelltext des ,Hallo, Welt!“-Programms aus Abschnitt 2.1 mit Hilfe eines Editors
Threr Wahl ein. Speichern Sie den Quelltext wie dort beschrieben ab und verwenden
Sie die angegebenen Kommandos zum Ubersetzen und Starten des Programms.

2.2 (Formatierte Ausgabe mit printf()).
Schreiben Sie ein Programm, das die Ausgaben aus Beispiel 2.4 durchfiihrt.

2.3 (Ist es ein Schaltjahr?).

Schreiben Sie ein Programm, das nach Eingabe einer Jahreszahl dem Benutzer mit-
teilt, ob es sich dabei um ein Schaltjahr handelt (siche Beispiel 2.6). Sorgen Sie
dafiir, dass keine negativen Jahreszahlen eingegeben werden konnen.

2.4 (Das Collatz-Problem).

Ergidnzen Sie Beispiel 2.10 zu einem vollstindigen Programm. Geben Sie dem Be-
nutzer die Moglichkeit, den Startwert ao selbst zu wihlen und beachten Sie, dass es
sich um eine natiirliche Zahl handeln muss.

2.5 (Wie kalt ist es in den USA?).

Die Abbildung
5

C:Tw— §(T —32)
konvertiert Temperaturangaben in der Einheit Fahrenheit (F') nach Celsius (C).
Schreiben Sie ein Programm, das eine Umrechnungstabelle erzeugt. Betrachten Sie
den Temperaturbereich von 0° F bis 300° F' und gehen Sie in Schritten von 10° F
aufwirts. Achten Sie auf eine {ibersichtlich Ausgabe durch geeignete Formatangaben
in der printf ()-Funktion.

2.6 (Das Primzahlensieb).

Das Sieb des Eratosthenes ist eine Methode zur effizienten Berechnung aller Prim-
zahlen von 2 bis zu einer vorgegebenen Schranke N. Der Algorithmus lautet folgen-
dermafien.

a) Schreiben Sie alle natiirlichen Zahlen 2,..., N auf.

b) Streichen Sie alle echten Vielfachen von 2.

¢) Gehen Sie zur nichsten, nicht durchgestrichenen Zahl und streichen Sie alle echten
Vielfachen von dieser.

d) Wiederholen Sie den letzten Schritt, bis Sie bei der kleinsten natiirlichen Zahl
angekommen sind, die gréfer oder gleich /N ist.

Implementieren Sie diesen Algorithmus mit Hilfe eines Feldes, um die Primzahlen
bis 100 auszugeben. Hinweis: Sie kénnen das ,Durchstreichen dadurch simulieren,
dass Sie die betreffende Zahl durch 0 ersetzen. Am Ende geben Sie alle Eintrage des
Feldes, welche grofer 0 sind, auf dem Bildschirm aus.

76 2 Elementare C-Programmierung

2.7 (Ein- und Ausgabe von Matrizen).

Schreiben Sie ein Programm, dass die Eintrige einer Matrix
double Mat[3][2];

nacheinander von der Tastatur einliest und die Matrix anschliefiend zeilenweise for-
matiert wieder ausgibt (d.h. am Ende einer Matrixzeile ist auch bei der Ausgabe
eine neue Zeile zu beginnen).

2.8 (Das Euler-Verfahren).
Schreiben Sie ein Programm, das das Euler-Verfahren aus Beispiel 1.6 zur ndhe-
rungsweisen Losung des Anfangswertproblems

y'(t)=yt), y0)=1

auf dem Intervall [0, 1] realisiert. Verwenden Sie als Berechnungspunkte

fiir N =5 und N = 10. Lassen Sie sich jeweils den Ndherungswert fiir jeden Berech-
nungspunkt ausgeben und vergleichen Sie die Naherung an der Stelle ¢ = 1 mit der
exakten Losung.

3

Funktionen

Ein C-Programm besteht fast ausschliefslich aus Unterprogrammen, den so
genannten Funktionen. Beispiele hierfiir haben wir bereits kennen gelernt:

e Die Funktion main(), die den Ausfiihrungsbeginn des Programmes mar-
kiert und somit das Hauptprogramm darstellt und

e Bibliotheksfunktionen, die haufiger bendtigte hohere Funktionalitdten be-
reitstellen (z.B. printf (), scanf()).

Dieses Kapitel fiihrt in die Arbeit mit Funktionen ein und befasst sich zu-
néchst mit den rein syntaktischen Aspekten. Im Anschluss stellen wir einige
wichtige Funktionen vor, die von der C-Mathematikbibliothek bereitgestellt
werden. Bei umfangreicheren Programmen, bei denen viele Funktionen zum
Einsatz kommen, ist der ,Datenschutz“ der in den Variablen gespeicherten
Informationen ein wichtiger Aspekt. Diesem Schutz vor unbeabsichtigter Da-
tenverdnderung dient das Konzept der Sichtbarkeit bzw. der Giltigkeit von
Variablen, dem wir einen eigenen Abschnitt widmen. Abschliefiend illustrie-
ren wir die Verwendung der erlernten Sprachelemente am Beispiel der Ent-
fernungsmessung durch Peilung, wobei wir zusétzlich auf Fragen wie z.B. die
Beeinflussung der Ergebnisse durch Fehler in den Eingabedaten eingehen.

Der Einsatz von Funktionen empfiehlt sich aus den folgenden Griinden:

e FErgonomie und Transparenz: Die in einer Funktion zusammengefassten
Anweisungen werden im Quelltext durch eine Anweisung, den Funktions-
aufruf, ersetzt. Dadurch wird einerseits der Quelltext iibersichtlicher und
andererseits hat man die Md&glichkeit, Details des Unterprogramms kon-
tinuierlich zu verbessern, ohne dass das aufrufende Programm wesentlich
gedndert werden muss.

o Wiederverwendbarkeit: Durch die Verwendung von Funktionen kann man
die Strategie der Partionierung programmiertechnisch umsetzen. Teilpro-
bleme, die auch bei der Losung anderer Aufgaben auftreten, kénnen mit
bereits vorhandenen Funktionen bearbeitet werden. Auf diese Weise ver-
meidet man, jedesmal ,das Rad neu erfinden zu miissen“. Das ist auch die

78 3 Funktionen

Idee, die hinter den Programmbibliotheken steckt: Man hat fiir hdufig be-
nétigte Dinge einen ,Softwarebaukasten” zur Verfiigung, dessen Bausteine
— die Funktionen — weitgehend flexibel zu neuen Programmen zusammen-
gesetzt werden konnen.

Die Fihigkeit, ein Programm sinnvoll in Unterprogramme strukturieren und
eigene Funktionen implementieren zu kénnen, ist eine der wichtigsten Fertig-
keiten bei der Programmierung.

3.1 Deklaration und Definition von Funktionen

Rein technisch gesehen besteht eine Funktion aus den folgenden Bestandteilen:

o Funktionsbezeichner: Mit diesem Namen wird die Funktion im Quelltext
aufgerufen. Es gelten dabei dieselben Regeln wie fiir die Variablennamen.

e Argumente: Sie werden als Liste in Klammern angegeben. Sie enthalten
Daten, die die Funktion fiir ihre Arbeit benétigt und stellen somit die
Schnittstelle zum aufrufenden Programm dar.

e Riickgabewert: Darunter versteht man das Resultat, das die Funktion an
das aufrufende Programm zuriickliefert.

o Funktionsrumpf: Dieser Anweisungsblock enthiilt die Deklaration weiterer
Variablen (z.B. fiir Hilfsgrofen und den Riickgabewert) und die Anweisun-
gen, wie mit den Argumenten zu verfahren ist.

Bei der Implementierung von Funktionen unterscheidet man zwischen Dekla-
ration und Definition.

Bei der Deklaration einer Funktion werden Funktionsname, Anzahl
und Typ der Argumente sowie der Datentyp des Riickgabewerts ver-
einbart.

Riickgabetyp Funktionsname (ArgTypl, ... , ArgTypN);

Anhand der Deklaration iiberpriift der Compiler die im Quelltext auf-
tretenden Funktionsaufrufe auf ihre syntaktische Korrektheit. Die De-
klaration soll daher vor dem ersten Aufruf der Funktion erfolgen. Im
Quelltext positioniert man die Deklaration am besten vor main().

Wenn die Funktion gar keinen Wert zuriickliefern soll, also eine so genann-
te Prozedur ist, wird als Riickgabetyp der so genannte leere Datentyp void
angegeben. Im Gegensatz zu anderen Programmiersprachen unterscheidet C
also nicht iiber die Syntax zwischen Funktionen und Prozeduren, sondern nur
iiber den Riickgabetyp.

Hinsichtlich der Anzahl der Argumente ist auch der Fall N = 0 mdoglich,
d.h. die Funktion benétigt fiir ihre Arbeit gar keine Argumente. In diesem
Fall ldsst man die Klammern leer oder man triagt als einziges Argument den

3.1 Deklaration und Definition von Funktionen 79

leeren Datentyp void ein.
Die folgende Zeile deklariert eine Funktion addiere(), welche zwei Zahlen
vom Typ int entgegennimmt und eine Zahl vom gleichen Typ zuriickgibt:

int addiere(int, int);

Im Hauptprogramm kann man die Funktion durch die beiden folgenden An-
weisungen aufrufen:

sum = addiere(3,4);
addiere(4,5);

Im ersten Aufruf wird die Funktion addiere() mit den Argumenten 3 und 4
aufgerufen und der zuriickgelieferte Wert der Variablen sum zugewiesen. Wie
man am zweiten Aufruf erkennt, muss der Riickgabewert einer Funktion nicht
zwingend verwendet werden. Ein solcher Funktionsaufruf entspricht einem
Ausdruck, dessen Wert identisch mit dem zuriickgelieferten Wert ist.

Die folgende Anweisung wird vom Compiler zuriickgewiesen, weil man im
Widerspruch zur Deklaration versucht, drei Argumente zu iibergeben:

int sum = addiere(3,4,5);

Natiirlich kann man statt der Konstanten auch Variablen entsprechenden Typs
als Argumente {ibergeben. In jedem Fall vergleicht der Compiler die Datenty-
pen der beim Aufruf {ibergebenen Argumente unter Beachtung der Reihenfol-
ge mit der Typenliste in der Deklaration. Dabei kann es vorkommen, dass der
Compiler die Argumente — ggf. unter Verlust von Genauigkeit — nach Mog-
lichkeit in den jeweiligen Typ aus der Deklaration umwandelt. So kénnte man
die Funktion addiere() auch folgendermafen aufrufen:

sum = addiere(3.2,4);

Die Funktion verhilt sich dann beziiglich des ersten Arguments wie ein Cast zu
int. Deklaration und syntaktisch korrektes Aufrufen reichen allerdings nicht
fiir eine erfolgreiche Ubersetzung, wie das folgende Beispiel zeigt:

Beispiel 3.1 (Undefinierte Funktion).
#include <stdio.h>

int addiere(int, int);

1
2
3
4
5 int main()
6
7
8
9

{
int aa = 1;
int bb = 2;
int sum = addiere(aa, bb);
10 printf ("%d\n", sum);

11 printf ("%d\n", aa);
12}

80 3 Funktionen

Man beachte Zeile 9: Hier werden beim Funktionsaufruf Variablen vom Typ
int als Argumente {ibergeben.

Nehmen wir an, wir haben diesen Quelltext in der Datei progadd.c ge-
speichert und starten wie iiblich den Ubersetzungsvorgang. Statt eines aus-
fiihrbaren Programms erhalten wir eine Reihe von Fehlermeldungen, die z.B.
so aussehen:

$ gcc progadd.c -o progadd
....: in function ‘main’:
progadd.c: undefined reference to ‘addiere’

Die Ursache fiir diesen Fehlschlag ist, dass die Funktion addiere () noch nicht
definiert ist. Der Compiler weift nicht, welcher Programmcode an der Stelle
des Funktionsaufrufs in Zeile 9 auszufiihren ist: Unserer Funktion fehlt eben
noch die ,Funktionalitat®. a

Die Festlegung der von einer Funktion bei ihrem Aufruf auszufithrenden An-
weisungen erfolgt bei der Definition der Funktion, die die folgende Struktur
hat:

RiickgabeTyp Funktionsname(Typl Namel, ..., TypN Namel)
{

Funktionsrumpf

Die erste Zeile, der so genannte Funktionskopf (engl. function header),
unterscheidet sich von der Deklaration dadurch, dass sie nicht durch ein Se-
mikolon abgeschlossen werden darf und dass in der Argumentliste zusétzlich
der jeweilige Argumentbezeichner angegeben wird. Jeder Eintrag in der Argu-
mentliste ist damit praktisch eine Variablendeklaration und es gelten daher
dieselben Regeln wie fiir die iiblichen Variablennamen. Uber die Argumentbe-
zeichner konnen die Anweisungen des Funktionsrumpfs auf die Argumentin-
halte zugreifen. Die bereits deklarierte Funktion addiere() konnte dann wie
folgt definiert werden:

1 int addiere(int a, int b)
2 Ao

3 int sum = a+tb;

4 return sum;

5 }

Das reservierte Wort return dient dazu, den Riickgabewert an das auf-
rufende Programm zuriickzuliefern und die Funktionsausfithrung zu beenden.
Man sagt hierzu auch: ,,Die Funktion wird an dieser Stelle verlassen.“ Der

3.1 Deklaration und Definition von Funktionen 81

Riickgabewert kann in Form einer Variablen, einer Konstanten oder eines be-
liebigen Ausdrucks mit entsprechendem Typ an return iibergeben werden.

Mit der Ausfiihrung der return-Anweisung wird die Funktion sofort
beendet.

Enthélt der Funktionsrumpf keine return-Anweisung, so endet die
Ausfiihrung des Funktionsrumpfes bei Erreichen der letzten schlie-
fsenden geschweiften Klammer.

Wird also das Zuriickliefern eines Wertes nicht benttigt (z.B. im Falle einer
Prozedur mit Riickgabetyp void), so kann die return-Anweisung entweder
ganz entfallen oder man kann sie zum Abbruch der Funktionsausfithrung ver-
wenden, wobei man auf die Angabe eines Riickgabewertes verzichtet.

Auch die Definition von Funktionen sollte aufierhalb einer jeder ande-
ren Funktion — speziell main() — vorgenommen werden.

Ferner sind die folgenden Dinge bei der Arbeit mit Funktionen zu beachten:

Funktionen kénnen von anderen Funktionen aufgerufen werden und sie
diirfen sogar sich selbst aufrufen. Wozu die letztere Moglichkeit benutzt
werden kann, erortern wir in Kapitel 9.

Versdumt man es, eine Funktion vor ihrem ersten Aufruf zu deklarieren, so
kommt es in ANSI-C zu einer impliziten Deklaration. Der Compiler nimmt
dabei an, dass der Riickgabewert int lautet und fahrt mit seiner Syntax-
iiberpriifung fort. Diese Annahme kann durchaus bis zur Laufzeit des Pro-
gramms unentdeckt bleiben und dann zu einem unerkldrlichen Verhalten
des Programms fithren. Daher ist darauf zu achten, dass alle Funktionen
vor ihrer Verwendung deklariert sind.

Ahnliches gilt fiir den Fall, dass man bei Deklaration bzw. Definition keinen
Datentyp fiir den Riickgabewert ausdriicklich angibt: Auch dann setzt der
Compiler automatisch den Riickgabetyp auf int. Guter Programmierstil
ist jedoch u.a. dadurch gekennzeichnet, dass der Datentyp stets explizit
angegeben wird.

Ansonsten konnen Deklarationen bzw. Definitionen in beliebiger Reihen-
folge im Quelltext erfolgen.

Deklaration und Definition miissen konsistent sein, d.h. die Datentypen fiir
den Riickgabewert und die Argumente miissen jeweils libereinstimmen.
Erfolgt die Definition einer Funktion vor ihrem ersten Aufruf, so ist die
Funktion damit automatisch auch deklariert.

Es ist erlaubt, die Argumentbezeichner bereits bei der Deklaration anzu-
geben, d.h. auch folgende Form der Deklaration ist moglich:

TypO Funktionsname(Typl Varl, ..., TypN Varh);

Ubergibt man einer Funktion als Argumente Variablen, so kénnen deren
Inhalte im Funktionsrumpf manipuliert werden.

82 3 Funktionen

Um den Quelltext lesbar zu halten, empfiehlt es sich, die Deklaration von
Funktionen vor dem Hauptprogramm und die jeweilige Definition dahinter
vorzunehmen. Die syntaktischen Informationen zu den Funktionen sind dann
schon bekannt und der Blick auf das Hauptprogramm wird nicht durch die
Funktionsdefinitionen erschwert. Fiir ein kiirzeres C-Programm mit wenigen
Funktionen bietet sich also die folgende Strukturierung an:

/* Praprozessordirektiven */

1
2
3
4 /% Funktionsdeklarationen */
5 Typl Funktioni(...);
6
7
8
9

TypN FunktionN(...);

/* Hauptprogramm */
10 int main()
11 {
12
13 }
14
15 /* Funktionsdefinitionen */
16 Typl Funktioni(...)
17 {
18
19 %}
20
21
22
23 TypN FunktionN(...)
24 A
25
26}

Wir werden in diesem Buch aber immer dann die Definition der Funk-
tionen vor main() vornehmen, wenn Anzahl und Umfang der auftretenden
Funktionen hinreichend iiberschaubar sind. Es erleichtert die Beschreibung
des Programmablaufs einiger Beispiele, wenn der Funktionsrumpf bekannt
ist.

Wir beenden diesen Abschnitt mit allgemeinen Hinweisen:
e Der Standardriickgabetyp fiir die Funktion main() ist int und wird in

der Tat auch erwartet. Der Grund hierfiir ist, dass Programme unter UN-
1X/LINUX einen ganzzahligen Wert an die ausfiihrende Shell zuriickliefern

3.2 Call by Value 83

sollen, der angibt, ob das Programm erfolgreich oder mit einem Fehler
beendet wurde.

Dies ist z.B. sinnvoll, wenn man mehrere Programme automatisiert nach-
einander ausfiihren ldsst (Batchbetrieb) und nachfolgende Programme von
der erfolgreichen Ausfiihrung vorangegangener abhingig sind. Der Com-
piler warnt {iblicherweise, wenn ein anderer Datentyp als int angegeben
wird.

Wie bereits gesagt: Ein C-Programm besteht (bis auf Kommentare und
Praprozessordirektiven) lediglich aus der Deklaration und Definition von
Variablen und Funktionen. Konzeptionell sind Daten und die Manipulati-
on von Daten strikt voneinander getrennte Bestandteile. Die Funktionen
manipulieren die Daten und kommunizieren ausschlieflich iiber Parameter
und Riickgabewerte miteinander. Daher bezeichnet man C als eine proze-
durale Sprache.

In den Headerdateien befinden sich u.a. die Deklarationen von Bibliotheks-
funktionen. Daher kann es auch dann zu einer impliziten Deklaration kom-
men, wenn spezialisierte Bibliotheksfunktionen verwendet werden und ver-
gessen worden ist, die entsprechende Headerdatei einzubinden.

3.2 Call by Value

Ubergibt man beim Aufruf einer Funktion Variablen als Argumente, so wird
dies in C durch Duplizieren der Variableninhalte realisiert:

Beim Call by Value-Aufruf werden nicht die Variablen als solche, son-
dern lediglich ihre Werte, d.h. Kopien der Variableninhalte, an die
Funktion iibergeben.

Dass die Funktion nur Kopien der Variablenwerte als Argumente erhilt, hat
folgende wichtige Konsequenz: Etwaige Anderungen, die die Funktion an den
Argumenten vornimmt, wirken sich nicht auf die Werte der iibergebenen Va-
riablen aus. Dazu das folgende Beispiel :

Beispiel 3.2. Wir betrachten die folgende Variante der Funktion addiere():

1
2
3
4
5
6
7
8
9

10

int addiere(int a, int b)
{

a = atl;

return atb;

int main()
{
int aa
int bb 2;

Il
-
.o

84 3 Funktionen

11 int sum = addiere(aa, bb);
12 printf ("%d\n", sum);

13 printf ("%d\n", aa);

14 }

Beim Aufruf von addiere wird zuerst der Wert von aa in die Variable
a kopiert, dann der Wert von bb in b. Da die Funktion vor der Summation
den Wert ihres ersten Arguments um 1 erhoht, liefert sie a+b+1 zuriick. Die
Erhéhung um 1 wird aber nur an einer Kopie vorgenommen, so dass sich der
Wert des ,,Originals aa nicht verdndert. Daher gibt das Programm schliefslich
die Zahlen 4 und 1 aus. a

Der Vorteil der Call by Value-Ubergabe besteht darin, dass die unbeabsich-
tigte Manipulation von Variablen durch Funktionen verhindert wird. Wenn es
aber gerade darum geht, eine Funktion zur Anderung von Variablenwerten zu
verwenden, ist dieser Ubergabemechanismus von Nachteil:

Beispiel 3.3 (Scheinbares Vertauschen zweier Werte).
Die folgende Funktion ist eine wortliche Ubersetzung des Algorithmus aus
Beispiel 1.3:

1 void swap(int a, int b)
2 {

3 int hilf;

4 hilf = a;

5 a = b;

6 b = hilf;

7}

Tatséchlich werden nur die duplizierten Werte der Argumente innerhalb des
Funktionsrumpfs getauscht. Nach Verlassen der Funktion besitzen die iiber-
gebenen Variablen immer noch ihre urspriinglichen Werte. a

Da es zweifellos praktisch wire, eine Vertauschungsfunktion zur Verfiigung zu
haben, muss hier noch Abhilfe geschaffen werden. Schlieklich haben wir schon
bei der scanf ()-Funktion gesehen, dass man Variablen dauerhaft verdndern
kann. Man erreicht dies durch die Ubergabeart Call by Reference, mit der wir
uns in Abschnitt 4.2 beschéftigen.

Geschiitzte Funktionsargumente

Unter Verwendung des reservierten Worts const kénnen wir Variablen bei
der Deklaration mit einem Wert initialisieren und vor weiterer Manipulation
schiitzen. Auf die gleiche Weise ist es sogar moglich, einer Funktion zu verbie-
ten, dass sie an bestimmten Argumenten Anderungen vornimmt. Dazu muss
man lediglich in der Deklaration bzw. Definition der Funktion das betreffende
Argument als const markieren.

3.3 Mathematische Funktionen 85

So besagt die folgende Deklaration von tuwas (), dass die Funktion durch
Anweisungen im Funktionsrumpf zwar das Argument x manipulieren darf,
aber auf die Argumente y und ¢ nur lesenden Zugriff hat.

double tuwas(double x, const double y, const int c);
Wie dieser Schutzmechanismus wirkt, zeigt das folgende Beispiel:

Beispiel 3.4 (Geschiitztes Funktionsargument).
Betrachten wir die Quelltextdatei ConstArg. c:

1 #include <stdio.h>

2

3 void funcl(const int a)
4 {

5 a=3;

6 printf ("a=%d\n", a);
7 %

8

9 int main()

10 {

11 int a=1;

12 funci(a);

13 }

Die Funktion func1 () soll ihrem Argument den Wert 3 zuweisen, obwohl es
nach Deklaration schreibgeschiitzt ist. Wenn wir versuchen, dieses Programm
trotzdem zu {ibersetzen, teilt uns der Compiler mit den Meldungen

ConstArg.c: In function ‘funcl’:
ConstArg.c:5: error: assignment of read-only location

mit, dass wir damit keinen Erfolg haben. O

3.3 Mathematische Funktionen

Mathematische Funktionen, die iiber die elementaren Operationen aus Ab-
schnitt 2.2 hinausgehen, sind Bestandteil der C-Bibliothek 1ibm.a. Diese wird
aber nicht automatisch beim Ubersetzungsprozess eingebunden, denn viele
Programme kommen ohne mathematische Routinen aus und wiirden sonst
mit nicht bendtigten Funktionalitdten iiberfrachtet. Um die Funktionen der
Mathematikbibliothek benutzen zu konnen, muss man folgendes tun:

e Den Priprozessordirektiven ist die Zeile
#include <math.h>
hinzuzufiigen. Diese Datei enthilt die Deklarationen der mathematischen
Funktionen, nicht die Definitionen.

86 3 Funktionen

e Beim Ubersetzen! miissen die zugehdrigen Funktionsdefinitionen der Ma-
thematikbibliothek bereitgestellt werden. Der Befehl hierfiir enthélt am
Ende die Option -1m:

$ gcc -0 Programm Quelldatei.c -1m

In Tabelle 3.1 sind die Deklarationen von einigen Bibliotheksfunktionen an-
gegeben. Zunédchst féllt daran auf, dass die Betragsfunktion je eine Variante
fiir die Typen int, float und double besitzt, was in Anbetracht der unter-
schiedlichen Zahldarstellungen auch nicht weiter verwunderlich ist. Deshalb
ist es wichtig, die vom Typ her passende Funktion zu verwenden: Verwendet
man z.B. abs zur Berechnung des Betrags einer Gleitpunktzahl, so wird das
Argument in das int-Format konvertiert und die Nachkommastellen gehen
verloren. Fehler dieser Art treten haufiger auf, als man vielleicht glaubt.

Obwohl die meisten in Tabelle 3.1 aufgefiihrten Funktionen fiir den Typ
double deklariert sind, kénnen sie auch fiir float-Argumente verwendet wer-
den. Dabei konvertiert der Compiler zuerst das Argument ohne Genauigkeits-
verlust zu double und fiihrt dann die eigentliche Funktion aus. Weist man das
Ergebnis dann einer float-Variablen zu, so erfolgt erneut eine Typkonvertie-
rung, die allerdings mit einem Verlust an Genauigkeit einhergeht. Die meisten
dieser Funktionen besitzen auch eine float-Variante, deren Funktionsnamen
ein f angehingt ist, wie z.B. expf () oder atanf (). Der Funktionsname ei-
ner Version fiir den Typ long double endet auf 1, wie z.B. bei sinl() und
atan21().

Man beachte den Unterschied zwischen den beiden Varianten zur Berech-
nung der Funktion arctan: Bei Verwendung von atan(y/x) wird nur das Vor-
zeichen des Bruchs beachtet und nur Werte zwischen den Polstellen —m/2
und 7/2 der tan-Funktion zuriickgeliefert. atan2(y,x) dagegen beachtet die
Vorzeichen seiner beiden Argumente und berechnet den orientierten Winkel,
den die z-Achse mit der Ursprungsgeraden durch den Punkt (z, y) einschliefst,
so dass sich ein groferer Wertebereich ergibt. Die von atan() und atan2()
zurilickgelieferten Werte stimmen nur fiir > 0 {iberein.

Wie wir bereits auf Seite 48 erwdhnt haben, ist der direkte Vergleich von
Gleitpunktzahlen mittels == bzw. !'= mit grofter Vorsicht zu geniefsen. Sinn-
voller ist es, auf fabs() zuriickzugreifen, und anstelle von a==b einen Test
der Form fabs(a-b) <= EPS mit einem geeigneten (d.h. hinreichend kleinen)
Wert fiir EPS zu verwenden.

Neben den mathematischen Funktionen beinhaltet die Headerdatei math.h
auch einige niitzliche Konstanten (sieche Tabelle 3.2). Diese Konstanten liegen
in der optimalen Genauigkeit fiir die jeweilige Architektur vor. So ist z.B.
M_PI_2 genauer als etwa M_PI/2.0 und daher zu bevorzugen. Aus demselben
Grund sollte man Anweisungen wie z.B.

double pi=4*atan(1.0);

! genauer gesagt: beim Linken

3.3 Mathematische Funktionen

Tabelle 3.1. Deklarationen einiger Funktionen in math.h

Deklaration ‘ berechnet

double fabs(double a) lal

float fabsf(float a) lal

long double fabsl(long double a) | |al

int abs(int j) |71

long int abs(long int j) |7

double sqrt(double x) NI

double cbrt(double x) ¥z (cubic root)

double pow(double b, double e) b*

double exp(double x) e’

double log(double x) Inx

double loglO(double x) logox

double log2(double x) log, x

double sin(double x) sinz, x als Radiant

double cos(double x) cosz, x als Radiant

double tan(double x) tan z, als Radiant

double asin(double x) arcsin als Radiant

double acos(double x) arccos z, als Radiant

double atan(double x) arctan x, als Radiant,
Wert liegt in (—7/2, 7/2).

double atan2(double y, double x) | arctan(y/x), als Radiant,
Wert liegt in (—m, 7.

double hypot(double x, double y) | euklidische Linge des Vektors
mit Komponenten x,y, d.h.
NeETr:

double erf (double x) Gaufisches Fehlerintegral

©
erf(z) = 2 /exp(—§2)d§.
VT 0

double erfc(double x) komplementére erf-Funktion:

erfc(z) = 1—erf(z).

vermeiden und statt dessen M_PI verwenden.

Zur Warnung sei jedoch bemerkt, dass die Werte in <math.h> von der
Rechnerplattform abhingen. Fiir eine gegebene Architektur sind die Kon-
stanten sehr gut, aber man riskiert, dass das gleiche Programm auf zwei ver-
schiedenen Rechnerarchitekturen voneinander abweichende Ergebnisse liefert.

87

88 3 Funktionen

Tabelle 3.2. In math.h definierte Konstanten vom Typ double.

Bezeichnung | Bedeutung

M_E e
M_LOG2E log, e
M_LOG10E logyge
M_LN2 In2
M_LN10 In10
M_PI T
M_PI_2 /2
M_PI_4 /4
M_1_PI 1z
M_2_PI 2/m
M_2_SQRTPI 2/\/7
M_SQRT2 V2
M_SQRT1_2 1/v2
MAXFLOAT grofte darstellbare float-Zahl

Unter LINUX z.B. sind die Konstanten auch im long double-Format verfiig-
bar. Es lohnt sich durchaus, mit dem folgenden Befehl einen Blick in <math.h>
zu werfen:

$ more /usr/include/math.h

3.4 Giiltigkeit von Variablen

Es wére schlimm, wenn eine irgendwo im Quelltext deklarierte Variable ih-
ren Bezeichner fiir das ganze Programm ,gepachtet hétte! Wir miissten uns
beim Verfassen umfangreicher Programme mit entsprechend vielen Variablen
unzihlige Variablennamen ausdenken und den Uberblick iiber diese Legion
von Bezeichnern behalten. Vollig inpraktikabel wére dies fiir ein mehrkopfi-
ges Entwicklerteam, dessen Mitglieder unabhingig voneinander an einzelnen
Programmteilen wie z.B. Funktionen arbeiten.

Dass wir uns damit nicht herumplagen miissen, verdanken wir der Tatsa-
che, dass in C Variablen nicht per se universelle Giiltigkeit besitzen, sondern
jeder von ihnen ein genau festgelegter Giiltigkeitsbereich zugeteilt wird. Beim
Zugriff auf einen Variableninhalt iiber den zugehorigen Namen ergibt sich aus
der Art der Variablen und dem Ort ihrer Deklaration, welches Datenobjekt
angesprochen wird.

3.4 Giiltigkeit von Variablen 89

Lokale und globale Variablen

Ein erstes Unterscheidungskriterium fiir Variablen ist der Ort ihrer Deklara-
tion:

Lokale Variablen: Der Variablenname ist in dem Anweisungsblock (z.B.
dem Funktions- oder Schleifenrumpf) giiltig, in dem die betreffende Varia-
ble deklariert wurde. Dieser Block wird daher auch der Giiltigkeitsbereich
der Variablen genannt.

Globale Variablen: Sie werden aufserhalb aller Funktionen, d.h. auch au-
Kerhalb von main(), deklariert (z.B. direkt nach den Priprozessordirek-
tiven). Globale Variablen sind zun#chst einmal im gesamten Programm
einschlieflich aller Subroutinen giiltig. Dies bedeutet speziell, dass jede
Funktion sie verdndern kann, was sehr leicht zu einem nicht mehr nach-
vollziehbaren Programmverlauf fiilhren kann. Daher und aus Griinden der
Verstandlichkeit des Quelltextes ist die Verwendung von globalen Varia-
blen mit Vorsicht zu geniefsen.

Die universelle Giiltigkeit globaler Variablen hat aber ihre Grenzen:

Lokale Variablen haben Vorrang vor globalen Variablen.

Genauer gesagt: Variablen, die auf einer iibergeordneten Ebene deklariert sind
(z.B. im Rumpf einer aufrufenden Funktion oder globale Variablen), werden
durch Deklaration gleichnamiger lokaler Variablen verdeckt. In diesem Zusam-
menhang spricht man auch von der Sichtbarkeit von Variablen.

Beispiel 3.5 (Lokale und globale Variablen).

© 0 N O O W N -

T e e = = S
0 N O Ok W NN - O

/* Headerdateien */
#include <stdio.h>

/* globale Variable */
int b=1;

/* Funktionsdefinition */
void erzwinge()
{
int a=3;
printf ("Funktion erzwinge: a=Ji\n", a);
printf ("Funktion erzwinge: b=%i\n", b);
printf ("Funktion erzwinge: Subtrahiere 1 von b.\n");
b--3
printf ("Funktion erzwinge: b = %i\n", b);

}

void zeige_b()

90 3 Funktionen

19 {

20 printf ("Funktion zeige_b: b= %i\n", b);
21 %}

22

23 /* Hauptprogramm */

24 int main()

25 {

26 int a=2;

27 int b=4;

28

29 printf ("Hauptprogramm: a=%i\n", a);
30 erzwinge () ;

31 zeige b ;

32 printf ("Hauptprogramm: a=%i\n", a);
33 printf ("Hauptprogramm: b=%i\n", b);
34 return O;

35 }

Das Programm erzeugt die Ausgabe:

Hauptprogramm: a=2

Funktion erzwinge: a=3

Funktion erzwinge: b=1

Funktion erzwinge: Subtrahiere 1 von b.
Funktion erzwinge: b = 0

Funktion zeigeb: b= 0

Hauptprogramm: a=2

Hauptprogramm: b=4

Wir verfolgen die Ausfithrung:

Zeile 5: Die globale Variable b wird mit dem Wert 1 initialisiert.

Zeilen 8-21: Es werden die Funktionsdefinitionen erfasst (aber natiirlich noch
nicht ausgefiihrt).

Zeile 26: Zu Beginn der Ausfiihrung des Hauptprogramms wird die lokale Va-
riable a mit dem Wert 2 initialisiert.

Zeile 27: Die lokale Variable b iiberdeckt die globale Variable gleichen Na-
mens. Sie wird mit 4 initialisiert.

Zeile 29: Es wird der Wert von a ausgegeben, also 2.

Zeile 30: Wegen des Funktionsaufrufs in Zeile 31 betrachten wir den Funkti-
onsrumpf in

Zeile 10: Die lokale Variable a iiberdeckt die gleichnamige Variable aus Zeile
27.

Zeile 11: Es wird der Wert der lokalen Variablen a, also 3, ausgegeben.

Zeile 12: In der Funktion wurde keine lokale Variable b deklariert, die die
globale Variable gleichen Namens aus Zeile 5 iiberdeckt. Daher wird deren
Wert 1 ausgegeben.

3.4 Giiltigkeit von Variablen 91

Zeile 14: Hier wird der Wert der globalen Variablen b veréndert, in

Zeile 15 wird daher 0 ausgegeben. Die Verringerung des Wertes um 1 bleibt
bestehen.

Zeile 31: Das Hauptprogramm fahrt mit Aufruf der Funktion zeige_b() fort.
Wir betrachten den Funktionsrumpf in

Zeile 20: Es wird 0 ausgegeben, da b nicht von einer lokalen Variablen gleichen
Namens iiberdeckt wird.

Zeilen 32 und 33: Es werden die in main () definierten lokalen Variablen a und
b angesprochen. Speziell iiberdeckt b aus Zeile 27 die globale Variable aus
Zeile 5 und es wird daher 4 ausgegeben.

O

Die Giiltigkeit von Variablen dient nicht nur der Bequemlichkeit bei der Na-
mensgebung. Ahnlich dem Call by Value-Konzept dienen Sichtbarkeit und
Giiltigkeitsbereich von Variablen dem Zweck, unabsichtliche Anderungen an
Variableninhalten zu verhindern. Deshalb ist es auch nicht so, dass eine glo-
bale Variable eine lokale Variable gleichen Namens iiberschreibt, sondern die
lokale Variable die globale verdeckt.

Automatische und statische Variablen

Eine zweite Art der Unterscheidung von Variablen geht von der ,Lebensdau-
er der damit verbundenen Datenobjekte aus. Die Variablen, die wir bisher
kennen gelernt haben, waren automatische Variablen. Das bedeutet, dass die
Variable nur solange giiltig ist, bis die Ausfilhrung des Blocks, in dem sie
deklariert wurde, abgeschlossen ist. Danach existiert das mit diesem Bezeich-
ner verbundene Datenobjekt samt Inhalt nicht mehr. Es wiirde auch wenig
Sinn machen, Speicherplatz fiir alle méglichen lokalen Variablen zu vergeu-
den, wenn diese gar nicht fiir die gesamte Laufzeit des Programms bendtigt
werden. Insbesondere sind die innerhalb einer Funktion deklarierten lokalen
Variablen und die Funktionsargumente automatische Variablen.

Globale Variablen haben die Eigenschaft, dass sie fiir die gesamte Lauf-
zeit des Programms — unter Umstidnden von lokalen Variablen verdeckt —
existieren. In manchen Situationen kann es erwiinscht sein, dass lokale Va-
riablen diese ,Langlebigkeit aufweisen und samt ihrem Inhalt unabhingig
von der Funktionsausfiihrung erhalten bleiben. Solche statischen Variablen
erzeugt man, indem man bei ihrer Deklaration das reservierte Wort static
voranstellt:

static Typ Name = wert;

Wichtig ist, dass eine solche Variable bei der Deklaration initialisiert werden
USS.

Beispiel 3.6 (Zihlen von Funktionsaufrufen).
Durch die Verwendung einer lokalen statischen Variablen kann man z.B. eine
Funktion dazu veranlassen, die Anzahl ihrer Aufrufe mitzuzéhlen:

92 3 Funktionen

1 void zaehle_mit()

2 {

3 int static zaehler = 1;

4 printf ("/d.ter Aufruf !\n", zaehler);
5 zaehler++;

6

In Zeile 3 wird beim ersten Aufruf von zaehle_mit() die Zahlervariable
zaehler initialisiert. Diese Zuweisung wird bei erneutem Aufruf natiirlich
nicht mehr ausgefithrt und die Erhéhung des Werts von zaehler um 1 bleibt
auch nach dem Verlassen der Funktion bestehen. a

Die Variable zaehler in Beispiel 3.6 kann nur von der Funktion zaehle_mit ()
verdndert werden. Vor Manipulationen von aufsen ist sie geschiitzt, was je nach
Aufgabenstellung auch ein Nachteil sein kann.

3.5 Beispiel: Entfernungsmessung durch Peilung

Als kleines Anwendungsbeispiel entwickeln wir ein Programm, welches folgen-
de Textaufgabe 16st und diskutieren die Losung:

Person A und Person B stehen auf einer geraden Strafe mit Abstand
1 km und schauen sich an. Sie peilen ein entferntes Objekt X wie folgt
an: Person A dreht sich nach links zum Objekt X hin und misst einen
Winkel «.. Person B dreht sich entsprechend nach rechts zum Objekt
und misst dabei den Winkel 3 (sieche Skizze).

Bestimmen Sie den Abstand d des Objekts X zur Strafe.

Die mathematische Lésung ist einfach: In rechtwinkligen Dreiecken gilt be-
kanntlich

3.5 Beispiel: Entfernungsmessung durch Peilung 93

d
1—z’

d
tana = — , tanf =
x

da wir ja annehmen, dass A und B gerade den Abstand 1 km voneinander
haben. Es folgt offensichtlich

d=xztana = (1 —z)tan

und somit durch Elimination von x:

_ tana tanf3
" tana+tanf

Dieses Ergebnis fiihrt zum folgenden C-Programm:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include <math.h>
#include <stdio.h>

double berechne_abstand(double alpha, double beta)

{

double zaehler, nenner;

zaehler = tan(alpha)*tan(beta);

nenner = tan(alpha)+tan(beta);

return zaehler/nenner;

int main()

{

double alpha_in_grad, beta_in_grad, alpha, beta, d;
printf ("Geben Sie den Winkel alpha in grad ein: ");
scanf ("%1f", &alpha_in_grad);

printf ("Geben Sie den Winkel beta in grad ein: ");
scanf ("%1f", &beta_in_grad);

M_PI * alpha_in_grad / 180.0;
M_PI * beta_in_grad / 180.0;

alpha
beta

d=berechne_abstand(alpha, beta);
printf ("Abstand d betridgt %1f km\n", d);

return 0;

94 3 Funktionen

Man beachte, dass das Programm die Eingabe von Grad nach Radiant
umrechnet. Andernfalls wiirde tan() in den Zeilen 8 und 9 fehlerhafte Er-
gebnisse liefern.

Fehlerverstirkung bei der Abstandsmessung. Koénnen auch bei der
Entfernungsmessung kleine Messfehler zu grofen Abweichungen im Ergeb-
nis fiihren? Dazu betrachten wir die Situation, dass B sehr exakt vorgeht
und 89° misst, wihrend die Messung von A filschlicherweise 88° statt den
tatsdchlichen 87° ergibt.

Das Programm liefert dann einen Abstand von d = 19.09 km statt des
korrekten Abstands d = 14.31 km. Der relative Fehler im Ergebnis betrigt

somit
19.09 — 14.31

14.31

Der relative Fehler in den Eingabedaten, d.h. der eigentliche Messfehler be-
tragt allerdings nur

= 33.4%.

88 — 87
87
d.h. wir beobachten eine Fehlerverstirkung um etwa das Dreifligfache! Dass
ein solcher Fehler auftritt, sollte von der Anschauung her klar sein: Je mehr
sich beide Winkel einem rechten Winkel annéhern, desto ,schneller bewegt
sich der Punkt X von der Strafse weg.

Das Phénomen, dass die Losung einer Aufgabe empfindlich auf geringe
Anderungen der Eingabedaten reagiert, kennen wir bereits aus Abschnitt 1.3.
Wir koénnen unsere Beobachtung auch folgendermafen ausdriicken: Sind die
beiden Winkel ungefdhr gleich und nahe 90°, so ist das Problem schlecht
konditioniert. Da die Kondition eine Eigenschaft des gestellten Problems und
nicht des angewandten Losungsverfahrens ist, wissen wir: Auch eine grofere
Rechengenauigkeit, z.B. indem man im Programm double durch long double
ersetzt, wird hier nicht viel helfen.

Vielmehr muss man in einer solchen Situation das Problem selbst modifi-
zieren. Hier kénnen z.B. mehrfache Messungen mit anschliefender Mittelung
der gemessenen Winkel, oder die Hinzunahme einer weiteren Person, zu we-
sentlichen Verbesserungen fiihren.

=1.1%,

Eine Konditionsanalyse fiir die Abstandsmessung. Wir wollen unse-
re Beobachtungen und Schlussfolgerungen mathematisch untermauern. Zur
Vereinfachung nehmen wir wieder an, dass der vom Beobachter B gemessene
Winkel § exakt ist und untersuchen das Verhalten des Abstands d in Abhén-
gigkeit von «, gegeben als

d(a) = tana tan (8

=—". 3.1
tan o + tan 3 (3.1)
Die Verstirkung des relativen Fehlers ist

aAd ad(a)
dAa ™ d

3.6 Kontrollfragen zu Kapitel 3 95

sofern die Abweichungen A« klein sind. Unter Verwendung der Quotienten-
regel berechnen wir fiir die Ableitung:

(o) tan 3 tan a tan 3
a) = -
cos?a(tan o + tan3) cos?a(tana + tan)2
tan2p

B cos?a(tan o + tan (3)2

Zusammen mit (3.1) und der Beziehung

sin o
tana =
cos v
erhalten wir 7
ad(a « tan
o) ____atanp . (3.2)
d(a) sina + sin a cos o tan 8

Fir « / /2, d.h. wenn sich o von unten dem Wert /2 ndhert, gilt

lim sina=1, lim cosa=0
o/)2 a2

und aus (3.2) folgt:
d/
im % (@) = ztanﬁ.
a,/w/2 d(a) 2

Daraus leitet sich sofort ab, dass die Messung eine schlecht konditionierte
Aufgabe ist, wenn beide Beobachter einen nahezu rechten Winkel messen,
d.h. wenn auch § nahe an /2 liegt. Da A und B gleichberechtigt sind, kon-
nen wir schlussfolgern, dass die Messung ein gut gestelltes Problem ist, wenn
mindestens ein Beobachter einen kleinen Winkel misst.

3.6 Kontrollfragen zu Kapitel 3

Frage 3.1
Welche der folgenden Aussagen trifft nicht zu?

a) Fiir Namen von Funktionen gelten dieselben Regeln wie fiir Variablennamen. O

b) Fiir das Kompilieren eines Programmteils reicht die Funktionsdeklaration,
erst fiir das Linken bendtigt man die Funktionsdefinition.

¢) Funktionen diirfen auch in main() deklariert oder definiert werden.

d) Die Definition einer Funktion darf nie ohne vorherige Deklaration erfolgen.

]
]
0O
e) Deklaration und Definition einer Funktion diirfen sich nicht widersprechen. O

96 3 Funktionen

Frage 3.2
Was versteht man unter einer impliziten Deklaration einer Funktion?
a) Die Deklaration einer Funktion innerhalb von main(). ad
b) Die Deklaration einer Funktion innerhalb einer anderen Funktion. a
¢) Die Deklaration einer Funktion durch Angabe der Funktionsdefinition. O
d) Die vom Compiler erzeugte Deklaration einer Funktion, wenn keine Dekla-

ration im Quelltext vorhanden ist. O
e) Die Deklaration einer Funktion in einer eingebundenen Headerdatei. O
Frage 3.3
Fiir welche der folgenden Kombinationen gilt tan(y/x) = atan2(y,x)?
a)x=y=1.0 O
b) x = 1.0, y = -1.0 O
c) x=-1.0, y = 1.0 O
d) x=y=-1.0 O
Frage 3.4
Welchen Wert hat die Anweisung abs(-2.3) - abs(2)?
a) 0.3 O
b) 0 a
c) 0.7 O
Frage 3.5
Welche mathematische Funktion f wird durch

Z=x*X;
f=exp(-z)/(1+2);
ausgedriickt?
e
e
a T O
) 10)=
b) f(z)=e" (1 +2?) O
e*fL‘

c) f(@) =1 n mQ O
Q) f(e) = T D
e) Keiner der Ausdriicke a) - d). O

3.6 Kontrollfragen zu Kapitel 3 97

Frage 3.6
Durch welche der folgenden Anweisungen wird die Funktion
—lz—yl
e
flx) = 2

fiir € R implementiert?

a) exp(-Ix-y1)/(x*x + pow(y,3)) O
b) exp(-fabs(x-y))/(pow(x,2) + pow(y,3)) O
c) exp(-abs(x-y))/(x*x + y*xy*y) a

Frage 3.7

Welche der folgenden Optionen berechnet am exaktesten und zuverldssigsten den
den Logarithmus von = zur Basis 2, wenn keine entsprechende Bibliotheksfunktion
zur Verfiigung steht?

a) log(2)/log(x)
b) log(x)/log(2)
¢) M_LOG2E*log(x)
d) log(x)/M_LOG2E
e) M_LOG2E/log(x)
f) log(x)/log(2)

Ooooooao

Frage 3.8

Was gibt das folgende Programm aus?
#include <stdio.h>

1

2

3 int function(int a, int b)
4 {

5 a=a-+b;

6 b=>b+ a;

7 return a;

8
9

10 int main()

11 {

12 int a, b;

13 a=3;

14 b=5;

15 b = function(a, b);

16 printf("a=%d, b=kd\n", a, b);
17 }

&
~
[\
1l
1

‘i
0 W w
U“!ﬂ"c“
= 00 o

[
Il
ooao

98 3 Funktionen

Frage 3.9

Welches Verhalten ist von dem folgenden Programmteil zu erwarten?

int i, N=10;
for (i=0; i<N; ++i)
{
int N=i+1;
printf("%i ", N);

}
a) Unvorhersehbar. Der Programmteil ist syntaktisch nicht korrekt. O
b) Die Bildschirmausgabe lautet: 1 2 3 4 5 6 7 8 9 10 a
c¢) Bildschirmausgabe: 10 10 10 10 10 10 10 10 10 10 ad
d) Es werden alle darstellbaren int-Werte in einer Endlosschleife ausgegeben. O
Frage 3.10
Welche Ausgabe liefert das folgende Programm?
#include <stdio.h>
int a=4;
int func(int a)
{
return (--a);
}
void proc()
{
++a;
}
int main()
{
proc();
proc();
func(a);
printf("a= %i\n",a);
return O;
}
a) Das Programm ist syntaktisch nicht korrekt. O
b) a= 3 O
c) a= 4 O
d) a= 5 O
e) a= 6 O

3.7 Ubungsaufgaben zu Kapitel 3 99

Frage 3.11

Was gibt folgendes Programm auf dem Bildschirm aus?

int fun()

{
static int x=0, y=1;
int xneu;

Xneu = y;
y = x+xXneu;
X = Xneu;
return x;

}

main()

{
fun(); fun(); fun(); fun();
printf ("%d\n", fun());

}

) Den Wert 0
b) Den Wert 1
c) Den Wert 3
d) Den Wert 5

a

Ooooo

3.7 Ubungsaufgaben zu Kapitel 3
Aufgaben, die mit einem * markiert sind, sind vom Schwierigkeitsgrad etwas an-
spruchsvoller. Sie kobnnen beim ersten Durcharbeiten zuriickgestellt werden.

3.1 (Euklidischer Algorithmus und Kiirzen von Briichen).

Implementieren Sie den Euklidischen Algorithmus als Funktion ggT(int, int), wo-
bei unabhéngig vom Vorzeichen der Argumente ein positives Resultat zuriickgeliefert
werden soll.

Testen Sie die Funktion in einem Hauptprogramm, das Zihler und Nenner eines
Bruchs von der Tastatur einliest und den Bruch vollstindig kiirzt.

100 3 Funktionen

3.2 (Skalarprodukt, Kreuzprodukt und Spatprodukt).
Schreiben Sie jeweils eine Funktion, die zu zwei Vektoren a,b € R?

a) das euklidische Skalarprodukt

3
<aab> = Zaibia
=1

b) bzw. das Kreuzprodukt

a2b3—a3b2
aXb= a3z by — a1 b3

a1bz —azb:

berechnet. Die Komponenten sollen vom Typ double sein.
c) Schreiben Sie eine dritte Funktion, die die beiden Funktionen aus a) und b) aufruft
um das Spatprodukt
((axb),c)

dreier Vektoren a,b,c € R® zu berechnen.

Testen Sie Thre Routinen in einem Hauptprogramm.

3.3 (Fibonacci-Zahlen).

Die Fibonacci-Zahlen f, geniigen der Bildungsvorschrift f, = fn—1 + fn—2 mit
den Startwerten fo = 0 und fi = 1. So lauten die ersten sechs Glieder dieser
Folge 0,1,1,2,3,5. Schreiben Sie unter Zuhilfenahme von statischen Variablen eine
Funktion int fibonacci(), die mit 0 beginnend, von Aufruf zu Aufruf die nichste
Fibonacci-Zahl zuriickliefert.

3.4 (Stabile Berechnung von sinh(z)).

a) Implementieren Sie eine Funktion sinh_def (), die sinh(z) unter Verwendung der
Definiton

exp(a) — exp(—2)

2)
berechnet. Schreiben Sie auch eine Funktion sinh_appr (), die die Approximation
aus Beispiel 1.21 verwendet. Argument und Riickgabewert sollen dabei vom Typ
float sein.

b) Testen Sie Ihre Funktionen in einem Hauptprogramm, in dem die Funktion
sinh() aus der C-Mathematikbibliothek den entsprechenden Funktionswert vom
Typ double berechnet und bestimmen Sie, wie grof die jeweiligen relativen Ab-
weichungen

sinh(z) =

sinh_def (x) — sinh(x) _ sinh_approx(x) — sinh(x)

€1 — =
! sinh(x) 2 sinh (x)

sind. Lassen Sie sich die relativen Fehler auf dem Bildschirm ausgeben. Testen
Sie das Programm fiir float-Werte = ~ 0.

3.7 Ubungsaufgaben zu Kapitel 3 101

3.5 (Approximation der sin-Funktion).
Schreiben Sie eine Funktion

double sin_approx(double x, int N) ,
die die Sinusfunktion unter Verwendung der abgebrochenen Potenzreihe

N p2ntl

Sil’l(.’L’) =~ Z(*l)nm 5

n=0

berechnet. Im Hauptprogramm sollen die Werte fiir x und N eingelesen und das
von der Funktion sin_approx() berechnete Resultat am Bildschirm ausgegeben
werden.

3.6 (Verbesserte Berechnung von sin(z)).

a) Schreiben Sie ein Unterprogramm
void sin_quality(double x, int Nmax);
das zunéchst die Bibliotheksfunktion sin() zur Berechnung von sin(z) aufruft.
Danach berechnet die Funktion jeweils fiir N=1, ... , Nmax die relative Abwei-
chung
sin(x) — sin_approx(x)

sin(x)
mit sin_approx() aus Aufgabe 3.5 und gibt diese auf den Bilschirm aus.
b) Schreiben Sie ein Hauptprogramm, in dem der Benutzer x und Nmax eingeben
kann. Untersuchen Sie die Qualitét fiir x = 0.1 und Nmax = 1, 5, 100, 200.

c¢) * Sollte Thr Programm fiir Nmax = 200 kein giiltiges Ergebnis liefern; so ist das
eine Frage der Stabilitdt Thres Verfahrens: Finden Sie die Ursache heraus und
beheben Sie diese.
Hinweis: Was passiert mit Zihler und Nenner in der sin-Ndherungsformel aus
Aufgabe 3.5, wenn n groff wird?

3.7 (Quadratische Gleichung).
Sie haben in Beispiel 1.20 zwei Methoden zur Berechnung der Nullstellen z; und z2
des Polynoms x? 4 px + ¢ kennen gelernt.

a) Schreiben Sie eine Funktion, welche zwei Zahlen a,b entgegennimmt und daraus
die Koeffizienten p,q des Polynoms f(z) = z* + pz + ¢ mit f(a) = f(b) = 0
bestimmt. Benutzen Sie dann die gebraduchliche Formel

I

2 2
p,1
= —= — —4
T2 2+2 P q

um die Nullstellen auszurechnen und bestimmen Sie den relativen Fehler dieser
berechneten Nullstellen im Vergleich zu den vorgegebenen a und b. Benutzen Sie
hierbei Variablen vom Typ float.
Testen Sie Thr Programm mit @ = 1.0 und b = 107*®,107'¢ und 10™'7. Berechnen
sie den jeweiligen relativen Fehler.

102 3 Funktionen

b) Wiederholen Sie den ersten Teil dieser Aufgabe unter Verwendung der in Beispiel
1.20 vorgestellten Alternative zur Berechnung der Nullstellen. Was stellen Sie
fest? Konnen Sie diese Beobachtung erklidren?

3.8 (Peilung zur Bestimmung der z-Koordinate).

Wie lautet die Formel, wenn die beiden Beobachter bei der Peilung statt des Ab-
stands d die z-Koordinate des Objekts X bestimmen wollen? Uberlegen Sie sich,
wann diese Aufgabe schlecht konditioniert ist.

Hinwets: Es muss nicht unbedingt 0 < 2 <1 gelten.

3.9 (Verbesserung der Abstandsmessung).

Modifizieren Sie das Programm zur Abstandsmessung wie folgt: Der Benutzer gibt
fiir beide Personen je zwei Winkel ein, die Funktion iibernimmt diese vier Wer-
te, bildet pro Person den Mittelwert der Winkel und berechnet den resultierenden
Abstand. Schreiben Sie zur Berechnung des Mittelwertes zweier Zahlen eine eigene
Funktion.

Testen Sie dieses Programm mit den folgenden Messdaten: A misst zwei mal 89°, B
misst zunéchst exakt 87° und anschlieffend fehlerbehaftet 88°.

Berechnen Sie die Fehlerverstirkung.

4

Zeiger und ihre Anwendungen

Zeiger werden von Programmieranfingern hiufig als ein schwer zugingliches
Konstrukt empfunden. Als ein wesentlicher Teil der Sprache sind sie jedoch fiir
die Losung sehr vieler Implementierungsaufgaben extrem hilfreich und wer-
den fiir manche sogar zwingend benétigt. Nach einer allgemeinen Einfiihrung
werden wir wichtige Eigenschaften von Zeigern sowie einige Anwendungen
vorstellen.

1. Wie wir bereits in Abschnitt 3.2 gesehen haben, ist es bei der Argument-

iibergabe mittels Call by Value nicht moglich, die Inhalte der iibergebenen
Variablen iiber die ,,Lebensdauer” des Unterprogramms hinaus zu dndern.
Der Call by Reference genannte Ubergabemechanismus macht dies mit
Hilfe von Zeigern moglich. So konnen Funktionen nicht nur mittels return
Variablenwerte verandermn.

. Von zentraler Bedeutung bei der Arbeit mit C ist der Zusammenhang

zwischen Zeigern und Feldern. Wie wir sehen werden, kann man auf Feld-
komponenten auch iiber entsprechende Zeiger zugreifen. Ein Stichwort
hierzu ist die so genannte Zeigerarithmetik.

Bisher haben wir nur statische Felder kennen gelernt, deren Grofe bereits
bei der Deklaration festgelegt werden muss. Oft héngt die bendtigte Feld-
grofe allerdings von Parametern ab, die erst zur Laufzeit des Programms
bekannt sind. Bei der flexiblen Handhabung von Speicherressourcen sind
Zeiger das Mittel der Wahl, wobei der unter 2. angesprochene Zusammen-
hang zwischen Zeigern und Feldern zum Tragen kommt.

. Bei vielen fehlerhaften Programmen liegt die Ursache im falschen Umgang

mit Zeigern. Diese Fehler werden in der Regel vom Compiler nicht erkannt,
und das Verhalten eines solchen Programms ist in der Regel nicht vorher-
sehbar. Die Fehlersuche ist in diesem Fall recht schwierig. Wir werden
einige typische Fallen und Stolpersteine diskutieren.

Als mathematische Paradeanwendung fiir die Arbeit mit Zeigern fiithren wir
zwei Moglichkeiten zur dynamischen Implementierung von Matrizen in C vor
und finden damit einen Einstieg in die Datenstrukturen der linearen Algebra.

104 4 Zeiger und ihre Anwendungen

4.1 Zeiger

Bei der Funktion scanf () haben wir gesehen, dass Variableninhalte auch iiber
die Adresse der Variablen manipuliert werden kénnen. Fiir diesen indirekten
Zugang zum Wert eines Datenobjekts muss neben der Adresse auch der be-
treffende Datentyp bekannt sein. Der Compiler muss schliefslich die Anzahl
der vom Objekt belegten Speicherzellen wissen und das dort hinterlegte Bit-
muster, d.h. die bin&re Darstellung des Variablenwerts, korrekt interpretieren.
Dieser Zugang ist dann sowohl lesend als auch schreibend.

Die Idee von Zeigern besteht darin, dass man den Inhalt einer Variablen
durch direktes Ansprechen ihrer Position im Speicher statt iiber ihren Namen
ausliest bzw. verdndert. Im Programm realisiert man den Zugang durch Zei-
gervariablen, die die Adresse eines Datenobjekts in Form einer ganzen Zahl
speichern.

Ein Zeiger (engl. pointer) markiert die Position eines Datenobjekts im
Speicher oder alternativ ausgedriickt: Eine Zeigervariable speichert die
Adresse des betreffenden Datenobjekts und gibt an, wie die unter der
Adresse abgelegten Bytes zu interpretieren sind.

Um ein alltdgliches Analogon zu bemiihen: M6chte z.B ein Kabelnetzbe-
treiber iiber Wartungsarbeiten in einer bestimmten Gegend informieren, so
hat er einerseits die Moglichkeit, die betroffenen Haushalte jeweils namentlich
anzuschreiben (was dem Zugang durch Variablennamen entspricht), oder aber
er wendet sich z.B. ,an die Bewohner der Musterstr. 88“. Letztere Variante
entspricht dem Zugriff auf Daten {iber Zeiger und ist dadurch gekennzeichnet,
dass der konkrete Familienname des Haushaltes keine Rolle spielt.

4.1.1 Elementare Operationen mit Zeigern

Bevor uns damit beschéftigen, welche Moglichkeiten der Einsatz von Zeigern
bei der Programmierung bietet, machen wir uns anhand eines Beispiels mit
den grundlegendsten Dingen vertraut.

Deklaration von Zeigern Durch die folgenden Anweisungen wird eine Va-
riable a vom Typ int und eine Variable adr_a vom Typ ,Zeiger auf int“
deklariert:

int a;
int *adr_a;

Solche Variablen bezeichnen wir auch als Zeigervariablen.

Der Adressoperator. Eine erste Moglichkeit, eine Zeigervariable mit einem
Wert zu belegen ist die folgende: Man wendet auf eine Variable passenden
Typs den Adressoperator & an und weist das Ergebnis dieser Operation der
Zeigervariablen zu. Wir erweitern unser obiges Beispiel um entsprechende An-
welsungen:

4.1 Zeiger 105

int a;
int *adr_a;
a = 3;
adr_a= &a;

Durch die letzte Anweisung wird in der Zeigervariablen adr_a die Speicher-
adresse von a abgelegt. Die Variable a wiederum hat den Wert 3. Man sagt:
»adr_a zeigt auf a.”
oder
»adr_a referenziert den Inhalt von a.*

Der Inhaltsoperator. Wie funktioniert nun der eingangs erwéhnte indirekte
Zugriff auf Variableninhalte?

Um den Inhalt einer Speicheradresse, auf die sich ein Zeiger bezieht, aus-
zulesen oder zu dndern, wendet man den Inhaltsoperator * auf die betreffende
Zeigervariable an. Die Anwendung des Inhaltsoperators wird auch Dereferen-
zieren genannt. Wir erweitern wieder unser Beispiel:

int a, b;
int *adr_a;
a = 3;
adr_a= &a;
b = xadr_a;
*adr_a=b+1;

Hier wird noch eine zweite int-Variable b deklariert. Da adr_a auf die Varia-
ble a zeigt, sorgt die Anwendung des Inhaltsoperators in der vorletzten Zeile
dafiir, dass der Wert von a der Variablen b zugewiesen wird. In der letzten
Anweisung wird der Wert von b um 1 erhdht und per Zuweisung an die von
adr_a referenzierte Speicheradresse geschrieben. Da es sich dabei ja um die
Adresse von a handelt, trigt die Variable a nach dieser Anweisung den Wert
4,

Der Adressoperator & kann ausschlieflich zum Auslesen der Speicher-
adresse einer Variablen verwendet werden.

Der Inhaltsoperator * ist invers zum Addressoperator. Er kann sowohl
fiir lesende als auch fiir schreibende Zugriffe auf Speicheradressen be-
nutzt werden.

Die allgemeine Form der Deklaration einer Zeigervariablen lautet folgender-
mafen:

Datentyp *Zeigervariablenname;

Bemerkung 4.1.

a) Eine Zeigervariable beansprucht auf einer Rechnerarchitektur immer die
gleiche Anzahl Speicherzellen, auch wenn die angesprochene Variable je
nach Typ unterschiedlich viele Speicherzellen belegt.

106 4 Zeiger und ihre Anwendungen

b) Da die Verwendung von * im Zusammenhang mit Zeigern leicht zu Ver-

wechslungen oder Versténdnisproblemen fithren kann, weisen wir ausdriick-
lich auf die Doppelrolle von * als undrer Operator hin: Bei der Deklaration
von Variablen werden durch Voranstellen von * Zeiger gekennzeichnet und
bei Anweisungen wird mittels * auf den Inhalt zugegriffen.
Man beachte die Ahnlichkeit zu den Feldern: In einer Deklaration werden
durch die eckigen Klammern [] Felder vereinbart, in Anweisungen dage-
gen greift man mit ihnen auf eine Feldkomponente zu. Diese Analogie ist
kein Zufall, da Felder und Zeiger eng miteinander verkniipft sind (siehe
Abschnitt 4.3).

c) Bei der Deklaration von Zeigern bezieht sich * ausschlieflich auf den nach-
folgenden Bezeichner. So bedeutet z.B. die Deklaration

int *zgrl, zgr2;

dass zgr1 ein Zeiger auf den Datentyp int, zgr2 jedoch eine int-Variable
ist. Damit beides Zeiger auf int sind, muss die Deklaration folgendermafien
lauten:

int *zgrl, *zgr2;

4.1.2 Der Datentyp voidx*

Eine Sonderrolle spielt der Datentyp void*. Dabei handelt es sich keineswegs
um den Typ ,Zeiger auf Nichts®, sondern um einen ,universellen“ Zeiger, der
Speicheradressen ohne Typinformation speichert. Ohne diese Information ist
aber nicht klar, welcher Art die unter der Speicheradresse abgelegte Infor-
mation ist, so dass eine Variable vom Typ void* nicht dereferenziert werden
kann.

Die Universalitit dieses Datentyps besteht darin, dass sich typbehaftete
Zeiger nach void#* konvertieren lassen. Umgekehrt kann man Variablen vom
Typ void#* durch Verwendung von Casts in typbehaftete Zeiger umwandeln:

float a=2.0f;
void *adr_a = &a;
printf ("/%d\n", *(int *) adr_a);

Der Compiler wird diese Anweisungen ohne Fehlermeldung iibersetzen, die
printf ()-Anweisung wird allerdings im allgemeinen nicht 2 ausgeben. Der
Zeiger adr_a zeigt zwar auf eine Speicherzelle an der der float-Wert 2.0
hinterlegt ist, bei der Dereferenzierung in der letzten Zeile wird der Inhalt
dieser Speicherzellen wegen des Casts allerdings als int interpretiert.

Der Programmierer ist also selbst verantwortlich fiir den richtigen Umgang
mit den Zeigervariablen, der Compiler bietet keine Hilfestellung. Im obigen
Beispiel hédtte man also folgende Ausgabeanweisung verwenden miissen:

printf ("%f\n", *(float *) adr_a);

4.2 Call by Reference 107

Verwendet wird void* vor allem fiir die Arbeit mit Zeigern auf Datenobjekte
deren Typ noch nicht feststeht (,Zeiger auf Etwas‘). Als Beispiele hierfiir
werden wir in Abschnitt 4.4 mehrere Bibliotheksfunktionen kennenlernen, die
mit dem Riickgabetyp void#* deklariert sind.

4.2 Call by Reference

Wir haben noch das Beispiel 3.3 in Erinnerung, wo wir wegen des Call by
Value-Ubergabemechanismus an der Vertauschung zweier Variableninhalte ge-
scheitert sind. Jetzt, da wir {iber die Zeigervariablen direkten Zugriff auf die
Speicheradresse haben, kénnen wir das Problem I6sen.

Doch zuerst schauen wir uns noch das folgende Beispiel an, das uns wieder
einmal die Tiicke des Call by Value-Konzepts zeigt:

Beispiel 4.2. In umfangreicheren Projekten wird man bestrebt sein, die Da-
teneingabe durch wiederverwendbare Unterprogramimne zu realisieren. In seiner
einfachsten Form sieht das ungefdhr wie folgt aus:

1 #include <stdio.h>

2

3 void einlesen(float x)

4 {

5 printf ("Eingabe float-Zahl:");
6 scanf ("%4f", &x);

7}

8

9 int main()

10 {

11 float zahl = 2.0;

12 einlesen(zahl);

13 printf("’zahl’ hat Wert %f\n", zahl);
14 return 0;

15 %}

Zu unserer Enttduschung konnen wir hier eingeben, was wir wollen: Die
printf ()-Anweisung in Zeile 13 gibt immer den Wert 2.0 aus, obwohl die
Funktion scanf () die Adresse der zu manipulierenden Variablen entgegen-
nimmt.

Die Ursache hierfiir, dass bei Aufruf der Funktion einlesen() in Zeile
12 eben nicht die Variable zahl selbst, sondern ein Duplikat iibergeben wird.
Diese Kopie hat ihre eigene Speicherposition und an diese leitet die scanf ()-
Anweisung den Wert weiter: Der eingegebene Zahlenwert landet buchstéblich
an der falschen Adresse. O

108 4 Zeiger und ihre Anwendungen

Diese Probleme sind beseitigt, wenn wir den Kopiermechanismus bei der Ar-
gumentiibergabe ,iberlisten*: Statt der zu bearbeitenden Variablen iibergeben
wir der Funktion die Adressen dieser Variablen als Argumente.

Beim Funktionsaufruf Call by Reference werden Zeiger auf Datenob-
Jjekte als Argumente tibergeben.

Im Funktionsrumpf werden die zugehdrigen Variableninhalte z.B.
durch Anwendung des Inhaltsoperators manipuliert. Diese Anderun-
gen bleiben daher auch nach Beendigung der Funktion wirksam.

Wir miissen nur sehr wenig an unserem Programm in Beispiel 4.2 &ndern,
damit es das Gewlinschte tut:

Beispiel 4.3 (Funktion zum Einlesen von Werten). Wir realisieren die
Einlesefunktion durch Call by Reference:

1 #include <stdio.h>

2

3 void einlesen(float *x)

4 A

5 printf ("Eingabe float-Zahl:");
6 scanf ("%f", x);

7}

8

9 int main()

10 {

11 float zahl = 2.0;

12 einlesen(&zahl) ;

13 printf ("’zahl’ hat Wert %f\n", zahl);
14 return O;

15 }

Zeile 8: Das Argument ist jetzt ein Zeiger auf float.

Zeile 6: Da Zeiger ja bereits Adressen entsprechen, muss der Adressoperator
& im Aufruf von scanf () weggelassen werden.

Zeile 12: Statt eigens eine Zeigervariable zu deklarieren, iibergeben wir einen
Zeiger auf die Variable zahl mit Hilfe des Adressoperators. Das ist voll-
kommen analog zur Verwendung von scanf (). a

Jetzt ist auch klar, wie man ein Unterprogramm zum Vertauschen zweier
Variableninhalte mit Hilfe von Call by Reference implementiert:

Beispiel 4.4 (Vertauschen von Variableninhalten).

1 void swap(int *a, int *b)
2 {

3 int hilf;

4 hilf = xa;

4.3 Zeiger und Felder: Zeigerarithmetik 109

*xa = *b;
*b hilf;

~N O o

Wir iibergeben der Funktion Zeiger auf die beteiligten Variablen und ver-
wenden den Inhaltsoperator *, um die Werte zu tauschen. Im Hauptprogramm
rufen wir die Funktion swap() mit Hilfe des Adressoperators auf:

1 int main()

2 {

3 int x=1, y=2;

4 printf("x = %d , y = %d\n", x, y);
5 swap (&x, &y);

6 printf("x = %d , y = %d\n", x, y);
7 return O;

8 %

a

Wir fassen zusammen: Durch Call by Reference sind wir in der Lage, Varia-
blen des Hauptprogramms mit Hilfe von Funktionen zu manipulieren. Diese
Art der Argumentiibergabe ermoglicht offensichtlich mehr Kontrolle dariiber,
welche Funktion was mit welcher Variablen anstellt, als etwa die Verwendung
globaler Variablen. In diesem Zusammenhang bietet es sich an, unter diesen
Gesichtspunkten Beispiel 3.5 noch einmal anzuschauen.

4.3 Zeiger und Felder: Zeigerarithmetik

Wie das folgende Beispiel zeigt, ist fiir den C-Compiler der Inhalt einer Zei-
gervariablen zunichst einmal eine vorzeichenlose ganzzahlige Grofse.

Beispiel 4.5 (Feldnamen und -adressen). Ein Feld der Linge 3 wird mit
Eintrégen vom Typ unsigned belegt. Anschliefend lassen wir uns die erste
Feldkomponente und die Adresse der ersten Feldkomponente anzeigen. Wir
gehen sogar noch weiter und lassen uns ganz formal den Feldnamen sowie die
»Adresse des Feldnamens® als positive ganze Zahl ausgeben:

1 #include <stdio.h>

2

3 int main()

4 A

5 unsigned feld[]={2, 4, 6};

6

7 printf ("feld[0] : %u\n", feld[0]);

8 printf ("Adresse feld[0]: %p\n", &(feld[0]));
9 printf ("feld : %p\n", feld);

110 4 Zeiger und ihre Anwendungen

10 printf("Adresse feld : Yp\n", &feld);
11

12 return O;

13 %}

Zeilen 8-10: Zur Ausgabe von Adressen ist der Formatbezeichner %p vorge-
sehen. Man kann in Abhangigkeit von der Architektur auch %u bzw. %1u
(fiir unsigned long) wihlen und die printf () zu einer Typkonversion
bei der Ausgabe benutzen.

Eine mogliche Bildschirmausgabe des Programms sieht so aus:

feld[0] 1 2

Adresse feld[0]: Oxbfffdc70
feld : Oxbfffdc70
Adresse feld : Oxbfffdc70

Wie man sieht, sorgt die Formatangabe %p dafiir, dass die Adressen in Hexade-
zimaldarstellung ausgegeben werden. Das Verbliiffende an den beiden letzten
Ausgabezeilen ist, dass beide Zahlenwerte mit der Adresse der ersten Feld-
komponente iibereinstimmen.]

Das Beispiel hat folgendes illustriert:

Der Name eines Feldes ist zugleich ein konstanter Zeiger auf das erste
Feldelement.

Wenn wir uns nun einerseits ein Feld so vorstellen, dass die einzelnen Kom-
ponenten hintereinander im Speicher abgelegt werden und andererseits Spei-
cheradressen als ganze Zahlen aufgefasst werden konnen, so stellt sich uns
die Frage: Ist moglich, sich durch das Feld zu bewegen, indem man geeignete
ganzzahlige Werte zur Adresse des Feldanfangs addiert?

Zur Beantwortung dieser Frage vergleichen wir den Zugriff auf Feldelemen-
te {iber die Indizes mit dem Zugriff iber Zeiger und Inhaltsoperator.

Beispiel 4.6 (Zeigerarithmetik).

1 #include <stdio.h>

2

3 int main()

4 A

5 float al[]={1.1f, 2.2f, 3.3f};

6 float *zgr;

7

8 printf (" al2] = %f\n", al2]);
9 printf (" *(at+2) = %f\n", *(a+2));
10

11 Zgr = a;

4.3 Zeiger und Felder: Zeigerarithmetik 111

12 printf (" xzgr = Jf\n", *zgr);

13 printf (" (zgr++) = %f\n", *(zgr++));
14 printf (" xzgr = Jf\n", *zgr);

15 printf ("« (++zgr) = %f\n", *(++zgr));
16

17 return 0;

18 }

Die Ausgabe des Programms sieht folgendermafsen aus:

a[2] = 3.300000

*(a+2) = 3.300000
*zgr = 1.100000
*(zgr++) = 1.100000
*xzgr = 2.200000
*(++zgr) = 3.300000

Zeile 9: Wie man an der Bildschirmausgabe erkennt, kann man auf die Kom-
ponente mit Index 2 auch zugreifen, indem man zum Zeiger auf den Feld-
anfang 2 addiert und den Inhaltsoperator anwendet.

Man beachte, dass der Compiler aus dem zu Grunde liegenden Datentyp
ableitet, um wieviel Bytes er sich im Speicher weiter bewegen muss, wenn
man den Zeiger um 2 erhoht.

Zeile 11: Wir verwenden die Tatsache, dass der Feldbezeichner ein Zeiger auf
die erste Komponente ist; die Zuweisung ist damit syntaktisch korrekt. Die
anschliefende Ausgabe des Speicherinhalts bestétigt dies noch einmal.

Zeile 13: Die Anwendung des Inkrementoperators in der Suffixversion in Ver-
bindung mit dem Inhaltsoperator fiihrt erst die Dereferenzierung durch
und bewegt erst dann den Zeiger um eine Position weiter.

Zeile 15: Die Préfixvariante des Inkrementoperators in Verbindung mit dem
Inhaltsoperator bewegt zuerst den Zeiger um eine Position weiter und
greift erst anschliefend auf den Speicherinhalt zu.

An dieser Stelle wollen wir noch auf folgendes hinweisen:

e Die Klammerung in Zeile 9 ist notwendig, da der unire Inhaltsoperator
Vorrang vor dem bindren Additionsoperator hat.

e In den Zeilen 13 und 15 hétte man die Klammerung auch weglassen kon-
nen, da der Compiler die Rangfolge daraus ableitet, ob Inkrement bzw.
Dekrement in der Pra- oder Suffixform vorliegt.

Entscheidend ist allerdings, dass sich die Inkrementierung bzw. De-
krementierung stets auf den Zeiger und nicht auf den dereferenzier-
ten Inhalt bezieht!

o Im Gegensatz zu Anweisungen wie a+2 verédndern Inkrementierung und
Dekrementierung den Zeiger dauerhaft.

112 4 Zeiger und ihre Anwendungen

Datentyp * Z = Z+0

Z+i = &(Z[i])

Datentyp zfol , z[11 , z[21 , ..., Z[i]l , » Z[n-1]

*(Z+1)

Abb. 4.1. Zeiger Z zum Adressieren der Elemente eines Feldes (Vektors).

e Der Feldbezeichner ist ein konstanter Zeiger auf das mit 0 indizierte Feld-
element. Deshalb werden Manipulationsversuche wie z.B. a++ oder Zuwei-
sung von Adressen an a scheitern. O

Fiir ein Feld Z mit Eintragen beliebigen Datentyps sind
Z, &Z, &(Z[01), Z+0

jeweils Zeiger auf das erste Feldelement. Feldeintrige konnen iiber Indizes
(z[1]) oder durch Zeigerarithmetik iiber den Inhaltsoperator (*(Z+1)) ange-
sprochen werden. Entsprechend kann man die Adresse einer Feldkomponente
in dquivalenter Weise durch &(Z[1]) oder Z+i auslesen (sieche Abb. 4.1). Diese
Aquivalenz ist fiir die dynamische Speicherverwaltung in C von einiger Bedeu-
tung. Wir kommen im néchsten Abschnitt wieder darauf zuriick.

Eine weitere wichtige Folgerung aus unseren Betrachtungen in diesem Ab-
schnitt ist, dass es zur Manipulation von Feldkomponenten durch eine Funk-
tion vollkommen ausreicht, den Feldbezeichner als Argument zu iibergeben.
Da dieser gleichzeitig ein Zeiger ist, handelt es sich bei einem solchen Funkti-
onsaufruf automatisch um Call by Reference.

Beispiel 4.7 (Einlesen eines Feldes). Die folgende Funktion verwendet
Zeigerarithmetik, um ein Feld mit Werten zu belegen:

void lies_vektor(float f[], int N)

{
int i;
for(i=0; i<N; i++)
scanf ("%4f", £+i);
}

Im einem entsprechenden Hauptprogramm werden Feldbezeichner und Feld-
lange als Argumente libergeben, z.B. fiir float feld[50]:

4.4 Dynamische Speicherverwaltung 113

lies_vektor(feld, 50);

Die Funktion l&sst sich recht flexibel einsetzen: Angenommen, das Feld muss
nicht vollstindig mit Werten belegt werden, sondern nur bis zu einem Index
n < 50, der vom Benutzer einzugeben ist. Dann leistet der Aufruf

lies_vektor(feld, n);

das Gewiinschte. Sollen danach noch die k nachfolgenden Feldelemente belegt
werden, so verwendet man einfach die folgende Anweisung:

lies_vektor(feld+n, k);

4.4 Dynamische Speicherverwaltung

Bisher wurde die Grofe von Feldern bereits bei der Deklaration angegeben,
z.B. mittels float xvec[100];

Man konnte auf die Idee kommen, Felder pauschal mit einer maximal in Fra-
ge kommenden Grofe zu deklarieren, unabhingig vom tatsichlichen Bedarf.
Diese Strategie, die in Beispiel 4.7 angedeutet wurde, findet man zwar gele-
gentlich (noch) in der Praxis, sie ist aber aus zwei offensichtlichen Griinden
nicht zu empfehlen:

e Sie fiihrt in den meisten Fillen zu einem unnétig verschwenderischen Um-
gang mit dem verfiigharen Speicher.

e Die Obergrenze wird vom Programmierer mehr oder weniger willkiirlich,
und nicht durch die tatsdchlich verfiigharen Resourcen festgelegt. Wenn
heute eine Obergrenze von z.B. 10000 als ausreichend angesehen wird, so
ist nicht garantiert, dass dies fiir kiinftige Anwendungen noch ausreichend
ist. Sollte diese Grenze nicht mehr ausreichen, so muss das Programm im-
mer wieder an allen hiervon betroffenen Stellen gedndert und neu iibersetzt
werden.

In diesem Abschnitt zeigen wir, wie man mit Bibliotheksfunktionen und dem
bereits Erlernten dynamisch Felder erzeugen, manipulieren und auch wieder
freigeben kann.

Als Anwendung fiihren wir vor, wie man Vektoren und Matrizen implemen-
tiert, ohne verschwenderisch mit dem Speicher umzugehen.

Zunichst gehen wir noch kurz auf die Bestimmung der Gréfse eines Datenob-
jekts ein. Man kann die sizeof-Anweisung auf folgende Arten benutzen:

e size_t sizeof (Datentyp) ;
Diese in <stdlib.h> deklarierte Funktion liefert die Grofe von Datentyp in
Bytes zuriick. Der Riickgabetyp size_t ist ganzzahlig, vorzeichenlos und
eigens filir die Grofenangabe von Datentypen und -objekten vorgesehen.

114

4 Zeiger und ihre Anwendungen

e size_t sizeof Datenobjekt;
In der Variante als unirer Operator kann das Datenobjekt eine konkrete
Variable, ein Feld (mit fest vorgegebener Lénge) oder eine Struktur (siehe
Kapitel 8) sein.

Dynamische Speicherverwaltung wird in C folgendermafien realisiert:

1. Man deklariert eine Zeigervariable des gewiinschten Typs, mit der ein
Speicherbereich im Programm angesprochen werden soll.
2. Man fordert vom System einen Speicherbereich in der benotigten Grofe

ar.

3. Bei Erfolg wird per Zuweisung dafiir gesorgt, dass der Zeiger auf den
Anfang dieses Speicherbereichs zeigt.

Es gibt vier Bibliotheksfunktionen zur dynamischen Speicherverwaltung, die
wir im Folgenden vorstellen werden. Alle diese Funktionen gehdren zur Stan-
dardbibliothek von C. Dem Programm muss daher die Praprozessoranweisung

#include <stdlib.h>

hinzugefiigt werden. Ein in diesem Zusammenhang wichtiges Objekt ist der so
genannte Nullzeiger (engl. null pointer) NULL, der als Zeiger auf einen nicht
existierenden Speicherbereich aufgefasst werden kann.

1. malloc() - Reservieren eines Speicherbereichs

void* malloc(size_t groesse);

fordert vom Betriebssystem einen Speicherbereich von groesse Bytes an.

Ist diese Anfrage erfolgreich, so gibt die Funktion einen Zeiger vom
Typ void * auf diesen Speicherbereich zuriick.

Schligt die Anforderung fehl, so wird der vordefinierte Zeigerwert NULL
zuriickgeliefert. Eine Zeigervariable mit Wert NULL referenziert sozu-
sagen einen nicht existierenden Speicherbereich, daher sollte man bei
Speicheranforderungen das zuriickgelieferte Resultat immer auf den
Wert NULL hin iiberpriifen, da das Programm sonst in seinem weiteren
Verlauf unkontrollierbar werden bzw. abstiirzen kann.

Der reservierte Speicherbereich ist mit zufilligen Werten gefiillt. Da-
mit man den Bereich nutzen kann, muss beim Aufruf von malloc()
der Riickgabewert vom Typ void* in den gewiinschten Datentyp mit
einem Cast umgewandelt werden.

Ein Beispiel hierzu: Um Speicher fiir 100 Datenobjekte vom Typ float zu
reservieren, und den Beginn des betreffenden Bereichs iiber den Bezeichner
xvec ansprechen zu kénnen, geht man folgendermafien vor:

float *xvec;

xvec = (float *) malloc(100 * sizeof(float));

4.4 Dynamische Speicherverwaltung 115

Wie wir wissen, kann man bei Erfolg mit xvec[0] bis xvec[99] auf den
reservierten Speicherbereich zugreifen.
2. calloc() - Reservieren und Initialisieren eines Speicherbereichs

void* calloc(size_t anzahl, size_t groesse);

verhélt sich dhnlich wie malloc(), beim Aufruf wird aber nicht direkt die
Grofe des Speicherbereichs angegeben, sondern die Anzahl der Datenob-
jekte plus die Grofe eines einzelnen Datenobjekts.
Im Gegensatz zu malloc() wird der Speicherbereich mit Nullen initiali-
siert.

3. free() - Freigeben eines Speicherbereichs

void free(void *zeiger);

gibt den Speicherbereich, auf den zeiger zeigt, wieder frei.

e Die Variable zeiger muss dabei auf einen durch malloc()- oder
calloc() erhaltenen Speicherbereich zeigen. Ist zeiger der NULL-
Zeiger, so kehrt free () umgehend zum aufrufenden Programm zuriick.

e Das System kann danach wieder liber den Speicher verfligen. Aus-
driicke wie zeiger[0] oder *zeiger sind jetzt nicht mehr definiert
und fithren in der Regel zu einem Absturz des Programms.

e Zu jedem malloc() bzw. calloc() sollte eine free-Anweisung exi-
stieremn.

4. realloc() - Wiederanfordern eines Speicherbereichs

void *realloc(void *zeiger, size_t groesse);

andert die Grofe des Speicherbereichs, auf den zeiger zeigt, auf groesse

Bytes.

e Bis zum Minimum aus alter und neuer Speicherbereichsgrofie bleibt
der Speicherinhalt unveréndert. Neu hinzukommender Speicher wird
nicht initialisiert.

e Ist zeiger der NULL-Zeiger, so ist die realloc()-Anweisung dquiva-
lent zur malloc ()-Anweisung.

e Ansonsten muss zeiger durch eine vorangegangene malloc()- bzw.
calloc()-Anweisung erzeugt worden sein.

e Ist groesse gleich 0, so ist die realloc()-Anweisung dquivalent zur
free()-Anweisung.

e Der zuriickgelieferte Zeiger zeigt auf den neu angeforderten Speicher-
bereich. Auch realloc() liefert den NULL-Zeiger zuriick, wenn die An-
forderung fehlgeschlagen ist.

Anmerkung. Man kann bei aufeinanderfolgenden Aufrufen von malloc() bzw.
calloc() nicht davon ausgehen, dass die angefordeten Speicherbereiche im Speicher
hintereinander angeordnet sind.

116 4 Zeiger und ihre Anwendungen

Bemerkung 4.8. Wie alle Variablen bleiben auch die angeforderten Speicher-
bereiche (hochstens) wihrend der Laufzeit des Programms reserviert. Wird
ein Speicherbereich schon wihrend der Laufzeit nicht mehr bendtigt, so sollte
er im Sinne einer speichereffizienten Programmierung mit Hilfe von free()
wieder freigegeben werden.

Bei der Reservierung konnen die mittels sizeof ermittelten Grofsen na-
tiirlich explizit angegeben werden, z.B. kann man auf vielen 32-Bit-Rechnern
die Anweisung

fp = (float *) malloc(100%4)

durch

fp = (float *) malloc(100*sizeof (float))

ersetzen, wenn float-Datenobjekte 4 Bytes lang sind. Da die Gréfie des Da-
tentyps float aber von der Architektur des verwendeten Rechners abhingt,
wird das Programm portabler, wenn man die zweite Moglichkeit wahlt.

Im folgenden etwas ausfiihrlicheren Beispiel werden die oben vorgestellten
Bibliotheksfunktionen zur dynamischen Speicherverwaltung vorgefiihrt. Dabei
beachte man, dass die Prozedur zeige_vektor () das %e-Format zur Ausgabe
von double-Variablen verwendet. Oft kénnen nur so die nicht initialisierten
Speicherbereiche von den mit 0 initialisierten unterschieden werden.

/* Praeprozessordirektiven */
#include <stdio.h>
#include <stdlib.h>

/* Funktionsdeklarationen */
void zeige_vektor(double v[], int dim);

W N O O W N

/* HAUPTPROGRAMM */

int main()

10 {

11 int N; /* Feldlaenge */

12 double *feld; /* mit calloc() erzeugt */
13 double *neu; /* fuer realloc() */

14

15 printf ("Feldlaenge: ");

16 scanf ("%i", &N);

17

18 feld = (double *) calloc(N, sizeof (double));
19 if (NULL == feld)

20 {

21 printf ("Zu wenig freier Speicher.\n");
22 return 1;

Vo]

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

4.4 Dynamische Speicherverwaltung

/* feld zur Ueberpruefung ausgeben */
zeige_vektor(feld, N);

/* Mit Werten belegen x/

int i;

for (i=0; i<N; i+=2) feld[i]l= +1.0;
for (i=1; i<N; i+=2) feld[il= -1.0;

/* ... und wieder ausgeben */
zeige_vektor (feld, N);

/* zwel weitere Eintraege anfuegen */

neu = (double *) realloc(feld, (N+2)*sizeof (double));

if (NULL == neu)

{
printf ("Zu wenig freier Speicher.\n");
free(feld);
return 1;

}

/* erweitertes Feld angeben ... */

zeige_vektor (neu, N+2);

/* ... wieder mit Werten belegen */
for (i=0; i<N+2; i+=2) neulil= -1.0;
for (i=1; i<N+2; i+=2) neulil= +1.0;

/* ... und wieder ausgeben */
zeige_vektor(neu, N+2);
free(neu);

free(feld);

return 0O;

/* Funktionsdefinitionen */
void zeige_vektor(double v[], int dim)

{

int i;
printf("(");
for (i=0; i<dim; i++)

117

118 4 Zeiger und ihre Anwendungen

67 {

68 printf ("%e", v[il]);

69 if (i<dim-1) printf(" , ");
70 }

71 printf(")\n ");

72 %}

Man beachte die Zeilen 89—44: Wenn die Anforderung von weiterem Spei-
cher fehlschligt, geben wir auch den bereits unter feld erfolgreich reservierten
Speicherbereich frei.

Bemerkung 4.9. Man beachte die Deklaration in Zeile 6 so wie die Defini-
tion in Zeile 60:

void zeige_vektor(double v[], int dim);
ist Aquivalent zu
void zeige_vektor(double *v, int dim);

Die erste Deklaration ist allerdings von der Bedeutung her besser zu inter-
pretieren und zu verstehen, da man es wirklich mit einem Feld und nicht mit
einem beliebigen Zeiger zu tun hat.

4.5 Dynamische Implementierung von Matrizen

Die Funktionen zur dynamischen Speicherverwaltung fordern vom Betriebs-
system Speicherbereiche in Form eindimensionaler Felder an. Matrizen sind
aber zweidimensionale Gebilde und es stellt sich die Frage, wie man ihre Im-
plementierung dynamisch gestalten kann. Das ist wiinschenswert, da dann die
Anzahl der Zeilen und Spalten Parameter sind, die erst zur Laufzeit festgelegt
werden. Die Angabe fester Werte fiir diese Matrixdimensionen im Quellcode
entfillt und das Programm wird flexibler.

4.5.1 Implementierung iiber Doppelzeiger

Auch bei zweidimensionalen Feldern kann die Zeigereigenschaft des Feldna-
mens zur Adressierung von Feldkomponenten verwendet werden. In diesem
Fall ist der Feldname ein Doppelzeiger. Als ein Zeiger auf einen Zeiger spei-
chert er die Adresse einer Zeigervariablen. Die Deklaration eines Doppelzeigers
hat die folgende Struktur:

Datentyp **Variablenname;

Fiir eine Matrix P € R™*" die mit Gleitpunktzahlen doppelter Genauigkeit
realisiert werden soll, hiefse das

double **P;

4.5 Dynamische Implementierung von Matrizen 119

Datentyp ** Datentyp * Datentyp
p |—— | pro1 |—[PlOI[0O] , PIOI[1] , , P[0][n-1]]
P[1]1 |- [PO1I[0] , POAIO4] , , P[11[n-1] |

*(P+1)+j
*(P+i) = | P[i] |— [PEIC0] , .., PEIL] , .., PLil[n-1]]

I

*(x (P+1)+3)

Plm-1] |— | PIm-11001 , , PIm-11[n-1] |

Abb. 4.2. Doppelzeiger P zum Adressieren der Elemente einer Matrix.

Der Zeiger P zeigt auf die erste Komponente eines Feldes, dessen Eintrige P[]
selbst wieder Zeiger sind. P[i] zeigt auf die i-te Zeile, genauer: der Zeiger
P[i] zeigt auf die erste Komponente P[i] [0] des Feldes mit den Eintrégen
der i-ten Zeile. Der Zugriff auf die i-te Zeile und j-te Spalte von P erfolgt dann
einfach mittels P[i] [j]. Die Organisation des Speichers entspricht der in Abb.
4.2 gezeigten Situation. Natiirlich sollte auch hier jeweils {iberpriift werden, ob
die Reservierung erfolgreich war oder das Programm ggf. abgebrochen werden
muss.

Beispiel 4.10 (Speicheranforderung fiir eine m x n-Matrix).

Um dieses Konzept besser zu verstehen, zeigen wir, wie man eine Matrix
im Speicher anlegt. Die analoge Freigabe des Speichers ist Gegenstand von
Aufgabe 4.4 und sollte auf jeden Fall bearbeitet werden.

Die folgende Funktion reserviert den Speicherbereich fiir eine Matrix mit m
Zeilen, n Spalten und ganzzahligen Eintriagen:

1 int ** erzeuge_int_matrix(int m, int n)

2 {

3 int **x matrix;

4 int i

5 matrix = (int**) malloc(m * sizeof (intx*));

120

O 00 N o

10
11
12
13
14
15
16
17
18
19
20

4 Zeiger und ihre Anwendungen
if (matrix == NULL) return NULL;
for (i=0; i<m; i++)
{
matrix[i] = (int*) malloc(n * sizeof(int));
if (matrix[i] == NULL) {
int j;
for (j=0; j<i; ++j)
free(matrix[j]);
free(matrix) ;
return NULL;
}
}
return matrix;
}

Zuerst wird in Zeile 5 ein Feld matrix der Grofse m von int-Zeigern ange-
legt. Dies sind die Zeiger auf die jeweiligen Zeilen.

Die for-Schleife ab Zeile 8 legt in jedem Durchlauf eine Zeile der Matrix
an.

Schlagt die Speicheranforderung in Zeile 10 jedoch fehl, so miissen wir
den gesamten in der Funktion bereits reservierten Speicher wieder freige-
ben (Zeilen 12-15). Damit werden so genannte Speicherleichen vermieden
(sieche Abschnitt 4.6).

Der Riickgabewert NULL in den Zeilen 6 und 16 hat die gleiche Bedeutung
wie bei den bereits bekannten Bibliotheksfunktionen. Er signalisiert ein
Fehlschlagen der Speicheranforderung. a

Fiir weitere Beispiele zum Umgang mit dieser Datenstruktur verweisen wir
auf die Ubungsaufgaben.

4.5.2 Implementierung durch Indextransformation

Im

folgenden beschreiben wir eine andere verbreitete Vorgehensweise, um Ma-

trizen variabler Grofe in C umzusetzen.

Die Grundidee dabei, ist, die Matrix A € R™*"™ Spalte fiir Spalte im Speicher
abzulegen. Beginnt man die Indizierung wie in C iiblich mit 0, so legt man
zuerst ag,o bis am—1,0, dann ag 1 bis @,—1,1, bis hin zur letzten Spalte, d.h.
@0,n—1 biS @—1,n—1, im Speicher nacheinander ab.

Man kann die zweidimensionalen Indizes wie folgt auf eine Dimension ab-

bilden:

¢:{0,...,m—1} x{0,...,n—1} — {0,...,mn—1},
(i,j) —i+jm.

4.5 Dynamische Implementierung von Matrizen 121
Es handelt sich um eine Bijektion, die durch
o ')=(mod m,l=+m)

invertiert werden kann. Dabei steht + fiir die ganzzahlige Division.

Diese Vorgehensweise wird spéter wichtig, wenn wir FORTRAN-Funktionen
von C aus aufrufen wollen, denn die hier beschriebene Vorgehensweise der
spaltenweisen Ablage entspricht genau der internen Darstellung von Matrizen
in FORTRAN. In C kénnte man die Matrix auch zeilenweise im Feld ablegen.
Diese Methode kommt ohne die etwas umstindlich erscheinenden Doppelzei-
ger aus, fiihrt aber zu schlechter lesbarem Code. So kénnte man die Multipli-
kation einer Matrix mit einem Vektor, d.h.

n—1
yi:(A.’E)i:ZaijSUj7 1=0,....m—1,
7=0

wie folgt implementieren:

1 /* m x n-Matrix mal Vektor, ergebnis unter y */
2 void produkt (int m, int n, float A[], float x[],

3 float y[1)

4 A

5 float sum;

6 int i, js

7

8 for (i=0; i<m; i++)

9 {

10 sum = 0.0f;

11 for (j=0; j<mn; ++j)
12 sum += A[i+j*m] * x[j];
13 y[i] = sum;

14 }

15 }

In Zeile 12 wird, wie oben beschrieben, auf die i-te Zeile und j-te Spalte
der Matrix zugegriffen.
Diese Vorgehensweise hat aber die folgenden Nachteile

e Der Zugriff auf die Elemente der Matrix ist schlechter zu lesen. Spalten-
und Zeilenindizes sind schnell verwechselt und man macht beim Program-
mieren eher Fehler.

e Einige Operationen, wie das Tauschen oder Lischen von Zeilen, fiihren
bei der zweiten Vorgehensweise dazu, dass viele Daten im Speicher bewegt
werden miissen. Bei der Verwendung von Doppelzeigern hingegen miissen
diese Operationen nur auf Zeigern durchgefiihrt werden. Der Tausch zweier

122 4 Zeiger und ihre Anwendungen

Zeilen einer Matrix hat dann eine konstante Laufzeit. Benutzt man die
alternative Vorgehensweise, so ist die Laufzeit proportional zur Anzahl
der Spalten.

Ein vergleichsweise geringer Nachteil der Methode mit den Doppelzeigern ist
der etwas grofsere Speicherbedarf fiir die Zeiger, welche auf die Zeilen zeigen.
Manchmal muss man trotzdem die Methode der Indextransformation benut-
zen, denn viele Bibliotheken fiir numerische Anwendungen stellen geschwindig-
keitsoptimierte Funktionen zur Verfligung, welche diese Art der Speicherung
voraussetzen.

4.6 Typische Fehlerquellen

Der Einsatz von Zeigern kann durchaus zu schwer lokalisierbaren Fehlern fiih-
ren. Diese zeigen sich oft erst wihrend der Ausfiihrung eines Programms, und
sind nicht immer reproduzierbar.

Wendet man den Inhaltsoperator * auf einen ,ungiiltigen* Zeiger an, so ist das
weitere Laufzeitverhalten des Programms nicht mehr vorhersehbar. Hiufig be-
merkt man dies erst, wenn das Programm abstiirzt, eine unter LINUX /UNIX
typische Fehlermeldung des Systems lautet dann "segmentation fault”. Das
Programm lduft unter Umsténden aber auch einfach weiter, liefert aber am
Ende fehlerhafte Resultate.

Es gibt verschiedene Szenarien, wie ein ungiiltiger Zeiger zustande kommen
kann:

e Wir iiberschreiten den durch malloc() reservierten Speicherbereich:

float *f = (float *) malloc(10*sizeof(float));
£[10] = 2.0f;

Dies ist ein sehr hdufiger Fehler, der uns schon bei den statischen Feldern
in Kapitel 2 begegnet ist: Da die Indizierung der Feldkomponenten bei 0
beginnt, sind lediglich Zugriffe auf die Werte in £[0] bis £[9] definiert.
Der Zugriff auf £[10] fithrt zu unvorhersehbarem Verhalten.

e Wie wir gesehen haben, sind Feldnamen nichts anderes als konstante Zeiger
auf den ersten Eintrag des Feldes (also den mit Index 0). Zwischen den
Deklarationen

float f1[10];
float *f2;

gibt es aber einen wichtigen Unterschied: £1 zeigt auf ein im Speicher
angelegtes Feld der Grofe 10, £2 ist lediglich ein nicht initialisierter Zeiger.
Die Anweisungen

f£1[0] = 1.0:
£2[0] = 1.0;

4.6 Typische Fehlerquellen 123

setzen zuerst den ersten Eintrag von £1 auf den Wert 1.0, die folgende
Anweisung schreibt jedoch in eine beliebige unbekannte Speicherzelle.

e Es wird vergessen, den Riickgabewert von malloc(), calloc() bzw.
realloc() zu priifen. Wie bereits erwahnt, liefern diese Bibliotheksfunk-
tionen den Wert NULL zuriick, falls das System den angeforderten Spei-
cherplatz nicht zur Verfiigung stellen kann.

Das kann ganz einfach auf einen Mangel an freiem Speicherplatz zuriickzu-
fiithren sein. Folgendes Programmfragment sollte auf 32-Bit-PCs zu einem
Absturz fiihren:

float *fp = (float *) malloc(1000000000*sizeof (float));
fpl0] = 3.141;

Es wird fiir eine Milliarde Werte vom Typ float Speicher angefordert,
was auf den 32-Bit-Systemen vier Gigabyte Speicher entspricht, welcher
wiederum von dieser Hardware nicht adressiert werden kann. fp erhilt
von der malloc()-Anweisung in diesem Fall den Wert NULL und der im
Beispiel folgende schreibende Zugriff ist undefiniert.

e Nach Freigabe von Speicher mit free() werden Zeiger auf diesen Bereich
ungiiltig. Weiteres Zugreifen fiihrt zu fehlerhaftem Verhalten.

e Dievonmalloc() bzw. calloc() gelieferte Adresse darf wihrend des Pro-
grammablaufs nicht verloren gehen, wie es bei den folgenden Anweisungen
der Fall ist:

float *pl, p2;
pl = (float *) malloc(10*sizeof(float));
pl = &p2;

Hier ist die Freigabe des angeforderten Speichers durch free() nicht mehr
moglich, der urspriingliche Riickgabewert von malloc() ist nicht mehr
bekannt, es ensteht eine Speicherleiche (engl. memory leak).

Fehler dieser Art machen sich bei Programmen oft erst nach langerer Lauf-
zeit bemerkbar: Ein Programm liest eine Benutzereingabe, reserviert Spei-
cher, berechnet ein Ergebnis, vergisst die Freigabe des Speichers und kehrt
zur Benutzereingabe fiir eine neue Rechnung zuriick. Hier sammeln sich
von Durchlauf zu Durchlauf Speicherleichen, und je nach Speicherausbau
des Rechners wird es erst nach einiger Laufzeit zu einem erkennbarem
Fehlverhalten kommen.

Anmerkung. Ein empfehlenswertes und freies Werkzeug zum automatischen
Aufspiiren von memory leaks unter Linux ist valgrind, fiir mehr Informationen
hierzu verweisen wir auf [20].

Eine weitere Fehlerquelle im Zusammenhang mit Funktionen beruht auf dem
Missversténdnis, dass man die Ubergabe durch Call by Reference fiir ,allméch-
tig* hilt. Auch bei der Ubergabe der Adresse eines Datenobjekts hat man es
stets mit einem Duplikat dieser Adresse zu tun. Dadurch kann man zwar den
referenzierten Inhalt dauerhaft &ndern, eine im Funktionsrumpf durchgefiihrte
Manipulation am Wert der betreffenden Zeigervariable besteht aber nur lokal

124 4 Zeiger und ihre Anwendungen

und geht nach Verlassen der Funktion verloren. Call by Reference ist mehr
als nur Call by Value mit Zeigervariablen: Entscheidend ist auch, wie man im
Funktionsrumpf mit den iibergebenen Kopien von Speicheradressen umgeht.
Um diese Tatsache zu verdeutlichen, betrachten wir folgendes Beispiel:

Beispiel 4.11 (Wirkungslose Anderung an Zeigern).

1 #include <stdio.h>

2

3 void manipuliere_zeiger (int *p)

4 A

5 printf ("Funktion: Zeigerinhalt: %d\n", *p);
6 (*p)++;

7 ptt;

8 printf ("Funktion: Adresswert nach Inkrement: %u\n", p);
9 %

10

11 int main()

12 {

13 int a=1;

14 int *zgr;

15

16 zgr = &a;

17 printf ("Hauptprogramm: &a=%u\n", zgr);
18 manipuliere_zeiger(zgr) ;

19 printf ("Hauptprogramm: a=%d\n", a);

20 printf ("Hauptprogramm: &a=%u\n", zgr);
21

22 return O;

23 %}

Die Ausgabe dieses Programms sieht z.B. so aus:

Hauptprogramm: &a=3221216004

Funktion: Zeigerinhalt: 1

Funktion: Adresswert nach Inkrement: 3221216008
Hauptprogramm: a=2

Hauptprogramm: &a=3221216004

Zeilen 8-9: Die Funktion manipuliere_zeiger () gibt den Inhalt ihres Argu-
ments aus und inkrementiert anschliefend sowohl den Wert als auch die
Adresse. Der neue Adresswert wird noch innerhalb der Funktion ausgege-
ben.

Zeile 13: Wir definieren eine int-Variable a mit Wert 1.

Zeile 16: Der in Zeile 14 deklarierte Zeiger auf int wird mit der Adresse von
a belegt.

4.7 Kontrollfragen zu Kapitel 4 125

Zeilen 17 u. 18: Vor Aufruf der Funktion manipuliere_zeiger() wird der in
der Zeigervariablen gespeicherte Adresswert ausgegeben.

Zeile 18: Die von manipuliere_zeiger () veranlasste Ausgabe zeigt, dass der
Adresswert um 4 Bytes erhoht wurde.

Zeilen 19 u. 20: Zum Vergleich erfolgt die Ausgabe der gleichen Daten nach
Beendigung der Funktion. Erwartungsgemif ist der von zgr referenzierte
Inhalt der Variablen a von der Funktion dauerhaft erhéht worden. Der
Adresswert selbst wurde jedoch von der Funktion nicht verdndert. a

4.7 Kontrollfragen zu Kapitel 4

Frage 4.1

Welche der folgenden Deklarationen deklarieren zwei Zeiger?

a) int x*, y*;
b) int* x,y;

) int *x, *y;
) int** x,y;

Ooooo

c
d

Frage 4.2

Sei x vom Typ int * und y vom Typ int. Welche der folgenden Anweisungen kopiert
den Wert, auf den x zeigt, in die Variable y?

a) y = &x; O
b) &y = x; O
c) *y = x; O
d) y = *x; O
e) y = x*; 0O
Frage 4.3

Sei x vom Typ int * und y vom Typ int. Welche der folgenden Anweisungen kopiert
die Adresse des unter y abgelegten Wertes in die Zeigervariable x?7

o]

*

<
Oooooao

126 4 Zeiger und ihre Anwendungen

Frage 4.4

Betrachten Sie die folgende statische Deklaration eines Feldes:
float feld[100];

Welche der folgenden Ausdriicke liefert die Anzahl der Feldelemente zuriick?

a) sizeof feld; O
b) sizeof feld /sizeof(float); ad
c) sizeof(feld) : sizeof(float); O
d) sizeof(feld); ad
e) Keiner dieser 4 Ausdriicke. O
Frage 4.5
Betrachten Sie folgendes Programm:
#include <stdio.h>
void set_value(void *p)
{
*(int *)p = 1;
}
void main()
{
int k=0;
float 1=2.0f;
set_value (&k) ;
set_value(&1);
printf ("%d %f\n", k, 1);
}
Welche Ausgabe wird das Programm erzeugen?
a) 11.0 O
b) 1 2.0 0
c) 0 2.0 O
d) 0 1.0 0
e) Wegen des Casts in der Funktion set_value() wird fiir 1 im Allgemeinen
nicht 1.0 ausgegeben werden. a
Frage 4.6
Es sei a ein initialisiertes Feld. Welcher der folgenden Ausdriicke liefert a[3]7
a) a+3 wegen der Zeigerarithmetik. O
b) Natiirlich *a+3. O
¢) Richtig ist *(a+3). O
d) *a+4, da Feldindizes mit 0 beginnend gezihlt werden. O
e) *(a+4), da Feldindizes mit 0 beginnend gezéhlt werden. O

4.7 Kontrollfragen zu Kapitel 4 127

Frage 4.7
Das Codefragment

int a[] = { 1’2’3’4’5 };
printf ("%i %u\n", sizeof(a), (unsigned int) a);

gibt 20 100 aus. Wo im Speicher liegt der Wert 47

a) 112-116
103
116-119

b)
c)
d) 100-103
)

Oooooag

e) 112-115

Frage 4.8

Zum Speichern einer Matrix werde die Variable double #*A verwendet. Welcher der
folgenden Ausdriicke ist zu A[i] [j] dquivalent?

a) *A[i]+j

b) A[il+]

c) **(A+i+j)
d) *(x(a+i)+3)

Oogooo

Frage 4.9

Sei float **M ein Doppelzeiger, der auf eine Matrix zeigt. Einer der folgenden Aus-
driicke ist dquivalent zu &M[i]1[j]1. Welcher?

a) (M+i)+j

b) *(x(M+i)+j)

c) &Cxx(M+i)+j3)

d) M[il+j

) Keiner der Ausdriicke a) - d).

Oooooag

e

Frage 4.10

Welchen Riickgabewert liefert die malloc ()-Anweisung, wenn die Speicheranforde-
rung scheitert?

a) NULL i
b) void O
c) Der Riickgabewert ist unbestimmt. O

128 4 Zeiger und ihre Anwendungen

Frage 4.11

Es soll Speicher fiir einen Vektor der Lénge n mit Eintrdgen vom Typ float reserviert

werden. Welche der folgenden Anweisungen ist korrekt?

a) vektor = (float) malloc(n*sizeof (float *));
b) (float *) calloc(n,sizeof(float));
c) malloc(vektor,n*sizeof (float));
d)
)

vektor =

calloc((float *) vektor,n, sizeof(float));
Keine dieser 4 Anweisungen.

e

Ooooood

Frage 4.12

Wir legen eine 3 x 4-Matrix unter Zuhilfenahme der Bijektion @ (sieche 4.5.2) in

einem Feld float f£[12] ab. Welche der folgenden Aussagen treffen zu?

a) ¢(1,1)=0 O
b) ¢(0,0) =0 0
c) #(1,1) =4]
d) #(1,1)=5 O
Frage 4.13

Betrachten Sie die folgende Funktion:

void swap_by_ref(int *x, int *y)

{

int *h;

h=x;x=y;5

return;

}

Im Hauptprogramm seien die int-Variablen a und b mit Werten belegt worden.

Welche Wirkung wird durch den Aufruf
swap_by_ref (&a,&b) ;

erzielt?

a) Adressen sowie Werte von a und b sind vertauscht.
) Nur die Werte sind vertauscht, aber nicht die Adressen.
¢) Nur die Adressen sind vertauscht, aber nicht die Werte.
) Weder Adressen noch Werte sind vertauscht.

oooo

4.8 Ubungsaufgaben zu Kapitel 4 129

Frage 4.14

Betrachten Sie die folgende Funktion zur Speicherreservierung fiir double-Felder:

void erzeuge_vektor(double *v, int dim)
{
int i
v = (double *) malloc(dim*sizeof (double));
if (NULL == v)
printf ("Speicheranforderung gescheitert!\n");
else
for(i=0; i<dim; i++)
v[i]=0.0;
}

Im Hauptprogramm die sei die Zeigervariable double *vektor deklariert. Nach Auf-
ruf von

erzeuge_vektor (vektor, 50);

stellt sich aber heraus, dass im Feld keine Nullen, sondern rein zuféllige Zahlenwerte
stehen, obwohl die Funktion kein Scheitern der Speicheranforderung gemeldet hat.
Wie erklédren Sie sich das?

4.8 Ubungsaufgaben zu Kapitel 4

4.1 (Zyklische Vertauschung).
Schreiben Sie eine Funktion, die drei Zahlen entgegennimmt und diese mittels Call
by Reference zyklisch tauscht. D.h. aus (a, b, ¢) wird (c, a,b).

4.2 (2D-Mittelung).

Schreiben Sie eine Funktion, die ein beliebiges zweidimensionales Feld von float-
Werten mit dessen Grofe entgegennimmt und die Summe aller Eintréige, dividiert
durch die Anzahl, zuriickgibt.

4.3 (Funktion zur Speicherreservierung).
Andern Sie die Prozedur in Frage 4.14 so ab, dass sie das Gewiinschte leistet.

4.4 (Matrizen und Vektoren im R").
Implementieren Sie die folgenden Unterprogramme, wobei fiir die Implementierung
von Matrizen Doppelzeiger eingesetzt werden sollen:

a) erzeuge_vektor () zum Reservieren von Speicher fiir einen n-dimensionalen Vek-
tor,

b) erzeuge_matrix() zum Reservieren von Speicher fiir eine m x n-Matrix und
erzeuge_quad_matrix() zum Reservieren von Speicher fiir eine n x n-Matrix,

130 4 Zeiger und ihre Anwendungen

c) free_matrix() und free_quad_matrix(), die den mit den Funktionen aus Teil
b) reservierten Speicher wieder freigeben, ohne Speicherleichen zu erzeugen,

d) matrix_sum() und matrix_prod() zum Addieren und Multiplizieren von n x n-
Matrizen,

e) vektor_sum() und matrix_vektor() zum Addieren von Vektoren aus R™ bzw.
zur Berechnung des Matrix-Vektor-Produkts (wobei m # n mdoglich sein soll),

f) euklid_norm() zur Berechnung der Euklidischen Norm eines Vektors aus R",

g) schlieRlich die Eingabe- und Ausgaberoutinen lies_vektor(), lies_matrix(),
zeige_vektor() und zeige_matrix() fiir Vektoren aus dem R™ bzw. fiir m x n-
Matrizen.

Testen Sie die Subroutinen in einem Hauptprogramm, das das Produkt BAB be-
rechnet, wobei

1234 1000

A— 2341 c RAX4 ’ B— 0010 € R4
3412 0100
4123 0001

Lassen Sie auch das Matrix-Vektor-Produkt Bz mit

berechnen. Dabei bezeichne B die 3 x 4-Matrix, die man aus B durch Weglassen der
letzten Zeile erhélt.

4.5 (Matrixoperationen).
Implementieren Sie fiir beide in Abschnitt 4.5 vorgestellten Moglichkeiten der Dar-
stellung von Matrizen folgende Operationen als Funktionen:

1. Tausch zweier Zeilen,
2. Loschen einer beliebigen Zeile,
3. Hinzufiigen einer beliebigen Zeile.

4.6 (Indextransformation in 3D).

Wie sieht die zu 4.5.2 analoge Bijektion aus, wenn Sie anstelle einer zweidimensiona-
len Matrix ein dreidimensionales Objekt auf einen eindimensionalen Speicherbereich
abbilden mochten? Geben Sie auch die Umkehrabbildung an.

5

Numerisches Zwischenspiel

Wir haben bereits in den Beispielen 1.6 und 1.21 numerische Methoden ken-
nen gelernt. Das Euler-Verfahren und die Approximation der hyperbolischen
Sinusfunktion dienten dazu, brauchbare Niherungen fiir die gesuchten Wer-
te auch in solchen Fillen zu liefern, in denen die Auswertung der exakten
Formeln unmdglich oder numerisch instabil ist. Mit solchen Problemen wird
man hiufig konfrontiert, wenn es bei der Umsetzung von Algorithmen um die
Berechnung konkreter Zahlenwerte geht.

In diesem Abschnitt werden wir sehen, dass unsere bis hierher erworbenen
C-Kenntnisse dazu ausreichen, einfache und niitzliche numerische Computer-
programme zu schreiben. Als Beispiele betrachten wir drei der grundlegend-
sten und héufigsten Aufgabenstellungen in der numerischen Mathematik: Wir
werden

e Nullstellen von Funktionen ndherungsweise berechnen,
e uns mit der Interpolation von Funktionswerten beschéftigen
e und Integrale von Funktionen approximieren.

Dabei kénnen wir die Anwendung der Sprachelemente aus den vorangegange-
nen Kapiteln weiter einiiben und nebenbei ein wenig numerische Mathematik
lernen. Fiir das bessere Verstandnis der Ideen und um die notwendigen ma-
thematischen Vorkenntnisse so gering wie moglich zu halten, beschrénken wir
uns auf die Betrachtung einfacher Fille und Beispiele. Wir mochten den Le-
serinnen und Lesern die Bearbeitung der Aufgaben am Ende des Kapitels
besonders ans Herz legen, denn das Experimentieren mit Programmen hilft
sehr dabei, die Arbeitsweise numerischer Methoden zu verstehen.

Fiir eine allgemeinere Darstellung sowie mathematisch exakte Analysen
der hier vorgestellten Verfahren verweisen wir auf die einfilhrenden Vorlesun-
gen zur Numerik und die entsprechende Literatur (siehe z.B. [2], [13]).

132 5 Numerisches Zwischenspiel
5.1 Nullstellenbestimmung

Es sei [a,b] C R ein Intervall und
f : [aa b] —R

eine Funktion. Das Nullstellenproblem besteht darin, eine Stelle z, € [a, b] zu
berechnen, fiir die gilt:
flxze) =0.
Wir wollen im Folgenden annehmen, dass es mindestens eine solche Nullstelle
im Intervall [a, b] gibt. Fiir manche Funktionen f kann man die Gleichung
leicht durch wenige Aquivalenzumformungen 16sen, aber schon bei der Kur-
vendiskussion recht einfacher Funktionen ist dies nicht mehr mdoglich: Wenn
wir z.B. die Extremstellen der Funktion
g:R—R, g(z)= %sin(Zm) - ém?’
bestimmen wollen, so lduft dies auf die Berechnung der Nullstellen der Ablei-
tung
f(@) = ¢'(z) = cos(2z) — 2
hinaus. An ein Auflésen der Gleichung nach z, ist hier nicht zu denken.

Wir suchen daher nach solchen Verfahren zur Nullstellenbestimmung, die
moglichst wenige einschrédnkende Annahmen {iber die Eigenschaften oder Ge-
stalt der Funktion f beno6tigen. Wir sind bereit, dafiir in Kauf zu nehmen, dass
ein solches Verfahren die Nullstellen nur nidherungsweise berechnet — solange
die N&dherung fiir den jeweiligen Zweck ausreichend gut ist.

Nullstellenbestimmung durch Intervallschachtelung

Nach dem Zwischenwertsatz nimmt eine auf dem Intervall [a, b] stetige Funkti-
on jeden Wert zwischen f(a) und f(b) an. Haben diese beiden Funktionswerte
verschiedene Vorzeichen, so besitzt f mindestens eine Nullstelle . € [a,b].
Diese Tatsache macht man sich bei der Intervallschachtelung zum Auffinden
einer Nullstelle zu Nutze. Dazu gibt man eine Genauigkeitsschranke e > 0 vor
(z.B. e = 1075) und verfihrt wie folgt:

1. Berechne den Mittelpunkt des Intervalls

a+b
2

sowie den Funktionswert f(m).
2. Haben f(a) und f(m) verschiedene Vorzeichen, dann setze

b:=m

andernfalls setze

5.1 Nullstellenbestimmung 133

3. Wiederhole die Schritte 1. und 2., bis die Linge des aktuellen Intervalls
[a, b] kleiner als das vorgegebene € ist. Das zuletzt berechnete m wird dann
als Naherungswert fiir die Nullstelle x, genommen.

In jedem Verfahrensschritt wird also das aktuelle Intervall in der Mitte ge-
teilt und festgestellt, mit welcher der beiden Intervallhélften weiter gemacht
wird. Wir grenzen so durch fortlaufende Intervallhalbierung die Position der
Nullstelle immer genauer ein. Deshalb wird das Verfahren auch Intervallhalbie-
rungsmethode oder Bisektionsverfahren genannt. Die Naherung der Nullstelle
erfolgt durch Wiederholung derselben Vorgehensweise, es handelt sich also
auch hier wieder um ein iteratives Verfahremn.

Man konnte versucht sein, den Fall f(m) = 0 in jedem Schritt zu iiber-
priifen und die Iteration in diesem Fall abzubrechen. Das wire allerdings nur
von theoretischer Bedeutung, da wir ja wissen, dass die Priifung zweier Gleit-
punktzahlen auf Gleichheit eine heikle Angelegenheit ist. Um das zu vermei-
den, kann man die Iteration auch durch die Bedingung |f(m)| < € beenden.
Dieses Kriterium ist aber schlechter als die Uberpriifung der Intervalllinge,
wenn der Graph der Funktion f in einer Umgebung der Nullstelle sehr flach
verlduft. Wir merken uns:

Das Bisektionsverfahren setzt nur voraus, dass die Funktion f stetig
ist. Ein Nachteil der Methode ist, dass sie keine geraden Nullstellen,
also solche ohne Vorzeichenwechsel, finden kann.

Beispiel 5.1 (Bisektionsmethode).

Wir kehren zum eingangs gegebenen Beispiel zuriick und wenden das Bisek-
tionsverfahren auf die Funktion f(z) = cos(2z) — 22 an.

#include <stdio.h>

#include <math.h>

#tdefine EPS 1le-6
double fun(double x)

{

return cos(2%x)-x*x;

© 00 N O O W N =

=
= O

double bisekt(double a, double b)
{

=
w N

double m, fa, fb, fm;
fa=fun(a); fb=fun(b);

= e
o O WD

while(b-a>EPS)
{

=
0 ~

m=(a+b)/2.0;

134

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

5 Numerisches Zwischenspiel
fm = fun(m);
if (faxfm < 0) {
b=m;
fb=fm;
}
else {
a=m;
fa=fm;
}
¥
return m;
}
int main()
{
printf ("Nullstelle ist: %1f\n", bisekt(.0, .8));
}

Hier noch einige Bemerkungen zur Implementierung;:

Man beachte Zeile 4: Hier haben wir mit Hilfe der Préaprozessordirekti-
ve #define ein Makro EPS mit dem Zahlenwert 10~% erzeugt. Auf diese
Weise werden iibrigens auch die Konstanten in Tabelle 3.2 auf Seite 88
in der Headerdatei <math.h> definiert. Von dieser Mo6glichkeit sollte man
nicht zu ausgiebig Gebrauch machen, da Makros keine Variablen sind.
Der Compiler verfiigt also iiber keine Typinformationen, um bei unsach-
gemifsem Umgang mit ihnen zu warnen. Eine robustere Alternative wére
eine schreibgeschiitzte globale Variable const double EPS = 1.0e-6;
Wir haben die Berechnung von f in eine eigene Funktion fun() (Zeilen
6-9) ausgelagert. Durch Anpassen von Zeile 8 kann man so die Nullstellen
anderer Funktionen berechnen, ohne in bisekt () etwas dndern zu miissen.
In Zeile 21 wird auf unterschiedliches Vorzeichen von f(a) und f(m) ge-
testet, indem man das Produkt berechnet.

Wie wir an den Zeilen 23 und 27 sehen, kann man den Funktionswert
f(m) weiter verwenden. Somit braucht man pro Schleifendurchlauf nur
eine Auswertung von f, d.h. einen Aufruf von fun().

Wichtig ist die Wahl der Startwerte in Zeile 85: Durch Skizzieren von
cos(2x) und x? kann man sehen, dass die Nullstelle zwischen 0 und /4
liegen muss. Daher bietet sich die Wahl ¢ = 0.0 und b = 0.8 an.

Das Newton-Verfahren

Die Anzahl der durchzufiihrenden Schritte bei der Intervallhalbierungsmetho-
de hingt nur von der Linge und der Lage des Startintervalls, von der Genau-

5.1 Nullstellenbestimmung 135

Abb. 5.1. Newton-Verfahren zur Bestimmung einer Nullstelle.

igkeitsschranke € und vom Abbruchkriterium ab. Von der Funktion f werden
nicht einmal die Werte selbst verwendet, sondern nur deren Vorzeichen.

Die Anzahl der Iterationen bei der Nullstellenberechnung kann reduziert
werden, wenn das Verfahren mehr Informationen tiber f berticksichtigt. Dazu
betrachtet man statt der Funktion f eine Naherungsfunktion f, deren Null-
stellen exakt und auf einfachere Weise berechnet werden kénnen.

Diese Idee wird beim Newton- Verfahren folgendermafen umgesetzt: Aus-
gehend von einem Startpunkt xg wird die Funktion f durch ihre Tangente im
Punkt (xo, f(x0)) gendhert. Da die Tangente eine Gerade ist, ldsst sich ihre
Nullstelle 21 ohne Weiteres berechnen und wird als eine erste Ndherung fiir
die gesuchte Nullstelle z, betrachtet. Man wiederholt das Verfahren mit x;
als Startpunkt und erhélt so z2 als Nullstelle der Tangente an f im Punkt
(x1, f(x1)) (siehe Abb. 5.1). Auf diese Weise fahrt man fort, bis die Nullstelle
mit der gewiinschten Genauigkeit approximiert ist.

Die mathematische Formulierung dieser Herangehensweise lautet folgen-
dermafien: Die Tangente T'(x) an den Graphen von f im Punkt (zo, f(x0)),
gegeben durch

T(x) = f(xo) + f'(20)(x — x0) ,
besitzt die Nullstelle
f(xo)
f(zo)
Durch Wiederholung dieses Schritts gelangt man zu der folgenden Iterations-
vorschrift fiir das Newton-Verfahren:

f (k)
f'(xr)
Das Newton-Verfahren ist im allgemeinen deutlich schneller als die Intervall-

halbierungsmethode. Zwar muss die Funktion f fiir die Anwendbarkeit diffe-
renzierbar sein und nicht blof stetig, dafiir ist das Newton-Verfahren aber in

r1 = Xo —

Thtl1 = Tk — k=0,1,.... (5.1)

136

der

5 Numerisches Zwischenspiel

Abb. 5.2. Zyklische Punkte bei Verwendung des Newton-Verfahrens.

Lage, auch Nullstellen ohne Vorzeichenwechsel ndherungsweise zu berech-

nen.

Das Newton- Verfahren fiihrt nicht unter allen Umstidnden zum Erfolg.
Besonders entscheidend ist die Wahl des Startwerts x.

Bei der Wahl sind u.a. die folgenden Punkte zu beachten:

a)

b)

Be
1

2
3
4

Damit sich die Iterierten xj mit wachsendem Index k£ auch wirklich der
gesuchten Nullstelle ndhern, muss der Startwert xo bereits hinreichend
nahe bei der Nullstelle liegen (good initial guess).

Das Newton-Verfahren kann instabil werden, wenn man sich bei der Itera-
tion einer kritischen Stelle g mit f'(zg) = 0 und f(zg) # 0 ndhert. In
dieser Umgebung verlduft die Tangente an den Graphen der Funktion f
fast waagerecht und somit wird der Nenner in (5.1) sehr klein.

Bei der Iteration konnen zyklische Stellen erreicht werden, d.h. es existieren
ein p € N und ein Index kg, so dass gilt:

Tgtp = X, fiir alle k> ko .

Solche Effekte konnen z.B. bei Funktionen auftreten, die symmetrisch zu
einem Wendepunkt sind, wie z.B. arctan und die erf-Funktion (sieche Abb.
5.2). Wenn man die Lage dieser Symmetriestelle kennt und auferdem gesi-
chert ist, dass die Ableitung dort nicht verschwindet, dann ist dieser Punkt
eine gute Wahl fiir den Startpunkt xp der Newton-Iterationen.

ispiel 5.2 (Newton-Verfahren fiir f(z) = cos(2z) — 2?).
#include <stdio.h>
#include <math.h>

const double EPS = 1.0e-6;

5.2 Interpolation 137

5

6 double fun(double x)

7 {

8 return cos(2*x)-x*x;

9 }

10

11 double dfun(double x)

12 {

13 return -2.0%(sin(2*x)+x);
14 }

15

16 double newton(double x0)

17 {

18 double xalt;

19 do {

20 xalt = x0;

21 x0 = x0-fun(x0)/dfun(x0);
22 }

23 while (fabs(x0-xalt)>EPS);
24 return x0;

25 %

26

27 int main()

28 {

29 printf ("Nullstelle ist: %1f\n", newton(1.0));
30 }

Im Gegensatz zur Bisektionsmethode in Beispiel 5.1 wird hier in Zeile /
die Genauigkeitsschranke EPS als globale schreibgeschiitzte Variable imple-
mentiert. 0O

5.2 Interpolation

Oft sind von einer Funktion
f : [a7 b} — R

nur ihre Werte an bestimmten Stellen im Intervall bekannt, d.h. man verfiigt
nur iiber N Wertepaare

(.7;1,f1), (x27f2)> s (CUN7fN)7

wobei f; = f(x;) gilt und die Stitzstellen ohne Einschrinkung folgendermafen
nummeriert sind:

138 5 Numerisches Zwischenspiel

a<ri<ra<...<zny <D.
Die folgenden Griinde konnen zu dieser Situation fiihren:

e Die Funktionswerte lassen sich nur flir gewisse Werte von = exakt be-
rechnen oder die Auswertung der Funktion ist so aufwendig, dass man
moglichst darauf verzichten mdéchte.

Die Funktionswerte sind Messergebnisse.

Die Funktionswerte sind Resultat einer Diskretisierung: Der Computer
kann nur mit endlichen Objekten hantieren. Das hat zur Folge, dass wir
Funktionen bei der numerischen Bearbeitung im Programm durch endliche
Wertetabellen darstellen miissen.

Es stellt sich nun die folgende Frage: Welchen Wert soll man der Funktion an
einer Stelle x zuschreiben, die keine Stiitzstelle ist?

Es bietet sich an, ,verniinftige* Naherungswerte fiir f(x) zu verwenden.
Wie beim Newton-Verfahren besteht auch hier die Idee darin, f durch eine
Funktion f zu ersetzen, die ohne grofere Mithe ausgewertet werden kann und
die die folgenden Bedingungen erfiillt:

flzx) = frfiralle k=1,...,N. (5.2)

Liegt die interessierende Stelle x zwischen zwei Stiitzstellen, so spricht man
von einer Interpolationsaufgabe. Liegt x auferhalb des Intervalls [z1,zn], so
liegt, eine Eztrapolationsaufgabe vor, worauf wir hier aber nicht weiter ein-
gehen. Man nennt die Forderungen in (5.2) Interpolationsbedingungen und
eine Funktion f, die diesen Bedingungen geniigt, wird Interpolierende zu f
genannt.

Interpolation durch Konstanten

Bei der einfachsten Interpolationsvariante wihlt man als Naherung fiir f(x)
einfach denjenigen Wert fi, der zu der Stiitzstelle x; gehort, die x am néchsten
liegt. Man interpoliert also durch eine stiickweise konstante Funktion:

f(x) ~ f(x) :fka
wobei fiir den Index k gilt:
|z —zp| < |z —a firallel=1,--- ,N.

Liegt = genau in der Mitte zwischen zwei Stiitzstellen, so wéhlen wir den
groferen der beiden Indizes. Im Englischen nennt man diese Vorgehensweise
auch treffend nearest neighbour-Interpolation. Die so gewonnene interpolieren-
de Funktion f weist Sprungstellen auf, ihr Graph besitzt eine charakteristische
Stufenform (siehe Abb. 5.3).

5.2 Interpolation 139

wf\fm

Ti—1 T4 Tit1 Tit+2

Abb. 5.3. Nearest neighbour-Interpolation. Die Klammer) bedeutet, dass an der
betreffenden Stelle der Wert des rechten Nachbarintervalls genommen wird.

Lineare Interpolation

Man kann sich leicht vorstellen, dass die nearest neighbour-Interpolation nur
brauchbare Ergebnisse liefert, wenn die Werte f; nicht zu weit auseinander
liegen. Wenn dies doch der Fall ist, so verwendet man besser die lineare In-
terpolation.

Bei dieser Methode konstruiert man die interpolierende Funktion, indem
man jeweils zwei benachbarte Punkte (xg, fx), (€g+1, fr+1) durch ein Gera-
denstiick miteinander verbindet. Fiir « € [z, xx41] wihlt man also

f@) ~ f) = ot PRIy (53)
Tk41 — Tk
als Naherungswert. Setzt man
po— TR 0,1],
Tk4+1 — Tk

so lautet die abschnittsweise Definition der Interpolierenden f auf dem Inter-
vall [z1,2y] folgendermafen:

f@) = —t)fr + tfrp fiir © € [2h, 2rp1] - (5.4)

Bei dieser Variante ist der Graph der Interpolierenden f ein Polygonzug, der
durch die Punkte (zy, fi) verlduft (siche Abb. 5.4).

Bei der Interpolation miissen wir zu vorgegebenem x € [x1,x y] den Index
k(x) desjenigen Teilintervalls finden, in dem x liegt. Dazu haben wir mehrere
Moglichkeiten:

1. Man durchlduft nacheinander alle zj, bis zum ersten Mal die Bedingung
x < xy, erfilllt wird. Der gesuchte Index ist dann k(z) = k — 1. Die hierfiir
benotigte Laufzeit ist von der Ordnung O(N), man fiihrt also eine lineare
Suche durch.

140 5 Numerisches Zwischenspiel

Ti—1 Ty Ti+1 Ti+2

Abb. 5.4. Lineare Interpolation einer Funktion f.

2. Da die zy, ihrer Grofe nach aufsteigend sortiert sind, kann man k(x) durch
bindre Suche (siehe Kapitel 9) sogar in nur O(log, N) Schritten bestim-
men.

3. In vielen praktischen Anwendungen bilden die Stiitzstellen eine dquidi-
stante Zerlegung des Intervalls [a,], d.h. es gilt

x —a+(k;—1)b_—“ fir alle k=1,...,N
k= N1 =1,..,N.

Speziell ist in diesem Fall 1 = a und x5 = b. Es gilt offensichtlich

N —

1
g <x<zp<—k—-1< (x—a)<k.

Hieraus erhilt man fiir den gesuchten Index

k(z) = 1+ Hf—al(x—a)J ,

wobei |z] die grofte ganze Zahl bezeichnet, die kleiner oder gleich z ist:
|z] :=max{z € Z : z<z}.

Fiir die Realisierung hiervon ist in <math.h> die Funktion

double floor(double x);
deklariert, die ihr Argument auf den nichstgelegenen ganzzahligen Wert
nach unten abrundet. Im Sonderfall x = x5 muss man natiirlich nicht
die Interpolationsformel (5.3) verwenden, so dass man entsprechend im
Programm darauf reagieren kann.

5.2 Interpolation 141

Beispiel 5.3 (Lineare Interpolation einer Wertetabelle).

1 #include <stdio.h>
2
3 double interpol(int n, double xv[], double yv[], double x)

4 1

5 int k;

6 double t;

7

8 for (k=0; k<n; ++k)

9 if (x<xv[k]) break;

10

11 /* ende des intervalls */

12 if (k==n) return yvl[k];

13 k--3;

14

15 t = (x-xv[k])/(xv[k+1]-xv[k]);

16 return (1-t)*yv[k]+t*yv[k+1];

17 %}

18

19 int main()

20 {

21 double x[]={ 1.0, 2.0, 4.0, 5.0 };

22 double y[1= { 2.0, 3.0, 5.0, 6.0 };

23 printf ("x=%f y=%f\n", 1.0, interpol(4, x, y, 1.0));
24 printf ("x=%f y=%f\n", 1.2, interpol(4, x, y, 1.2));
25 printf ("x=%f y=%f\n", 3.0, interpol(4, x, y, 3.0));
26 printf ("x=%f y=%f\n", 5.0, interpol(4, x, y, 5.0));
27 %

Zeilen 8—17: Die Funktion erwartet von ihren Argumenten, dass die Zahlen in
xv[] und yv[] aufsteigend sortiert sind, dass in xv[] keine Zahlen mehr-
fach vorkommen, und dass xv[0] < x < xv[n-1] gilt. Dass die letztere
Bedingung erfiillt ist, l&sst sich allerdings auch leicht iiberpriifen und die
Funktion kann mit einer entsprechenden Meldung beendet werden, wenn
sich auferhalb des Intervalls befindet. Ferner muss n der gemeinsamen
Lange von xv und yv entsprechen.

Zeilen 8-13: Der Index des Teilintervalls, in dem x liegt, wird durch lineares
Suchen bestimmt. In Zeile 12 wird der Sonderfall x = x behandelt.
Zeilen 15 und 16: Die lineare Interpolation wird nach der Formel (5.4) durch-

gefiihrt.

Zeilen 21-26: Im Hauptprogramm wird die Interpolation getestet. Wegen
y[i] = x[i]+1 lasst sich das Programm durch die printf ()-Anweisungen
leicht auf Fehler {iberpriifen. Das tun wir fiir Teilintervalle verschiedener
Lange und an den Réndern. O

142 5 Numerisches Zwischenspiel

Auf eines wollen wir zum Schluss dieses Abschnitts noch hinweisen: Die
Interpolierende ist nicht unbedingt die beste Ndherung fiir eine Funktion.
Sie zeichnet sich aber dadurch aus, dass sie mit relativ wenig Aufwand zu
berechnen ist.

5.3 Numerische Integration

Bei der Berechnung von Integralen

I[f]=/bf(9f)daj

tritt nicht selten das Problem auf, dass die Auswertung der Stammfunktion
des Integranden aufwendig oder numerisch instabil ist. Fiir manche Integran-
den kann man die Stammfunktion gar nicht explizit angeben, dies ist z.B.
bei

x

erf(z) = % / e de
0

der Fall.

Um diese Schwierigkeiten zu beseitigen, verfolgt man bei der numerischen
Integration, auch (numerische) Quadratur genannt, eine dhnliche Strategie
wie beim Newton-Verfahren und bei der Interpolation: Der Integrand f wird
ersetzt durch eine Funktion f , deren exakter Integralwert leicht und stabil zu
berechnen ist:

1[f] ~ 1[f].
Wegen

b
191~ 117 < [170 - F)| o

ist die Genauigkeit der Approximation des Integralwerts damit verkniipft, wie
gut f die Funktion f ann&hert. Je nach Wahl von f erhilt man unterschied-
liche Quadraturformeln mit individuellen Stérken und Schwichen.

Als konkretes Beispiel fiir f betrachten wir die stiickweise lineare Inter-
polierende zu f aus dem vorangegangenen Abschnitt fiir den einfachsten Fall
N = 2: Wir wihlen 1 = a, 2 = b und verwenden als Nidherung

fo) = o) + DD)
Durch die Substitution
t=2"% dr=(b—a)dt,

5.3 Numerische Integration 143

f(z)

T
a b €z

Abb. 5.5. Interpolationsquadratur mit der Trapezregel.

erhalten wir

I[f]/b(f(aHM(xa)) da

b—a
(b—a) | fla — f(a)) tdt
s
_ (ba)(f(a)+7f(b)2f(a)>.

Unsere Quadraturformel lautet also

b
/f(x)dx ~ b;“(f(a)+f(b)). (5.5)

Geometrisch kann man diese Formel so interpretieren, dass das Integral durch
den Fliacheninhalt eines Trapezes approximiert wird, deshalb heifit diese Qua-
draturformel auch Trapezregel (sieche Abb. 5.5).

Wenn die Intervalllinge klein ist, kann die Formel in (5.5) sehr brauch-
bare N&herungen fiir den exakten Integralwert liefern. Fiir grofere Intervalle
[a, b] empfiehlt sich die folgende Vorgehensweise: Wir withlen eine dquidistante
Zerlegung in N — 1 Teilintervalle

b—

1)N yfirk=1,...,N-1

[Th, Zry1], op = a+ (k —

)

und wenden auf jedes dieser Teilintervalle die Trapezregel (5.5) an. Setzen wir

b—a
N-1’

fo = f(zg) firk=1,...,N,

144 5 Numerisches Zwischenspiel

so gilt h =541 —ap fiir k=1,..., N — 1 und wir haben
Tht1
h
f(z)dr ~ §(fk+fk+1)~

Unter Beachtung von

Th4+1

b N-1
a/ CLEDY | sa)is

Tk

erhalten wir daraus die summierte Trapezregel:

b N-1
/f(x) i ~ h(@ Y). (5.6)
a k=2

Beispiel 5.4 (Numerische Integration mit der Trapezregel).
Wir verwenden die summierte Trapezregel (5.6) zur Approximation des Inte-

grals
1

T
V1—22dzx=—.
/ vrdz = g
-1
Von der Richtigkeit dieser Gleichung kann man sich iibrigens ohne Bestim-
mung einer Stammfunktion iiberzeugen, denn der Graph des Integranden ist
nichts anderes als die obere Halbkreislinie.

1 #include <math.h>

2 #include <stdio.h>

3

4 double fun(double x)

5 {

6 return sqrt(1.0-x*x);

7}

8

9 double trapezregel(double a, double b, int N)
10 {

11 double summe, xk;

12 int k;

13

14 summe = 0.5%(fun(a)+fun(b));

15 for (k=2; k<N; k++) {

16 xk = (k-1.0)/(N-1.0)*(b-a)+a;
17 summe += fun(xk);

-
[e]
(-

5.4 Kontrollfragen zu Kapitel 5 145

19

20 return (b-a)/(N-1)*summe;

21 }

22

23 int main()

24 A

25 double wert_integral = trapezregel(-1.0, 1.0, 1000);
26 printf ("Exakt . %e\n", M_PI_2);

27 printf ("Trapezregel: %e\n", wert_integral);

28 printf ("Abs. Fehler: %e\n", fabs(wert_integral-M_PI_2));
29 %

Zeile 16: Hier darf man nicht (k-1)/(N-1) verwenden, sondern muss minde-
stens eine 1 durch 1.0 ersetzen. Andernfalls kéime es hier zu einer ganzzah-
ligen Division und der Ausdruck wiirde wegen k < N immer den Wert 0
liefern. Dies ist eine haufig auftretende Fehlerquelle in ,frithen Programm-
versionen‘. In Zeile 20 kann das nicht passieren, da der erste Faktor b-a
bereits vom Typ double ist.

Zeile 26: Wir verwenden die in math.h vordefinierte Konstante M_PI_2, um
/2 in der optimalen Genauigkeit zur Verfiigung zu haben.

Zeile 28: Wie bereits in Abschnitt 3.3 gesagt wurde, muss man zur Berech-
nung des Betrags einer Gleitpunktzahl die Bibliotheksfunktion fabs()
und nicht etwa abs () benutzen, damit man nicht zur Laufzeit die Nach-
kommastellen und anschliefend bei der Fehlersuche die Geduld verliert.

O

Durch eine Verfeinerung der Zerlegung des Intervalls erreicht man im allge-
meinen bessere Resultate, stofst aber fiir kompliziertere Integranden wegen
des zunehmenden Aufwands an die Grenzen des Praktikablen. Man sucht zur
Verbesserung der Ergebnisse daher nach alternativen Approximationsansit-
zen (siehe [2], [13]).

5.4 Kontrollfragen zu Kapitel 5

Frage 5.1

Zur Berechnung der Nullstelle von z? — 2 wird das Bisektionsverfahren auf das
Startintervall [0, 2] angewendet. Welche Werte nimmt der Mittelpunkt m wihrend
der ersten Schritte an?

a) m=1.0,15,14 O
b) m = 1.0,1.5,1.25 O
¢) m=1.0,1.25,1.375 O

146 5 Numerisches Zwischenspiel

Frage 5.2

Fiihren Sie das Newtonverfahren von Hand durch, indem Sie die Nullstelle zu % — 2
berechnen. Starten Sie mit x¢ = 1.0. Welchen Wert nimmt z2 an?

a) 2 =141 O
b) z2 =1.42 a
) - 0
c) T2 = —
*T 12
18
d = — ad
) 2= 1
Frage 5.3
Welche der folgenden Iterationen approximiert 37
3
a) Tnyl = Tn + 322 xo =1 O
322
b) xn+1:xn7x%_37 .T()Zl O
223 43
C) Tnt1 = 32 z0 =1 O
n
222 — 3
d) Tpt1 = 32 x0=—1 O
n
Frage 5.4

Berechnen Sie die lineare Interpolation von sin(x) in = w/4. Wahlen Sie hierbei
als Stiitzstellen 1 = 7/6 und z2 = 7/2. Welchen Wert erhalten Sie?

a) 1/V2
b) 5/8

c) V3/2
) 7/8

O O o g

o,

Frage 5.5

Welchen Ndherungswert liefert die Trapezregel fiir das Integral
1

/de:E,

0

wenn [0, 1] in zwei gleich grofe Intervalle unterteilt wird?
a) 0.375 O

b) 0.5 O

—]
c)3

5.5 Ubungsaufgaben zu Kapitel 5 147

Frage 5.6
In Beispiel 5.2 wurde in den Zeilen 19-22 eine do-while Schleife gewdhlt. Warum
wurde nicht eine while oder for-Schleife gewahlt?

a) Das ist egal, man kann do-while durch while ersetzen, ohne das Ergebnis
zu verandern. O

b) Man kann do-while durch eine der beiden Alternativen dndern, muss aber
die ganze Funktion anpassen. O

c) Die vorgestellte Implementierung ist eleganter, man muss um das Abbruch-
kriterium anwenden zu kénnen, mindestens eine Iteration durchfiihren. O

5.5 Ubungsaufgaben zu Kapitel 5

*

Aufgaben, die mit einem * markiert sind, sind vom Schwierigkeitsgrad etwas an-

spruchsvoller. Sie kénnen beim ersten Durcharbeiten zuriickgestellt werden.

5.1 (* Ziegen und nichtlineare Gleichungen).
Eine Ziege ist am Rande einer kreisférmigen Wiese mit Radius r angebunden. Wie
lang muss die Leine sein, damit sie genau die Halfte der Wiesenfldche abgrasen kann?

5.2 (Tests zur Nullstellenbestimmung).

Erweitern Sie die Programme zum Bisektionsverfahren (Beispiel 5.1) und zum
Newton-Verfahren (Beispiel 5.2) dahingehend, dass die Anzahl der Funktionsaus-
wertungen gezidhlt wird.

a) Testen Sie verschiedene Genauigkeitsschranken e und untersuchen Sie den Zu-
sammenhang zwischen € und der Anzahl der Funktionsauswertungen.

b) Testen Sie veschiedene Startwerte fiir das Newton-Verfahren, inbesondere zo = 0
und zg = 10719,

5.3 (Abbruchbedingungen fiir das Newton-Verfahren).

Berechnen Sie die Nullstellen von f(z) = #° —1 und g(x) = z° mit Hilfe des Newton-
Verfahrens. Verwenden Sie jeweils als Startwert xop = 0.5 und testen Sie die beiden
vorgestellten Abbruchkriterien fiir ¢ = 107°. Bestimmen Sie jeweils die Anzahl der
Iterationen sowie den absoluten Fehler.

5.4 (* Die Lambertsche W-Funktion).
Die Umkehrfunktion zu

fl(*l,OO)"R, f(.’L'):.’L'eI7

heilst Lambertsche W-Funktion. Die W-Funktion kann nicht durch elementare Funk-
tionen in geschlossener Form dargestellt werden.

a) Formulieren Sie das Newton-Verfahren zur Auswertung der W-Funktion an einer
Stelle z > —1/e.

148 5 Numerisches Zwischenspiel

b) Implementieren Sie ein Unterprogramm lambertW(), das die W-Funktion auf
diese Weise auswertet und testen Sie sie, indem Sie | f(W (z)) — z| an den dquidi-
stanten Stellen

berechnen lassen.
c) Die Auswertung von W auf diese Art ist recht aufwendig. Verwenden Sie daher
die Funktion zur linearen Interpolation aus Beispiel 5.3, um Werte an den Stellen

,+1/2
$¢+1/2:Z+N/ , 1=0,...,N—1,

zu erhalten. Vergleichen Sie die interpolierten Werte mit jenen, die lambertW ()
an diesen Stellen liefert.

5.5 (Summierte Trapezregel).
Berechnen Sie das Integral

/f(w) dz

f(w):{lx/l—ac2 <0

fiir den Integranden

vVi—z2 : x>0
mit Hilfe der Trapezregel. Vergleichen Sie, beginnend mit N = 2, die jeweilige N&-
herung mit dem exakten Integralwert (siehe Beispiel 5.4) und betrachten Sie die
Entwicklung des Fehlers mit wachsendem N. Welches Verhalten stellen Sie fest?
Wie erkléren Sie sich dieses Verhalten?

5.6 (Quadratur von Integranden mit Polstellen).
Oft kann man mit ein wenig Analysis die Anwendbarkeit numerischer Verfahren
erheblich erweitern: Obwohl das (uneigentliche) Integral

1
2
/Hx d (5.7)
0

20z O

existiert, konnen wir die Trapezregel nicht verwenden, da der Integrand in x = 0
eine Polstelle hat.

a) Benutzen Sie die Formel der partiellen Integration,

/ F(@)g(@) dz = [f(x)g(x)]° — / f(@)g (x) de,

um das Integral in (5.7) so umzuformen, dass nur noch unproblematische Terme
bzw. Integranden vorkommen — spalten Sie sozusagen den Term mit der Polstelle
ab.

b) Formulieren Sie die summierte Trapezregel fiir das Integral, das in a) entstanden
ist. Schreiben Sie eine C-Funktion zur Berechnung des Integrals in (5.7) und
testen Sie sie fiir verschiedene N.

6

Zeichen und Strings

Wenn wir auch in diesem Buch hauptséchlich die C-Programmierung fiir ma-
thematische Anwendungen im Sinn haben: Gewisse Grundkenntnisse iiber
dem Umgang mit Zeichen und Zeichenketten (engl. strings) sind auch in die-
sem Anwendungsbereich unabdingbar.

Zuerst beschiftigen wir uns in diesem Kapitel mit dem ASCII-Standard
zur Interpretation ganzzahliger Werte als Zeichen, die in C durch den Da-
tentyp char représentiert werden. Fiir Strings wird kein eigener Datentyp
benotigt, denn C betrachtet sie einfach als Felder, deren Eintrage vom Typ
char sind. Zur Verarbeitung von Zeichen und Strings existiert eine Fiille von
Bibliotheksfunktionen, von denen wir hier nur eine fiir unsere Zwecke ausrei-
chende Auswahl vorstellen. Als Anwendung zeigen wir zum Schluss ein einfa-
ches aber wirksames Verfahren zum Ver- und Entschliisseln von Texten. Mit
diesem kleinen Ausflug in die Kryptographie schlagen wir wieder die Briicke
zur Mathematik.

6.1 Zeichen

Fir die Verarbeitung von Zeichen ist von grundlegender Bedeutung, dass sie
eigentlich nichts anderes sind als Zahlenwerte, die eine Doppelrolle spielen:

Auf dem Computer werden Zeichen intern wie ganzzahlige Werte be-
handelt. Erst durch die standardisierte Zuordnung der Zeichen zu den
Zahlen von 0 bis 127 in der so genannten ASCII-Tabelle entsteht die
Rolle als Zeichen.

So wird beispielsweise dem Zahlwert 65 das Zeichen ’A’ zugeordnet. Andere
Zuordnungen konnen wir der Tabelle 6.1 entnehmen, die den fiir uns relevanten
Teil der ASCII-Tabelle auflistet. Man benutzt allerdings meist den erweiterten
Bereich von 0 bis 255, um auch Umlaute oder Sonderzeichen abbilden zu
konnen.

150 6 Zeichen und Strings

Ob eine Variable vom Typ char als Zahl oder Zeichen interpretiert wird,
liegt in der Hand des Programmierers.

Tabelle 6.1. Ein Ausschnitt aus der ASCII-Tabelle.
Zahlwert | Zeichen | | Zahlwert | Zeichen | | Zahlwert | Zeichen |

32 U 64 @ 96 ‘
33 ! 65 A 97 a
34 ” 66 B 98 b
35 # 67 C 99 c
36 $ 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 f
39 ’ 71 G 103 g
40 (72 H 104 h
41) 73 I 105 i
42 * 74 J 106 j
43 + 75 K 107 k
44 , 76 L 108 1
45 - 77 M 109 m
46 . 78 N 110 n
47 / 79 0 111 o
48 0 80 P 112 p
49 1 81 Q 113 q
50 2 82 R 114 r
51 3 83 S 115 s
52 4 84 T 116 t
53 5 85 U 117 u
54 6 86 \% 118 v
55 7 87 w 119 w
56 8 88 X 120 x
57 9 89 Y 121 y
58 : 90 v/ 122 z
59 : 91 [123 {
60 < 92 \ 124 |
61 = 93] 125 }
62 > 94 ~ 126 -
63 ? 95 B

6.1 Zeichen 151

Bei der Ausgabe mittels printf () liefert die Formatangabe %c’ die Aus-
gabe des entsprechenden Werts als Zeichen. So liefert

char c=65;
printf ("%c %d\n", c, c);

zuerst die Ausgabe des Buchstaben ’A’; dann die Ausgabe der Zahl 65.

Wie wir bereits aus Abschnitt 2.4 wissen, werden Zeichenkonstanten durch
Setzen von einfachen Anfiihrungsstrichen gebildet. Nach der ASCII-Tabelle ist
z.B.

char c=’A’;
dquivalent zu der folgenden Initialisierung;:
char c=65;

Eine besondere Art von Zeichenkettenkonstanten haben wir bereits kennen-
gelernt: \n steht fiir die Zahl 13 (dies ist die Position des Buchstabens 'n’
im Alphabet) und bewirkt bei der Ausgabe als Zeichen einen Zeilenumbruch.
Zeichenkonstanten konnen auch oktal in der Form \ooo und hexadezimal als
\xhh angegeben werden. Der folgende Quelltext veranlasst die dreifache Aus-
gabe des Buchstaben 'Z’:

printf("Z \132 \x5a \n");

Da Werte vom Typ char ganze Zahlen sind, ist der folgende Quelltextteil
syntaktisch vollig korrekt:

char c=’A’;
int diff = °C’ - c;
c = ’B’ + diff;

diff hat dann den Wert 2, ¢ den Wert 68.

Eingabe von Zeichen

Das Einlesen von Zeichen von der Standardeingabe und die Zuweisung an
Variablen vom Typ char geschieht mit Hilfe der folgenden Funktion:

int getchar(void);

getchar () liefert das eingelesene Zeichen als unsigned int (ggf. mit Cast
zu int) zurilick. Die Belegung einer Variablen vom Typ char erfolgt duch
Zuweisung;:

c = getchar();

Diese Funktion ist in <stdio.h> deklariert.
Man kann diese Funktion z.B. dazu nutzen, um auf einen Tastendruck des
Anwenders zu warten:

152 6 Zeichen und Strings

Tabelle 6.2. Priiffunktionen fiir char-Werte.

Funktion tiberpriifte Eigenschaft

int isalpha(int c); | c ist Buchstabe

int isdigit(int c); | cist (Dezimal-)Ziffer

int isalnum(int c); | c ist Buchstabe oder Ziffer

int isblank(int c); c ist Leerzeichen oder Tabulator
int iscntrl(int c); | c ist Steuerzeichen

int islower(int c); | c ist Kleinbuchstabe

int isupper(int c); | c ist Grofibuchstabe

int isspace(int c); | cist \m, \t, \f, \v, \r

oder Leerzeichen

int isxdigit(int c); | c ist Hexadezimalziffer

printf ("Zum Fortfahren bitte beliebige Taste driicken");
getcharQ);

Priiffunktionen

Wenn wir Programme fiir den Alltagseinsatz entwickeln, werden wir uns nicht
darauf verlassen konnen, dass die Anwender stets korrekte Eingaben vorneh-
men. Wenn eine scanf ()-Anweisung z.B. die Eingabe eines double-Wertes
erwartet, tiber die Tastatur aber ein Zeichen eingegeben wird, so wird das
sicherlich negative Auswirkungen auf den weiteren Programmablauf haben.
Um Eingaben auf ihre Korrektheit iiberpriifen zu konnen, gibt es die Funk-
tionen in Tabelle 6.2. Sie sind in <ctype.h> deklariert und {iberpriifen die
Eigenschaften eines Zeichens. Sie liefern allesamt den Wert 0 zuriick, wenn
das Argument nicht vom fraglichen Typ ist.

Ferner gibt es in <ctype.h> noch die beiden Funktionen

int toupper(int c);
int tolower(int c);

die das ihnen iibergebene Zeichen als Grof- bzw. Kleinbuchstaben zuriicklie-
fern. Ist diese Umwandlung nicht moglich (z.B. bei Ziffern), wird das Zeichen
unverdndert zuriickgeliefert.

Man kann sich sicherlich vorstellen, dass die sorgféltige Priifung von ein-
gegebenen Zeichen sehr schnell zu langlichen Quelltextpassagen fiihrt. Um
nicht von den eigentlichen Programmbestandteilen abzulenken, verzichten wir
auch im weiteren Verlauf des Buchs in unseren Quelltexten auf entsprechen-
de Priifungen. Daraus soll man aber keineswegs schlussfolgern, dass solche
Uberpriifungen nicht so wichtig sind!

6.2 Strings 153

6.2 Strings

Strings (Zeichenketten) sind Felder mit Eintrédgen vom Typ char. Aus
diesem Grund gelten alle tiber Felder getroffenen Aussagen sinngeméfs
auch fiir Strings.

Entsprechend werden Strings

e statisch durch

char Stringnamelgroesse];

e und dynamisch durch

char x*Stringname;

deklariert.

6.2.1 Initialisierung und Terminierung

Das Ende einer Zeichenkette wird mit der Zeichenkonstante >\0’, d.h. dem
Wert 0, markiert. Deshalb wird diese besondere Zeichenkonstante auch als
Stringterminierung bezeichnet.

Stringkonstanten sind Zeichenketten, die in doppelte Anfiihrungsstriche " ge-
setzt sind. Mit ihnen kann man Stringvariablen folgendermafien initialisieren:

char str[]="Hallo";

Hier wird die Stringterminierung \0 automatisch angehingt, das Feld str hat
also die Lénge 6. Diese Art der Initialisierung ist deutlich bequemer als die
dquivalente Variante, die fiir alle Felder mdglich ist:

char str[]={ ’H’, ’a’, ’1°, ’1’, ’0’, °\O’ };

Da die Gréfse in beiden Beispielen feststeht, entfillt jeweils die Grofenangabe
in den eckigen Klammern.

Die Ausgabe von Zeichenketten kann mittels printf () geschehen. Der
zugehorige Formatbezeichner lautet %s und veranlasst die Ausgabe der ent-
sprechenden Zeichenkette bis zum abschlieffenden >\0’ .

Beispiel 6.1 (Elementare Stringoperationen).

1 int string_laenge(const char what[])
2 {

3 int i = 0;

4 while (what[i]) i++;

5 return i;

6

7

154 6 Zeichen und Strings

8 int main()

9 {

10 char stri[] = { ’E’>, ’i’, 'n’, ? 7,

11 asa, ata, ara, aia,)n)’)g)’)\0) };
12 char str2[] = "Ein String";

13

14 printf ("stri=’%s’\n", strl);

15 printf ("str2="%s’\n", str2);

16 printf ("Laenge von strl: %d\n", string_laenge(stri));
17

18 str1[3]=0;

19 printf ("\nstrl verkuerzt: ’%s’\n", strl);

20 printf ("Laenge von strl: %d\n", string laenge(strl));
21

22 str1[0]=0;

23 printf ("\nstrl geldscht: ’%s’\n", strl);

24 printf ("Laenge von strl: %d\n", string laenge(strl));
25 }

Wir sehen in den Zeilen 10 und 12 zwei dquivalente Arten, Stringkon-
stanten anzugeben. Wie schon gesagt, terminiert die in Zeile 12 dargestellte
Methode die Zeichenkette automatisch mit dem Wert 0.

In den Zeilen 14, 15, 19 und 23 sieht man die Ausgabe von Strings durch
die Funktion printf (). O

Die Funktion string_laenge() in Beispiel 6.1 dient nur der Illustration des
Umgangs mit Strings. Eine entsprechende Funktion aus der Standardbiblio-
thek stellen wir im Folgenden vor.

6.2.2 Bibliotheksfunktionen fiir Strings

Da je nach Problemstellung die Manipulation von Zeichenketten einen be-
trachtlichen Teil des Programms ausmachen kann, wird in C eine Vielzahl von
Bibliotheksfunktionen hierzu angeboten. Um diese nutzen zu kénnen, muss die
Headerdatei <string.h> den Priprozessordirektiven hinzugefiigt werden. Wir
stellen hier eine Auswahl haufig verwendeter Bibliotheksfunktionen vor. Fiir
eine vollstandige Liste verweisen wir auf die Hilfeseite, die mit

$ man 3 string
angesehen werden kann.

e strcpy() - Kopieren eines Strings.

char *strcpy(char *ziel, const char *quelle);

6.2 Strings 155

kopiert den String mit Namen quelle bzw. eine Zeichenkettenkonstante in
den String mit Namen ziel. Die Stringterminierung *\0’ wird mitkopiert.
Alternative Lesart: strcpy () kopiert den String, auf den quelle zeigt, in
den String, auf den ziel zeigt.

Die Feldgrofie von ziel muss ausreichen, um den Inhalt von quelle auf-
zunehmen. Ist dies nicht der Fall, so kann das weitere Verhalten nicht
vorhergesagt werden — dieser Umstand wird tibrigens bei vielen Hackeran-
griffen ausgenutzt. Die Funktion liefert einen Pointer auf ziel zuriick.

strncpy () - Beschrinktes Kopieren eines Strings.

char *strncpy(char *ziel, const char *quelle,
size_t anzahl);

Kopiert héchstens die ersten anzahl Zeichen von quelle nach ziel. Befin-
det sich die Stringterminierung von quelle nicht darunter, so bleibt ziel
unterminiert. Auch diese Funktion liefert einen Pointer auf ziel zuriick.

strlen() - Ldnge eines Strings.

size_t strlen(const char *string);

Liefert die Anzahl der Zeichen des Strings string zuriick, wobei die Ter-
minierung nicht mitgezihlt wird.

strcat () - Anhéngen eines Strings an einen anderen.

char *strcat(char *ziel, const char *quelle);

héngt den String quelle an den String ziel an. Die Terminierung von
ziel wird dabei iiberschrieben und der entstehende String terminiert.
Auch hier muss ziel grofs genug sein.

Analog zu strncpy () existiert eine Variante strncat (). Auch diese Funk-
tionen liefern einen Zeiger auf ziel zuriick.

stremp() - Vergleichen zweier Strings.

int strcmp(const char *s1, const char *s2);

stellt fest, ob die Zeichenkette s1 nach lexikographischer Ordnung kleiner,
grofer oder gleich s2 ist. Der Riickgabewert ist jeweils
— -1, falls s1 lexikographisch kleiner als s2,
+1, falls s1 lexikographisch gréfer als s2,
0, falls s1 und s2 identisch sind.

156 6 Zeichen und Strings

Zu strcmp existiert die Variante strnemp (), die nur die ersten n Zeichen
zweler Strings miteinander vergleicht.

Bemerkung. Aufgrund der Definition der Riickgabewerte von strcmp () ist
if (strcmp(sl,s2))

ein Test auf Ungleichheit und nicht etwa auf Gleichheit, auch wenn es die
Schreibweise so suggeriert. Dies ist ein hdufig anzutreffender Fehler.

Beispiel 6.2 (Funktionen aus <string.h>).
Wir demonstrieren die Verwendung der vorgestellten Bibliotheksfunktionen:

1 #include <string.h>
2 #include <stdio.h>

3

4 char *verdopple_string(char what[])

5 {

6 char *result;

7 int 1lwhat = strlen(what);

8

9 result = (char *) malloc((2*lwhat +1)*sizeof (char));
10 if (result==NULL)

11 return NULL;

12

13 strcpy(result, what);

14 strcat (result, what);

15 return result;

16 }

17

18 int main()

19 {

20 char str[]="Einfach";

21 char *verdoppelt_str = verdopple_string(str);
22 if (verdoppelt_str)

23 printf ("%s\n", verdoppelt_str);
24 else

25 printf ("fehler\n");

26 free(verdoppelt_str);

27 '}

Die Funktion verdopple_string() verdoppelt einen String, ihre Anwen-
dung auf "Einfach" erzeugt also den String "EinfachEinfach".

In Zeile 7 wird die Linge 1lwhat des Arguments what ermittelt. Das Er-
gebnis bendtigt wegen der Stringterminierung >\0’ 2*1lwhat+1 Zeichen, in

6.2 Strings 157

Zeile 9 wird der entsprechende Speicherplatz angefordert. In Zeile 18 wird
what nach result kopiert, in Zeile 1/ wird what an das Ergebnis angehéngt.

Das Hauptprogramm (Zeilen 18-27) demonstriert den Gebrauch dieser
Funktion. Zu beachten ist Zeile 26: Die Funktion free() muss den in Zeile 9
angeforderten Speicherplatz wieder freigeben. O

Einlesen von Strings

Die Funktion scanf () ist nur begrenzt dazu geeignet, Strings von der Tasta-
tur entgegenzunehmen, denn bei der entsprechenden Formatangabe %s wird
der String nur bis zum ersten auftretenden Leerzeichen eingelesen. Die ein-
fachste Funktion zum Einlesen eines Strings von der Tastatur ist gets(). Sie
iiberpriift jedoch nicht, ob im Zielstring geniigend Platz fiir die Eingabe vor-
handen ist und iiberschreibt evtl. dahinter liegende Speicherbereiche. Es ist
daher besser, die Funktion fgets() zu verwenden:

char *fgets(char *string, int anzahl, FILE #Ds);

Diese liest h6chstens anzahl-1 Zeichen aus dem Eingabestrom Ds und speichert
sie in der Zeichenkette string. Weitere Zeichen werden ignoriert. Der néchste
Aufruf von fgets() beginnt an dieser Stelle des Eingabestroms.

Der Datentyp FILE ist ein so genannter Dateideskriptor. In Kapitel 7 wer-
den wir ausfiihrlich darauf eingehen; hier geniigt es zu wissen, dass der De-
skriptor fiir die Tastatur mit stdin bezeichnet wird.

Mochte man die gesamte Feldlinge von string zum Einlesen nutzen, so
kann man durch Verwendung von sizeof string als zweites Argument die
Implementierung dynamisch gestalten. Nach dem letzten eingelesenen Zeichen
wird eine Stringterminierung angefiigt.

Bei Erfolg liefert die Funktion den Zeiger string zuriick bzw. NULL, wenn
ein Fehler beim Einlesen auftrat.

Die Verwendung von fgets () zum Einlesen von Strings iiber die Tastatur
sieht dann wie folgt aus:

char string[101];
fgets(string, sizeof string, stdin);

Hier wird eine Zeichenkette mit maximaler Linge 100 eingelesen.

Umwandlungen

C stellt Umwandlungsfunktionen zur Verfiigung, die Strings und Zeichen
in andere Datentypen konvertieren. Diese Konvertierungsfunktionen sind in
<stdlib.h> deklariert.

Wir geben einen kurzen Uberblick iiber die wichtigsten Umwandlungsrouti-
nen:

158

6 Zeichen und Strings

Umwandlung von Strings in Ganzzahlen:

int atoi(const char *nptr);
long atol(const char *nptr);

Beispielsweise liefert atoi("100") den int-Wert 100.

Umwandlung von Strings in Gleitpunktformate:

float strtof(const char *nptr, char **endptr);
double strtod(const char *nptr, char **endptr);

Fiir endptr kann normalerweise NULL gewihlt werden. Zur detaillierten
Erklarung der Bedeutung dieses Doppelpointers lese man die entsprechen-
de Manpage.

Statt der Anweisung strtod(nptr, (char **)NULL); kann man auch die
Funktion

double atof(const char *nptr);

verwenden. Der Name atof () ist etwas irrefithrend: Er suggeriert eine
Umwandlung nach float, obwohl die Funktion double-Werte zuriicklie-
fert.

Bemerkung. Eine zu atoi() ,inverse” Bibliotheksfunktion itoa(), die int-
Datenwerte in Strings konvertiert, existiert nicht in jeder C-Entwicklungsum-
gebung, obwohl man ein derartiges Unterprogramm h&ufig gut gebrauchen
kann (siehe Aufgabe 6.5).

6.3 Beispiel: Einfache Kryptographie

Eine interessante Anwendung fiir das bisher Gelernte ist die Ver- und Ent-
schliisselung von Texten. Wir demonstrieren eine einfache, aber recht effekti-
ve Verschliisselungsmethode. Grundlage hierfiir ist die sogenannte ,Exklusiv-
Oder“-Verkniipfung, die folgendermafien definiert ist:

A[BlauB]

0

0
0
1
1

= o=

1
1
0

6.3 Beispiel: Einfache Kryptographie 159

Diese wird oft auch als XOR-Verkniipfung bezeichnet. Man priift leicht nach,
dass fiir beliebige A, B € {0,1} gilt:

AUuBUB=A.

Diese Abbildung kann man jetzt auf alle ganzzahligen Argumente fortsetzen,
indem man diese zuerst in eine Dualzahl wandelt, dann bitweise LI anwendet
und das Ergebnis wieder als ganze Zahl interpretiert. So ist z.B. 10 LU 12 = 6,
wie man an der bindren Darstellung sofort erkennt:

10=1]{1]|0(f1|0
12=]{1|1(0|0
6=110|1|1]|0

Satz 6.3 (Schliissel und Schliisselfunktion).
Zu der ganzen k € {1,...,63}, genannt Schliissel, sei eine ,Verschlisselungs-
funktion® ¢y definiert durch die Abbildungsvorschrift:

dr(c) = ((c—32)Uk) + 32.

Dann gilt:

a) Die Funktion ¢ ist eine Abbildung der Menge Z = {32,...,95} in sich
selbst, d.h.
dp: {32...95) — {32...95}.

b) Die Verschliissungsfunktion ist bijektiv und selbstinvers:

or(Pr(c)) = c fiir alle c € Z.

Statt den einfachen Beweis (siehe Aufgabe 6.6) hier vorzufiihren, interpretie-
ren wir die Aussage des Satzes fiir unsere Anwendung:

e Wir verwenden die ASCII-Tabelle 6.1 und nennen die Zeichen ’ ’ (Leer-
zeichen, Zahlwert 32) bis *_’ (Zahlwert 95) darstellbare Zeichen. Die Ver-
schliisselungsfunktion ¢y, bildet also darstellbare Zeichen auf darstellbare
Zeichen ab.

e Man kann ein durch Anwendung von ¢ verschliisseltes Zeichen durch
erneutes Anwenden derselben Funktion wieder entschliisseln.

Die Verschliisselungsfunktion ¢ kann man jetzt auf einen gegebenen Text
c1...cp der Linge m zeichenweise anwenden. Am einfachsten wire die Ver-
schliisselung des gesamten Textes fiir ein fest gewiihltes k. Das wére aber auch
viel zu leicht zu entschliisseln, denn in jeder Sprache gibt es einen Buchsta-
ben, der am haufigsten vorkommt. Wenn man das im verschliisselten Text am
hiufigsten vorkommende Zeichen gefunden hat, ist man also so gut wie sicher
im Besitz des Schliissels fiir den ganzen Text.

Sicherer ist es daher, den Schliissel k von Zeichen zu Zeichen zu dndern.
Hier bietet es sich an, ein Schlisselwort wy . .. w, mit Zeichen aus {32,...,95}

160 6 Zeichen und Strings

vorzugeben, und daraus giiltige Schliisselwerte k; € {0, ..., 63} abzuleiten. Die
geschieht am einfachsten, indem man den ersten Buchstaben des Texts mit
w1 — 32, den zweiten Buchstaben des Texts mit ws —32 usw. verschliisselt. Um
den (n + 1)-ten Buchstaben zu verschliisseln, nehmen wir wieder w; — 32 als
Schliissel. Man verschliisselt den ¢-ten Buchstaben des Texts mit dem Schliissel
W(i mod n) — 32. Einen so chiffrierten Text ohne Kenntnis des Schliissels zu
dechiffrieren, erfordert schon erheblich mehr Aufwand.

Beispiel 6.4 (Chiffrieren von Texten).
1 #include <string.h>

2

3 void verschluessle(char text[], const char geheimnis[])
4 {

5 /* annahme: text und geheimnis zeigen jew. auf

6 * string mit zeichen aus bereich 32..95 x/

7

8 int i

9 int 1t = strlen(text);

10 int 1g = strlen(geheimnis);

11

12 for (i=0; i<lt; ++i)

13 {

14 char ¢ = text[i]-’ 7

15 char key = geheimnis[i % 1gl-’ 7

16 c "= key;

17 text[i] = c + 7 7

18 }

19 1}

20

21 main()

22 {

23 char text[]="DIES IST DER ZU VERSCHLUESSELNDE TEXT";
24 char geheimnis[]="PSST GEHEIM";

25

26 printf ("Vor Verschliisselung: Ys\n", text);
27 verschluessle(text, geheimnis);

28 printf ("Nach Verschliisselung: Y%s\n", text);
29 verschluessle(text, geheimnis);

30 printf ("Nach Entschliisselung: Y%s\n", text);
31 %}

Die Funktion verschluessle() verschliisselt den Text im String text in
place, d.h. er wird mit seiner verschliisselten Variante {iberschrieben.

6.4 Kontrollfragen zu Kapitel 6 161

Die Zeilen 12-18 enthalten die Umsetzung des oben beschriebenen Ver-
schliisselungsverfahrens. Die LI-Verkniipfung wird in C durch den bitweisen
Oder-Operator ~ realisiert (siche Anhang D), der wie die arithmetischen Ope-
ratoren eine Zuweisungsvariante besitzt (Zeile 16).

6.4 Kontrollfragen zu Kapitel 6

Frage 6.1

Welchen Wert hat der Ausdruck 2% (?H>/2+°%7)-78°7

a) \142 O

b) 100 O

c) ’d’ o

d) \x64 O

Frage 6.2

Welche Aussage trifft nicht zu?

a) char-Variablen werden intern als ganzzahliger Datentyp behandelt. O

b) char-Variablen kénnen addiert und voneinander subtrahiert werden.]

c) Es existieren Bibliotheksfunktionen, die char-Variablen daraufhin untersu-
chen, ob es sich um einen Buchstaben, eine Ziffer o0.4. handelt. O

d) Strings sind Felder, deren Eintrége vom Typ char * sind. O

e) Genau eine der Aussagen a) - d) trifft nicht zu. O

Frage 6.3

Eine Variable vom Typ char# soll mittels atof () in eine double-Variable umgewan-
delt werden. Worauf ist dabei zu achten?

a) Die Préprozessordirektive #include <stdlib.h> muss im Quelltext enthal-

ten sein. O
b) Die Funktion wandelt lediglich in den Typo float um. O
¢) Die Verwendung von Casts ist zu bevorzugen. O

Frage 6.4
Sei durch char wort[30]; ein String deklariert und durch

strcpy(wort, "Programmierung");

mit einer Stringkonstanten belegt. Welche der folgenden Anweisungen verkiirzt den
Wert von wort auf "Program"?

) wort[8]=’\0";

) wort[7]1="\0";

) wort [8]=0;

) wort[7]1=\000;

) strdel(wort,7,strlen(wort));

Oooooog

162 6 Zeichen und Strings

6.5 Ubungsaufgaben zu Kapitel 6

6.1 (String auf ganze Zahl testen).
Schreiben Sie eine eigene Priiffunktion

int ist_ganze_zahl(const char *str)

welche einen String entgegennimmt und diesen darauf testet, ob er eine ganze Zahl
darstellt. Testen Sie diese Funktion anhand der Strings "123", "-12", "1.0", "abc"
auf Korrektheit.

6.2 (Stellt der String einen C-Bezeichner dar?).
Schreiben Sie eine Funktion

int ist_c_bezeichner(const char #*str)

die einen String entgegennimmt und diesen darauf testet, ob er einen giiltigen C-
Bezeichner darstellt.

6.3 (Palindrome).

Schreiben Sie ein Programm, das eine Zeichenkette der maximalen Lénge 100 ein-
liest und diese darauf testet, ob es sich um ein Palindrom handelt. Ein Palindrom
ist ein Wort, das riickwarts wie vorwirts gelesen das gleiche Wort ergibt, wobei kei-
ne Unterscheidung zwischen Grof- und Kleinschreibung gemacht wird. So ist z.B.
»Reliefpfeiler ein Palindrom.

6.4 (Bibliotheksfunktionen).
Programmieren Sie die Funktionen strlen(), strcat() und strcmp() nach.

6.5 (Ganze Zahlen in Strings umwandeln).
Schreiben Sie eine Funktion

char *itoa(int value)

welche eine ganze Zahl value in eine Zeichenkette konvertiert. Testen Sie Thre Funk-
tion fiir verschiedene ganzzahlige Argumente.

6.6 (Ein wenig Theorie der Kryptographie).
Beweisen Sie Satz 6.3.

7

Fortgeschrittene Ein- und Ausgabe

Bisher stehen uns lediglich die Eingabe von Daten durch den Benutzer sowie
die Ausgabe auf den Bildschirm zur Verfiigung. Fiir umfangreichere Parame-
tereingaben bzw. die permanente Speicherung der vom Programm berechne-
ten Ergebnisse sind Dateien natiirlich ein geeigneteres Medium, denn einer-
seits liegen Eingabegrofen wie z.B. Messdaten sehr oft in Form von Dateien
vor, andererseits wollen wir aufwendig berechnete und somit kostbare Hilfs-
grofen und Ergebnisdaten sicher aufbewahren. Wir haben dann u.a. auch die
Moglichkeit, unsere Ergebnisse mit einem Programm wie GNUPLOT graphisch
darstellen zu lassen (siehe dazu Anhang C).

In diesem Kapitel beschiftigen wir uns daher mit den Schnittstellen, die
C fiir die Interaktion mit dem Dateisystem und der Kommandozeile vorsieht.

7.1 Arbeiten mit Dateien

Fiir den Informationsaustausch mit Dateien, oder allgemein mit Datenstromen
(engl. data streams), gibt es in C den Datentyp FILE, der in <stdio.h> dekla-
riert ist. Um im Programm mit einem Datenstrom arbeiten zu kénnen, muss
eine entsprechende Zeigervariable, der Dateideskriptor, deklariert werden:

FILE *Datenstroml [, ... *DatenstromlN];

Um eine Datei anzulegen oder zu bearbeiten, muss der Datenstrom zu die-
ser Datei gedffnet werden. Dazu dient die folgende, in <stdio.h> deklarierte
Funktion:

FILE *fopen(const char *Name, const char *Modus);

Hierbei ist Name ein String, der den Dateinamen enthélt. Modus gibt an, zu
welchem Zweck die Datei gedffnet werden soll:

e 1 (read): Die Datei soll zum Lesen gedffnet werden.

164

7 Fortgeschrittene Ein- und Ausgabe

w (write): Die Datei soll zum Schreiben gedfinet werden. Existiert die Datei
Name noch nicht, wird sie angelegt. Andernfalls wird der Inhalt der Datei
mit dem neuen Inhalt iiberschrieben.

a (append): Es sollen Daten am Ende der betreffenden Datei angehéngt
werden. Existiert die Datei Name noch nicht, so entspricht das Verhalten
dem des w-Modus, d.h. die Datei wird neu angelegt.

Die Funktion liefert einen Zeiger auf den gedffneten Datenstrom zuriick bzw.
NULL, wenn das Offnen fehlschlagt.

Beispiel 7.1 (Offnen einer Datei zum Lesen).

FILE * infile;

infile = fopen("parameter.dat", "r");

if (infile == NULL)

{
printf("Datei konnte nicht gedffnet werden.\n");
return 1;

Das Schliefsen von Datenstromen geschieht mit Hilfe von

int fclose(FILE *Datenstrom) ;

Der Riickgabewert ist 0, wenn der Datenstrom erfolgreich geschlossen wurde.
Um sicher zu sein, dass eine Datei wirklich geschlossen ist, sollte man stets
vor dem Programmende alle mit fopen() gedffneten Datenstréme auch wie-
der schlieffen.

Die folgenden speziellen Datenstréome sind vordefiniert und miissen nicht ei-
gens gedffnet werden:

stdin: Standardeingabe, dieser Datenstrom liefert Eingaben {iber die Ta-
statur.

stdout: Standardausgabe, dieser Datenstrom schreibt gepuffert auf den
Bildschirm, d.h. dass die Programmausgaben so lange gesammelt werden,
bis entweder der vom Betriebssystem bereit gestellte Ausgabepuffer voll-
geschrieben oder etwa das Programm beendet ist.

stderr: Standardfehlerausgabe, dieser Datenstrom schreibt ungepuffert
auf den Bildschirm. Lenkt man, wie in Anhang B gezeigt, die Ausgabe
eines Programms in der Kommandozeile mittels > um, so wirkt dies nur auf
die Standardausgabe. Fehlermeldungen iiber stderr erscheinen weiterhin
auf dem Bildschirm.

7.1 Arbeiten mit Dateien 165

7.1.1 ASCII-Format

Die folgenden in <stdio.h> deklarierten Funktionen dienen dem zeichen- bzw.
stringorientierten Austausch von Daten eines Programms mit Dateien.

! Insbesondere folgt hieraus, dass auch die printf ()-Funktion diesen Riickgabewert

fprintf () - Ausgaben in Datei (Datenstrom).

int fprintf(FILE *Ds, const char *Format [, Daten]);

Gibt analog zu printf () Daten geméf den Angaben in Format iiber den
Datenstrom Ds aus. Daher ist printf (...) identisch mit

fprintf (stdout, ...).
Die Funktion liefert die Anzahl der erfolgreich geschriebenen Zeichen zu-
riick (ohne die Stringterminierung) *.

fscanf () - Einlesen aus einer Datei (Datenstrom).

int fscanf (FILE *Ds, const char *Format, ..., Daten]);

Liest analog zu scanf () Daten geméfs den Angaben in Format vom Da-
tenstrom Ds ein. Daher ist scanf (...) dquivalent zu

fscanf (stdin, ...).
Die Funktion liefert die Anzahl der erfolgreich an Variablen in Daten zuge-
wiesenen Werte zuriick. Damit hat man eine zusétzliche Moglichkeit, auf
falsche Eingaben zu reagieren.

fputc() - Ausgabe eines Zeichens in eine Datei (Datenstrom).

int fputc(int zeichen, FILE #*Ds);

Schreibt zeichen in die Datei bzw. den Datenstrom, auf den der Deskrip-
tor Ds zeigt, und liefert bei Erfolg zeichen zuriick. Der Wert von zeichen
wird allerdings intern in den Typ char umgewandelt.

fgetc() - Einlesen eines Zeichens aus einer Datei (Datenstrom).

int fgetc(FILE #*Ds);

Liest ein Zeichen aus der Datei bzw. dem Datenstrom, auf den Ds zeigt,
aus und liefert bei Erfolg dieses Zeichen zuriick. Bei erneutem Aufruf wird
das néchste Zeichen des Datenstroms eingelesen.

fgets() haben wir bereits auf Seite 157 kennen gelernt.

besitzt.

166 7 Fortgeschrittene Ein- und Ausgabe

Wir kénnen nun ein eigenes Programm zum Kopieren von Textdateien schrei-
ben:

Beispiel 7.2 (Zeichenweises Kopieren von Dateien).

1 #include <stdio.h>

2

3 void kopiere(FILE *von, FILE *nach)

4 A

5 int c;

6 for (53)

7 {

8 c = fgetc(von);

9 if (¢ == EOF) break;

10 fputc(c, nach);

11 }

12 }

13

14 int main ()

15 {

16 FILE *von_datei, *nach_datei;

17 char von_name[100], nach_name[100];
18

19 printf ("Name Eingabedatei: ");

20 scanf ("%s", von_name);

21

22 von_datei = fopen(von_name, "r");
23 if (!'von_datei)

24 {

25 fprintf (stderr, "Fehler beim Offnen von %s\n",
26 von_name) ;

27 return 1;

28 }

29

30 printf ("Name Ausgabedatei: ");

31 scanf ("%s", nach_name) ;

32

33 nach_datei = fopen(nach_name, "w");
34 if ('nach_datei)

35 {

36 fprintf (stderr, "Fehler beim Offnen von %s\n",
37 nach_name) ;

38 return 1;

39 }

40

41
42
43
44
45

7.1 Arbeiten mit Dateien 167

kopiere(von_datei, nach_datei);

fclose(von_datei) ;
fclose(nach_datei);

In Zeile 6 erzeugt for(;;) eine Endlosschleife, man kann alternativ auch
while(1) verwenden.

Zeile 9: Das vordefinierte Zeichen EOF markiert das Ende der Eingabedatei.
Ist dieses erreicht, so wird die Schleife verlassen. In Zeile 5 wird daher fiir
das Ergebnis von fgetc() in Zeile 8 nicht char, sondern int benutzt.
Somit konnen sowohl alle Werte (0, ..., 255) eines einzelnen Bytes, als
auch EOF abgebildet werden.

EOF wird nicht nach dem Lesen des letzten Bytes geliefert, sondern erst
bei dem darauf folgenden Leseversuch. Daher findet der Test auf Erreichen
des Dateiendes in Zeile 9 statt.

In den Zeilen 20 und 31 liest scanf () den Dateinamen (bis zum ersten
Leerzeichen).

In den Zeilen 23 und 84 wird getestet, ob die jeweilige Datei im gewiin-
schen Modus (Zeilen 22 und 33) gedffuet werden konute.

Die Fehlermeldungen in den Zeilen 25 und 36 werden zur Standardfehler-
ausgabe geschickt. O

Das néchste Beispiel erzeugt eine Wertetabelle fiir die Sinusfunktion und spei-
chert sie in einer Datei.

Beispiel 7.3 (Erzeugen einer Wertetabelle).

1
2
3
4

© 00 N o O

10
11
12
13
14
15
16
17

#include <stdio.h>
#include <math.h>

void erzeuge_daten(float a, float b, int N, float x[],
float y[1)
{
/* erzeugt wertetabelle der sin-funktion im
* bereich [a, b] an N gleichverteilten stellen.

*/

int i;
float h=(b-a)/(N-1.0);
for (i=0; i<N; ++i)
{
x[i] = a + i * h;
y[i] = sin(x[il);

168 7 Fortgeschrittene Ein- und Ausgabe

18 }

19

20 void schreibe_daten(FILE *out, int N, float x[],
21 float y[1)
22 A

23 int i

24 for (i=0; i<N; ++i)

25 fprintf (out, "%e %e\n", x[il, y[il);

26 }

27

28 int main()

29 {

30 FILE *out;

31 float x[200], y[200];

32

33 /* sin-tab von x=0 bis x=10.0, in 200 punkten */
34 erzeuge_daten(0.0, 10.0, 200, x, y);

35

36 out=fopen("sin.dat", "w");

37 if (lout)

38 {

39 fprintf (stderr, "Fehler beim Schreiben.");
40 return 1;

41 }

42 schreibe_daten(out, 200, x, y);

43

44 fclose(out);

45 }

Wenn man die erzeugte Datei sin.dat mit einem Texteditor 6ffnet, sieht
man pro Zeile ein z-y-Paar. Zur Visualisierung der Daten kdnnen wir GNU-
PLOT (siche Anhang C) einsetzen und erhalten nach Eingabe von

gnuplot> plot ’sin.dat’

ein Fenster, in dem die Daten dargestellt werden. a

7.1.2 Binire Ein- und Ausgabe

Als Alternative zur zeichenorientierten Ein- und Ausgabe in Dateien gibt es
noch die Méglichkeit, die Daten bindr zu verarbeiten.

Vorteile:

e Bei der Ausgabe von Gleitpunktzahlen als Zeichen hingt der bendtigte
Speicher von der Anzahl der Stellen ab. Dagegen bestimmt im Binarformat

7.1 Arbeiten mit Dateien 169

allein der Datentyp die Grofse. Bindrdaten verbrauchen daher meistens
deutlich weniger Speicherplatz als die ASCII-Variante.

Die binére Ein- und Ausgabe ist maschinennah und damit deutlich schnel-
ler.

Nachteile:

Binédre Daten sind nicht direkt fiir den Menschen lesbar.
Bindrformate unterscheiden sich von System zu System, so dass Daten in
manchen Fillen erst umgewandelt werden miissen.

Bei den meisten Systemen werden die Datenstrome im Prinzip wie bei

der zeichenorientierten Ein- und Ausgabe gedffnet. Auch wenn dies nicht auf
allen Plattformen nétig ist, sollte dem Modusbezeichner ein "b" hinzugefiigt
werden, z.B. statt "r" zum bindren Lesen "rb".

Zur bindren Ein- und Ausgabe verwendet man

Binire Ausgabe:

size_t fwrite(const void *ptr, size_t groesse,
size_t anzahl, FILE *Ds);

Die Funktion schreibt von der Speicherposition, auf die ptr zeigt, anzahl
Datenobjekte der Grofse groesse in den Datenstrom Ds. Der Riickgabe-
wert ist die Anzahl der erfolgreich geschriebenen Datenobjekte.

Bindre Eingabe:

site_t fread(const void *ptr, size_t groesse,
size_t anzahl, FILE *Ds);

Die Funktion liest anzahl Datenobjekte der Grofe groesse aus dem Da-
tenstrom Ds und speichert sie (sequenziell) ab der Position, auf die ptr
zeigt. Der Riickgabewert ist die Anzahl der erfolgreich gelesenen Daten-
objekte.

Beispiel 7.4 (Kopieren von Dateien, Bindrversion).
Wir kénnen die Funktion copy () aus Beispiel 7.2 wie folgt modifizieren:

1
2
3
4
5
6
7
8
9

void kopiere(FILE *von, FILE #*nach)

{
const size_t BUFFERLEN = 1024; /* 1 kbyte */
char buffer [BUFFERLEN];
size_t anz_dat;

do {
anz_dat = fread((void *) buffer, sizeof(char),
BUFFERLEN, von);

170

10
11
12
13

7 Fortgeschrittene Ein- und Ausgabe

furite((void *)buffer, sizeof(char), anz_dat, nach);
}
while (!'feof(von));
}

Das Programm kopiert die mit dem Modus "rb" zu 6ffnende Datei nicht
Zeichen fir Zeichen, sondern versucht, Blocke der Grofe 1024 Byte zu
lesen und zu schreiben (Modus "wb"). Diese Version ist daher in der Regel
wesentlich schneller als die ASCII-Variante aus Beispiel 7.2.
Zeile 12: Mit Hilfe der Bibliotheksfunktion feof () kann man feststellen,
ob das Dateiende erreicht ist.
Die Abbruchbedingung findet sich hier an einer anderen Stelle als in Bei-
spiel 7.2: Liest das Programm in den Zeilen 8-9 iiber das Dateiende hin-
weg, so wird das EOF-Flag des Datenstroms gesetzt. Die bereits gelesenen
Daten miissen aber noch in Zeile 10 geschrieben werden. Sollte die Einga-
bedatei eine Grofe haben, die ein Vielfaches der verwendeten Pufferlinge
ist, so wird beim letzten Durchlauf in den Zeilen 8-9 nichts mehr gelesen
und anz_dat hat dann den Wert 0. Entsprechend wird dann in Zeile 10
auch nichts geschrieben und die Funktion terminiert korrekt in Zeile 12.
O

Beispiel 7.5 (Schreiben einer Wertetabelle, binére Version).
Wir koénnen das Beispiel 7.3 so abédndern, dass die Tabelle im Bin&rformat
geschrieben wird. Das Programm hat dann die folgende Gestalt:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

#include <stdio.h>
/* erzeuge_daten() hier einfiigen */

void schreibe_vektor_bin(FILE *out, int N, float x[])
{
size_t anz;
anz=fwrite (&N, sizeof(int), 1, out);
if (anz !'= 1) {
fprintf (stderr, "Kann N nicht schreiben.");
return;
}
anz=fwrite(x, sizeof(float), N, out);
if (anz !'= N) {
fprintf (stderr, "Kann x nicht schreiben.");
return;

int main()

7.2 Kommandozeilenargumente 171

21 A{

22 FILE *out;

23 float x[200], y[200];

24

25 /* hier einfiigen: aufruf erzeuge_daten() und
26 * datei Ooffnen.

27 */

28

29 schreibe_vektor_bin(out, 200, x);
30 schreibe_vektor_bin(out, 200, y);
31

32 fclose(out);

3 %

Das Programm ist aus Platzgriinden in dieser Version nicht lauffihig, man
muss noch in den Zeilen 8 und 25-27 die entsprechenden Quelltextteile wie
in Beispiel 7.3 einfiigen. Man sollte dieses Programm testweise {ibersetzen
und die Grofe der von Beispiel 7.3 erzeugten Datei mit der Grofse der hier
erzeugten bindren Version vergleichen. O

7.2 Kommandozeilenargumente

Unsere Kopierprogramme in den Beispielen 7.2 und 7.4 sind noch etwas um-
stdndlich in ihrer Bedienung, da der Benutzer zur Eingabe der Dateinamen
aufgefordert werden muss. Zum Gliick sieht C die Verwendung von Komman-
dozeilenargumenten vor. Diese Schnittstelle basiert darauf, dass man main()
wie einer gewohnlichen Funktion auch Argumente iibergeben kann.

Die Argumentiibergabe an main() muss zwar auf vordefinierte Art und
Weise geschehen, ist aber sehr flexibel gestaltet, wie man an der Deklaration
erkennen kann:

int main(int argc, char **argv);

Dabei ist

e argc die Anzahl der beim Programmaufruf ibergebenen Argumente, ein-
schlieflich des Programmnamens,

e argv ein Feld von Strings, dessen Eintriage die {ibergebenen Argumente
sind. Die Nummerierung beginnt wie immer mit 0, wobei argv[0] der
Programmname selbst ist.

Hat man z.B. ein Programm prog iibersetzt, so fiithrt der Aufruf
$ prog abc 1234
zu der folgenden Belegung:

172 7 Fortgeschrittene Ein- und Ausgabe

argc: 3

argv[0] : "prog"
argv[1] : "abc"
argv[2] : "1234"

Die Zeichenketten sind natiirlich mit >\0’ terminiert. Durch diesen Zugriff auf
die Kommandozeile kann das Verhalten eines Programms sehr komfortabel
bereits beim Aufruf gesteuert werden.

Beispiel 7.6 (Ausgabe der Kommandozeilenargumente).

1 #include <stdio.h>

2

3 int main(int argc, char **argv)

4 A

5 int i;

6 for (i=0; i<argc; i++)

7 printf ("Arg Nr. %d: %s\n", i, argv[il);
8 }

Nach dem Ubersetzen kann man beim Programmaufruf eine willkiirliche
Liste von Parametern {ibergeben, die durch Leerzeichen voneinander getrennt
sind. Diese werden der Reihe nach auf dem Bildschirm ausgegeben. ad

Zunéchst sind also alle Kommandozeilenargumente vom Datentyp her Strings.
Damit man sie zur Belegung von Variablen mit Werten verwenden kann, miis-
sen sie unter Umstédnden mit Hilfe der Funktionen aus Abschnitt 6.2.2 in den
jeweiligen Datentyp umgewandelt werden.

Mit Hilfe der Variablen argc kann man priifen, ob dem Programm die rich-
tige Anzahl an Eingabeparametern mitgegeben wurde und entsprechend rea-
gieren. Betrachten wir dazu die folgende Modifikation des Hauptprogramms
aus Beispiel 7.3.

Beispiel 7.7 (Wertetabellen mit Kommandozeilenargumenten).

1 int main(int argc, char **argv)
2 {

3 FILE *out;

4 int N;

5 float a, b, *x, *y;
6

7

8

9

if (argc !=5) {
fprintf (stderr, "Verwendung:\n");
fprintf (stderr, " ¥%s <N> <a> <dateiname>\n",
10 argv[0]);
11 return 1;

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

7.2 Kommandozeilenargumente 173

N = atoi(argv([1]);
atof (argv[2]);
atof (argv[3]);

a
b

printf ("N=d, a=)f, b=)f\n", N, a, b);

x = (float *) malloc(N*sizeof (float));

if (x==NULL) {
fprintf (stderr, "Nicht geniigend Speicher\n");
return 1;

}

y = (float *) malloc(Nxsizeof (float));

if (y==NULL) {
fprintf (stderr, "Nicht geniigend Speicher\n");
free(x);
return 1;

erzeuge_daten(a, b, N, x, y);

out=fopen(argv[4], "w");
if (lout) {
fprintf (stderr, "Kann ’%s’ nicht beschreiben",
argv[4]);
free(x);
free(y);
return 1;
}

schreibe_daten(out, N, x, y);

free(x);
free(y);
fclose(out);

In den Zeilen 9-10 wird argv[0] dazu benutzt, den aktuellen Programm-
namen mit auszugeben.

In den Zeilen 14—16 benutzen wir die bekannten Bibliotheksfunktionen aus
<stdlib.h>, um die Argumente vom Typ char * nach int bzw. float
zu konvertieren.

174 7 Fortgeschrittene Ein- und Ausgabe

e Da das Programm mit Feldern arbeitet, deren Gréfe bei der Ubersetzung
des Programms nicht feststeht, miissen wir mit malloc() und free() ar-

beiten.
o Zeile 34: Das vierte Kommandozeilenargument wird zur Ubergabe des
Dateinamens benutzt. a

Hat man den Quelltext erfolgreich zu einem ausfiilhrbaren Programm na-
mens sinwerte iibersetzt, so ruft man es fiir die Erzeugung einer Wertetabelle
im Intervall [0,1] mit 21 Stiitzstellen folgendermaften auf:

$./sinwerte 21 0 1 werte.dat

Bei dieser einfachen Verwendung wurde weder auf Zuléssigkeit, d.h. Konver-
tierbarkeit der Parameter gepriift, noch ist die Implementierung flexibel, was
die Reihenfolge der Parameter betrifft. In der UNIX-Welt ist es verbreitet,
zu diesem Zweck eine mit -’ versehene Parameterbezeichung zu verwenden.
So fiihren sowohl 1s *.c -1 als auch 1s -1 *.c zum gleichen Ergebnis. Ist
diese Bezeichnung eindeutig, so kann der nachfolgende String im Hauptpro-
gramm der richtigen Variablen zugeordnet werden. Diese Uberpriifungen kén-
nen sehr aufwendig sein. Es gibt zum Gliick hierfiir — je nach Compiler — die
in <getopt.h> oder <unistd.h> deklarierten Funktionen. Mit dem Befehl

$ man 3 getopt

kann man priifen, ob und wie diese Funktionen zu verwenden sind.

7.3 Beispiel: Unbeschrinktes Bakterienwachstum

Wir kehren zu dem in Beispiel 1.1 gewonnenen Modell fiir die Beschreibung
des Wachstums von Bakterienkulturen zuriick und simulieren die zeitliche
Entwicklung der Kultur mit Hilfe des Euler-Verfahrens (Beispiel 1.6).

Das zu losende Anfangswertproblem lautet fiir ¢ € [0, T:

N'(t) = AN(t), N(0) = N,

Hierbei ist Ny der Bakterienbestand der Kultur zur Beginn der Simulation und
A > 0 die Wachstumsrate. Die Qualitdt unserer Ndherungslosung bestimmen
wir durch Vergleich mit der exakten Losung

N(t) = Noe,
die ein unbeschrankt mdgliches Wachstum der Kultur beschreibt.

1 #include <stdio.h>

2 #include <math.h>

3

4 double run_euler (FILE *out, double dt, double tmax,

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

7.3 Beispiel: Unbeschrianktes Bakterienwachstum

double NO, double lambda)

double t=0, max_err = 0, err, N=NO, N_exakt;

while (t<tmax+dt)

{

}

N_exakt = NO*exp(lambdaxt) ;

err = fabs(N_exakt-N);

if (err>max_err)
max_err=err;

fprintf (out, "%e %e %e\n", t, N, N_exakt);

N += dtxlambda*N;
t += dt;

return max_err;

int main()

FILE *fp;
double max_err;

fp=fopen("exp.dat", "w");
max_err=run_euler (fp, .05, 1.0, 100.0, 1.5);

printf ("Maximaler absoluter Fehler: Ye\n", max_err);

fclose(fp);

175

Zeilen 4—23: Die Funktion run_euler () schreibt in die durch out referen-
zierte Datei je Zeile die drei Werte ¢, Ny und N (t) (Zeile 17).
Das eigentliche Euler-Verfahren wird in den Zeilen 19 und 20 angewandt.
Durch Zeile 13 wird der aktuelle absolute Fehler des Verfahrens ermittelt.
In den Zeilen 14 und 15 erfassen wir den maximalen absoluten Fehler des
Verfahreuns.
Das Abbruchkriterium in Zeile 9 stellt sicher, dass die Simulation auf jeden
Fall bis tmax l&uft. Aufgrund der Fehler der Addition von double Werten
sollte man keine Uberpriifung von der Art t<=tmax verwenden.
Der Aufruf in Zeile 81 16st nun die Wachstumsgleichung im Interval 0 bis
1 Stunde mit Ny = 100, A = 1.5 h~! und At = 0.05 h.

176 7 Fortgeschrittene Ein- und Ausgabe

I [;
Euler-Verfahren o Y
Exakte Losung —-—-—- W

L]
/
/
// <o
/
L , B
s
/
7/
// <>
L , B
//<>
/
//<>
p
| 70 H
6
%
p
| Pl |
-5
Y
S
L PR B
<
-°
o
=@ \ \ \ \

Abb. 7.1. Simulation des Bakterienwachstums fiir At = 0.05 h.

Startet man das Programm, so gibt es den maximalen absoluten Fehler aus
und erstellt die Datei exp.dat. Deren Inhalt kann mit GNUPLOT durch den
Befehl

gnuplot > plot ’exp.dat’ using 1:2, ’exp.dat’ using 1:3

visualisiert werden.

Wie man in Abb. 7.1 sieht, liefert das Euler-Verfahren lediglich eine Na-
herung, die umso besser wird, je kleiner man den Parameter dt wihlt.

Zur Ubung modifiziere man das Programm so, dass man die Parameter
tmax, dt, lambda und NO sowie den Namen der Ausgabedatei dem Programm
an der Kommandozeile ibergeben kann und experimentiere mit verschiedenen
Werten. Ferner sollte die Implementierung robuster gemacht werden als im
gezeigten Quelltext, indem man anhand der Riickgabewerte beim Offnen bzw.
Beschreiben der Datei auf Fehler entsprechend reagiert.

Eine Verbesserung dieses Ndherungsverfahrens wird in den Aufgaben zu
diesem Kapitel vorgestellt.

7.4 Kontrollfragen zu Kapitel 7 177

7.4 Kontrollfragen zu Kapitel 7

Frage 7.1

Die Datei matrix.dat soll zum bindren Lesen iiber den Datenstrom infile gedffnet
werden. Welche der folgenden Anweisungen leistet dies?

a) infile = fopen(matrix.dat,’br’);

b) fopen(infile,"matrix.dat", "br");

c) infile = fopen("matrix.dat","br");

d) infile = (double #*#*) fopen("matrix.dat","br");
) matrix.dat = fopen(infile,"br");

Oooooo

@

Frage 7.2

Welche der folgenden Aussagen sind wahr?

a) Binir gespeicherte Daten brauchen immer weniger Speicherplatz als Daten
in ASCII. O
b) Binir gespeicherte Daten brauchen meistens weniger Speicherplatz als Daten
in ASCIIL.]
¢) Binir gespeicherte Daten konnen auf jeder Plattform gelesen werden.]
d) Binédr gespeicherte Daten konnen nur auf der urspriinglichen Plattform gele-
sen werden. O
e) Das Lesen und Schreiben bindr gespeicherter Daten ist in der Regel schneller
als das Lesen und Schreiben von Daten im ASCII-Format. O

Frage 7.3

Welche der folgenden Anweisungen fithren dazu, dass eine Meldung auf die Stan-
dardausgabe stdout geschrieben wird?

a) printf("hallo\n");

b) printf("stdout", "hallo\n");
c) fprintf("stdout", "hallo\n");
d) fprintf(stdout, "hallo\n");

Ooooag

Frage 7.4

Der Quellcode fiir das C-Programm newprog sieht die Verwendung von Komman-
dozeilenparametern vor, z.B. kann es durch

newprog 0.0 0.5 1.0e-15
aufgerufen werden. Welche der folgenden Aussagen treffen zu?

a) Die Variable argc hat den Wert 3. O

) argv[2] enthilt die Gleitpunktzahl 0.5.

) argv[2] enthilt die Stringkonstante "0.5".

) Die zur Umwandlung bendtigten Bibliotheksfunktionen sind in <stdio.h> de-
klariert.]

e) Die Variable argc hat den Wert 4. O

]
]

178 7 Fortgeschrittene Ein- und Ausgabe

7.5 Ubungsaufgaben zu Kapitel 7

7.1 (Bin&res Lesen).
Schreiben Sie eine Funktion

float #*lies_vektor_bin(FILE *input)

die komplementér zur Funktion schreibe_vektor_bin() aus Beispiel 7.5 arbeitet.
Diese Funktion liest also zuerst die Griofe des gespeicherten Vektors, reserviert en-
sprechend Speicherplatz, liest die Daten und liefert einen Zeiger auf den Vektor
zuriick.

Testen Sie diese Funktion in einem Hauptprogramm dadurch, dass Sie mit
schreibe_vektor_bin() Daten in eine Datei schreiben, diese mit der Funktion
lies_vektor_bin() auslesen und am Bildschirm vergleichen.

7.2 (Ein- und Ausgabe von Matrizen iiber Dateien).

a) Schreiben Sie Funktionen, die Matrizen aus Dateien einlesen bzw. in Dateien
ausgeben. Implementieren Sie jeweils eine ASCII- und eine Binirvariante. Eine
Matrix-Datei enthalte dazu in der ersten Zeile die Anzahl der Zeilen und der
Spalten im ASCII-Format, durch ein Leerzeichen getrennt.

In ASCII-Form folgen dann die Matrixzeilen, jeweils am Ende mit einem Zeile-
numbruch. In der Bin#rvariante hingegen wird die Matrix Zeile nach Zeile se-
quenziell abgelegt.

b) Kombinieren Sie die Funktionen aus a) mit den entsprechenden Funktionen zum
Anlegen von Speicherplatz aus Aufgabe 4.4 zu neuen Funktionen, die anhand der
Dimensionsangaben in der Datei Speicher reservieren und bei Erfolg die Matri-
xeintrdge mit den Werten aus der Datei belegen.

Verwenden Sie Doppelzeiger zur Implementierung.

7.3 (Lambertsche W-Funktion darstellen).

Benutzen Sie GNUPLOT, um die Lambertsche W-Funktion aus Aufgabe 5.4 darzu-
stellen. Schreiben Sie dazu ein Programm, das eine Wertetabelle erzeugt und den
Namen der Wertedatei, sowie das betrachtete Intervall und die Anzahl der Stiitz-
stellen als Kommandozeilenargumente entgegennimmt.

7.4 (Logistisches Wachstum).

Wir erweitern das Modell fiir das Bakterienwachstum, indem wir den zur Verfiigung
stehenden Platz mit beriicksichtigen. Das Wachstum AN ist dann sowohl proportio-
nal zur Anzahl N, als auch proportional zu Nyax — N, wobei Npax eine raumbeding-
te Obergrenze fiir die Grofe der Population bezeichnet. Man nennt dies logistisches
Wachstum.

a) Leiten Sie das zugehorige Anfangswertproblem her. Auch hierfiir kennt man die
exakte Losung: Berechnen Sie diese selbst oder schlagen Sie sie in der Literatur
nach (z.B. [5] oder [16]).

b) Implementieren Sie die Losung dieses Problems mit Hilfe des Euler-Verfahrens
und vergleichen Sie die Ndherung mit der exakten Lésung. Was passiert, wenn
Sie die unsinnige Startbedingung Ny > Npax wihlen?

7.5 Ubungsaufgaben zu Kapitel 7 179

7.5 (Verbesserung des Euler-Verfahrens).
Wir versuchen, das Euler-Verfahren zu verbessern, indem wir die Approximation

Yi+r1 + 'yz)

Yiv1 = Yi + Atf (th 5

benutzen.

a) Zeigen Sie, dass die Anwendung dieses Verfahrens auf das unbeschrinkte Bakte-
rienwachstum zu der Vorschrift

14 A\At/2

Nip1 = Ni——————
1 leAAUQ

fiihrt.
b) Implementieren Sie dieses Verfahren, testen Sie es und vergleichen Sie das Ergeb-
nis mit dem, das das Euler-Verfahren liefert.

8

Fortgeschrittene Datentypen

In C kann man die elementaren Typen, Zeiger und Felder zu eigenen Daten-
typen kombinieren. Wihrend die Komponenten eines Feldes alle vom selben
Datentyp sein miissen, ist dies bei den so genannten Strukturen nicht der Fall.
Beispielsweise ist der in <stdio.h> deklarierte Datentyp FILE aus Kapitel 7
eine Struktur.

Es ist in C sogar moglich, mit Zeigern auf Funktionen zu arbeiten. Dies ist
besonders giinstig, wenn man flexibel einsetzbare Funktionen implementieren
mochte. Einige niitzliche Funktionen der Standardbibliothek greifen auf diese
Technik zuriick.

8.1 Strukturen

Bisher haben wir nur iiber Felder die Moglichkeit, aus elementaren Datentypen
weitere Typen abzuleiten. Die Einschrankung ist hierbei, dass wir ausschliefs-
lich Datenobjekte desselben Typs in einem Feld zusammenfassen konnen.

Grundlegendes zu Strukturen

Datenobjekte verschiedenen Typs werden in so genannten Strukturen
miteinander kombiniert und kénnen als Ganzes angesprochen werden.

Ein einfaches Beispiel aus dem Alltagsleben ist

struct Adresse {
char[100] name;
char[100] strasse;
int plz;
char[100] ort;

182 8 Fortgeschrittene Datentypen

Man kann sich das wie eine Karteikarte vorstellen, auf welcher man bekannte
Datentypen zu einem neuen zusammenstellt. Dies nutzt man normalerweise,
wie in diesem Beispiel, um inhaltlich zusammenhingende Variablen unter-
schiedlichen Typs zu gruppieren.

Die Deklaration einer Struktur ist gekennzeichnet durch das reservierte Wort
struct und hat allgemein die folgende Gestalt:

struct Name
Deklarationi;

[Deklaration2;

DeklarationlN;]
};

Betrachten wir als weiteres Beispiel eine Struktur vom Typ struct Punkt,
die aus drei float-Werten besteht:

struct Punkt {
float x;
float y;
float z;
}s

Den neuen Datentyp struct Punkt kann man dann wie folgt benutzen:

struct Punkt p;

p.x = 3.0;
pP.y = pP-X%;
p.z = 0;

Mit der ersten Anweisung deklarieren wir eine Variable p vom Typ struct
Punkt. Die drei Komponenten der Struktur werden anschlieffend mit Werten
belegt.

Lesenden und schreibenden Zugriff auf eine Komponente einer Struk-
tur erhalt man durch Anwendung des Auswahloperators ..

Die Initialisierung einer Struktur kann alternativ auch durch
struct Punkt p = { 1.0f, 0.0f, 3.0f };
vorgenommen werden, d.h. durch Angabe der Werte geméfs ihrer deklarierten

Reihenfolge.

Bemerkung. Man konnte einwenden, dass Variablen wie das obige p auch
durch ein Feld der Form float p[3] realisierbar sind. Die Verwendung von
struct hat allerdings den Vorteil, dass die Bedeutung der Eintrige klarer
wird. Ein weiteres Argument fiir den Einsatz von Strukturen ist, dass sie bei

8.1 Strukturen 183

Bedarf noch nachtriglich um Komponenten eines anderen Datentyps erweitert
werden koénnen.

Schlieflich bieten sich Strukturen an, wenn eine Funktion mehr als einen
Wert, zuriickliefern soll. Das kann man dann zwar auch mittels Call by Refe-
rence (siche Abschnitt 4.2) erreichen, die Verwendung von Strukturen ist aller-
dings sicherer und oft auch leichter nachzuvollziehen: Parameter und Riickga-
bewerte sind so klar zu unterscheiden und der Schutz der Argumentvariablen
durch den Call by Value-Ubergabemechanismus bleibt bestehen.

Man kann Strukturen als Ganzes einander zuweisen, jedoch nicht mitein-
ander vergleichen. Das bedeutet, dass in

struct Punkt pl, p2;
pl = p2;
if (p1==p2)

die Zuweisung korrekt ist, die Bedingung in der if-Anweisung jedoch nicht.
Bei einer Zuweisung wird der Inhalt einer Struktur automatisch komponen-
tenweise kopiert. Die dritte Zeile wird jedoch vom Compiler beanstandet und
man ist gezwungen, die beiden Strukturen Komponente fiir Komponente mit-
einander zu vergleichen.

Die Zuweisung von Strukturinhalten verhilt sich also nicht anders als die
von Variableninhalten bei den elementaren Datentypen. Damit kénnen Struk-
turen ohne Weiteres als Call by Value-Argumente von Funktionen verwendet
werden:

1 float abstand(struct Punkt pl, struct Punkt p2)
2 {

3 float summe = 0.0;

4 summe += (pl.x-p2.x) * (pl.x-p2.%X);

5 summe += (pl.y-p2.y) * (pl.y-p2.y);

6 summe += (pl.z-p2.z) * (pl.z-p2.2);

7 return sqrt(summe) ;

8

}

Hier miissen beim Aufruf abstand(a,b) zuerst die Inhalte der Strukturen
a und b nach p1 und p2 kopiert werden. Dies kann bei groflen Strukturen
allerdings recht aufwendig sein.

Zeiger auf Strukturen

Natiirlich kann man auch fiir Strukturen den Call by Reference-Ubergabeme-
chanismus verwenden:

1 float abstand2(const struct Punkt * pil,
2 const struct Punkt * p2)

184

O 0 N O oW

8 Fortgeschrittene Datentypen

{
float summe = 0.0;
summe += (pl->x - p2->x) * (pl->x - p2->x);
summe += (pl->y - p2->y) * (pl->y - p2->y);
summe += (pl->z - p2->z) * (pl->z - p2->z);
return sqrt(summe) ;

}

Hierzu einige Anmerkungen:

Die Ubergabe von Zeigerwerten in Zeile I erspart das komponentenweise
Kopieren der Strukturen, da die Gréfse der Zeiger nicht vom Aufbau der
jeweiligen Struktur, sondern nur von der Rechnerarchitektur abhingen.
Im Gegensatz zur Call By Reference-Ubergabe haben wir die Deklarati-
on der Argumente in Zeile 1 mit const versehen. Dieser ,Schreibschutz*
verbietet die Manipulation von Strukturkomponenten innerhalb der Funk-
tion. Man beachte, dass const vor struct stehen muss und dass nicht der
Zeiger als solcher als const anzusehen ist, sondern der Wert, den dieser
Zeiger referenziert.

Im Korper der Funktion haben wir z.B. in Zeile 5 den abkiirzenden Aus-
wahloperator -> benutzt.

Der Ausdruck t->a ist dquivalent zu (*t) .a, d.h. der Operator ->
dereferenziert den Zeiger t und wéhlt gleichzeitig die Komponente
a aus.

So ist die Zeile 5

dist += (pl->x - p2->x) * (pl->x - p2->x);
dquivalent zu

dist += ((*pl).x - (¥p2).x) * ((*¥pl).x - (*p2).x);

Die zweite Variante ist jedoch schwerer zu lesen und anfélliger fiir Fehler.
Auch auf Strukturen kann man den Adressoperator & anwenden. Der Auf-
ruf der Funktion abstand2() sieht daher wie folgt aus:

struct Punkt pl, p2;
pl.x= ...

double dist = abstand2(&pl, &p2);

Verschachteln von Strukturen

Strukturen kann man auch ineinander verschachteln. Dies kann sinnvoll sein,
um vorhandene Strukturen und darauf aufbauende Funktionen wiederzuver-
wenden. Folgendes ist allerdings hierbei zu beachten:

8.1 Strukturen 185

Eine Struktur darf nicht sich selbst als Komponente enthalten. Ein
Zeiger auf die Struktur ist aber als Komponente zuléssig.

In der Physik werden z.B. Planeten als so genannte Massepunkte modelliert.
Darunter versteht man einen Punkt ohne rdumliche Ausdehnung zusammen
mit einer zugehorigen Masse. Wir kdnnen nun auf der bekannten Struktur
struct Punkt aufbauen und den Datentyp struct Planet folgendermafien
deklarieren:

struct Planet {
struct Punkt p;
float masse;
};
Der Auswahloperator ’.” wird jetzt hierarchisch angewendet, um auf alle Kom-
ponenten zuzugreifen:

struct Planet planet;

planet.p.x = 1.0;
planet.p.y = 2.0;
planet.p.z = 3.0;
planet.masse = 1000;

Die bereits implementierte Funktion abstand2() kann man ohne jede Ande-
rung zur Berechnung des Abstands zweier Planeten verwenden:

struct Planet planetl, planet2;
planetl.p.x = ...;
float dist = abstand2(&planetl.p, &planet2.p);

Wie man sieht, liefert der Adressoperator einen Zeiger auf die Teilstruktur.
Entsprechend kann man bei Zeigern auf geschachtelte Struktur mit dem
Operator -> hierarchisch auf die Komponenten zugreifen.

Felder von Strukturen

Um weitere Aspekte von Strukturen zu demonstrieren, berechnen wir den
gemeinsamen Schwerpunkt von n Massepunkten. Die grundlegende Formel
fiir die z-Koordinate des Schwerpunkts von n Massepunkten mit Koordinaten
(24, Yi, 2z;) und Massen m; lautet

Z?:’Ol Ti My

E:Z;;7ni

Analog berechnen sich die weiteren Koordinaten s, und s..

Sy —

186 8 Fortgeschrittene Datentypen

1 struct Punkt berechne_schwerpunkt(int n, struct Planet p[])
2 {

3 int i

4 float gesamtmasse = 0.0f;

5 struct Punkt schwerpunkt = { 0.0f, 0.0f, 0.0f };
6

7 for (i = 0; i<n; i++)

8 {

9 gesamtmasse += p[i].masse;

10 schwerpunkt.x += p[i].p.x * p[i].masse;

11 schwerpunkt.y += p[i].p.y * p[i] .masse;

12 schwerpunkt.z += p[i].p.z * p[i] .masse;

13 }

14 schwerpunkt.x /= gesamtmasse;

15 schwerpunkt.y /= gesamtmasse;

16 schwerpunkt.z /= gesamtmasse;

17

18 return schwerpunkt;

19 %

e Wie man an Zeile 1 sieht, kann man auch Felder von Strukturen anlegen.
Es ist natiirlich auch hier erlaubt, ein Funktionsargument als Feld mit
unbestimmter Linge zu deklarieren. In den Zeilen 9-12 sieht man auch
entsprechende lesende Zugriffe, man beachte hier vor allem die Operato-
renreihenfolge.

In Zeile 5 wird die Strukturvariable deklariert und initialisiert.

Beim Funktionsaufruf werden die Daten der Planeten in effizienter Weise
iibergeben: Wie wir wissen, sind Feldbezeichner zugleich Zeiger auf das
erste Feldelement.

Weitere Deklarationsmdglichkeiten

Neben der von uns vorgestellten Syntax zur Deklaration von Strukturen findet
man auch die folgenden Moglichkeiten, welche wir aber nicht empfehlen. Die-
se fassen Deklaration einer Struktur und Deklaration von Strukturvariablen
zusammen. Die erste Moglichkeit ist die folgende:

struct {
Typl Eintragl;
} instanzil, ... ;

In diesem Fall ist instanz1 eine Variable vom Typ der deklarierten Struk-
tur. Die Struktur hat allerdings keinen Namen und kann spéter nicht mehr
verwendet werden.

8.2 Anwendungsbeispiele fiir Strukturen 187

Man kann die beiden Moglichkeiten jetzt kombinieren und der Struktur
auch einen Namen mitgeben:

struct Name {
Typl Eintragl;

} instanzl, ... ;
Dadurch ist im Rest des Programms die Struktur struct Name bekannt, man
kann also spéter weitere Variablen von diesem Typ deklarieren. Gleichzeitig

hat man aber hier auch die Variable instanz1 vom Typ struct Name dekla-
riert.

8.2 Anwendungsbeispiele fiir Strukturen

Dieser Abschnitt ist zwei hiufigen Anwendungsgebieten fiir Strukturen gewid-
met. Als erstes beschéftigen wir uns mit einem Datentyp zur Zeiterfassung auf
dem Computer, der in den Standardbibliotheken enthalten ist. Im Anschluss
stellen wir kurz ein sehr weit verbreitetes Konzept zur Implementierung von
so genannten Listen vor.

8.2.1 Zeitmessung

In den einzelnen Headerdateien sind Strukturen fiir die unterschiedlichsten
Verwendungszwecke vordeklariert. So dient die folgende Struktur u.a. dem
Lesen bzw. Setzen der Systemuhrzeit:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */
s
Diese Struktur ist in der Headerdatei <sys/time.h> deklariert, in der sich
auch die folgende Funktionsdeklaration befindet:

int gettimeofday(struct timeval *tv,
struct timezone *tz);

Mit dieser Funktion wird die Systemzeit! ausgelesen und in die Struktur ge-
schrieben, auf die tv zeigt. Damit kann man z.B. die Laufzeit von Program-
men oder Programmteilen messen. Fiir diesen Zweck geniigt es, als zweiten
Parameter (die Zeitzone) NULL zu libergeben. Bei Erfolg liefert die Funktion
0 zuriick, andernfalls -1.

Die Verwendung dieser Funktion sieht dann beispielsweise so aus:

! Die Systemzeit wird beginnend mit dem 1. Januar 1970 00:00:00 Uhr gemessen.

188 8 Fortgeschrittene Datentypen

1 #include <sys/time.h>

2 ...

3 struct timeval start, end;

4 float diff;

5

6 gettimeofday(&start, NULL); /* start measurement */
7 function();

8 gettimeofday(&end, NULL); /* end measurement */
9

10 diff = end.tv_sec-start.tv_sec

11 + (end.tv_usec - start.tv_usec)*1.0e-6;

12

13 printf("Gemessene Zeit: %.6f Sekunden\n", diff);

8.2.2 Einfach verkettete Listen

Betrachten wir die folgende Struktur:

struct Node {
int value;
struct Node * next;
};
Hier sehen wir ein Beispiel dafiir, dass die Struktur struct Node einen Zeiger
auf struct Node als Komponente next enthlt.
Mit Hilfe dieser Struktur kann man so genannte einfach verkettete Listen
realisieren. Eine solche Liste besteht aus einzelnen, verbundenen Knoten vom
Typ struct Node und hat graphisch dargestellt die folgende Gestalt:

int value

head
struct Node * next

int value

struct Node * next

int value

struct Node * next

8.2 Anwendungsbeispiele fiir Strukturen 189

Wie man sieht, nutzt man die Komponente next als Zeiger auf das nachfol-
gende Listenelement. Ist dieser NULL, so handelt es sich um das letzte Element
der Liste. Der Listenkopf wird durch den Zeiger head implementiert, der auf
das erste Element zeigt. Kennt man diesen, so kennt man auch die ganze Li-
ste. Die Komponente value kann durch beliebig komplexe Daten ausgetauscht
werden, int dient hier nur als einfaches Beispiel.

Die oben skizzierte Liste kdnnte man wie folgt statisch anlegen:

struct Node nodel, node2, node3;
struct Node xhead;

head = &nodel;
nodel.next = &node2;
node2.next = &node3;
node3.next = NULL;

nodel.value = 1;
node2.value = 2;
node3.value =

|
w

Interessanter ist natiirlich eine dynamische Implementierung:

Beispiel 8.1 (Einfach verkettete Liste).

1 struct Node * append_value(struct Node *head, int new_val)

2 {

3 struct Node *actual = head;

4 /* neuen Knoten anlegen */

5 struct Node *new_node;

6 new_node = (struct Node *) malloc(sizeof (struct Node));
7

8 /* primitives errorhandling */

9 if (new_node == NULL) return NULL;

10

11 /* knoten intialisieren */

12 new_node->next = NULL;

13 new_node->value = new_val;

14

15 if (head == NULL) /* leere liste 7 */
16 head = new_node;

17 else { /* ende suchen */
18 while (actual->next)

19 actual = actual->next;

20 actual->next = new_node;

21 }

22 return head; /* ok */

23 }

190 8 Fortgeschrittene Datentypen

e In den Zeilen 6-13 wird ein neues Listenelement dynamisch erzeugt und
mit Werten fiir value und next initialisiert. Die Komponente next wird
mit NULL belegt, da unser neuer Knoten an das Ende der Liste angehangt
werden soll.

e Ist die Liste noch leer, so wird Zeile 16 ausgefiihrt: head zeigt jetzt auf
die Liste, welche nur aus dem neuen Knoten besteht.

e Andernfalls sucht die while-Schleife in Zeile 18 den letzten Knoten der
Liste, der dadurch gekennzeichnet ist, dass die next-Komponente den Wert
NULL hat.

e In Zeile 20 wird dann der neue Knoten hinter den zuvor letzten Knoten
an die Liste angehéngt.

e Da der Wert von head eventuell in Zeile 16 gedndert wird, ist die Imple-
mentierung klarer und robuster, wenn wir head auch als Riickgabewert
verwenden. Gibt die Funktion NULL zuriick, so liegt ein Fehler vor. O

Die statische Implementierung vor Beispiel 8.1 liest sich in der dynamischen
Version wie folgt:

struct Node *head = NULL;

head = append_value(head, 1);
head = append_value(head, 2);
head = append_value(head, 3);

Die Abfrage von Ausnahmefillen haben wir aus Griinden der Ubersichtlich-
keit weggelassen. Man sollte diese Operationen zum besseren Verstindnis auf
einem Blatt Papier nachvollziehen.

Beispiel 8.2 (Ausgeben einer einfach verketteten Liste).
Um eine Liste auszugeben, kann man wie folgt vorgehen:

1 void print_list(struct Node *head)

2 {

3 while (head)

4 {

5 printf ("%d\n", head->value);
6 head = head->next;

7 }

8 %

Hier modifizieren wir den Wert von head innerhalb der Funktion. Es han-
delt sich hier nicht um Call by Reference, da nur der Zeiger verdndert wird,
nicht aber der Wert, auf den dieser zeigt. An Zeile 8 kann man wieder schén
sehen, dass in C der Wert 0 in wirklich all seinen Auspridgungen als ,falsche
Aussage” interpretiert wird. a

8.2 Anwendungsbeispiele fiir Strukturen 191

Beispiel 8.3 (Einfiigen in eine einfach verkettete Liste).
Interessant ist noch die folgende Funktion, die einen neuen Knoten hinter
einen vorhandenen Knoten einfiigt:

1 int insert_after(struct Node *node, int new_val)
2 Ao

3 struct Node *new_node;

4 new_node = (struct Node *) malloc(sizeof (struct Node));
5 if (new_node == NULL)

6 return NULL;

7

8 new_node->value = new_val;

9 new_node->next = node->next;

10

11 node->next = new_node;

12 return 1;

13 %}

Um die Arbeitsweise dieser Funktion besser zu verstehen, sollten Sie den
folgenden Programmteil auf einem Blatt Papier nachvollziehen:

struct Node * head = NULL;

head = append_value(head, 1);
head = append_value(head, 2);
head = append_value(head, 4);

insert_after(head->next, 3);
insert_after (head->next->next->next, 5);

Die Abfrage der Fehlerfille haben wir auch hier aus Griinden der Ubersicht-
lichkeit weggelassen. O

Abschlieftende Bemerkungen. Einfach verkettete Listen haben gegeniiber
den bereits bekannten Feldern sowohl Vor- als auch Nachteile:

Vorteile: Listen wachsen dynamisch mit der Zeit. Felder sind entweder mit
fester Grofe statisch deklariert, oder man muss sie unter Verwendung der
Funktion realloc() (siche Abschnitt 4.4) in ihrer Gréfe anpassen.
Einfiigen und Loschen am Kopf einer Liste der Linge n ist eine Operation
mit konstanter Laufzeit, d.h. O(1), bei Feldern hat man einem Aufwand
von O(n). Gleiches gilt fiir Loschen und Einfiigen, falls man die fragliche
Position bereits in Form eines Zeigers auf das betreffende Element kennt.

Nachteile: Man kann den n-ten Eintrag einer Liste nicht direkt ansprechen,
sondern muss von Eintrag zu Eintrag wandern. So ist z.B. das Suchen in
einer einfach verketteten Liste recht aufwendig.

192 8 Fortgeschrittene Datentypen

Einfach verkettete Listen werden aufgrund der eben besprochenen Vorteile
hauptsédchlich zum Implementieren sogenannter Stacks benutzt. Es handelt
sich hierbei um eine Datenstruktur, die das LIFO-Prinzip (Last In First Out)
umsetzt. Zur Manipulation eines Stacks hat man lediglich zwei Operationen
zur Verfligung:

e push() fiigt einen Eintrag am Kopf der Liste ein.
e pop() liefert den ersten Eintrag zuriick und entfernt diesen gleichzeitig.

Aufler den hier eingefiihrten einfach verketteten Listen gibt es noch weitere
Formen, z.B. die so genannten mehrfach verketteten Listen. Speziell doppelt
verkettete Listen, deren Knoten jeweils einen Zeiger auf den Nachfolger sowie
auf den Vorgénger enthalten, sind weit verbreitet.

8.3 Benennung eigener Datentypen mit typedef

Mit dem Schliisselwort typedef koénnen sowohl elementare Datentypen als
auch Strukturen oder Felder mit einem eigenen Namen versehen werden:

typedef bestehender_Datentyp neuer_Typbezeichner;

So ist die folgende Anweisung erlaubt:
typedef struct Punkt PunktTyp;

Anstelle von struct Punkt kann man jetzt auch PunktTyp schreiben. Man
darf auch selbst eingefithrte Typbezeicher als erstes Argument von typedef
verwenden:

typedef PunktTyp[10] ZehnPunkteFeld;
typedef PunktTyp * PunktZeiger;

ZehnPunkteFeld feld;

Die Variable feld vom Typ ZehnPunkteFeld ist jetzt ein Feld der Lénge
10, wobei jeder Eintrag des Feldes vom Typ struct Punkt ist. Weiterhin ist
eine Variable, welche als PunktZeiger deklariert wird, ein Zeiger auf struct
Punkt.

Man kann Datentyp- und Zeigerbezeichner auch in einer einzigen Anwei-
sung vergeben:

typedef struct {
int value;
struct Node *next;
} Node, *NodePtr;

Die Struktur selbst kann jetzt durch Node und Zeiger auf die Struktur als
NodePtr angesprochen werden.
Folgende Griinde sprechen fiir die Verwendung von typedef:

8.4 Zeiger auf Funktionen 193

Intuitive Bezeichnung: Man kann ,,griffige’ Bezeichungen auch fiir kompli-
zierte Strukturen wihlen und an den Anwendungskontext anpassen. Bei
Strukturen kann das zuweilen ldstige Mitschleppen des reservierten Worts
struct entfallen. Geeignete Namen ermdaglichen so einen leichter zu lesen-
den Quelltext.

Die maschinenunabhingige Implementierung wird erleichtert. Man be-
nennt einen (zumeist elementaren) Datentyp um und verfasst Programme
unter Verwendung dieses Typnamens. Ubertrigt man den Quellcode auf ei-
ne andere Maschinenarchitektur, so muss lediglich die typedef-Anweisung
angepasst werden.

Ein Beispiel: Mochte man fiir bestimmte Zwecke stets mit ganzzahligen
Speicheradressen arbeiten und weift, dass diese auf der einen Maschinenar-
chitektur dem Typ int und auf einer anderen dem Typ long entsprechen,
so definiert man

typedef int IntAddr;

fir die erste Architektur. Den mit diesem Typ arbeitenden Quelltext por-
tiert man auf die zweite Architektur, indem man dort die Anweisung in

typedef long IntAddr;

abindert. Verwendet man ab diesem Punkt nur noch den Typ IntAddr,
so sind keine weiteren Anderungen mehr notwendig. Diese Moglichkeit ist
bei einem gleichzeitigen Nebeneinander von 32- und 64-Bit-Architekturen
von grofsem Nutzen.

8.4 Zeiger auf Funktionen

C bietet nicht nur die Moglichkeit, mit Zeigern auf elementare bzw. selbst er-
zeugte Datentypen zuzugreifen, sondern erlaubt auch, mit Zeigern auf Funk-
tionen zu arbeiten. Dass ein solches Konstrukt auch sinnvoll ist, werden wir
weiter unten sehen.

Aber zuerst betrachten wir ein einfaches Beispiel:

1
2
3
4
5
6
7
8
9

10
11

#include <stdio.h>
typedef float (*ZweiDimFun) (float, float);
float multipliziere(float x, float y)

{
printf ("%f\n", x*y);

float summiere(float x, float y)

{

194

12
13
14
15
16
17
18
19
20
21
22

8 Fortgeschrittene Datentypen
printf ("%f\n", x+y);
}
int main()
{
ZweiDimFun fun;
fun = &multipliziere;
(*fun) (2.0f, 3.0f);
fun = &summiere;
(*fun) (2.0f, 3.01);
}

Am bequemsten arbeitet man mit Funktionszeigern mit Hilfe von typedef
wie in Zeile 8: Variablen vom Typ ZweiDimFun sind jetzt Zeiger auf Funk-
tionen welche zwei Argumente vom Typ float entgegennehmen und einen
Riickgabewert vom Typ float haben.

Die in Zeile 17 deklarierte Variable fun ist ein solcher Funktionszeiger. Da
die Funktionen in den Zeilen 5 und 10 eine entsprechende syntaktische
Form aufweisen, sind die Zuweisungsoperationen in den Zeilen 18 und 20
zuléssig.

In den Zeilen 19 und 21 wird der Funktionszeiger dereferenziert und mit
den Argumenten 2.0 und 3.0 aufgerufen. Der erste Aufruf fiihrt zur Aus-
gabe von 6.0, der folgende liefert 5.0.

Funktionszeiger implementiert man am einfachsten wie folgt:

typedef result_type (*fp_typ_name)(typ_argl, ...)

Der dann zur Verfiigung stehende Typ fp_typ_name représentiert nun Zeiger
auf Funktionen mit der in dieser typedef-Anweisung angegebenen Signatur.

fp_typ_name kann dann in bekannter Art und Weise zur eigentlichen De-

klaration von Funktionszeigern benutzt werden:

fp_typ_name variablel [,variable2, ... ,variableN];

Es

gibt noch weitere Moglichkeiten, Funktionszeiger zu deklarieren, die aber

allesamt zu recht unlesbaren Deklarationen fiihren. Wir empfehlen daher die
hier vorgestellte Methode.

Der Vorteil von Funktionszeigern besteht in der damit erreichbaren Ab-

straktion, was im folgenden Beispiel ersichtlich wird:

1
2
3
4

typedef double (*ReelleFun)(double);

double trapezregel (double a, double b, int N, ReelleFun fun)
{

8.5 Beispiele fiir zusammengesetzte Deklarationen 195

5 double summe, xk;

6 int k;

7

8 summe = 0.5%((xfun) (a)+(xfun) (b)),
9 for (k=2; k<N; k++) {

10 xk = (k-1.0)/(N-1.0)*(b-a)+a;
11 summe += (*fun) (xk);

12 }

13 return (b-a)/(N-1)*summe;

14 }

Im Gegensatz zu der in Beispiel 5.4 implementierten Funktion kommt in
der obigen Implementierung von trapezregel() die zu integrierende Funk-
tion nicht explizit vor, d.h. trapezregel () lisst sich auf beliebig implemen-
tierte Funktionen anwenden, sofern die Signhatur der Vorgabe entspricht:

#include <math.h>

float vall = trapezregel(0.0, M_PI, 1000, &sin);
float val2 = trapezregel(0.0, 1.0, 1000, &sqrt);

Die hier verwendeten Funktionen sin() und sqrt() tauchen nur noch aufier-
halb von trapezregel () auf. Ist daher eine beliebige reelle Funktion nume-
risch zu integrieren, so muss an der Definition der Funktion trapezregel ()
nichts mehr gedndert werden. Dadurch verringert man den Wartungsaufwand
(insbesondere, wenn die Programme mal grofier werden) bei gleichzeitiger Stei-
gerung der Wiederverwendbarkeit von trapezregel().

Wir werden weitere Beispiele fiir Funktionszeiger in Kapitel 9 sehen, wenn
wir die Bibliotheksfunktionen gsort () und bsearch() vorstellen.

Bemerkung. Bei den meisten C-Compilern verhalten sich Funktionen so
dhnlich wie Felder: Der Name einer Funktion ist zugleich auch Zeiger auf
die Funktion, d.h. die Verwendung des Adressoperators kann entfallen.

8.5 Beispiele fiir zusammengesetzte Deklarationen

Wir haben in diesem Kapitel einige neue Moglichkeiten zur Deklaration von
Datentypen kennen gelernt. Diese kann man zu beliebig komplexen Gebilden
kombinieren. Wir diskutieren hier einige Beispiele:

e char *xargv;
Doppelzeiger auf char (ein Feld von Strings).

e double *zeilen[10];
zeilen ist ein Feld mit 10 Eintrigen vom Typ double * (dies sind z.B.
Zeiger auf die Zeilen einer Matrix).

196 8 Fortgeschrittene Datentypen

e double (xzeile)[12];
zeile ist ein Zeiger auf ein Feld mit 12 Eintrigen vom Typ double. Man
vergegenwartige sich den Unterschied zur vorherigen Deklaration. Ein sol-
cher Zeiger zeigt z.B. auf den Beginn einer Matrixzeile.

Bei solchen Deklarationen ist es oft am besten, sich von ,innen nach aufen‘
zu arbeiten, d.h. mit dem Bezeichner zu beginnen und dann unter Beachtung
der Klammerung den Datentyp zu analysieren.

e double func(const int *a, const int *Db);
Die Funktion func() erhilt zwei schreibgeschiitzte Parameter vom Typ
int * und liefert einen Riickgabewert vom Typ double.

e double *vektor(int dim);
Die Funktion vektor() erhilt einen Eingabeparameter vom Typ int und
liefert einen Zeiger auf double zuriick.

e void *generic();
Die Funktion generic() liefert einen Zeiger auf den leeren Datentyp void
zuriick. Dies wird meistens dazu verwendet, Flexibilitat bzgl. des zugrunde
liegenden Datentyps zu gewéhrleisten (siehe z.B. malloc(), calloc()).

Kommen wir jetzt zu den Zeigern auf Funktionen. Wir beginnen mit bereits
bekannten Deklarationen.

e void (* procpntr) (int , int);
procpntr ist ein Zeiger auf eine Prozedur (Riickgabetyp void), die zwei
Eingabeparameter vom Typ int erwartet.

e double *x (x funcpntr) (const double* , const char *);
funcpntr ist ein Zeiger auf eine Funktion, die als (schreibgeschiitzte) Ein-
gabeparameter einen Zeiger auf double sowie einen String erwartet und
einen Doppelpointer auf double zuriickliefert.

Bei Funktionspointern kann es zweckmaéfiger sein, sich von ,aufen nach innen‘
zu arbeiten. Z.B. bedeutet die Deklaration

char *(x(* Bezeichner) ())[10];
dass Bezeichner ein Zeiger auf eine Funktion (ohne Parameter) ist, die einen
Zeiger auf ein Feld mit 10 Stringeintrigen zuriickliefert.
Von auflen nach innen:

e char * Bezeichner[10] ;
Feld mit 10 Strings.

e char *(x Bezeichner) [10] ;
Zeiger auf Feld mit 10 Strings.

e char *(x Bezeichner()) [10];

Funktion mit Riickgabetyp Zeiger auf Feld mit 10 Strings.
e char *(x (* Bezeichner)())[10];
Zeiger auf Funktion mit Riickgabetyp Zeiger auf Feld mit 10 Strings.

8.6 Weitere Datentypen: enum und union 197

8.6 Weitere Datentypen: enum und union

Wir gehen hier der Vollstindigkeit halber auf die Deklaration von so genann-
ten Aufzdhlungstypen und Verbundvariablen ein.

Enums. Das reservierte Wort enum bezeichnet einen Datentyp mit einem
aufgezahlten (engl. enumnerated) Wertebereich. An die Stelle von ganzzahli-
gen Konstanten treten Schliisselworter. Ein Beispiel ist die Deklaration von
Wahrheitswerten:

enum bool { FALSE = 0, TRUE = 1 };

Dadurch entsteht ein neuer Datentyp enum bool und man kann FALSE und
TRUE anstelle der entsprechenden Zahlenwerte benutzen. Der Programmcode
wird so lesbarer, da die Bedeutung des entsprechenden Zahlwerts hervorgeho-
ben werden kann. Abkiirzend ist auch

enum bool { FALSE, TRUE };

moglich. Bei enums wird intern immer mit 0 beginnend gezdhlt, und als In-
krement wird 1 benutzt.

Man konnte dieses Konstrukt auch mittels #define-Direktiven umsetzen,
enums bieten aber als echte Datentypen Vorteile hinsichtlich der Entdeckung
von Fehlern durch den Compiler.

Unions. Die sogenanten Unions &hneln den Strukturen, nur dass sich die
Komponenten einer Union ,liberlagern“. Beispielsweise deklariert

union beispiel {
int ival;
double dval;
}s
eine Union beispiel. Beide Komponenten haben im Speicher die gleiche
Adresse, der Compiler sorgt dafiir dass Variablen vom Typ union beispiel
genug Speicher zugewiesen wird, um die gréfite der Komponenten aufzuneh-
men. Die Komponenten kénnen wie bei Strukturen mittels ’.’ angesprochen
werden.
Betrachten wir als Beispiel die folgende Union:

union beispiel x;
X.ival = 3;
x.dval = 11.0;

Hier interpretiert x.ival das Bitmuster von x als int, und x.dval als double.

198 8 Fortgeschrittene Datentypen

8.7 Kontrollfragen zu Kapitel 8

Frage 8.1
Betrachten Sie

struct Klausur {
int nummer;
float note
} ki, k2;

Welche Aussage trifft zu?

a) Wenn die Variablennamen folgen, muss der Strukturname entfallen.
) Die Anweisung k1=k2 ist unzulissig.
¢) Der Ausdruck k1==k2 ist unzulissig.
) Wenn der Strukturname angegeben wird, diirfen keine Variablennamen
folgen.
e) Die Angabe der Variablennamen ist syntaktisch falsch.

Frage 8.2
Betrachten Sie die Deklaration

struct Beispiel {
char buchst;
int nummer;
};
struct Beispiel strfeld[10];

Welche der folgenden Ausdriicke liefern die Komponente buchst des Feldelements

mit Index i?

a) strfeld.buchst[i]
b) strfeld[i].buchst
c) strfeld[i]->buchst
d

* (strfeld+i.buchst)
(strfeld+i)->buchst

— (@

)
)
)
) strfeld->buchst[i]
)
)

oooooao

Frage 8.3

Sie mochten einen eigenen Typ String80 deklarieren, welcher 80 Zeichen speichert.

Welche der folgenden Deklarationen fithrt zum Ziel?

a) typedef String80 char[80];
typedef [80] char String80;

)
)
) typedef [80] *char String80;
)
)
)

=z

[="s)

typedef char String80[80];
typedef char[80] String80;
typedef char*[80] String80;

— D

oooooo

8.7 Kontrollfragen zu Kapitel 8

Frage 8.4

Welche Grofe in Bytes hat die folgende Struktur auf einer 32-Bit-Architektur?

struct KDaten {
char Name[30];
char Vorname[20];
unsigned int KdNr;

“

o
ot
)

=
=~

e a0
S O Ot Ot
N O o

199

Ooooao

Frage 8.5

Als was wird objekt in der folgenden Anweisung deklariert?

char * *objekt(const int, const char *);

a) Die Deklaration ist syntaktisch nicht korrekt.
b) Als Zeiger auf eine Funktion mit Riickgabetyp String.
¢) Als Funktion mit Riickgabetyp Zeiger auf String.
d)
)

e) Keine der Aussagen a) — d) ist korrekt.

Als Doppelpointer auf eine Funktion mit Riickgabetyp char.

Oooooag

Frage 8.6

Welche der folgenden Anweisungen deklariert einen Zeiger auf eine Funktion, welche

zwei Werte vom Typ int entgegennimmt und keinen Wert zuriick gibt?

a) (*fp) (int, int)

b) void (*fp) (int, int)
c) *(£fp) (int, int)

d) void *fp(int, int)

Ooooo

200 8 Fortgeschrittene Datentypen

8.8 Ubungsaufgaben zu Kapitel 8

8.1 (Zeitmessung).

Schreiben Sie eine Funktion, die 10 Millionen mal den Sinus der betreffenden Lauf-
variablen aufaddiert, das Ergebnis aber nicht zuriickliefert. Messen Sie die Ausfiih-
rungszeit dieser Funktion, und zwar mit und ohne Compileroption -03, die den gcc
dazu veranlasst, die Ausfithrungszeit des Programms zu optimieren. Was wird der
Compiler bei diesem Beispiel wohl unternehmen?

8.2 (Gravitationskraft).
Fiir die Anziehungskraft zweier Kérper mit Massen m1 und mo und Abstand r gilt

mi1mso

F=d

r2

mit G = 6,674107"" m*®/(kg s?). Benutzen Sie die in diesem Kapitel vorgestellte
Struktur Planet, um eine Funktion zu schreiben, die die Anziehungskraft berechnet,
die zwei Planeten aufeinander ausiiben. Berechnen Sie die Anziehungskraft der Erde
auf den Mond. Es gilt: mgrge = 5,974-10%* kg, maona = 0,075-10%* kg, der mittlere
Abstand Erde-Mond betrdgt 384401 km. Beachten Sie die Einheiten!

8.3 (Polynome als Struktur).

Mit Hilfe von Strukturen kann man auch einen Datentyp Polynom deklarieren und
Operationen mit Polynomen implementieren. Verwenden Sie die folgende Deklara-
tion, um ein Polynom }_"' ja;z’ abzubilden:

typedef struct {
unsigned int n;
float* a;
} Polynom;

a) Schreiben Sie eine Funktion mit folgender Signatur:
Polynom make_polynomial (int degree, float coeff[]);

Diese soll anhand der gegebenen Daten die Komponenten des Riickgabewertes
sinnvoll initialisieren. Dazu gehort auch die Anforderung von Speicherplatz fiir
die Komponente a.
Schreiben Sie aufierdem eine Funktion free_polynomial(), die den angeforderten
Speicherplatz wieder frei gibt.
Schreiben Sie schliefslich eine Funktion, die ein Polynom leicht lesbar ausgibt.
Testen Sie Thre Routinen, indem Sie das Polynom 3z3 + 22? 4 x erzeugen und
ausgeben lassen.

b) Wir haben in Beispiel 1.7 das Horner-Schema kennen gelernt. Schreiben Sie eine
Funktion, die ein Polynom p und eine Zahl = entgegennimmt und unter Verwen-
dung des Horner-Schemas p(z) berechnet.

8.8 Ubungsaufgaben zu Kapitel 8 201

¢) Schreiben Sie eine Funktion, die zwei Polynome p und g miteinander multipliziert
und das Produkt zuriickgibt. Hinwets: Fiir das Produkt der beiden Polynome

"p Nq
ple) =Y px' qlx) =) g’
i=0 i=0
gilt:

np+ng
P9 = > (Z pkfﬂ)éﬂ"-

n=0 k+l=n

8.4 (Komplexe Zahlen).

Implementieren Sie eine Struktur struct Complex, welche fiir eine komplexe Zahl
den Real- und Imaginérteil speichert. Schreiben Sie Funktionen zur Addition, Mul-
tiplikation und Division von komplexen Zahlen.

8.5 (Einfach verkettete Liste).

a) Implementieren Sie die Programmteile aus Abschnitt 8.2.2 zur einfach verketteten
Liste, und ergénzen Sie den dortigen Quelltext zu einem Testprogramm.
b) Erweitern Sie dann das Programm um eine Funktion der Gestalt

struct Node * find(int which_value);

die einen Knoten mit Wert which_value sucht und einen Zeiger auf diesen Kno-
ten zuriickgibt. Sollte der Wert nicht in der Liste vorhanden sein, so soll NULL
zuriickgeliefert werden.

¢) Implementieren Sie eine Funktion

void insert_sorted(int new_value);

die von einer aufsteigend sortierten Liste ausgeht, und den neuen Wert so einfiigt,
dass diese Ordnung auch erhalten bleibt.

d) Implementieren Sie jeweils eine Funktion zum Loschen eines bestimmten Listen-
elements und zum Loschen der ganzen Liste (Speicherleichen!).

8.6 (Stack).
Implementieren Sie einen Stack, wie am Ende von Abschnitt 8.2.2 beschrieben.

8.7 (Diinn besetzte Vektoren).

Beim so genannten information retrieval versucht man, Textdokumente automati-
siert nach ihrem Inhalt zu vergleichen oder zu durchsuchen. Hierbei werden Text-
dokumente durch diinn besetzte Vektoren®? dargestellt. Dies sind Vektoren hoher
Dimension, bei denen aber nur wenige Komponenten von 0 verschieden sind. Ein
Beispiel fiir eine solche Kodierung von Texten nach Vektoren ist das sogenannte
tf-idf-Format. Hat man Dokumente in dieser Form vorliegen, so sind Vergleiche von
Dokumenten lediglich algebraische Operationen auf den zugehorigen Vektoren. Eine
solche Operation ist z.B. das Skalarprodukt.

2 In Kapitel 10 werden wir diinn besetzte Matrizen kennen lernen.

202 8 Fortgeschrittene Datentypen

a) Schreiben Sie eine Implementierung fiir diinn besetzte Vektoren, indem Sie die
Eintrage ungleich 0 als Paare int index und float value in einer einfach ver-
ketteten Liste halten, wobei die Liste nach index sortiert vorliegt.

b) Schreiben Sie eine Funktion, welche zwei dieser Vektoren entgegennimmt und das
Skalarprodukt der beiden zuriickgibt.

c) Schreiben Sie eine Funktion, welche zwei diinn besetzte Vektoren addiert. Beach-
ten Sie, dass manche Komponenten durch die Addition verschwinden kénnen!

8.8 (Relationen).
Reelle Relationen sind in C Funktionen mit der Signatur

int relation(float x, float y);

Diese liefern 1 zuriick, wenn x und y zur Relation gehéren, andernfalls 0. Ein Beispiel
ist

int groesser_oder_gleich(float x, float y)
{
return (x>=y);

}

Abstrahieren Sie dies mit Hilfe von Funktionszeigern und schreiben Sie eine Funk-
tion check_field(), die als Argumente ein Feld, die Feldgréfe und eine Relation
entgegennimmt. Diese Funktion iiberpriift dann, ob alle aufeinanderfolgenden Ele-
mente des Feldes der Relation geniigen. Testen Sie Ihr Programm, indem Sie die
oben angegebene Relation groesser_oder_gleich() und die Felder {5,3,2,2} und
{5,3,2,3} anwenden.

9

Rekursion

Unter ein Rekursion versteht man den Aufruf einer Funktion durch sich selbst.
Die Verwendung von Rekursionen erlaubt es in vielen Fillen, Algorithmen
elegant zu formulieren.

Nach einem einfachen einfiihrenden Beispiel zur Programmierung mit re-
kursiven Funktionen werden Anwendungen wie z.B. Such- und Sortieraufga-
ben behandelt. In diesem Zusammenhang wird auch die Divide & Conquer-
Strategie vorgestellt, die es erlaubt, eine Vielzahl von Problemen effizient zu
16sen.

Als Paradebeispiel eines eleganten und effizienten rekursiven Algorithmus
stellen wir Quicksort vor.

9.1 Rekursive Programmierung

Eine auf den ersten Blick harmlos erscheinende Aufgabe ist die Berechnung
von Binomialkoeffizienten. Die naive Verwendung der mathematischen Defi-
nition |
n n.
<k) :m , neN keN, k<n,

ist allerdings schlecht dazu geeignet, eine Berechnungsroutine auf dem Com-
puter zu implementieren: Bereits fir recht kleine n nimmt die Fakultit n!
schon sehr grofe Werte an und verursacht dann schnell einen Uberlauf. Dies
umso &drgerlicher, da die in der obigen Formel auftretenden Fakultiten teil-
weise einen viel grofseren Wert als der Binomialkoeffizient haben.

Zur Berechnung von Binomialkoeffizienten werden die Fakultidten zum
Gliick gar nicht benétigt, da man das Pascalsche Dreieck verwenden kann:

-G+

Hiermit kann man folgenden rekursiven Algorithmus formulieren:

204 9 Rekursion

Beispiel 9.1 (Rekursive Berechnung von Binomialkoeffizienten).

1. Lies zwei natiirliche Zahlen n und k ein.
2. Fiihre die Schritte
a) Falls k£ > n, dann

b) Falls n = 0 oder k = 0, dann

¢) Andernfalls verwende

-G+

Die Umsetzung als Computerprogramm kann vollkommen analog in Form
einer rekursiven Funktion erfolgen:

Beispiel 9.2 (Rekursive C-Funktion fiir Binomialkoeffizienten).

1 int binomial(int n, int k)

2 Ao

3 if (k>n)

4 return 0;

5 else if (n==0 || k==0)

6 return 1;

7 else

8 return binomial(n-1, k-1)+binomial(n-1, k);
9 %

O

Die rekursive Funktion ruft sich selbst solange mit entsprechend angepassten
Parametern auf, bis sie in einem der elementaren Félle k > n,k =0 odern =0
angelangt ist. Das Ergebnis des jeweiligen Falls liefert sie an die aufrufende
Funktion zuriick, diese addiert die Riickgabewerte, liefert ihrerseits die Summe
an den ihr {ibergeordneten Aufruf zuriick usw., bis zum ersten Aufruf der
Funktion im Hauptprogramm.

Fiir das Beispiel binomial(3,2) setzt sich das Ergebnis folgendermafien
Zusammen:

binomial(3,2) = binomial(2,1) + binomial(2,2)

= (binomial(1,0)+binomial(1,1)) + (binomial(1,1)+binomial(1,2))
(binomial(1,0) + (binomial(0,0) + binomial(0,1))) +
1+ @+0)+ (d+0)+ (0+0)) =3

9.1 Rekursive Programmierung 205

Es ist bei der rekursiven Programmierung genauestens darauf zu achten,

e dass die Rekursion auch sicher bei einem elementaren Fall ankommt und
abbricht,

e und dass die elementaren Fallen jeweils mit korrekten return-Anweisungen
behandelt werden.

Mit ersterem vermeidet man Endlosschleifen, mit letzterem falsche Ergebnisse.

Ein rekursiver Algorithmus muss keineswegs rekursiv programmiert wer-
den. Es existiert in vielen Fillen eine alternative Implementierungsvariante,
die durch Schleifen realisiert werden kann. Rekursive Funktionen gestatten
zwar einen kurzen und eleganten Quelltext, sie sind wegen der verschachtel-
ten Funktionsaufrufe aber meist zeit- und speicheraufwendiger als die nicht-
rekursiven Alternativen.

So sieht man z.B. in der obigen Beispielrechnung fiir binomial(3,2),
dass die Funktion binomial zweimal als binomial(1l,1) aufgerufen wird
und im weiteren Verlauf tauchen die elementaren Fille binomial (0,1) und
binomial(1,0) jeweils doppelt auf. Bei groferen Argumenten kann man be-
obachten, dass die Anzahl der mehrfachen Aufrufe schnell anwéchst. In den
Ubungsaufgaben wird eine effizientere Variante betrachtet, die durch Spei-
chern von Zwischenergebnissen den rekursiven Algorithmus modifiziert.

Beispiel 9.3 (Binomialkoeffizient als Schleifenimplementierung).
Aus der Definition des Binomialkoeffizienten erhélt man durch Auflésen der
Fakultiten die Darstellung

(n> I | el) o

k m)!

mit der man recht effizient (genauer: mit 2m < n + 1 Multiplikationen und
einer Division) auf alternativem Weg zum Ziel gelangt:

1 int binomial(int n, int k)

2 {

3 int m = (k > n-k) ? n-k : k;
4 int 1;

5

6 int zaehler = 1, nenner = 1;
7

8 for (1=0; 1l<m; 1++) {

9 zaehler *= (n-1);

10 nenner *= (1+1);

11 }

12 return zaehler/nenner;

13 }

206 9 Rekursion

9.2 Effiziente Such- und Sortieralgorithmen

Viele effiziente Such- und Sortierverfahren beruhen auf rekursiv formulierten
Algorithmen, denen das Prinzip Divide & Conquer zugrunde liegt.

Einfaches Suchen in unsortierten Feldern

Angenommen, man soll eine Funktion implementieren, die in einem Feld der
Liange n mit Eintrdgen vom Typ int die Position eines bestimmten vorge-
gebenen Werts finden soll. Eine erste naheliegende Implementierung wiirde
wahrscheinlich folgendermafien aussehen:

Beispiel 9.4 (Lineare Suche in einem Feld).

1 int suche(int feld[], int len, int val)
2 {

3 int i;

4 for (i=0; i<len; i++)

5 if (feld[i] == val) break;

6 return i;

7 %

Die break-Anweisung sorgt dafiir, dass die Schleife sofort beendet wird,
wenn der Wert gefunden ist. Befindet sich der Wert mehrfach im Feld, so wird
der kleinste Index zuriickgeliefert.

Im schlimmsten Fall befindet sich der gesuchte Wert nicht im Feld, die Funk-
tion liefert dann die Feldlinge zuriick und die aufrufende Funktion kann ent-
sprechend reagieren. O

Fiir unsortierte Felder ist die im Beispiel gezeigte Vorgehensweise auch tat-
sichlich die einzige Moglichkeit, nach einem bestimmten Wert zu suchen.

Ist das Feld hingegen aufsteigend sortiert, so gibt es bessere Algorithmen,
die weniger Vergleichsoperationen benotigen. Insbesondere kann man vermei-
den, dass n Vergleichsoperationen nétig sind, um festzustellen, dass sich der
Wert gar nicht im Feld befindet. Grundlage dieser Verfahren ist eine allgemeine
Vorgehensweise, die Divide & Conquer-Strategie (auch bekannt als divide-et-
impera-Methode):

Bei Anwendung der Divide & Conquer-Strategie geht man folgender-

mafien vor:

e Divide: Zerlege das Problem in kleinere Teilprobleme.

e Conquer: Lise die Teilprobleme.

e ggf. Combine: Setze die Lésung des urspriinglichen Problems aus
den Losungen der Teilprobleme zusammen.

Klassische Anwendungen dieses Prinzips sind:

9.2 Effiziente Such- und Sortieralgorithmen 207

e Suchen nach einem Element mit einem vorgegebenen Wert in einem sor-
tierten Feld,
Sortieren von Feldern,
Parallelisierung von Algorithmen: Man versucht, einen gréfitmoglichen Teil
des Algorithmus in solche Teilaufgaben zu zerlegen, die unabhdngig von-
einander bearbeitet werden konnen. Bei der Realisierung auf einem Paral-
lelrechner werden diese reduzierten Probleme auf die einzelnen Prozesso-
ren verteilt. Im Combine-Schritt werden die Einzelresultate dann wieder
zusamimengesetzt.

Beispiel 9.5 (Parallele Berechnung von Skalarprodukten).
Das Skalarprodukt
<u7 U>) u7 v E Rn)

soll auf einem Parallelrechner mit N 4+ 1 Prozessoren berechnet werden. Dazu
teilt man im Divide-Schritt die Vektoren in Abschnitte auf, d.h. fiir fiir v =
1,..., N setzt man :

u(V) = (u(ufl)n/NJrh cee 7uun/N)T € Rn/N

U(V) = (v(y—l)n/N+1a sy UV’I’L/N)T S Rn/N
und l&sst im Conquer-Schritt jeweils den Prozessor mit der Nummer v die

Teilaufgabe
s, = <u(”),v(”)>

bearbeiten. Diese Teilrechnungen kénnen von den N Prozessoren vollkommen
unabhéngig voneinander zur selben Zeit durchgefiihrt werden. Ist dies erledigt,
so liefern die CPUs ihre Teilresultate an den Prozessor mit der Nummer 0,
der dann den combine-Schritt

N
UV = Z Sy
v=1
durchfiihrt. 0

Rekursives Suchen mit der Divide € Conquer-Methode

Eine mogliche Divide & Conquer-Vorgehensweise fiir die Suche nach einem
bestimmten Wert in einem aufsteigend sortierten Feld der Linge n ist die
bindre Suche (engl. binary search):

e Vergleiche den gesuchten Wert mit dem in der Mitte des Feldes.
e Bei Gleichheit: n/2 ist die gesuchte Stelle. Abbruch.
e Andernfalls:
— Ist der gesuchte Wert grofer, wiederhole das Verfahren fiir das Teilfeld
rechts von der Feldmitte.

208 9 Rekursion

— Ist der gesuchte Wert kleiner, wiederhole das Verfahren fiir das Teilfeld
links von der Feldmitte.
bis die Feldldnge 0 ist. In diesem Fall befindet sich der Wert nicht im Feld.

Bei jeder Rekursion wird also die Feldlinge halbiert. Fiir die Laufzeit in Ab-
héngigkeit der Feldldnge n gilt daher mit einem geeigneten c

Op(2n) < Op(n) +c,
sowie Op(1) < ¢. Durch vollstindige Induktion folgt hieraus:
Op(n) < clogy(n +1).

Damit gilt Op(n) = O(logyn), d.h die bindre Suche hat logarithmische Kom-
plexitat. Ein alltigliches Beispiel fiir die Anwendung dieses Verfahrens ist das
Suchen in Telefonbiichern.

Beispiel 9.6 (Bindire Suche im aufsteigend sortierten Feld).

1 int binaer_suche(int f[], int untere, int obere, int wert)
2 {

3 int pos;

4

5 /* Teilfeldlaenge ist O : Wert nicht im Feld */

6 if (obere<untere)

7 return -1;

8

9 /* Teilfeld hat ein Element: Pruefe auf Gleichheit */
10 if (obere==untere)

11 if (f[obere]==wert)

12 return obere;

13 else

14 return -1;

15

16 /* andernfalls: gehe zur Teilfeldmitte */

17 pos = (obere+untere)/2;

18 /* pruefe auf Gleichheit oder Rekursion */

19 if (f[pos]l==wert)

20 return pos;

21 else {

22 if (f[pos]>wert)

23 return binaer_suche(f, untere, pos-1, wert);
24 else

25 return binaer_suche(f, pos+1l, obere, wert);
26 }

27 }

9.2 Effiziente Such- und Sortieralgorithmen 209

Die Funktion liefert also den Index -1, wenn sich kein entsprechendes
Element im Feld befindet. Befindet sich der Wert mehrfach im Feld, so ist
im Gegensatz zur naiven Suchmethode aus Beispiel 9.4 unbestimmt, welcher
Index zuriickgeliefert wird. O

Bindre Suche mit Hilfe der Standardbibliothek

Die binédre Suche kann im Prinzip auf alle Datenobjekte angewandt werden,
fiir die eine Vergleichsoperation existiert bzw. implementiert werden kann.
Die in <stdlib.h> deklarierte Funktion bsearch() ist entsprechend flexibel
implementiert und hat die folgende Signatur:

void *bsearch(const void *wert,
const void *start,
size_t anzahl,

size_t groesse,
int (*cmp) (const void *, const void *)

)

bsearch() sucht im (Teil-)Feld, auf dessen erstes Element start zeigt, nach
einem Element mit Wert *wert. Das (Teil-)Feld besteht aus anzahl Elementen
der Grofe groesse Bytes und wird als aufsteigend sortiert angenommen.

Zum Vergleichen zweier Elemente wird der Funktionszeiger (siche Ab-
schnitt 8.4) cmp benutzt. Der Riickgabewert der betreffenden Funktion soll
sich analog zu strcmp () verhalten: Er ist negativ, wenn das erste Argument
kleiner als das zweite ist, grofer 0, wenn das erste Argument grofer ist und
gleich 0, wenn beide Argumente gleich sind.

bsearch() liefert bei Erfolg einen Pointer auf ein entsprechendes Element
zuriick, andernfalls NULL.
Auch hier ist der zuriickgelieferte Zeiger unbestimmt, wenn mehrere Feldele-
mente den betreffenden Wert haben.

Die konsequente Realisierung durch Zeiger des Typs void * ermdglicht
die Verwendung von bsearch() fiir Felder von Strukturen, Unions, Zeigern
usw., sofern nur eine entsprechende Vergleichsfunktion vorhanden ist.

Beispiel 9.7 (Suchen mit bsearch()).
Um z.B. eine Zahl unter den ersten neun Primzahlen zu suchen, kann man
bsearch() wie folgt verwenden:

#include <stdlib.h>
#include <stdio.h>

{

1
2
3
4 int cmp_int(const void *a, const void *b)
5
6

int va = *(int*)a;

210

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

9 Rekursion

int

int vb = *(int*)b;

if (va<vb) return -1;
if (va>vb) return +1;
return O;

values[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};

int* find_int(int value)

{

int

}

return bsearch(&value, values, sizeof(values)/sizeof(int),
sizeof (int), cmp_int);

main()

int *result;
int value;

printf ("Bitte geben Sie eine ganze Zahl ein: ");
scanf ("%d", &value);

result = find_int(value);
if (result)
printf("Zahl an Stelle J%d gefunden",result-values);
else
printf("Zahl nicht gefunden");
printf ("\n");

a) In den Zeilen /—11 implementieren wir die benétigte Vergleichsfunktion.
Wichtig sind die Zeilen 6 und 7: Der {ibergebene Zeiger vom Typ const
void* wird zuerst nach int* gecastet und dann erst dereferenziert. Der
Riickgabewert in den Zeilen 8—10 verhilt sich dann wie oben beschrieben.
Statt die Differenz va-vb zuriickzuliefern, haben wir die Werte miteinander
verglichen, um Uberliufe auszuschlieRen.

b) In den Zeilen 17-18 wird bsearch() geméif seiner Deklaration aufgerufen.

c) Wird der angegebene Wert nicht im Feld values gefunden, so liefert
bsearch() den NULL-Zeiger zuriick. Dieser Fall wird dann in den Zeilen
31 und 33 entsprechend behandelt.

d) In Zeile 31 sieht man eine Anwendung der Zeigerarithmetik (sieche Ab-
schnitt 4.3): Subrahiert man zwei Zeiger vom gleichen Typ, so erhilt man
den Abstand der referenzierten Elemente — vorausgesetzt, man subtrahiert
in der richtigen Reihenfolge. a

9.2 Effiziente Such- und Sortieralgorithmen 211

Bemerkung 9.8 (Callback und Riickruffunktion).
Dadurch, dass bsearch() auf den Funktionszeiger zum Vergleich von Elemen-
ten zuriickgreift, bleibt es dem Programmierer iiberlassen, welche Objekte wie
miteinander verglichen werden sollen. Man erreicht dadurch eine moglichst
allgemeine Verwendbarkeit von bsearch(). Diese Art der Verwendung von
Funktionszeigern bezeichnet man auch als Callback bzw. Rickruffunktion.
Im Gegensatz dazu miissten wir in Beispiel 9.6 die Zeilen 11, 19 und 22
anpassen, wenn wir z.B. in einem Feld von Zeichenketten suchen wollen.
Generell kann man mit dieser Technik Funktionen oder ganze Bibliotheken
implementieren, die ohne Eingriff von aufien sehr gut wiederverwendbar sind.
Wir werden diese Technik in Abschnitt 13.2 benutzen.

Effizientes Sortieren

Der folgende Sortieralgorithmus ist einer alltédglichen Vorgehensweise beim
Sortieren — z.B. von durcheinander geratenen Notenblédttern — nachempfun-
den: Man sortiert die ersten beiden Elemente eines Feldes durch direkten
Vergleich, dann sortiert man das dritte unter diese beiden ein, und fahrt auf
diese Weise fort, bis alle Blatter in der richtigen Reihenfolge einsortiert sind.

Beispiel 9.9 (Naives Sortieren eines Feldes).

1 void easy_sort(int I[], int len)

2 {

3 int i, j, value, pos;

4

5 for (i=1; i<len; i++) {

6 pos = 1i;

7 value = I[i];

8 /* suche Eintrag k1. Werts links von Pos. i */
9 while (I[pos-1]> value && pos>0)

10 pos--;

11 /* fuege aktuellen Wert dort ein */
12 for (j=i; j>pos; j--) I[j1=I[j-11;
13 I[pos]=value;

14 }

15 }

Die Laufzeit dieses Algorithmus hangt vom Sortierzustand des Feldes ab:

e Im besten Fall ist das Feld bereits aufsteigend sortiert und keine der inne-
ren Schleifen wird durchlaufen. Die Laufzeit ist linear, da nur die dussere
for-Schleife durchlaufen wird.

e Im schlimmsten Fall ist das Feld absteigend sortiert und besitzt keine
mehrfach auftretenden Eintrdge. Dann werden alle inneren Schleifen kom-

212 9 Rekursion

plett durchlaufen. Die Laufzeit ist dann von quadratischer Ordnung bzgl.
len. O

Wie bei der Suche nach einem Element, kann man auch fiir das Sortieren
eines Feldes rekursive Algorithmen entwerfen. Einer der bekanntesten (und
besten) Sortieralgorithmen ist Quicksort. Es existieren mehrere Varianten von
diesem Algorithmus, das Funktionsprinzip ist aber immer das gleiche.

Wir betrachten dazu den folgenden Prozess, genannt Partitionierung:

Po P1-.-Pn

Pi < Po Do Di > Po

Man wahlt ein so genanntes Pivotelement pg und stellt dann das Feld so um,
dass links von pg alle p; mit p; < po liegen und rechts von pg alle p; mit
pi > po- Wir kénnen folgendes feststellen:

e Fiihrt man die Partitionierung aus, und sortiert danach die Segmente p; <
po und p; > po getrennt, dann ist auch das gesamte Feld sortiert.

e Beide Segmente sind mindestens um ein Element kiirzer als das urspriing-
liche Feld. Eines der Segmente kann auch leer sein. Dies ist z.B. der Fall,
wenn das Feld bereits vorsortiert ist oder in umgekehrt sortierter Reihen-
folge vorliegt.

e Felder der Linge 0 und 1 sind automatisch sortiert.

Auch hier kann man das Divide & Conquer-Prinzip anwenden: Man zerlegt
das Feld in Teilfelder, welche einzeln sortiert und dann zu einem Ganzen
zusammengesetzt werden.

Quicksort fihrt diesen Prozess rekursiv aus, d.h. beide Segmente werden
immer weiter partitioniert, bis man zu Segmenten der Lénge 0 oder 1 gelangt.
Aufgrund der beiden oben gemachten Aussagen ist dieser Algorithmus korrekt
und fiihrt nicht zu einer Endlosschleife.

Wir betrachten zuerst die Partitionierung:

1 void swap(float p[], int i, int j)
2 {

3 float t=plil;

4 plil=pl[j];

5 plijl= t;

6 1}

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

9.2 Effiziente Such- und Sortieralgorithmen 213

int partitioniere(float datal], int imin, int imax)

{

float p0 = data[imin];
int iact = imin;
int i;

for (i=imin+1l; i<=imax; i++)
if (datal[il<p0)

{
iact++;
if (i !'= iact)
swap(data, i, iact);
}

swap(data, imin, iact);
return iact;

Die Funktion partitioniere() fiihrt die Partitionierung aus und gibt die

Position des Pivotelements zuriick.
Der Sortieralgorithmus sieht dann wie folgt aus:

1
2
3
4
5
6
7
8
9

10
11

void quicksort(float datall, int imin, int imax)

{
int pivot_pos;
/* segment hat max laenge eins, ist also sortiert */
if (imax <= imin) return;

pivot_pos = partitioniere(data, imin, imax);
quicksort(data, imin, pivot_pos-1);
quicksort(data, pivot_pos+1, imax);

}

Wir wollen Quicksort am Beispiel des Feldes {2,3,7,1,5} nachvollziehen.

Wir starten das Sortieren mittels quicksort(data, 0, 4).

Der erste Aufruf von partitioniere() in Zeile 7 liefert {1,2,7,3,5} mit
Pivotelement 2 an der Stelle mit Index 1.

quicksort(data, 0, 1) in Zeile 9 kehrt sofort zuriick, da das Segment
die Lange 1 hat, also bereits sortiert ist.

quicksort(data, 2, 4) in Zeile 10 fiihrt zuerst die Partitionierung des
Segments {7,3,5} aus (Zeile 7) und liefert {5,3, 7} zuriick, Pivotelement
ist 7. Insgesamt ist das Feld jetzt {1,2,5,3, 7}, das Pivotelement 7 hat also
den Index 4.

214 9 Rekursion

o Es folgen jetzt die Aufrufe quicksort(data, 2,3) (in Zeile 9) und
quicksort(data, 4, 4) (in Zeile 10). Letzterer kehrt umgehend zuriick.

e quicksort(data, 2, 3) partitioniert jetzt den Abschnitt {5,3} zu {3,5}.
Index des Pivotelements 5 ist jetzt 3.

e Die darauf folgenden rekursiven Aufrufe kehren sofort zuriick, da nur noch
Segmente der Linge 1 bzw. 0 sortiert werden sollen.

Wie fiir die bindre Suche existiert auch fiir Quicksort eine sehr flexible
Bibliotheksfunktion in <std1ib.h>. Die Parameter sind analog zu bsearch():

void gsort(const void *start,
size_t anzahl,
size_t groesse,
int (*cmp) (const void *, const void *)

)

Sie finden ein Beispiel dazu in den Aufgaben.

Bezogen auf die Feldldnge n hat Quicksort im schlimmsten Fall eine Kom-
plexitiit der Ordnung O(n?). Das kann z.B. passieren, wenn man eine bereits
sortierte Liste vorliegen hat. Dies kann man umgehen, indem man nicht das
erste Element als Pivotelement nimmt. Aber auch in diesem Fall gibt es eine
Anordnung, so dass die Laufzeit O(n?) betrigt. Fiir die Praxis ist relevant,
dass die im Durchschnitt zu erwartende Laufzeit lediglich O(nlogn) betragt
und die in der O-Notation verborgenen Konstanten recht klein sind.

Weitere effiziente Sortierverfahren mit Komplexitdten von der Ordnung
O(nlogn) sind Mergesort und Heapsort. Unter den einfachen Algorithmen mit
Laufzeit O(n?) befindet sich z.B. Bubblesort. Shellsort nimmt eine Zwischen-
stellung ein und hat je nach Variante eine Laufzeit O(n3/2) oder O(n(logn)?).

9.3 Kontrollfragen zu Kapitel 9 215

9.3 Kontrollfragen zu Kapitel 9

Frage 9.1

Welche der folgenden Aussagen treffen zu?

a) Rekursive Algorithmen miissen stets als rekursive Funktion implementiert

werden. O
b) Rekursive Funktionen sind immer speichereffizienter als andere Implemen-

tierungen. O
¢) Rekursive Funktionen sind stets laufzeiteflizienter als andere Implementie-

rungsarten. O
d) Keine dieser drei Aussagen. O
Frage 9.2

Was liefert die folgende rekursive Funktion fiir arg> 1 zuriick?

float funk(int arg)

{
if (arg==1)
return 0.0f;
else
return funk(arg/2) + 1.0f;
}

a) Die Funktion erzeugt eine Endlosschleife.
b) Die Funktion liefert log,(arg) zuriick.
c) Die Funktion liefert den ganzzahligen Anteil von log,(arg) zuriick.
d) Die Funktion liefert die groRte gerade Zahl < arg zuriick.
)

Die Funktion liefert die kleinste gerade Zahl > arg zuriick.

Ooooao

e

Frage 9.3
Betrachten Sie das Feld
int feld[] = { 3, 2, 1, 5, 2, 7};

Bei welchem der folgenden Felder handelt es sich um korrekte Partitionierungen des
urspriinglichen Feldes?

a) {1, 2, 2, 3, 5, 7} O
b) {1, 3, 2, 2, 7, 5}
c) {1, 3, 2, 5, 3, 7}

0o

216 9 Rekursion

Frage 9.4

Gegeben ist eine Struktur
struct Complex { double re, im; };
sowie Variablen

struct Complex c;
struct Complex zahlen[10];

und eine Vergleichsfunktion mit der Signatur
int comp_complex(const void *, const void *);

Welche der folgenden Aufrufe sind korrekt?

a) bsearch(c, zahlen, 10, sizeof(struct Complex), &comp_complex) ; 0
b) bsearch(&c, zahlen, 10 , sizeof(struct Complex), &comp_complex) ;
]

c) bsearch(zahlen, &c, 10, sizeof (struct Complex), &comp_complex); 0
d) bsearch(&c, zahlen, 10 * sizeof(struct Complex),

int (*comp_complex)); O
e) bsearch(c, 0, sizeof (zahlen), sizeof(struct Complex),

int (*comp_complex)) ; 0
Frage 9.5
Betrachten Sie die folgende Funktion:

int foo(int i)
{
if (i==1) return i;
return (i+1) * foo(i-2);

}
Welche der folgenden Aussagen sind korrekt?
a) foo(6) liefert 105. O
b) foo(5) liefert 24. O
c) Die Funktion terminiert fiir jede Eingabe. O
d) foo(5) liefert 8. O

9.4 Ubungsaufgaben zu Kapitel 9 217

9.4 Ubungsaufgaben zu Kapitel 9

9.1 (Fakultit).
Die rekursive Definition der Fakultat lautet:

nl=Mm-1)n, 0=1.

a) Schreiben Sie ein Programm, das die Faktultdt gem#f der rekursiven Definition
berechnet und testen Sie es. Verwenden Sie den Datentyp int und bestimmen Sie
das maximale n, fiir welches das Programm korrekt arbeitet.

b) Schreiben Sie ein Programm, das die Fakultit ohne Rekursion berechnet.

9.2 (Fibonacci-Zahlen).
Die Fibonacci-Zahlen wurden bereits in Aufgabe 3.3 definiert.

a) Schreiben Sie ein Programm, das die n-te Fibonacci-Zahl rekursiv berechnet.

b) Ermitteln Sie mit Hilfe einer globalen Variablen die Anzahl der Aufrufe Ihrer
Funktion fiir verschiedene n. Was stellen Sie fest?

¢) Schreiben Sie ein Programm, das keine Rekursion verwendet, z.B. indem Sie ein
Feld Schritt fiir Schritt mit den Fibonacci-Zahlen fiillen.

d) Ermitteln Sie jetzt die Anzahl der Rechenschritte und vergleichen Sie mit der
Beobachtung aus Teil b).

9.3 (Binomialkoeffizienten rekursiv und effizient).

Wie bei der rekursiven Implementierung der Binomialkoeffizienten angesprochen,
ist diese nicht sehr effizient, da Aufrufe der Funktion mit gleichen Parametern &fter
vorkommen und so Zwischenergebnisse mehrfach berechnet werden.

a) Implementieren Sie den rekursiven Algorithmus und zdhlen Sie die Anzahl der
Aufrufe fiir verschiedene Eingaben.

b) Benutzen Sie eine Matrix, um bereits berechnete Binomialkoeffizienten nicht er-
neut berechnen zu miissen (einen solchen Speicher bezeichnet man auch als Cache.
Sie kénnen dazu z.B. die in 4.5.2 beschriebene Implementierungstechnik benutzen.
Fiillen Sie diese Matrix zuerst mit dem Wert -1 als Indikator fiir noch nicht
berechnete Zwischenergebnisse. Fiillen Sie die den Eintrag (4, j) der Matrix wenn
Sie binomial(i,j) berechnet haben.

Zghlen Sie auch hier die Anzahl der Funktionsaufrufe und vergleichen Sie mit Teil

a).

9.4 (Quicksort).
Sortieren Sie die Folgen {1,2,3,4,3,2,1} und {5,4, 3,2, 1}, indem Sie Quicksort von
Hand ausfiihren.

218 9 Rekursion

9.5 (* Tiirme von Hanoi).
Ein beliebtes und bekanntes Spiel sind die Tirme von Hanoil.

A B C

Das Spiel besteht aus drei Stiben A, B und C, auf die mehrere gelochte Scheiben
unterschiedlicher Grofe gelegt werden. Zu Beginn liegen alle Scheiben auf Stab A,
der Grofe nach von unten nach oben absteigend geordnet (d.h. die grofte Scheibe
liegt unten und die kleinste oben). Ziel des Spiels ist es, den kompletten Scheiben-
Stapel von A nach C zu versetzen.

Bei jedem Zug darf die oberste Scheibe eines beliebigen Stabs auf einen der bei-
den anderen Stidbe gelegt werden, vorausgesetzt, dort liegt nicht schon eine kleinere
Scheibe. Folglich bleibt zu jedem Zeitpunkt des Spiels die Ordnung der Scheiben auf
jedem Stab erhalten.

a) Spielen Sie das Spiel fiir drei und fiir vier Scheiben auf einem Blatt Papier.

b) Entwickeln Sie einen rekursiven Algorithmus, der die Spielziige ausgibt, um das
Spiel fiir n Scheiben zu spielen. Gehen Sie davon aus, dass Sie n-1 Scheiben von
Stab X zu Stab Y bewegen kénnen und formulieren Sie damit eine Strategie fiir n
Scheiben.

c¢) Implementieren und testen Sie diesen Algorithmus.

9.6 (Sortieren von komplexen Zahlen).

Benutzen Sie die Bibliotheksfunktion gsort(), um komplexe Zahlen nach Threr
Norm (d.h. dem Abstand zum Ursprung) zu sortieren. Verwenden Sie dazu Ihre
Implementierung aus Aufgabe 8.4.

9.7 (Sortieren und Suchen mit Bibliotheksfunktionen).
Die Daten von Studenten werden in der Verwaltungssoftware des Wohnheims als

struct Student {
char name[100];
int zimmernummer;
int einzug_jahr;
int einzug_monat;
};
dargestellt.

a) Benutzen Sie gsort (), um ein Feld von Studentendaten nach ihrer Zimmernum-
mer aufsteigend zu sortieren.

b) Benutzen Sie gsort(), um ein Feld von Studentendaten nach der Dauer der Be-
wohnung absteigend zu sortieren.

c¢) Benutzen Sie bsearch() um in der nach Zimmernummer sortierten Datenbank
zu suchen.

! Diese Aufgabe ist recht schwierig. Sie werden den rekursiven Algorithmus auch
im Internet finden.

10

Speicher- und laufzeiteffiziente Datenstrukturen

Dieses Kapitel widmet sich dem laufzeit- bzw. speichereffizienten Umgang
mit mathematischen Objekten auf dem Computer. Recht hiufig besitzen Da-
tenobjekte wie z.B. Matrizen eine spezielle Struktur, die man sich bei der
Speicherung zunutze machen kann.

Auch die Durchfilhrung gewisser algebraischer Operationen lésst sich be-
schleunigen. So hingt etwa die Gesamtlaufzeit vieler iterativer Algorithmen
der numerischen linearen Algebra wesentlich vom Aufwand bei der Berech-
nung des Matrix-Vektor-Produkts ab. Dieser kann durch Ausnutzung speziel-
ler Strukturen von O(n?) auf O(n) reduziert werden und nicht selten wird die
Losung von linearen Gleichungssystemen mit sehr grofsen Systemmatrizen erst
hierdurch praktikabel. Andere Operationen wie z.B. das Vertauschen der Zei-
len bzw. Spalten einer Matrix lassen sich z.T. erheblich beschleunigen, wenn
man sie nicht komponentenweise durchfiihrt, sondern Indexfelder verwendet.

Bei der Darstellung derartiger Techniken konzentrieren wir uns auf die
grundlegenden Konzepte und verlagern Details zu ihrer Implementierung in
die Ubungsaufgaben am Ende des Kapitels.

10.1 Symmetrische Matrizen

Eine Matrix A € R™*" mit Eintrdgen a;; heiflt symmetrisch, wenn gilt
a;; =a;; , furalled,j=1,...,n. (10.1)

Anders ausgedriickt: Eine symmetrische Matrix A ist identisch mit ihrer
Transponierten AT, deren Zeilen ja gerade die Spalten von A sind.

Wegen der Symmetrie (10.1) wére es wirklich verschwenderisch, zur Spei-
cherung einer solchen Matrix n? Speicherplitze zu reservieren, denn man kann
A in folgende Summanden zerlegen:

A=L+D+L". (10.2)

220 10 Speicher- und laufzeiteffiziente Datenstrukturen

Dabei ist D die Diagonale von A,

aii 5 1=7]
7
0 , sonst

D = (dij)i =1 = {

und

aij ,1>7
L=l _,=¢" .
R 0 , sonst

Damit L auch LT vollstéindig bekannt ist, ben&tigt man zur Speicherung einer
symietrischen Matrix lediglich

n(n+1)

Mem(n) = 5

Speicherplitze. Es bietet sich an, eine symmetrische Matrix in einem eindi-
mensionalen Feld abzuspeichern. Die ersten n Eintrige belegen wir dabei mit
den Diagonalelementen di; bis d,,;,. Als nichstes legen wir die Matrix L Zeile
fiir Zeile hintereinander im Feld ab, wobei wir natiirlich nur die Eintrége [;;
mit ¢ > j beriicksichtigen. Der Index p(i, j) des Eintrags [;; berechnet sich zu

p(i,j)nl+<tk>+jnl+w+‘j, (10.3)
k=0

wobei die Indizierung wie in C {iblich mit 0 beginnt. In Abb. 10.1 ist die
beschriebene Speicherungsmethode fiir den Fall n = 5 dargestellt.

di1
p=0

l21 doo
p=5|p=1

31 l32 dss3

Abb. 10.1. Speicherung einer symmetrischen Matrix A = L + D 4+ LT im Fall
n =>5.

10.2 Das dyadische Produkt 221

Wie berechnet man fiir eine so gespeicherte symmetrische (n x n)-Matrix
A das Produkt mit einem Vektor z € R™? Nach (10.2) ist ja

Az =Dz + Lz + L'z,

wobei die Berechnung von Dz trivial ist und die des Produkts Lz mit Hilfe
von (10.3) auch kein groferes Problem darstellt. Es ist dabei nur zu beachten,
dass die innere Schleife fiir den Index j nur bis zum Wert ¢ — 1 1duft. Fiir den
verbleibenden Summanden L'z berechnen wir seine i-te Komponente und
verwenden (LT);; = 1;; = 0 fiir alle j < i:

(LTSL')Z.:lei.’Ej: Z ljil'j, flir allei:l,...,n—l.
j=1 j=i+1

Bei der Implementierung vertauschen also lediglich die Indizes ¢ und j ihre
Rollen in (10.3) und der Wert der inneren Schleifenvariablen startet bei i + 1.

Bemerkung. Man koénnte natiirlich auch Doppelzeiger zur dynamischen
Speicherung symmetrischer Matrizen verwenden, wie wir es in Abschnitt 4.5
fiir den allgemeinen Fall getan haben. Hierbei speichern wir von der i-ten Zeile
natiirlich nur die ersten ¢ Eintrage ab. Beginnt die Indizierung wie in C {iblich
mit 0, so ist A[i] ein Zeiger auf ein Feld der Lange i+1.

Wir raten von dieser Methode allerdings ab, da sie sehr fehleranfillig ist:
Fiir ¢+ < j kann man mit A[i] [j] auf Speicherbereiche zugreifen, die mit der
Matrix nichts zu tun haben. Bestenfalls stiirzt das Programm an dieser Stelle
ab, es kann aber auch einfach zu fehlerhaften Ergebnissen kommen, deren
Ursache schwer zu finden ist.

10.2 Das dyadische Produkt

Besonders effiziente Speichermdglichkeiten bieten Matrizen, die von Vektoren
erzeugt werden:

Definition 10.1 (Dyadisches Produkt).
Fiir zwei Vektoren v € R™,w € R™ bezeichnet vw' € R™*™ das dyadische
Produkt der Vektoren v und w. Dabei ist

T . .
(vw).:viwj, t=1,....,n, j=1,...,m.

ij

Wir betrachten dazu ein Beispiel:

Beispiel 10.2 (Die schwingende Saite).
Schwingungsvorgéinge lassen sich mathematisch durch Funktionen der Form
u(z,t) beschreiben. Bei einer schwingenden Saite der Linge L beispielsweise

222 10 Speicher- und laufzeiteffiziente Datenstrukturen

ist u(x,t) die Auslenkung der Saite aus der Ruhelage an der Stelle x € [0, L]
zum Zeitpunkt ¢t € [0, T.

Stehende Wellen zeichnen sich dadurch aus, dass die zugehdrige Funktion
u als Produkt dargestellt werden kann:

u(z,t) = f(x)g(t), 0<z<L, 0<t<T.
Diskretisiert man diese Funktion nun an den Stiitzstellen z; und ¢;,
wi; = u(x;,t;), ¢=1,...,N,j=1,...,Nr,
so ldsst sich die Matrix U = (u;;) offensichtlich als dyadisches Produkt
U=ovw' e RNeXNr

schreiben, wobei die Vektoren v € RVZ und w € RNT folgendermaken definiert
sind:

Ui:f(.%‘i), ’iZl,...,NL

wj = g(tj) s J

|
5

a

Fiir Matrizen, die als dyadisches Produkt U = vw' geschrieben werden kon-
nen, ist es vollig ausreichend, nur die Komponenten von v und w zu speichern.
Das Produkt solcher Matrizen mit einem Vektor ldsst sich damit sehr effizient
berechnen, denn es gilt:

Ux = (va)z =v(w'z) = (w,z)v

Eine mogliche Implementierung fiir Vektoren v, w und x mit gleicher Dimen-
sion n ist:

1 void dyadmult(int n, double v[], double w[], double x[],
2 double result[])
3 {

4 double skalprod = 0.0;

5 int i;

6 for (i=0; i<n; ++1)

7 skalprod += w[i]#*x[i];

8 for (i=0; i<n; ++1i)

9 result[i] = skalprod * v[i];
10 }

Die Speicherung der Matrix bendétigt nur 2n Speicherplitze, und die
Matrix-Vektor-Multiplikation hat lediglich eine Komplexitit der Ordnung
O(n) statt O(n?) im allgemeinen Fall.

10.3 Diinn besetzte Matrizen 223

Die Matrix vw" hat den Rang 1, was man daran sieht, dass alle Spalten
paarweise Vielfache voneinander sind. Umgekehrt ldsst sich jede Matrix mit
Rang 1 als dyadisches Produkt schreiben.

10.3 Diinn besetzte Matrizen

Numerische Approximationsmethoden fiihren bei einer Vielzahl von Proble-
men aus den Natur- und Ingenieurwissenschaften dazu, dass ein lineares Glei-
chungssystem entsteht, dessen Systemmatrix hochdimensional und dinn be-
setzt (engl. sparse) ist. Wie der Name schon andeutet, ist bei solchen Matrizen
die Anzahl der von Null verschiedenen Eintrige pro Zeile sehr viel kleiner als
die Matrixdimension.

10.3.1 Bandmatrizen

Zum Einstieg betrachten wir ein Beispiel fiir das Auftreten von diinn besetzten
Matrizen.

Beispiel 10.3 (Differenzenapproximation).
Angenommen, von einer zweimal stetig differenzierbaren Funktion

w:[0,1] —R
liegen uns lediglich ihre Werte u; = u(z;) an den N + 1 Stiitzstellen
@i =ih , h=1/N, i=0,...N,

vor und wir m6chten anhand dieser Daten die zweite Ableitung u”(z;) an den
Stiitzstellen berechnen, die wir offensichtlich im Allgemeinen nur in Form von
Né&herungswerten erhalten konnen.

Dazu gehen wir &hnlich vor wie beim Euler-Verfahren, nur dass wir in
diesem Fall den Differenzenquotienten zweimal bilden:

W () u'(ip1) —u'(2)

Q

h
- l(u(ﬂfz‘ﬂ) —u(wi) u(@i)— u(xi—l))
T h h h
il — 2U U1 .
= it hu2+u ! firi=1,..., N—1.

Gilt nun «(0) = u(1) = 0, so ist die Approximation der zweiten Ableitung an
den inneren Stiitzstellen nichts anderes als die Berechnung des Matrix-Vektor-
Produkts Au, wobei u = (uy,...,uy_1)" und

224 10 Speicher- und laufzeiteffiziente Datenstrukturen

-2 1 0 0... 0
1-2 1 0. 0
A:i 0 1-2 1... . ER(N_I)X(N_I).
h? - . .
: .. .0
0... 0 1-21
0 0... 0 1-2

Das heift, der i-te Eintrag von Au ist eine Approximation an u”(z;). Man
sagt auch , A approzximiert die zweite Ableitung”. a

Allgemein heifit eine Matrix der Form

d1 Ul 0 0 0

lg d2 u9 0 0
r_| 0l ds us : ’

TR P N |

0...0 ln,1 dn,1 Up—1

00... 0 I, dn

Tridiagonalmatriz. Fir solche Matrizen kommt man mit dem Speichern eines
Vektors d = (dy,...,d,)" € R" fiir die Diagonale und zweier Vektoren [, u €
R™~! fiir die Nebendiagonalelemente mit nur 3n — 2 Speicherpliitzen aus. Fiir
symmetrische Tridiagonalmatrizen wie in Beispiel 10.3 geniigen sogar 2n — 1
Speicherstellen.

Die Tridiagonalmatrix ist ein Spezialfall der Bandmatrix, die wie folgt
definiert ist:

Definition 10.4 (Bandmatrix).
Eine Matrix B = (b;;)}';—; € R"*" heikt Bandmatriz, wenn es mi,mz € N
gibt, so dass

bij =0, wenn j <i—my oder j >i+mo, 4,j=1,...,n.

a

Eine Bandmatrix ist also diinn besetzt, wenn mj,ms < n gilt, denn dann
miissen hochstens (my+mgo+1)n Speicherplitze fiir die von Null verschiedenen
Matrixeintrige reserviert werden.

Viele Anwendungen fiihren auf symmetrische Bandmatrizen, die sich recht
elegant abspeichern lassen:

e Man erzeugt ein Feld entries[], das die Bandmatrix zeilenweise enthalt.
Dabei wird jede Zeile mit dem ersten von 0 verschiedenen Eintrag links
der Hauptdiagonalen begonnen und mit dem Diagonalelement beendet.

e In einem Feld index[] der Linge n ist index[i-1] der Index des Diago-
nalements b;; im Feld entries[].

10.3 Diinn besetzte Matrizen 225

Damit sind in der Tat alle Eigenschaften von B bekannt. Wir iiberzeugen uns
davon anhand einer Beispielmatrix.

Beispiel 10.5 (Speicherung einer symmetrischen Bandmatrix).
Wir wenden die beschriebene Speichermethode auf

2 1.0 00
1-2 0 00
B=|0 0 8—-13]| R
0 0—-1 30
0 0 3 04

an. Die Felder lauten in diesem Fall:

entries[]={ 2.0, 1.0, -2.0, 8.0, -1.0, 3.0, 3.0, 0.0, 4.0 }
index[1={ 0, 2, 3, 5, 8 }
O

Die Anzahl der gespeicherten Matrixelemente ist offensichlich gegeben durch
index[n-1]+1
und die Anzahl der von 0 verschiedenen Matrixeintrége der i-ten Zeile durch
index[i+1]-index[i],

wenn index[0]=0 gilt. Auf die Eintrége b;; unterhalb der Diagonalen (d.h.
i > j) greift man folgendermafen zu:
bi; = entries[index[i-11+j-i] falls i > j.

Die Umsetzung des zugehorigen Matrix-Vektor-Produkts iiberlassen wir als
Ubungsaufgabe.

10.3.2 Unstrukturierte diinn besetzte Matrizen

In einigen Anwendungen treten diinn besetzte Matrizen auf, die im Gegen-
satz zu den Bandmatrizen unstrukturiert sind, d.h. die Spaltenindizes der von
Null verschiedenen Eintrage sind beliebig iiber den gesamten Indexbereich
verstreut. Zur effizienten Speicherung solcher Matrizen reicht ein Indexfeld,
dessen Linge gerade die Matrixdimension ist, nicht mehr aus.

Als mogliche Speicherungsmethode beschreiben wir im Folgenden das so
genannte row-indezed sparse storage format (siehe [12]). Als ,niedrigdimen-
sionales Beispiel“ betrachten wir die Matrix

2001 0
04300

A=| 0060 0 |€R™.
5008 0
0700910

226

1.

10 Speicher- und laufzeiteffiziente Datenstrukturen

Man bendtigt zur Adressierung der Eintrége ein Feld, dessen Lange unge-

fahr der Anzahl der nicht verschwindenden Eintrége entspricht:

Im Feld SparseEntry[] werden die von 0 verschiedenen Elemente der

Matrix zeilenweise abgelegt. Dabei wird wie folgt vorgegangen:

e Die ersten n Eintrige enthalten in jedem Fall die Diagonalelemente
der Matrix. Dies ist nur sehr selten Verschwendung von Speicher, da
in den allermeisten Anwendungen die Diagonalelemente von 0 verschie-
den sind.

Der (n + 1)-te Eintrag SparseEntry[n] wird nicht verwendet.
Danach folgen zeilenweise die Nichtdiagonaleintrige der Matrix, jeweils
aufsteigend nach dem Spaltenindex sortiert.

Fiir unser Beispiel gilt daher:
SparseEntry[]={2.0,4.0,6.0,8.0,10.0,%,1.0,3.0,5.0,7.0,9.0}

Das Indexfeld SparseIndex[] ist folgendermafen aufgebaut:

e Die ersten n Eintrige enthalten jeweils die Position, an der das
erste von 0 verschiedene Nichtdiagonalelement einer Matrixzeile in
SparseEntry[] steht. Selbst wenn in der ersten Matrixzeile kein Nicht-
diagonalelement ungleich 0 existiert, wird SparseIndex[0] immer auf
n + 1 gesetzt.

e Ist z.B. fiir die i-te Matrixzeile der Index k in SparseIndex[i-1] fiir
das erste Nichtdiagonalelement # 0 abgespeichert worden, so wird
der Wert von k bei jedem Auffinden eines weiteren von 0 verschie-
denen Elements aufserhalb der Diagonalen um 1 erhoht. Wenn das
Zeilenende erreicht ist, wird der dann aktuelle Wert von k an die
Stelle SparseIndex[i] eingetragen. Existiert in der i-ten Matrixzei-
le (i > 1) kein von 0 verschiedenes Nichtdiagonalelement, so schreibt
man in SparseIndex[i] den um 1 erhchten Index, den das letzte ge-
speicherte Nichtdiagonalelement einer vorangegangenen Matrixzeile in
SparseEntry[] hat.

e SparselIndex[n] ist gleich der Position des letzten Nichtdiagonalele-
ments der letzten Matrixzeile im Feld SparseEntry[].

Damit kann man die Anzahl der nichtverschwindenden Eintrige der
Matrix auslesen, was den Feldldngen entspricht.

e Ab dem Index n+1 folgen die Spaltenindizes der Nichtdiagonalelemen-

te.

Wir erhalten daher:
SparseIndex[]={6,7,8,8,9,11,3,2,0,1,3}.

SparseIndex[2] und SparseIndex[3] haben den Wert 8, weil keine von
0 verschiedenen Elemente aufferhalb der Diagonalen in der dritten Zeile
vorkommen und das letzte Element der zweiten Zeile (der Eintrag 3.0)
an der Position 7 im Feld SparseEntry[] gespeichert wurde.

10.3 Diinn besetzte Matrizen 227

Die folgenden Feldelemente sind also von besonderer Bedeutung:

a) Die Matrixdimension ist nach obiger Vorschrift
n = Sparselndex[0]-1 .
b) Die Feldlange von SparseEntry[] bzw. SparseIndex[] ist
Nmax = SparseIndex[n]=SparseIndex[SparseIndex[0]-1]
¢) Das Diagonalelement a;; der diinn besetzten Matrix A ist
a;; = SparseEntry[i-1]
d) Die Nichtdiagonalelemente a;; # 0 der i-ten Matrixzeile liegen in
SparseEntry[SparseIndex[i-1]]
bis
SparseEntry[SparseIndex[i]-1] .

Zur Erinnerung: Existiert in der i-ten Zeile kein Nichtdiagonalelement un-
gleich 0, so ist SparseIndex[i-1]=SparselIndex[i]. Eine entsprechende
Schleife, die auf die Werte — z.B. beim Matrix-Vektor-Produkt — zugreift,
wird in diesem Fall nicht durchlaufen.

Die Spaltenindizes j zu den Nichtdiagonaleintrigen a;; liegen in

SparseIndex[SparseIndex[i-1]]

bis
SparseIndex[SparseIndex[i]-1].

Sie kénnen verwendet werden, um auf effiziente Weise das Matrix-Vektor-
Produkt Axz zu implementieren. Auch hier verweisen wir wieder auf die
Ubungsaufgaben.

Meistens weift man aus dem Anwendungskontext, dass eine diinn besetzte Ma-
trix pro Zeile héchstens Ng Eintrige haben kann. Beim Umwandeln der vollen
Matrix in die kompakte Speicherdarstellung kann also n/Ng als Vorabwert fiir
Nmax dienen, wobei allerdings ein eventueller Uberlauf abzufangen ist.
Mo6chte man aus der kompakten Darstellung die volle Matrix erstellen, so be-
stimmt man anhand SparseIndex[0] die Matrixdimension n und dann aus
SparselIndex[n] die Feldldngen.

Beim Matrix-Vektor-Produkt kann man die Information in SparseIndex[0]
nutzen, um festzustellen, ob Matrix- und Vektordimension iibereinstimmen.

Bemerkung. Es gibt viele weitere Formate fiir die effiziente Speicherung
diinn besetzter Matrizen, z.B. compressed row storage oder jagged diagonal
storage.

228 10 Speicher- und laufzeiteffiziente Datenstrukturen

10.4 Permutationen und Indexfelder

In Algorithmen der numerischen linearen Algebra werden recht haufig Vertau-
schungsoperationen an Matrizen oder Vektoren durchgefithrt. Mathematisch
lassen sich solche Operationen mit Hilfe von Permutationen beschreiben:

Definition 10.6 (Permutation).
Eine Permutation der Ordnung n ist eine bijektive Abbildung

c:{0,...,n—1} —={0,...,n—1}.

Permutationen kann man wie folgt notieren:
0O 1 ... n—1
104
(J(O) o1)...0(n— 1)> (10.4)

<0123>

0231
0—20
1—2
2—3
3—1

So beschreibt

die Abbildung

Wir konnen eine solche Permutation der Ordnung n als Indezfeld implemen-
tieren, wobei wir natiirlich nur die untere Zeile von (10.4) abspeichern.

Beispiel 10.7. (Tauschen von Spalten einer (m x n)-Matrix)

Wir betrachen den Tausch zweier Spalten einer Matrix, die wir wie in
Abschnitt 4.5 mit Hilfe von Doppelzeigern implementieren. Die Funktion
get_elem() liefert das Matrixelement an der betreffenden Stelle zuriick und
swap_cols () vertauscht zwei Matrixspalten. In der ersten Variante vertau-
schen wir den Inhalt der betreffenden Spalten elementweise im Speicher:

double get_elem(double **mat, int row, int col)
{

return mat[row] [col];

void swap_cols(double **mat, int m, int coll, int col2)

1
2
3
4
5
6
7 {
8

9

double temp;
int Tow;

10.4 Permutationen und Indexfelder 229

10 for (row=0; row < m; ++row)

11 {

12 temp = mat[row] [coll];

13 mat [row] [coll] = mat[row][col2];
14 mat [row] [col2] = temp;

15 }

16

Alternativ verwenden wir nun ein Indexfeld int perm[n], welches wir mit

for (i=0;i<n;i++)
perm[i]=i;

initialisiert haben. Damit lasst sich die gleiche Aufgabe wie folgt umsetzen:

1 double get_elem(double **mat, int perm[], int row, int col)
2 {

3 return mat[row] [perm[col]l];

4 3

5

6 void swap_cols(int perm[], int coll, int col2)
7 {

8 int temp = perm[coll];

9 perm[coll] = perm[col2];

10 perm[col2] = temp;

11 3

Hier wird in Zeile 8 der Zugriff auf ein Element mit Hilfe des Indexfeldes
perm[] ,umgelenkt®. Beim Tausch zweier Spalten wird in den Zeilen 8—10 nur
noch das Indexfeld modifiziert.

Der modifizierte Zugriff in Zeile 3 ist von der Ausfithrungszeit her vernach-
lassigbar. Entscheidend ist, dass die elementweise Vertauschung der Spalten
eine Komplexitit der Ordnung O(n) hat, wohingegen bei der Verwendung des
Indexfeldes der Aufwand unabhéngig von der Matrixdimension ist. O

230 10 Speicher- und laufzeiteffiziente Datenstrukturen

10.5 Kontrollfragen zu Kapitel 10

Frage 10.1

Sei A € R™™ eine Matrix ohne spezielle Struktur und D = (d;;) € R™*" eine
Diagonalmatrix, d.h. d;; = 0 fiir ¢ # j. Welche Aussage trifft fiir den allgemeinen

Fall zu?

a) Zur Speicherung von A und D benétigt man n® Speicherplitze.

Zur Speicherung von A und D bendtigt man n(n + 1)/2 Speicherplitze.
Zur Speicherung von A und D benétigt man 2n? Speicherplitze.

Zur Speicherung von A und D benétigt man n(n — 1) Speicherplitze.
Zur Speicherung von A und D benétigt man n(n + 1) Speicherplitze.

o Ao T
NN NI N

Ooooood

Frage 10.2

Sei A € R™™™ eine Matrix mit von 0 verschiedenen Eintrdgen und D = (d;;) € R™*"
eine Diagonalmatrix, d.h. d;; = 0 fiir ¢ # j. Welche der folgenden Aussagen trifft im

allgemeinen Fall zu?

a) Das Matrizenprodukt AD erfordert O(n®) Operationen.

b) Das Matrizenprodukt AD erfordert n(n + 1)/2 Operationen.
c) Das Matrizenprodukt AD erfordert 2n Operationen.

d) Das Matrizenprodukt AD erfordert n?> Operationen.

)

e) Das Matrizenprodukt AD erfordert n(n — 1) Operationen.

Ooooood

Frage 10.3

Betrachten Sie die folgende symmetrische Bandmatrix

1250
2200
5030
0004

Wie lauten die zugehorigen Vektoren entries[] und index[1?

{1.0, 2.0, 5.0, 2.0, 3.0, 4.0 } und
0, 2, 4, 5}

{1.0, 2.0, 5.0, 2.0, 3.0, 4.0 } und
0,1, 4,51}

c) entries[] = { 1.0, 2.0, 2.0, 5.0, 0.0, 3.0, 4.0 } und
index[] = { 0, 2, 5, 6 }

d) entries[] = { 1.0, 2.0, 2.0, 5.0, 0.0, 3.0, 4.0 } und
index[] = { 0, 1, 4, 5 }

a) entries[]
index[] =

~

b) entries[]
index[] =

~

10.6 Ubungsaufgaben zu Kapitel 10 231

Frage 10.4

Gegeben sind entries[]= { 2.0, 3.0, 7.0, 4.0 } und index[] = { 0, 1, 3 }.
Welche Aussagen treffen fiir die zugehorige symmetrische Bandmatrix B zu?

a) bio =0und b1z =7 O
b) bizs=0und by =7 O
C) boo = 3 und b3z =0 O
d) bz = 7 und b3z = 4]
Frage 10.5
Betrachten Sie die folgende, diinn besetzte Matrix
2070
0300
7040
1025
Wie lauten die zugehorigen Vektoren SparseEntry[] und SparseIndex[]1?
a) SparseEntry[] = { 2.0, 3.0, 4.0, 5.0, =, 7.0, 8.0, 8.0, 2.0 } und
SparseIndex[] = { 5, 6, 6, 7, 8, 3, 1, 1, 3 } O
b) SparseEntry[] = { 2.0, 3.0, 4.0, 5.0, =, 7.0, 7.0, 1.0, 2.0} und
SparseIndex[] = { 5, 6, 6, 7, 8, 2, 0, 0, 2 } O
c) SparseEntry[l = { 2.0, 3.0, 4.0, 5.0, =, 7.0, 7.0, 1.0, 2.0} und
SparseIndex[] = { 5, 6, 7, 7, 8, 3, 1, 1, 3}]
Frage 10.6

Gegeben ist eine diinn besetzte Matrix A mit SparseEntry[] und SparselIndex[]
wie folgt:

0, 2.0, 2.0, 1.0 }

SparseEntry

{1,.0, 1.0, 0.0, 1.0, x, 3.0
Sparselndex 2 0

b'd , 6.
{5,6,7,8,9,1,2,0,0, 1%

Welche der folgenden Aussagen treffen zu?

a) a12 =3 und a3 =6 O
b) a2 =1 und a13 =6 O
C) azz3 =1und ass =1 O
d) a3z = 0 und a41 = 2 O

10.6 Ubungsaufgaben zu Kapitel 10

10.1 (Matrix-Vektor-Produkt fiir Rang-1-Matrizen).
Schreiben Sie eine Funktion welche fiir Vektoren v € R™ und w, x € R™ das Matrix-
Vektor-Produkt (va) x effizient berechnet.

232 10 Speicher- und laufzeiteffiziente Datenstrukturen

10.2 (Symmetrische Matrizen).

a) Schreiben Sie eine Funktion, die fiir eine symmetrische Matrix nach der Methode
aus Abschnitt 10.1 Speicher reserviert und sie mit Werten belegt. Die Werte sollen
dabei aus einer entsprechend strukturierten Datei stammen.

b) Implementieren Sie zu einer gegebenen symmetrischen Matrix und einem gegebe-
nen Vektor eine Funktion zur Berechnung des Matrix-Vektor-Produkts. Verwen-
den Sie dabei die additive Zerlegung (10.2) sowie die Indizierung (10.3).

10.3 (Matrix-Vektor-Produkt fiir Tridiagonalmatrizen).
Implementieren Sie zu einer gegebenen Tridiagonalmatrix und einem gegebenen Vek-
tor das Matrix-Vektor-Produkt. Gehen Sie davon aus, dass die Tridiagonalmatrix
wie in Abschnitt 10.3.1 als Tripel (d, [, u) vorliegt.

Welche Laufzeit Op(n) und welchen Speicherbedarf Mem(n) hat dieses Matrix-
Vektor-Produkt in O-Notation?

10.4 (Tauschen von Matrixspalten mittels Indexfeld).
Bauen Sie Beispiel 10.7 zu einem lauffdhigen Programm aus. Testen Sie Ihre Imple-
mentierung.

10.5 (Tauschen von Matrixzeilen mittels Indexfeld).
Schreiben Sie analog zu Beispiel 10.7 eine Funktion, die zwei Zeilen vertauscht.

10.6 (Tauschen von Zeilen und Spalten einer eindimensional abgelegten
Matrix).

Andern Sie das Programm aus Aufgabe 10.4, indem Sie die Matrix nicht mittels
Doppelzeigern implementieren, sondern wie in Abschnitt 4.5.2 vorgehen. Zusétzlich
sollen mit Hilfe eines zweiten Indexfeldes die Zeilen vertauscht werden.

10.7 (Matrix-Vektor-Produkt fiir symmetrische Bandmatrix).
Implementieren Sie das Matrix-Vektor-Produkt fiir symmetrische Bandmatrizen und
testen Sie ihre Funktion mit der Matrix aus Beispiel 10.5.

Hinweis: Ubertragen Sie die Tdee der Zerlegung (10.2) auf diesen speziellen Fall.

10.8 (Row-indexed sparse storage format).

a) Schreiben Sie eine Funktion, die fiir eine gegebene diinn besetzte Matrix die Felder
SparseEntry und SparseIndex erzeugt und testen Sie Thr Programm, indem Sie
mit Hilfe der erzeugten Felder die Matrix rekonstruieren.

b) Implementieren Sie fiir die Matrix B aus 10.3.2 das Matrix-Vektor-Produkt, in-
dem Sie auf die dort angegebenen Felder SparseEntry und SparseIndex zuriick-
greifen.

10.9 (Compressed Row Storage).

Recherchieren Sie im Internet die Compressed Row Storage (CRS)-Methode. Hierbei
handelt es sich um eine alternative Vorgehensweise, um diinn besetzte Matrizen zu
handhaben. Ubertragen Sie die Matrix A aus Abschnitt 10.3.2 in dieses Format und
implementieren Sie eine entsprechende Funktion sowie das Matrix-Vektor-Produkt
hierfiir.

11

Mehrdateiprojekte, Bibliotheken und Makefiles

Die bisher gezeigten Programmbeispiele sind von ihrem Umfang her noch
recht iiberschaubar, was natiirlich darauf zuriickzufiihren ist, dass sie nur {iber
einen eng begrenzten Funktionsumfang verfiigen. Bei groferen Projekten ist
es aber aus den folgenden Griinden wiinschenswert, den Quelltext auf mehrere
Dateien verteilen zu konnen:

e Analog zur Partitionierung des Problems in Teilaufgaben lésst sich der
Quelltext in entsprechende Module aufteilen. Das Projekt wird dadurch
auch iibersichtlicher und die Suche nach Fehlerquellen wird durch die ge-
zielte Untersuchung einzelner Module wesentlich erleichtert.

o Die Entwicklung der einzelnen Module kann von verschiedenen Personen
zur gleichen Zeit fast unabhéngig voneinander durchgefiihrt werden.

e Die Module kénnen von Beginn an wiederverwendbar konzipiert und ent-
wickelt werden, so dass bei anderen Projekten mit &hnlichen Teilaufgaben
wertvolle Zeit gespart wird.

In diesem Kapitel gehen wir zuerst der Frage nach, wie man aus mehreren
Quelltextdateien ein einziges ausfiihrbares Programm erzeugt. Dazu miissen
wir uns noch einmal kurz mit dem Ubersetzungsvorgang auseinander set-
zen. Im Anschluss fithren wir an einem Beispiel vor, wie man eine Aufteilung
des Quelltextes in Headerdateien und Modulquellcode vornehmen kann und
daraus eigene Programmbibliotheken erzeugt, auf die man auch fiir die Be-
arbeitung anderer Aufgaben zuriickgreifen kann. Wir stellen auferdem das
Programm make vor, das den Ubersetzungsvorgang automatisiert und eine
grofse Erleichterung bei umfangreichen Projekten darstellt. Zum Schluss de-
monstrieren wir an einem kleinen Beispiel, wie man FORTRAN-Quellcode in
ein eigenes C-Programm integriert.

234 11 Mehrdateiprojekte, Bibliotheken und Makefiles

11.1 Die Ubersetzung mehrerer Quelldateien zu einem
Programm

Bisher haben wir unsere Quelldateien immer mit Befehlen der folgenden Ge-
stalt {ibersetzt:

$ gcc -o Programmname Quelldatei.c [-1m]

Dabei war die Einbindung der Mathematikbibliothek 1ibm.a natiirlich nur
bei Verwendung entsprechender mathematischer Funktionen nétig.

Hinter diesem Befehl verbirgt sich in Wahrheit ein mehrstufiger Prozess,
der sich u.a. in die folgenden Phasen unterteilt:

Vorverarbeitung: Zunidchst wird der Quelltext vom Prdprozessor untersucht
und einfache Anderungen am Quelltext wie z.B. das Entfernen von iiber-
fliissigen Textzwischenrdumen und Kommentaren vorgenommen. Wie der
Name bereits vermuten lasst, werden auch die Praprozessordirektiven in
dieser Phase ausgefiihrt. So bewirkt z.B. die #include-Direktive, dass der
Préprozessor an dieser Stelle den Inhalt der betreffenden Headerdatei in
den Quelltext einfiigt.

Kompilieren: Der Compiler untersucht den vom Priprozessor behandelten
Quelltext auf syntaktische Fehler, d.h. er iiberpriift, ob die grammatika-
lischen Regeln der Programmiersprache eingehalten werden. Ist dies der
Fall, so wird der eigentliche Ubersetzungsvorgang gestartet, der eine ent-
sprechende Objektdatei erzeugt, die man an der Namensendung .o! er-
kennt.

Linken: In diesem Schritt wird die Objektdatei zu einem ausfithrbaren Pro-
gramm umgewandelt. In den allermeisten Fallen werden dazu noch andere
Objektdateien aus Standardbibliotheken (engl. libraries) mit der selbst er-
zeugten verbunden. Spezielle Bibliotheken wie z.B. 1libm.a miissen mit
der Option -1 angefordert werden.

In Abb. 11.1 ist der Prozess graphisch dargestellt. Um quelle.c zu iiber-
setzen, geht man bei Verwendung des GNU-C-Compilers folgendermaisen vor:
Vorverarbeitung und Kompilieren werden durch das Kommando

$ gcc -c quelle.c

veranlasst. Ist das Programm syntaktisch korrekt, so wird die Objektdatei
quelle. o erzeugt, andernfalls werden alle vom Compiler identifizierten Fehler
aufgelistet. Sofern keine zusétzlichen Bibliotheken bendtigt werden, erfolgt das
Linken zum ausfiihrbaren Programm durch den folgenden Befehl:

$ gcc -o quelle quelle.o

Die Option -o dient dazu, den Namen der zu erzeugenden Datei anzugeben,
in unserem Fall also quelle. Ohne diese Option wird als Standard a.out

! Bei manchen Systemen lautet die Endung .obj.

11.1 Die Ubersetzung mehrerer Quelldateien zu einem Programm 235

Quelldatei quelle.c

Praprozessor
Parser
Compiler gee -¢
Assembler

Objektdatei quelle.o
Linker gee -o

Programm Bibliothek(en) quelle

Abb. 11.1. Vom C-Quelltext zum ausfithrbaren Programm.

verwendet. Die Option kann auch bereits beim Kompilieren eingesetzt werden,
falls man einen anderen Namen fiir die Objektdatei wiinscht.

Durch die Aufspaltung des Ubersetzungsvorgangs in das Kompilieren und
das Linken erhalten wir die Moglichkeit, mehrere Quelltextdateien zu einem
Programm zu iibersetzen. Wichtig ist dabei:

Nur eine der Quelltextdateien, die zu einem Programm iibersetzt wer-
den, darf main() enthalten.

Wollen wir z.B. die Quelldateien unterprog.c und hauptprog.c zu einem
Programm namens matheprog iibersetzen, so miissen wir sie erst kompilieren

$ gcc -c unterprog.c
$ gcc -c hauptprog.c

und dann die beiden entstehenden Module linken, wobei in diesem Fall ma-
thematische Funktionen eingebunden werden sollen:

$ gcc unterprog.o hauptprog.o -o matheprog -1m

Alternativ kann man die Dateiliste auch mit dem Namen des Programms
beginnen:

$ gcc -o matheprog unterprog.o hauptprog.o -1m

236 11 Mehrdateiprojekte, Bibliotheken und Makefiles

11.2 Organisation des Quelltextes

Die Aufteilung des Quelltextes sollte sowohl nach technischen als auch nach
inhaltlichen Gesichtspunkten erfolgen. Man kann hierzu nach dem folgenden
Schema vorgehen:

e Wir verschaffen uns zunichst einen Uberblick, welche Datentypen und
Funktionen unser Programm benétigt. Die zugehorigen Deklarationen neh-
men wir in einer eigenen Headerdatei vor.

e Die Funktionsdefinitionen verteilen wir auf verschiedene Quelltextdateien.
Dabei bietet es sich an, inhaltlich zusammengehorige Funktionen in einer
gemeinsamen Datei zu halten. Aus jeder solchen Datei wird beim spéteren
Kompilieren ein Modul erzeugt.

Zur Tllustration betrachten wir wieder das Programm mit der Trapezregel auf
Seite 194. Zuerst schreiben wir die Headerdatei trapezregel.h:

typedef double (*ReelleFun) (double);

1

2

3 extern double trapezregel(double a, double b, int N,
4 ReelleFun fun);

Diese besagt also: ,,Es gibt eine Funktion trapezregel(), welche zwei
Werte vom Typ double, einen Wert vom Typ int und einen Funktionszei-
ger entgegennimmt. Diese Funktion gibt einen Wert vom Typ double zuriick.
Der Funktionszeiger zeigt auf eine Funktion, die einen double-Wert entge-
gennimmt und auch einen double-Wert zuriickliefert. Durch das Schliissel-
wort extern vor den Deklarationen wird ausgedriickt, dass die entsprechenden
Funktionen in einer anderen Quelltextdatei definiert werden.

Diese Funktion mdchten wir im folgenden Hauptprogramm benutzen, wel-
ches in der Datei main. c gespeichert ist:

[y

#include <math.h>
#include <stdio.h>
#include "trapezregel.h"

double funktion(double x)
{

return sin(x*x);

O 00 N O U W N

Jure
o

int main()

{

S
N =

double wert = trapezregel(0.0, 1.0, 1000, &funktion);
printf ("Integral: %f\n", wert);

=
oW
S

11.2 Organisation des Quelltextes 237

Zeile 8: Hier wird unsere Headerdatei eingebunden. Was es mit den Anfiih-
rungsstrichen in dieser #include-Direktive auf sich hat, kldren wir weiter
unten.

Zeilen 5-8: Als Beispiel soll im Hauptprogramm die Funktion sin(z?) inte-
griert werdern.

Zeile 12: Der Compiler kennt jetzt den Typ ReelleFun und kann feststellen,
dass der Aufruf der Funktion trapezregel () syntaktisch korrekt ist, mehr
weils er von dieser Funktion allerdings noch nicht.

Bereits mit den Informationen aus unserer Headerdatei konnen wir aus main.c
ein Modul erzeugen, indem wir die Datei kompilieren:

$ gcc -c main.c -o main.o

Zur Erstellung des fertigen Programms fehlt uns aber noch die Definition der
Funktion trapezregel(), die sich in der Datei trapezregel.c befindet:

1 #include "trapezregel.h"

2

3 double trapezregel(double a, double b, int N, ReelleFun fun)
4 A

5 double sum, xKk;

6 int k;

7

8 sum = 0.5%(fun(a) + fun(b));

9 for (k=2; k<N; k++) {

10 xk = (k-1.0)/(N-1.0)*(b-a)+a;
11 sum += fun(xk);

12 }

13 return (b-a)/(N-1)*sum;

14 }

Zeile 1: Hier wird die obige Headerdatei erneut eingebunden. Damit ist der
Typ ReelleFun auch in Zeile 3 bekannt. Aufserdem wird auf diese Weise
iiberpriift, ob die Deklaration von trapezregel () in der Headerdatei und
der Funktionskopf in Zeile 3 konsistent sind. Ware dies nicht der Fall, so
wiirde der Compiler uns beim Kompilieren darauf aufmerksam machen.

Zeilen 8—14: Hier steht der Quelltext fiir die summierte Trapezregel, wie wir
sie aus Abschnitt 5.3 kennen.

Auch diese Datei kann zu einem Modul iibersetzt werden:
$ gcc -c trapezregel.c

Jetzt sind die deklarierten Objekte auch definiert und liegen als Module vor,
die wir nun zum Programm demo_trapez zusammenlinken:

238 11 Mehrdateiprojekte, Bibliotheken und Makefiles

$ gcc trapezregel.o main.o -o demo_trapez -1lm
$./demo_trapez
integral: 0.310268

Eigene Headerdateien

In der bisher verwendeten Form der #include-Anweisung
#include <name.h>

besagt die Klammerung <>, dass die betreffende Headerdatei zu den system-
weit bekannten Standardheaderdateien gehort. Diese liegen z.B. fiir den gec
unter LINUX in den Verzeichnissen /usr/include/ und /usr/local/include
und konnen von jedem Benutzer verwendet werden.

Mochte man hingegen eigene Headerdateien einbinden, so lautet die Di-
rektive

#include "Verzeichnis/headername.h"

oder fiir den Fall, dass die betreffende Headerdatei im aktuellen Verzeichnis
liegt:

#include '"headername.h"

Man kann auch die eckigen Klammern fiir eigene Headerdateien verwenden,
muss dann aber beim Kompilieren das betreffende Verzeichnis mit der Option
-1 angeben:

$ gcc -c quelldatei.c -IVerzeichnis

Diese Option veranlasst den Compiler dazu, zusitzlich zu den Standardver-
zeichnissen auch das angegebene Verzeichnis in die Suche nach den Header-
dateien miteinzubeziehen.

11.3 Eigene Bibliotheken

Wenn die einzelnen Module ausreichend getestet und fiir gut befunden wur-
den, so kann man sie in einer eigenen Programmbibliothek zusammenfassen.
Wie bei der C-Standardbibliothek oder der Mathematikbibliothek ist dann bei
der Implementierung von neuen Programmen nur darauf zu achten, dass die
zugehorige Headerdatei mit den Deklarationen an den entsprechenden Stellen
im Quelltext auftaucht und die Bibliothek beim Linken eingebunden wird.

Eigene Bibliotheken kann man erzeugen, indem man die Objektdateien
mit den gewiinschten Funktionen unter Verwendung des Kommandos ar zu-
sammenfiigt.

Nehmen wir an, wir haben als zweite Quadraturformel neben der Trapez-
regel die summierte Mittelpunktregel (siehe Aufgabe 11.1) implementiert und
eine entsprechende Headerdatei mitpunktregel.h sowie die Quelltextdatei

11.3 Eigene Bibliotheken 239

mitpunktregel.c verfasst. Die nach dem Kompilieren der Quellen entstande-
nen Module mitpunktregel.o und trapezregel.o werden durch den Befehl

$ ar -r libintegral.a trapezregel.o mitpunktregel.o

zu einer Bibliothek 1ibintegral.a zusammengefasst. Beim Linken eines Pro-
gramms, das auf die Quadraturfunktionen zugreift, verwendet man diese Bi-
bliothek dann so:

$ gcc -o intprog main.c libintegral.a [-1m]

Dabei miissen allerdings im Hauptprogramm beide Headerdateien eingebun-
den werden. Alternativ kann man eine Headerdatei integral.h erstellen, die
die folgenden Priprozessordirektiven enthilt:

#include "trapezregel.h"
#include "mitpunktregel.h"

Damit muss in main.c nur noch diese Datei eingebunden werden, um die
Bibliothek nutzen zu kénnen.

Wird die Bibliothek in einem anderen Verzeichnis untergebracht, z.B. um
anderen Programmierprojekten den Zugriff zu erleichtern, so muss das betref-
fende Verzeichnis beim Linken mit der Option -L angegeben werden. Aufier-
dem ist die Bibliothek mit der Option -1 anzugeben, wobei das Préfix 1ib
und das Suffix .a entfallen. Da das aktuelle Verzeichnis mit . bezeichnet wird,
lautet eine zu oben dquivalente Formulierung

$ gcc -o intprog main.c -L. -lintegral

Damit wird auch klar, wie die Option -1m bei der Verwendung der Mathe-
matikbibliothek 1ibm.a zustande kommt. Die Mathematikbibliothek befindet
sich im systemweit bekannten Standardbibliothekspfad, weshalb die Option
-L nicht benétigt wird.

Wir fassen kurz zusammen, was wir bis hierher gelernt haben:

e Die Deklarationen eigener Datentypen und Funktionen sowie die dazu be-
notigten Préprozessordirektiven fasst man in eigenen Headerdateien (En-
dung .h) zusammen. Diese Phase der Quelltextorganisation findet in der
Regel zu Beginn eines Projekts statt, wenn die gewiinschten Funktionali-
titen des Programms feststehen und man sich iiber die geeigneten Daten-
strukturen und Funktionen zur Realisierung im Klaren ist.

e Das Hauptprogramm befindet sich in einer speziellen Quelltextdatei, die
als einzige main() enthélt.

e Die einzelnen Funktionen werden jeweils in entsprechenden Quelltextda-
teien definiert. Inhaltlich zusammengehdrige Unterprogramme konnen ge-
meinsam in der jeweiligen Datei stehen.

e In der ersten Stufe des Ubersetzungsvorgangs erzeugt man aus den Quell-
textdateien Module, d.h. Objektdateien mit den jeweiligen Funktionsde-
finitionen. In einem zweiten Schritt linkt man die Module — ggf. unter
Einbeziehen zusétzlicher Bibliotheken — zum Hauptprogramm zusammen.

240 11 Mehrdateiprojekte, Bibliotheken und Makefiles

e Optimierte und getestete Module konnen schliefslich zu eigenen Programm-
bibliotheken zusammengefasst werden, so dass andere Projekte bei ihrem
Linkvorgang Zugriff auf die fertigen Module erhalten.

11.4 Automatisierte Ubersetzung mit make

Man kann sich sicher vorstellen, dass das manuelle Ubersetzen in der bisher
gezeigten Art und Weise bei Projekten mit zahlreichen Modulen und Header-
dateien nur sehr mithsam und mit viel Ubersicht zu bewiltigen ist. Bei nach-
tréglichen Anderungen miissen ja auch nicht alle Quelldateien neu kompiliert
werden, sondern nur jene, die auf die aktualisierten Funktionen zugreifen.
Die Objektdateien hingegen, die von den Anderungen nicht betroffen sind,
konnen in ihrer bestehenden Form weiter verwendet werden. Es wére also au-
ferst niitzlich, ein Programm zu haben, das anhand der Abhéngigkeiten der
Module und Headerdateien untereinander alle nétigen Ubersetzungsvorginge
feststellen und in der richtigen Art und Weise durchfiithren lassen kann.

Ein solches Programm ist (GNU-)make. Die Abhdngigkeiten der Quellda-
teien tragen wir in eine Datei ein, die standardmifig den Namen Makefile
oder makefile trigt. Diese Informationsdatei wird daher auch schlicht das
Makefile des Projekts genannt. Man findet Makefiles z.B. oft bei LINUX-
Software, die nicht fertig kompiliert, sondern in Form von Quelldateipaketen
(engl. source packages) verdffentlicht wird und fiir ihre Ubersetzung und In-
stallation make verwenden. Selbst wenn man also fiir seine eigenen Programme
(noch) keinen Bedarf fiir ein solches Werkzeug sieht, kann ein wenig Grund-
wissen iiber dieses Thema recht niitzlich sein.

Ein einfaches Makefile

Das folgende Makefile beschreibt die Abhéngigkeiten der Quelldateien aus
unserem Quadraturbeispiel in Abschnitt 11.2:

1 intprog: main.c libintegral.a

2 gcc -o intprog main.c libintegral.a -1m

3

4 libintegral.a: trapezregel.o simpsonregel.o

5 ar -r libintegral.a trapezregel.o mitpunktregel.o
6

7 trapezregel.o: trapezregel.c

8 gcc -c trapezregel.c

9

10 mitpunktregel.o: mitpunktregel.c
11 gcc -c mitpunktregel.c

11.4 Automatisierte Ubersetzung mit make 241

e Ein Makefile besteht im Kern aus einer Liste der Targets, d.h. der zu
erzeugenden Programme, Module oder Bibliotheken.

e In unserem Beispiel sind die Ziele
— das ausfiihrbare Programm intprog,
— die Bibliothek 1ibintegral.a
— und die Module trapezregel.o und mitpunktregel.o.
Die Namen der Targets miissen in Spalte 1 beginnen, wie in den Zeilen 1,
4, 7und 10.

e Zu jedem Target wird im Makefile festgehalten, von welchen anderen Tar-
gets oder Dateien es abhéngt.
Die Abhéngigkeiten werden jeweils hinter dem Doppelpunkt : aufgelistet.
So héngt z.B. das Target intprog von der Datei main.c und dem Tar-
get 1ibintegral.a ab. Um libintegral.a erzeugen zu konnen, miissen
trapezregel.o und mitpunktregel.o vorliegen.

e Wenn wir das Programm mit dem Befehl

make Target

aufrufen, priift das Programm, ob Target vorhanden ist. Ist dies nicht der
Fall oder auch wenn Target élter ist als die Dateien, von denen es abhéngt,
so wird Target (neu) erzeugt. Die Aktualitdt wird dabei anhand des jewei-
ligen Datums der letzten Dateidnderung festgestellt. Die Art und Weise,
wie Target zu erzeugen ist, geht aus Vorschriften (engl. rules) hervor, die
im Makefile festgehalten werden.

e Beispiele fiir solche Vorschriften zum Erzeugen von Targets sieht man in
den Zeilen 2,5, 8 und 11. Diese kénnen sich auch iiber mehrere Zeilen er-
strecken, ein Zeilenumbruch muss aber mit \ markiert werden.

Die Einriickung der Vorschriften miissen mit einmaligem Driicken
der Taste TAB erzeugt werden, und nicht mit Hilfe von Leerzeichen.

e Rekursiv analysiert make durch Auswertung des Makefiles die Abhéngig-
keiten und bestimmt alle Dateien, die neu erzeugt werden miissen. Auf der
untersten Ebene befinden sich z.B. die Quell- und Headerdateien, die ja
zumeist durch Editieren aktualisiert werden. Im Anschluss wendet make
die jeweilige Vorschrift an, um die betreffenden Dateien zu erzeugen.
Will man z.B. das Target libintegral.a erzeugen und sollte die Quell-
textdatei trapezregel. c aktueller als diese Bibliothek sein, so wird zuerst
das Ziel trapezregel .o nach der Vorschrift in Zeile 8 erzeugt, und dann
libintegral.a gemil der Vorschrift in Zeile 5 neu erstellt.

Gibt man kein bestimmtes Target beim Aufruf von make an, so wird stan-
dardmifig das erste Target in der Liste ausgewidhlt. Daher findet man in
Makefiles oft als erstes das Target all, das von allen zu bildenden Targets
abhingt.

242 11 Mehrdateiprojekte, Bibliotheken und Makefiles
Makros und Musterregeln

Man hat in Makefiles die Mo6glichkeit, Abkiirzungen zu definieren. Diese Ma-
kros sparen viel Schreibarbeit, wenn man z.B. die Compileroptionen an eine
neue Projektumgebung oder Hardwarearchitektur anpassen mochte. Haufig
kommt es auch vor, dass gewisse Targets alle auf dieselbe Weise aus den Da-
teien erzeugt werden, von denen sie abhingen. Wenn diese gemeinsame Vor-
schrift mit bestimmten Dateinamensmustern verkniipft ist, spricht man von
einer Musterregel.

Um diese beiden Techniken vorzufiithren, modifizieren wir unser Makefile
folgendermafien:

1 CCFLAGS=-Wall

2

3 intprog: main.c libintegral.a

4 gcc -o intprog main.c libintegral.a $(CCFLAGS) -1m
5

6 libintegral.a: trapezregel.o mitpunktregel.o

7 ar -r libintegral.a trapezregel.o mitpunktregel.o
8

9%.0: %h.c

10 gcc -c $(CCFLAGS) $<

e Die Angabe in Zeile 1 definiert ein Makro. Dadurch werden die Anga-
ben $ (CCFLAGS) in den Zeilen 4 und 10 durch die Compileroption -Wall
ersetzt. Diese Option fiihrt dazu, daff der gcc mehr und ausfiihrlichere
Warnungen ausgibt. Durch Andern der Makrodefinition zu CCFLAGS= kann
man nun diese Funktionalitit abschalten. Ebenso kann man nur durch An-
derung von Zeile 1 weitere Optionen in allen Vorschriften hinzufiigen, die
das Makro enthalten.

e Die Zeilen 9 und 10 ersetzen die Zeilen 7-11 unseres vorherigen Makefi-
les. Zeile 9 leitet eine Musterregel ein, die generell vorschreibt, auf welche
Weise Objektdateien aus C-Quelltextdateien erzeugt werden. Dazu ver-
wendet sie so genannte Patterns , in denen % durch den jeweiligen Datei-
namen ohne Endung ersetzt wird. In der eigentlichen Regel zur Erzeugung
steht, dass beim Kompilieren die Optionen im Makro CCFLAGS verwendet
werden sollen. Hier taucht auch das vordefinierte Makro $< auf, das bei
Anwendung der Regel durch den konkreten Dateinamen (mit Endung) der
Quelltextdatei ersetzt wird

Wir konnten hier einen allenfalls mikroskopischen Ausschnitt aus den viel-
faltigen Moglichkeiten betrachten, die make bietet. Fiir eine umfassende Dar-
stellung verweisen wir auf [11]. Fir kleinere Mehrdateiprojekte sollten aber
die hier gezeigten Beispiele schon ausreichen, um den Ubersetzungsvorgang
komfortabel gestalten zu konnen.

11.5 Einbindung von FORTRAN-Programmen 243

11.5 Einbindung von FORTRAN-Programmen

FORTRAN? war eine der ersten hoheren Programmiersprachen. Vor allem die
Version FORTRAN77 war sehr beliebt bei der Programmierung numerischer
Verfahren, so dass auch heute noch zahlreiche niitzliche Unterprogramme in
dieser Sprache verfiighbar sind (siehe z.B. [19]). Wir zeigen an einem kleinen
Beispiel, wie man FORTRAN-Module in ein eigenes C-Projekt einbauen kann.

Beispiel 11.1 (Ein FORTRAN- Unterprogramm).

In FORTRAN sind die ersten sechs Spalten fiir spezielle Zwecke reserviert, wir
haben daher im folgenden FORTRAN-Programm die Leerzeichen in den Zeilen
1 und 10 sichtbar gemacht:

1 LuLuuuSUBROUTINE INITMATRIX(A, N, M)

2 INTEGER N, M

3 REAL A(N,M)

4

5 INTEGER I, J

6

7 DO 20 I=1, N

8 DO 20 J=1, M

9 ACI,J) = I+J
10 ,20,,,,CONTINUE

11 END

Zeile 1: Im Gegensatz zu C unterscheidet FORTRAN zwischen Unterpro-
grammen ohne Riickgabewert (SUBROUTINE) und solchen, die Werte zuriick-
liefern (FUNCTION). In unserem Beispiel wird also eine Subroutine namens
INITMATRIX deklariert, die zwei ganze Zahlen N und M sowie eine Matrix A
der Grofe N x M entgegennimmt. Das Programm weist den Eintrigen von A
jeweils a;; =4 + j zu, wobei in FORTRAN die Feldindizierung mit 1 beginnt,
wie man an den DO-Schleifen in den Zeilen 7-9 sieht. O

FEin weiterer Unterschied zwischen den beiden Sprachen ist:
FORTRAN legt eine Matrix im Speicher Spalte fiir Spalte ab.

Ruft man die Routine aus Beispiel 11.1 mit den Parametern N = 2und M = 3
auf, so wird die Matrix
A— 2.03.04.0
3.04.05.0

erzeugt und spaltenweise im Speicher abgelegt:

20 |1 3.0 3.0 | 40 | 40 | 5.0

2 Abkiirzung fiir FORmula TRANslator.

244 11 Mehrdateiprojekte, Bibliotheken und Makefiles

Tabelle 11.1. Gegeniiberstellung einiger Datentypen in FORTRAN und C (g77,
gec, 32-Bit PC).

| FORTRAN alternativ C |
REAL*4 REAL float
REAL*8 DOUBLE PRECISION double
INTEGER *4 INTEGER int
INTEGER *8 long

Der Eintrag a;; liegt also an Position 1+ (i — 1) + (j — 1)n.

Um ein solches Unterprogramm in C aufrufen zu kénnen, bendtigt man
eine entsprechende Deklaration als C-Funktion. Daher muss man zunéchst die
Datentypen richtig tibersetzen (siehe Tabelle 11.1). Aufierdem kennt FORTRAN
nur die Call by Reference-Parameteriibergabe, so dass man Deklaration und
Aufruf in C entsprechend vornehmen muss.

Beispiel 11.2 (Aufruf von FORTRAN-Routinen in C-Programmen).

1 #include <stdlib.h>

2

3 extern void initmatrix_(float *f, int *n, int *m);
4

5 int main()

6 {

7 int n, m;

8 int ze, sp;

9 float *mat;

10

11 n=2; m=3;

12 mat = (float*)malloc(n*m*sizeof (float));
13 if (mat==NULL) return;

14

15 initmatrix_(mat, &n, &m);

16

17 for (ze=0; ze<n; ++ze)

18 {

19 for (sp=0; sp<m; ++sp)

20 printf ("%.3f ", mat[zet+sp#*n]);
21 printf ("\n");

22 }

23 free(mat) ;

24 }

11.6 Kontrollfragen zu Kapitel 11 245

Zeile 3: Die in FORTRAN unter INITMATRIX definierte Subroutine wird in C
als initmatrix_() angesprochen. Die Argumente miissen fiir die Call by
Reference-Ubergabe als Zeiger deklariert werden.

Zeile 15: Hier ist der Call by Reference-Aufruf der FORTRAN-Subroutine.

Zeile 19: Zu beachten ist die Ausgabe: Da in C die Indizierung im Speicher
mit 0 beginnt, liegt a;; an Position ¢ + jn.

Ist das angegebene FORTRAN-Programm als initmatrix.f, und das C-
Hauptprogramm als callf.c gespeichert, so iibersetzt und linkt man mit
den folgenden Anweisungen:

$ gcc -c callf.c -c

$ g77 initmatrix.f callf.o -o callf
$./callf

2.000 3.000 4.000

3.000 4.000 5.000

g77 ist der FORTRAN77-Ubersetzer aus der GNU Compiler Collection. Wir
verwenden diesen Befehl zum Ubersetzen der FORTRAN-Subroutine und zum
Linken der Module in einem Schritt. O

Wir fassen zusammen:

e Funktionsnamen in FORTRAN werden nach C {ibertragen, indem man den
Namen in Kleinbuchstaben iiberfiihrt und einen Unterstrich 7 7 anfiigt.

e Der Aufruf von FORTRAN-Funktionen geschieht immer durch Call by Re-
ference. Das heifit, dass ein INTEGER-Argument in FORTRAN fiir das C-
Programm als Zeiger int * zu {ibertragen ist, ein Array REAL A(N,M)
hingegen wird in C aber direkt als Feld oder Zeiger iibergeben.

e FEine Matrix A(N,M) wird spaltenweise im Speicher abgelegt. Im Gegensatz
dazu legt C ein Feld a[2] [3] zeilenweise ab.

e Das endgiiltige Linken muss mit dem g77 geschehen.

11.6 Kontrollfragen zu Kapitel 11

Frage 11.1

Welche der folgenden Kommandos linken main.o und algo.o zu einer ausfithrbaren
Datei?

a) $ gcc -c main.o -c algo.o -o main
b) $ gcc -link main.o algo.o -o main
gcc main.o algo.o -o main

gcc -c main.o algo.o

gcc main.o algo.o

Oooooag

246 11 Mehrdateiprojekte, Bibliotheken und Makefiles

Frage 11.2
Welche der folgenden Kommandos erzeugen aus einer Datei prog. c eine Objektdatei
prog.o?
a) $ gcc prog.c -o prog.o O
b) $ gcc -c prog.c -o prog.o O
c) $ gcc -c prog.c O
d) $ gcc -obj prog.c -o prog.o a
e) $ gcc -c prog.c -obj prog.o O
Frage 11.3
Bei Aufruf des Ubersetzungskommandos

$ gcc -o program program.c
gibt der Compiler eine Fehlermeldung aus, die die Zeile

In function ’main’: undefined reference to ’sin’
enthélt. Was ist der Grund?
a) Die Bibliotheksfunktion sin() wurde syntaktisch falsch verwendet. ad
b) Die Priaprozessordirektive #include <math.h> fehlt im Quelltext. a
¢) Es wurde vergessen, beim Linken die Mathematikbibliothek einzubinden. O
d) Die Funktion sin() wurde félschlicherweise innerhalb von main() deklariert. O
e) Deklaration und Definition von sin() stimmen nicht iiberein. a

Frage 11.4

Welche der folgenden Kommandos erzeugen aus zwei Objektdateien teill.obj und

teil2.obj eine statische Bibliothek mylib.a?

a) ar mylib.a teill.obj teil2.obj

b) ar -r mylib.a -o teill.obj -o teil2.obj
ar -r mylib.a teill.obj teil2.obj

ar teill.obj teil2.obj -o mylib.a

ar mylib.a -o teill.obj -o teil2.obj

o

@

[o9)
_ D

ooooo

Frage 11.5

Welche der folgenden Kommandos iibersetzen main.c und mylib.a zu einer ausfiihr-

baren Datei main?

a) $ gcc main.c mylib.a -L. -o main

c
b) $ gcc main.c -lmylib.a -o main
¢) $ gcc main.c -1 mylib.a -o main
d) $ gcc main.c mylib.a -o main

e) $ gcc main.c -1 mylib.a

ooooo

11.6 Kontrollfragen zu Kapitel 11 247

Frage 11.6
Sie haben in FORTRAN eine Matrix A(2,3) mit Eintrégen

1.0 2.0 3.0

6.0 5.0 4.0
erzeugt und haben die Anfangsadresse von A in C unter double *aptr vorliegen.
Welche Aussagen sind richtig?

a) aptr[1]==6.0 O
b) aptr[1]==1.0 O
c) aptr[1]==2.0 O
d) aptr[6]1==4.0 a
e) aptr[5]==4.0 a
Frage 11.7
Sie haben in FORTRAN eine Subroutine

SUBROUTINE DIAGONALIZE(A, N, M, INFO)

REAL*4 A(N,M)

INTEGER N, M

INTEGER *4 INFO
vorliegen.
In C haben Sie Variablen

float A[20];

int n=4, m=5;

unsigned int info;
vorliegen. Wie sieht der korrekte Aufruf von DTAGONALIZE in C aus?
a) diagonalize_(A, n, m, info); O
b) diagonalize_(A, &n, &m, &info); O
c) diagonalize_(&A, &n, &m, &info); O
d) diagonalize(&A, &n, &m, info); O
e) diagonalize(&A, n, m, info); O

248 11 Mehrdateiprojekte, Bibliotheken und Makefiles

11.7 Ubungsaufgaben zu Kapitel 11

®

Aufgaben, die mit einem * markiert sind, sind vom Schwierigkeitsgrad etwas an-

spruchsvoller. Sie kénnen beim ersten Durcharbeiten zuriickgestellt werden.

11.1 (Eine kleine Quadratur-Bibliothek).
Die summierte Mittelpunktregel zur ndherungsweisen Integration einer Funktion f
auf dem Intervall [a, b] lautet.

2

-1

f(@ryas2)-
1

1

Mf] = +—

ES
Il

Das Intervall ist hierbei dquidistant zerlegt in die Teilintervalle [, Zx+1] mit

b—a
N-1’

zr=a+ (k—1) k=1,...,N,

und die Funktion wird an den Intervallmitten

1N\b—a
menvz=at (k= 5) 51
ausgewertet.
Implementieren Sie eine Funktion mitpunktRegel (), die diese Quadraturformel ana-
log zur Funktion trapez_regel() aus Abschnitt 11.2 realisiert. Erzeugen Sie im An-
schluss wie in Abschnitt 11.3 beschrieben eine Bibliothek 1ibintegral.a und testen
Sie sie in einem Hauptprogramm mit den Funktionen

fila) =3z +1, fale)=c "

fiir verschiedene Intervalle und verschiedene N.

11.2 (Eine Bibliothek zur Linearen Algebra).

Erzeugen Sie eine Bibliothek libmatrix.a, die die Funktionen aus den Aufgaben
4.4, 7.2 und 10.2 — 10.7 enthalt. Fassen Sie die Quelltexte zu Modulen zusammen,
die Sie nach folgenden Kriterien erstellen:

Vektoren (Erzeugen, Freigeben, Vektoroperationen),
Erzeugen und Freigeben von Matrizen,

Ein- und Ausgabe, Einlesen mit Erzeugen,

Matrix- und Vektoroperationen.

Verfassen Sie Testdateien sowie ein Hauptprogramm mit Testaufrufen. Schreiben Sie
ein Makefile zum Erzeugen der Module, der Bibliothek sowie des Testprogramms.

11.3 (*Bibliothek fiir diinn besetzte Matrizen).

Uberlegen Sie sich, was zu den Funktionen aus Abschnitt 10.3.2 und den Aufgaben
10.8 — 10.9 noch zu einer halbwegs komfortablen Bibliothek libsparse.a fehlt. Im-
plementieren Sie die noch fehlenden Funktionen, gliedern Sie alles in Module und
schreiben Sie ein Makefile zur Erzeugung einer solchen Bibliothek.

12

Pseudozufallszahlen

Viele interessante Prozesse in den Naturwissenschaften, der Technik sowie der
Finanzwelt sind dermafsen komplex, dass man bei ihrer mathematischen Mo-
dellierung Zufallselemente einfithren muss. Es kommt auch vor, dass sich zwar
ein realitdtsnahes deterministisches Modell mit iiberschaubarer Komplexitit
bilden lasst, die Umsetzung des Modells in eine Computersimulation aber zu
einem nicht vertretbaren numerischen Aufwand fiihrt. In beiden Situationen
versucht man, sich der Losung auf stochastischem Wege zu nahern, indem
man sozusagen eine Niherungslosung geschickt ,auswiirfelt. Diese Losungs-
verfahren werden sinnigerweise Monte-Carlo-Methoden genannt und sind in
manchen Anwendungen die einzige Moglichkeit, ein Problem rechentechnisch
in den Griff zu bekommen.

Dieses Themengebiet ist umfangreich und von den mathematischen Begrif-
fen her teilweise sehr anspruchsvoll, so dass wir uns im Rahmen dieses Buches
nur einen sehr kleinen Einblick in die Welt der stochastischen numerischen
Methoden verschaffen und die Hauptideen an einfachen Beispielen illustrieren
konnen. Selbst fiir diesen kurzen Ausflug bendtigt man aber schon gewisse
Vorkenntnisse und deshalb beginnen wir dieses Kapitel mit einer Zusammen-
stellung von Begriffen und Tatsachen aus der Wahrscheinlichkeitstheorie, die
wir im weiteren Verlauf benétigen.

Ein Computer als deterministische Maschine kann konstruktionsbedingt
gar keine wirklich zufédlligen Werte erzeugen, sondern nur Pseudozufallszah-
len. Wir stellen eine populdre Methode zur Erzeugung dieser Zahlen vor und
diskutieren einige praktische Aspekte. In stochastischen Simulationsverfah-
ren miissen hiufig Zufallszahlen gemaf einer bestimmten Verteilung erzeugt
werden. Wir geben eine einfache Methode hierzu an und illustrieren sie an
Beispielen. Als praktisches Beispiel berechnen wir die Kreiszahl m mit Hilfe
einer einfachen Monte-Carlo-Methode und erweitern unser Verfahren fiir die
Bestimmung eines Schwerpunkts.

250 12 Pseudozufallszahlen

12.1 Ein wenig ,,Mathematik des Zufalls*

Als Beispiel fiir ein Zufallsexperiment stellen wir uns vor, dass wir mit verbun-
denen Augen Dartpfeile auf eine Scheibe werfen, die an der Wand befestigt ist.
Ein mogliches Ereignis dabei ist, dass wir die Scheibe treffen. Es kann aber
auch das Gegenereignis eintreten, d.h. wir verfehlen die Scheibe und unser
Pfeil landet in der Wand. Ebenso kann man als ein Ereignis ansehen, dass der
Pfeil im buil’s eye landet oder in einem anderen Feld der Dartscheibe. Man
kann auch die Vereinigung zweier Ereignisse betrachten: Man trifft ein Feld
im Sektor mit 20 Punkten oder eines, dessen Punkte doppelt gewertet wer-
den. Dabei kdnnen natiirlich bei einem Wurf auch beide Ereignisse gleichzeitig
eintreten.

Mathematisch beschrieben wird ein Zufallsexperiment durch eine nicht-
leere Menge 2, deren Elemente w Elementarereignisse genannt werden. Be-
stimmte Teilmengen A C (2 heifen Ereignisse des Zufallsexperiments. Dabei
gilt:

(E1): Die leere Menge () und {2 sind Ereignisse. Da bei einem Versuch im
Zufallsexperiment ja irgend etwas eintreten muss, wird) auch unmdgliches
Ereignis genannt.

(E2): Ist A ein Ereignis, so ist das Komplement A® = {2\ A ebenfalls ein
Ereignis, das so genannte Gegenereignis.

(E3): Sind A und B Ereignisse, so ist ihre Vereinigung A U B ein Ereignis.
Man sagt: ,,A oder B tritt ein. Ganz allgemein gilt: Ist {A4; : i =1,2,...}
eine abzdhlbare Menge von Ereignissen, so ist auch

U
i=1

ein Ereignis. Kurz: Abzéhlbare Vereinigungen von Ereignissen sind wieder
Ereignisse.

Die Menge aller Ereignisse A C (2, die die Eigenschaften (F1) - (E8) besit-
zen, wird Ereignisalgebra A genannt. Die kleinstmdogliche Ereignisalgebra ist
offensichtlich {@, 2} und die groftmogliche ist die Potenzmenge von 2. Wegen

ANB=(A°uB°)°

folgt aus den Eigenschaften (E2) und (E3), dass der Schnitt von Ereignissen
wieder ein Ereignis ist. In diesem Fall treten die Ereignisse A und B gleich-
zeitig ein und man spricht vom gemeinsamen Ereignis. Weiter gilt, dass mit
A und B auch das Komplement von B in A, d.h.

A\B=AnBY,

ein Ereignis ist.
In unserem Beispiel mit der Dartscheibe wére die Menge aller Wandpunk-
te eine sinnvolle Wahl fiir (2, denn in jedem dieser Punkte kann ein blind

12.1 Ein wenig ,Mathematik des Zufalls“ 251

geworfener Pfeil landen. Bezeichnen wir mit A die Punkte in der Fliche der
Dartscheibe, so bilden diese das Ereignis, dass wir bei einem Wurf die Schei-
be treffen. A® sind dann alle Wandpunkte, die nicht von der Scheibe bedeckt
werden und bilden das Gegenereignis, dass wir die Scheibe verfehlen. Als quan-
titatives Maft dafiir, dass wir die Scheibe treffen, konnen wir den Quotienten

_ Al

P =1g

ansehen, wobei |A| den Flicheninhalt der Dartscheibe bezeichnet und |£2]
entsprechend fiir die Flache der Wand steht. Dies ist insofern sinnvoll, da wir
mit verbundenen Augen werfen und deshalb alle Wandpunkte gleichermafen
getroffen werden kénnen. Ganz allgemein ist eine Wahrscheinlichkeit eine Ab-
bildung P, die jedem Ereignis A € A eine Zahl zwischen 0 und 1 zuordnet.
Dabei soll gelten:

P(Q2) =1, (12.1)
ANB=0= P(AUB) = P(A) + P(B). (12.2)

Bei (12.1) handelt es sich lediglich um eine Normierungsbedingung. Die Glei-
chung (12.2) besagt, dass sich bei Vereinigung zweier unvereinbarer Ereignisse
ihre Wahrscheinlichkeiten addieren.

Beispiel 12.1 (Idealer Wiirfel).

Als wahrscheinlichkeitstheoretisches Modell fiir einen handelsiiblichen Spiel-
wiirfel wihlen wir als Menge der Elementarereignisse 2 = {1,2,3,4,5,6} und
als Ereignisalgebra betrachten wir die Potenzmenge von (2. Dann definiert

1
P({i}) = ¢, fir alle i € 2,

eine Wahrscheinlichkeit fiir dieses Zufallsexperiment. Die Wahrscheinlichkeit
dafiir, dass bei einem Wurf eine ungerade Augenzahl geworfen wird, d.h. fiir
das Ereignis

A={1,3,5} = {1} U {3} U {5},
ist nach (12.2)

3 1
P(A)=P({1}) + P({3}) + P(Bh) =5 =5
Zufallsexperimente, bei denen alle Elementarereignisse gleich wahrscheinlich
sind, heifsen Laplace-Experimente. a

Sehr oft ist das Eintreten eines Ereignisses gar nicht direkt feststellbar, son-
dern nur indirekt durch die Messung von Grofen, die mit dem Ereignis auf
eine gewisse Weise in Zusammenhang stehen. Mathematisch gesehen sind diese
Grofsen also Funktionen, die auf der Menge (2 definiert sind. Wir beschrénken

252 12 Pseudozufallszahlen
uns auf den Fall, dass diese messbaren Grofien reellwertig sind. Eine Zufalls-
variable, auch Zufallsgréfie genannt, ist eine Abbildung
X: 0N —R,
die die Eigenschaft besitzt, dass jedes Urbild eines halboffenen Intervalls (a, b],
X '((a,b]) ={we N :a<X(w)<b},
ein Ereignis ist. Wir verwenden dafiir auch die Kurzschreibweise
X ((a,b]) ={a < X <b}.

Zu einer Zufallsvariablen kann man folglich durch

F(z) = PUX <z)}) = P(X*l((foo, :1:])) (12.3)

in sinnvoller Weise eine Funktion definieren, die die Verteilungsfunktion von X
genannt wird. F'(z) ist also die Wahrscheinlichkeit dafiir, dass die Zufallsvaria-
ble X einen Wert kleiner oder gleich z € R annimmt. Eine Verteilungsfunktion
F hat die folgenden Eigenschaften:

e Fiir alle x € R ist F(x) € [0,1] und es gilt:
lim F(x)=0, lim F(z)=1.

e [ist monoton wachsend.
e Fiir alle a,b € R gilt
F(b) — F(a) = P({fa < X < b}). (12.4)

In der Praxis hat man es haufig mit Verteilungsfunktionen zu tun, die eine
Verteilungsdichte besitzen, d.h. es existiert eine Funktion

p: R — [07 OO)
mit der Eigenschaft

ﬂ@z/ﬂ@%- (12.5)

Daraus erhdlt man unmittelbar fiir a,b € R:

ﬂ@*ﬂ®:/M®%- (12.6)

Umgekehrt wird fiir jede integrierbare Funktion p : R — [0,00) mit der
Eigenschaft

oo

[erde=1

— 00

durch (12.5) eine Verteilungsfunktion F definiert.

12.1 Ein wenig ,Mathematik des Zufalls“ 253

y A
14
5| _
6
F(x)

2|
3
1 P
2
1
= -
1
1 -

1 2 3 4 5 6 r

Abb. 12.1. Die Verteilungsfunktion der Augenzahl eines idealen Wiirfels.

Bemerkung 12.2. Natiirlich ist der Wertebereich einer Zufallsvariablen nicht
immer ganz R. Es kommen haufig Abbildungen vor, die nur nicht-negative re-
elle Zahlen oder Werte in einem abgeschlossenen Intervall [a, b] annehmen. Die
obigen Formeln behalten aber auch dann ihre Giiltigkeit: Dazu muss man die
Verteilungsfunktion unterhalb des Wertebereichs auf den Wert 0 und ober-
halb auf den Wert 1 setzen. Die Verteilungsdichte setzt man aufserhalb des
Wertebereichs der zugehorigen Zufallsvariablen auf 0.

Beispiel 12.3 (Spezielle Verteilungen).

a) Fasst man beim idealen Wiirfel aus Beispiel 12.1 die gewiirfelte Augenzahl
als Zufallsvariable auf, so hat die zugehorige Verteilungsfunktion die in
Abb. 12.1 gezeigte Gestalt.

b) Eine Zufallsvariable X mit Werten im Intervall [a, b] heift auf [a,b] gleich-
verteilt, wenn sie die konstante Verteilungdichte

_ 1
T b—a

p(z)

hat. Die Verteilungsfunktion F einer gleichverteilten Zufallsvariablen lautet
daher
0 ,rx<a

F(z)={%*_¢ .
() — , x € (a,b)

1 ,x>b

c) Eine Zufallsvariable X : 2 — [0, 00) heifit ezponentialverteilt mit Para-
meter 7 > 0, wenn sie die folgende Verteilungsdichte besitzt:
1 t/T)

Pr (t) = ;67

254 12 Pseudozufallszahlen

12 1

0.8 / 4 g
06 - / | E
04

02

Abb. 12.2. Die Gaufische Verteilungsdichte fiir ¢ = 0.5 (gestrichelt) und o = 1.
In beiden Fillen ist p = 0.

Die zugehorige Verteilungsfunktion erhalten wir durch Integration:
1 —t/T —x/T
Fz)==[e"Tdt=1—¢ .
-
0

Derart verteilte Zufallsgrofen treten z.B. bei der stochastischen Modellie-
rung von Zeitspannen auf.

d) Eine Zufallsvariable X : {2 — R heifst normalverteilt (oder Gauf-verteilt),
wenn ihre Verteilungsdichte die Gaukfunktion ist (siche Abb. 12.2):

1

\V2mo

pu,a(&) = 67(57#)2/(202) , weR, o>0.

Sie wird u.a. dazu verwendet, die Stérungen bei Signaliibertragungen oder
die unvermeidlichen Messfehler bei Experimenten aller Art zu beschrei-
ben. Wie wir der Tabelle 3.1 auf Seite 87 entnehmen kénnen, steht die
Verteilungsfunktion einer normalverteilten Zufallsvariablen in engem Zu-
sammenhang mit der erf-Funktion, denn es gilt

0 T
2 2 2
/6_5 dfz\/T%, erf(x):ﬁ/e_g de.
s 0

Wenden wir die Variablensubstitution

12.1 Ein wenig ,Mathematik des Zufalls“ 255
§—p

V20

an und setzen zur Abkiirzung

so erhalten wir:

1 ()2 /(202
FM,U(CU): 5 /e (E—m)*/(2)df

— 00

z
1 2
= — e d
ﬁ/ !
— 00
0 z

%(/e"zdrﬂr/e’ﬁdn)

— 00

<1+erf<x\/_§:)>, (12.7)

g

DN | =

Die mathematische Beschreibung mit Hilfe von Zufallsvariablen, Verteilungs-
funktionen und -dichten ist sehr leistungsfahig. Unabhéngig von der jeweiligen
Ereignisalgebra oder davon, wie die Wahrscheinlichkeit konkret definiert ist,
kénnen alle Phinomene auf die gleiche Art beschrieben werden, wenn nur ihre
Verteilungsfunktionen gleich sind.

Zum Abschluss unseres kleinen mathematischen Exkurses definieren wir
noch wichtige Grofien im Zusammenhang mit Zufallsvariablen. Wir beschrin-
ken uns auf den Fall, dass die zugehorige Verteilungsfunktion eine Dichte p
besitzt. Der Erwartungswert einer Zufallsvariablen X ist definiert als

o0

BIX] = / v p(z)da,
und die Varianz als
VIX] = / (& — BIX))? ple) de

sofern die Integrale existieren. Die Standardabweichung (oder Streuung) ist die
Wurzel aus der Varianz:

256 12 Pseudozufallszahlen

Die Streuung ist ein Mak fiir die durchschnittliche Abweichung der Werte von
X vom Erwartungswert.

Man rechnet leicht nach, dass der Erwartungswert einer exponentialver-
teilten Zufallsvariablen gerade 7 ist. Fiir normalverteilte Zufallsvariablen ist
der Erwartungswert gleich dem Parameter 4 und die Standardabweichung ist
gerade o (Aufgabe 12.2).

12.2 Pseudozufallszahlen

Wir haben eingangs bereits erwéhnt, dass der Computer keine wirklichen Zu-
fallswerte erzeugen kann, sondern nur Pseudozufallszahlen.

Eine weit verbreitetes Verfahren hierzu ist die lineare Kongruenzmethode,
die folgendermafsen aussieht:
Seien a,b, M € N vorgegebene Werte.

1. Lies ein Startwert (seed) 1o € N ein (bzw. gib einen Wert vor).
2. Fir £ =0,1,... berechne
Mkr1 = anr +b mod M. (12.8)

Durch die Modulo-Operation erzeugt diese Vorschrift ganzzahlige Werte aus
der Menge {0,1,..., M —1}. Viele Bibliotheksroutinen fiithren zusétzlich eine
Division durch M aus, d.h. man erhélt durch

Nk+1
Skt1 = i (12.9)
eine Folge von Gleitpunktzahlen im Intervall [0, 1). Ein solcher Zufallszahlen-
generator dient dann als Computerrealisierung einer auf [0, 1) gleichverteilten
Zufallsvariablen. Aus der Definition (12.8) folgt unmittelbar, dass man bei
gleichem seed-Wert stets dieselbe Folge (£)52, erhalt.

Die auf diese Weise erzeugten Zahlenfolgen (£;)52 ; sollen nicht nur mog-
lichst ,zufdllig® sein, sondern auch das Intervall [0,1) gleichmifig ausfiil-
len, wobei jeder Zahlenwert statistisch gesehen gleich hiufig auftritt. Hinzu
kommt, dass man diese Eigenschaften nicht nur fiir die einzelnen Zahlen &
fordern muss, sondern auch fiir Tupel, die aus aufeinander folgenden Zufalls-
zahlen gebildet werden. Es leuchtet sicher ein, dass die Qualitit eines solchen
Zufallszahlengenerators stark von der Wahl der Parameter a, b und M ab-
héngt. Dass nicht jede Wahl giinstig ist, zeigt das folgende Beispiel:

Beispiel 12.4 (Schlechter Zufallszahlengenerator).

Die Parameter a = 2'6 4+ 3, b = 0 und M = 23! sind keine giinstige Wahl fiir
die Erzeugung von zufilligen Zahlenwerten. Um das 7zu sehen, betrachtet man
die Zahlentripel

(&ks Et1, Enga) €[0,1)°,

12.2 Pseudozufallszahlen 257

PCO0O000000
oRrNMwhUIONDOR

TTTTTTTI8T

.-u"""’.

Abb. 12.3. Lage der mit Hilfe des Zufallszahlengenerators aus Beispiel 12.4 er-
zeugten Punkte im Einheitswiirfel.

deren Komponenten durch (12.8) und (12.9) erzeugt werden. Interpretiert
man die Tripel als kartesische Koordinaten von Punkten im Einheitswiirfel, so
verteilen sich diese nicht gleichméfig iiber den Wiirfel, sondern ausschliefslich
auf 15 Ebenen (sieche Abb. 12.3). O

Das in Beispiel 12.4 beobachtete Verhalten ist iibrigens prinzipiell bedingt: d-
Tupel, deren Komponenten mit Hilfe der linearen Kongruenzmethode gebildet
werden, liegen stets auf (d — 1)-dimensionalen Hyperebenen, wobei man aller-
dings durch eine giinstige Parameterwahl die Anzahl dieser Ebenen maximie-
ren kann. Fiir weitere Details zur linearen Kongruenzmethode und alternative
Verfahren verweisen wir auf [9].

In C stehen uns mehrere Funktionen der Standardbibliothek fiir die Er-
zeugung von Pseudozufallszahlen zur Verfiigung. Fiir ihre Verwendung muss
daher die Headerdatei <stdlib.h> eingebunden werden. Wir geben hier nur
eine kleine Auswahl solcher Funktionen an:

1. Pseudozufallszahlen vom Typ int:

int rand(void);

Die Funktion rand () liefert einen (pseudo-)zufilligen Wert vom Typ int
zwischen 0 und RAND_MAX zuriick. RAND_MAX ist eine in der Headerdatei
stdlib.h definierte Konstante.

void srand(unsigned int seed);

258 12 Pseudozufallszahlen

Mit dieser Funktion setzt man den seed-Wert fiir die Initialisierung der Fol-
ge von Pseudozufallszahlen, die man mit dem Aufruf von rand() erhilt.
Verzichtet man auf das Setzen dieses Startwerts, so wird der seed-Wert 1
angenommen.

2. Pseudozufallszahlen vom Typ double:

double drand48(void);

drand48() ist ein linearer Kongruenzgenerator, der mit Hilfe von (12.9)
gleichverteilte Gleitpunktzahlen vom Typ double im Intervall [0,1) er-
zeugt.

void srand48(long int seedval);

srand48() dient der Initialisierung des drand48()-Generators mit einem
seed-Wert.

Beispiel 12.5 (Erzeugung eines Zufallsvektors).
Um einen (pseudo-)zufilligen Punkt = = (x1,...,24) im d-dimensionalen
Quader

Qd = [a1,b1] X [ag,bg] X - X [ad,bd] C Rd

zu erzeugen, kann man die Funktion drand48() folgendermafien benutzen:

for (i=0;i<d;i++)
x[i] = alil+(b[il-a[i]l)*drand48();

Dabei haben wir die unteren bzw. oberen Intervallgrenzen jeweils in einem
Feld der Lange d mit Eintrdgen vom Typ double abgelegt. a

Bemerkung 12.6.
Fiir den Umgang mit den obigen Bibliotheksfunktionen weisen wir noch auf
folgende Dinge hin:

a) Man sollte stets einen seed-Wert setzen. Vor allem bei der Fehlersuche ist
es eine Erleichterung, wenn man in jedem Programmdurchlauf von der glei-
chen Zufallszahlenfolge ausgehen kann, weil man einen festen Startwert ge-
setzt hat. Mochte man bei jedem Durchlauf andere Zahlenfolgen haben, so
kann man den seed-Wert z.B. aus der Systemuhrzeit mit Hilfe der Funktion
gettimeofday() aus Abschnitt 8.2.1 erzeugen.

b) Zur Erzeugung von ganzzahligen Zufallswerten existiert auch die Funktion

long int random(void);
zusammen mit der Initialisierungsroutine

void srandom(unsigned int seed);
Auf aktuellen LINUX-Systemen sind diese Funktionen gleichbedeutend mit
rand() und srand (), auf &dlteren Systemen bzw. anderen Plattformen han-
delt es sich um unterschiedliche Funktionen. In den meisten Fallen ist dann
random() vorzuziehen.

12.3 Erzeugung von Zufallszahlen gemaf einer Verteilung 259

c¢) Haufig bendtigt man gar nicht alle Zahlen zwischen 0 und RAND_MAX, son-

dern nur einen kleinen Ausschnitt wie z.B. zufillige Zahlen aus der Menge
{1,2,...,N}. Wie in |12] ausfiihrlicher behandelt wird, sollte man dafiir
nicht die nahe liegende Variante

zz = 1+ (rand() % N);
verwenden, sondern:

zz = 1+ (int) (N*rand()/(RAND_MAX+1.0));
Eine Variante hiervon ist natiirlich die folgende Zeile:

zz = 1+ (int) (N*drand48());

12.3 Erzeugung von Zufallszahlen geméf} einer
Verteilung

In vielen Algorithmen, die sich stochastischer Mittel bedienen, begegnet man
der folgenden Anweisung:

HErzeuge eine Zufallszahl ¢ geméfs der Verteilung F.“

Im letzten Abschnitt haben wir mit drand48() eine Bibliotheksfunktion ken-
nen gelernt, die die Gleitpunktversion einer auf dem Intervall [0, 1) gleichver-
teilten Zufallszahl generiert. Wie in Beispiel 12.5 lasst sich damit sehr leicht
der Fall einer auf einem Intervall [a,b) gleichverteilten Zufallsvariablen be-
handeln, aber wie sollen wir z.B. exponentialverteilte oder gar normalverteilte
Zufallsvariablen behandeln? Hier hilft uns der folgende Satz weiter:

Satz 12.7 (Inversionsmethode).

Sei F' eine streng monotone, stetige Verteilungsfunktion und n auf[0,1) gleich-
verteilt. Dann gilt:

Die Lésung & der Gleichung

F(&)=n
ist gemafy F verteilt (d.h. F ist die Verteilungsfunktion von &).

Beweis. Aus der Stetigkeit und der strengen Monotonie von F' folgt die Exi-
stenz einer streng monoton wachsenden Umkehrabbildung F~!. Damit erhal-
ten wir als Verteilung von &:

P({¢ <a}) = P({F~'(n) < a}) = P({n < F(x)}) = F(2),
weil n auf [0,1) gleichverteilt ist. O

Beispiel 12.8 (Erzeugung exponentialverteilter Zufallszahlen).
In Beispiel 12.3 c¢) haben wir die Verteilungsfunktion einer mit Parameter
7 > 0 exponentialverteilten Zufallsvariablen berechnet:

Fr:[0,00) — [0,1), Fr(z)=1-—e"%/",

260 12 Pseudozufallszahlen
Fiir n € [0,1) ist die Losung von F(£) = n gegeben als
&= —7log(l —n) € 0,00).

Bei der Implementierung einer entsprechenden C-Funktion kénnen wir aus-
nutzen, dass 1 genau dann gleichverteilt ist, wenn dies fiir 1 — n der Fall ist:

double exp_random(double tau)

{
double zufall = drand48();
return (-tauxlog(zufall));
}

Beispiel 12.9 (Erzeugung einer normalverteilten Zufallszahl).
In Beispiel 12.3 d) hatten wir bereits die Verteilungsfunktion einer normal-
verteilten Zufallsvariablen berechnet:

Fuo(x) = % (1 —l—erf(:i/?:)) .

Wir setzen zur Abkiirzung wieder

Nach Satz 12.7 ist die Gleichung

Fuo(x)=n & erf(z)=2n—1

zu 16sen, die sich allerdings nicht elementar nach z auflosen lasst. Mit dem
Newton-Verfahren verfiigen wir aber iiber eine Moglichkeit, dieses Problem
zu beheben und wir gelangen zum folgenden Algorithmus:

1. Generiere eine auf [0, 1) gleichverteilte Zufallszahl 7.
2. Lose die Gleichung
erf(z) =2n—1

mit Hilfe des Newton-Verfahrens:
Setze y :=2n — 1, x¢ := 0 und berechne
2
Zpy1 = 2p — €7F (erf(zk) — y) ,k=0,1,2,...

bis |erf(zx+1) — y| < € fiir ein vorgegebenes € > 0. Setze z := zp41.
3. Transformiere zuriick:
z =20z + .

12.4 Einfache Monte-Carlo-Methoden 261

Abb. 12.4. Monte-Carlo-Methode zur Berechnung von .

Das so erhaltene x ist gemaff F), , verteilt. a

Anmerkung. Die hier vorgestellte Methode zur Erzeugung normalverteilter Zu-
fallszahlen ist bei weitem nicht die einzige und auch nicht die schnellste. Sie kommt
aber im Gegensatz zu den gingigen Methoden (wie z.B. das Boz-Muller-Verfahren,
sieche etwa [12]) ohne die Einfiihrung mehrdimensionaler Zufallsvariablen aus und
stellt eine weitere schone Anwendung fiir das Newton-Verfahren dar.

12.4 Einfache Monte-Carlo-Methoden

Im Beispiel mit dem blinden Wurf auf eine Dartscheibe haben wir den Quo-
tienten aus Flacheninhalt der Scheibe und Wandflidche als Wahrscheinlichkeit
dafiir angesehen, dass wir die Scheibe treffen. Intuitiv erwarten wir, dass unse-
re Trefferquote bei hinreichend vielen Wiirfen eine N&herung fiir diese Wahr-
scheinlichkeit ist. Wir wollen an einem Beispiel untersuchen, ob dem so ist:

Beispiel 12.10 (Monte-Carlo-Methode zur Berechnung von 7).
Wir betrachten das Einheitsquadrat 2 = [0, 1]? und darin den Viertelkreis

K={(z,y):2>0y>02%+y> <1} CcR?,

mit Flacheninhalt 7/4. Wir verwenden drand48() zur Erzeugung von Punk-
ten in {2 und prifen jeweils, ob sich der Punkt in K befindet (siche Abb.
12.4). Die relative Haufigkeit hiervon sehen wir als Naherung fiir 7/4 an:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(int argc, char **argv)

262 12 Pseudozufallszahlen

5 {

6 int i, cntr=0;

7 double x, y, pi_approx;

8

9 int N=atoi(argv([1]);

10 long seed=atol(argv[2]);

11

12 srand48(seed) ;

13 for (i=0; i<N; i++)

14 {

15 x=drand48() ;

16 y=drand48() ;

17 if (x*x+y*y<=1.0)

18 cntr++;

19 3

20 pi_approx=4.0%* (double)cntr/N;
21 printf ("PI ist ungefaehr: %e\n",pi_approx);
22 return O;

23 }

An der Kommandozeile iibergeben wir die Anzahl N der Versuche sowie
den seed-Wert fiir die Initialisierung des Zufallszahlengenerators. Testet man
das Programm, so erhélt man je nach Eingabe von N bzw. des seed-Werts
folgende Ergebnisse:

N ‘ seed ‘ PIapprox
100 1 3.12
3 3.24
4| 3.16
10000 2 3.14
5 3.1192
16 3.154
1000000 7 3.14384
9 3.141284
12 3.141472

O

Die Tabelle in Beispiel 12.10 suggeriert, dass mit wachsender Anzahl N von
Versuchen die Niherungswerte immer besser werden. Insofern bestétigt un-
ser simuliertes Zufallsexperiment das empirische Gesetz der grofien Zahlen,
wonach die relative Haufigkeit, mit der ein Ereignis bei einer Reihe von N
unabhingigen Versuchen eintritt, mit wachsendem N der Wahrscheinlichkeit
dieses Ereignisses zustrebt.

12.4 Einfache Monte-Carlo-Methoden 263

Wir lesen aufterdem an den Ergebnissen ab, dass wir scheinbar immer dann
eine korrekte Dezimalstelle hinzugewinnen, wenn wir die Anzahl N der Ver-
suche um den Faktor 100 erhShen. Das ist keine Spezialitit dieser Aufgabe,
sondern eine Konsequenz aus dem zentralen Grenzwertsatz der Wahrschein-
lichkeitstheorie, den zu formulieren oder gar zu beweisen den Rahmen dieses
Kapitels sprengen wiirde. Wir sagen nur so viel: Aus diesem wichtigen Satz
folgt u.a., dass der Fehler bei einer Monte-Carlo-Methode eine normalverteil-
te Zufallsvariable ist, deren Streuung sich in der GréRenordnung O(1/v/N)
bewegt. Man beachte hierbei, dass es sich bei der Streuung um einen Durch-
schnittswert handelt und es deshalb keine hundertprozentige Sicherheit fiir
das Unterschreiten einer Fehlerschranke gibt.

Ein grofier Vorteil von Monte-Carlo-Verfahren ist ihre Flexibilitdt und Ein-
fachheit — verglichen mit vielen anderen numerischen Methoden. Mit relativ
wenigen Handgriffen kénnen wir die Einsatzmoglichkeiten des Programms zur
Berechnung von 7 erheblich erweitern:

Beispiel 12.11 (Schwerpunktberechnung). Wir betrachten N Punktmas-
sen, die sich an den Positionen

r; = (z;,y:) ER?, i=1,...,N,

befinden und jeweils die Masse p; > 0 besitzen. Die Formel fiir den Schwer-
punkt dieses Systems von Massepunkten ist uns bereits aus Kapitel 8 bekannt:

1 N N
rS:EZpiri, m=Y _pi. (12.10)
=1 =1

Dabei ist m offensichtlich die Gesamimasse. Als Verallgemeinerung hiervon
ist eine kontinuierliche Massenverteilung gegeben durch eine Massendichte-
funktion p(r) in einem Gebiet 2 C R?. Die Summen in der Definition des
Schwerpunkts (12.10) werden dann durch Integrale ersetzt:

rg = %/p(r)rdr, m:/p(r)dr. (12.11)
I7; I7;

Besitzt die Massendichtefunktion bzw. das Gebiet {2 eine hinreichend kompli-
zierte Gestalt, so kann man den Schwerpunkt durch exakte Rechnung meist
iiberhaupt nicht und mit Hilfe von iiblichen Ndherungsmethoden nur sehr
teuer in ausreichender Qualitit ermitteln. Statt dessen versuchen wir es mit
einer Monte-Carlo-Methode und betrachten dazu die folgende Aufgabe:

Der Viertelkreis K aus Beispiel 12.10 sei von einer Fliche mit Massendichte

1
Aoy = Trarye

ausgefiillt. Gesucht ist ein N#herungswert fiir den Schwerpunkt rg nach
(12.11).

264 12 Pseudozufallszahlen

Dazu gehen wir analog zur Monte-Carlo-Methode in Beispiel 12.10 vor:
Wir erzeugen N zufillige Punkte r; = (7;,%;) im Einheitsquadrat 2 = [0, 1)
und priifen, ob sie in K liegen. Mit den Punkten, die im Innern des Viertel-
kreises liegen, berechnen wir empirische Mittelwerte als Ndherungen fiir die
Integrale in (12.11). Als stochastische Schitzung fiir den Wert des Integrals
im Zahler verwenden wir

N
1
i=1

rieK

und die Gesamtmasse M approximieren wir durch

N
1
N Z p(x, yi) - (12.13)

r; €K
Als Quelltext liest sich diese Methode dann so:

1 #include <stdio.h>
2 #include <stdlib.h>

3

4 int main(int argc, char **argv)
5 {

6 int i

7 double x, y, rquad;

8 double x_s=0.0, y_s=0.0;

9 double dichte, masse=0.0;;
10

11 int N=atoi(argv[1]);

12 long seed=atol(argv([2]);
13

14 srand48(seed) ;

15

16 for (i=0; i<N; i++)

17 {

18 x=drand48() ;

19 y=drand48() ;

20 rquad = xX*x+y*y;

21

22 if (rquad<=1.0)

23 {

24 dichte = 1.0/(1+rquad);
25 masse += dichte;
26 x_s += dichtexx;

27 y_s += dichtexy;

12.5 Ubungsaufgaben zu Kapitel 12 265

28 }

29 }

30 X_s /= masse;

31 y_s /= masse;

32 printf ("Schwerpunkt: (%e,%e)\n",x_s,y_s);
33

34 masse /= N;

35 printf ("Masse: %e\n",masse);

36 return 0;

37 }

Man beachte besonders die Zeilen 30 und 31: Zur Berechnung der Schwer-
punktkoordinaten dividieren wir durch die Variable masse, da sich der Vor-
faktor 1/N in den Summen (12.12) und (12.13) wegkiirzt. O

Man kann die Vorgehensweise in Beispiel 12.11 so interpretieren, dass die kon-
tinuierliche Massenverteilung durch ein stochastisches System von diskreten
Massepunkten ersetzt wird. Die Bildung empirischer Mittelwerte aus N Ver-
suchsauswertungen ist aber charakteristisch fiir alle Monte-Carlo-Methoden,
weshalb das Verfahren zuweilen auch Methode der statistischen Versuche ge-
nannt wird.

12.5 Ubungsaufgaben zu Kapitel 12

12.1 (Wahrscheinlichkeit und Verteilungsfunktion).

a) Es seien A und B Ereignisse. Zeigen Sie, dass gilt:
P(A\B)=P(A)—P(ANB), P(AUB)=P(A)+P(B)—P(ANB).

Beweisen Sie aufterdem die folgende ,Monotonieeigenschaft“ der Wahrscheinlich-
keit:
ACB=— P(A) < P(B).

b) Verwenden Sie Teil a) dazu, aus der Definition (12.3) die Gleichung (12.4) abzu-
leiten. Begriinden Sie ferner, warum die Verteilungsfunktion monoton wachsend
sein muss.

Hinweis: Wahlen Sie geeignete Ereignisse A und B.

12.2 (Erwartungswerte und Varianz).

a) Betrachten Sie die Dichte einer mit Parameter 7 > 0 exponentialverteilten Zu-
fallsvariablen 1
pl(t) = ;eit/T , 20,

und zeigen sie, dass eine derart verteilte Zufallsvariable X; den Erwartungswert
E[X1] = 7 besitzt.

266 12 Pseudozufallszahlen

b) Rechnen Sie nach, dass fiir eine normalverteilte Zufallsvariable X> mit der Dichte

1 (=12 /(20)2
pa(€) = 271.06 (&=m)*/(20)

gilt: Der Erwartungswert von X ist x4 und die Standardabweichung o[X5] ist o.
Hinweis: Integrieren Sie partiell und verwenden Sie

oo

/e*52d§:ﬁ.

— 00

12.3 (Wieder der schlechte Zufallszahlengenerator).

Das Verhalten des Zufallszahlengenerators aus Beispiel 12.4 ldsst sich recht ein-
fach theoretisch nachweisen: Zeigen Sie durch Einsetzen der Gleichungen (12.8) und
(12.9), dass fiir diese spezielle Wahl der Parameter a, b und M gilt:

Ekt2 — 6Ek41 + 9€i ist ganzzahlig fir alle £ = 0,1, ...

Begriinden Sie damit, dass jedes Zahlentripel der Form (&x, £x+1,&k+2) auf einer von
15 Ebenen im Einheitswiirfel [0, 1]* liegen muss.

12.4 (Kryptographie mit Pseudozufallszahlen).

Modifizieren Sie das Verschliisselungs-Verfahren aus Abschnitt 6.3, indem Sie srand ()
und rand() verwenden, um die bendtigte Schliisselfolge zu erzeugen. Damit wird
dann der verwendete seed-Wert zum ,Geheimnis"“.

12.5 (Ziehung der Lottozahlen).
Schreiben sie ein Programm, das die Ziehung der Lottozahlen ,6 aus 49“ simuliert.
Beachten Sie hierbei Bemerkung 12.6 c).

12.6 (Normalverteilte Zufallszahlen).

Schreiben Sie eine Funktion gauss1iD(), die den Algorithmus aus Beispiel 12.9 zur
Erzeugung einer geméf F), , verteilten Zufallszahl umsetzt.

Testen Sie die Funktion in einem Hauptprogramm, das N derart verteilte Zahlen
x; erzeugt. Lassen Sie den empirischen Mittelwert und die empirische Streuung,
definiert durch

1 N
"E—N;"El, g

fiir die erzeugten Zahlen berechnen und vergleichen Sie diese Werte mit den von
Thnen gewéhlten Parametern y und o.
Hinweis: Rechnen Sie nach, dass gilt:

Y
Il

12.5 Ubungsaufgaben zu Kapitel 12 267

12.7 (Berechnung von 7).

Implementieren Sie eine Version des Programms aus Beispiel 12.10, die die Funktion
hypot () aus der Mathematikbibliothek verwendet. Welche Variablen kann man auf
diese Weise einsparen?

12.8 (Schwerpunktberechnung).

a) Andern Sie das Programm in Beispiel 12.11 dahingehend, dass der Schwerpunkt
jeweils fiir die Massendichte

1

(z,y) = W’

1
po(z,y) =1, pi(z,y) = Toa2 P

berechnet wird. Testen Sie die Programme mit verschiedenen Werten fiir die
Anzahl der Versuche bzw. fiir den seed-Wert.

b) Erweitern Sie die Schwerpunktberechnung auf 3 Dimensionen: Betrachten Sie
2=100,1® C R?,

K={(z,y,2) : 2,9,2>0,2° +y° +2° <1} C 2

und als Massendichte entsprechend:

1

Implementieren und testen Sie eine entsprechende Monte-Carlo-Methode.

13

Programmierprojekte

Zum Abschluss flihren wir an zwei Anwendungsbeispielen den in Abb. 1.6
dargestellten Ablauf vom Modell zum Programm vor. Im ersten Beispiel, in
dem wir uns mit der Simulation von Warteschlangen befassen, miissen wir das
mathematische Modell erst entwickeln. Das ist aber nicht weiter schwierig, da
es sich um recht einfache Abldufe handelt.

Bei der Simulation von Planetenbewegungen steht uns das mathematische
Modell in Form physikalischer Gesetze bereits zur Verfiigung. Daher richten
wir unser Hauptaugenmerk auf die Verwendung geeigneter Implementierungs-
techniken. Wir gehen aufserdem darauf ein, wie man die berechneten Daten
visualisieren kann.

13.1 Projekt 1: Simulation von Warteschlangen

Sowohl die Warteschlange an der Supermarktkasse, als auch die einer Telefon-
Hotline gehorchen den gleichen mathematischen Gesetzen. Wir gehen hier auf
den Spezialfall ein, dass die Zeitspanne zwischen zwei ankommenden Kunden,
als auch die Dauer, die fiir einen einzelnen Kunden aufgebracht werden muss,
exponentialverteilte Zufallsvariablen sind. Im folgenden werden wir nur noch
von der Warteschlange an einer Kasse reden.

13.1.1 Der grundlegende Algorithmus

Kern der Simulation ist ein ,Springen auf der Zeitachse*, und zwar von einem
sogenannten Ereignis (engl. event) zum néchsten. In diesem Zusammenhang
sind dies die Ereignisse ,Eintreffen eines neuen Kunden an der Warteschlan-
ge' und ,Bedienung des aktuellen Kunden abgeschlossen“. Die zugehorigen
Zeitpunkte sind in folgenden Variablen abgelegt:

e t_neuer_kunde
e t_kunde_fertig_bedient

270 13 Programmierprojekte

Wir entwickeln unsere Simulation, indem wir die Vorgehensweise schritt-
weise verfeinern. Um uns nicht in technischen Details zu verlieren, formulieren
wir unser Verfahren zuerst als Pseudocode.

Unsere Simulation soll die zeitliche Entwicklung der Linge der Warte-
schlange nachbilden. An der Linge der Warteschlange dndert sich nur dann
etwas, wenn ein neuer Kunde eintrifft oder die Bedienung eines Kunden ab-
geschlossen ist.

e Wenn ein Kunde an der Kasse eintrifft, so findet er sie entweder frei vor,
oder es steht mindestens ein Kunde vor ihm in der Schlange, dessen Be-
dienung noch nicht abgeschlossen ist.

In diesem Fall verldngert sich die Schlange um einen Kunden. Ist er der
einzige Kunde in der Schlange, so beginnt seine Bedienung sofort.

o Ist die Bedienung eines Kunden beendet, so wird dieser aus der Schlange
entfernt und die Lange der Schlange verringert sich um 1.

Unsere Simulation besteht im Prinzip aus der folgenden Ereignisschleife. Mit
der Variablen jetzt modellieren wir den Zeitpunkt, zu dem sich der Zustand
der Warteschlange andert.

1 wiederhole:

2

3 falls "kein kunde an kasse" oder

4 t_neuer_kunde < t_kunde_fertig_bedient:
5

6 /* neuer kunde trifft ein */

7

8 jetzt = t_neuer_kunde

9

10 "fuege neuen kunden der warteschlange an"
11

12 falls "jetzt nur ein kunde in schlange":
13 t_kunde_fertig_bedient = jetzt + "zufall"
14

15 t_neuer_kunde = jetzt + "zufall"

16

17 ansonsten:

18

19 /* bedienung des aktuellen kunden abgeschlossen */
20

21 jetzt = t_kunde_fertig_bedient

22

23 "entferne den kunden aus warteschlange"
24

25 falls "noch kunden in warteschlange":

26 t_kunde_fertig_bedient = jetzt + "zufall"

13.1 Projekt 1: Simulation von Warteschlangen 271

Die Schleife bestimmt in jedem Durchlauf, welches das zeitlich nichste
Ereignis ist.

Ist kein Kunde an der Kasse, oder ist die Bedingung in Zeile 4 erfiillt, so
tritt das Ereignis ,Eintreffen eines neuen Kunden an der Warteschlange
ein, d.h es werden die Zeilen 6—15 abgearbeitet.

Andernfalls (Zeile 17) befinden sich Kunden an der Kasse und die Bedie-
nung des aktuellen Kunden ist frither beendet als die Ankunft eines neuen.
Die Anweisungen in den Zeilen 21-26 werden nun ausgefiihrt.

Die Zeilen 8-13 behandeln den Fall, dass sich ein neuer Kunde anstellt.
Ist dieser jetzt der einzige Kunde in der Schlange (Zeilen 12-13), so wird
er umgehend bedient und das Ende des Bedienvorgangs wird in Zeile 13
festgelegt.

In jedem Fall wird auch das Eintreffen des néichsten Kunden, d.h. der Wert
von t_neuer_kunde in Zeile 15, neu ,ausgewiirfelt®.

Zu den Zeilen 21-26: Der aktuelle Kunde ist jetzt fertig bedient und wird
aus der Warteschlange entfernt. Befindet sich jetzt ein weiterer Kunde in
der Warteschlange, so wird dieser umgehend bedient und das Ende des
Bedienvorgangs t_kunde_fertig_bedient festgelegt.

Der als ,,Zufall* bezeichnete Prozess ist jeweils exponentialverteilt. Derar-
tige Zufallsvariablen haben wir bereits in Abschnitt 12.1 kennen gelernt.
In den Zeilen 13 und 26 modelliert der Parameter 7 die mittlere Dauer
des Bedienvorgangs, in Zeile 15 dient der Parameter der Verteilung zur
Modellierung der mittleren Zeitspanne, die zwischen dem Eintreffen zweier
Kunden vergeht.

Als C-Quelltext sieht die Simulation wie folgt aus:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

#include "zufall.h"

void run(double tau_e, double tau_b, double tmax)
{

double tn = 0.0f;

double tb = 0.0f;

double jetzt = 0.0f;

int ws_laenge = O;

int i;

while (jetzt <= tmax)
{
if (ws_laenge == [l tn < tb)
{
jetzt = tn;
ws_laenge++;
if (ws_laenge==1)
tb = jetzt+exp_random(tau_b);
tn = jetzt + exp_random(tau_e);

272 13 Programmierprojekte

20 }

21 else {

22 jetzt = tb;

23 ws_laenge--;

24 if (ws_laenge)

25 tb = jetzt+exp_random(tau_b);
26 3

27 printf ("%f %d\n", jetzt, ws_laenge);
28 }

29 %}

e Um die Warteschlange an der Kasse zu verwalten, geniigt es in unserem
Fall, ihre Linge 7zu speichern. Man sieht dies an den Zeilen 13, 17, 23 und
24.

o In Zeile 27 wird die aktuelle Zeit zusammen mit der Lange der Schlange
ausgegeben. Wir werden dies spéter benutzen, um ihren zeitlichen Verlauf
graphisch darzustellen.

e Die Simulation wird beendet, sobald der Zeitpunkt tmax (Zeile 11) erreicht
bzw. iiberschritten wird.

Wir speichern diesen Quelltext in run_ws.c. Die zugehdrige Headerdatei
run_ws.h ist recht einfach:

1 void run(double tau_e, double tau_b, double tmax);

13.1.2 Der Zufallszahlengenerator

Wir haben bereits in Beispiel 12.8 gelernt, wie man exponentialverteilte Zu-
fallszahlen erzeugt. Fiir unser Projekt muss eigentlich nur noch die Initialisie-
rung des Zufallszahlengenerators automatisiert werden.

Zunéchst deklarieren wir die bendtigten Funktionen in der Datei zufall.h
wie folgt:

1 void init_drand48();
2 double exp_random(double tau);

Die Implementierung der zugehorigen Funktionen in zufall.c lautet:

#include <stdlib.h>
#include <math.h>
#include <sys/time.h>

void init_drand48()
{

N O oW NN

struct timeval now;

13.1 Projekt 1: Simulation von Warteschlangen 273

8 gettimeofday(&now, NULL);

9 srand48(now.tv_sec);

10 }

11

12 double exp_random(double tau)

13 {

14 return -tau * log(drand48());
15 %}

Man beachte die Initialisierung von drand48() in den Zeilen 5-10. Hier
benutzen wir die Systemzeit als Argument fiir srand48(). Die verwendete
Struktur struct timeval sowie die Funktion gettimeofday() kennen wir
bereits aus Abschnitt 8.2.1.

13.1.3 Das Hauptprogramm

Wir fiigen nun alles im Hauptprogramm wssimu.c zusammen:

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 #include "zufall.h"

5 #include "run_ws.h"

6

7 int main(int argc, const char ** argv)
8 {

9 if (arge !'= 4)

10 {

11 printf ("\nBitte benutzen Sie dieses Programm wie "
12 "folgt: \n\n"

13 "%s tau_eintreff tau_bedien tmax\n\n",
14 argv[0]);

15 return 0;

16 3

17

18 double tau_e = atof(argv[1]);

19 double tau_b = atof (argv[2]);

20 double tmax = atof(argv[3]);

21

22 init_drand48();

23 run(tau_e, tau_b, tmax);

24 }

274 13 Programmierprojekte

Das Hauptprogramm nimmt dabei folgende Werte als Kommandozeilenpara-
meter entgegen:

a) Die mittlere Zeitspanne tau_e zwischen dem Eintreffen zweier Kunden.

b) Die mitllere Zeit tau_b, die die vollstindige Bedienung eines Kunden in
Anspruch nimmt.

c¢) Als drittes und letztes gibt man den Endzeitpunkt der Simulation an.

In jedem Schritt der Simulation gibt das Programm die momentane Lénge
der Warteschlange aus.

13.1.4 Zwei Beispielrechnungen

Mit Hilfe des folgenden Makefiles konnen wir nun das Programm wssimu be-
quem erzeugen:

1 wssimu: wssimu.o zufall.o run_ws.o

2 gcc wssimu.o zufall.o run_ws.o -o wssimu -1m
3

4 %h.o: h.c

5 gce -c $<

Die vom Programm wssimu erzeugte Bildschirmausgabe lenken wir mittels
> in eine Datei um (siche Anhang B) und verwenden wieder GNUPLOT zur
Visualisierung.

In unserem ersten Test simulieren wir den Fall, dass die Kundenbedienung
im Mittel etwas langer dauert als das Eintreffen eines neuen Kunden an der
Kasse:

$./wssimu 10 12 5000 > ql.dat
$ gnuplot

GNUPLOT

gnuplot> set terminal x11
Terminal type set to ’x11°

gnuplot> plot ’ql.dat’ with lines

Wie zu erwarten ist, dominiert die Zunahme an wartenden Kunden (siehe
Abb. 13.1) iiber die hin und wieder auftretenden Verkiirzungen der Schlange.
Fiir den zweiten Fall liefert der Aufruf

$./wssimu 11 10 5000 > g2.dat

ein Resultat wie in Abb. 13.2: Die Schlange verkiirzt sich immer wieder, zum
Teil ist die Kasse sogar frei.

13.1 Projekt 1: Simulation von Warteschlangen 275

0 1000 2000 3000 4000 5000

Abb. 13.1. Die Entwicklung der Warteschlangenlénge bis zur Zeit t = 5000. Hier ist
die mittlere Bediendauer eines Kunden geringfiigig langer als die mittlere Zeitspanne
zwischen der Ankunft zweier Kunden.

80 T T I |

60 - .

40 -

30 - =

20
12 MMMWMMMAA !

1000 2000 3000 4000 5000

Abb. 13.2. Die Entwicklung der Warteschlangenlénge bis zur Zeit t = 5000. Hier ist
die mittlere Bediendauer eines Kunden geringfiigig kiirzer als die mittlere Zeitspanne
zwischen der Ankunft zweier Kunden.

276 13 Programmierprojekte

13.2 Projekt 2: Planetenbahnen

Unser Ziel bei diesem Projekt ist die Entwicklung einer Bibliothek, die uns die
Simulation von Planetenbahnen ermdglicht. Wir belassen es dabei aber nicht
bei der Erzeugung von Koordinaten-Listen, sondern zeigen auch, wie man die
Ergebnisse visualisieren kann.

13.2.1 Das mathematische Modell: Newtons Gravitationsgesetz

Bevor wir uns die Physik ansehen, die hinter der Planetenbewegung steckt,
kldren wir einige mathematische Bezeichnungen. Im Folgenden verwenden wir
fiir Vektoren fett gedruckte Buchstaben und einen hochgestellten Punkt fiir
die Ableitung nach der Zeit ¢. Ist f(t) = (fi(t))F; eine vektorwertige Funktion
der Zeit, deren Komponenten f; allesamt differenzierbar sind, so bezeichnet

fi(t)
fey=1| -

fa(t)

die erste Ableitung der Funktion f an der Stelle . Analog ist die zweite Ab-
leitung gegeben durch)
fi(t)
ft)=1| :

falt)
Fiir die Anziehungskraft zweier Massepunkte der Masse my bzw. ms, die sich

an den Positionen r; bzw. ro € R3 befinden, gilt nach dem Newtonschen
Gravitationsgesetz:
Fio=Gmymy —— 12
’ |lry —rof?
Dabei ist G = 6,67410~'m?/(kg s?) die so genannte Gravitationskonstante.
Die Kraft wirkt also entlang des Verbindungsvektors der Punkte r; und ry, wie
man am Z&hler erkennt. Wie in Abschnitt 1.1 steht ||r; — ra]| fiir den euklidi-
schen Abstand der beiden Punkte r; und rs. Der Betrag der Anziehungskraft
nimmt also quadratisch mit der Entfernung der beiden Massepunkte ab.

Hat man es mit mehreren Massepunkten (r;,m;), i = 1,...,n, zu tun, so
wirkt auf den i-ten Massepunkt die Gesamtkraft

n n
r —1r

Fi(rl,...,rn;ml...mn) :ZFZ"]‘ :szzmjzijg
— — v — |

J#i J#i

Diese Gesamtkraft auf den Massepunkt (r;,m;) innerhalb unseres Systems
(r1,...,rp;ma,...,my) kiirzen wir durch

13.2 Projekt 2: Planetenbahnen 277
Fi(r;m) =F;(r1,...,tn;my,...,my,), i=1,...,n,

ab. Nach Newton gilt bekanntlich auch, dass die Kraft das Produkt aus Masse
und Beschleunigung ist. Da die Beschleunigung nichts anderes als die zweite
Ableitung des Ortes nach der Zeit ¢ ist, folgt

Damit erhalten wir ein Systemn von n Differentialgleichungen fiir die zeitliche
Entwicklung der Positionen r;:

. 1)

Fi(t) = miFl(r(t),m) , i=1,...,n,.
Gesucht ist die Losung dieser Bewegungsgleichung, d.h. der Bahnenvektor
r(t) = (r;(t));_; ist zu bestimmen.

Zur numerischen Losung von Differentialgleichungen haben wir in Beispiel

1.6 das Euler-Verfahren kennen gelernt. Leider besitzt das obige Differential-
gleichungssystem nicht die geeignete Form, denn es taucht jeweils die zweite
und nicht die erste Ableitung der gesuchten Funktion r; auf. Dies umgehen
wir, indem wir fiir jeden Massepunkt den Geschwindigkeitsvektor

VZZI'Z

einfiihren. Damit erhalten wir das folgende System von 2n gewdhnlichen Dif-
ferentialgleichungen:

vi(t) = miiFi(r(t),m))

Durch Vorgabe von Anfangswerten r;(0) und v;(0) (¢ = 1,...,n) erhalten
wir nun ein Anfangswertproblem, auf das wir das Euler-Verfahren anwenden
kénnen: Fiir eine fest gewdhlte Zeitschrittweite At > 0 und n = 0,1,...
berechnen wir

ri((n 4+ 1)At) = r;(nAt) + At v;(nAt) (13.1)
vi((n 4+ 1)At) = v;(nAt) + At%Fi (r(nAt);m). (13.2)

7

13.2.2 Grundlegende Datenstrukturen

Um unsere Simulationsergebnisse einfacher graphisch darstellen zu kénnen,
betrachten wir von jetzt an die Planetenbewegung in der Ebene R2.

Zur Beschreibung eines Massepunkts mit Hilfe des vorgestellten mathe-
matischen Modells geniigen uns die Grofen r,v € R? und m > 0. Die Imple-
mentierung dieser Daten zusammen mit den zugehorigen Funktionen erfolgt
in einem eigenen Modul. Wir betrachten zuerst die Datei massepunkt.h:

278

O 0 N O O W N

NN NN NN R B B R S e e
gD W NP, O W OO N O O WNN = O

13 Programmierprojekte

/* alle einheiten auf kg, m und s basierend */
extern const double G;

extern const double masse_erde;

extern const double masse_sonne;

extern const double dist_erde_sonne;

extern const double geschwindigkeit_erde;

struct Massepunkt2D

{
double x, y, vx, vy, masse;
};
struct Kraft2D
{
double fx, fy;
};
extern double distanz(struct Massepunkt2D *,

struct Massepunkt2D *);

extern struct Kraft2D berechne_kraft(struct Massepunkt2D *,
struct Massepunkt2D *);

extern struct Kraft2D berechne_gesamtkraft(int i, int n,
struct Massepunkt2D[]);

In den Zeilen 2-6 werden benétigte bzw. niitzliche physikalische Konstan-

ten deklariert. Wichtig ist der Kommentar in Zeile 1: Er erinnert uns

daran, dass die Simulation nur dann funktioniert, wenn die verwendeten

Einheiten kompatibel sind. In unserem Fall heiftt das, dass alle Einheiten

durch die Grundeinheiten 1 m, 1s und 1kg ausgedriickt werden.

In den Zeilen 8-11 wird die Struktur struct Massepunkt2D deklariert.

Sie fasst die oben genannten relevanten physikalischen Gréfen zu einer

Einheit zusammen.

Da die Kraft ein vektorielle Grofe ist, haben wir in den Zeilen 18-16 eine

entsprechende Struktur deklariert.

In den Zeilen 18-25 werden die fiir uns wichtigen Funktionen zur Hand-

habung der Massepunktdaten deklariert:

— distanz() berechnet den euklidischen Abstand zweier Massepunkte,

— berechne_kraft() berechnet die Anziehungskraft zweier Massepunk-
te, und

— Dberechne_gesamtkraft () berechnet die Anziehungskraft, die ein Mas-
sepunkte durch ein System von anderen Massepunkten erfahrt. Sie rea-
lisiert somit die Berechnung von F;(r; m).

13.2 Projekt 2: Planetenbahnen 279

Damit die Parameteriibergabe ohne aufwendiges Kopieren von Struktu-
ren erfolgt, verwenden wir Argumente vom Typ struct Massepunkt2D *.
Die weiteren Details der Implementierung entnehmen wir der Quelldatei
massepunkt.c:

1 #include <math.h>

2 #include "massepunkt.h"

3

4 /* alle einheiten auf kg, m und s basierend */

5 const double G=6.674e-11;

6 const double masse_erde = 5.9736e24;

7 const double masse_sonne = 1.989e30;

8 const double dist_erde_sonne = 1.4758el1;

9 const double geschwindigkeit_erde = 2%M_PI/365./24/60/60
10 *1.52el11;

11

12 double distanz(struct Massepunkt2D *pil,

13 struct Massepunkt2D *p2)

14 {

15 double sum;

16 double dist;

17 dist =pl->x - p2->x;

18 sum = dist*dist;

19 dist =pl->y - p2->y;

20 sum += dist*dist;

21

22 return sqrt(sum);

23 }

24

25 struct Kraft2D berechne_kraft (struct Massepunkt2D *pil,
26 struct Massepunkt2D *p2)
27 {

28 struct Kraft2D kraft;

29 double dist = distanz(pl, p2);

30 double ex = p2->x - pl->x;

31 double ey = p2->y - pl->y;

32

33 double fac = G*pl->masse*p2->masse/dist/dist/dist;
34 kraft.fx = exxfac;

35 kraft.fy = eyxfac;

36 return kraft;

37 }

38

280 13 Programmierprojekte

39 struct Kraft2D berechne_gesamtkraft(int i, int n,

40 struct Massepunkt2D planets[])
41 A

42 struct Kraft2D kraft = {0.0, 0.0};

43 struct Kraft2D temp_kraft;

44 int j;

45 for (j=0; j<n; ++j)

46 {

47 if (i==j) continue;

48 temp_kraft = berechne_kraft(planets+i, planets+j);
49 kraft.fx += temp_kraft.fx;

50 kraft.fy += temp_kraft.fy;

51

52 }

53 return kraft;

54 }

In den Zeilen 4—10 initialisieren wir die bereits deklarierten physikalischen
Konstanten, in den Zeilen 12-23 berechnen wir den Abstand zweier Planeten
gemif der Definition des euklidischen Abstands und die Berechnung der Kraft
erfolgt in vélliger Ubereinstimmung mit dem mathematischen Modell.

13.2.3 Implementierung des Euler-Verfahrens

Durch die Verwendung der Datenstruktur struct Massepunkt2D zusammen
mit den bereits vorgestellten Funktionen kénnen wir das Euler-Verfahren aus
(13.1) und (13.2) recht elegant implementieren.

Fiir das Modul zur Umsetzung des Euler-Verfahrens erzeugen wir die Hea-
derdatei euler.h:

#include "massepunkt.h"

void euler_step(int n, struct Massepunkt2D punkte[],
double dt);

typedef void (*CallBack)(int n, struct Massepunkt2D[]);

void run_euler(int num_punkte, struct Massepunkt2D[],
double dt, double tmax, CallBack fun);

O 00 N O O W N

Die Funktion euler_step fiihrt einen Schritt nAt — (n+ 1) At des Euler-
Verfahrens durch:

13.2 Projekt 2: Planetenbahnen 281

1 void euler_step(int n, struct Massepunkt2D punkte[],

2 double dt)

3 {

4 struct Kraft2D temp_kraefte[n];

5 int i;

6 for (i=0; i<n; ++i)

7 temp_kraefte[i]=berechne_gesamtkraft (i,n,punkte);
8
9

for (i=0; i<n; ++i)

10 {

11 punkte[i] .x += dt*punkte[i].vx;

12 punkte[i] .y += dt*punkte[i].vy;

13 X

14 for (i=0; i<mn; ++i)

15 {

16 punkte[i] .vx += dt*temp_kraefte[i].fx
17 /punkte[i] .masse;

18 punkte[i] .vy += dt*temp_kraefte[i].fy
19 /punkte[i] .masse;

20 X

21}

Da die Grofen in punktel[i] im Gegensatz zu (13.1) und (13.2) mit
sich selbst iiberschrieben werden, ist die Einhaltung der richtigen Reihen-
folge bei den Berechnungen in dieser Funktion und die Benutzung des Feldes
temp_kraefte[] von grofser Bedeutung: F; hiingt von r; ab, r; von v; und v;
von F;. Daher werden zuerst die aktuell wirkenden Kréfte F;(r; m) berech-
net. Erst dann aktualisieren wir fiir alle ¢ die Positionen r;, gefolgt von den
Geschwindigkeiten v;.

Um eine komplette Simulation laufen zu lassen, betrachten wir:

1 void run_euler(int num_punkte, struct Massepunkt2D punktel[],
2 double dt, double tmax, CallBack logging)
3 {

4 double t=0;

5 int i;

6

7 while (t<tmax)

8 {

9 if (logging) /* kein NULL zeiger 7 */

10 logging (num_punkte, punkte);

11 euler_step(num_punkte, punkte, dt);

12 t += dt;

13 X

14 }

282 13 Programmierprojekte

Diese Funktion fiihrt die Schritte des Euler-Verfahrens aus, bis die Zeit
tmax {iberschritten ist. Wichtig ist hier die Verwendung des Callbacks logging.
Diese Funktion nimmt gemifs der Deklaration in Zeile 6 von euler.h den
aktuellen Zustand unserer Simulation entgegen, und kann z.B. benutzt wer-
den, um die Koordinaten der Planeten auszugeben. Die Verwendung dieses
Callbacks werden wir spédter noch 6fters sehen. Dadurch konnen wir das Aus-
gabeverhalten der Simulation dndern, ohne in unserer Berechnungsbibliothek
intern Anderungen vornehmen zu miissen. Im Software- Engineering spricht
man vom Open-Closed-Principle: Eine gut implementierte Funktion ist offen
fiir Erweiterungen und Anpassungen, aber geschlossen gegeniiber Modifika-
tionen.

Wir iiberlassen es an dieser Stelle als Ubung, ein Makefile zu erzeugen, das
aus massepunkt.c und euler.c eine Bibliothek 1ibplanetensim.a erstellt.

13.2.4 Erste Simulation

Wir verwenden jetzt unsere Bibliothek 1ibplanetensim.a zur Simulation des
Umlaufs der Erde um die Sonne. Unser Programm erdeumsonne.c hat die
folgende main-Funktion:

1 int main()

2 {

3 struct Massepunkt2D erde = { dist_erde_sonne, O,

4 0, geschwindigkeit_erde,
5 masse_erde };

6 struct Massepunkt2D sonne = { 0, O,

7 0, 0,

8 masse_sonne };

9

10 struct Massepunkt2D koerper[] = {erde, sonne};

11

12 int num_hk=sizeof (koerper)/sizeof (struct Massepunkt2D);
13

14 double tmax = 356%24x3600; /* 1 jahr */

15 double dt = 1%3600; /* jede stunde */

16

17 run_euler (num_hk, koerper, dt, tmax, &print_data);

18 1}

e In den Zeilen 3-5 wird der Startzustand des Planeten erde deklariert:
unter Verwendung der Konstanten aus planet.h befindet er sich im Punkt
(dist_erde_sonne, 0)
und hat die Geschwindigkeit
(0, geschwindigkeit_erde)
sowie die Masse masse_erde.

13.2 Projekt 2: Planetenbahnen 283

e Die Sonne befindet sich geméf der Zeilen 6-8 im Punkt (0,0), hat die
Geschwindigkeit (0,0) und die Masse masse_sonne.

e Mit dieser Startkonfiguration simulieren wir ein ganzes Jahr mit Schritt-
weite dt von einer Stunde (Zeilen 10-17). Man beachte, dass wir die
Zeitangaben in Sekunden vornehmen, gemif der Einheiten der anderen
physikalischen Groéfen.

Offen ist noch die Gestalt der Callback-Funktion print_data():

1 void print_data(int n, struct Massepunkt2D himmelskoerper[])
2 {

3 static int counter = 0;

4 int 1i;

5 if (counter % 24 == 0)

6 {

7 for (i=0; i<n; ++1i)

8 printf ("%1f %1f ", himmelskoerper[i].x,
9 himmelskoerper[i].y);
10 printf("\n");

11 }

12 ++counter;

13 %

Mit Hilfe der als static deklarierten Variablen counter werden bei jedem
24ten Aufruf (das ist in diesem Falle jeden Tag) die Koordinaten aller beteilig-
ten Himmelskorper auf die Standardausgabe geschrieben. Dabei werden pro
Zeile alle Koordinaten ausgegeben.

Wir {ibersetzen jetzt das Programm und erzeugen die Daten mittels Um-
lenken der Standardausgabe wie folgt:

$ gcc erdeumsonne.c -L. -lplanetensim -o erdeumsonne -1lm
$./erdeumsonne > erdeumsonne.dat

An dieser Stelle sollten wir unser bereits erstelltes Makefile um den Compiler-
aufruf erweitern und fiir eine erste Kontrolle einen Blick in erdeumsonne.dat
werfen. Zur Visualisierung verwenden wir wieder GNUPLOT :

$ gnuplot
GNUPLOT
gnuplot> set terminal x11
Terminal type set to ’x11’

gnuplot> plot ’erdeumsonne.dat’ using 1:2 with lines

284 13 Programmierprojekte

1.5e+11

le+11

5e+10

-5e+10

-le+11

-1.5e+11 L L L L
-1.5e+11 -le+11 -5e+10 0 5e+10 le+11 1.5e+11

Abb. 13.3. Simulation der Erdbahn um die Sonne mit Hilfe des Euler-Verfahrens.
Man beachte den rechten Rand!

Die letzte Zeile ldsst die Spalten 1 und 2 aus erdeumsonne.dat darstellen,
indem die dort angegebenen Punkte mit Linien verbunden werden. Wir erhal-
ten die Darstellung in Abb. 13.3. Wie wir am rechten Rand sehen, haben wir
es wirklich nur mit einer Ndherung zu tun, denn die Erde scheint sich lang-
sam von der Sonne wegzubewegen. Dies ist allerdings nicht die Schuld unseres
mathematischen Modells, sondern des Euler-Verfahrens: In jedem Schritt ver-
grofert sich der Verfahrensfehler, so dass die Bahnkurve nicht geschlossen ist.
Das von uns eingesetzte Euler- Verfahren ist lediglich eine von vielen Approxi-
mationsmethoden und nicht umsonst gibt es eine Vielzahl von Literatur iiber
die numerische Losung von Anfangswertproblemen (siehe z.B. [3] und [14]).

13.2.5 Zweite Simulation

Wir fiigen jetzt einen fiktiven Planeten namens altair hinzu: Dieser startet
an der Position (.9 * dist_erde_sonne, .3 * dist_erde_sonne) mit der
Geschwindigkeit (0, geschwindigkeit_erde) und besitzt nur 5% der Masse
der Erde. Das zugehorige Programm sieht dann wie folgt aus:

1 int main()

2 {

3 struct Massepunkt2D erde = { dist_erde_sonne, O,

4 0, geschwindigkeit_erde,

5 masse_erde };

6

7 struct Massepunkt2D altair= {

8 .9%dist_erde_sonne, .3*dist_erde_sonne,

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

13.2 Projekt 2: Planetenbahnen 285

0, +1.0*geschwindigkeit_erde,
.05*masse_erde };

struct Massepunkt2D sonne = { 0, O,
0, 0,
masse_sonne };
struct Massepunkt2D koerper[] = {erde, altair, sonne};

int num_hk=sizeof (koerper)/sizeof (struct Massepunkt2D);

double tmax = 4*356%24*3600; /* 4 jahre */
double dt = 24x3600; /* jeden tag */

run_euler (num_hk, planets, dt, tmax, &print_data);

Die in der Datei altair.dat abgelegten Daten visualisieren wir mit GNU-

PLOT durch

gnuplot> plot ’altair.dat’ using 1:2 w 1, \

’altair.dat’ using 3:4 w 1 0

und erhalten die Darstellung in Abb. 13.4.

de+11 T T T T T

3e+11 |-

2e+11 |-

le+11 |

0_

-le+11

-2e+11

“3e+11]]]]]
-3e+11 -2e+11 -le+11 0 le+11 2e+11 3e+11

Abb. 13.4. Bahnkurven der Erde (durchgezogene Linie) und des fiktiven Planeten
Altair (gestrichelt).

286 13 Programmierprojekte
13.2.6 Die Planetenbahnen als Animation

Wir kénnen unsere Simulationsergebnisse auch als Animation darstellen. Vor-
aussetzung ist, dass GRAPHICSMAGICK installiert ist (siehe Anhang A). GRA-
PHICSMAGICK ist auch Bestandteil der géngigen LINUX-Distributionen. Das
Vorhandensein des Programms testet man, indem man an der Kommandozeile

$ gm

eingibt. Unter CYGWIN sollte man zusétzlich darauf achten, dass der X-Server
gestartet ist (siche Anhang A).

Wir schreiben zuerst eine neue Callback-Funktion, die jeweils zu bestimm-
ten Zeitpunkten die aktuellen Planetenpositionen in eine eigene Datei schreibt.
Wir erhalten dadurch eine Folge von Dateien der Form stepXXX.dat, die je-
weils nur eine Zeile mit den Koordinaten der Planeten zu diesem Zeitpunkt
enthalten.

1 void save_data(int n, struct Massepunkt2D mpunktel[])
2 {

3 static int file_counter = 0;

4 static int call_counter = 0;

5 char buffer[100];

6 int 1i;

7

8 if (call_counter % 10 == 0)

9 {

10 sprintf (buffer, "step’%03d.dat", file_counter);
11 FILE *fp = fopen(buffer, "w");

12 for (i=0; i<n; ++i)

13 fprintf (fp, "%1f %1f ", mpunkteli].x,

14 mpunkte[i].y);
15 fprintf (fp, "\n");

16 fclose(fp);

17 file_counter++;

18 }

19 call_counter ++;

20 }

e Wir benutzen hier zwei statische Variablen: call_counter z#hlt den je-
weiligen Aufruf der Funktion selbst, wihrend file_counter die Nummer
der erzeugten Datei mitzahlt.

Nach Zeile 8 wird nur zu jedem zehnten Aufruf eine Ausgabe erzeugt.

Anhand file_counter wird in Zeile 10 der zugehorige Dateiname erzeugt.
Die hier verwendete Funktion sprintf () arbeitet genau so wie printf (),
allerdings schreibt sie nicht auf die Standardausgabe, sondern in einen vor-
her reservierten Speicherbereich. In unserem Fall ist das der String buffer.

13.2 Projekt 2: Planetenbahnen 287

Die Formatangabe %03d erzeugt dreistellige ganze Zahlen mit fithrenden
Nullen. So wird die erste Datei den Namen step000.dat tragen, die zweite
step001.dat usw.

In den Zeilen 11-16 wird dann die jeweilige Datei erzeugt.

Wir gehen jetzt wie folgt vor:

1.

Wir erweitern unser Programm um diese Callback-Funktion und &ndern
den Aufruf von run_euler () in Zeile 23 unseres Hauptprogramms zu

run_euler (numPlanets, planets, dt, tmax, &save_data);

Wir iibersetzen das Programm, fithren es aus und erhalten 143 Dateien.
Als néchstes erzeugen wir aus jeder dieser Dateien mit GNUPLOT eine ein-
zelne Graphik. Wir bedienen wegen des Aufwands GNUPLOT nicht durch
direkte Eingaben, sondern mit Hilfe des folgenden GNUPLOT-Skripts, wel-
ches wir unter planet.script speichern:

set term png

set output ’out.png’

set xrange [-4ell:4ell]

set yrange [-4ell:4ell]

plot ’tempdat.dat’ using 1:2 w p pt 7 ps 2, \
’tempdat.dat’ using 3:4 w p pt 7 ps 2, \
’tempdat.dat’ using 5:6 w p pt 6 ps 3

. Die Umwandlung der Datendateien zu den einzelnen Bildern erfolgt dann

in der Kommandozeile wie folgt:

$ for U in step*.dat; do
echo bearbeite $U
cp $U tempdat.dat
gnuplot planet.script
cp out.png $U.png
done

V V V Vv V

Diese Anweisungen iterieren {iber alle Dateien der Form step*.dat, ko-
pieren diese nach tempdat.dat, rufen GNUPLOT auf und kopieren die von
GNUPLOT erzeugte Datei out.png nach stepXXX.dat.png.

Wenn wir jetzt in der Kommandozeile GRAPHICSMAGICK wie folgt auf-
rufen sehen wir die gewiinschte Animation:

$ gm animate step*.png
Wir konnen auch ein animiertes GIF anim.gif wie folgt erstellen:

$ gm convert step*.png anim.gif

Da wir die Animation natiirlich nicht in diesem Buch wiedergeben kénnen,
haben wir eine solche unter http://www.prog-c-math.de bereit gestellt.

288 13 Programmierprojekte

13.3 Ubungsaufgaben zu Kapitel 13

®

Aufgaben, die mit einem * markiert sind, sind vom Schwierigkeitsgrad etwas an-

spruchsvoller. Sie kénnen beim ersten Durcharbeiten zuriickgestellt werden.

13.1 (* Warteschlange mit Zusatzkasse).

Erweitern Sie die Programme zur Simulation der Warteschlangen so, dass eine zwei-
te Kasse gedffnet wird, sobald die Lange der Schlange an der ersten Kasse einen
Grenzwert iiberschreitet. Die zweite Kasse wird bei einer leeren Schlange wieder ge-
schlossen. Beim Offnen der neuen Kasse iibernimmt diese die Hilfte der bestehenden
Schlange. Neue Kunden wéhlen immer die kiirzere der beiden Schlangen.

13.2 (Makefile fiir Planetensimulation).

Schreiben Sie zu der Planetensimulation ein Makefile, das aus massepunkt.c und
euler.c eine Bibliothek libplanetensim.a erstellt. Dariiber hinaus soll das Makefile
die angegebenen Hauptprogramme iibersetzen.

13.3 (* Schwingungsgleichung).
Wir betrachten die Bewegung einer Masse m an einer Feder ohne den Einfluss du-
Rerer Krifte. Fiir die Auslenkung x(t) zur Zeit ¢ gilt dann die Schwingungsgleichung

mi+ bt +cx =0

Hierbei bezeichnet der Punkt wieder die Ableitung nach ¢, b ist die sogenannte
Ddimpfungskonstante und ¢ die Federkonstante.

a) Uberfiihren Sie diese Gleichung in ein System von zwei Differentialgleichungen,
bei denen nur noch erste Ableitungen auftreten (d.h. Differentialgleichungen er-
ster Ordnung).

b) Schreiben Sie ein Programm, das mittels des Euler-Verfahrens diese Gleichung
numerisch 16st.

c) Testen Sie ihr Programm fiir ¢ < 50s mit den Parametern

m =1.0kg, b=0.02Ns/m, ¢ =0.16 N/m,
sowie den Anfangsbedingungen
2(0) =0.0m wund £(0) =0.1m/s

und lassen Sie eine Tabelle mit den ¢- und z-Werten ausgeben. Stellen Sie diese
mit GNUPLOTgraphisch dar. Sie sehen dann eine geddmpfte Schwingung.

d) Gehen Sie wie in Teil ¢) vor, nur dass Sie b = O0Ns/m wihlen. Dies entspricht
dem Fall einer ungeddmpften Schwingung.

e) Den so genannten Kriechfall beobachten Sie, wenn Sie b = 1.0Ns/m wahlen.
Stellen Sie auch diesen Fall graphisch dar.

A

Installation von cygwin

Das cYGWIN-Projekt stellt viele unter LINUX entwickelte Programme auch fiir
WINDOWS zur Verfiigung. Darunter befinden sich der in diesem Buch benutzte
gce-Compiler und die bash-Shell, die die Kommandozeile zur Verfiigung stellt.
Sollten Sie also mit einem WINDOWS-Rechner arbeiten und kein Interesse an
einer zusétzlichen LINUX-Installation haben, so sollten Sie CYGWIN installie-
ren, um die Programmbeispiele in diesem Buch problemlos nachvollziehen zu
konnen.

Bevor Sie mit der Installation beginnen, priifen Sie, ob Sie auf einer Fest-
platte 400 MB zur freien Verfiigung haben. Auf der Website zu CYGWIN (siehe
[17]) finden Sie das Installationsprogramm setup.exe. Laden Sie dieses Pro-
gramm auf Ihren Rechner herunter und starten Sie es. Wir beschreiben im
Folgenden die wichtigsten Schritte bei der Installation und Konfiguration der
Version, die im November 2006 aktuell war.

1. Wihlen Sie ’Install from Internet’

2. Geben Sie als *Root Directory’ dasim Vorfeld bestimmte Laufwerk und
das Verzeichnis ’\cyGwIN’ an, also z.B. *C:\cyGwINn’.

3. Die Vorgabe fiir ’Local Package Directory’ kann in der Regel iiber-
nommen werder.

4. Wihlen Sie ’Direct’ als ’Connection’. Sollten Sie hinter einer schiit-
zenden Firewall sitzen, so ziehen Sie hier am besten Thren Administrator
zu Rate.

5. Wahlen Sie eine ’Download Site’. Hier gibt es bis auf die Verbindungsge-
schwindigkeit keine wesentlichen Unterschiede. Eine mit *http://’ begin-
nende Quelle sollte bei vorhandener Firewall noch am wenigsten Probleme
verursachen.

6. Jetzt kdnnen Sie die zu installierenden Programme festlegen.

a) Offnen Sie ’Base’ und stellen Sie sicher, dass bei *bash’ in der Spalte
’New’ die maximale Versionsnummer steht. Ansonsten klicken Sie auf
diesen Eintrag solange bis die maximale Versionsnummer erscheint.

290 A Installation von cygwin

b) Offnen Sie den Punkt *Devel’. Suchen Sie hier die Eintriige *gcc-Core?
und ’g77’ und verfahren Sie wie im vorangegangenen Schritt.

c¢) Wihlen Sie unter ’Graphic’ das Programm ’gnuplot’, am besten
Version 4.0 oder hoher.

d) Wihlen Sie unter ’Graphic’ das Programm ’GraphicsMagick’.

e) Als letztes sollten Sie einen Editor festlegen. Diese finden Sie unter
’Editors’. Falls Sie mit keinem der angegebenen Editoren Erfahrung
haben sollten, so wihlen Sie nano’ aus, dessen Bedienung leicht zu
erlernen ist.

7. Klicken Sie solange *Weiter’ oder ’Fertig stellen’ bis die Installation
beginnt.

Nach abgeschlossener Installation sollte ein Icon ¢cYGwWIN auf Threm Desktop
erscheinen. Wenn nicht, suchen sie im WINDOWS-Start-Menii nach einem ent-
sprechenden Eintrag unter Alle Programme. Um den Erfolg der Installation
zu testen, klicken Sie auf dieses Symbol. Es sollte sich ein Fenster mit einer
Eingabeaufforderung &ffnen:

user@rechnername ~ §$

Geben Sie hinter $ den Befehl ’gnuplot -V’ ein und driicken Sie ENTER. Es
sollte die Versionummer erscheinen, z.B.

$ gnuplot -V
gnuplot 4.0 patchlevel O

Erhalten Sie hier jedoch eine Fehlermeldung, z.B.

$ gnuplot -V
bash: gnuplot not found

so war die Installation nicht erfolgreich. Sie sollten die oben angegebenen
Schritte wiederholen und auf Fehlermeldungen achten.

Testen Sie den Compiler auf die gleiche Weise, indem Sie gcc -v eingeben.
Hier sind die Ausgaben in der Regel umfangreicher.

Sollten Sie sich bei der Installation fiir den Editor nano entschieden ha-
ben, so starten Sie diesen durch Eingabe von 'nano’ + ENTER. Ist Ihnen dieser
Editor noch unbekannt, so starten Sie am besten mit der eingebauten Hilfe-
stellung indem Sie die Taste Strg bzw. Ctrl zusammen mit ’*G’ driicken. Das
Zeichen ~ dient als Abkiirzung von Strg bzw. Ctrl.

Sollten Sie sich fiir einen anderen Editor entschieden haben, so testen Sie
diesen.

Sie sind jetzt in der Lage, die im Buch angegebenen Beispiele nachzuvoll-
ziehen. Sollten Sie mit der Kommandozeile von LINUX nicht vertraut sein, so
lesen Sie am besten zuerst Anhang B.

B

Die Kommandozeile von LINUX

LINUX bietet neben der von WINDOWS her bekannten Bedienung per graphi-
scher Oberflache auch die Mdglichkeit, den Computer durch die Eingabe von
Kommandos mit Hilfe der sogenannten Shell zu steuern. Wir geben hier einen
kurzen Uberblick iiber die weit verbreitete bash-Shell.

Das Kapitel geht nur auf die wesentlichen Befehle ein, als weiterfithrende
Literatur verweisen wir auf [8]. Sollten Sie ausschlieflich WINDOWS benutzen,
50 lesen Sie bitte zuerst Anhang A.

Dateien und Verzeichnisse

Daten werden auf dem Medium in Dateien abgespeichert. Die Datei wird mit
einem bestimmten Dateinamen bezeichnet. Folgendes ist bei Dateinamen zu
beachten:

LiNUX unterscheidet zwischen Grof- und Kleinschreibung,
der Schragstrich / darf nicht verwendet werden, da er zur Trennung von
Verzeichnisnamen verwendet wird (siehe unten),

e Sonderzeichen sollte man nicht verwenden, da einige eine spezielle Bedeu-
tung haben (siehe unten).

Die Endung des Dateinamens impliziert oft auch den Typ der Datei, so wer-
den C-Quelltexte in der Regel mit der Endung . c versehen, Objektdateien mit
.o und Textdateien mit .txt. Unter Windows werden ausfiihrbare Program-
me mit .exe versehen, unter LINUX haben diese allerdings keine bestimmte
Endung.

Mehrere Dateien konnen in einem Verzeichnis (engl. directory) gesammelt
werden. In einem Verzeichnis konnen auch weitere Verzeichnisse enthalten
sein. LINUX besitzt daher ein hierarchisches, baumstrukturiertes Dateisystem.
Ausgehend von dem Wurzelverzeichnis (root directory) / besitzt der Verzeich-
nisbaum die in Abb. B.1 skizzierte Struktur.

292 B Die Kommandozeile von LINUX

/
bin etc home . usr var
schmitt . kirsch
beispiele
hallo hallo.c hallo.o

Abb. B.1. Ein Auszug aus dem Verzeichnisbaum unter LINUX.

Hier ist home ein Unterverzeichnis von /, in home befindet sich das Ver-
zeichnis schmitt, das wiederum das Unterverzeichnis beispiele enthélt. In
diesem Verzeichnis liegen die Dateien hallo, hallo.c und hallo.o.

Die Position einer Datei, bzw. eines Verzeichnisse innerhalb des Dateisy-
stems ist durch den Pfad gegeben. Der Pfad gibt an, wie man vom Wurzelver-
zeichnis zu der gewiinschten Datei bzw. dem gewiinschten Verzeichnis gelangt.
Die Unterverzeichnisnamen im Pfad werden durch den Schrigstrich getrennt.

Im obigen Bild hat die Datei hallo.c den Pfad

/home/schmitt/beispiele/hallo.c.

Pfade, die mit / beginnen, heiffen absolute Pfade. Daneben gibt es die so ge-
nannten relativen Pfade, die relativ zur aktuellen Position im Verzeichnisbaum
interpretiert werden, worauf weiter unten eingegangen wird.

Nachdem Sie sich mit ihrer Benutzerkennung am System angemeldet und
die bash gestartet haben', erscheint ein so genannter Prompt, d.h. die Ein-
gabeaufforderung der Kommandozeile. In der einfachsten Variante besitzt die
Eingabeaufforderung die folgende Gestalt:

$

Sie kénnen hinter $ jetzt Kommandos eingeben?, z.B. liefert das Kommando
pwd (print working directory) folgende Ausgabe:

$ pwd

/home/user

! Bei cYGwIN bedeutet dies, dass Sie CYGWIN gestartet haben.
2 Sie sollten dies und die anderen Beispiele auch selbst ausprobieren.

B Die Kommandozeile von LINUX 293

Das bedeutet, dass /home/user das aktuelle Arbeitsverzeichnis (engl. working
directory) ist. Ausgehend vom Arbeitsverzeichnis kann man dann auch mit re-
lativen Pfadangaben arbeiten:
Existiert eine Datei mit absolutem Pfad /home/user/beispiele/hallo.c
und lautet das aktuelle Arbeitsverzeichnis /home/user, so kann man den Pfad
von hallo.c auch relativ durch beispiele/hallo.c angeben.

Die folgenden relativen Pfadbezeichner haben eine besondere Bedeutung;:

.7 ist die aktuelle Position im Verzeichnisbaum, das Arbeitsverzeichnis,
.. ist das dem Arbeitsverzeichnis iibergeordnete Verzeichnis (engl. parent
directory).

Die fiir den Umgang mit dem Rechner {iber die Kommandozeile wichtigsten
Befehle werden hier kurz vorgestellt. Optionale Parameter zu den Kommandos
setzen wir in eckige Klammern [|.

man [Optionen| Begriff : Hilfe zur Selbsthilfe: Die man-Anweisung zeigt eine
Dokumentation (Manpage) zu dem angegebenen Begriff an, z.B. man 1s,
oder sogar man man. Hat man den Namen eines Befehls nicht parat, so
kann man mit der Option -k nach Schliisselworten suchen, so sollte
man -k compiler
unter anderem den gcc auflisten.

cd Pfad: cd ist die Abkiirzung flir change directory und wechselt das Ar-
beitsverzeichnis. Gibt man nur cd ein, so wechselt man in das sogenannte
Heimatverzeichnis (engl. home directory), das ist das nach dem Anmelden
aktuelle Arbeitsverzeichnis. Ansonsten kann man hinter cd relative und
absolute Pfade angeben, z.B.:

cd /home/user/beispiele
cd ..
cd beispiele

1ls [Optionen] Pfad: Dieser Befehl zeigt ohne Pfadangabe den Inhalt des
aktuellen Verzeichnisses an, ansonsten den des angebebenen Pfades. In-
teressant ist die Option -1, die zusétzliche Informationen {iber die Dateien
und Verzeichnisse ausgibt:

$ 1s -1

total 20

-rwxr-xr-x 1 schmitt user 13854 Feb 20 14:44 beispielO1l
-rw-r--r-- 1 schmitt user 125 Feb 20 14:43 beispielOl.c
-rw-r--r-- 1 schmitt user 33 Feb 20 14:43 beispiell2.c

In der letzten Spalte stehen die Namen der Dateien, davor stehen spal-

tenweise die folgende Informationen:

e Die sogenannten Zugriffsrechte: Das dreifache x in der ersten Zeile
bedeutet, dass es sich bei beispielO1 um ein ausfithrbares Programm
handelt. Weitere Infos zu den Rechten erhdlt man durch die Manpage
des Befehls chmod.

294 B Die Kommandozeile von LINUX

Die Anzahl der sog. Hardlinks, die wir aber nicht weiter erldutern.
In der dritten Spalte steht der Eigentlimer der Datei, also der Benutzer
schmitt.

e In der vierten Spalte steht im allgemeinen die Gruppenzugehdrigkeit
des Eigentiimers.
In der fiinften Spalte folgt die Grofe der Datei in Bytes.
Schliefslich die Datums- und Zeitangabe der letzten Modifikation der
jeweiligen Datei.

mkdir Pfad : Hiermit erzeugt man ein Verzeichnis mit Namen Pfad.

rmdir Pfad : Hiermit wird das Verzeichnis Pfad geloscht, sofern es leer ist.
Andernfalls muss man erst mit rm (siche weiter unten) und rmdir zuerst
alle Dateien und Unterverzeichnisse 16schen, oder man benutzt gleich
rm -r Pfad.

cp [Optionen| Datei Zielpfad : Hiermit kopiert man die Datei Datei nach
Zielpfad. Das Ziel kann sowohl ein Verzeichnis als auch eine Datei sein. Im
ersten Fall wird die Datei unter dem gleichen Namen kopiert, im zweiten
Fall wird der Name entsprechend der Pfadangabe gedndert. Die Option
-R erlaubt es, ganze Verzeichnisse rekursiv zu kopieren.
Beispiele:

$ cp beispiel02.c beispiel02_sicherung.c
$ cp beispielOl.c ..
$ cp -R . /tmp

mv Pfadl Pfad2 : mv steht flir move und verschiebt Pfadl nach Pfad2. Der
Befehl kann auch dazu benutzt werden, um den Namen einer Datei zu
dndern.

Beispiele:
$ mv beispielOl.c beispiel_eins.c

$ mv beispielOl.c ..

rm [Optionen| Pfad : Mit diesem Befehl 16scht man die Datei Pfad. Der Be-
fehl kann auch zum Loschen ganzer Verzeichnisse samt Unterverzeichnis-
sen verwendet werden. Dazu muss man die Option -r angeben (rekur-
sives Loschen). Je nach System fragt dieser Befehl fiir jede Datei nach,
ob wirklich geloscht werden soll. Die Option -f (fiir force) schaltet dieses
Verhalten ab.

cat Pfad : Zeigt den Inhalt der Datei Pfad auf dem Bildschirm an.

more Pfad : Zeigt den Inhalt der Datei Pfad seitenweise am Bildschirm an.

Umlenken der Standardein- und -ausgabe, Pipelines

LINUX bietet die Moglichkeit, Ein- und Ausgaben umzulenken. Will man eine
Ausgabe umlenken, so muss man dem ensprechenden Befehl > ZielDatei

B Die Kommandozeile von LINUX 295

anhingen. Existiert ZielDatei noch nicht, so wird die Datei neu erzeugt,
andernfalls iiberschrieben. Hierzu ein Beispiel:

$ 1s -1 > liste

$ cat liste

total 20

-rwxr-xr-x 1 schmitt user 13854 Feb 20 14:44 beispielOl
-rw-r--r-- 1 schmitt user 125 Feb 20 14:43 beispielOl.c
-rw-r--r-- 1 schmitt user 33 Feb 20 14:43 beispiel0l2.c

Benutzt man >> Datei anstelle von > Datei, so wird die Ausgabe am Ende
einer bereits existierenden Zieldatei angehingt.

Niitzlich ist auch das sogenannte Pipelining. Hier wird die Ausgabe eines
Befehls zur Eingabe eines weiteren Befehls umgelenkt. Dies erreicht man durch

Befehll | Befehl?2
Gibt man z.B.
$ 1s -R /

ein, so wird die Ausgabe fiir einige Minuten den Bildschirm fiillen. Abhilfe
schafft die folgende Pipe:

$ 1s -R / | more

Hier wird die Ausgabe von 1s als Eingabe fiir den Befehl more benutzt, der
wiederum seine Ausgabe seitenweise aufteilt. Auf diese Weise kann man die
Ausgabe von 1s vollstindig betrachten.

Bequemes Arbeiten mit der Kommandozeile

Die Kommandozeile bietet einige Funktionalititen, die den Umgang mit ihr
vereinfachen. Ein solches Konzept ist die als History bezeichnete Liste der be-
reits getétigten Benutzereingaben. So kann man z.B. mit den Tasten CURSOR-
UP und CURSOR-DOWN in dieser Liste navigieren. Wenn man z.B. den C-
Compiler mit einer l&ngeren Parameterliste wiederholt aufrufen muss, aber
nicht auf ein Makefile (siche Kapitel 11) zuriickgreifen will, vermeidet man
auf diese Weise Tipparbeit und auch Tippfehler.

Den Inhalt der History inklusive einer Nummerierung gibt das Komman-
do history aus, allerdings ist diese normalerweise sehr umfangreich. Eine
iibersichtlichere Ausgabe erhilt man durch

$ history | tail -20

Diese Pipe liefert nur die letzten zwanzig Eintrége. Will man eine Zeile aus
der History aufrufen, so geht dies entweder mit !'nnn, also einem Ausrufezei-
chen, gefolgt von der Nummer dieser Zeile, oder mit einem Textfragment der
Form !xxx. Im letzten Fall wird die aktuellste Zeile gefunden, welche mit xxx
beginnt. So erleichtert

296 B Die Kommandozeile von LINUX

$ tgcce

in vielen Féllen die Arbeit mit dem Compiler. Wichtig ist, dass sich zwischen
! und dem Rest kein Leerzeichen befinden darf.

Ein weiteres wichtiges Konzept ist die sogenannte automatische Vervoll-
standigung mit Hilfe der TAB-Taste. Driickt man nach Eingabe von

$ 1s beisp

diese Taste, so versucht die bash, diese Zeile zu vervollstdndigen. Ist z.B.
beispielOl.c die einzige Datei im Verzeichnis, die mit beisp beginnt, so
steht nach Driicken von TAB

$ 1s beispielOl.c

in der Kommandozeile. Gibt es mehrere Moglichkeiten, so liefert ein erneutes
Driicken von TAB die Liste der moéglichen Ergénzungen.

C

Kurze Einfiihrung in gnuplot

GNUPLOT ist ein flexibles und recht einfach zu bedienendes Programm zur
graphischen Darstellung von Daten. Es hat den zusétzlichen Vorteil, fiir alle
gingigen PC-Betriebssysteme verfiighbar zu sein. Unter LINUX wird es in der
Shell einfach mit

$ gnuplot

aufgerufen.

Vorbereitende Schritte unter CYGWIN

Um GNUPLOT unter CYGWIN zu nutzen, miissen Sie zuerst den sogenannten
X-Server starten und konfigurieren:

1. Offnen Sie ein neues CYGWIN-Fenster und geben Sie auf der Kommando-
zeile

$ startxwin.sh

ein, um den X-Server zu starten. Sie diirfen dieses Fenster wihrend Threr
Arbeit mit GNUPLOT nicht schlieffen. Da in diesem Fenster aber auch im-
mer wieder Statusmeldungen des X-Servers ausgegeben werden, empfiehlt
es sich, das Fenster zu minimieren.

2. Es sollte sich ein weiteres Fenster mit dem Logo des X-Servers, einem ,,X*
offnen. Geben Sie hier

$ xhost localhost

ein. Sie kénnen dieses Fenster dann schliefsen.
3. Offnen Sie ein CYGwiN-Fenster, und geben Sie folgendes ein:

$ export DISPLAY=localhost:0

298 C Kurze Einfiihrung in gnuplot
Eine Beispielsitzung
Starten Sie GNUPLOT wie folgt:

$ gnuplot

GNUPLOT
Version 4.0 patchlevel 0

gnuplot> plot sin(x)

Wenn Sie jetzt ein Fenster mit einer eingezeichneten Sinus-Kurve sehen, dann
ist die Installation und Konfiguration von GNUPLOT in Ordnung.
Die Eingabe von

gnuplot> plot sin(x), cos(x) with points

plottet beide Funktionen im selben Fenster. Die cos-Funktion wird allerdings
nicht mit Linien sondern punktweise dargestellt.

Bisher wurde die Darstellungsbereiche automatisch ermittelt, sie kénnen
diese wie folgt selbst bestimmen:

gnuplot> set xrange [-pi:pi]
gnuplot> set yrange [0:1]

Geben Sie jetzt
gnuplot> replot

ein und vergleichen Sie die Ausgabe mit der vorherigen.

Plotten von Daten

Wichtig bei der numerischen Programmierung ist die Moglichkeit, Rechener-
gebnisse graphisch darzustellen. Gerade wenn man es mit gréfteren Datenmen-
gen zu tun hat, ist die direkte Untersuchung der Zahlenwerte sehr aufwendig
bzw. gar nicht machbar. Am einfachsten schreibt man daher Ergebnisse in
Dateien und stellt sie wie im Folgenden beschrieben graphisch dar.

Fiir z-y-Diagramme benutzt man das plot-Kommando in der folgenden
Form:

gnuplot> plot "werte.dat"
Der Inhalt dieser Datei wird wie folgt interpretiert:

e Enthilt die Datei nur eine Zahl pro Zeile, so werden die Werte dort als
Funktionswerte f[:] mit ¢ = 1,2,... interpretiert.

C Kurze Einfiihrung in gnuplot 299

e Bei zwei Werten pro Zeile wird die erste Spalte als z-Koordinate und die
zweite als Funktionswert aufgefasst. Dies ist auch die Standardeinstellung
bei mehr als zwei Spalten.

e Bei mehr als zwei Werten pro Zeile wihlt man die entsprechenden Spalten-
paare mit der Option using. Die beiden Spaltennummern werden durch
einen Doppelpunkt : getrennt, und die erste als Liste der z- die zweite
als Liste der y-Werte interpretiert. Verwendet man using mit nur einer
Spaltennummer, so wird wie bei einspaltigen Daten verfahren. So werden
z.B. durch den Aufruf

gnuplot> plot '"mehrere.dat' using 1:3

die Daten der dritten Spalte in der Datei mehrere.dat gegen die in Spalte
1 eingetragenen Werte geplottet

Standardméfig werden die Daten als Punkte in der (z,y)-Ebene dargestellt.
Man kann jedoch mit Hilfe von w(ith) ein andere Darstellungsform wéhlen:

Kurzform | ausfiihrl. Form Darstellung
W p with points Punkte (Standard)
wl with lines Linie
w lp with linespoints | Punkte mit Linien verbunden
w i with impulses vertikale Linien
Beispiel:

Die Datei wertetab.dat enthalte die Wertetabelle einer Funktion. Ein appro-
ximierter Funktionsgraph wird durch den Aufruf

gnuplot> plot '"wertetab.dat" w 1

gezeichmnet.
Die Datei daten enthalte mehrere Spalten. Um die Daten in der dritten Spalte
mit vertikalen Linien zu zeichnen, verwendet man:

gnuplot> plot '"daten" using 3 w 1

Natiirlich kann man auch Daten und mathematische Funktionen gleichzeitig
darstellen, indem man die entsprechenden Ausdriicke durch Kommata trenmnt:

gnuplot> plot '"wertetab.dat'" w 1, 'daten" using 3 w i
O

Ausgabe in Dateien

Diagramme koénnen auch in Dateien gespeichert statt auf dem Bildschirm
ausgegeben werden. Die Kommandos

300 C Kurze Einfiihrung in gnuplot

gnuplot> set term gif
gnuplot> set output "bild.gif"

fiihren dazu, dass das niichste plot-Kommando die Ausgabe nicht auf dem
Bildschirm vornimmt, sondern die Datei bild.gif erzeugt. Sie kénnen nach
den beiden Kommandos auch replot benutzen, um eine bereits vorhandene
Graphik in eine Datei zu speichern. Es stehen auch andere Graphikformate
zur Verfligung, wie z.B. PNG.

Weitere Informationen gibt es unter [18]. Sie finden dort auch weitere
ausfiihrliche Anleitungen. Dariiber hinaus kénnen Sie GNUPLOT mittels

gnuplot> help

besser kennen lernen.

D

Reservierte Worter und Operatoren in C

Reservierte Worter. In C gibt es 32 reservierte Worte, die feste Elemente
der Programmiersprache sind und daher nicht als Bezeichner benutzt werden

diirfen:

auto
break
case
char
const
continue
default
double
do

else
enum
extern
float
for
goto

if

int
long
register
return
short
signed
sizeof
static
struct

Speicherklasse automatischer Variablen (Standardklasse).
Abbruch von Schleifen, siche Kapitel 2.

Teil der switch-Anweisung, siche Kapitel 2.

Datentyp fiir Zeichen, sieche Kapitel 6

Speicherattribut, siehe Kapitel 2.

Springt zum Ende eines Schleifenkorpers, siehe Kapitel 2.
Teil der switch-Anweisung, siche Kapitel 2.

Doppelt genauer Gleitpunkt-Datentyp, siehe Kapitel 2.
Schleifenanweisung, sieche Kapitel 2.

Teil von if-then-else, siche Kapitel 2.

Aufgezihlter Typ, siche Kapitel 8.

Deklariert externe Funktionen und Variablen, siehe Kapitel 11.
Einfach genauer Gleitpunkt-Datentyp, siehe Kapitel 2.
Schleifenanweisung, sieche Kapitel 2.
Sprunganweisung, wird in diesem Buch nicht behandelt.
Verzweigungsanweisung, siehe Kapitel 2.

Ganzzahliger Datentyp, siehe Kapitel 2.

Modifiziert ganzzahlige Datentypen, siehe Kapitel 2.
Speicherklasse, wird in diesem Buch nicht behandelt.
Beendet Funktionsausfithrung, siehe Kapitel 3.
Modifiziert ganzzahlige Typen, siche Kapitel 2.
Modifiziert ganzzahlige Typen, sieche Kapitel 2.
Bestimmt Grofse von Datenobjekten, sieche Kapitel 4.
Speicherklasse, siehe Kapitel 3.

Deklariert Strukturen, siehe Kapitel 8.

302 D Reservierte Worter und Operatoren in C

switch
typedef
union
unsigned
void
volatile
while

Verzweigungsanweisung, siehe Kapitel 2.

Gibt Typen neuen Namen, sieche Kapitel 8.
Verbunddatentyp, siehe Kapitel 8.

Modifiziert ganzzahlige Datentypen, siehe Kapitel 2.
Leerer Datentyp, siche Kapitel 3.

Speicherattribut, wird in diesem Buch nicht behandelt.
Schleifenanweisung, sieche Kapitel 2.

Operatoren und ihre Rangfolge. Die folgende Tabelle listet die Opera-
toren in C in absteigender Rangfolge auf. Operatoren gleicher Stufe sind von
gleichem Rang und werden ihrer Assoziativitét geméf angewendet, sofern man
nicht durch Klammerung etwas anderes vorgibt.

| Operator | Name/Bedeutung Assoziativitit
Stufe 1 linksassoziativ
O Klammern
(] Array-Element
-> Zeiger auf Strukturelement
. Struktur- oder Unionelement
Stufe 2 rechtsassoziativ
! Logische Negation
- Einerkomplement
++ Inkrement
- Dekrement
- Unéres Minus
+ Unéres Plus
& Adresse
* Dereferenzierung
sizeof Grofse in Bytes
(type) Typumwandlung (Cast)
Stufe 3 linksassoziativ
* Multiplikation
/ Division
yA Rest einer Division
Stufe 4 linksassoziativ
+ Addition
- Subtraktion
Stufe 5 linksassoziativ
< bitweises Linksschieben
> bitweises Rechtsschieben

D Reservierte Worter und Operatoren in C 303
Operator Bedeutung/Name Assoziativitit
Stufe 6 linksassoziativ
< kleiner als
<= kleiner oder gleich
> grofer als
>= grofer oder gleich
Stufe 7 linksassoziativ
== gleich
'= ungleich
Stufe 8 linksassoziativ
& Bitweises UND
Stufe 9 linksassoziativ
- Bitweises EXKLUSIV-ODER
Stufe 10 linksassoziativ
| Bitweises ODER
Stufe 11 linksassoziativ
&& Logisches UND
Stufe 12 linksassoziativ
[Logisches ODER
Stufe 13 rechtsassoziativ
?: bedingter Ausdruck
Stufe 14 rechtsassoziativ
= Zuweisung
x=_ /= Y=, += -= | arith. Zuweisungsoperatoren
<<=, >>= &=, "=, |=| bitweise Zuweisungsoperatoren
Stufe 15 linksassoziativ
, Komma-Operator

E

Losungen zu den Kontrollfragen

Kapitel 1

1.1¢),1.2d), 1.3 a), 1.4 b), 1.5 ¢), 1.6 a).

Kapitel 2

2.1 ¢), 2.2 d), 2.3 b), 2.4 b), 2.5 ¢), 2.6 ¢), 2.7 ¢), 2.8 a), 2.9 ¢), 2.10 a),
2.11 ¢), 2.12 ¢), 2.13 ¢), 2.14 ¢), 2.15 a), 2.16 d), 2.17 d), 2.18 d),
2.19 b), 2.20 b), 2.21 ¢).

Kapitel 3

3.1d), 3.2 d), 3.3 a) und b), 3.4 b), 3.5 ¢), 3.6 b), 3.7 c), 3.8 b), 3.9 b),
3.10 e), 3.11).

Kapitel 4

4.1¢),4.2d),4.3b),4.4D),4.5¢),4.6 ¢), 4.7 e), 4.8 d), 4.9 d), 4.10 a),
4.11b), 4.12 b) und ¢), 4.13 d),
4.14 v wird intern iiberschrieben, die Kopie wird mit Nullen gefiillt.

Kapitel 5

5.1b),5.2¢), 5.3 ¢), 5.4 b), 5.5 a), 5.6 b) und c).

Kapitel 6

6.1 D), 6.2 d), 6.3 a), 6.4).

306 E Losungen zu den Kontrollfragen
Kapitel 7

7.1¢),7.2b)und e), 7.3 a) und d), 7.4 ¢) und e).

Kapitel 8

8.1 ¢), 8.2 b)undf), 8.3 ¢),8.4 b), 8.5 c), 8.6 h).

Kapitel 9

9.1d),9.2¢), 9.3 a),9.4b), 9.5).

Kapitel 10

10.1 ¢), 10.2 d), 10.3 ¢), 10.4 d), 10.5 b), 10.6 a) und d).

Kapitel 11

11.1 ¢) und e), 11.2 b) und c) 11.3 ¢), 11.4 ¢), 11.5 a) und d),
11.6 a) und e), 11.7 b) und c).

Literaturverzeichnis

N =

10.

11.
12.

13.

14
15
16

P. Bundschuh: Einfihrung in die Zahlentheorie, 5. Auflage, Springer (2002)
P. Deuflhard, A. Hohmann: Numerische Mathematik 1, 3. Auflage, Walter de-
Gruyter (2002)

M. Hermann: Numerik gewéhnlicher Differentialgleichungen. Anfangs- und
Randwertprobleme, 1. Auflage, Oldenburg (2004)

J. Herzberger (Hrsg.): Wissenschaftliches Rechnen — FEine Einfihrung in das
Scientific Computing, Akademie Verlag (1995)

H. Heuser: Gewdhnliche Differentialgleichungen — Einfihrung in Lehre und
Gebrauch, 4. Auflage, Teubner (2004)

B. W. Kernighan, D. M. Ritchie: Programmieren in C - Zweite Ausg. ANSI
C, Hanser (1990)

M. Kocher: Lineare Algebra und analytische Geometrie, 4. Auflage, Springer
(1997)
M. Kofler: Linuz — Installation, Konfiguration, Anwendung, Addison-Wesley
(2006)

Donald E. Knuth: The Art of Computer Programming — Vol. 2: Seminumerical
Algorithms, 3rd edition, Addison-Wesley (1998)

Donald E. Knuth: The Art of Computer Programming — Vol. 8: Sorting and
Searching, 2nd edition, Addison-Wesley (1998)

R. Mecklenburg: GNU make, O'Reilly (2005)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numerical
Recipes in C — The Art of Scientific Computing, 2nd edition, Cambridge Uni-
versity Press (1992)

J. Stoer: Numerische Mathematik 1, 9. Auflage, Springer (2004)

J. Stoer, R. Bulirsch: Numerische Mathematik 2, 5. Auflage, Springer (2005)
W. Walter: Analysis 1, 7. Auflage, Springer (2004)

W. Walter: Gewdhnliche Differentialgleichungen, 7. Auflage, Springer (2000)

Links im World Wide Web

17.
18.
19.
20.

http://wuw.cygwin.com
http://wuw.gnuplot.info
http://wuw.netlib.org
http://valgrind.org

Sachverzeichnis

<ctype.h>, 152
<math.h>, 85
<stdio.h>, 37

<stdlib.h>, 113, 114, 157

<string.h>, 154
<sys/time.h>, 187
EOF, 167

FILE, 163

NULL, 114
#define, 134

#include, 37, 234, 238

argc, 171
argv, 171

ar, 238
atof (), 158
atoi(), 158
break, 59, 64
bsearch(), 209
calloc(), 115
case, 59
char, 39, 150
const, 44
continue, 64
default, 60
double, 39
do, 61
drand48(), 258
else, 57
enum, 197
extern, 236
fclose(), 164
feof (), 170
fgets(), 157

float, 39
fopen(), 163
for, 62
fprintf (), 165
fputc(), 165
fread(), 169
free(), 115
fscanf (), 165
furite(), 169
getchar(), 151
gettimeofday (), 187
if, 57
int, 39
isalnum(), 152
isalpha(), 152
isblank(), 152
iscntrl(), 152
isdigit (), 152
islower(), 152
isspace(), 152
isupper(), 152
isxdigit(), 152
itoa(), 158
long

double 39

int 39

long 39
main(), 36
make, 240
malloc(), 114
printf (), 36, 52

Formatstring 52
gsort (), 214

rand(), 257
realloc(), 115
return, 80
scanf (), 54
short, 39
size_t, 113
sizeof (), 113

sizeof (Operator), 114

srand48(), 258
strcat(), 1565
strcmp(), 156
strcpy), 154
strlen(), 155
strncat (), 155
stroncmp (), 156
strncpy (), 155
strtod(), 158
strtof (), 158
struct, 182
switch, 59
timeval, 187
tolower(), 152
toupper (), 152
typedef, 192
union, 197
void#*, 106
void, 78
while, 61

Adressoperator, 104

Algorithmus
determinierter 9
Euklidischer 9

310 Sachverzeichnis

iterativer 60

Korrektheit 7

statisch finiter 9

terminierender 9
Anweisungsblock, 36, 56
Arbeitsverzeichnis, 293
Argument

geschiitzt 84
ASCII-Tabelle, 149, 150
Assoziativitét

von rechts 44

von links 46
Aufzahlungstyp, 197
Ausdruck, 35

bedingter 50
Ausgabe

in Datei

ASCII, 165
binér, 168

umlenken 294
Ausgabedaten, 8
Ausloschung, 22
Auswahloperator, 182

bei Zeigern 184

Bakterienkultur
Modell
logistisches, 178
unbeschrinktes, 3
Simulation 174
bash
Installation 289
Bias, 24
Bibliothek, 234
eigene 238
Bibliotheksfunktion, 77
mathematische 85
Binomialkoeffizient, 203
Bisektionsverfahren, 133
Bit
Vorzeichen- 23
Bitlange, 23
Byte, 38

Call by Reference, 108
Call by Value, 83
Callback, 211, 282
Compiler, 29, 37
cygwin, 289

Datei
ausgeben
seitenweise, 294

Dateideskriptor, 157, 163
Dateien, 163, 291
Dateinamen, 291
Dateisystem, 291
Datenstrom, 163

stderr 164
stdin 164
stdout 164

Datentyp, 39

eigener 192

elementarer 39
Definiton

Funktion 80
Deklaration

einer Variablen 41

Funktion 78

implizite 81, 83

Struktur 182

Zeiger 104

zusammengesetzte

Beispiele, 195

Dekrementoperator, 47
dereferenzieren, 105
Directory, 291
Diskretisierung, 138
Divide and conquer, 206
Doppelzeiger, 118
dyadisches Produkt, 221

Editor
nano 290
Eingabe
aus Datei
ASCII, 165
binir, 168
Eingabedaten, 8
Endlosschleife, 63
Erwartungswert, 255
Euklidischer Abstand, 5
Euklidischer Algorith-
mus, 9
Euler-Verfahren, 10,277

Fehler
absoluter 16
Daten- 16

Laufzeit- 30
Modellierungs- 2
relativer 16

semantischer 29, 58

syntaktischer 37,234

Verfahrens- 26

Feld, 65

Fortran

Datentypen 244

Speicherorganisation
243

Funktion, 77

Argument 78
Bezeichner 78

Call by Reference 108
Call by Value 83
Definition 80
Deklaration 78
Kopf 80

rekursive 204
Rumpf 78
Funktionszeiger, 193

gee, 37

Installation 289
Gleitpunktzahl
denormalisierte 24
Exponent 19
Mantisse 20
normalisierte 19
gnuplot

Animation 286
Installation 290
Gravitationsgesetz, 276

Headerdatei, 37, 236
Heimatverzeichnis, 293
Horner-Schema, 12

Indexfeld, 228
Inhaltsoperator, 105
Inkrementoperator, 47
Integration
numerische 142
Interpolation, 137
lineare 139

nearest neighbour
138

Kommandozeilen-
argumente, 171

Kommandozeile, 289

cat 294

cd 293

cp 294

1s 293

man 293

mkdir 294

more 294

mv 294

pwd 292

rmdir 294

rm 294
Kommentar, 37
Kompilieren, 234
Kondition, 16

der Abstandsmessung

94

Kongruenzmethode, 256
Konstante, 42

ganzzahlige 42

Gleitpunkt- 42

String- 153

Zeichen- 43
Kryptographie, 158

LIFO, 192
Linken, 234
Linux, 291
Liste
einfach verkettet 188

Makefile, 240
Makro 242
Musterregel 242
Patterns 242
Targets 241
Makro, 134
Manpage, 293
Mantisse, 20
Mantissenldnge, 20
Maschinensprache, 28
Massepunkt, 276
Bewegungsgleichung
277
Matrix, 6
Band- 224
diinn besetzte 223

quadratische 13
symmetrische 219
transponierte 219
Tridiagonal- 224
Matrizenprodukt, 32
Mehrdateiprojekt, 233
Modell, 2
Modul, 233
Monte-Carlo-Methode,
249

NaN, 25
nano, 290
Nullstellenbestimmung,
132
Intervallschachtelung
132
Newton-Verfahren
134
Nullzeiger, 114

O-Notation, 14
Objektdatei, 234
Operator, 43
arithmetischer 45
bindrer 43
Dekrement- 47
Inkrement- 47
logischer 49
Postfixform 43
Priafixform 43
Rangfolge 302
terndrer 43,50
undrer 43
vergleichender 48

Parallelisierung, 207
Parameter, 8
Partitionierung, 9, 212
Pascalsches Dreieck, 203
Permutationen, 228
Pfad, 292
absoluter 292
relativer 292
spezielle, 293
Planetenbahnen, 276
Animation 286
visualisieren 283
Pointer

Sachverzeichnis 311

siehe Zeiger 104
Préprozessor, 234
Praprozessordirektive,

37,238
Programmierprojekte,
269
Programmiersprache, 28
Prozedur, 78
Pseudocode, 270
Pseudozufallszahlen, 249,
256

Quadratur, 142
Quelltext, 28
Quicksort, 212

Riickgabewert, 78
referenzieren, 105
Rekursion, 203
reservierte Worter, 35,
301
Root directory, 291
Rundung, 20
Rundungsfehler, 21

Schleife, 56, 61
Schleifenrumpf, 61
Schrittweite, 10
Schwerpunkt
von Massepunkten
185
Schwingungsgleichung,
288
segmentation fault, 122
Short circuit evaluation,
49
signifikant, 20
Skalarprodukt, 13
Sortieren, 211
Komplexitat 214
Speicherleiche, 120, 123
Speicherverwaltung
dynamische 113
Fortran77 121
Stiitzstelle, 137
Stabilitét, 26
Stack, 192
Standardausgabe, 164
Standardeingabe, 164

312 Sachverzeichnis

Standardfehlerausgabe,
164
Streuung, 255
String, 153
-konstante 153
Einlesen 157
Funktionen 154
Lange 155
Terminierung 153
Umwandlung 157
Struktur, 181
Deklaration 182
alternative, 186
Initialisierung 182
Zuweisung 183
Strukturen
Feld von 185
Verschachtelung 184
Suche
rekursiv = 207

Trapezregel, 143
summierte 144
Typmodifizierer, 39

Uberlauf
ganzzahliger 23
Gleitpunkt- 25

Unions, 197

Unterlauf, 25

Variable, 40
automatische 91
Deklaration 41
Giiltigkeitsbereich 89
globale 89
Initialisierung 44
lokale 89
Name 41
Sichtbarkeit 89
statische 91

Vektor, 6

Verteilungsdichte, 252

Verteilungsfunktion, 252

Verzeichnis, 291

Wahrscheinlichkeit, 251
Warteschlange
Simulation 269

Waurzelverzeichnis, 291
xor-Verkniipfung, 159

Zeichen, 149
-konstante 151
Eingabe 151
Priiffunktionen 152

Zeichenkette, siehe

String, 153

Zeiger, 104
auf Funktionen 193
auf Strukturen 183
Deklaration 104
Doppel- 118
schreibgeschiitzt 184

Zeigerarithmetik, 110

Zeitmessung, 187

Zufallsvariable, 252
normalverteilte 254
exponentialverteilte

253

Zuweisungsoperator, 43

arithmetischer 47

