

Cornelia Heinisch | Frank Müller-Hofmann | Joachim Goll

Java als erste Programmiersprache

Cornelia Heinisch | Frank Müller-Hofmann | Joachim Goll

Java als erste
Programmiersprache
Vom Einsteiger zum Profi

6., überarbeitete Auflage

STUDIUM

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
<http://dnb.d-nb.de> abrufbar.

1. Auflage 2000
6., überarbeitete Auflage 2011

Alle Rechte vorbehalten
© Vieweg+Teubner Verlag |Springer Fachmedien Wiesbaden GmbH 2011

Lektorat: Ulrich Sandten | Kerstin Hoffmann

Vieweg+Teubner Verlag ist eine Marke von Springer Fachmedien.
Springer Fachmedien ist Teil der Fachverlagsgruppe Springer Science+Business Media.
www.viewegteubner.de

Das Werk einschließlich aller seiner Teile ist urheberrechtlich ge schützt. Jede
Verwertung außerhalb der engen Grenzen des Ur heber rechts ge set zes ist ohne
Zustimmung des Verlags unzuläs sig und straf bar. Das gilt ins be sondere für
Vervielfältigungen, Über setzun gen, Mikro verfil mungen und die Ein speiche rung
und Ver ar beitung in elek tro nischen Syste men.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk
berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im
Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher
von jedermann benutzt werden dürften.

Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg
Druck und buchbinderische Verarbeitung: Těšínská Tiskárna, a. s., Tschechien
Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier.
Printed in Czech Republic

ISBN 978-3-8348-0656-7

Dr. Cornelia Heinisch,
geb. Weiß, Jahrgang 1976, studierte Softwaretechnik an der Hochschule Esslingen. Seit
ihrem Diplom im Jahre 1999 ist sie Lehrbeauftragte für Objektorientierte Modellierung
an der Hochschule Esslingen. Cornelia Heinisch arbeitet bei der Firma IT-Designers
GmbH als System-Designerin für Verteilte Objektorientierte Systeme.

Frank Müller-Hofmann,
MSc, Jahrgang 1969, studierte Softwaretechnik an der Hochschule Esslingen nach Lehre
und Beruf. Herr Müller-Hofmann arbeitet als System-Designer für Verteilte Objektorien-
tierte Systeme bei IT-Designers GmbH. Er ist Lehrbeauftragter für Internettechnologien
an der Hochschule Esslingen und für Kommunikation in Verteilten Systemen an der
 Brunel University of West-London.

Prof. Dr. Joachim Goll,
Jahrgang 1947, unterrichtet seit 1991 im Fachbereich Informationstechnik der Hoch-
schule Esslingen die Fächer Programmiersprachen, Betriebssysteme, Software
 Engineering, Objektorientierte Modellierung und Sichere Systeme. Während seiner
 beruflichen Tätigkeit in der Industrie befasste er sich vor allem mit dem Entwurf von
 verteilten Informationssystemen. Prof. Goll ist Leiter des Steinbeis-Transferzentrums
Softwaretechnik Esslingen.

Vorwort

Die Sprache Java ist durch ihre Betriebssystem-Unabhängigkeit ideal für die Reali-
sierung verteilter Systeme, die aus verschiedenartigsten Rechnern vom Handy bis
zum Großrechner aufgebaut sein können. Java wird heute bereits im Informatik-
Unterricht an den Gymnasien unterrichtet und ist fester Bestandteil des Studiums von
Ingenieuren und Betriebswirten geworden.

Java stellt im Grunde genommen eine einfache Sprache dar. Darüber hinaus werden
jedoch in umfangreichen Klassenbibliotheken wertvolle und weitreichende Hilfsmittel
zur Verfügung gestellt, die den Bau verteilter Systeme mit Parallelität, Oberflächen,
Kommunikationsprotokollen und Datenbanken in erheblichem Maße unterstützen.

Dieses Buch wendet sich an Studierende, Umsteiger und Schüler, welche das In-
teresse haben, die Grundlagen von Java fundiert zu erlernen. Es erlaubt, Java ohne
Vorkenntnisse anderer Programmiersprachen zu erlernen. Daher der Titel "Java als
erste Programmiersprache". Dazu ist aber erforderlich, dass die Übungsaufgaben am
Ende eines Kapitels bearbeitet werden. Wer das Buch nur lesen möchte, sollte
bereits über die Kenntnisse einer anderen Programmiersprache verfügen.

Dieses Buch hat das ehrgeizige Ziel, dem Neuling die Sprachkonzepte von Java, die
Grundkonzepte der objektorientierten Programmierung und wichtige Teile der Klas-
senbibliothek so präzise wie möglich und dennoch in leicht verständlicher Weise vor-
zustellen. Aber unterschätzen Sie dennoch den Lernaufwand nicht. Der Buchumfang
ist nicht in einer einzigen Vorlesung zu schaffen. Vorlesungen über das Program-
mieren verteilter Systeme mit Java oder über Grafische Oberflächen mit Java ma-
chen erst dann Sinn, wenn die Grundlagen des Programmierens erlernt sind.

Alle Kapitel enthalten Übungsaufgaben, die zum selbstständigen Programmieren he-
rausfordern. Dasselbe Ziel hat das Flughafen-Projekt, welches begleitend zu den
Kapiteln 10 bis einschließlich 21 durchgeführt werden kann und zu einem System
führt, das die Fluglotsen bei Start und Landung von Flugzeugen unterstützt.

Das Buch enthält einige Neuerungen zu Java 7. Es wurden allerdings nur jene Ände-
rungen integriert, die zum Zeitpunkt der Fertigstellung des Buches bereits in der
aktuell vorliegenden Beta-Version des JDK 7 implementiert waren. Einen Überblick
über die im Buch integrierten Java 7-Neuerungen erhalten Sie am besten durch
Nachschlagen des Indexeintrages "Java 7" im Register.

Unser besonderer Dank bei dieser Auflage gilt Herrn Emil Grüttner und Herrn Kevin
Erath, die an der Überarbeitung einzelner Kapitel wesentlich mitgewirkt haben. Herrn
Dimitri Benin, Herrn Markus Bach und Frau Karin Weiß danken wir für die Erstellung
des CD-Kapitels JavaServer Faces. Herr Georg Schessler und Frau Meryem Altun-
kaya waren uns bei der Erstellung der Übungsaufgaben und der CD eine große Hilfe.

Esslingen, im Oktober 2010 C. Heinisch / F. Müller-Hofmann / J. Goll

Wegweiser durch das Buch

"Lernkästchen", auf die grafisch durch eine kleine Glühlampe aufmerksam gemacht
wird, stellen eine Zusammenfassung eines Kapitels dar. Sie erlauben eine rasche
Wiederholung des Stoffes.

Gerade als Anfänger in einer Programmiersprache macht man gerne den Fehler,
sich beim Lesen an nicht ganz so wesentlichen Einzelheiten festzubeißen. Um zu
erkennen, welche Information grundlegend für das weitere Vorankommen ist und
welche Information nur ein Detailwissen darstellt – und deshalb auch noch zu einem
späteren Zeitpunkt vertieft werden kann – weist dieses Buch Kapitel oder Kapitelteile,
die beim ersten Lesen übersprungen werden können, mit dem Symbol aus.

Generell ist es empfehlenswert, ein oder mehrere Kapitel zu überfliegen, um sich
einen Überblick zu verschaffen, und dann erst mit der Feinarbeit zu beginnen und
gründlicher zu lesen. Dennoch gilt: Eine Vorgehensweise, die sich für den einen
Leser als optimal erweist, muss noch lange nicht für alle Leser das Allheilmittel
darstellen. Wenn Sie zu den Lesern gehören, die es gewohnt sind, von Anfang an
möglichst detailliert zu lesen, um möglichst viel sofort zu verstehen, so sollten Sie
zumindest darauf achten, dass Sie in den Kapiteln mit dem "Überspringe und komm
zurück"-Symbol beim ersten Durchgang nicht zu lange verweilen.

Bei all den guten Ratschlägen gilt: Programmieren hat man zu allen Zeiten durch
Programmierversuche erlernt. "Do it yourself" heißt der rote Faden zum Erfolg. So
wie ein Kleinkind beim Erlernen der Muttersprache einfach zu sprechen versucht, so
sollten auch Sie möglichst früh versuchen, in der Programmiersprache zu sprechen –
das heißt, eigene Programme zu schreiben. Gestalten Sie den Lernvorgang ab-
wechslungsreich – lesen Sie einen Teil und versuchen Sie, das Erlernte im Pro-
grammieren gleich umzusetzen. Um die mühsame Tipparbeit am Anfang minimal zu
halten, sind alle Beispielprogramme des Buches auf der CD zu finden. Die CD ent-
hält auch die Bilder der einzelnen Kapitel, die Übungsaufgaben und Lösungen sowie
das Flughafenprojekt.

Die nachfolgende Tabelle soll es dem Leser erleichtern, einzuordnen, welche Kapitel
zu den Grundlagen (Symbol) zählen und auf jeden Fall verstanden werden sollten,
welche Kapitel zuerst übersprungen werden können und dann bei Bedarf gelesen
werden sollten (Symbol), und welche Kapitel rein fortgeschrittene Themen
(Symbol) behandeln, die unabhängig voneinander gelesen werden können.

1 Grundbegriffe der Programmierung
2 Objektorientierte Konzepte
3 Einführung in die Programmiersprache Java
4 Einfache Beispielprogramme
5 Lexikalische Konventionen
6 Datentypen und Variable
7 Ausdrücke und Operatoren
8 Kontrollstrukturen
9 Blöcke und Methoden
10 Klassen und Objekte
11 Vererbung und Polymorphie
12 Pakete
13 Ausnahmebehandlung
14 Schnittstellen
15 Geschachtelte Klassen
16 Ein-/Ausgabe und Streams
17 Generizität
18 Collections
19 Threads
20 Applets
21 Oberflächenprogrammierung mit Swing
22 Servlets
23 JavaServer Pages
24 Netzwerkprogrammierung mit Sockets
25 Remote Method Invocation
26 JDBC
27 Enterprise JavaBeans 3.1

Die folgende Tabelle zeigt die auf der CD enthaltenen Kapitel:

28 Java Native Interface
29 Sicherheit
30 Beans
31 Reflection
32 Java-Tools
33 Java Management Extensions
34 JavaServer Faces

Schreibweise

In diesem Buch sind der Quellcode und die Ein-/Ausgabe von ganzen Beispiel-
programmen sowie einzelne Anweisungen und Ein-/Ausgaben in der Schriftart
Courier New geschrieben. Dasselbe gilt für Programmteile wie Variablennamen,
Methodennamen etc., die im normalen Text erwähnt werden. Wichtige Begriffe im
normalen Text sind fett gedruckt, um sie hervorzuheben.

Ihre Verbesserungsvorschläge und kritischen Hinweise, die wir gerne annehmen,
erreichen uns via E-Mail:

Cornelia.Heinisch@it-designers.de

Inhaltsverzeichnis

1� GRUNDBEGRIFFE DER PROGRAMMIERUNG 2�
1.1� Das erste Programm .. 2�

1.2� Vom Problem zum Programm ... 4�

1.3� Nassi-Shneiderman-Diagramme ... 10�

1.4� Zeichen .. 16�

1.5� Variable .. 18�

1.6� Datentypen ... 19�

1.7� Übungen .. 25�

2� OBJEKTORIENTIERTE KONZEPTE.. 28�

2.1� Modellierung mit Klassen und Objekten .. 28�

2.2� Das Konzept der Kapselung .. 36�

2.3� Abstraktion und Brechung der Komplexität ... 37�

2.4� Erstes Programmbeispiel mit Objekten ... 41�

2.5� Flughafen-Projekt... 44�

2.6� Übungen .. 56�

3� EINFÜHRUNG IN DIE PROGRAMMIERSPRACHE JAVA 58�
3.1� Sprachkonzepte von Java ... 58�

3.2� Eigenschaften von Java ... 59�

3.3� Die Java-Plattform ... 60�

3.4� Programmerzeugung und -ausführung .. 63�

3.5� Das Java Development Kit .. 68�

3.6� Java-Anwendungen und Internet-Programmierung 71�

3.7� Übungen .. 72�

4� EINFACHE BEISPIELPROGRAMME ... 76�

4.1� Lokale Variable, Ausdrücke und Schleifen .. 76�

4.2� Zeichen von der Tastatur einlesen .. 81�

4.3� Erzeugen von Objekten ... 84�

4.4� Initialisierung von Objekten mit Konstruktoren 85�

4.5� Schreiben von Instanzmethoden ... 88�

4.6� Zusammengesetzte Objekte .. 92�

4.7� Selbst definierte Untertypen durch Vererbung....................................... 96�

4.8� Die Methode printf() und die Klasse Scanner .. 99�

4.9� Übungen .. 102�

X Inhaltsverzeichnis

5� LEXIKALISCHE KONVENTIONEN .. 112�

5.1� Zeichenvorrat von Java ... 112�

5.2� Der Unicode ... 114�

5.3� Lexikalische Einheiten ... 114�

5.4� Übungen .. 131�

6� DATENTYPEN UND VARIABLE .. 134�
6.1� Klassifikation der Datentypen von Java ... 134�

6.2� Einfache Datentypen ... 135�

6.3� Klassen-Typ ... 137�

6.4� Variable .. 143�

6.5� Array-Typ ... 159�

6.6� Aufzählungstyp .. 171�

6.7� Zeichenketten .. 178�

6.8� Wandlung von Datentypen .. 190�

6.9� Übungen .. 198�

7� AUSDRÜCKE UND OPERATOREN ... 210�
7.1� Operatoren und Operanden ... 210�

7.2� Ausdrücke und Anweisungen .. 211�

7.3� Nebeneffekte .. 213�

7.4� Auswertungsreihenfolge .. 213�

7.5� L-Werte und R-Werte ... 215�

7.6� Zusammenstellung der Operatoren ... 217�

7.7� Konvertierung von Datentypen .. 236�

7.8� Ausführungszeitpunkt von Nebeneffekten ... 245�

7.9� Übungen .. 246�

8� KONTROLLSTRUKTUREN .. 252�
8.1� Blöcke – Kontrollstrukturen für die Sequenz .. 252�

8.2� Selektion .. 252�

8.3� Iteration .. 259�

8.4� Sprunganweisungen .. 265�

8.5� Übungen .. 269�

9� BLÖCKE UND METHODEN ... 276�
9.1� Blöcke und ihre Besonderheiten .. 276�

9.2� Methodendefinition und -aufruf .. 281�

9.3� Polymorphie von Operationen ... 292�

9.4� Überladen von Methoden .. 294�

Inhaltsverzeichnis XI

9.5� Parameterliste variabler Länge .. 296�

9.6� Parameterübergabe beim Programmaufruf ... 298�

9.7� Iteration und Rekursion .. 300�

9.8� Übungen .. 306�

10� KLASSEN UND OBJEKTE .. 314�
10.1� Information Hiding .. 314�

10.2� Klassenvariable und Klassenmethoden ... 316�

10.3� Die this-Referenz ... 322�

10.4� Initialisierung von Datenfeldern ... 329�

10.5� Instantiierung von Klassen ... 346�

10.6� Freigabe von Speicher ... 348�

10.7� Die Klasse Object .. 351�

10.8� Übungen .. 352�

11� VERERBUNG UND POLYMORPHIE ... 364�
11.1� Das Konzept der Vererbung .. 364�

11.2� Erweitern und Überschreiben .. 369�

11.3� Besonderheiten bei der Vererbung .. 374�

11.4� Polymorphie und das Liskovsche Substitutionsprinzip 394�

11.5� Verträge ... 409�

11.6� Identifikation der Klasse eines Objektes .. 423�

11.7� Konsistenzhaltung von Quell- und Bytecode 428�

11.8� Übungen .. 432�

12� PAKETE ... 442�
12.1� "Programmierung im Großen" ... 442�

12.2� Pakete als Entwurfseinheiten .. 444�

12.3� Erstellung von Paketen .. 445�

12.4� Benutzung von Paketen ... 447�

12.5� Paketnamen ... 450�

12.6� Gültigkeitsbereich von Klassennamen ... 454�

12.7� Zugriffsmodifikatoren ... 457�

12.8� Übungen .. 464�

13� AUSNAHMEBEHANDLUNG ... 472�
13.1� Das Konzept des Exception Handling ... 472�

13.2� Implementierung von Exception-Handlern in Java 474�

13.3� Ausnahmen vereinbaren und auswerfen ... 478�

13.4� Die Exception-Hierarchie ... 480�

XII Inhaltsverzeichnis

13.5� Ausnahmen behandeln .. 483�

13.6� Vorteile des Exception-Konzeptes ... 490�

13.7� Assertions .. 491�

13.8� Übungen .. 496�

14� SCHNITTSTELLEN.. 504�
14.1� Trennung von Spezifikation und Implementierung 505�

14.2� Ein weiterführendes Beispiel ... 506�

14.3� Aufbau einer Schnittstelle .. 510�

14.4� Verwenden von Schnittstellen ... 513�

14.5� Vergleich Schnittstelle und abstrakte Basisklasse............................... 527�

14.6� Die Schnittstelle Cloneable .. 530�

14.7� Übungen .. 537�

15� GESCHACHTELTE KLASSEN .. 546�
15.1� Elementklassen.. 547�

15.2� Lokale Klassen... 552�

15.3� Anonyme Klassen .. 556�

15.4� Statisch geschachtelte Klassen und Schnittstellen.............................. 561�

15.5� Realisierung von geschachtelten Klassen ... 564�

15.6� Übungen .. 569�

16� EIN-/AUSGABE UND STREAMS .. 576�

16.1� Für ganz Eilige ein erstes Beispiel ... 576�

16.2� Klassifizierung von Streams .. 580�

16.3� Das Stream-Konzept ... 583�

16.4� Bytestream-Klassen ... 586�

16.5� Characterstream-Klassen .. 599�

16.6� Standardeingabe und Standardausgabe ... 606�

16.7� Ein- und Ausgabe von Objekten .. 609�

16.8� Übungen .. 617�

17� GENERIZITÄT ... 622�

17.1� Generische Klassen ... 623�

17.2� Eigenständig generische Methoden .. 639�

17.3� Bounded Typ-Parameter und Wildcards .. 643�

17.4� Generische Schnittstellen .. 651�

17.5� Die Klasse Class<T> ... 662�

17.6� Generizität und Polymorphie ... 666�

17.7� Übungen .. 668�

Inhaltsverzeichnis XIII

18� COLLECTIONS .. 684�
18.1� Überblick über die Collection-API .. 685�

18.2� Iterieren über Collections ... 691�

18.3� Listen ... 693�

18.4� Warteschlangen ... 710�

18.5� Mengen .. 721�

18.6� Verzeichnisse ... 728�

18.7� Besonderheiten bei der Anwendung von Collections 734�

18.8� Übungen .. 736�

19� THREADS .. 742�
19.1� Zustände und Zustandsübergänge von Betriebssystem-Prozessen ... 747�

19.2� Zustände und Zustandsübergänge von Threads 748�

19.3� Programmierung von Threads ... 751�

19.4� Scheduling von Threads .. 759�

19.5� Zugriff auf gemeinsame Ressourcen ... 760�

19.6� Daemon-Threads ... 781�

19.7� Übungen .. 782�

20� APPLETS ... 788�

20.1� Die Seitenbeschreibungssprache HTML ... 789�

20.2� Das "Hello, world"-Applet ... 800�

20.3� Der Lebenszyklus eines Applets .. 804�

20.4� Parameterübernahme aus einer HTML-Seite 809�

20.5� Importieren von Bildern .. 810�

20.6� Importieren und Abspielen von Audio-Clips ... 812�

20.7� Übungen .. 812�

21� OBERFLÄCHENPROGRAMMIERUNG MIT SWING 818�

21.1� Architekturmerkmale von Swing .. 820�

21.2� GUI-Container .. 838�

21.3� Anordnung von GUI-Komponenten ... 852�

21.4� Ereignisbehandlung ... 867�

21.5� Swing-GUI-Komponenten .. 891�

21.6� Übungen .. 895�

22� SERVLETS .. 900�

22.1� Das Internet und seine Dienste ... 900�

22.2� Dynamische Erzeugung von Seiteninhalten .. 908�

22.3� Web-Anwendungen erstellen ... 913�

XIV Inhaltsverzeichnis

22.4� Wichtige Elemente der Servlet-API ... 918�

22.5� Der Deployment-Deskriptor ... 923�

22.6� Das Servlet "Forum" .. 925�

22.7� Übungen .. 933�

23� JAVASERVER PAGES .. 936�
23.1� Skriptelemente ... 939�

23.2� Direktiven ... 944�

23.3� Aktionen ... 948�

23.4� Verwendung von JavaBeans ... 951�

23.5� Tag-Bibliotheken .. 956�

23.6� Übungen .. 965�

24� NETZWERKPROGRAMMIERUNG MIT SOCKETS 970�

24.1� Verteilte Systeme ... 970�

24.2� Rechnername, URL und IP-Adresse ... 973�

24.3� Sockets .. 981�

24.4� Protokolle ... 1003�

24.5� Übungen .. 1008�

25� REMOTE METHOD INVOCATION .. 1014�

25.1� Die Funktionsweise von RMI ... 1014�

25.2� Entwicklung einer RMI-Anwendung ... 1017�

25.3� Ein einfaches Beispiel .. 1022�

25.4� Object by Value und Object by Reference ... 1028�

25.5� Verwendung der RMI-Codebase ... 1041�

25.6� Häufig auftretende Fehler und deren Behebung 1055�

25.7� Übungen .. 1057�

26� JDBC ... 1062�
26.1� Einführung in SQL.. 1063�

26.2� JDBC-Treiber ... 1072�

26.3� Installation und Konfiguration von MySQL ... 1074�

26.4� Zugriff auf ein DBMS ... 1076�

26.5� Datentypen ... 1101�

26.6� Exceptions ... 1102�

26.7� Metadaten .. 1103�

26.8� JDBC-Erweiterungspaket .. 1105�

26.9� Connection Pooling .. 1106�

26.10�Übungen .. 1112�

Inhaltsverzeichnis XV

27� ENTERPRISE JAVABEANS 3.1 .. 1124�

27.1� Idee der Enterprise JavaBeans ... 1125�

27.2� Objektorientierte Modellierung ... 1125�

27.3� Abbildung von Klassen auf Bean-Typen .. 1131�

27.4� Überblick über die Enterprise JavaBeans-Architektur 1132�

27.5� Konzept der EJB-Typen ... 1137�

27.6� Session-Beans ... 1138�

27.7� Der Applikations-Server JBoss .. 1147�

27.8� Java Persistence-API .. 1156�

27.9� Übungen .. 1188�

ANHANG A DER ASCII-ZEICHENSATZ .. 1202�

ANHANG B GÜLTIGKEITSBEREICHE VON NAMEN 1205�

ANHANG C DIE KLASSE SYSTEM ... 1210�

ANHANG D JNDI .. 1213�

ANHANG E ANNOTATIONS .. 1229�

BEGRIFFSVERZEICHNIS .. 1237�

LITERATURVERZEICHNIS .. 1246�

INDEX ... 1248�

Grundbegriffe der
Programmierung

1.1 Das erste Programm
1.2 Vom Problem zum Programm
1.3 Nassi-Shneiderman-Diagramme
1.4 Zeichen
1.5 Variable
1.6 Datentypen
1.7 Übungen

1 Grundbegriffe der Programmierung

Bevor man mit einer Programmiersprache umzugehen lernt, muss man wissen, was
ein Programm prinzipiell ist und wie man Programme konstruiert. Damit wird sich das
erste Kapitel befassen. Leser, die bereits eine höhere Programmiersprache erlernt
haben, können prüfen, ob sie tatsächlich die hier präsentierten Grundbegriffe (noch)
beherrschen, und können dieses Kapitel "überfliegen". Ehe es "zur Sache geht",
zunächst als spielerischen Einstieg in Kapitel 1.1 das Programm "Hello, world".

1.1 Das erste Programm

Seit Kernighan und Ritchie ist es Usus geworden, als erstes Beispiel in einer neuen
Programmiersprache mit dem Programm "Hello, world" zu beginnen. Das Programm
"Hello, world" macht nichts anderes, als Hello, world! auf dem Bildschirm aus-
zugeben. In Java sieht das "Hello, world"-Programm folgendermaßen aus:

// Datei: HelloWorld.java

public class HelloWorld // Klasse zur Ausgabe von Hello, world!
{
 public static void main (String[] args) // Methode main() zur
 { // Ausgabe der Zeichen-
 System.out.println ("Hello, world!"); // kette "Hello, world!"
 }
}

Die Methode println() – sie wird ausgesprochen als "print line" – wird über Sys-
tem.out.println() aufgerufen und schreibt die Zeichenfolge Hello, world!
auf den Bildschirm. In der Programmiersprache Java stellt man eine Zeichenfolge
durch eine so genannte Zeichenkette (einen String) dar. Eine Zeichenkette beginnt
mit einem Anführungszeichen " und endet mit einem Anführungszeichen. Die Anfüh-
rungszeichen sind nur Begrenzer und werden nicht auf dem Bildschirm ausgegeben.
Bitte erstellen Sie dieses Programm mit einem Texteditor, der Ihnen vertraut ist, und
speichern Sie es unter dem Dateinamen HelloWorld.java in einer Datei ab. Die-
ses Programm besteht aus einer Klasse mit dem Namen HelloWorld. Eine Klasse
ist dadurch gekennzeichnet, dass sie das Schlüsselwort class trägt. Beachten Sie,
dass alles, was hinter zwei Schrägstrichen in einer Zeile steht, zusammen mit den
beiden Schrägstrichen einen so genannten Kommentar darstellt. Ein Kommentar
dient zur Dokumentation eines Programms und hat keinen Einfluss auf den Ablauf
des Programms.

In Java kann man nur objektorientiert programmieren. Alle Programme
in Java basieren von ihrem Aufbau her komplett auf Klassen.

Bitte achten Sie beim Eintippen des Programms im Texteditor und bei der Vergabe
des Dateinamens auf die Groß- und Kleinschreibung, da in Java zwischen Groß- und
Kleinbuchstaben unterschieden wird. In anderen Worten: Java ist case sensitiv.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_1,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Grundbegriffe der Programmierung 3

Kompilieren Sie das Programm mit dem javac-Compiler1 des Java Development
Kits2 durch die folgende Eingabe auf der Kommandozeile:

javac HelloWorld.java

Danach drücken Sie die <RETURN>-Taste. Auf der <RETURN>-Taste ist oftmals das

Symbol ↵ zu sehen. Der javac-Compiler übersetzt dann den Java-Quellcode der
Datei HelloWorld.java in so genannten Bytecode (siehe Kap. 3.3.1) und legt
diesen in der Datei HelloWorld.class ab. Durch die Eingabe von

java HelloWorld

und das anschließende Drücken der <RETURN>-Taste wird der Bytecode-Interpreter
java gestartet, der den Bytecode interpretiert, d. h. in Maschinencode übersetzt und
zur Ausführung bringt. Hierbei ist Maschinencode ein spezieller Code, den der
entsprechende Prozessor versteht. Java-Anwendungen können – wie hier gezeigt –
von der Kommandozeile aus gestartet werden. Sie können aber auch aus Ent-
wicklungsumgebungen wie z. B. aus Eclipse aufgerufen werden. Bild 1-1 zeigt die
Ein- und Ausgaben in einer Windows-Konsole.

Bild 1-1 Kompilieren und Starten über Kommandos in der Windows-Konsole

Zu beachten ist, dass der Interpreter java den Klassennamen
HelloWorld und nicht den Dateinamen HelloWorld.class ver-
langt!

Die Ausgabe des Programms ist:

Hello, world!

So schnell kann es also gehen. Das erste Programm läuft schon. Sie hatten "ein
Händchen" im Umgang mit Texteditor, Compiler und Interpreter. Da es hier nur da-
rum geht, ein allererstes Programm zu starten, wird auf eine detaillierte Erläuterung
des Programms verzichtet.

1 Der Name javac wurde gewählt als Abkürzung für Java Compiler.
2 Die Installation des Java Development Kits wird in Kap. 3.5.1 beschrieben.

4 Kapitel 1

1.2 Vom Problem zum Programm

Der Begriff Programm ist eng mit dem Begriff Algorithmus verbunden. Algorithmen
sind Vorschriften für die Lösung eines Problems, welche die Handlungen und ihre
Abfolge – kurz, die Handlungsweise – beschreiben. Im Alltag begegnet man Algo-
rithmen in Form von Bastelanleitungen, Kochrezepten und Gebrauchsanweisungen.
Abstrakt kann man sagen, dass die folgenden Bestandteile und Eigenschaften zu
einem Algorithmus gehören:

• eine Menge von Objekten, die durch den Algorithmus bearbeitet werden,
• eine Menge von Operationen, die auf den Objekten ausgeführt werden,
• ein definierter Anfangszustand, in dem sich die Objekte zu Beginn befinden,
• und ein gewünschter Endzustand, in dem die Objekte nach der Lösung des Pro-

blems sein sollen.

Dies sei am Beispiel Kochrezept erläutert:

Objekte: Zutaten, Geschirr, Herd, ...
Operationen: waschen, anbraten, schälen, passieren, ...
Anfangszustand: Zutaten im "Rohzustand", Teller leer, Herd kalt, ...
Endzustand: fantastische Mahlzeit auf dem Teller, Herd aus.

Was noch zur Lösung eines Problems gebraucht wird, ist eine Anleitung, ein Rezept
oder eine Folge von Anweisungen und jemand, der es macht. Mit anderen Worten,
man benötigt einen Algorithmus – eine Rechenvorschrift – und einen Prozessor.

Während aber bei einem Kochrezept viele Dinge gar nicht explizit gesagt werden
müssen, sondern dem Koch aufgrund seiner Erfahrung implizit klar sind – z. B. dass
er den Kuchen aus dem Backofen holen muss, bevor er schwarz ist –, muss einem
Prozessor alles explizit und eindeutig durch ein Programm, das aus Anweisungen
einer Programmiersprache besteht, gesagt werden. Ein Programm besteht aus
einer Reihe von einzelnen Anweisungen an den Prozessor, die von diesem der
Reihe nach – in anderen Worten sequenziell – ausgeführt werden.

Ein Algorithmus in einer Programmiersprache besteht aus Anwei-
sungen, die von einem Prozessor ausgeführt werden können.

Bild 1-2 zeigt Anweisungen, die im Arbeitsspeicher des Rechners abgelegt sind und
nacheinander durch den Prozessor des Rechners abgearbeitet werden:

1

3
2

...

 Arbeitsspeicher des Rechners

Prozessor des Rechners

Anweisung

Anweisung

Anweisung

Anweisung

Anweisung

Bild 1-2 Der Prozessor bearbeitet eine Anweisung des Programms nach der anderen

Grundbegriffe der Programmierung 5

1.2.1 Der Algorithmus von Euklid als Beispiel für Algorithmen

Als Beispiel wird der Algorithmus betrachtet, der von Euklid ca. 300 v. Chr. zur
Bestimmung des größten gemeinsamen Teilers (ggT) zweier natürlicher Zahlen
aufgestellt wurde. Der größte gemeinsame Teiler wird zum Kürzen von Brüchen
benötigt:

y

x

),y/ggT(xy

),y/ggT(xx

y

x

gekürzt

gekürzt

ungekürztungekürztungekürzt

ungekürztungekürztungekürzt

ungekürzt

ungekürzt ==

Hierbei ist ggT(xungekürzt,yungekürzt) der größte gemeinsame Teiler der beiden Zahlen
xungekürzt und yungekürzt.

Beispiel:
3

8

39

324

9249

92424

9

24
===

/

/

),/ggT (

),/ggT (

Der Algorithmus von Euklid lautet:

Zur Bestimmung des größten gemeinsamen Teilers zwischen zwei natürlichen
Zahlen x und y tue Folgendes3:

Solange x ungleich y ist, wiederhole:
 Wenn x größer als y ist, dann:
 Ziehe y von x ab und weise das Ergebnis x zu.
 Andernfalls:
 Ziehe x von y ab und weise das Ergebnis y zu.
Wenn x gleich y ist, dann:
 x (bzw. y) ist der gesuchte größte gemeinsame Teiler.

Man erkennt in diesem Beispiel Folgendes:

• Es gibt eine Menge von Objekten, mit denen etwas passiert: x und y. Diese
Objekte x und y haben am Anfang beliebig vorgegebene Werte, am Schluss
enthalten sie den größten gemeinsamen Teiler.

• Es gibt gewisse Grundoperationen, die hier nicht weiter erläutert werden, da sie
implizit klar sind: vergleichen, abziehen und zuweisen.

• Es handelt sich um eine sequenzielle Folge von Anweisungen (Operationen), d. h.
die Anweisungen werden der Reihe nach hintereinander ausgeführt.

• Es gibt aber auch bestimmte Konstrukte, welche die einfache sequenzielle Folge
(Hintereinanderausführung) gezielt verändern: eine Auswahl zwischen Alternati-
ven (Selektion) und eine Wiederholung von Anweisungen (Iteration).

Es gibt auch Algorithmen zur Beschreibung von parallelen Aktivitäten, die zum
gleichen Zeitpunkt nebeneinander ausgeführt werden. Diese Algorithmen werden
unter anderem bei Betriebssystemen oder in der Prozessdatenverarbeitung benötigt.
Im Folgenden werden bewusst nur sequenzielle Abläufe behandelt, bei denen zu
einem Zeitpunkt nur eine einzige Operation durchgeführt wird.

3 Die Arbeitsweise dieses Algorithmus für die Zahlen x == 24 und y == 9 wird durch die

Tabelle 1-1 in Kapitel 1.2.4 verdeutlicht.

6 Kapitel 1

1.2.2 Beschreibung sequenzieller Abläufe

Die Abarbeitungsreihenfolge von Anweisungen wird auch als Kon-
trollfluss bezeichnet.

Den Prozessor stört es überhaupt nicht, wenn eine Anweisung einen Sprungbefehl
zu einer anderen Anweisung enthält. Solche Sprungbefehle werden in manchen Pro-
grammiersprachen beispielsweise mit dem Befehl GOTO und Marken wie z. B. 100
realisiert:

IF(a > b) GOTO 100
Anweisungen2
GOTO 300

100 Anweisungen1
300 Anweisungen3

In Worten lauten diese Anweisungen an den Prozessor: "Vergleiche die Werte von a
und b. Wenn4 a größer als b ist, springe an die Stelle mit der Marke 100. Führe an
der Stelle mit der Marke 100 die Anweisungen Anweisungen1 aus. Fahre dann mit
den Anweisungen3 fort. Ist aber die Bedingung a > b nicht erfüllt, so arbeite die
Anweisungen Anweisungen2 ab. Springe dann zu der Marke 300 und führe die
Anweisungen Anweisungen3 aus."

Will jedoch ein Programmierer ein solches Programm lesen, so verliert er durch die
Sprünge sehr leicht den Zusammenhang und damit das Verständnis. Für den
menschlichen Leser ist es am besten, wenn ein Programm einen einfachen und
damit überschaubaren Kontrollfluss hat. Während typische Programme der sechziger
Jahre noch zahlreiche Sprünge enthielten, bemühen sich die Programmierer seit
Dijkstras grundlegendem Artikel "Go To Statement Considered Harmful" [1],
möglichst einen Kontrollfluss ohne Sprünge zu entwerfen. Beispielsweise kann der
oben mit GOTO beschriebene Ablauf auch folgendermaßen realisiert werden:

IF (a > b)
 Anweisungen1
ELSE
 Anweisungen2
ENDIF
Anweisungen3

Hierbei ist wieder IF (a > b) die Abfrage, ob a größer als b ist. Ist dies der Fall, so
werden die Anweisungen Anweisungen1 ausgeführt. Ist die Bedingung a > b nicht
wahr, d. h. nicht erfüllt, so werden die Anweisungen Anweisungen2 des ELSE-
Zweigs durchgeführt. Mit ENDIF ist die Fallunterscheidung zu Ende. Unabhängig
davon, welcher der beiden Zweige der Fallunterscheidung abgearbeitet wurde, wer-
den nun die Anweisungen Anweisungen3 abgearbeitet. Dieser Ablauf ist in Bild 1-3
grafisch veranschaulicht.

4 "Wenn“ wird ausgedrückt durch das Schlüsselwort IF der hier verwendeten Programmiersprache

FORTRAN.

Grundbegriffe der Programmierung 7

[a ≤ b] [a > b]

Anweisungen1 Anweisungen2

Anweisungen3

Bild 1-3 Grafische Darstellung der Verzweigung

Unter einer Kontrollstruktur versteht man eine Anweisung, welche
die Abarbeitungsreihenfolge von Anweisungen beeinflusst.

Betrachtet man nur sequenzielle Abläufe, so gibt es Kontrollstruk-
turen für

• die Selektion,
• die Iteration
• und die Sequenz.

Zu den Kontrollstrukturen gehört die Fallunterscheidung (Selektion), bei der in
Abhängigkeit davon, ob eine Bedingung erfüllt ist oder nicht, entweder die eine oder
die andere Anweisung abgearbeitet wird, oder eine Wiederholung (Iteration) einer
Anweisung. Zu den Kontrollstrukturen gehört auch die so genannte Sequenz. Eine
Sequenz ist eine Anweisungsfolge (ein so genannter Block), die eine sequenzielle
Folge von Anweisungen enthält, wobei die ganze Anweisungsfolge von der Sprach-
syntax her als eine einzige Anweisung zu werten ist.

Im Beispiel des Algorithmus von Euklid stellt

Solange x ungleich y ist, wiederhole:

eine Iteration dar, die in freier Sprache ausgedrückt ist.

Wenn x größer als y ist, dann:

Andernfalls:

stellt eine Fallunterscheidung (Selektion) in freier Sprache dar.

8 Kapitel 1

1.2.3 Strukturierte Programmierung

Die Ideen von Dijkstra und anderen fanden ihren Niederschlag in den Regeln für die
Strukturierte Programmierung. Die Strukturierte Programmierung ist ein Program-
miersprachen-unabhängiges Konzept. Es umfasst die Zerlegung eines Programms in
Teil-Programme (Haupt- und Unterprogramme), sowie die folgenden Regeln für den
Kontrollfluss. Danach gilt, dass in einer Sequenz eine Anweisung nach der anderen,
d. h. in einer linearen Reihenfolge, abgearbeitet wird. Man geht über einen einzigen
Eingang (engl. single entry), nämlich von der davor stehenden Anweisung in eine
Anweisung hinein und geht über einen einzigen Ausgang (engl. single exit) aus der
Anweisung heraus und kommt direkt zur nächsten Anweisung (siehe Bild 1-4).

ein zweiter Ausgang
bzw. Eingang ist
nicht möglich

Anweisung

Anweisung

Anweisung

nur 1 Eingang

nur 1 Ausgang

Bild 1-4 Single entry und single exit bei der Sequenz

Haben Kontrollstrukturen für die Selektion und Iteration die gleichen Eigenschaften
wie einzelne Anweisungen, nämlich single entry und single exit, so erhält man für alle
Anweisungen einen linearen und damit überschaubaren Programmablauf. Program-
me, die nur Kontrollstrukturen mit dieser Eigenschaft aufweisen, gehorchen den
Regeln der Strukturierten Programmierung und können mit Hilfe von Nassi-
Shneiderman-Diagrammen visualisiert werden (siehe Kap. 1.3).

Bei der Strukturierten Programmierung wird ein Programm in Teil-
Programme zerlegt und es werden nur Kontrollstrukturen mit einem
Eingang und einem Ausgang verwendet.

Mit der Anweisung GOTO MARKE, d. h. einer Sprunganweisung, wäre es möglich, die
Ausführung eines Programms an einer ganz anderen Stelle, nämlich der Stelle, an
der MARKE steht, fortzusetzen. Dies ist aber in der Strukturierten Programmierung
nicht zulässig.

1.2.4 Variable und Zuweisungen

Die durch den Algorithmus von Euklid behandelten Objekte sind natürliche Zahlen.
Sie sollen jedoch nicht von vornherein festgelegt werden, sondern der Algorithmus
soll für die Bestimmung des größten gemeinsamen Teilers beliebiger natürlicher
Zahlen verwendbar sein. Anstelle der Zahlen werden daher Namen verwendet, die

Grundbegriffe der Programmierung 9

als variable Größen oder kurz Variable bezeichnet werden. Den Variablen werden
im Verlauf des Algorithmus konkrete Werte zugewiesen. Diese Wertzuweisung an
Variable ist eine der grundlegenden Operationen, die ein Prozessor ausführen
können muss. Auf Variable wird noch ausführlicher in Kapitel 1.5 eingegangen.

Der im obigen Beispiel beschriebene Algorithmus kann auch von einem mensch-
lichen "Prozessor" ausgeführt werden – andere Möglichkeiten hatten die Griechen in
der damaligen Zeit nicht. Als Hilfsmittel braucht man dazu Papier und Bleistift, um die
Zustände der Objekte – im obigen Beispiel die Zustände der Objekte x und y –
zwischen den Verarbeitungsschritten festzuhalten. Man erhält dann eine Tabelle, die
auch Trace-Tabelle5 genannt wird und für die Zahlen x == 24 und y == 9 das
folgende Aussehen hat:

 Werte von
Verarbeitungsschritt x y

Initialisierung
x = 24, y = 9

24

9

x = x – y 15 9
x = x – y 6 9
y = y – x 6 3
x = x – y 3 3
Ergebnis: ggT = 3

Tabelle 1-1 Trace der Variableninhalte für Initialwerte x == 24, y == 9

Die Tabelle 1-1 zeigt die Funktion der Variablen: Die Variablen repräsentieren über
den Verlauf des Algorithmus hinweg unterschiedliche Werte. Zu Beginn werden den
Variablen definierte Anfangs- oder Startwerte zugewiesen. Diesen Vorgang bezeich-
net man als Initialisierung der Variablen. Die Werteänderung erfolgt – wie in den
Verarbeitungsschritten von Tabelle 1-1 beschrieben – durch so genannte Zuwei-
sungen. Als Zuweisungssymbol haben wir hier das Gleichheitszeichen (=) benutzt,
wie es in Java üblich ist. Beachten Sie, dass in der Unterschrift von Tabelle 1-1
x == 24 zu lesen ist als "x ist gleich 24". Damit werden wie in Java zwei
Gleichheitszeichen direkt hintereinander als Gleichheitssymbol verwendet.

Für eine andere Ausgangssituation sieht die Trace-Tabelle beispielsweise so aus:

 Werte von
Verarbeitungsschritt x Y

Initialisierung
x = 5, y = 3

5

3

x = x - y 2 3
y = y - x 2 1
x = x - y 1 1
Ergebnis: ggT = 1

Tabelle 1-2 Trace der Variableninhalte für Initialwerte x == 5, y == 3

Die Schreibweise x = x – y ist zunächst etwas verwirrend. Diese Schreibweise ist
nicht als mathematische Gleichung zu sehen, sondern meint etwas ganz anderes:

5 Mit der Trace-Tabelle verfolgt man die Zustände der Variablen.

10 Kapitel 1

Auf der rechten Seite des Gleichheitszeichens steht ein arithmetischer Ausdruck,
dessen Wert zuerst berechnet werden soll. Dieser so berechnete Wert wird dann in
einem zweiten Schritt der Variablen zugewiesen, deren Name auf der linken Seite
steht. Im Beispiel also:

Nimm den aktuellen Wert von x. Nimm den aktuellen Wert von y.
Ziehe den Wert von y vom Wert von x ab.
Der neue Wert von x ist die soeben ermittelte Differenz von x und y.

Eine Zuweisung verändert den Wert der Variablen, also den Zustand der Variablen,
die auf der linken Seite steht. Bei einer Zuweisung wird zuerst der Ausdruck rechts
vom Gleichheitszeichen berechnet und der Wert dieses Ausdrucks der Variablen auf
der linken Seite des Gleichheitszeichens zugewiesen.

Variable speichern Werte. Der von einer Variablen gespeicherte Wert
kann durch eine Zuweisung mit einem neuen Wert überschrieben wer-
den.

Die Beispiele in diesem Kapitel zeigen, wie ein Algorithmus sequenzielle Abläufe und
Zustandstransformationen seiner Variablen beschreibt. Wird derselbe Algorithmus
zweimal durchlaufen, wobei die Variablen am Anfang unterschiedliche Werte haben,
dann erhält man in aller Regel auch unterschiedliche Abläufe. Sie folgen aber ein
und demselben Verhaltensmuster, das durch den Algorithmus beschrieben ist.

1.2.5 Vom Algorithmus zum Programm

Wenn ein Algorithmus derart formuliert ist, dass seine Ausführung durch einen be-
stimmten Prozessor möglich ist, dann spricht man auch von einem Programm für
diesen Prozessor. Bei einem Computerprogramm müssen alle Einzelheiten bis ins
kleinste Detail festgelegt sein und die Sprachregeln müssen absolut eingehalten wer-
den. Der Prozessor macht eben haarscharf nur das, was durch das Programm fest-
gelegt ist, und nicht das, was noch zwischen den Zeilen steht. Hingegen muss ein
Koch bei einem Rezept Erfahrungen mit einbringen und beispielsweise den Topf mit
der Milch vom Herd nehmen, bevor die Milch überläuft.

Generell kann man bei Sprachen zwischen natürlichen Sprachen wie der Um-
gangssprache oder den Fachsprachen einzelner Berufsgruppen und formalen
Sprachen unterscheiden. Formale Sprachen sind beispielsweise die Notenschrift in
der Musik, die Formelschrift in der Mathematik oder Programmiersprachen beim
Computer. Nur das, was durch eine formale Sprache – die Programmiersprache –
festgelegt ist, ist für den Prozessor verständlich.

1.3 Nassi-Shneiderman-Diagramme

Zur Visualisierung des Kontrollflusses von Programmen – das heißt, zur grafischen
Veranschaulichung ihres Ablaufes – wurden 1973 von Nassi und Shneiderman [2]
grafische Strukturen, die so genannten Struktogramme (DIN 66261 [4]), vorgeschla-
gen. Diese Struktogramme werden nach ihren Urhebern oftmals auch als Nassi-

Grundbegriffe der Programmierung 11

Shneiderman-Diagramme bezeichnet. Nassi-Shneiderman-Diagramme enthalten
kein GOTO, sondern nur die Sprachmittel der Strukturierten Programmierung,
insbesondere die Sequenz, Iteration und Selektion. Entwirft man Programme mit
Nassi-Shneiderman-Diagrammen, so genügt man automatisch den Regeln der
Strukturierten Programmierung. Nassi und Shneiderman schlugen ihre Strukto-
gramme als Ersatz für die bis dahin üblichen Flussdiagramme (DIN 66001 [3]) vor.
Traditionelle Flussdiagramme erlauben einen Kontrollfluss mit beliebigen Sprüngen
in einem Programm. Spezifiziert und programmiert man strukturiert, so geht der
Kontrollfluss eines solchen Programmes einfach von oben nach unten – eine
Anweisung folgt der nächsten. Wilde Sprünge, welche die Übersicht erschweren,
sind nicht zugelassen.

Das wichtigste Merkmal der Struktogramme ist, dass jeder Verarbeitungsschritt
durch ein rechteckiges Sinnbild dargestellt wird:

Bild 1-5 Sinnbild für Verarbeitungsschritt

Ein Verarbeitungsschritt kann dabei eine Anweisung oder eine Gruppe von zusam-
mengehörigen Anweisungen sein. Die obere Linie des Rechtecks bedeutet den
Beginn des Verarbeitungsschrittes, die untere Linie bedeutet das Ende des Ver-
arbeitungsschrittes. Jedes Sinnbild erhält eine Innenbeschriftung, die den Verar-
beitungsschritt näher beschreibt.

1.3.1 Diagramme für die Sequenz

Bei der Sequenz folgen zwei Verarbeitungsschritte (hier V1 und V2 genannt) hinter-
einander. Dies wird durch Nassi-Shneiderman-Diagramme wie folgt dargestellt:

V2

V1

Bild 1-6 Nassi-Shneiderman-Diagramm für die Sequenz

Eine Kontrollstruktur für die Sequenz ist der Block. Der Block stellt eine Folge
logisch zusammenhängender Verarbeitungsschritte dar. Er kann einer Methode
oder Funktion6 in einer Programmiersprache entsprechen, kann aber auch nur
einfach mehrere Verarbeitungsschritte unter einem Namen zusammenfassen.

Blockname

Bild 1-7 Sinnbild für Block

6 Anweisungsfolgen, die unter einem Namen aufgerufen werden können, heißen in der objekt-

orientierten Programmierung "Methoden", in der klassischen Programmierung "Funktionen" wie
z. B. in C oder aber auch "Prozeduren".

12 Kapitel 1

Wie in Bild 1-7 zu sehen ist, wird der Name des Blockes im Diagramm den Verar-
beitungsschritten vorangestellt.

Das Diagramm in Bild 1-8 stellt das "Hello, world"-Programm aus Kapitel 1.1 in
grafischer Form dar.

Hello-World-Programm

Ausgeben: Hello, World!

Bild 1-8 Einfaches Beispiel eines Struktogramms

Aus der Darstellung ist zu entnehmen, dass die Details einer Programmiersprache
auf dieser Abstraktionsebene keine Rolle spielen.

1.3.2 Diagramme für die Selektion

Bei den Kontrollstrukturen für die Selektion kann man zwischen

• der einfachen Alternative (Bild 1-9),
• der bedingten Verarbeitung (Bild 1-10)
• und der mehrfachen Alternative (Bild 1-11) unterscheiden.

Die einfache Alternative stellt eine Verzweigung im Programmablauf dar. Das ent-
sprechende Struktogramm ist in Bild 1-9 zu sehen.

Boolescher
Ausdruck

V2V1

FALSETRUE

Bild 1-9 Struktogramm für die einfache Alternative

Bei der einfachen Alternative wird überprüft, ob ein Boolescher Ausdruck7 wie
z. B. a > b wahr ist oder nicht.

Ein Boolescher Ausdruck kann die Wahrheitswerte TRUE bzw.
FALSE annehmen. Ein solcher Boolescher Ausdruck wird auch als
Bedingung bezeichnet.

Ist der Ausdruck wahr, so wird der Zweig für TRUE ausgewählt und der Verarbei-
tungsschritt V1 ausgeführt. Ist der Ausdruck nicht wahr, so wird der FALSE-Zweig
ausgewählt und der Verarbeitungsschritt V2 durchgeführt. Jeder dieser Zweige kann
einen Verarbeitungsschritt bzw. einen Block von Verarbeitungsschritten enthalten.

7 Ein Ausdruck ist eine Verknüpfung von Operanden durch Operatoren und runden Klammern

(siehe Kap. 7).

Grundbegriffe der Programmierung 13

Die einfache Alternative wurde bereits in Kapitel 1.2.2 ausführlich besprochen. Hier
noch einmal der entsprechende Pseudocode für eine solche Verzweigung:

if (a > b) V1
else V2

Bei der bedingten Verarbeitung (siehe Bild 1-10) wird der TRUE-Zweig ausgewählt,
wenn der Ausdruck wahr ist. Ansonsten wird direkt zu dem nächsten Verarbeitungs-
schritt übergegangen.

 Boolescher
Ausdruck

V1

TRUE

Bild 1-10 Struktogramm für die bedingte Verarbeitung

Der Pseudocode für die bedingte Verarbeitung entspricht dem der einfachen Alter-
native, allerdings fehlt der so genannte else-Teil:

if (a > b) V1

Bei der mehrfachen Alternative (siehe Bild 1-11) wird geprüft, ob ein arithmeti-
scher Ausdruck8 einen von n vorgegebenen Werten c1 ... cn annimmt. Ist dies der
Fall, so wird der entsprechende Zweig ausgeführt, ansonsten wird direkt zu dem
nächsten Verarbeitungsschritt übergegangen.

 c1
c2

. . . .

Arithmetischer
Ausdruck

cn-1 cn

V1 V2 Vn-1 Vn

Bild 1-11 Struktogramm für die mehrfache Alternative

Der entsprechende Pseudocode ist relativ komplex. Daher wird auf eine Darstellung
hier im Einleitungskapitel verzichtet.

1.3.3 Diagramme für die Iteration

Bei der Iteration kann man drei Fälle von Kontrollstrukturen unterscheiden:

• Wiederholung mit vorheriger Prüfung,
• Wiederholung mit nachfolgender Prüfung,
• Wiederholung ohne Prüfung.

Bei der Wiederholung mit vorheriger Prüfung (abweisende Schleife) wird zuerst
eine Bedingung geprüft. Solange die Bedingung erfüllt ist, wird der Verarbeitungs-

8 Bei einem arithmetischen Ausdruck werden arithmetische Operatoren auf die Operanden ange-

wandt, wie z. B. der Minusoperator im Ausdruck 6 - 2 auf die Operanden 6 und 2.

14 Kapitel 1

schritt V wiederholt. Ist diese Bedingung bereits zu Anfang nicht erfüllt, wird der
Verarbeitungsschritt V nicht ausgeführt – die Ausführung der Schleife wird abge-
wiesen. Das Struktogramm einer abweisenden Schleife ist in Bild 1-12 dargestellt.

 Solange Bedingung

V

Bild 1-12 Struktogramm der Wiederholung mit vorausgehender Bedingungsprüfung

In einem Pseudocode kann man eine abweisende Schleife folgendermaßen
darstellen:

WHILE (Bedingung) DO V

Hat zu Beginn der Schleife die Bedingung den Wert TRUE, dann müssen die Ver-
arbeitungsschritte in der Schleife dafür sorgen, dass der Wert der Bedingung irgend-
wann FALSE wird, sonst entsteht eine Endlos-Schleife9. Die FOR-Schleife (siehe auch
Kap. 8.3.2) ist ebenfalls eine abweisende Schleife. Sie stellt eine spezielle Ausprä-
gung der WHILE-Schleife dar. FOR-Schleifen bieten eine syntaktische Beschreibung
des Startzustandes und der Iterationsschritte (z. B. Hoch- oder Herunterzählen einer
Laufvariablen, welche die einzelnen Iterationsschritte durchzählt).

Bei der Wiederholung mit nachfolgender Prüfung (annehmende Schleife) erfolgt
die Prüfung der Bedingung erst am Ende. Das zugehörige Struktogramm ist in Bild
1-13 dargestellt.

Solange Bedingung

V

Bild 1-13 Struktogramm der Wiederholung mit nachfolgender Bedingungsprüfung

Die annehmende Schleife kann man in einem Pseudocode folgendermaßen dar-
stellen:

DO V WHILE (Bedingung)

Die annehmende Schleife wird mindestens einmal durchgeführt. Erst dann wird die
Bedingung bewertet. Die DO-WHILE-Schleife wird typischerweise dann benutzt, wenn
der Wert der Bedingung erst in der Schleife entsteht, beispielsweise wie in der
folgenden Anwendung "Lies Zahlen ein, solange keine 0 eingegeben wird". Hier
muss zuerst eine Zahl eingelesen werden. Erst dann kann geprüft werden, ob sie 0
ist oder nicht.

Prüfungen müssen nicht immer notwendigerweise zu Beginn oder am Ende statt-
finden. Eine Bedingung muss manchmal auch in der Mitte der Verarbeitungsschritte
einer Schleife geprüft werden. Zu diesem Zweck gibt es die Wiederholung ohne
Prüfung, bei der die Prüfung in den Verarbeitungsschritten "versteckt" ist. Das zu-
gehörige Struktogramm ist in Bild 1-14 dargestellt.

9 Eine Endlos-Schleife ist eine Schleife, deren Ausführung nie abbricht.

Grundbegriffe der Programmierung 15

V

Bild 1-14 Struktogramm der Wiederholung ohne Bedingungsprüfung

In einem Pseudocode kann die Schleife ohne Bedingungsprüfung folgendermaßen
angegeben werden:

LOOP V

Die Schleife ohne Bedingungsprüfung wird verlassen, wenn in einem der Verarbei-
tungsschritte V eine BREAK-Anweisung ausgeführt wird. Eine BREAK-Anweisung ist
eine spezielle Sprunganweisung und sollte nur eingesetzt werden, damit bei einer
Schleife ohne Wiederholungsprüfung keine Endlos-Schleife entsteht. Die Regel, dass
eine Kontrollstruktur nur einen Eingang und einen Ausgang hat, wird dadurch nicht
verletzt, sondern der zunächst fehlende Ausgang wird erst durch die BREAK-An-
weisung zur Verfügung gestellt. Bild 1-15 zeigt das Sinnbild für eine solche Abbruch-
anweisung.

 BREAK

Bild 1-15 Abbruchanweisung

Im Falle der Programmiersprache Java sind die Kontrollstrukturen der Wiederholung
mit vorheriger Prüfung, mit nachfolgender Prüfung und ohne Prüfung als Sprach-
konstrukt vorhanden, d. h. es gibt in Java Anweisungen für diese Schleifen. Bild 1-16
stellt ein Beispiel für eine Schleife ohne Wiederholungsprüfung mit Abbruchan-
weisung dar.

V1

Bedingung
TRUE

BREAK

V2

Bild 1-16 Struktogramm einer Schleife ohne Wiederholungsprüfung mit Abbruchbedingung

Nach der Ausführung von V1 wird die Bedingung geprüft. Hat die Bedingung nicht
den Wert TRUE, so wird V2 abgearbeitet und dann die Schleife mit V1 beginnend
wiederholt. Der Durchlauf der Schleife mit der Reihenfolge "Ausführung V1",
"Bedingungsprüfung", "Ausführung V2" wird solange wiederholt, bis die Bedingung
den Wert TRUE hat. In diesem Fall wird die Schleife durch die Abbruchbedingung
verlassen.

16 Kapitel 1

1.3.4 Algorithmus von Euklid als Nassi-Shneiderman-Diagramm

Mit den Mitteln der Struktogramme kann nun der Algorithmus von Euklid, der in
Kapitel 1.2.1 eingeführt wurde, in grafischer Form dargestellt werden:

Algorithmus von Euklid

Solange x ungleich y

 Initialisiere x und y

y = y - x x = x - y

x kleiner als y
TRUE FALSE

x ist größter gemeinsamer Teiler

Bild 1-17 Struktogramm des Algorithmus von Euklid

1.4 Zeichen

Wenn ein Programm mit Hilfe eines Texteditors geschrieben wird, werden Zeichen
über die Tastatur eingegeben. Einzelne oder mehrere aneinander gereihte Zeichen
haben hierbei eine spezielle Bedeutung. So repräsentieren die Zeichen x und y bei
der Implementierung10 des Algorithmus von Euklid die Namen von Variablen.

Ein Zeichen ist ein von anderen Zeichen unterscheidbares Objekt,
welches in einem bestimmten Zusammenhang eine definierte Bedeu-
tung trägt.

Zeichen können beispielsweise Symbole, Bilder oder Töne sein. Zeichen derselben
Art sind Elemente eines Zeichenvorrats. So sind beispielsweise die Zeichen I, V, X,
L, C, M Elemente des Zeichenvorrats der römischen Zahlen. Eine Ziffer ist ein
Zeichen, das die Bedeutung einer Zahl hat.

Von einem Alphabet spricht man, wenn der Zeichenvorrat eine
strenge Ordnung aufweist.

So stellt beispielsweise die geordnete Folge der Elemente

0, 1 das Binäralphabet,
a, b, c ... z die Kleinbuchstaben ohne Umlaute und ohne ß,
0, 1, ... 9 das Dezimalalphabet

dar.

10 Implementierung bedeutet Realisierung, Umsetzung, Verwirklichung.

Grundbegriffe der Programmierung 17

Rechnerinterne Darstellung von Zeichen

Zeichen sind zunächst Buchstaben, Ziffern oder Sonderzeichen. Zu diesen Zei-
chen können noch Steuerzeichen hinzukommen. Ein Steuerzeichen ist beispiels-
weise ^C, das durch gleichzeitiges Anschlagen der Taste Strg (Steuerung) und der
Taste C erzeugt wird. Die Eingabe von ^C kann dazu dienen, ein Programm abzu-
brechen.

Rechnerintern werden die Zeichen durch Bits dargestellt. Ein Bit11 kann den Wert 0
oder 1 annehmen. Das bedeutet, dass man mit einem Bit 2 verschiedene Fälle dar-
stellen kann. Mit einer Gruppe von 2 Bits hat man 2 * 2 = 4 Möglichkeiten, mit einer
Gruppe von 3 Bits kann man 2 * 2 * 2 = 8 verschiedene Fälle darstellen, und so fort.
Mit 3 Bits sind die Kombinationen

000 001 010 011 100 101 110 111

 Bit2 Bit1 Bit0

möglich. Jeder dieser Bitgruppen kann man je ein Zeichen zuordnen, das heißt, jede
dieser Bitkombinationen kann ein Zeichen repräsentieren. Man braucht nur eine ein-
deutig umkehrbare Zuordnung (z. B. erzeugt durch eine Tabelle) und kann dann
jedem Zeichen eine Bitkombination und jeder Bitkombination ein Zeichen zuordnen.
Mit anderen Worten, man bildet die Elemente eines Zeichenvorrats auf die Elemente
eines anderen Zeichenvorrats ab. Diese Abbildung bezeichnet man als Codierung.

Begriff eines Codes

Nach DIN 44300 ist ein Code eine Vorschrift für die eindeutige
Zuordnung oder Abbildung der Zeichen eines Zeichenvorrats auf die
Zeichen eines anderen Zeichenvorrats, die so genannte Bildmenge.

Dieser Begriff des Codes wird aber nicht eindeutig verwendet.

Oftmals wird unter Code auch der Zeichenvorrat der Bildmenge ver-
standen.

Relevante Codes für Rechner

Für die Codierung von Zeichen im Binäralphabet gibt es viele Möglichkeiten. Für
Rechner besonders relevant sind Codes, die ein Zeichen durch 7 bzw. 8 Bits
repräsentieren. Mit 7 Bits kann man 128 verschiedene Zeichen codieren, mit 8 Bits
256 Zeichen. Zu den am häufigsten verwendeten Zeichensätzen gehören:

• Der ASCII12-Zeichensatz mit 128 Zeichen – die US-nationale Variante des ISO-7-
Bit-Code (ISO 646), die aber weit verbreitet ist.

• Der erweiterte ASCII-Zeichensatz mit 256 Zeichen.

11 Abkürzung für binary digit (engl.) = Binärziffer.
12 ASCII = American Standard Code for Information Interchange (siehe Anhang A).

18 Kapitel 1

• Der Unicode, der jedem Zeichen aller bekannten Schriftkulturen und Zeichen-
systeme eine Bitkombination zuordnet. Der Unicode definiert Codierungen
verschiedener Länge. Java verwendet für Zeichen die ursprüngliche UTF-16-
Repräsentation, bei der jedes Zeichen einer Bitkombination einer Gruppe von 16
Bits entspricht. Die ersten 128 Zeichen des UTF-16-Codes sind die Zeichen des 7-
Bit ASCII-Zeichensatzes.

1.5 Variable

Bei imperativen Sprachen – zu dieser Klasse von Sprachen gehört Java – besteht
ein Programm aus einer Folge von Befehlen, wie z. B. "Wenn x größer als y ist,
dann:", "ziehe y von x ab und weise das Ergebnis x zu". Wesentlich an diesen
Sprachen ist das Variablenkonzept – Eingabewerte werden in Variablen gespeichert
und weiterverarbeitet.

Eine Variable ist eine benannte Speicherstelle. Über den Variablen-
namen kann der Programmierer auf die entsprechende Speicherstelle
zugreifen.

Variable braucht man, um in ihnen Werte abzulegen. Im Gegensatz zu einer Kon-
stanten ist eine Variable eine veränderliche Größe. In ihrem Speicherbereich kann
bei Bedarf der Wert der Variablen verändert werden. Der Wert einer Variablen muss
der Variablen explizit zugewiesen werden. Ansonsten ist ihr Wert undefiniert. Da im
Arbeitsspeicher die Bits immer irgendwie ausgerichtet sind, hat jede Variable auto-
matisch einen Wert, auch wenn ihr vom Programm noch kein definierter Wert
zugewiesen wurde. Ein solcher Wert ist jedoch rein zufällig und führt zu einer
Fehlfunktion des Programms. Daher darf es der Programmierer nicht versäumen,
den Variablen die gewünschten Startwerte (Initialwerte) zuzuweisen, d. h. die
Variablen zu initialisieren.

Variable liegen während der Programmausführung in Speicherzellen des Arbeits-
speichers. Die Speicherzellen des Arbeitsspeichers (siehe Bild 1-18) sind durch-
nummeriert. In der Regel ist beim PC eine Speicherzelle 1 Byte13 groß. Die
Nummern der Speicherzellen werden Adressen genannt. Eine Variable kann natür-
lich mehrere Speicherzellen einnehmen (siehe Bild 1-18).

7
6
5
4
3
2
1
0

Speicherzelle

Adressen

Variable mit
Namen alpha

Wert: 3

Bild 1-18 Variable im Arbeitsspeicher

13 Ein Byte stellt eine Folge von 8 zusammengehörigen Bits dar.

Grundbegriffe der Programmierung 19

Während man in C sowohl über den Variablennamen als auch über die Adresse auf
den in einer Variablen gespeicherten Wert zugreifen kann, kann man in Java nur
über den Namen einer Variablen ihren Wert aus den Speicherzellen auslesen und
verändern. Damit wird ein häufiger Programmierfehler in C – der Zugriff auf eine
falsche Adresse – verhindert.

Physikalische Adressen, d. h. Adressen des Arbeitsspeichers, werden
in Java vor dem Programmierer verborgen.

Eine Variable hat in Java 3 Kennzeichen:

• Variablennamen,
• Datentyp
• und Wert.

1.6 Datentypen

Der Datentyp ist der Bauplan für eine Variable. Der Datentyp legt fest, welche
Operationen auf einer Variable möglich sind und wie die Darstellung (Repräsen-
tation) der Variablen im Speicher des Rechners erfolgt. Mit der Darstellung wird
festgelegt, wie viele Bytes die Variable im Speicher einnimmt und welche Bedeutung
jedes Bit der Darstellung hat.

1.6.1 Einfache Datentypen

Die Sprache Java stellt selbst standardmäßig einige Datentypen bereit, wie z. B. die
einfachen Datentypen

• int zur Darstellung von ganzen Zahlen

• oder float zur Darstellung von Gleitpunktzahlen14.

Kennzeichnend für einen einfachen Datentyp ist, dass sein Wert einfach im Sinne
von atomar ist. Ein einfacher Datentyp kann nicht aus noch einfacheren Datentypen
zusammengesetzt sein. Datentypen, die der Compiler zur Verfügung stellt, sind
Standardtypen. Ein Compiler ist hierbei ein Programm, das Programme aus einer
Sprache in eine andere Sprache übersetzt. Ein C-Compiler übersetzt z. B. ein in C
geschriebenes Programm in Anweisungen eines so genannten Maschinencodes, die
der Prozessor direkt versteht.

1.6.1.1 Der Datentyp int

Der Datentyp int vertritt in Java-Programmen die ganzen Zahlen (Integer-Zahlen).
Es gibt in Java jedoch noch weitere Integer-Datentypen. Sie unterscheiden sich vom

14 Gleitpunktzahlen dienen zur näherungsweisen Darstellung von reellen Zahlen.

20 Kapitel 1

Datentyp int durch ihre Repräsentation und damit auch durch ihren Wertebereich.
Die int-Zahlen umfassen auf dem Computer einen endlichen Zahlenbereich, der
nicht überschritten werden kann. Dieser Bereich ist in Bild 1-19 dargestellt.

 -231

.... -1 0 1 2

231 - 1

Wertebereich des Typs int
Bild 1-19 int-Zahlen

-231, d. h. -2147483648, und 231 - 1, d. h. 2147483647, sind die Grenzen der
int-Werte für Java auf jeder Maschine. Somit gilt für jede Zahl x vom Typ int:

x ist eine ganze Zahl, -2147483648 ≤ x ≤ 2147483647

Rechnet man mit einer Variablen x vom Typ int, so ist darauf zu achten, dass beim
Rechnen nicht die Grenzen des Wertebereichs für int-Zahlen überschritten werden.
Wird beispielsweise 2 * x berechnet und ist das Ergebnis 2 * x größer als
2147483647 oder kleiner als -2147483648, so kommt es bei der Multiplikation zu
einem Fehler, dem so genannten Zahlenüberlauf. Hierauf muss der Programmierer
selbst achten. Der Zahlenüberlauf wird nämlich in Java nicht durch eine Fehler-
meldung oder eine Warnung angezeigt. Meist wird in der Praxis so verfahren, dass
ein Datentyp gewählt wird, der für die gängigen Anwendungen einen ausreichend
großen Wertebereich hat. Sollte der Wertebereich dennoch nicht ausreichen, kann
ein Gleitkomma-Datentyp oder die Klasse BigInteger eingesetzt werden. Die
Klasse BigInteger ermöglicht beliebig lange Ganzzahlen. Sie wird als Bibliotheks-
klasse (siehe Kap. 1.6.2) von Java zur Verfügung gestellt.

Die Variablen vom Typ int haben als Werte ganze Zahlen. Die Dar-
stellung von int-Zahlen umfasst in Java 32 Bit. Dies entspricht einem
Wertebereich von -231 bis +231 - 1.

1.6.1.2 Der Datentyp float

float-Zahlen entsprechen den rationalen und reellen Zahlen der Mathematik. Im
Gegensatz zur Mathematik ist auf dem Rechner jedoch der Wertebereich endlich und
die Genauigkeit der Darstellung begrenzt. float-Zahlen werden auf dem Rechner in
der Regel als Exponentialzahlen in der Form Mantisse * Basis Exponent dargestellt
(siehe Kap. 6.2.3). Dabei wird sowohl die Mantisse als auch der Exponent mit Hilfe
ganzer Zahlen dargestellt, wobei die Basis auf dem jeweiligen Rechner eine feste
Zahl wie z. B. 2 oder 16 ist. Während in der Mathematik die reellen Zahlen unendlich
dicht auf dem Zahlenstrahl liegen, haben die float-Zahlen, welche die reellen
Zahlen auf dem Rechner vertreten, tatsächlich diskrete Abstände voneinander. Es ist
im Allgemeinen also nicht möglich, Brüche, Dezimalzahlen, transzendente Zahlen
oder die übrigen nicht-rationalen Zahlen wie z. B. die Quadratwurzel aus 2, 2 , exakt

Grundbegriffe der Programmierung 21

darzustellen. Werden float-Zahlen benutzt, so kommt es also in der Regel zu
Rundungsfehlern. Wegen der Exponentialdarstellung werden die Rundungsfehler für
große Zahlen größer, da die Abstände zwischen den im Rechner darstellbaren
float-Zahlen zunehmen. Addiert man beispielsweise eine kleine Zahl y zu einer
großen Zahl x und zieht anschließend die große Zahl x wieder ab, so erhält man
meist nicht mehr den ursprünglichen Wert von y.

Die Variablen vom Typ float haben als Werte reelle Zahlen.

Außer dem Typ float gibt es in Java noch einen weiteren Typ von reellen Zahlen,
nämlich den Typ double mit erhöhter Rechengenauigkeit.

1.6.1.3 Operationen auf einfachen Datentypen

Allgemein ist ein einfacher Datentyp wie int oder float definiert durch seine
Wertemenge und die zulässigen Operationen auf Ausdrücken dieses Datentyps.
Im Folgenden soll der Datentyp int betrachtet werden. Der Wertebereich der int-
Zahlen erstreckt sich über alle ganzen Zahlen von -231 bis 231 - 1. Die für int-Zahlen
möglichen Operationen sind:

Operator Operanden Ergebnis
Vorzeichenoperatoren
+, - (unär)15

int � int

Binäre arithmetische Operatoren
+, -, *, /, %

(int, int) � int

Vergleichsoperatoren
==, <, <=, >, >=, !=

(int, int) � boolean (Wahrheitswert)

Wertzuweisungsoperator
=

int � int

Tabelle 1-3 Operationen für den Typ int

Die Bedeutung von Tabelle 1-3 wird am Beispiel

Operator Operanden Ergebnis
+ (binär) (int, int) � int

Tabelle 1-4 Binäres Plus

erklärt. Dieses Beispiel ist folgendermaßen zu lesen: Der binäre Operator +
verknüpft zwei int-Werte als Operanden zu einem int-Wert als Ergebnis. In
Tabelle 1-3 ist / der Operator der ganzzahligen Division, % der Modulo-Operator,
der den Rest bei der ganzzahligen Division angibt, == der Vergleichsoperator "ist
gleich", <= der "kleiner gleich"-Operator und != der Operator "ungleich". Das unäre
+ und – sind Vorzeichenoperatoren.

15 Ein unärer Operator hat nur einen Operanden (siehe Kap. 7.1).

22 Kapitel 1

1.6.2 Selbst definierte Datentypen

Neben den einfachen Datentypen gibt es in modernen Programmiersprachen auch
so genannte selbst definierte Datentypen. Selbst definierte Datentypen sind dem
Compiler standardmäßig nicht bekannt. Wenn die Programmiersprache hierfür die
Sprachmittel anbietet, so ist es dem Programmierer möglich, eigene Datentypen zu
erfinden – die für die Modellierung einer Anwendung von Bedeutung sind – und diese
dem Compiler bekannt zu machen.

Java bietet für selbst definierte Datentypen das Sprachkonstrukt der Klasse (class)
oder des Aufzählungstyps (enum). Eine Klasse bildet ein Objekt der realen Welt in
ein Schema ab, das der Compiler versteht, wobei ein Objekt z. B. ein Haus, ein
Vertrag oder eine Firma sein kann – also prinzipiell jeder Gegenstand, der für einen
Menschen eine Bedeutung hat und den er sprachlich beschreiben kann. Will man
beispielsweise eine Software für das Personalwesen einer Firma schreiben, so ist es
zweckmäßig, einen selbst definierten Datentyp Mitarbeiter, d. h. eine Klasse
Mitarbeiter, einzuführen.

Es gibt bereits eine große Anzahl vordefinierter Datentypen, die in der Java-Klassen-
bibliothek als so genannte Bibliotheksklassen zur Verfügung gestellt werden.

Ein selbst definierter Datentyp kann durch eine Bibliothek zur Ver-
fügung gestellt oder von einem Programmierer eingeführt werden.

1.6.3 Von den einfachen Datentypen zu den Klassen

Dieses Kapitel soll kurz aufzeigen, wie sich in der Geschichte der Programmier-
sprachen die Entwicklung von den einfachen Datentypen zu den Klassen vollzogen
hat. Ein Programmieranfänger, der keine anderen Programmiersprachen kennt und
sich allein auf das Erlernen der objektorientierten Programmierung mit Java fokus-
sieren möchte, kann dieses Kapitel problemlos überspringen.

Einen Punkt mit ganzzahligen Koordinaten x und y kann man beschreiben durch
zwei einzelne int-Variablen:

int x;
int y;

Geht man so vor, so muss sich der Programmierer natürlich im Kopf merken, dass x
und y zum selben Punkt gehören. Kernighan und Ritchie führten in C den Begriff
Struktur (struct) für einen zusammengesetzten, selbst definierten Datentyp ein.
Damit war es in C möglich, durch

struct Punkt
{
 int x; // Komponentenvariable x
 int y; // Komponentenvariable y
}

Grundbegriffe der Programmierung 23

einen Datentyp struct Punkt zu definieren, der die Komponenten x und y enthält.
Jede Komponente eines Punktes kann dabei prinzipiell ihren eigenen Datentyp
haben. Eine Variable dieses Typs struct Punkt kann eingeführt werden durch

struct Punkt p;

p ist eine Strukturvariable, welche die beiden Komponenten x und y hat. Eine Fest-
legung der Koordinaten des Punktes kann erfolgen, indem man den Komponenten
Werte zuweist, z. B. durch

p.x = 1;
p.y = 1;

Mit einer Struktur kann man einen Punkt p als Ganzes beschreiben.
Der Zugriff auf die Komponenten x und y eines Punktes p erfolgt im
Programm durch die Punktnotation p.x bzw. p.y.

Selbstverständlich kann man Variable vom Datentyp struct Punkt mit Funktionen
bearbeiten. Dabei werden in C die Funktionen jedoch außerhalb der Struktur
definiert. Eine Funktion get_x() beispielsweise wird außerhalb der Struktur definiert
durch

int get_x (struct Punkt p)
{
 return p.x;
}

Diese Funktion soll an dieser Stelle nicht komplett diskutiert werden. Wichtig ist
jedoch, dass eine Funktion get_x(), die außerhalb der Struktur definiert werden
muss, natürlich nicht wissen kann, auf welchem der Punkte sie arbeiten soll. Daher
muss der zu bearbeitende Punkt in der Parameterliste – hier (struct Punkt p) –
an die Funktion übergeben werden.

Den nächsten Fortschritt brachte C mit Klassen, das später dann C++ hieß. In C mit
Klassen wurde es möglich, dass eine Struktur nicht nur Daten, sondern auch
Funktionen enthielt. Das obige Beispiel sieht dann so aus16:

struct Punkt
{
 int x;
 int y;

 int get_x()
 {
 return x;
 }

16 Aus Symmetriegründen wurde hier auch eine Funktion get_y() aufgenommen.

24 Kapitel 1

 int get_y()
 {
 return y;
 }
}

Eine Variable p vom Typ struct Punkt wird durch

struct Punkt p;

vereinbart. Eine solche Variable repräsentiert in C++ ein Objekt. Dieses Objekt p hat
als Komponenten zum einen die Komponentenvariablen x und y – also Daten – und
zum anderen die Funktionen get_x() und get_y(). In C++ werden die Daten-
Komponenten Attribute genannt. In Java werden die Daten-Komponenten jedoch
als Datenfelder bezeichnet. Daher verwenden wir im Folgenden den Begriff Daten-
feld. Funktions-Komponenten tragen in der objektorientierten Programmierung gene-
rell den Namen Methoden.

Bitte beachten Sie, dass get_x() jetzt keinen Übergabeparameter mehr benötigt.
Warum? Die Methode get_x() wird jetzt innerhalb der Struktur definiert – das ist in
C++ neu gegenüber C und typisch für die Objektorientierung – und damit haben die
Methoden automatisch Zugriff auf die Datenfelder x und y.

Eine klassische Struktur in C kann nur Daten als Komponenten haben.
Eine Struktur in C++ kann Daten und Funktionen (Methoden) als
Komponenten haben. Grundsätzlich gilt in der Objektorientierung,
dass ein Objekt Daten und Methoden als Komponenten hat.

get_x()

x

se
t_

y(
)

get_y()

se
t_

x(
)

y

Bild 1-20 Methoden und Datenfelder sind die Komponenten eines Objektes

Bild 1-20 zeigt ein Objekt des Datentyps struct Punkt mit den Datenfeldern x und
y und den Methoden get_x(), get_y(), set_x() und set_y(). Die Methoden
set_x() und set_y() dienen zum Setzen der Werte der Datenfelder x und y.

In der Objektorientierung haben die Methoden eines Objektes auto-
matisch Zugriff auf die Datenfelder eines Objektes.

Grundbegriffe der Programmierung 25

Der Aufruf der Methoden get_x() und get_y() erfolgt wie beim Zugriff auf die
Datenfelder über die Punktnotation, z. B. durch

p.get_x();

Schreibt man statt struct Punkt nun class Punkt:

class Punkt
{
 int x;
 int y;

 int get_x()
 {
 return x;
 }

 int get_y()
 {
 return y;
 }
}

so ist man bereits bei den Klassen angelangt. Der Unterschied zwischen struct
Punkt und class Punkt in C++ ist nur der, dass für den Zugriff auf Komponenten
für struct und class verschiedene Default-Zugriffsrechte gelten. Default-Zugriffs-
rechte sind die Zugriffsrechte, die automatisch bestehen, wenn nicht explizit
bestimmte Zugriffsrechte angegeben werden.

Als Datentyp ist in C++ neben struct Punkt bzw. class Punkt nun auch ein-
fach Punkt möglich, wobei der Datentyp Punkt identisch zum Datentyp class
Punkt ist. Das hier vorgestellte Konzept der Klassen wird auch in Java über-
nommen. Klassen stellen einen Datentyp dar. Bei der Bildung von Variablen gibt es
jedoch Unterschiede zwischen C++ und Java, die aber hier nicht diskutiert werden
müssen.

1.7 Übungen

Aufgabe 1.1: Verständnisfragen

1.2.1 Was wird unter einem Algorithmus verstanden?
1.2.2 Was wird unter einer Kontrollstruktur verstanden?
1.2.3 Welche Kontrollstrukturen gibt es bei sequenziellen Abläufen?
1.2.4 Was ist ein Datentyp? Was ist eine Variable? Wie hängen Datentyp und

Variable zusammen?
1.2.5 Was ist der Unterschied zwischen einem zusammengesetzten Datentyp und

einem einfachen Datentyp? Nennen Sie je ein Beispiel.
1.2.6 Welche Schritte sind notwendig, um vom Quellcode zu einem lauffähigen

Java-Programm zu gelangen?
1.2.7 Was beinhalten .class-Dateien?
1.2.8 Was wird unter einem Code verstanden?

26 Kapitel 1

Aufgabe 1.2: Nassi-Shneiderman-Diagramme

1.2.1 Nassi-Shneiderman-Diagramm Quadratzahlen

Vervollständigen Sie das unten angegebene Nassi-Shneiderman-Diagramm
für ein Programm, welches in einer (äußeren) Schleife Integer-Zahlen in
eine Variable n einliest. Die Reaktion des Programms soll davon abhängen,
ob der in die Variable eingelesene Wert positiv, negativ oder gleich Null ist.
Treffen Sie die folgende Fallunterscheidung:

• Ist die eingelesene Zahl n größer als Null, so soll in einer inneren Schleife
folgende Ausgabe erzeugt werden:

Zahl Quadratzahl
1 1
2 4
. .
. .
. .
n n*n

• Ist die eingelesene Zahl n kleiner als Null, so soll ausgegeben werden:

Negative Zahl

• Ist die eingegebene Integer-Zahl n gleich Null, so soll das Programm (die
äußere Schleife) abbrechen.

 einlesen

quadratzahlen

Bild 1-21 Nassi-Shneiderman-Diagramm für das Programm quadratzahlen

1.2.2 Nassi-Shneiderman-Diagramm aufsteigende Ausgabe des Wertes

zweier ganzer Zahlen

Eine Funktion SORT soll die Werte zweier übergebener ganzer Zahlen so
ausgeben, dass der kleinere Wert immer links von der größeren Zahl
ausgeben wird. Dies soll so lange gehen, bis für beide Zahlen der Wert 0
eingegeben wird. Dann soll der Abbruch erfolgen. Zeichnen Sie das Nassi-
Shneiderman-Diagramm der Funktion SORT.

Objektorientierte Konzepte

2.1 Modellierung mit Klassen und Objekten
2.2 Das Konzept der Kapselung
2.3 Abstraktion und Brechung der Komplexität
2.4 Erstes Programmbeispiel mit Objekten
2.5 Flughafen-Projekt
2.6 Übungen

2 Objektorientierte Konzepte

Entscheidend für den objektorientierten Ansatz ist nicht das objektorientierte Pro-
grammieren, sondern das Denken in Objekten vom Start des Projektes an. Dies
wird dadurch erleichtert, dass bei den objektorientierten Techniken in Konzepten und
Begriffen der realen Welt anstatt in computertechnischen Konstrukten wie Haupt- und
Unterprogrammen gedacht und entsprechend programmiert wird.

2.1 Modellierung mit Klassen und Objekten

Bevor ein neues System mit Hilfe einer Programmiersprache realisiert wird, analy-
siert man, welche Objekte von Bedeutung sind, um die Aufgaben des Systems zu
erfüllen. In weiteren Schritten macht man sich Gedanken, wie man ein System in
Systemteile gliedern kann, welche Objekte welchem Systemteil zugeordnet werden
und wie die Kommunikation von Systemteilen bzw. Objekten aussieht. All diese
Überlegungen werden in einer Systemspezifikation festgehalten und erst dann be-
ginnt man, das System mit Hilfe einer Programmiersprache umzusetzen.

2.1.1 Problem- und Lösungsbereich

Bei der objektorientierten Modellierung denkt man lange Zeit hauptsächlich im Pro-
blembereich (engl. problem domain, Anwendungsbereich) – also in der Begriffs-
welt des Kunden. Dies hat den großen Vorteil, dass der Kunde die Projektunterlagen
verstehen kann.

Bild 2-1 Kunde und Entwickler sprechen dieselbe Sprache. Man versteht sich!

Im Rahmen der so genannten Systemanalyse wird studiert, welche Aufgaben
(Geschäftsprozesse) in einem Geschäftsfeld durchgeführt werden und welche
Objekte beim Ausführen der Aufgaben eine Rolle spielen. Hat der Kunde noch kein
EDV-System, so führt er zum Zeitpunkt der Systemanalyse alle Aufgaben "von Hand"
durch17.

Meistens kommen zu einem späteren Zeitpunkt der Systementwicklung noch neue
Objekte hinzu, an die man zu Beginn der Entwicklung gar nicht gedacht hat. Das ist
aber gar nicht so schlimm, da objektorientierte Systeme sehr stabil gegen nach-
trägliche Änderungen sind. Denkt man z. B. an ein Fluglotsensystem, so sind Objek-

17 Oft genug kommt es allerdings vor, dass man ein abzulösendes EDV-System untersuchen muss,

um zu erkennen, welche Geschäftsprozesse ablaufen.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_2,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Objektorientierte Konzepte 29

te, auf die es ankommt, ganz bestimmt die einzelnen Flugzeuge, die Start- und Lan-
debahnen und die Parkpositionen der Flugzeuge. Objekte haben Eigenschaften. Zu
einer Startbahn gehört z. B. ihre Länge, der Belegtstatus und der Zeitraum der
Belegung, die relative Windrichtung zur Startbahn und die entsprechende Wind-
stärke. Mit Objekten kann man in der Realität und im Programm etwas anfangen. So
kann der Fluglotse eine Start- und Landebahn freigeben oder belegen.

Bei der Modellierung des Problembereichs im Rahmen der Systemanalyse werden
selbst definierte Datentypen wie Flugzeug, Start- und Landebahn, Parkposition,
Fluggesellschaft, Lotse etc. in der Form von Klassen eingeführt. Eine Klasse
entspricht einem Typ eines Gegenstands der realen Welt. Dabei beschränkt man
sich nicht nur auf konkrete Dinge. Auch Wesen – wie z. B. Mitarbeiter – und
Konzepte – wie z. B. Verträge – werden darunter gesehen. Als Oberbegriff für
konkrete Gegenstände, Wesen und Konzepte wird das Wort Entität verwendet.

Eine Entität hat im Rahmen des betrachteten Problems eine definierte
Bedeutung. Sie kann einen Gegenstand oder ein Wesen oder ein
Konzept darstellen.

Es ist ein großer Vorteil der Objektorientierung, in Entitäten, d. h. in Abstraktionen
von Gegenständen, Wesen oder Konzepten der realen Welt zu denken. Eine Entität
entspricht einem Objekt. Der Begriff Entitätstyp ist eine Analogie zum Begriff der
Klasse. Etwas schwieriger ist in der deutschen Sprache, dass Instanzen (Objekte)
und Typen gleich benannt werden. So wird ein konkretes Flugzeug gleichermaßen
wie der Typ, d. h. die Klasse, Flugzeug genannt.

Der Ansatz der Objektorientierung basiert darauf, Objekte der realen
Welt mit Hilfe softwaretechnischer Mittel abzubilden.

Mit dem EDV-System – also einem technischen System – befasst man sich erst beim
Systementwurf. In der Systemanalyse hingegen ist man in der Welt der Logik der
Aufgaben und hat dabei noch gar keinen Rechner. Man befindet sich in einer idealen
Welt, in der alles unendlich schnell abläuft und in der es keine technischen Fehler
gibt. Beim Systementwurf betritt der Entwickler den Lösungsbereich. Von Vorteil ist,
dass die Objekte des Problembereichs dabei nahtlos in den Lösungsbereich über-
nommen werden können. Es liegt auf der Hand, dass zu den Verarbeitungs-
funktionen des Problembereichs beim Eintritt in den Lösungsbereich eine ganze
Reihe technischer Funktionen hinzutreten müssen. So werden spezielle technische
Klassen benötigt, um das Programmsystem zu starten, oder technische Klassen, um
die Daten im Programmsystem dauerhaft (persistent) zu speichern. Wurden die wich-
tigsten Daten bei der Arbeit von Hand vielleicht manuell in einem Ordner abgelegt, so
sollten sie in einem EDV-System auf der Festplatte abgelegt werden. Ein anderes
Beispiel für technische Klassen sind GUI18-Klassen, die einem Anwender den Dialog
mit dem EDV-System erlauben.

18 GUI = Graphical User Interface.

30 Kapitel 2

2.1.2 Klassen und Objekte

Die Daten des Systems werden in den so genannten Datenfeldern von Objekten
abgelegt. Datenfelder sind Komponentenvariable eines Objektes, also Variable, die
ein Bestandteil, d. h. eine Komponente, eines Objektes sind. Was man mit dem
Objekt alles tun kann, wird durch Methoden beschrieben.

Klassen stellen die Baupläne für Objekte dar. Klassen sind die
Datentypen, die Objekte die Variablen (Instanzen) dieser Daten-
typen. Die Objekte werden gemäß den in den Klassen abgelegten
Bauplänen erzeugt.

Im Folgenden soll eine Klasse Punkt betrachtet werden. Sie wird benötigt für einen
grafischen Editor, der dazu dienen soll, Punkte und Figuren zu zeichnen. Ein Punkt,
der gezeichnet wird, stellt ein Objekt oder eine Instanz der Klasse Punkt dar.

 Punkt

x : int
y : int

Klassenname Punkt

Datenfeld x vom Typ int

Methode zeichne()

Methode verschiebe()

Methode loesche()

Datenfeld y vom Typ int

zeichne()

verschiebe()

loesche()

Bild 2-2 Klasse Punkt

Eine Klasse trägt stets einen Klassennamen. Der Klassenname lautet hier Punkt. In
einer Ebene hat ein Punkt 2 Koordinaten. Wählt man kartesische Koordinaten, so
sind dies seine Abszisse auf der x-Achse, x genannt, und seine Ordinate auf der y-
Achse, y genannt. Punkte in der realen Welt sind beispielsweise p1(1|1), p2(2|3)
oder p3(0|0). Was man mit einem Punkt alles anfangen kann, beschreiben die
Methoden. Man kann einen Punkt zeichnen (Methode zeichne()), einen Punkt
verschieben (Methode verschiebe()) und löschen (Methode loesche()).

Eine Klasse trägt einen Klassennamen und enthält Datenfelder und
die Methoden, die auf diese Datenfelder zugreifen.

Bei der Modellierung werden aus den Punkten (Objekten) der realen Welt Objekte
der Modellierung wie im Falle des Punktes p1, der in Bild 2-3 dargestellt ist. Der
Punkt p1 ist ein Objekt der Klasse Punkt. Dies wird notiert durch p1 : Punkt. Dass
die Koordinaten vom Typ int sind, wird angegeben durch x : int und y : int.

Objektorientierte Konzepte 31

p1 : Punkt

x : int
y : int

Objektname p1
Klassenname Punkt
Datenfeld x

Methode zeichne()

Methode verschiebe()

Methode loesche()

Datenfeld y

zeichne()

verschiebe()

loesche()

Bild 2-3 Objekt p1 der Klasse Punkt

Sind Objektname gefolgt von Doppelpunkt und Klassennamen in der
Darstellung unterstrichen, so handelt es sich um ein konkretes
Objekt. Sind Objektname gefolgt von Doppelpunkt und Klassenname
nicht unterstrichen, so handelt es sich um ein Objekt, an dessen Stelle
viele konkrete Objekte treten können. Ein solches Objekt wird dann
als Rolle betrachtet. An die Stelle einer Rolle können alle Objekte
treten, die der Rolle genügen.

Bei der Objektorientierung werden die Daten eines Objektes und die Methoden,
welche die Daten eines Objektes ein- und ausgeben und miteinander verknüpfen, als
eine zusammengehörige Einheit – als ein so genanntes Objekt – betrachtet. Ein
Objekt der Klasse Punkt enthält alles, was man für einen Punkt braucht – seine
Daten und seine Methoden – quasi in einer Kapsel. Die Methoden, welche auf die
Daten zugreifen dürfen, stehen bei ihren Daten und "bewachen" diese. Damit werden
die Daten vor einem direkten unbefugten Zugriff von außen geschützt.

Ein Objekt kann sinnbildlich mit einer Burg verglichen werden. Die Daten stellen den
Goldschatz der Burg dar. Die Daten werden durch die Wächter – die Methoden –
bewacht und verwaltet. Eine Änderung der Daten oder ein Abfragen der Datenwerte
kann nur durch einen Auftrag an die Wächter, d. h. die Methoden, erfolgen.

Bild 2-4 Daten stellen einen bewachten Goldschatz einer Burg dar

Möchte also eine Methode auf die Daten eines anderen Objektes zugreifen, so kann
sie dies i. Allg. nicht direkt tun. Sie muss eine der Methoden des Objektes – zu dem
auch die Daten gehören – bitten, auf die gewünschten Daten zuzugreifen. Die

32 Kapitel 2

Methoden eines Objektes stellen also die Schnittstellen eines Objektes zu seiner
Außenwelt dar.

Methoden sind
die Schnittstellen des
Objektes.

Daten sind gekapselt. Sie
können nur von den
eigenen Methoden des
Objektes manipuliert
werden.

Bild 2-5 Daten und Methoden – die Bestandteile von Objekten

Der interne Aufbau eines Objektes, der nach außen nicht sichtbar ist, besteht aus
privaten Daten, privaten Methoden und der Implementierung der Rümpfe der nach
außen sichtbaren Methodenschnittstellen. Private Methoden dienen als Hilfsmetho-
den (Service-Methoden) und können durch eine nach außen sichtbare Methode oder
eine andere private Methode aufgerufen werden.

Die Methoden erfüllen die Aufgaben:

• Werte der Datenfelder eines Objektes auszugeben,
• Datenfelder zu verändern
• und mit Hilfe der in den Datenfeldern gespeicherten Werte neue

Ergebnisse zu berechnen.

Die Methoden beschreiben, was man mit dem Objekt anfangen kann, d. h. wie sich
ein Objekt zu seiner Umgebung verhält. Das Objekt enthält damit auch sein Verhal-
ten.

Datenfelder definieren die Datenstruktur der Objekte, die Methoden
bestimmen das Verhalten der Objekte.

2.1.3 Zustände von Objekten

Ein Objekt hat – wie schon gesagt – einen Satz von Variablen (Datenfeldern) und
Methoden, die zu ihm gehören. Jedes Datenfeld hat Werte aus seinem Werte-
bereich. Der Zustand eines Objektes ist festgelegt durch den momentanen Wert
seiner Datenfelder. Verändert werden kann der Zustand eines Objektes durch die
Methoden des Objektes. Die Methoden führen ein Objekt von einem Zustand in
einen anderen über.

Objektorientierte Konzepte 33

Der Begriff des Zustandes eines Objektes kann noch etwas präzisiert werden:

Jede Kombination von Datenfeldwerten stellt einen Zustand dar, der
von uns als mikroskopischer Zustand eines Objektes bezeichnet
wird.

Ein Objekt kann sehr viele mikroskopische Zustände haben.

Wichtig bei der Modellierung sind jedoch diejenigen Zustände eines
Objektes, die für eine Anwendung eine Bedeutung haben. Diese
Zustände werden von uns makroskopische Zustände genannt.

Um den Unterschied zwischen mikroskopischen und makroskopischen Zuständen zu
erläutern, soll ein Fahrstuhl betrachtet werden. Im Fahrstuhl soll es einen Gewichts-
sensor geben, welcher das Gewicht der im Fahrstuhl befindlichen Personen feststellt.
Jeder Wert des Gewichtssensors entspricht dann einem mikroskopischen Zustand.
Für die Anwendung ist jedoch nur interessant, ob der Fahrstuhl überladen ist oder
nicht. "Überladen" oder "nicht überladen" sind zwei makroskopische Zustände. Ist der
Fahrstuhl "überladen", so fährt er nicht los. Es müssen so lange Fahrgäste ausstei-
gen, bis er nicht mehr "überladen" ist. Weitere Beispiele für makroskopische
Zustände eines Objektes Fahrstuhl sind "Warten auf Knopfdruck", "Türen schließen
sich", "Fahren", "Türen öffnen sich". Generell sind makroskopische Zustände von
Bedeutung, wenn man Zustandsübergänge von Objekten betrachtet, z. B. dass ein
Objekt Fahrstuhl beim Drücken eines Knopfes vom Zustand "Warten auf Knopfdruck"
in den Zustand "Türen schließen sich" übergeht.

Ein makroskopischer Zustand resultiert aus Wechselwirkungen mit der
Umgebung – im Falle eines Fahrstuhls z. B. aus Wechselwirkungen
mit der Mechanik bei "Türen öffnen sich" oder mit dem Motor bei
"Fahren". Andere Wechselwirkungen mit der Umgebung können das
Warten auf ein Ereignis sein oder das Vorliegen bestimmter
Bedingungen.

In welchem Zustand sich ein Objekt dabei befindet, wird durch entsprechende Daten-
felder des Objektes festgehalten.

2.1.4 Zusammenarbeit von Objekten

Objektorientierte Systeme erbringen ihre Leistungen durch das Zusammenwirken
von Objekten.

Eine funktionale Leistung, die ein System zur Verfügung stellt, wird als
Anwendungsfall (Use Case) bezeichnet. Ein Use Case stellt einen
Geschäftsprozess oder Teil eines Geschäftsprozesses dar, der durch
ein EDV-System unterstützt wird.

34 Kapitel 2

Ganz zu Beginn der Systemanalyse betrachtet man zunächst die Geschäftsprozesse
und fällt dann die Entscheidung, welche Geschäftsprozesse bzw. welche Anteile
durch den Rechner unterstützt werden sollen. Nach einigen Vorarbeiten wird dann
für jeden Use Case19 ein so genanntes Kommunikations- oder Sequenzdiagramm
erstellt. Kommunikationsdiagramme und Sequenzdiagramme können sowohl bei der
Systemanalyse als auch beim Systementwurf erfolgreich verwendet werden. Im
Rahmen der Systemanalyse bildet man die Wechselwirkungen zwischen den
Objekten auf einen Nachrichtenaustausch zwischen den Objekten ab. Bildlich
gesprochen heißt dies, dass die Objekte miteinander "reden". Bild 2-6 symbolisiert
einen Austausch von Nachrichten zwischen den Objekten. Bitte beachten Sie, dass
dieses Bild nur der Veranschaulichung dient und keineswegs UML20-konform ist.

Nachrichten

Bild 2-6 Informationsaustausch zwischen Objekten in der Systemanalyse

Die in Bild 2-6 eingezeichneten Nachrichten (Botschaften) der Systemanalyse ent-
sprechen beim Entwurf und bei der Programmierung dem Aufruf von Java-Methoden.

Mit dem Aufruf einer Methode wird die Kontrolle an das Objekt, an das
die Nachricht gerichtet ist, übergeben. Wie das Objekt handelt, ist
Sache des Objektes.

Ein Aufruf über Nachrichten bzw. Methoden stellt eine schwache Kopplung
zwischen Objekten dar, wenn ein Objekt nicht über zu viele Kanäle Nachrichten
austauscht. Eine schwache Kopplung hat den Vorteil, dass bei Änderungen eines
Objektes die Rückwirkungen auf ein anderes Objekt gering bleiben. Auf Grund der
schwachen Kopplung sind objektorientierte Systeme in der Regel auch leicht
erweiterbar, sodass kein Schaden entsteht, wenn man zu Beginn des Projektes nicht
alle Klassen des Problembereichs sofort findet. Bei stark gekoppelten Systemen –
wie z. B. bei einer Kopplung über globale Variablen in der klassischen prozeduralen
Programmierung – führen Änderungen an einer Stelle oftmals zu einer Vielzahl von
unliebsamen Folgeänderungen.

19 Der Begriff Use Case wurde durch Ivar Jacobson [22] weltweit bekannt gemacht.
20 Die UML (Unified Modeling Language) stellt eine grafische Spezifikationssprache dar, um

objektorientierte Systeme zu modellieren.

Objektorientierte Konzepte 35

Die Menge der Nachrichten, auf die ein Objekt antworten kann, legt
seine "Aufrufschnittstelle" fest. Sichtbar nach außen sind von einem
Objekt nur seine Nachrichten, in anderen Worten seine Aufrufschnitt-
stelle.

2.1.5 Instanzvariablen, Instanzmethoden, Klassenvariablen und
Klassenmethoden

Bild 2-7 zeigt drei Objekte der Klasse Punkt und die Klasse Punkt selbst. Die
Namen dieser Objekte lauten p1, p2 und p3. Ein jeder Punkt trägt seine individuellen
Koordinaten. So hat der Punkt p1 die Koordinaten x ist gleich 1 und y ist gleich 1
(Initialwerte). Diese Werte sind "persönliche" Eigenschaften des Punktes p1, sie
gehören zu dem Punkt-Objekt, in anderen Worten zu der Punkt-Instanz. Solche
"persönlichen" Variablen eines Punktes werden als Instanzvariablen bezeichnet.
Die Instanzen werden mit den angegebenen Initialwerten – z. B. 3 für x und 5 für y
im Falle von p2 – initialisiert. Bei jedem Punkt-Objekt gibt es die Methoden
zeichne(), verschiebe() und loesche(). Diese Methoden arbeiten auf den
Instanzvariablen und werden als Instanzmethoden bezeichnet.

punktAnzahl = 3
…

getPunktAnzahl()
…

x = 3
y = 5

zeichne()
verschiebe()
loesche()

p2 : Punkt

x = 2
y = 4

zeichne()
verschiebe()
loesche()

p3 : Punkt Punkt
Klassenvariable

Klassenmethode

x = 1
y = 1

zeichne()
verschiebe()
loesche()

p1 : Punkt
Instanzvariablen

Instanzmethoden

Bild 2-7 Drei Instanzen der Klasse Punkt und die Klasse Punkt selbst

Die Anzahl der erzeugten Punkte ist jedoch keine Eigenschaft eines individuellen
Punktes, sondern ist eine Eigenschaft der Menge aller Punkte. Die Variable punkt-
Anzahl kann aus Symmetriegründen bei keinem der Punkt-Objekte untergebracht
werden, da alle Punkte von Haus aus vollkommen gleichberechtigt sind. Es liegt
deshalb nahe, dass eine Variable, die eine Eigenschaft aller Instanzen derselben
Klasse darstellt, in der Klasse selbst angelegt wird – im betrachteten Beispiel also in
der Klasse Punkt. Dass der Speicherort der Variablen die Klasse selbst ist, wird
durch den Namen Klassenvariable zum Ausdruck gebracht. Methoden, die auf
Klassenvariablen zugreifen, werden dementsprechend Klassenmethoden genannt.
Die Klassenmethode getPunktAnzahl() gibt bei ihrem Aufruf den Wert von
punktAnzahl an den Aufrufer zurück. Klassenvariablen und Klassenmethoden
werden nach UML unterstrichen.

36 Kapitel 2

Klassenvariable stellen globale Variable für alle Objekte einer Klasse
dar.

Im Rahmen der Objektorientierung werden Variable, die allen Instan-
zen einer Klasse gemeinsam sind, als Klassenvariable bezeichnet.
Klassenvariable werden in der Klasse selbst als Unikat für alle Objekte
der Klasse gemeinsam angelegt. Variable, die bei jedem Objekt – also
bei jeder Instanz – angelegt werden und bei jedem Objekt eine indivi-
duelle Ausprägung annehmen können, werden als Instanzvariable
bezeichnet.

Üblicherweise arbeiten Instanzmethoden auf Instanzvariablen. Klassenmethoden
sind dazu da, um auf Klassenvariablen zu arbeiten. Da Klassenvariable globale
Variable für alle Instanzen einer Klasse sind, kann eine Instanzmethode nicht nur
auf Instanzvariable, sondern auch auf Klassenvariable zugreifen.

2.2 Das Konzept der Kapselung

Hinter den Mechanismen der objektorientierten Programmierung verbirgt sich ein
neues Denkmodell, das sich von dem bisherigen Modell der funktionsorientierten
Programmierung (z. B. in der Sprache C) sehr stark unterscheidet. Das neue Modell
beruht im Kern darauf, dass man Daten und die Methoden, die auf ihnen arbeiten,
nicht mehr getrennt behandelt, sondern als Einheit betrachtet. Die Begriffe Abstrak-
tion, Kapselung und Information Hiding sind hierbei miteinander eng verwandt:

• Der Begriff Abstraktion in der objektorientierten Programmierung bedeutet, dass
ein komplexer Sachverhalt aus der realen Welt in einem Programm auf das
Wesentliche konzentriert und damit vereinfacht dargestellt wird. Ein Objekt in
einem Programm repräsentiert diejenigen Daten und diejenige Verhaltensweisen
eines realen Gegenstands, die im Kontext des Programms von Interesse sind.
Das Objekt implementiert sein Verhalten in Schnittstellenmethoden, die außerhalb
des Objektes sichtbar sind. Ein Objekt sollte nur über wohl definierte Schnitt-
stellenmethoden mit seiner Umwelt in Kontakt treten.

• Die Schnittstellenmethoden bilden eine Kapsel, die die Daten umgibt, d. h. Metho-
den und Daten verschmelzen zu einem Objekt. Diese Kapselung ist eines der
wichtigsten Konzepte der objektorientierten Programmierung. Es besteht in
diesem Falle keine Trennung zwischen Daten und Funktionen wie in der funktions-
orientierten Programmierung, z. B. in C. Der Begriff der Kapselung beschreibt die
Implementierung von Abstraktion zur Sichtbarmachung des Verhaltens und von
Information Hiding zum Verbergen der inneren Details.

• Die Daten einer Kapsel und die Rümpfe der Schnittstellenmethoden sollen nach
außen nicht direkt sichtbar sein. Die inneren Eigenschaften sollen vor der
Außenwelt verborgen sein. Nur die Aufrufschnittstelle der Schnittstellenmethoden
soll exportiert werden. Man spricht daher auch von Information Hiding oder
Geheimnisprinzip. Das Prinzip des Information Hiding bedeutet, dass ein Teil-

Objektorientierte Konzepte 37

system (hier ein Objekt) nichts von den Implementierungsentscheidungen eines
anderen Teilsystems wissen darf. Damit wird vermieden, dass ein Teilsystem von
der Implementierung eines anderen Teilsystems abhängt.

Die Prinzipien des Information Hiding, der Abstraktion und der Kapselung sind also
eng miteinander verknüpft. Die Außenwelt soll keine Möglichkeit haben, Daten im
Inneren des Objektes direkt zu lesen oder sogar zu verändern und so möglicher-
weise unzulässige Zustände herbeizuführen. Das Verstecken sämtlicher Daten
und der Implementierung der Methoden in einer "Kapsel" und die Durchführung
der Kommunikation mit der Außenwelt durch eigene Schnittstellenmethoden bringt
dem Programmierer den Vorteil, dass er bei der Implementierung der Algorithmen
in den Methoden und bei den Datenstrukturen des Objektes sehr viele Freiheiten hat.
Dem Benutzer bringt dies im Gegenzug den Vorteil, dass er sich nicht um interne
Details (Datenstrukturen, Algorithmen) kümmern muss. Daher kann er immer die
neueste Version des Objektes verwenden, da er nicht vom speziellen inneren Aufbau
des Objektes abhängig ist. Der Programmierer der Klasse kann deren inneren Auf-
bau immer wieder optimieren, ohne Komplikationen befürchten zu müssen. Nur die
Schnittstellen müssen gleich bleiben. Bereits an dieser Stelle kann man erkennen,
wie wichtig die Schnittstellen sind. Es ist also unbedingt nötig, diese sorgfältig zu
entwerfen.

Ein Objekt darf also mit einem anderen Objekt nur über wohl definierte Schnittstellen
Informationen austauschen und keine Kenntnisse über den inneren Aufbau seines
Partners haben. Damit haben Änderungen im Inneren eines Objektes keine
Auswirkungen auf andere Objekte, solange die Schnittstellen stabil bleiben. Um
trotzdem ein Höchstmaß an Flexibilität zu gewährleisten, ist es jedoch immer noch
möglich, Teile eines Objektes so zu vereinbaren, dass sie ohne weiteres direkt von
außen zugänglich sind. Zumindest für die Schnittstellenmethoden muss diese
Eigenschaft in jedem Fall zutreffen.

2.3 Abstraktion und Brechung der Komplexität

Die Kunst der Abstraktion ist, das Wesentliche zu erkennen und das Unwesentliche
wegzulassen. Abstraktion ist in allen Entwicklungsphasen ein effizientes Mittel, um
die Komplexität eines Systems überschaubar zu machen.

Abstraktion bedeutet immer Konzentration auf das Wesentliche.

Abstraktion zur Abgrenzung des Problembereichs

Dies beginnt schon beim Projektstart, wo man entscheiden muss, welcher Ausschnitt
aus der realen Welt den Problembereich darstellt, der analysiert werden soll. Der so
genannte Problembereich (engl. Problem Domain) ist der Bereich der zu unter-
suchenden Aufgaben. Er ist derjenige Teil der realen Welt, der später durch die zu
realisierende Software abgedeckt werden soll.

38 Kapitel 2

Problem-
bereich

Reale Welt

Bild 2-8 Problembereich als relevanter Ausschnitt der realen Welt

Abstraktion zum Finden der Objekte des Problembereichs

Hat man den Problembereich umrissen, so gilt es, die Objekte des Problembereichs
zu finden. Das sind diejenigen Objekte der realen Welt, die auf Objekte der Pro-
grammiersprache abgebildet werden sollen. Ob ein Objekt des Problembereichs in
ein Objekt des Programmsystems überführt werden soll, wird durch Beantwortung
der Frage entschieden, ob es notwendig ist, Informationen über dieses Objekt im
System zu führen. Die Beschränkung auf das wirklich Notwendige bedeutet wieder
eine Abstraktion.

Abstraktion zum Erkennen der Datenfelder und Methoden eines Objektes

Hat man erkannt, welche Objekte man braucht, so ist zu abstrahieren, welche Infor-
mationen über ein Objekt erforderlich sind oder nicht. Und dies hängt ganz entschei-
dend von der jeweiligen Anwendung ab! So wird etwa ein Autohersteller zu einem
Objekt der Klasse Autotyp alle Komponenten des Autotyps speichern, um bei-
spielsweise die richtigen Ersatzteile liefern zu können. Das Finanzamt, das auf die
Autos die Kraftfahrzeugsteuer erhebt, interessiert sich für wesentlich weniger Merk-
male eines Autotyps, nämlich nur für diejenigen, die steuerrelevant sind wie z. B. der
Schadstoffausstoß.

Abstraktion zur Festlegung der Schnittstellen eines Objektes

Entscheidet man, welche Methoden eines Objektes nach außen sichtbar sein sollen
und was im Inneren des Objektes verborgen werden soll, so muss erneut abstrahiert
werden.

Abstraktion zur Bildung von Hierarchien

Abstraktion und Information Hiding sind effiziente Mittel, um mit der Komplexität fertig
zu werden. Ein weiteres Mittel ist die Bildung von Hierarchien. Die Bildung von
Hierarchien hat aber auch mit der Bildung von Abstraktionen zu tun. Dabei gibt es in
der Objektorientierung zwei wichtige Hierarchien:

• die Vererbungshierarchie (auch "kind of"-Hierarchie oder "is a"-Hierarchie ge-
nannt)

• und die Zerlegungshierarchie (auch "part of"-Hierarchie genannt).

Bei der Vererbungshierarchie (siehe Bild 2-9) werden die Klassen in Abstrak-
tionsebenen angeordnet. Geht man in der Hierarchie von unten nach oben, so
spricht man von Generalisierung, geht man von oben nach unten, so kommt man zu
spezielleren Klassen – man spricht von Spezialisierung. Die jeweils tiefer stehende

Objektorientierte Konzepte 39

Klasse ist eine Spezialisierung der Klasse, von der sie abgeleitet ist. So sind in Bild
2-9 die Klassen B, C und D verschiedene Spezialisierungen ihrer Basisklasse A, in
anderen Worten, jede der Klassen B, C und D ist von der Klasse A abgeleitet.

A

B C D

Bild 2-9 Vererbungshierarchie

Typisch für solche Vererbungshierarchien sind die Klassifikationsschemen21 der Tie-
re und Pflanzen in der Biologie (siehe Bild 2-10).

Spinnentier

Skorpion Milbe Spinne

.

. . .
Kreuzspinne Hausspinne Springspinne

Bild 2-10 Klassifikation von Spinnentieren

Eine Kreuzspinne, Hausspinne, Springspinne ist eine Spinne. Ein Skorpion, eine
Milbe und eine Spinne ist ein Spinnentier. Spinnentiere wiederum gehören zum
Stamm der Gliederfüßler und stehen auf einer Ebene mit Krebstieren, Tausend-
füßlern und Insekten [18].

Bei der Zerlegungshierachie (siehe Bild 2-11) hat man auch verschiedene Abstrak-
tionsebenen. Sieht man nur das Ganze, so ist man eine Ebene höher, als wenn
man die Teile betrachtet. Ein Objekt kann als Datenfelder andere Objekte in Form
einer Komposition oder einer Aggregation enthalten. Komposition und Aggregation
unterscheiden sich bezüglich der Lebensdauer des zusammengesetzten Objektes
und seiner Komponenten. Bei einer Komposition ist die Lebensdauer des zusam-
mengesetzten Objektes identisch zur Lebensdauer der Komponenten. Bei einer
Aggregation sind die Lebensdauern von zusammengesetztem Objekt und den
Komponenten entkoppelt – so können die Teile auch länger leben als das Ganze.

21 Während man in der Objektorientierung nur von Klassen redet, werden in der Biologie die Namen

Stamm, Klasse, Unterklasse, Ordnung, Familie, Gattung, Art und Rasse verwendet.

40 Kapitel 2

Bei einer Komposition hat ein Teil einen einzigen "Besitzer", bei einer Aggregation
können mehrere "Besitzer" auf ein und dasselbe Teil zeigen.

Ein Beispiel für eine Aggregation ist ein Ordner. Der Ordner und sein Inhalt, die
aggregierten Seiten, können verschieden lange leben. Man kann die Seiten, d. h. die
Komponenten, früher oder später als den Ordner wegwerfen oder den Ordner samt
Inhalt zur selben Zeit. Ein anderes Beispiel ist ein Auto und seine Räder. Die Räder
sind nur aggregiert. Man kann die Felgen mit den Sommerreifen gegen die Felgen
mit den Winterreifen austauschen oder die Winterreifen und Felgen verkaufen, wenn
das Auto verschrottet wird. Die Räder können an ein anderes Auto montiert werden.

Bei einer Komposition sind "Groß"- und "Klein"-Objekt fest "verschweißt". Ein
Beispiel für eine Komposition ist ein Buch. Hier sind die Seiten und der Umschlag
fest verklebt. Das Ganze, das Buch, und die Komponenten, die Seiten, leben gleich
lange. Sie können nur gemeinsam vernichtet werden.

Programmiertechnisch kann man eine Aggregation mit Hilfe von Zeigern oder
Referenzen erzeugen. Ein "Groß"-Objekt enthält dann als Datenfeld eine Variable, in
welcher die Stelle des Arbeitsspeichers notiert ist, an welcher das "Klein"-Objekt
liegt. Eine solche Variable heißt Referenzvariable, da sie einen Verweis (eine
Referenz) enthält.

Eine Referenz auf ein Objekt enthält als Wert die Adresse des
Objektes, auf das die Referenz zeigt. Die Adresse gibt an, an welcher
Stelle das Objekt im Arbeitsspeicher liegt.

Eine Komposition kann man programmiertechnisch erzeugen, wenn ein "Groß"-
Objekt als Datenfeld ein "Klein"-Objekt enthält. Datenfelder sind bekanntermaßen mit
ihrem Objekt untrennbar verbunden. Während C++ sowohl die Komposition als auch
die Aggregation zulässt, erlaubt Java nur die Aggregation.

B C

A

D

Bild 2-11 Aggregationshierarchie

Die Klasse A enthält Referenzen auf Objekte der Klassen B, C und D. Wird ein Objekt
der Klasse A zerstört, so können dennoch die Objekte der Klassen B, C und D weiter-
leben. Damit ist die Lebensdauer von zusammengesetzten Objekten und Komponen-
ten entkoppelt. Es handelt sich also um eine Aggregation. Dies wird in Bild 2-11
ausgedrückt durch die nicht ausgefüllte Raute. Eine Komposition im Gegensatz zu
einer Aggregation würde in Bild 2-11 durch eine ausgefüllte Raute veranschaulicht.

Objektorientierte Konzepte 41

2.4 Erstes Programmbeispiel mit Objekten

In diesem Kapitel soll wie in Kapitel 2.1.2 wieder die Klasse Punkt als Anwendungs-
beispiel herangezogen werden. Dabei soll eine Anwendung geschrieben werden, in
der Punkte, d. h. Objekte der Klasse Punkt erzeugt werden. Betrachtet man den
Punkt als Objekt, so beschreiben dessen Methoden, was man mit dem Objekt alles
anfangen kann. So kann man beispielsweise

• die Koordinaten eines Punktes festlegen,
• die Koordinaten eines Punktes abfragen,
• einen Punkt auf dem Bildschirm zeichnen,
• einen Punkt auf dem Bildschirm verschieben
• und einen Punkt auf dem Bildschirm löschen.

Damit hat ein zweidimensionaler Punkt mit ganzzahligen Koordinaten in der Notation
von Java die Datenfelder

int x,
int y,

und die Methoden

setX(),
setY(),
getX(),
getY(),
zeichne(),
verschiebe()
und loesche().

Diese Eigenschaften – Datenfelder und Methoden – gelten für jeden beliebigen
Punkt. Diese Gemeinsamkeit wird in der Objektorientierung durch die Klasse Punkt
dargestellt. Ein jeder Punkt wird nach dem Bauplan dieser Klasse Punkt gebaut.

Um möglichst einfach zu beginnen, sollen die Methoden zeichne(), verschie-
be() und loesche() hier außer Acht gelassen werden. Unter dieser Annahme hat
die Klasse Punkt das im Folgenden gezeigte Aussehen, wobei es hier an dieser
Stelle nicht wichtig ist, Schlüsselwörter wie public, return, void usw. zu
verstehen. Vielmehr soll auf den prinzipiellen Aufbau geachtet werden.

// Datei: Punkt.java

// Deklaration der Klasse Punkt. Dem Compiler wird gesagt, dass es
// eine Klasse Punkt gibt.
public class Punkt
{
 private int x; // Datenfelder für die x- und
 private int y; // y-Koordinate vom Typ int

42 Kapitel 2

 public int getX() // eine Methode, um den Wert
 { // von x abzuholen
 return x;
 }

 public int getY() // eine Methode, um den Wert
 { // von y abzuholen
 return y;
 }

 public void setX (int i) // eine Methode, um den Wert
 { // von x zu setzen
 x = i;
 }

 public void setY (int i) // eine Methode, um den Wert
 { // von y zu setzen
 y = i;
 }

 // Mit main() beginnt eine Java-Anwendung ihre Ausführung.
 public static void main (String[] args)
 {
 Punkt p = new Punkt(); // Punkt erzeugen
 p.setX (3); // Aufruf der Methode setX()
 p.setY (2); // Aufruf der Methode setY()

 System.out.println ("Die Koordinaten des Punktes p sind: ");
 System.out.println (p.getX()); // Wert von x wird ausgegeben
 System.out.println (p.getY()); // Wert von y wird ausgegeben
 }
}

Die Ausgabe des Programmes ist:

Die Koordinaten des Punktes p sind:
3
2

Beachten Sie, dass eine Erläuterung hinter einem Doppelschrägstrich ein so
genannter Kommentar ist. Ein Kommentar dient nur zur Dokumentation und hat auf
die Ausführung eines Programms keinen Einfluss. Es ist nicht das Ziel dieses
Beispiels, alle Details zu betrachten. Zuallererst soll zum Ausdruck kommen, dass
eine Klasse einen Klassennamen – hier Punkt – hat und aus Datenfeldern und
Methoden aufgebaut ist. Ferner wird hier gezeigt, dass zu einer Java-Anwendung
eine Methode main() gehört. In der Methode main() werden Objekte geschaffen
und Methoden aufgerufen. Hat man eine Anwendung aus mehreren Klassen, deren
Objekte gemeinsam die Anwendung realisieren, so schreibt man normalerweise eine
separate Klasse mit der Methode main(), um die Anwendung zu starten. Da
Objekte erst in der Methode main() selbst angelegt werden, kann main() nicht zu
einem Objekt, sondern muss zu der Klasse selbst gehören. Das bedeutet, dass
main() eine Klassenmethode ist. Zusätzlich kann aber jede Klasse noch eine
eigene Methode main() enthalten, die zum Test der jeweiligen Klasse verwendet
wird.

Objektorientierte Konzepte 43

Klassenvariablen und Klassenmethoden erhalten bei Java das
Schlüsselwort static.

Eine Klassenmethode kann auch aufgerufen werden, ohne dass ein Objekt dieser
Klasse existiert (siehe Kap. 2.1.5).

Die Methode main() muss auch stets public sein, d. h. für alle
sichtbar. Sonst kann der Java-Interpreter, der das Programm starten
und ausführen soll, nicht auf main() zugreifen.

Methoden sind in der Regel public. Datenfelder sind in der Regel
private.

Das Schlüsselwort public ist ein so genannter Zugriffsmodifikator, der angibt,
dass diese Methode ungeschützt ist und von allen anderen Klassen aus aufgerufen
werden kann. Die Datenfelder eines Objektes sollen nicht ungeschützt der Außen-
welt ausgeliefert sein. Daher werden sie mit dem Modifikator private versehen. Ein
Außenstehender wie z. B. eine Testklasse kann nur "geordnet", d. h. über speziell
vorgesehene Methoden, auf die Datenfelder zugreifen.

Eine Klasse kann als eine abstrakte Beschreibung eines Objektes angesehen
werden. Wird mit Hilfe dieser Beschreibung ein Objekt im Arbeitsspeicher angelegt,
so spricht man von der Instantiierung einer Klasse. Man erhält ein arbeitsfähiges
Exemplar im Speicher. Ein Objekt stellt eine Instanz oder ein Exemplar dar.

Mit der Klassenbeschreibung wird ein Schema zur Bildung von
Objekten dieser Klasse vereinbart. Dieses Schema enthält:

• den Namen der Klasse,
• die Datenfelder dieser Klasse
• und die Methoden dieser Klasse.

Ein Objekt ist eine Instanz einer Klasse. Ein Objekt hat eigene Werte für die Daten-
felder. Ein Objekt teilt Datenfeldnamen und Methodennamen mit anderen Objekten
der Klasse. Alle Objekte besitzen eine eigene Identität, sind also eigene Wesen,
selbst wenn ihre Datenwerte (Werte der Instanzvariablen) identisch sind. Ein Objekt
hat in sich eine implizite Referenz, d. h. einen versteckten Verweis, auf seine eigene
Klasse. Es "weiß", zu welcher Klasse es gehört.

44 Kapitel 2

2.5 Flughafen-Projekt

Dieses Kapitel richtet sich zum einen an diejenigen, die daran interessiert sind, wie
man eigentlich auf die Objekte kommt, die in den Programmen verwendet werden.
Zum anderen wendet es sich an all jene, die das hier vorgestellte Lernprojekt
Flughafen selbst durchführen wollen. Alle Teilschritte des Projektes befinden sich auf
der beiliegenden CD. Die Aufgaben der einzelnen Teilschritte zur Realisierung des
Flughafen-Informationssystems sind in den Übungskapiteln zu finden. So kann das
Flughafen-Informationssystem begleitend zum Buch erstellt werden.

Im Folgenden soll anhand eines Beispiels prinzipiell gezeigt werden, wie Objekte
gefunden werden können. Nehmen wir einmal an, Sie seien Mitglied eines Teams
von Systemanalytikern, die von einem Flughafenbetreiber die in Kapitel 2.5.1 dar-
gestellte Ausschreibung22 erhalten würden. Ausgehend von dieser Ausschreibung
sollen dann in Kapitel 2.5.2 erste Objekte gefunden werden, und zwar Objekte, die
Abstraktionen von Entitäten der realen Welt sind.

2.5.1 Ausschreibung für ein neues Flughafen-Informationssystem

Ein neues Informationssystem für einen Flughafen soll es den Fluglotsen ermögli-
chen, die Landung und den Start von Flugzeugen rechnergestützt zu überwachen.
Ferner sollen die Angestellten der Flughafenverwaltung bei der Erhebung der
Start- und Landegebühren unterstützt werden.

Das Informationssystem soll Daten über die Position der Flugzeuge von ver-
schiedenen Sensoren erhalten. Diese Sensoren sind in folgender Tabelle enthalten:

Radar des Flughafens liefert Positionsdaten der Flugzeuge in der Luft
Positionsmelder des Flugzeugs liefert über eine automatisierte Funkschnittstelle

die Positionsdaten des Flugzeugs in der Luft
Flugplatzsensoren liefern Positionen der Flugzeuge am Boden
Parksensoren liefern Belegungsstati der Parkpositionen

Bild 2-12 Sensoren des Flughafen-Informationssystems

Der Flughafen verfügt über 4 getrennte Bahnen, wovon eine jede als Lande- oder als
Startbahn benutzt werden kann. Die Steuerung der Flugzeuge soll über Sprechfunk
vom Lotsen an die Piloten erfolgen. Die Steuerung ist ein eigenständiges System
und nicht Bestandteil des neuen Informationssystems. Auf dem Vorfeld werden die
Flugzeuge durch ein "Follow me"-Fahrzeug geleitet. Die Verwaltung des Vorfeldes ist
ebenfalls nicht Teil des neuen Systems.

Das System soll selbstständig einen Alarm mit einer Hupe generieren, wenn das
Radar andere Positionsdaten als der Positionsmelder des Flugzeugs meldet.

22 Wie Sie wissen, ist das "echte Leben" stets wesentlich komplexer als einfache Schulungs-

aufgaben. Sehen Sie bitte großzügig darüber hinweg, dass die "Ausschreibung" erhebliche Lücken
aufweist.

Objektorientierte Konzepte 45

Vorfeld

Start- bzw. Landebahnen

Parkpositionen

Zubringer Zubringer

Landerichtung Startrichtung

Bild 2-13 Skizze des Flughafens

Um die Bahnkurve eines Flugzeugs grafisch darstellen zu können, sollen alle Positi-
onsdaten eines Flugzeugs im System geführt werden. Für ein Objekt der Klasse
Flugzeug selbst sollen Soll-Zeitpunkt der Landung, Ist-Zeitpunkt der Landung, Soll-
Zeitpunkt des Starts, Ist-Zeitpunkt des Starts, Landebahn, Parkposition, Startbahn,
betreuender Lotse, Flugzeugtyp und Fluggesellschaft gespeichert werden können.
Jede Start-/Landebahn sowie jede Parkposition soll im System gespeichert werden
und von den Lotsen belegt werden können. Damit soll sichergestellt werden, dass
ein solches Objekt von den Lotsen nicht zur selben Zeit mehrfach zugeteilt wird. Alle
Fluggesellschaften sollen ebenfalls im System geführt werden.

Das System soll den Anwender bei den folgenden Aufgaben unterstützen:

• Positionsdaten von Flugzeugen in der Luft am Bildschirm kontrollieren

• Positionsdaten von Flugzeugen am Boden am Bildschirm kontrollieren

• Starts und Landungen mit Hilfe eines Zeitplans planen

• Durchführen der Landung

Ein Flugzeug kann sich bei einem Lotsen für eine Landung anmelden. Wird die
Landung nicht wegen schlechten Wetters verweigert, so trägt der Lotse Flugzeug-
typ, Fluggesellschaft und sich selbst als betreuender Lotse in das System ein.

Ist die Fluggesellschaft des sich im Landeanflug befindenden Flugzeugs dem
System noch nicht bekannt, so wird sie vom Lotsen in das System aufgenommen
(Name, Adresse). Der Lotse verschafft sich einen Überblick über die Start-
/Landebahnen und trägt die von ihm zugeteilte Landebahn und den Soll-Zeitpunkt
der Landung in das System ein. Der Lotse schaut sich die vergebenen und freien
Parkpositionen an und trägt die von ihm vergebene Parkposition in das System
ein. Ist keine Landebahn oder Parkposition frei, wird eine Warteschleife angeord-
net, ansonsten wird der Landeanflug freigegeben. Hat das Flugzeug die Park-
position erreicht, so trägt der Lotse den Ist-Zeitpunkt der Landung in das System
ein und gibt die Landebahn wieder frei.

46 Kapitel 2

Treten während der Landung zwingende Gründe für einen Abbruch der Landung
ein, so hat der Lotse den Abbruch unter Angabe von Gründen in das System ein-
zutragen.

• Durchführen des Starts

Im Rahmen der Startzuweisung lässt sich der Lotse die vergebenen und freien
Start-/Landebahnen darstellen und trägt die zugeteilte Startbahn und den Soll-
Zeitpunkt des Starts in das System ein. Hat das Flugzeug beim Starten die
Startbahn erreicht, so gibt der Lotse die Parkposition wieder frei. Hat das Flugzeug
den Flughafen verlassen – dies ist ersichtlich aus den Positionsmeldungen des
Radars –, gibt der Lotse die Startbahn wieder frei und trägt den Ist-Zeitpunkt des
Starts in das System ein. Mit der Freigabe ist eine automatische Buchung
verbunden. Dabei wird aufgrund des Flugzeugtyps eine bestimmte Gebühr für
Start und Landung gemäß der Gebührenliste dem Rechnungskonto der Flug-
gesellschaft zugeordnet.

• Gelandete Flugzeuge, die auf das separate Parkfeld oder auf die Werft gebracht
werden, sind im System entsprechend zu kennzeichnen.

• Positionsdaten fusionieren

 Das System frägt zyklisch die Positionsdaten eines Flugzeugs beim Radar und
beim Positionsmelder des Flugzeugs ab. Weichen die vom Radar und vom
Positionsmelder des Flugzeugs gemeldeten Daten um mehr als eine vorgegebene
Toleranz voneinander ab, so wird automatisch ein akustischer Alarm mit der Hupe
generiert.

• Jeweils am Ersten eines Monats werden automatisch die Rechnungen an die
Fluggesellschaften ausgedruckt und von den Angestellten der Verwaltung weiter-
geleitet.

• Die Angestellten buchen von den Fluggesellschaften bezahlte Rechnungen auf
dem Konto der Fluggesellschaften.

• Die Angestellten der Verwaltung können die Preisliste der Start- und Lande-
gebühren abändern.

Das System soll in Java mit einer Swing-Oberfläche realisiert werden. Die Bedienung
soll einfach sein. Fehler der Software sollen an die Anwender gemeldet werden,
damit diese im Fehlerfall auf ein manuelles Verfahren umsteigen können. Das
System soll modular aufgebaut sein, um Änderungen leicht durchführen zu können.

Die hier vorgestellte Ausschreibung wird von dem Auftragnehmer geordnet in eine
Anforderungs-Spezifikation mit so genannten funktionalen und nicht-funktionalen
Anforderungen übertragen und mit dem Auftraggeber abgestimmt. Diese Anfor-
derungs-Spezifikation kann aus Platzgründen hier nicht wiedergegeben werden. Sie
befindet sich auf der dem Buch beigelegten CD.

Objektorientierte Konzepte 47

2.5.2 Systemanalyse

Die Objekte des Problembereichs – die Entitäten der realen Welt entsprechen – sind
implizit im Text der Ausschreibung enthalten. Diese Objekte zu finden, ist eine der
Aufgaben der Systemanalyse. Natürlich gibt es in der Literatur verschiedene Mög-
lichkeiten, Objekte den Texten zu entnehmen. Erwähnt sei die Analyse aller Haupt-
wörter [21] oder die CRC-Methode [20]. In Kapitel 2.5.2.4 wird ein Use Case-
basierter Ansatz vorgestellt, der nach Ansicht der Autoren am effizientesten ist, da er
systematisch einen Use Case nach dem anderen behandelt und damit automatisch
dafür sorgt, dass bei der Analyse alle Use Cases erfasst werden. Beachten Sie, dass
ein Use Case (auf Deutsch: Anwendungsfall) nichts anderes ist als eine Grund-
funktion eines Systems.

Ohne Systemanalyse
kommen wir nicht
weiter

Bild 2-14 Objekte des Problembereichs werden bei der Systemanalyse gefunden

2.5.2.1 Kontextdiagramm

Im ersten Schritt der Systemanalyse soll das Kontextdiagramm für das Flughafen-
Informationssystem gezeichnet werden. Ein Kontextdiagramm ordnet ein System in
seine Umgebung ein und zeigt durch so genannte Datenflüsse die Wechselwirkung
des Systems mit seiner Umgebung. Der Name Kontextdiagramm rührt daher, dass
dieses Diagramm das System in seiner Umgebung, d. h. seinem Kontext, zeigt. Zur
Umgebung gehören bestehende Geräte oder Fremdsysteme, die Daten mit dem
System elektronisch austauschen, aber auch die Bediener des Systems. Generell
findet sich all das, was neu gebaut wird, im Kasten des Systems wieder, vorhandene
Fremdsysteme oder die Nutzer des Systems stehen außerhalb des zu bauenden
Systems und werden als so genannte Aktoren gezeichnet. Die Aktoren werden in der
Regel als Strichmännchen, versehen mit dem Namen der Rolle oder des Fremd-
systems, gezeichnet. Ein Datenfluss wird stets dargestellt durch einen Pfeil, der den
Namen der ausgetauschten Daten trägt.

Zu beachten ist, dass in Bild 2-15 die folgenden Gruppendatenflüsse eingeführt
wurden, um das Kontextdiagramm übersichtlich zu gestalten:

• Landung Flugzeug := Initialisierung Landeanflug + Reservierung Start-/Landebahn
+ Ist-Zeitpunkt Landung + Reservierung Parkposition + Freigabe Start-/Landebahn
+ [Gründe für Abbruch]

mit Initialisierung Landeanflug :=
betreuender Lotse + Flugzeugtyp + Fluggesellschaft + Soll-Zeitpunkt Landung.

48 Kapitel 2

• Start Flugzeug :=
Reservierung Start-/Landebahn + Soll-Zeitpunkt Start + Freigabe Parkposition +
Freigabe Start-/Landebahn + Ist-Zeitpunkt Start

So entspricht der eingezeichnete Gruppendatenfluss "Landung Flugzeug" im Falle
einer erfolgreichen Landung den Datenflüssen "Initialisierung Landeanflug" (wie-
derum untergliedert in "betreuender Lotse", "Flugzeugtyp", "Fluggesellschaft" und
"Soll-Zeitpunkt Landung"), "Reservierung Start-/Landebahn", "Ist-Zeitpunkt Landung",
"Reservierung Parkposition" und "Freigabe Start-/Landebahn". Im Falle eines Ab-
bruchs umfasst der Gruppendatenfluss "Landung Flugzeug" auch die Gründe für den
Abbruch. Wird die Landung erfolgreich durchgeführt, so entfallen die Gründe für den
Abbruch.

 Flughafen

Informationssystem

Positionsmelder
Flugzeug

Radarsensor

Flugplatzsensor

Parksensor

Hupe

Drucker
Flughafenangestellter

Betriebssystem

Bildschirm
Lotse

 Tastatur
Flughafenangestellter

Tastatur
Lotse

Flugzeugposition
Positionsmelder

Flugzeugposition Radar

Flugzeugposition
Flugplatzsensor

Status Parkposition

Alarm

Uhrzeit

 Änderung Gebühren

 Buchung bezahlte

 Rechnungen

Rechnungen

Anforderung Luftlage

 Anforderung Bodenlage

Anforderung Zeitplan

Landung Flugzeug

Start Flugzeug

 Verlegung Flugzeug

Luftlage

Bodenlage

Zeitplan

Status Start-/ Landebahnen

Status Parkposition

Bild 2-15 Kontextdiagramm für das System "Flughafen-Informationssystem"

Objektorientierte Konzepte 49

Das Programm "Flughafen-Informationssystem" erhält Daten von "Radarsensor",
"Positionsmelder Flugzeug", "Flugplatzsensor", "Parksensor", "Tastatur Lotse",
"Tastatur Flughafenangestellter" und "Betriebssystem" und erzeugt Ausgaben für
"Hupe", "Bildschirm Lotse" und "Drucker Flughafenangestellter".

2.5.2.2 Use Case-Diagramme

Im nächsten Schritt werden die Use Case-Diagramme für den Bedienertyp Lotse und
Angestellter der Verwaltung gezeichnet. Eine Besonderheit dieser Anwendung ist,
dass die Use Cases der Lotsen und der Angestellten der Verwaltung streng getrennt
sind. Bei anderen Anwendungen hingegen können in einem Use Case mehrere
Rollen zusammenarbeiten. Ein Use Case-Diagramm enthält alle Use Cases und die
an dem jeweiligen Use Case beteiligten Aktoren. Die an einem Use Case beteiligten
Aktoren sind mit einer Linie mit dem Use Case (in Form einer Ellipse) verbunden.

Wie bereits bekannt ist, ist ein Use Case eine Leistung, die ein System zur
Verfügung stellt. Leistungen eines Systems können

• asynchron (ereignisorientiert) angefordert werden,
• zeitgesteuert erfolgen
• oder fortlaufend aktiv sein.

Fortlaufend aktive Prozesse laufen ab, solange das System in Betrieb ist. So etwas
kommt selten vor. Das Normale ist die asynchrone und die zeitgesteuerte Anfor-
derung. Eine asynchrone Anforderung liegt beispielsweise vor, wenn ein Benutzer
das Generieren und Ausdrucken einer Liste vom System anfordert, wenn er sie
braucht. Ein zeitgesteuerter Use Case liegt vor, wenn beispielsweise eine bestimmte
Liste, die einen Tag bilanziert, jede Nacht um 24 Uhr automatisch erzeugt und
ausgedruckt wird.

Angestellter
der Verwaltung Bildschirm / Tastatur

Flughafenangestellter

Flughafen-
Informationssystem

Drucker
bezahlte
Rechnungen
buchen

Rechnungen
erstellen

Gebühren
ändern

Bild 2-16 Use Case-Diagramm Angestellter der Verwaltung

Die Angestellten der Verwaltung führen die Aufgaben "Rechnungen erstellen",
"bezahlte Rechnungen buchen" und "Gebühren ändern" rechnergestützt durch. Der
Use Case "Rechnungen erstellen" wird zeitgesteuert angestoßen. Die Use Cases
"bezahlte Rechnungen buchen" und "Gebühren ändern" werden auf Anforderung
durch den Bediener, d. h. ereignisorientiert, durchgeführt.

50 Kapitel 2

Ein Lotse führt ereignisorientiert im Dialog mit dem System die Use Cases "Luftlage
anzeigen", "Bodenlage anzeigen", "Zeitplan anfordern", "Landung durchführen",
"Start durchführen" und "Flugzeug verlegen" durch.

Lotse

Bildschirm /
Tastatur Lotse

Parksensor

Positionsmelder
Flugzeug

Flugplatzsensor

Radarsensor

Hupe

Flughafen-
Informationssystem

Positionsdaten
fusionieren

Landung
durchführen

Zeitplan
anfordern

Bodenlage
anzeigen

Luftlage
anzeigen

Start
durchführen

Flugzeug
verlegen

Bild 2-17 Use Case-Diagramm Lotse

Der Use Case "Positionsdaten fusionieren" kommt ohne Zutun des Lotsen zustande.
Er läuft stets zyklisch im Hintergrund mit. Dieser Use Case liest die Positionsdaten
des Positionsmelders und des Radars ein und prüft, ob die zulässigen Toleranzen
überschritten werden. Er löst einen Alarm mit der Hupe aus, wenn die vorgegebene
Toleranz zwischen den Positionsdaten des Radars und denen des Positionsgebers
im Flugzeug überschritten wird. Es ist dann Aufgabe des Lotsen, sich um das
Problem zu kümmern. Auch wenn der Lotse diesen Use Case nicht anstößt, so wird
er dennoch dem Lotsen zugeordnet, da er dem Lotsen einen Nutzen bringt.

2.5.2.3 Use Case-Beschreibungen

Zu einem jeden Use Case ist eine Use Case-Beschreibung in textueller Form zu
erstellen, die mit dem Auftraggeber abgestimmt wird. Für den Use Case "Landung
durchführen" kann diese Beschreibung wie folgt aussehen. Aus Platzgründen wird
die Beschreibung nur bis zum Aufsetzen des Flugzeugs durchgeführt. Es liegt auf
der Hand, wie die Beschreibung weitergeht.

Objektorientierte Konzepte 51

Use Case: "Landung durchführen"

Initiator: Lotse

Beteiligte Aktoren: Bildschirm / Tastatur Lotse, Parksensor

Basisablauf: Meldet sich ein Flugzeug zur Landung an, so nimmt der Lotse das
Flugzeug in das System auf. Er schaut dann nach, welche Landebahn wann frei ist
und weist dem Flugzeug eine Landebahn zu. Der Soll-Zeitpunkt der Landung wird in
das System aufgenommen. Er schaut nach, welche Parkposition frei ist – dies wird
über die Parksensoren gemeldet – und weist dem Flugzeug eine Parkposition zu. Ist
das Flugzeug gelandet, so trägt der Lotse den Ist-Zeitpunkt der Landung ein. Ist das
Flugzeug an der Parkposition angekommen, so gibt der Lotse die Start-/Landebahn
frei.

Alternativablauf: Bei schlechtem Wetter wird die Landung abgebrochen. Der Lotse
muss den Grund für den Abbruch in das System eintragen.

Alternativablauf: Ist die Fluggesellschaft dem System nicht bekannt, so müssen
Name und Adresse der Gesellschaft in das System aufgenommen werden.

Alternativablauf: Alle Landebahnen belegt. Der Lotse ordnet eine Warteschleife an.

Alternativablauf: Alle Parkpositionen belegt. Der Lotse ordnet eine Warteschleife an.

2.5.2.4 Klassendiagramm der konzeptionellen Sicht der Systemanalyse

Ein Klassendiagramm der konzeptionellen Sicht enthält nur solche Klassen, deren
Objekte im Alltag sichtbar sind. Im Rahmen der Objektorientierten Modellierung sind
das die Entity-Klassen, die Entitätstypen der realen Welt entsprechen.

Für das Aufstellen eines Klassendiagramms der konzeptionellen Sicht gehen wir hier
folgendermaßen vor: Ein Bediener des Systems wird im Rahmen der konzeptionellen
Sicht als Klasse dargestellt. Für jeden Use Case, den der Bediener ausführt, werden
alle Klassen identifiziert, die der Bediener für die Durchführung dieses Use Case
benötigt, und die Beziehungen (Assoziationen) zwischen den gefundenen Klassen
gezeichnet. Eine Assoziation ist hierbei eine Verbindungslinie zwischen den Klassen,
die einen Namen trägt. Der Name charakterisiert hierbei diese Beziehung. In ent-
sprechender Weise sind für die zeitgesteuerten Use Cases und für fortlaufend aktive
Use Cases die erforderlichen Klassen und ihre Beziehungen zu ermitteln.

Im Folgenden werden die in Bild 2-16 und Bild 2-17 gefundenen Use Cases eingeteilt
in ereignisorientierte Use Cases, die asynchron vom Benutzer angefordert werden,
und zeitgesteuerte Use Cases, die vom System selbst ausgelöst werden. Fortlaufend
aktive Use Cases kommen beim Flughafen-Informationssystem nicht vor.

Ereignisorientierte Use Cases sind:

Luftlage anzeigen,
Bodenlage anzeigen,
Anforderung Zeitplan,
Landung durchführen,
Start durchführen,
Flugzeug verlegen,

52 Kapitel 2

Gebühren ändern,
bezahlte Rechnungen buchen.

Zeitgesteuerte Use Cases sind:

Positionsdaten fusionieren,
Rechnungen erstellen.

Für jeden Use Case werden nun die beteiligten Klassen und ihre Beziehungen ge-
zeichnet. Durch Überlagerung der für die einzelnen Use Cases gefundenen Teildia-
gramme kommt man zum Klassendiagramm des Systems. Es folgen nun die Teil-
diagramme für die einzelnen Use Cases:

Luftlage anzeigen

 Flugzeug

Position Posi-
tionsmelder

Position
Radar

hat

1

1..*

1

1..*

Lotse betrachtet

hat

1..* 1

Bild 2-18 Klassen und Beziehungen für den Use Case "Luftlage anzeigen"

Beachten Sie bitte die Multiplizitäten an den Beziehungen. So hat in Bild 2-18 ein
Flugzeug 1..*, d. h. 1 oder mehrere Positionsdaten, die vom Radar gemeldet werden.
Das ist klar – schließlich soll, wenn das Flugzeug zum erstenmal auf dem Bildschirm
auftaucht, seine Bahnkurve am Bildschirm dargestellt werden können.

Bodenlage anzeigen

 Flugzeug

1

1

Lotse
betrachtet

hat

1 1..*

Position
Flugplatz-

sensor
Bild 2-19 Klassen und Beziehungen für den Use Case "Bodenlage anzeigen"

Der Lotse kann sich im Lageplan des Flughafens anzeigen lassen, an welcher Stelle
des Flughafens sich aktuell welches Flugzeug befindet.

Objektorientierte Konzepte 53

Anforderung Zeitplan

zeigt an [Flugzeug angemeldet] Flugzeug Lotse

1 1..*
Bild 2-20 Klassen und Beziehungen für den Use Case "Anforderung Zeitplan"

Der Zeitplan wird dadurch generiert, indem alle für Start bzw. Landung angemeldeten
Flugzeuge – dies wird ausgedrückt durch die Bedingung [Flugzeug angemeldet] –
aufgelistet werden.

Landung durchführen

1..*

1..*

betreut Flugzeug

Fluggesell-
schaft

gehört

Parkposition

benutzt

benutzt

1

1

1

1

Lotse

1 1

Start-
/Landebahn

Bild 2-21 Klassen und Beziehungen für den Use Case "Landung durchführen"

Beachten Sie bitte den Lesepfeil bei "gehört". In UML wird der Lesepfeil durch ein
Dreieck dargestellt. Standardmäßig werden die Beziehungen von links nach rechts
gelesen und von oben nach unten. Beispiele hierfür sind in Bild 2-21 "Lotse betreut
Flugzeug" oder "Flugzeug benutzt Parkposition". Die Beziehung "Flugzeug gehört
Fluggesellschaft" ist von unten nach oben zu lesen. Daher der Lesepfeil.

Start durchführen

1

1

1..*

Flugzeug

Fluggesell-
schaft

gehört

Konto

hat

Start-
/Landebahn benutzt

1..*

1 1

1

1

Gebühren-
liste

Gebühr

wird gebucht auf

Lotse betreut

1

1

Bild 2-22 Klassen und Beziehungen für den Use Case "Start durchführen"

54 Kapitel 2

Eine Besonderheit ist hier zu sehen. Die Klasse Gebühr stellt eine Assoziations-
klasse dar. Eine Assoziationsklasse gehört zu einer Beziehung (Assoziation) und
spezifiziert diese näher. Entfällt die Beziehung, so muss auch die zugeordnete
Assoziationsklasse wegfallen. Da keine Gebühr anfällt, wenn die Start-/Landebahn
nicht benutzt wird, muss die Klasse Gebühr also eine Assoziationsklasse sein.

Flugzeug verlegen

1..*

verlegt Flugzeug Lotse

1
Bild 2-23 Klassen und Beziehungen für den Use Case "Flugzeug verlegen"

Gebühren ändern

Gebühren-
liste

Angestellter

ändert

Gebühr

Bild 2-24 Klassen und Beziehungen für den Use Case "Gebühren ändern"

Positionsdaten fusionieren

Hier werden zyklisch die Flugzeugpositionsdaten des Radars und des Positions-
gebers abgefragt und geprüft, ob sie im Rahmen einer vorgegebenen Toleranz-
grenze übereinstimmen. Der Vergleich wird realisiert durch ein Kontrollobjekt23, das
sich zyklisch die Positionsdaten vom Radar und vom Positionsgeber beschafft, den
Vergleich durchführt, die Positionsdaten vom Radar und vom Positionsgeber im
System anlegt – wenn die Toleranzgrenze nicht überschritten wird – und bei
Überschreiten der Toleranzgrenze einen Alarm auslöst. In der konzeptionellen Sicht
leistet dieser Use Case keinen Beitrag zum Klassendiagramm – außer, dass es die
Klassen Position Positionsmelder und Position Radar gibt –, da in der
konzeptionellen Sicht nur Entity-Objekte betrachtet werden.

Rechnungen erstellen

Durch ein Kontrollobjekt, welches auf die Uhr schaut, werden in automatischer Weise
jeweils am Ersten eines Monats die Rechnungen auf Grund der Kontoinformationen
automatisch generiert und ausgedruckt. Die Angestellten müssen die Rechnungen
noch kuvertieren und versenden. In der konzeptionellen Sicht gibt dieser Use Case
keinen Beitrag zum Klassendiagramm, da in der konzeptionellen Sicht nur Entity-
Objekte betrachtet werden. Die Rechnungen sind keine Entity-Objekte, d. h. Objekte
von Entity-Klassen, da sie nicht im System gespeichert werden. Sie werden erzeugt
und sofort ausgedruckt.

23 Kontrollobjekte haben kein Gegenstück in der realen Welt.

Objektorientierte Konzepte 55

Bezahlte Rechnungen buchen

Konto Angestellter

bucht auf

1..* 1

Bild 2-25 Klassen und Beziehungen für den Use Case "Bezahlte Rechnungen buchen"

Durch die Multiplizität wird zum Ausdruck gebracht, dass für ein bestimmtes Konto
nur ein einziger Angestellter ermächtigt ist zu buchen. Ein Angestellter ist aber für
mehrere Konten zuständig.

Durch Zusammensetzen der für die einzelnen Use Cases gefundenen Teildiagram-
me, d. h. von Bild 2-18 bis Bild 2-25, erhält man das gesamte Klassendiagramm:

1

1

Flugzeug

Fluggesell-
schaft

gehört

Konto

hat

Position
Pos.melder

Start-
/Landebahn

Parkposition gehört zu

gehört zu

benutzt

benutzt

1..*

1

1 1

1

1

1

1..*

1

1

Gebühren-
liste

Gebühr

1

Position
Flugplatz-

sensor

gehört zu

1

1..*

1

wird gebucht auf

Lotse
betreut

Angestellter

ändert

verwaltet

Position
Radar

1 1..*

0..*

1..*

Bild 2-26 Klassendiagramm Flughafen-Informationssystem

56 Kapitel 2

2.6 Übungen

Aufgabe 2.1: Modellierung mit Klassen und Objekten

2.1.1 Was versteht man unter Problembereich und unter Lösungsbereich?
2.1.2 Was sollte bei einer Klasse im Idealfall komplett verborgen sein?
2.1.3 Was ist beim objektorientierten Ansatz entscheidend?
2.1.4 Worauf basiert der objektorientierte Ansatz?
2.1.5 Aus welchen Bestandteilen besteht eine Klasse?
2.1.6 Erläutern Sie, was eine Methode ist und welche Aufgaben sie erfüllt.
2.1.7 Wodurch wird der Zustand eines Objektes festgelegt?
2.1.8 Was ist der Unterschied zwischen einer Klassenmethode und einer Instanz-

methode?
2.1.9 Wann werden Klassenvariablen verwendet?
2.1.10 Wann werden Instanzvariablen verwendet?
2.1.11 Kann eine Instanzmethode auf eine Klassenvariable zugreifen? Begründung!
2.1.12 Kann eine Klassenmethode auf eine Instanzvariable zugreifen? Begründung!
2.1.13 Erläutern Sie die Begriffe Generalisierung und Spezialisierung.
2.1.14 Erläutern Sie die Begriffe Aggregation und Komposition.

Aufgabe 2.2: Kapselung, Information Hiding und Abstraktion

2.2.1 Erläutern Sie den Begriff der Kapselung bei einem Objekt.
2.2.2 Was ist Information Hiding bei einem Objekt?
2.2.3 Was versteht man unter Abstraktion bei einem Objekt?

Einführung in die
Programmiersprache Java

3.1 Sprachkonzepte von Java
3.2 Eigenschaften von Java
3.3 Die Java-Plattform

3.4 Programmerzeugung und -ausführung
3.5 Das Java Development Kit
3.6 Java-Anwendungen und Internet-Programmierung
3.7 Übungen

3 Einführung in die Programmiersprache Java

Im Jahre 1991 befasste sich ein Mitarbeiterteam von Sun Microsystems (inzwischen
ORACLE) mit der Entwicklung von Set-Top Boxen für Fernsehgeräte mit dem Ziel
des interaktiven Fernsehens. Für die Software dieser Boxen wurde zunächst C++
verwendet, die damals gängige Sprache für objektorientierte technische Anwendung-
en. Unzufriedenheit über die Komplexität von C++ und die daraus resultierende man-
gelnde Sicherheit veranlasste das Team, ausgehend von C und C++ eine neue Spra-
che – die Sprache Java – zu entwickeln.

3.1 Sprachkonzepte von Java

Bei der Definition der Programmiersprache Java wurden von verschiedenen Pro-
grammiersprachen herausragende Konzepte übernommen und in einer bisher nicht
bekannten Kombination zusammengefügt (siehe Bild 3-1).

Bild 3-1 Die Väter von Java

Die Sprachkonstrukte für das "Programmieren im Kleinen" wie die einfachen
Datentypen und die Operatoren sind an C++ angelehnt.

Das Konzept der virtuellen Maschine zur Ausführung des Bytecodes hat sich in
Smalltalk bewährt. Die Idee der virtuellen Maschine stammt von N. Wirth. Dessen
Pascal-Compiler übersetzte in den so genannten P-Code und dieser wurde dann in-
terpretiert. Der Gedanke, der dahinter steckt, ist, unabhängig von der jeweiligen
Rechner-Plattform zu werden.

Unter Rechner-Plattform wird die Kombination von Betriebssystem
und zugehöriger Rechner-Hardware verstanden.

Um die Unabhängigkeit des Bytecodes von der Rechner-Plattform zu ermöglichen,
braucht man ein Stück Software, das den Bytecode auf die jeweilige Rechner-Platt-

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_3,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Einführung in die Programmiersprache Java 59

form abbilden kann. Diese Aufgabe wird von der virtuellen Maschine wahrgenom-
men. Die virtuelle Maschine bietet einem auszuführenden Programm stets dieselbe
Schnittstelle, egal welche Rechner-Plattform auch immer von der virtuellen Maschine
angesteuert wird. Damit kann ein Programm weltweit auf jeder Rechner-Plattform,
die über eine virtuelle Maschine verfügt, laufen und verhält sich auch immer gleich.
Mit Hilfe der virtuellen Maschine kann die Idee "write once, run anywhere"24 umge-
setzt werden.

Das Konzept der Applets25 in Java, die bei Bedarf geladen werden, wurde von den
Modulen in Oberon26 übernommen.

Pakete dienen zur Gruppierung von inhaltlich zusammengehörigen Klassen und
Schnittstellen. Ein Paket stellt eine Bibliothek für einen bestimmten Zweck dar.
Pakete als Gruppierung kleinerer Bausteine wurden bereits in Ada verwendet.

Die Idee des JavaBeans-Komponentenmodells wurde von OpenDoc beeinflusst.
OpenDoc wurde von den Firmen Apple, Novell, Borland, WordPerfect und IBM ent-
wickelt und ist eine offene Dokumentenarchitektur, die es ermöglicht, beliebige Doku-
mententeile aufzunehmen. Ein Komponentenmodell soll die Verwendung von vorge-
fertigten Software-Bausteinen auf einfache Weise ermöglichen. Erstellte JavaBeans-
Komponenten, die sich an die JavaBeans-Spezifikation halten, können in einfacher
Weise wiederverwendet werden. Sie können als fertige Bausteine mit Hilfe eines
Werkzeugs – eines so genannten Application Builders – in eine neue Anwendung
integriert werden.

Enterprise JavaBeans wurden später als die hier erwähnten JavaBeans in die
Klassenbibliothek von Java aufgenommen. Sie haben mit JavaBeans nichts zu tun,
außer dass es sich auch hier um ein Komponentenmodell handelt, das jedoch spe-
ziell zur Realisierung von Server-Architekturen dient.

3.2 Eigenschaften von Java

Java-Programme sind einfach, stabil, objektorientiert, verteilbar, sicher und portier-
bar.

Einfachheit und Stabilität

Zur Erhöhung der Einfachheit der Programmiersprache und der Stabilität der Pro-
gramme wurden in Java gegenüber C und C++ verschiedene Sprachkonstrukte wie
z. B. die Zeigerarithmetik weggelassen.

Objektorientiertheit

Mit Java wurde eine echte objektorientierte Sprache entworfen, die den Program-
mierer zwingt, objektorientiert zu programmieren. Es ist generell nicht möglich, Me-
thoden von einer Klasse bzw. von den Objekten zu trennen.

24 Einmal schreiben, überall laufen lassen.
25 Java-Applets sind kleine Programme, die nur innerhalb eines Web-Browser oder eines Applet-

Viewers ausgeführt werden können. Sie sind in einer HTML-Seite eingebettet.
26 Oberon ist eine objektorientierte Programmiersprache, die wie Pascal und Modula von N. Wirth

entwickelt wurde.

60 Kapitel 3

Verteilbarkeit

Java wurde von Anfang an für die Verteilung von Programmen auf verschiedene
Rechner entworfen. Infolge einer umfangreichen Unterstützung durch die Java-
Klassenbibliothek ist Java nahezu optimal für die Client/Server-Programmierung
geeignet. Des Weiteren wurde durch das Konzept der Applets – die von einem
zentralen Web-Server auf einen anderen Rechner über das Netz geladen werden
können – das Problem der Verteilung bei Software-Updates elegant gelöst.

Sicherheit

Java hat wie kaum eine andere Sprache ein mehrstufiges Sicherheitskonzept, das
die Ausführung von kritischen oder für das System gefährlichen Operationen verhin-
dert.

Portierbarkeit

Durch die Kompilierung in einen von der Rechner-Plattform unabhängigen Bytecode,
der von einer virtuellen Maschine ausgeführt wird, ist Java unabhängig vom jewei-
ligen Betriebssystem und der zugehörigen Rechner-Hardware. Software-Entwickler
müssen ihre Programme nicht für jede Rechner-Plattform speziell anpassen. Durch
die exakte Definition aller Datentypen in Länge und Aussehen und das Vorhanden-
sein von Threads als Sprachmittel für parallel ausführbare Programme ist ein Java-
Programm ohne Probleme von einer Rechner-Plattform auf die andere portierbar
(übertragbar). Je geringer die Zahl der Eingriffe in ein Programm ist, um es auf einer
anderen Rechner-Plattform ausführen zu können, desto höher ist die Portabilität. Bei
Java sind in einem Programm keine Eingriffe erforderlich, um es auf einer anderen
Rechner-Plattform auszuführen. Vorausgesetzt wird aber, dass für jede Rechner-
Plattform eine virtuelle Maschine existiert. Versucht man das Gleiche in C++, einer
Sprache, die auf allen gängigen Maschinen vertreten ist, gerät man schon bei der
unterschiedlichen Darstellung der einfachen Datentypen in Schwierigkeiten. Darüber
hinaus gibt es in C++ keine Sprachmittel für parallele Programme, sodass das Errei-
chen von Parallelität dort betriebssystemabhängig ist. Die Portierbarkeit erstreckt
sich in Java auch auf die grafische Oberfläche, welche traditionsgemäß bisher be-
triebssystemabhängig war. So wurde die Oberfläche beispielsweise unter UNIX mit
OSF Motif und unter Windows mit Hilfe der Microsoft Foundation Classes realisiert.

3.3 Die Java-Plattform

Meistens ist – wenn man über Java spricht – die Programmiersprache Java gemeint.
Java ist aber viel mehr als eine Programmiersprache. Die Programmiersprache Java
bildet zusammen mit verschiedenen Werkzeugen, der Java Virtuellen Maschine
und einer umfangreichen Java-Klassenbibliothek die Java-Plattform.

Zu einer Java-Plattform gehören:

� die Programmiersprache Java,
� Werkzeuge wie zum Beispiel der Java-Compiler (javac),
� die Java Virtuelle Maschine (JVM) – in anderen Worten ein Byte-

code-Interpreter für eine Rechner-Plattform
� und eine umfassende Klassenbibliothek.

Einführung in die Programmiersprache Java 61

Die Java Plattform existiert als Standard Edition (bekannt unter dem Namen Java
SE), als Enterprise Edition (Java EE) und als Micro Edition (Java ME). Die einzelnen
Ausführungen unterscheiden sich im Wesentlichen durch Art und Umfang der
Klassenbibliothek und durch die verfügbaren Werkzeuge. Die Java EE und die Java
ME bauen hierbei auf der Java SE auf und spezialisieren diese für Server-Anwen-
dungen und für den Einsatz auf mobilen Endgeräten.

Das Java Development Kit (JDK) bezeichnet eine Java-Plattform mit einem für die
jeweilige Rechner-Plattform spezifischen Bytecode-Interpreter. Will man mit Java
Programme entwickeln, so benötigt man also ein JDK. Hierbei gibt es für die ver-
schiedenen Java Editions (Java SE, Java EE und Java ME) jeweils ein JDK für alle
gängigen Rechner-Plattformen. Eine Java Runtime Environment (JRE) beinhaltet
nur diejenigen Bestandteile eines JDKs, welche zum Ausführen von Java-Program-
men benötigt werden. Damit besteht eine JRE aus einem Bytecode-Interpreter für die
jeweilige Rechner-Plattform und der Java-Klassenbibliothek.

Auf die Java Virtuelle Maschine wird in Kapitel 3.3.1 und auf die Java Klassenbiblio-
thek der Standard Edition in Kapitel 3.3.2 noch näher eingegangen.

3.3.1 Die Java Virtuelle Maschine

Bei Java wird bei der Kompilierung aus dem Quellcode nicht Maschinencode27, son-
dern ein Bytecode (Zwischencode) erzeugt. Der Bytecode wird dann von einem
Bytecode-Interpreter, der Java Virtuellen Maschine (JVM), die für jede Rechner-
Plattform verfügbar ist, zur Ausführung gebracht. Der Bytecode-Interpreter kann ein
eigenes Programm sein – wie im Falle des Interpreters java des Java Development
Kits – oder in einen Browser – wie z. B. den Netscape Navigator – oder in den Micro-
code eines Java-Prozessors integriert sein.

Bytecode Java-

Programm

Bytecode-
Interpreter

JVM
Solaris

Solaris

JVM
JavaOS

JavaOS

JVM
Mac

Mac

JVM
...

...
Rechner-
Plattform

JVM
Windows

Windows

Bild 3-2 Die Java Virtuelle Maschine (JVM)

Durch das Bytecode-Konzept ist jedes Java-Programm auf jeder
Rechner-Plattform mit einem Bytecode-Interpreter ausführbar.

27 Maschinencode ist eine prozessorspezifische Programmiersprache, die ein spezieller Prozessor

direkt versteht.

62 Kapitel 3

Sonst wäre das Konzept der Applets, das vorsieht, von einem beliebigen Rechner
des Internets ein Applet zu laden und auf einem beliebigen anderen Rechner des
Internets auszuführen, nicht umsetzbar.

3.3.2 Die Java Klassenbibliothek

Erleichtert wird das Programmieren von Java-Anwendungen durch eine umfang-
reiche Klassenbibliothek, die Java-API28.

Die Klasse java.lang.Object ist die Wurzel des Java-Klassen-
baums, also auch der Java-API.

Die Java-Klassenbibliothek der Standard Edition lässt sich in drei Bereiche aufteilen:

• Java Base Libraries

Diese Bibliotheken umfassen Klassen und Schnittstellen, welche die grundlegende
Funktionalität der Java-Plattform bereitstellen. So sind darin unter anderem Klas-
sen für die String-Verarbeitung, Ein-/Ausgabe, Sicherheit, Netzwerk-Kommu-
nikation und Internationalisierung definiert.

• Java Integration Libraries

Diese Bibliotheken setzen sich aus Klassen und Schnittstellen zusammen, welche
für die systemübergreifende Kommunikation benötigt werden. Sie bestehen unter
anderem aus der Java Database Connectivity (JDBC) API für den Zugriff auf
Datenbanken, der Remote Method Invocation (RMI) API für den entfernten
Methodenaufruf zwischen unterschiedlichen virtuellen Maschinen und der Java
Naming and Directory Interface (JNDI) API für das Suchen von Klassen inner-
halb eines Namensraumes.

•••• Java User Interface Libraries

Mit Hilfe dieser Bibliotheken können verschiedenste Benutzerschnittstellen pro-
grammiert werden. Beispiele hierfür sind Druckerschnittstellen, Tonausgabe, Bild-
verarbeitung und die Entwicklung von grafischen Benutzerschnittstellen.

Eine ausführliche Beschreibung der Klassen und Schnittstellen kann der Java-API-
Dokumentation entnommen werden. Sie ist zu finden unter der Java-Webseite von
ORACLE

http://download.oracle.com/javase/index.html

oder auf der dem Buch beigefügten CD. Bild 3-3 zeigt die Startseite der API-Doku-
mentation der Java Standard Edtion.

28 API = Application Programming Interface.

Einführung in die Programmiersprache Java 63

Bild 3-3 Startseite der Java-API-Dokumentation in einem Browser

Die Java-API enthält mehrere Tausend Klassen und Schnittstellen. Diese können
unmöglich alle in diesem Buch erklärt werden. Vielmehr beschränken wir uns auf die
Beschreibung und Erläuterung der grundlegenden Spracheigenschaften von Java
und stellen einige wenige ausgewählte Klassen der Klassenbibliothek vor.

3.4 Programmerzeugung und -ausführung

Die Erzeugung und das Starten von Java-Programmen unterscheidet sich in einigen
Punkten grundlegend von anderen Programmiersprachen. Im Wesentlichen kann
man sagen, dass kein ausführbares Programm29 (engl. executable program)
erzeugt wird, sondern dass Bytecode interpretiert wird, wobei benötigte Klassen zur
Laufzeit durch die Java Virtuelle Maschine nachgeladen werden.

Mit dem Begriff "zur Laufzeit" ist gemeint, dass eine Aktion wie bei-
spielsweise das Laden einer Klasse in die virtuelle Maschine ausge-
führt wird, während das Programm läuft.

In Java wird kein ausführbares Programm erzeugt.

29 Ein ausführbares Programm besteht aus Maschinencode und kann nach seinem Aufruf selbständig

auf dem Prozessor laufen.

64 Kapitel 3

Das folgende Bild zeigt das Erzeugen und Starten einer Java-Anwendung:

Quellcode-Datei

Klassen als
Bytecode

startbare Klasse
in der virtuellen

Maschine

Bsp1.class,
Bsp2.class,
Bsp3.class
auf Platte

Compiler

Bsp2.class

Bsp3.class

Bsp1.class

in die virtuelle
Maschine

nachgeladen bei
Aufruf durch Bsp1

Bsp1.java
auf Platte

Bsp1.java mit
den Klassen Bsp1,
Bsp2 und Bsp3

Bytecode-Dateien

Texteditor

 class Bsp1
 {
 ...main...
 }

 class Bsp2
 {
 ...
 }

 class Bsp3
 {
 ...
 }

Bsp2.class

Bsp1.class

Bsp3.class

Interpreter

Bild 3-4 Ablauf und Erzeugnisse beim Kompilieren und Laden

Der Quelltext eines Programms wird mit einem Editor, einem Werkzeug zur Er-
stellung von Texten, geschrieben und auf der Festplatte des Rechners unter einem
Dateinamen als Datei abgespeichert. Da eine solche Datei Quellcode enthält, wird
sie auch als Quellcode-Datei (oder Quelldatei) bezeichnet. Durch Kompilieren erhält
man aus der Quellcode-Datei Bsp1.java die drei Bytecode-Dateien Bsp1.class,
Bsp2.class und Bsp3.class. Dabei werden die Bestandteile des Dateinamens
hinter dem Punkt als Extension (Dateinamenserweiterung) bezeichnet. Für jede
Klasse in der Quellcode-Datei wird also eine Bytecode-Datei erzeugt, die den Namen
der Klasse trägt und die Extension class hat.

Die Klasse Bsp1 soll eine main()-Methode haben und als Startklasse dienen. Wird
diese Klasse vom Interpreter aufgerufen, so wird sie vom Klassenlader geladen
und ihre main()-Methode ausgeführt.

Klassen, die eine main()-Methode haben, können zum Starten einer
Java-Anwendung verwendet werden.

Einführung in die Programmiersprache Java 65

Werden nun innerhalb der main()-Methode Klassenvariablen oder Klassenmetho-
den der beiden anderen Klassen Bsp2 oder Bsp3 angesprochen oder Objekte dieser
Klassen angelegt, so müssen diese Klassen vom Klassenlader dynamisch zur Lauf-
zeit vom aktuellen Rechner, einem Intranet oder dem Internet in die virtuelle Ma-
schine nachgeladen werden.

Ein "Programm" in Java besteht aus einem losen Verbund von einzel-
nen .class-Dateien, die bei Bedarf in die virtuelle Maschine geladen
werden. Dynamisches Laden bedeutet, dass die Klassen, wenn sie
das erste Mal benötigt werden, in die virtuelle Maschine nachgeladen
werden.

3.4.1 Kompilieren

Am Anfang der Programmerzeugung stehen eine oder mehrere Quellcode-Dateien.
Diese Dateien enthalten den in Java geschriebenen Programmtext und werden durch
den Compiler javac in Bytecode übersetzt. Für jede Klasse wird beim Kompilieren
eine interpretierbare .class-Datei erzeugt. Der Bytecode ist unabhängig von der
Rechner-Plattform, auf welcher der Programmcode entwickelt bzw. kompiliert worden
ist. Man kann den erzeugten Bytecode auch als Maschinencode für einen virtuellen
Prozessor, genauer die Java Virtuelle Maschine, bezeichnen.

Der Bytecode ist ein Zwischencode. Er stellt noch nicht den Maschi-
nencode eines existierenden physikalischen Prozessors dar. Er stellt
die Maschinensprache für eine abstrakte Maschine, die Java Virtu-
elle Maschine, dar.

Der Kompiliervorgang durchläuft die vier Bearbeitungsschritte

• Lexikalische Analyse,
• Syntaxanalyse,
• Semantikanalyse
• und Codeerzeugung.

3.4.1.1 Lexikalische Analyse

Bei der Lexikalischen Analyse wird versucht, in der Folge der Zeichen eines Pro-
gramms die Wörter der Sprache – das sind die kleinsten Einheiten einer Sprache, die
eine Bedeutung besitzen – zu erkennen. Die Wörter einer Sprache werden auch
Symbole genannt. Beispiele für Symbole sind Namen, Schlüsselwörter, Operatoren.
Zwischenräume und Kommentare dienen dem Compiler dazu, zu erkennen, wo ein
Wort zu Ende ist. Ansonsten haben sie keine Bedeutung für den Compiler und wer-
den überlesen.

66 Kapitel 3

| | | | | | | | | | | | | |

Wort

Zwischenraum
Bild 3-5 Erkennen von Wörtern

3.4.1.2 Syntaxanalyse

Für alle modernen Sprachen existiert ein Regelwerk, welches formal die zulässigen
Folgen von Symbolen (Wörtern) festlegt. Im Rahmen der Syntaxanalyse wird geprüft,
ob die bei der lexikalischen Analyse ermittelte Symbolfolge eines zu übersetzenden
Programms zu der Menge der zulässigen Symbolfolgen gehört.

3.4.1.3 Semantische Analyse

Die semantische Analyse versucht die Bedeutung der Wörter herauszufinden. Die
Bedeutung in einem Programm bezieht sich im Wesentlichen auf dort vorkommende
Namen, also muss die semantische Analyse herausfinden, was ein Name, der im
Programm vorkommt, bedeutet. Jeder Name wird mit einer Bedeutung versehen,
d. h. an eine Deklaration des Namens im Programm gebunden. Grundlage hierfür
sind die Sichtbarkeits-, Gültigkeits- und Typregeln einer Sprache. Neben der Über-
prüfung der Verwendung von Namen im Rahmen ihrer Gültigkeitsbereiche30
spielt die Überprüfung von Typverträglichkeiten bei Ausdrücken eine Hauptrolle.
Ein wesentlicher Anteil der semantischen Analyse befasst sich also mit der Er-
kennung von Programmfehlern, die durch die Syntaxanalyse nicht erkannt werden
konnten, wie z. B. die Addition von zwei Werten mit unterschiedlichem und nicht ver-
träglichem Typ. So ist es beispielsweise unzulässig, Boolesche Werte und Zahlen zu
addieren.

Nicht alle semantischen Regeln einer Programmiersprache können durch den Com-
piler abgeprüft werden. Man unterscheidet zwischen der statischen Semantik
(durch den Compiler prüfbar) und der dynamischen Semantik (erst zur Laufzeit
eines Programmes prüfbar). Die Prüfungen der dynamischen Semantik werden von
der virtuellen Maschine durchgeführt.

3.4.1.4 Codeerzeugung

Während Lexikalische Analyse, Syntaxanalyse und Semantische Analyse sich nur
mit der Analyse des zu übersetzenden Quellcodes befassen, kommen bei der Code-
generierung die Eigenschaften der virtuellen Maschine mit ins Spiel. Bei der Code-
erzeugung wird kein Maschinencode für einen physikalischen Prozessor einer Platt-
form, sondern Maschinencode – nämlich der Bytecode – für die virtuelle Maschine
erzeugt.

30 Siehe Kap. 9.1.5.

Einführung in die Programmiersprache Java 67

3.4.1.5 Virtuelle Maschine

Die virtuelle Maschine übernimmt Aufgaben wie die Speicherverwaltung des Pro-
gramms zur Laufzeit und ist für Ein-/Ausgabe-Operationen und für Interaktionen mit
dem Betriebssystem zuständig. Sie bildet somit die Laufzeitumgebung (das Lauf-
zeitsystem) des auszuführenden Java-Programms. Zu den Aufgaben der virtuellen
Maschine gehören alle Prüfungen der dynamischen Semantik, kurz eine ganze
Reihe von Fehlerroutinen. An besonderen Sprachmerkmalen wie Threads (parallele
Prozesse) oder Exceptions (Ausnahmen) ist die virtuelle Maschine ebenfalls beteiligt.
Die Sicherheitsverwaltung der virtuellen Maschine entscheidet zum Beispiel, auf
welche Ressourcen – wie z. B. eine Festplatte – ein in Ausführung befindliches
Programm zugreifen darf und auf welche nicht.

Die virtuelle Maschine bildet die Laufzeitumgebung (das Laufzeit-
system) für das auszuführende Programm. Sie stellt einem Programm
zusätzliche Funktionen (Routinen) zur Verfügung, welche für die Aus-
führung des Programms benötigt werden. Dazu gehören unter ande-
rem Funktionen zur Speicheranforderung oder Fehlererkennung.

3.4.2 Laden in die virtuelle Maschine

Das Laden der Klassen erfolgt durch die Java Virtuelle Maschine. Beim Starten eines
Programms wird die Startklasse dem Interpreter bekannt gemacht, der den Klas-
senlader verwendet, um die Startklasse in den Arbeitsspeicher zu laden. Dies ge-
schieht durch den Aufruf von java Klassenname auf der Kommandozeile. Da ein
Java-Programm nicht wie die meisten herkömmlichen Programme aus einer ein-
zelnen ausführbaren Datei, sondern aus mehreren .class-Dateien besteht, werden
die anderen Java-Klassen zur Laufzeit, also zu dem Zeitpunkt, an dem sie gebraucht
werden, durch die Java Virtuelle Maschine nachgeladen. Trifft also der Java-
Interpreter auf eine Klasse, die nicht im Speicher der virtuellen Maschine ist, so
benutzt er den Klassenlader, um die Klasse in den Arbeitsspeicher nachzuladen.

3.4.3 Ausführen von Bytecode

Die virtuelle Maschine setzt den Java-Bytecode in Maschinencode des jeweiligen
Prozessors um. Erfordert eine Bytecode-Instruktion den Aufruf einer Betriebssystem-
routine, so wird ein Sprungbefehl an die Adresse, an der sich die Betriebssystem-
routine im Speicher befindet, generiert. Alle Betriebssystemroutinen liegen dabei
fertig kompiliert im entsprechenden Maschinencode bereit.

3.4.4 Bytecode

Das Konzept des Bytecodes wurde schon seit den siebziger Jahren eingesetzt, um
Programme leichter portieren zu können. Beispiele hierfür sind Bytecode-Systeme
für die Sprachen BCPL, LISP, Prolog, aber auch für Pascal. Dabei war beispiels-
weise ein Bytecode-System für Pascal nicht die Regel, sondern die Ausnahme. Für
Smalltalk und Java ist der Bytecode jedoch Bestandteil der Architektur der Sprache
und damit zwingend vorgeschrieben.

68 Kapitel 3

Der Bytecode hat die folgenden Eigenschaften:

• Er besteht aus Instruktionen (Befehlen) für eine virtuelle Maschine.
• Eine Instruktion ist ein Byte lang – daher auch die Bezeichnung Bytecode für

den Zwischencode.
• Der Bytecode ist unabhängig von einer Rechner-Plattform und damit unab-

hängig vom Betriebssystem und der Rechner-Hardware.
• Der Bytecode ist maschinennah. Die Phasen Lexikalische Analyse, Syntax-

analyse, Semantikanalyse und Codegenerierung zum Bytecode sind bereits
durchlaufen, sodass man näher am Maschinencode als am Quellcode ist.

• Der Bytecode spiegelt in der Regel die Eigenschaften der Programmiersprache
wider. So kann es zum Beispiel spezielle Instruktionen für den Zugriff auf die
Komponenten von Objekten geben.

• Der Bytecode wird durch einen Bytecode-Interpreter ausgeführt, der die Befehle
der virtuellen Maschine ausführen kann, mit anderen Worten, der die virtuelle
Maschine emuliert.

• Da ein Bytecode für die jeweilige Programmiersprache optimiert ist, ist das resul-
tierende Programm sehr kompakt. Mit anderen Worten, Bytecode-Programme
eignen sich gut für die Übertragung in Netzen.

• Bytecode ist portabel. Programme, die in Bytecode übersetzt wurden, sind auf
jeder Rechner-Plattform lauffähig, für die ein Bytecode-Interpreter zur Verfügung
steht.

• Da der Interpreter eine virtuelle Maschine emuliert und in die Emulation die Zu-
griffe auf physikalische Betriebsmittel wie Drucker oder Dateien eingebunden sind,
kann in den Emulator sehr leicht eine Sicherheitsschicht eingezogen werden, die
unter gewissen Umständen Zugriffe auf bestimmte Betriebsmittel verwehrt.

Das Konzept des Bytecodes stellt insgesamt gesehen eine Zwischenstufe zwischen
der reinen Interpretation eines Quellcodes und der Ausführung von Instruktionen
eines speziellen Prozessors dar. Wird – wie bei anderen Sprachen – der reine Quell-
code interpretiert, so stellen die Anweisungen im Quellcode die Instruktionen für eine
virtuelle Maschine auf höherem Niveau dar.

Letztendlich wird der Zugewinn an Portabilität und Sicherheit durch den erhöhten
Zeitaufwand für den Interpreter erkauft. Um diesen Nachteil zu kompensieren, kann
man den Interpreter selbst als Hardware – als Java-Prozessor – realisieren, der
direkt die Bytecode-Instruktionen ausführt, anstatt als Programm auf einem her-
kömmlichen Prozessor.

3.5 Das Java Development Kit

Die offizielle Quelle für das Java Development Kit (JDK) ist die Firma ORACLE. Im
Internet ist diese erreichbar über die Adresse

http://www.oracle.com/technetwork/java/index.html

Von dort kann das JDK für alle gängigen Rechner-Plattformen kostenlos auf den
eigenen Rechner geladen werden. Außerdem führen von diesen Seiten Links zu
Herstellern professioneller Entwicklungssysteme oder Herstellern des JDK für we-

Einführung in die Programmiersprache Java 69

niger bekannte Rechner-Plattformen. Die Java Development Kits für die Plattformen
Windows 32 Bit/64 Bit und LINUX 32 Bit/64 Bit befinden sind auch auf der CD.

3.5.1 Installation und Konfiguration des JDK

Um mit Java arbeiten zu können, muss es für das entsprechende
Betriebssystem ein Java Development Kit geben.

Die Größe des Arbeitsspeichers des Arbeitsplatzrechners sollte 64 MB nicht unter-
schreiten. Für die Komplettinstallation der JDK-Version 6.0 werden mindestens 300
MB an Plattenplatz benötigt, für die Version 5.0 mindestens 200 MB.

Das JDK-Installations-File entpackt sich bei der Installation unter Microsoft Windows
selbst. Standardmäßig werden die Dateien in das Verzeichnis Java im Programm-
verzeichnis von Windows installiert (z. B. C:\Programme\Java). Nach der Installa-
tion befinden sich darin die beiden Verzeichnisse jre6 und jdk1.6.0_xx für die
Version 6.0. Das xx steht hierbei stellvertretend für die Update-Version, wie bei-
spielsweise 21. Im Verzeichnis jdk1.6.0_xx werden mehrere Verzeichnisse ange-
legt, unter anderem ein Verzeichnis namens bin. In diesem Verzeichnis befinden
sich alle Programmdateien wie zum Beispiel javac.exe oder java.exe des JDK.
Im Unterverzeichnis demo liegen nützliche Beispielprogramme. Im Unterverzeichnis
include sind Header-Dateien abgelegt, die zur Einbindung von C-Programmen in
Java-Programme benötigt werden. In Archive31 zusammengefasste Java-Klassen-
dateien befinden sich in dem Unterverzeichnis lib.

Setzen der Umgebungsvariable JAVA_HOME

Die Umgebungsvariable JAVA_HOME wird von vielen Programmen verwendet, die auf
dem JDK aufbauen. Diese Umgebungsvariable zeigt immer auf das Basisverzeichnis
des JDK, beispielsweise C:\Programme\Java\jdk1.x.0_xx. Unter Windows
2000/XP/Vista ist hierbei eine neue Umgebungsvariable JAVA_HOME mit Hilfe der
Systemsteuerung anzulegen. Unter Window Vista muss hierzu in der Systemsteue-
rung zuerst System und Wartung gefolgt von System ausgewählt werden. An-
schließend ist links auf Erweiterte Systemeinstellungen zu klicken, um dann
unter Umgebungsvariablen eine neue Variable für JAVA_HOME anzulegen. Unter
Unix/Linux kann die Umgebungsvariable beispielsweise wie folgt gesetzt werden:

export JAVA_HOME=/usr/java/jdk1.x.0

Setzen der Umgebungsvariable PATH

Um die Java-Programmdateien – wie javac oder java – direkt von der Kommando-
zeile aufrufen zu können, muss der Suchpfad für ausführbare Dateien um das ent-
sprechende Verzeichnis erweitert werden. Unter Windows geschieht dies wie folgt:

31 Archive dienen zur Zusammenstellung mehrerer Dateien – in gepackter oder ungepackter Form –

in einer einzigen Datei. Archivdateien haben die Extension jar.

70 Kapitel 3

• Temporär

Will man die PATH-Variable temporär – also nur in der aktiven Kommandozeile –
um den Pfad zu den Java-Programmdateien erweitern, muss der Befehl

 set PATH=%path%;C:\Programme\Java\jdk1.x.0\bin

in der Kommandozeile eingegeben werden, wobei x durch 5 für die Java Version
5.0, 6 für die Version 6.0 bzw. 7 für die Version 7.0 ersetzt werden muss. Nach
dem Schließen des Fensters der Kommandoebene, d. h. der Shell in LINUX bzw.
der Windows-Konsole unter Windows, ist diese Einstellung wieder ungültig.

• Permanent

Um den Pfad zu den Java-Programmdateien permanent in die PATH-Variable auf-
zunehmen, muss wie folgt vorgegangen werden. In der Windows Systemsteue-
rung System auswählen und dort den Reiter Erweitert selektieren. Unter Win-
dows Vista wird aus der Systemsteuerung heraus zuerst System und Wartung
gefolgt von System ausgewählt. Anschließend ist links auf Erweiterte Sys-
temeinstellungen zu klicken. Auf diesem Reiter muss dann der Knopf Um-
gebungsvariablen gedrückt werden. Unter Systemvariablen – für alle Be-
nutzer gültige Variablen – oder unter Benutzervariablen – nur für den ak-
tuellen Benutzer gültige Variablen – muss die Variable PATH ausgewählt und der
Eintrag

 ;%JAVA_HOME%\bin

 am Ende hinzufügt werden.

Es empfiehlt sich, ein eigenes Arbeitsverzeichnis zu erstellen, damit die installierten
Programme des JDK und die eigenen Anwendungsprogramme nicht gemischt
abgelegt werden. Damit lässt sich die Erstellung von Sicherungskopien des eigenen
Programmcodes in einfacher Weise durchführen.

Setzen der Umgebungsvariable CLASSPATH

Die Umgebungsvariable CLASSPATH wird vom Compiler javac sowie vom Inter-
preter java des JDK benutzt, um den Weg zu den Bibliotheksklassen der Java-
Klassenbibliothek bzw. zu benutzerdefinierten Klassen zu finden. Seit der Version
1.2 des JDK wird der CLASSPATH automatisch um das aktuelle Verzeichnis und um
den Weg zu den Bibliotheksklassen des JDK bei der Ausführung des Compilers oder
Interpreters erweitert. Deshalb ist es normalerweise nicht erforderlich, den CLASS-
PATH explizit zu setzen. Sollte der Compiler oder der Interpreter dennoch nicht den
Weg zu den Bibliotheksklassen bzw. zu den selbst geschriebenen Klassen im aktu-
ellen Verzeichnis finden, so ist es erforderlich, den CLASSPATH explizit zu setzen.
Wie der CLASSPATH zu setzen ist, hängt vom jeweiligen Betriebssystem ab. Im Fol-
genden zwei Beispiele:

export CLASSPATH=/wrk:. (UNIX/LINUX)32
set CLASSPATH=C:\wrk;. (Windows)

32 Dieses Kommando gilt für die Bourne-Shell (sh).

Einführung in die Programmiersprache Java 71

Der Punkt . hinter dem Doppel- bzw. Strichpunkt steht dabei für das aktuelle Ver-
zeichnis. Es ist auch möglich, mehrere verschiedene Pfade im CLASSPATH anzuge-
ben. Dann kann der Compiler bzw. der Interpreter nach den Klassen in verschiede-
nen Verzeichnissen suchen. Unter Windows werden alternative Pfadangaben durch
ein Semikolon getrennt, unter UNIX-Systemen durch einen Doppelpunkt.

Der CLASSPATH kann auch direkt beim Kompilieren beziehungsweise beim Aufruf
des Interpreters für ein Java-Programm angegeben werden. Das folgende Beispiel
zeigt dies für das Kompilieren:

javac –classpath C:\wrk;. HelloWorld.java

3.5.2 Java Homepages

Die Entwicklung von Java verläuft äußerst dynamisch, sodass herkömmliche Medien
wie Bücher oder Zeitschriften mit der schnellen Entwicklung nicht Schritt halten. Die
meisten Neuerungen erscheinen daher auf den einschlägigen Seiten im Internet.

Hier eine kleine Auflistung gängiger Java Homepages:

• http://www.oracle.com/technetwork/java/index.html

• http://www.developer.com/java

• http://www.jars.com

• http://www.java.net/community
• http://www.javaworld.com

3.6 Java-Anwendungen und Internet-Programmierung

Im Folgenden werden einige wichtige Java-Begriffe, die oft verwechselt werden,
vorgestellt:

• Java-Anwendungen sind Programme, die in Java geschrieben sind und von der
Kommandozeile eines Rechners aus gestartet werden können.

• Java-Applets sind Programme, die in einer HTML-Seite enthalten sind und zu-
sammen mit einer HTML-Seite von einem Web-Server zu einem Rechner ge-
schickt werden. Sie werden von einem Java-fähigen Web-Browser auf der Ma-
schine des Nutzers ausgeführt, wenn die HTML-Seite geladen wird. Der Aufbau
von Java-Anwendungen und Applets ist prinzipiell verschieden. Applets haben an
Bedeutung verloren, seitdem es Servlets und JavaServer Pages gibt.

• Java-Servlets sind Programme, die auf einem Web-Server laufen und dynamisch
HTML-Seiten für einen Web-Browser erzeugen.

• JavaServer Pages (JSP) ermöglichen das Einbinden von Java Code in HTML-
Seiten. Dadurch kann der Seiteninhalt ähnlich wie bei der Verwendung von Serv-
lets dynamisch generiert werden. JSPs bauen auf der Servlet-Technologie auf,
sind aber einfacher in der Anwendung.

• JavaScript ist eine von Java unabhängige Skriptsprache. Es stellt eine Erwei-
terung von HTML zum Aufbau von Internet-Seiten dar und sollte nicht mit Java
verwechselt werden.

72 Kapitel 3

3.7 Übungen

Aufgabe 3.1: Verständnisfragen

3.1.1 Was sind die besonderen Eigenschaften von Java?
3.1.2 Was gehört zur Java-Plattform?
3.1.3 Erläutern Sie das Konzept des Zwischencodes (Bytecodes).
3.1.4 Nennen Sie die drei Bereiche, in welche die Java-Klassenbibliothek der

Standard Edition eingeteilt wird.
3.1.5 Nennen Sie die vier Schritte des Kompiliervorgangs.
3.1.6 Was macht der Java-Compiler bei der lexikalischen Analyse?
3.1.7 Was passiert bei der Syntaxanalyse?
3.1.8 Was wird bei der Codegenerierung generiert?

Aufgabe 3.2: Erste Programmierversuche

3.2.1 Beschreibung der Java-Klassen

Eine Beschreibung aller Java-Klassen befindet sich auf der Homepage von
SUN Microsystems. Diese Dokumentation kann heruntergeladen werden,
steht aber auch online zur Verfügung.

a) Aufrufen der Java-API-Dokumentation

Die Java-API-Dokumentation finden Sie unter der folgenden Adresse:

http://download.oracle.com/javase/index.html

Starten Sie Ihren Browser und rufen Sie die oben genannte Seite auf. Unter
dem Link API Documentation wird die API-Spezifikation der jeweiligen
Java Version aufgerufen. Zum Zeitpunkt des Erscheinens dieses Buches ist
dies noch die Version 6.0. Der folgende Link führt Sie direkt zur API-Spe-
zifikation:

http://download.oracle.com/javase/6/docs/api/index.html

Machen Sie sich mit der Klassendokumentation etwas vertraut, indem Sie
etwas herumspielen.

b) System.out.println()

Um die Zeichenkette Hello World auf der Kommandozeile auszugeben,
wird System.out.println() benutzt:

System.out.println ("Hello World");

Finden Sie mit Hilfe der Klassendokumentation schrittweise heraus, was sich
hinter dieser Anweisung verbirgt. Hierzu folgende Hinweise:

• System ist eine Klasse im Paket java.lang.

• out ist der Name einer Klassenvariablen in der Klasse System. Die
Referenz out zeigt auf ein Objekt der Klasse PrintStream. Die Klasse

PrintStream befindet sich im Paket java.io. Dieses Objekt der Klasse

Einführung in die Programmiersprache Java 73

PrintStream besitzt die Fähigkeit, in die Standardausgabe zu schreiben,
die in der Regel auf den Bildschirm zeigt.

• println() ist eine Methode der Klasse PrintStream.

Beantworten Sie folgende Frage:

Welche weiteren Methoden gibt es in der Klasse PrintStream – außer der
Methode println()?

3.2.2 Die Klasse String

Die Klasse String befindet sich genauso wie die Klasse System im Paket
java.lang. Beantworten Sie die folgenden Fragen mit Hilfe der Klassendo-
kumentation:

a) Welche Methode liefert einen Rückgabewert vom Typ char für einen
bestimmten Index eines Strings? Hinweis zum Index eines Strings: Im
String "Hallo" hat das Zeichen �H� den Indexwert 0.

b) Welche Methode gibt die Länge eines Strings zurück?
c) Welche Aufgabe erfüllt die Methode trim()?
d) Welche Aufgabe erfüllt die Methode replace()?

3.2.3 Erste Versuche mit dem Programm "Hello, world"

a) Installieren Sie als erstes das Java Development Kit, so wie in Kapitel
3.5.1 erläutert.

b) Schreiben Sie das "Hello, world"-Programm aus Kapitel 1.1 in einem von
Ihnen gewählten Editor.

c) Kompilieren Sie die Java-Datei mit Hilfe des Java-Compilers javac.
d) Führen Sie die kompilierte .class-Datei aus.

Einfache
Beispielprogramme

x

y
u

4.1 Lokale Variable, Ausdrücke und Schleifen
4.2 Zeichen von der Tastatur einlesen
4.3 Erzeugen von Objekten
4.4 Initialisierung von Objekten mit Konstruktoren
4.5 Schreiben von Instanzmethoden
4.6 Zusammengesetzte Objekte
4.7 Selbst definierte Untertypen durch Vererbung
4.8 Die Methode printf() und die Klasse Scanner
4.9 Übungen

4 Einfache Beispielprogramme

Mit dem Programm "Hello, world" in Kap. 1.1 und dem Programm "Punkt" in Kap. 2.1
haben Sie bereits erste Erfahrungen im Programmieren gesammelt. Programmieren
kann viel Spaß bereiten. Im Folgenden sollen deshalb andere kurze aussagekräftige
Programme vorgestellt werden, damit Sie sich spielerisch voran arbeiten, um dann
auch Augen und Ohren für die erforderliche Theorie zu haben. Alle Programme des
Buches befinden sich auch auf der beiliegenden CD, sodass Sie die Programme
nicht abzutippen brauchen.

Als Einstieg sollen in Kapitel 4.1 und Kapitel 4.2 einfache Programmbeispiele vor-
gestellt werden, die jedem C-Programmierer bekannt sind. Sie wurden in ihrer
Formulierung in C durch Kernighan und Ritchie [9] weltberühmt. Die in diesen
Kapiteln aufgeführten Beispiele sind für die Programmierung in Java eigentlich
untypisch. Dennoch ist es sinnvoll, solche einfachen Beispiele zu betrachten, um mit
Variablen, Konstanten, Schleifen, Berechnungen und der Ein- und Ausgabe
vertraut zu werden. Die Wucht solch klassischer Beispiele ist so groß, dass in Java
mit dem JDK 5.0 die Methode printf() mit Formatelementen zur Steuerung der
Ausgabe wie in C eingeführt wurde (siehe Kap. 4.8).

Kapitel 4.3 erläutert, was beim Erzeugen von Objekten passiert, und Kapitel 4.4, wie
Objekte mit Hilfe von Konstruktoren initialisiert werden. Da bis zu dieser Stelle
Methoden stets gebrauchsfertig vorgegeben waren, wird in Kapitel 4.5 erklärt, wie
eine Methode definiert und aufgerufen wird und wie Parameter an Methoden
übergeben werden können, d. h. wie formale und aktuelle Parameter zusammen-
hängen. In Kapitel 4.6 wird gezeigt, wie durch eine Aggregation "Groß"-Objekte aus
"Klein"-Objekten (in der Form von Fertigteilen) "zusammengeschraubt" werden kön-
nen und Kapitel 4.7 befasst sich schließlich mit dem Subtyping von Klassen durch
den Vererbungsmechanismus, d. h. mit dem Schreiben von Klassen, die Speziali-
sierungen anderer Klassen sind.

4.1 Lokale Variable, Ausdrücke und Schleifen

Als erstes Programm wird das Temperaturwandlungsprogramm von Kernighan und
Ritchie vorgestellt. Es soll eine Temperaturtabelle zur Umrechnung von Fahrenheit-
Graden in Celsius-Grade erzeugen. Dieses Programm vermittelt erste Erfahrungen
mit einer Schleife und mit der Berechnung von Ausdrücken.

In der ersten Variante dieses Programms werden symbolische Konstanten33 für die
untere Grenze, die obere Grenze und die Schrittweite in Fahrenheit verwendet. Für
die Temperatur in Celsius und Fahrenheit werden Variable verwendet, um für ver-
schiedene Werte in Fahrenheit jeweils den entsprechenden Celsius-Wert zu berech-
nen.

33 Symbolische Konstanten sind Konstanten, die einen Namen tragen. An die Stelle eines Namens

setzt der Compiler dann die der symbolischen Konstanten zugeordnete literale Konstante ein, also
z. B. eine "nackte Zahl" wie die Zahl 10.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_4,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Einfache Beispielprogramme 77

// Datei: Fahrenheit.java

// Klasse zur Wandlung von Temperaturen von Fahrenheit nach Celsius
public class Fahrenheit
{
 public static void main (String[] args)
 {
 // Konstanten
 final int UPPER = 300; // obere Grenze
 // UPPER ist eine symbol. Konstante
 // 300 ist eine literale Konstante
 final int LOWER = 0; // untere Grenze
 final int STEP = 20; // Schrittweite

 // Variablen
 int fahr; // Definition der lokalen Variablen
 // fahr für die Temperatur in
 // Fahrenheit
 int celsius; // Definition der lokalen Variablen
 // celsius für die Temperatur in
 // Celsius

 // Anweisungen
 fahr = LOWER; // als Anfangswert wird fahr
 // der Wert 0 zugewiesen
 while (fahr <= UPPER)
 {
 celsius = 5 * (fahr - 32) / 9;
 // nach dieser Formel berechnet sich
 // der Celsius-Wert aus einem
 // Fahrenheit-Wert

 System.out.print (fahr);
 // der Wert von fahr wird auf
 // den Bildschirm ausgegeben
 System.out.print (" ");
 // Leerzeichen in derselben Zeile
 System.out.println (celsius);
 // Der Wert von Celsius wird in
 // derselben Zeile ausgegeben.
 // Anschließend springt der Cursor
 // zum Anfang der nächsten Zeile.

 fahr = fahr + STEP; // Der nächste Wert von fahr
 // wird berechnet
 }
 }
}

Hier ein Auszug der Programmausgabe:

0 -17
20 -6
40 4

78 Kapitel 4

Die erzeugte Tabelle hat nicht dieselbe schöne, formatierte Form wie in C, wo in der
Tabelle Einer unter Einern und Zehner unter Zehnern stehen. Der Grund hierfür ist,
dass die Ein- und Ausgabemöglichkeiten in Java schwerpunktmäßig auf eine grafi-
sche Benutzerschnittstelle ausgerichtet wurden, die fensterorientiert arbeitet. Eine
zeilenorientierte Ein- und Ausgabe auf dem ganzen Bildschirm galt zunächst nicht
mehr als Stand der Technik und hatte aus diesem Grund für die Entwickler von Java
in den ersten Jahren von Java keine Priorität. Daher gibt es für die Methode
println() keine Formatierungsmöglichkeiten. Da dies jedoch bemängelt wurde,
wurde mit dem JDK 5.0 durch Einführen der Methode printf() (siehe Kap. 4.8)
Abhilfe geschaffen.

Die Größen LOWER, UPPER und STEP sind symbolische Konstanten. Namen sym-
bolischer Konstanten werden üblicherweise in Großbuchstaben geschrieben.

Bitte beachten Sie:

• Die Division 5/9 ergibt Null (ganzzahlige Division ohne Rest). Daher wird die 5
zunächst mit (fahr - 32) multipliziert, damit vor der Division eine große Zahl
entsteht. Im zweiten Schritt wird dann durch 9 geteilt.

• Der Zuweisungsoperator ist das Zeichen =. Für den Vergleichsoperator "ist
gleich" muss die Notation == verwendet werden.

• Die while-Schleife wird abgearbeitet, solange die Bedingung fahr <= UPPER
den Wert true hat.

• Die Methode println() positioniert im Gegensatz zu print() im Anschluss an
die Ausgabe des auszugebenden Ausdrucks den Cursor des Bildschirms zu
Beginn der nächsten Zeile.

• Mit println() bzw. print() kann nicht nur – wie im Falle von "Hello,
world" – Text ausgegeben werden, sondern auch die Werte von Variablen.

Die Methoden println() und print() sind überladen. Überladen
bedeutet, dass es zum selben Methodennamen verschiedene Metho-
den gibt, die sich im Typ ihrer Parameter unterscheiden. Für jeden
Typ gibt es eine eigene Methode und automatisch wird die richtige
Methode aufgerufen. So können an println() bzw. print() bei-
spielsweise auch int- oder float-Variable übergeben werden, wie
z. B. die int-Variable fahr in System.out.print (fahr).

Im Folgenden werden einige andere Varianten dieses Programms vorgestellt. Dabei
soll in der nächsten Variante ohne symbolische Konstanten und nur mit Integer-
Größen, d. h. mit ganzzahligen Variablen und Ausdrücken gearbeitet werden.

// Datei: Fahrenheit2.java

public class Fahrenheit2
{
 public static void main (String[] args)
 {
 int fahr;

Einfache Beispielprogramme 79

 for (fahr = 0; fahr <= 300; fahr = fahr + 20)
 {
 System.out.print (fahr);
 System.out.print (" ");
 System.out.println (5 * (fahr - 32) / 9);
 }
 }
}

Beachten Sie hierbei die folgenden Punkte:

• In der for-Schleife stellt fahr = 0 den Beginn der Schleife, fahr <= 300 die
Bedingung, solange die Schleife durchgeführt wird, und fahr = fahr + 20 den
nächsten Wert, für den die Schleife durchgeführt wird, dar.

• Die Verwendung des Ausdrucks 5 * (fahr - 32) / 9 in der println()-Metho-
de anstelle der Variablen celsius wie im vorherigen Beispiel ist beispielhaft für
die allgemeine Regel:

In jedem Zusammenhang, in dem der Wert einer Variablen eines
bestimmten Typs stehen kann, kann auch ein komplizierter Aus-
druck von diesem Typ stehen.

In der letzten Variante soll mit celsius als float-Variable und mit einer while-
Schleife gearbeitet werden.

// Datei: Fahrenheit3.java

public class Fahrenheit3
{
 public static void main (String[] args)
 {
 // Konstanten
 final int UPPER = 300; // obere Grenze
 final int LOWER = 0; // untere Grenze
 final int STEP = 20; // Schrittweite

 int fahr;
 float celsius;

 fahr = LOWER;

 while (fahr <= UPPER)
 {
 celsius = (float) (5.0 / 9) * (fahr - 32);
 System.out.println (fahr + " " + celsius);
 fahr = fahr + STEP;
 }
 }
}

80 Kapitel 4

Hier ein Auszug der Programmausgabe:

0 -17.777779
20 -6.666667
.
280 137.77779
300 148.8889

Beachten Sie:

• Die Konstante 5.0 ist vom Typ double. Damit ist

(5.0 / 9) * (fahr - 32)

vom Typ double – der Compiler muss 9 und (fahr - 32) ohne eine Anwei-
sung des Programmierers implizit in den Gleitpunkttyp double wandeln. Man
spricht von impliziter Typkonvertierung, wenn die Konvertierung vorgenommen
wird, ohne dass der Programmierer dies explizit in der Programmiersprache for-
mulieren muss. Die Konvertierung erfolgt automatisch, wenn ein Wert eines
schmäleren Typs wie z. B. die 9 mit einem Wert eines breiteren Typs wie z. B. der
5.0 verknüpft wird (siehe Kap. 7.7).

• Bei der Zuweisung

celsius = (float) (5.0 / 9) * (fahr - 32)

muss eine explizite Typkonvertierung von double nach float stattfinden, da
die Variable celsius vom Typ float ist und damit ein breiterer Typ in einen
schmäleren Typ gewandelt werden muss. Diese Typkonvertierung erfolgt mit Hilfe
des so genannten cast-Operators (siehe Kap. 7.7.1), der von der Form (daten-
typname) ist. Dabei wird der hinter dem cast-Operator stehende Ausdruck in den
Datentyp datentypname des cast-Operators gewandelt.

• Mit println() bzw. print() werden auch Zeichenketten, die mit Variablen
durch den Verkettungsoperator + verknüpft sind, ausgegeben.

 So kann anstelle von

System.out.print (fahr);
System.out.print (" ");
System.out.println (celsius);

 in knapper Form geschrieben werden:

 System.out.println (fahr + " " + celsius);

Ist eine Variable mit einem String durch den Verkettungsoperator +
verknüpft, so wird der Wert der Variablen automatisch in einen
String gewandelt und an den vorhandenen String angehängt.

Einfache Beispielprogramme 81

Bild 4-1 visualisiert die Programmstruktur für die drei Fahrenheit-Programme am
Beispiel der Klasse Fahrenheit3. In allen drei Programmvarianten liegt jeweils nur
eine Wrapper-Klasse34 für main() vor, d. h. die Methode main()wird in eine Klasse
eingehüllt.

Fahrenheit3

 main() : void

Bild 4-1 Visualisierung der Programmstruktur: eine Wrapper-Klasse für die Methode main()

4.2 Zeichen von der Tastatur einlesen

Im Folgenden wird ein Zeichenzählprogramm gezeigt, welches die Zeichen zählt, die
von der Tastatur eingegeben werden. Der Programmablauf wird solange beim Aufruf
der Funktion

c = System.in.read();

blockiert, bis der Bediener seine Eingabe von beliebig vielen Zeichen mit der
<RETURN>-Taste abgeschlossen hat. Dann liest das Programm aus dem Tastatur-
puffer35 die eingegebenen Zeichen solange aus, bis das Zeichen <RETURN> gelesen
wird. Danach wird der Bediener erneut aufgefordert, Zeichen einzugeben. Die Ein-
gabe von Zeichen kann mit der Tastenkombination <Strg>36 + Z, also das gleichzei-
tige Drücken der <Strg>-Taste und der Taste mit dem Zeichen Z, abgebrochen wer-
den. Diese Tastenkombination erzeugt das Steuerzeichen ^Z. Unter LINUX muss
man die Tastenkombination <STRG> + D anstelle von <STRG> + Z betätigen.

Hier das Programm:

// Datei: Zeichen.java

public class Zeichen
{
 // beachten Sie die Deklaration der Methode main() nicht
 public static void main (String[] args) throws Exception
 {
 int c = 0;
 int anzahl = 0;

 System.out.print ("Bitte eine Folge von Zeichen eingeben ");
 System.out.println ("und mit <RETURN> abschliessen");

 do
 {
 // System.in.read() gibt einen int-Wert im Bereich 0 bis
 // 255 zurück. -1 wird zurückgegeben, wenn kein Zeichen

34 Mit Hilfe einer Wrapper-Klasse wird ein nicht objektorientiertes Konstrukt – hier die Methode

main() – in die Gestalt einer Klasse gebracht (eingehüllt = engl. wrapped).
35 Von der Tastatur eingegebene Zeichen kommen zuallererst in den so genannten Tastaturpuffer.
36 Die Abkürzung Strg steht für Steuerung.

82 Kapitel 4

 // mehr im Dateipuffer steht.
 c = System.in.read();

 // Mit (char) c wird die int-Variable c
 // in ein Zeichen gewandelt.
 System.out.println (
 "ASCII-Code: " + c + " Zeichen: " + (char) c);
 anzahl = anzahl + 1;

 } while (c != -1);
 System.out.println ("Anzahl: " + anzahl);
 }
}

Es wurde eingegeben:

FHTE<RETURN>
<STRG> + Z

Im Protokoll ist zu sehen, dass auf einem Windows-Rechner bei der Eingabe eines
<RETURN> das Zeichen '\r' mit dem ASCII-Wert 13 und das Zeichen '\n' mit
dem ASCII-Wert 10 erzeugt wird37. Die eingegebenen Zeichen – hier 'F' 'H' 'T'
'E' – werden im Tastaturpuffer zwischengespeichert und werden erst mit der
Eingabe von <RETURN> an den so genannten Dateipuffer des Programms über-
geben. Die Tastenkombination <STRG> + Z erzeugt das Steuerzeichen ^Z. Dieses
Steuerzeichen hat den ASCII-Code -1.

Die Ausgabe des Programms ist:

FHTE
ASCII-Code: 70 Zeichen: F
ASCII-Code: 72 Zeichen: H
ASCII-Code: 84 Zeichen: T
ASCII-Code: 69 Zeichen: E
ASCII-Code: 13 Zeichen:
ASCII-Code: 10 Zeichen:

^Z
ASCII-Code: -1 Zeichen: ?
Anzahl: 7

Beachten Sie,

• dass throws Exception hier noch nicht erklärt werden kann und an dieser
Stelle einfach unbesehen verwendet werden soll,

• dass die Notation != "ungleich" bedeutet, == bedeutet "gleich",

• dass die Methode System.in.read() den Wert -1 zurückgibt, wenn das Datei-
ende – erzeugt durch <CTRL> + Z – erreicht ist.

37 Bei einem UNIX-Rechner wird durch Eingabe von <RETURN> nur das Zeichen '\n' erzeugt, nicht

jedoch zusätzlich das Zeichen '\r'. Im ASCII-Zeichensatz (siehe Tabelle 5-6) trägt das Steuer-
zeichen '\r' den Namen CR (Carriage Return) und das Steuerzeichen '\n' den Namen NL
(New Line) oder LF (Line Feed).

Einfache Beispielprogramme 83

Die Methode System.in.read() legt bei jedem Aufruf als Rückgabewert das
nächste Zeichen des Eingabestroms in der Variablen c ab. Durch diese Zuweisung
wird der vorhandene Wert von c durch den Wert des nächsten Zeichens überschrie-
ben. Nach dem Aufruf der Methode System.in.read() steht der Lesezeiger im
Dateipuffer ein Zeichen weiter als vor dem Aufruf. Der Eingabestrom der Zeichen
wird als Eingabedatei (Standard-Input) gesehen. Deshalb spricht man statt vom
Lesezeiger auch vom Dateizeiger.

Es sei von der Tastatur 'F' 'H' 'T' 'E' mit abschließendem <RETURN> einge-
geben worden. Mit der Eingabe <RETURN> wird der Inhalt des Tastaturpuffers 'F'
'H' 'T' 'E' <RETURN> als Dateipuffer an das Programm übergeben. Der Datei-
zeiger steht dabei im Dateipuffer vor dem 'F' von 'F' 'H' 'T' 'E' '\r' '\n'
(siehe Bild 4-2). Nach dem Aufruf der Methode System.in.read() steht der Datei-
zeiger ein Zeichen weiter, d. h. vor dem 'H'.

Dateizeiger nach
erstem Aufruf von
System.in.read()

‘F’ ‘T’ ‘H’ ‘E’ ‘\r’ Dateipuffer

Dateizeiger vor erstem
Aufruf von
System.in.read()

Dateizeiger nach
zweitem Aufruf von
System.in.read()

‘\n’

Bild 4-2 Veranschaulichung des Dateizeigers beim Lesevorgang mit System.in.read()

Liest man mit System.in.read() von der Tastatur ein, so werden die Zeichen zu-
nächst im Tastaturpuffer zwischengespeichert (gepuffert), solange kein <RETURN>
eingegeben wird. Der Inhalt des Tastaturpuffers wird erst dann in den Dateipuffer
übergeben, wenn der Benutzer ein <RETURN> eingibt. Bild 4-3 zeigt ein Beispiel für
die zeilenweise38 Pufferung und die zeilenweise Übergabe des Inhalts des Tas-
taturpuffers in den Dateipuffer.

Dateipuffer

Tastatur-
Eingabe von

'F'

'H'

'T'

'E'

<RETURN>

'F''H''T''E''\r''\n'

Tastaturpuffer

'F'

'F''H'

'F''H''T'

'F''H''T''E'

'F''H''T''E'<RETURN>

Bild 4-3 Zeilenweise Pufferung im Tastaturpuffer

38 Eine Zeile ist definiert durch eine Folge von Zeichen bis zum ersten <RETURN>, dem Zeilenende.

84 Kapitel 4

Bild 4-4 visualisiert die Programmstruktur. Auch hier liegt nur eine Wrapper-Klasse
für main() vor.

Zeichen

main() : void

Bild 4-4 Visualisierung der Programmstruktur: eine Wrapper-Klasse für die Methode main()

4.3 Erzeugen von Objekten

Im Beispiel der Klasse Punkt in Kapitel 2.4 wurde ein Punkt erzeugt, indem in der
Methode main() der Klasse Punkt die folgende Anweisung geschrieben wurde:

Punkt p = new Punkt(); // hiermit wird ein Punkt erzeugt

Die Erzeugung lässt sich auch in 2 Schritten durchführen:

Punkt p;
p = new Punkt();

Da

Punkt p;

im Methodenrumpf steht, bedeutet dies, dass in der Methode eine Variable p vom
Typ der Klasse Punkt angelegt wird. Eine solche Variable ist nur innerhalb ihres
Blocks – hier innerhalb des Methodenrumpfes – sichtbar. Sie wird als lokale
Variable bezeichnet.

Eine Variable p einer Klasse Punkt ist in Java eine Referenz auf ein Objekt der
Klasse Punkt. Eine Referenz ist nichts anderes als ein Zeiger. In Java spricht man
aber nicht von Zeigern, sondern von Referenzen, weil man mit Zeigern in den Pro-
grammiersprachen C und C++ zum Teil sehr schlechte Erfahrungen gemacht hat.
Der Unterschied zu den Zeigern in C und C++ ist, dass es in Java keine Zeiger-
arithmetik gibt. Es ist nur möglich, auf ein selbst erzeugtes Objekt zu zeigen. Es ist
aber nicht möglich, wie in C oder C++ den Zeiger zu verändern und zu beginnen, von
der entsprechenden Stelle an beliebig über den Arbeitsspeicher zu laufen und auf
andere Speicherzellen zuzugreifen.

Mit

Punkt p;

wird in Java eine Referenzvariable mit dem Namen p angelegt. Diese
Referenzvariable kann nur auf Objekte der Klasse Punkt zeigen,
nicht aber auf Objekte anderer Klassen, wie z. B. der Klassen Pferd
oder Blume.

Einfache Beispielprogramme 85

Nun zur Anweisung

p = new Punkt();

Der new-Operator wird verwendet, um Objekte zu erzeugen. Mit

new Punkt

erfährt der new-Operator, dass er ein Objekt der Klasse Punkt erzeugen soll. Dies
ist der erste Schritt der Anweisung:

p = new Punkt();

Der Aufruf des new-Operators mit seinem Parameter Punkt wurde zur besseren
Übersicht unterstrichen. Im 2. Schritt wird der so genannte Default-Konstruktor, der
keine Parameter hat, aufgerufen:

p = new Punkt();

Das Elegante an dieser Notation ist, dass Punkt zum einen ein Parameter für den
new-Operator ist, damit dieser weiß, was für ein Objekt er überhaupt erzeugen soll,
und dass zum anderen mit Absicht der Name des Konstruktors gleich dem Klassen-
namen gewählt wurde und damit Punkt() dem Aufruf des Konstruktors entspricht.

Der new-Operator gibt als Rückgabewert die Referenz auf die Stelle des Speichers
zurück, an der er das Objekt erzeugt hat. Dieser Rückgabewert wird im Rahmen
einer Zuweisung in die Referenzvariable p kopiert. Damit kann man im weiteren
Programmverlauf mit Hilfe der Referenz p auf das Objekt zugreifen.

4.4 Initialisierung von Objekten mit Konstruktoren

Das folgende Beispiel zeigt die Klasse Punkt2 und die Klasse TestPunkt2. Bei
professionellen Programmen ist es üblich, für jede Klasse eine eigene Testklasse zu
schreiben. Die Klasse TestPunkt2 dient also dazu, die Klasse Punkt2 auszu-
testen. Die Testklasse TestPunkt2 ist wieder eine Wrapper-Klasse, die eine einzige
Methode, die Methode main() enthält. Die Klasse Punkt2 enthält keine main()-
Methode. Dies bedeutet, dass die Klasse Punkt2 nicht gestartet werden kann. Das
ist vollkommen normal. Ein Punkt stellt ein Objekt dar, das benutzt wird und das nicht
von selbst aktiv handelt. Das Erzeugen von Objekten, d. h. Punkten, und der Aufruf
von Methoden der Punkt-Objekte findet in der main()-Methode der Testklasse statt.

In der Regel wird jede Klasse in einer eigenen Datei gespeichert.

Daher liegt die Klasse Punkt2 in der Datei Punkt2.java und die Klasse Test-
Punkt2 in der Datei TestPunkt2.java.

86 Kapitel 4

Es ist aber durchaus möglich, dass eine Datei mehrere Klassen ent-
hält. Allerdings kann nur eine dieser Klassen public sein.

Hier das Programm:

// Datei: Punkt2.java

public class Punkt2
{
 private int x;

 public Punkt2() // Dieser Konstruktor wird
 { // noch erklärt
 System.out.println ("Default-Konstruktor");
 x = 1;
 }

 public Punkt2 (int u) // Dieser Konstruktor wird noch
 { // erklärt
 System.out.print ("Konstruktor mit einem Parameter:");
 System.out.println (" x = " + u);
 x = u;
 }

 public void print()
 {
 System.out.println ("x = " + x);
 }
}

// Datei: TestPunkt2.java

public class TestPunkt2
{
 public static void main (String[] args)
 {
 Punkt2 p1 = new Punkt2(); // Erzeugen eines Punktes.
 // x wird durch Default-
 // konstruktor auf 1 gesetzt
 Punkt2 p2 = new Punkt2 (3); // Erzeugen eines Punktes.
 // x wird auf 3 gesetzt
 Punkt2 p3 = new Punkt2 (10);// Erzeugen eines Punktes.
 // x wird auf 10 gesetzt

 System.out.println ("Koordinate des Punktes p1:");
 p1.print();

 System.out.println ("Koordinate des Punktes p2:");
 p2.print();

 System.out.println ("Koordinate des Punktes p3:");
 p3.print();
 }
}

Einfache Beispielprogramme 87

Die Ausgabe des Programms ist:

Default-Konstruktor
Konstruktor mit einem Parameter: x = 3
Konstruktor mit einem Parameter: x = 10
Koordinate des Punktes p1:
x = 1
Koordinate des Punktes p2:
x = 3
Koordinate des Punktes p3:
x = 10

Beachten Sie die Methode Punkt2():

public Punkt2()
{
 System.out.println ("Default-Konstruktor");
 x = 1;
}

Diese Methode ist etwas Besonderes. Sie trägt den gleichen Namen wie die Klasse
und hat keinen Rückgabewert. Eine solche Methode heißt Konstruktor.

Eine Methode, die gleich heißt wie die Klasse, heißt Konstruktor. Ein
Konstruktor dient zur Initialisierung eines Objektes.

Da kein Übergabeparameter angegeben ist, handelt es sich um einen so genannten
Default-Konstruktor. Jeder Punkt, der mit diesem Default-Konstruktor initialisiert
wird, hat dieselben Koordinaten. Mit Hilfe dieses Default-Konstruktors kann man
nicht jeden Punkt individuell initialisieren. Dieser Konstruktor wird automatisch aufge-
rufen, wenn ein Objekt mit Hilfe des new-Operators erzeugt wird und die Parameter-
liste leer ist, d. h. zwischen den runden Klammern des Konstruktors nichts steht:

Punkt2 p1 = new Punkt2();

Die Klasse Punkt2 enthält noch einen zweiten Konstruktor:

public Punkt2 (int u)
{
 System.out.print ("Konstruktor mit einem Parameter:");
 System.out.println (" x = " + u);
 x = u;
}

Dieser wird automatisch aufgerufen, wenn ein Objekt mit Hilfe des new-Operators
erzeugt wird und in der Parameterliste ein Parameter des Typs int steht, wie in
folgendem Beispiel:

Punkt2 p2 = new Punkt2 (3);

88 Kapitel 4

Mit Hilfe dieses Parameters ist es nun möglich, einen jeden Punkt individuell zu
initialisieren. Der Compiler hat keine Schwierigkeiten damit, dass es zwei Methoden
mit demselben Namen gibt. An der Anzahl der Parameter sieht er hier, welche der
beiden Methoden er zu nehmen hat. Man sagt, der Konstruktor ist überladen39.

Wenn man selbst keinen Konstruktor schreibt, dann stellt der Compiler einen vorde-
finierten Default-Konstruktor bereit, der es ermöglicht, dass ein Aufruf

Punkt2 p1 = new Punkt2();

kompilierbar ist.

Bild 4-5 symbolisiert die Programmstruktur. Neben der Wrapper-Klasse TestPunkt2
für die Methode main() existieren 3 Objekte der Klasse Punkt:

 TestPunkt2

main() : void
{

}

p1

p2

p3

:Punkt

x = 1

:Punkt

x = 3

:Punkt

x = 10

Bild 4-5 Wrapper-Klasse TestPunkt2 erzeugt 3 Punkte

4.5 Schreiben von Instanzmethoden

Mit Methoden kann man Objekte bearbeiten. Im Folgenden wird wieder eine Klasse
Punkt behandelt. Punkt-Objekte liegen in einer zweidimensionalen Ebene und wer-
den durch ihre kartesischen Koordinaten x und y charakterisiert. Dabei soll eine
Methode geschrieben werden, um ein Punkt-Objekt zu verschieben. Der Punkt P1
mit den Koordinaten x und y soll um den Vektor (deltaX, deltaY), wie in Bild 4-6
gezeigt, verschoben werden.

x

y deltaX

deltaY

0

P1(x,y)

P2(x+deltaX,y+deltaY)

Bild 4-6 Verschieben eines Punktes (Translation)

39 Überladen von Methoden wird in Kap. 9.4 behandelt.

Einfache Beispielprogramme 89

Konkret soll der Punkt P1(1,2) um den Vektor (4,1) nach P2(5,3) verschoben werden.
Die bisherige Klasse Punkt3 lautet:

// Datei: Punkt3.java

public class Punkt3 // Deklaration der Klasse Punkt3
{
 private int x; // Datenfeld für die x-Koordinate vom Typ int
 private int y; // Datenfeld für die y-Koordinate vom Typ int

 public int getX() // eine Methode, um den x-Wert
 { // abzuholen
 return x;
 }

 public int getY() // eine Methode, um den y-Wert
 { // abzuholen
 return y;
 }

 public void setX (int i) // eine Methode, um den x-Wert
 { // zu setzen
 x = i;
 }

 public void setY (int i) // eine Methode, um den y-Wert
 { // zu setzen
 y = i;
 }
}

// Datei: TestPunkt3.java

public class TestPunkt3
{
 public static void main (String[] args)
 {
 Punkt3 p = new Punkt3(); // hiermit wird ein Punkt
 // erzeugt
 p.setX (1); // Aufruf der Methode setX()
 p.setY (2); // Aufruf der Methode setY()

 System.out.println ("Die Koordinaten des Punktes p sind: ");
 System.out.println (p.getX());
 System.out.println (p.getY());
 }
}

Die Ausgabe des Programms ist:

Die Koordinaten des Punktes p sind:
1
2

Im Folgenden soll die Realisierung der Methode verschiebe() betrachtet werden.
Methoden müssen in der Lage sein, für verschiedene Parameter zu funktionieren. Im

90 Kapitel 4

vorliegenden Beispiel muss eine Verschiebung eines beliebigen Punktes um einen
beliebigen Vektor realisiert werden können. Ein beliebiger Punkt hat das Datenfeld x,
welches einen konkreten Zahlenwert für die Abszisse trägt, und das Datenfeld y für
die Ordinate. Damit lautet der Algorithmus:

Nimm den aktuellen Wert von x und addiere den Wert von deltaX.
Nimm den aktuellen Wert von y und addiere den Wert von deltaY.

Dieser Algorithmus wird programmtechnisch auf jeweils eine Zuweisung abgebildet.
Der Algorithmus lautet:

x = x + deltaX;
y = y + deltaY;

Damit ist der Rumpf der Methode fast schon fertig. Ein Rumpf einer Methode hat
immer eine öffnende und eine schließende geschweifte Klammer:

{
 x = x + deltaX;
 y = y + deltaY;
}

Es ist üblich, die Anweisungen gegenüber den geschweiften Klammern einzurücken,
um die Blockgrenzen40 besser zu erkennen.

Aufgerufen wird dieser Algorithmus über seinen Namen. Das ist der Methodenname.
Er lautet hier verschiebe. Er steht im Methodenkopf, welcher vor dem Methoden-
rumpf angeordnet ist. Einen Rückgabewert hat diese Methode nicht. Dies wird durch
das Schlüsselwort void41 vor dem Methodennamen beschrieben. Die Methode soll
von außen aufrufbar sein. Also erhält sie den Zugriffsmodifikator public. Damit ist
die Definition der Methode schon fast fertig. Der momentane Zwischenstand ist:

public void verschiebe
{
 x = x + deltaX;
 y = y + deltaY;
}

Was noch fehlt, ist der Übergabemechanismus. Schließlich sollen deltaX und
deltaY als Parameter an die Methode übergeben werden. Zu diesem Zweck dient
die Liste der Übergabeparameter, welche im Methodenkopf hinter dem Methoden-
namen steht. In runden Klammern wird hierbei der Typ und Name eines jeden
Übergabeparameters aufgeführt. Damit lautet die vollständige Definition der Methode
verschiebe():

public void verschiebe (int deltaX, int deltaY)
{
 x = x + deltaX;
 y = y + deltaY;
}

40 Ein Block enthält Anweisungen, die zwischen geschweiften Klammern als Blockbegrenzer stehen.
41 void bedeutet "leer".

Einfache Beispielprogramme 91

Nun zum Aufruf der Methode verschiebe(). Eine Instanzmethode wird für einen
konkreten Punkt aufgerufen. In der Methode main() der Klasse TestPunkt3 gibt
es den Punkt p:

public static void main (String[] args)
{
 Punkt3 p = new Punkt3(); // hiermit wird ein Punkt erzeugt
 p.setX (1); // Aufruf Methode setX() für den Punkt p
 p.setY (2); // Aufruf Methode setY() für den Punkt p

 System.out.println ("Die Koordinaten des Punktes p sind: ");
 System.out.println (p.getX());
 System.out.println (p.getY());
}

Die Koordinaten des Punktes p werden mit Hilfe der Methoden setX() und setY()
auf x gleich 1 und y gleich 2 gesetzt. Eine Verschiebung um den Vektor (4, 1) erhält
man durch:

p.verschiebe (4, 1);

Hier das komplette Programm:

// Datei: Punkt4.java

public class Punkt4 // Deklaration der Klasse Punkt4
{
 private int x; // Datenfeld für die x-Koordinate vom Typ int
 private int y; // Datenfeld für die y-Koordinate vom Typ int

 public int getX() // eine Methode, um den x-Wert
 { // abzuholen
 return x;
 }

 public int getY() // eine Methode, um den y-Wert
 { // abzuholen
 return y;
 }

 public void setX (int i) // eine Methode, um den x-Wert
 { // zu setzen
 x = i;
 }

 public void setY (int i) // eine Methode, um den y-Wert
 { // zu setzen
 y = i;
 }

 public void verschiebe (int deltaX, int deltaY)
 {
 x = x + deltaX;
 y = y + deltaY;
 }
}

92 Kapitel 4

Die folgende Klasse TestPunkt soll testen, ob das Verschieben erfolgreich war:

// Datei: TestPunkt4.java

public class TestPunkt4
{
 public static void main (String[] args)
 {
 Punkt4 p = new Punkt4(); // hiermit wird ein Punkt erzeugt
 p.setX (1); // Aufruf der Methode setX()
 p.setY (2); // Aufruf der Methode setY()

 System.out.println ("Die Koordinaten des Punktes p sind: ");
 System.out.println (p.getX());
 System.out.println (p.getY());

 p.verschiebe (4, 1);
 System.out.println ("Die Koordinaten des Punktes p sind: ");
 System.out.println (p.getX());
 System.out.println (p.getY());
 }
}

Die Ausgabe des Programms ist:

Die Koordinaten des Punktes p sind:
1
2
Die Koordinaten des Punktes p sind:
5
3

Was passiert nun beim Aufruf von verschiebe (4, 1)? Es werden die beiden
lokalen Variablen deltaX und deltaY angelegt. deltaX und deltaY werden auch
als formale Parameter bezeichnet. Diese werden mit den Werten der aktuellen
Parameter, d. h. mit dem aktuellen Parameter 4 und dem aktuellen Parameter 1
initialisiert. Was programmtechnisch beim Aufruf abläuft, kann man sich am besten
folgendermaßen veranschaulichen:

int deltaX = 4; // Anlegen der Variablen deltaX und Zuweisung der 4
int deltaY = 1; // Anlegen der Variablen deltaY und Zuweisung der 1

Durch diesen Übergabemechanismus erhalten die lokalen Variablen deltaX und
deltaY definierte Werte für die Abarbeitung des Methodenrumpfes.

4.6 Zusammengesetzte Objekte

Unter einem Kreiseck wird hier ein Quadrat – ein rechtwinkliges Viereck mit vier
gleich langen Seiten – verstanden, welches von einem Kreis so ausgefüllt ist, dass
die Seiten des Quadrats Tangenten an den Kreis sind. Mit anderen Worten, der Kreis
soll einen Inkreis darstellen. Der Mittelpunkt des Kreisecks soll im Ursprung eines
kartesischen Koordinatensystems liegen.

Einfache Beispielprogramme 93

0

x

y
u

Bild 4-7 Kreiseck mit Mittelpunkt im Ursprung des kartesischen Koordinatensystems

In Java wird ein Kreiseck erzeugt durch eine Klasse, die einen Kreis und ein Eck
(Quadrat) aggregiert. Das Eck selbst stellt eine Aggregation von 4 Punkten dar. Sind
die Klassen Eck und Kreis schon bekannt, so kann ein Objekt der Klasse Kreis-
eck aus Objekten der schon bekannten Klassen Kreis und Eck zusammengebaut
werden.

 :Kreiseck

Referenz auf Eck

:Kreis

:Eck

Referenz auf Kreis

:Punkt Referenz auf Punkt

Referenz auf Punkt

Referenz auf Punkt

Referenz auf Punkt

:Punkt

:Punkt

:Punkt

Bild 4-8 "Groß"-Objekt Kreiseck zusammengesetzt aus "Klein"-Objekten Kreis und Eck

Methodenaufrufe einer Anwendung gehen an das zusammengesetzte Objekt der
Klasse Kreiseck, z. B. "skaliere (2)", was eine Vergrößerung um den Faktor 2
bedeuten soll. Die entsprechende Methode des zusammengesetzten Objektes leitet
diese Botschaft dann weiter an das aggregierte Objekt der Klasse Kreis und das
aggregierte Objekt der Klasse Eck durch Aufruf deren Skalierungsmethoden. Das
"Groß"-Objekt delegiert also den Aufruf, der an das "Groß"-Objekt selbst gerichtet
war, weiter an seine Komponenten, die "Klein"-Objekte. Dieses Prinzip wird als Dele-
gationsprinzip bezeichnet. Das folgende Java-Programm enthält die Klassen
Punkt5, Eck, Kreis, KreisEck und KreisEckTest.

// Datei: Punkt5.java

public class Punkt5
{
 private double x;
 private double y;

94 Kapitel 4

 public Punkt5 (double x, double y)
 {
 this.x = x;
 this.y = y;
 }

 public double getX()
 {
 return x;
 }

 public void setX (double u)
 {
 x = u;
 }

 public double getY()
 {
 return y;
 }

 public void setY (double v)
 {
 y = v;
 }
}

// Datei: Eck.java

public class Eck
{
 private Punkt5 p1;
 private Punkt5 p2;
 private Punkt5 p3;
 private Punkt5 p4;

 public Eck (double u) // u soll eine halbe Seitenlänge
 { // des Quadrats darstellen
 System.out.println ("Viereck wird erzeugt aus 4 Eckpunkten");
 p1 = new Punkt5 (u, u);
 p2 = new Punkt5 (-u, u);
 p3 = new Punkt5 (u, -u);
 p4 = new Punkt5 (-u, -u);
 }

 public void skaliere (double u)
 {
 p1.setX (p1.getX() * u);
 p1.setY (p1.getY() * u);
 p2.setX (p2.getX() * u);
 p2.setY (p2.getY() * u);
 p3.setX (p3.getX() * u);
 p3.setY (p3.getY() * u);
 p4.setX (p4.getX() * u);
 p4.setY (p4.getY() * u);
 }

Einfache Beispielprogramme 95

 public double berechneFlaeche()
 {
 return (2 * p1.getX()) * (2 * p1.getY());
 }
}

// Datei: Kreis.java

public class Kreis
{
 private double radius;
 static final double PI = 3.1415; // PI ist eine konstante
 // Klassenvariable

 public Kreis (double u)
 {
 radius = u;
 }

 public void skaliere (double u)
 {
 radius = radius * u;
 }

 public double berechneFlaeche()
 {
 return (PI * radius * radius);
 }

 public double getRadius()
 {
 return radius;
 }
}

// Datei: Kreiseck.java

public class Kreiseck
{
 private Kreis kreisref;
 private Eck eckref;

 public Kreiseck (double alpha) // alpha ist der Radius des
 // Inkreises
 {
 kreisref = new Kreis (alpha);
 eckref = new Eck (alpha);
 }

 public void skaliere (double u)
 {
 kreisref.skaliere (u); // Delegationsprinzip. Der Aufruf
 eckref.skaliere (u); // skaliere (u) wird an die Komponenten
 } // weitergeleitet.

96 Kapitel 4

 public double flaechendifferenz()
 {
 return (eckref.berechneFlaeche() -
 kreisref.berechneFlaeche());
 }

 public Kreis getKreis()
 {
 return kreisref;
 }
}

// Datei: KreiseckTest.java

public class KreiseckTest
{
 public static void main (String[] args)
 {
 Kreiseck kreiseckref = new Kreiseck (1);
 System.out.println ("Radius = " +
 kreiseckref.getKreis().getRadius());
 System.out.println ("Die Flächendifferenz ist " +
 kreiseckref.flaechendifferenz());
 kreiseckref.skaliere (2);
 System.out.println ("Es wurde um den Faktor 2 skaliert");
 System.out.println ("Radius = " +
 kreiseckref.getKreis().getRadius());
 System.out.println ("Die Flächendifferenz ist " +
 kreiseckref.flaechendifferenz());
 }
}

 Die Ausgabe des Programms ist:

Viereck wird erzeugt aus 4 Eckpunkten
Radius = 1.0
Die Flächendifferenz ist 0.8584999999999998
Es wurde um den Faktor 2 skaliert
Radius = 2.0
Die Flächendifferenz ist 3.4339999999999993

Beachten Sie, dass im Konstruktor des Kreisecks die Referenzen kreisref und
eckref des Kreiseck-Objektes initialisiert werden müssen. Die Initialisierung erfolgt
durch Erzeugen eines Objektes der Klasse Kreis bzw. der Klasse Eck mit Hilfe des
new-Operators. Dabei wird der Referenz kreisref die Referenz auf das vom new-
Operator erzeugte Objekt der Klasse Kreis zugewiesen und der Referenz eckRef
die Referenz auf das vom new-Operator erzeugte Objekt der Klasse Eck. Genauso
müssen im Konstruktor von Eck die Referenzen auf die vier Eckpunkte durch Erzeu-
gen der Eckpunkte initialisiert werden.

4.7 Selbst definierte Untertypen durch Vererbung

Das folgende Programm soll eine erste Einführung in die Vererbung sein. Eine
Klasse kann von einer so genannten Basisklasse, von der sie abgeleitet wird, den

Einfache Beispielprogramme 97

gesamten Code, der aus Datenfeldern und Methoden besteht, erben und kann
diesen Code durch zusätzliche Datenfelder und Methoden ergänzen. Man spricht
dann davon, dass die abgeleitete Klasse die Basisklasse erweitert. Dies dient dazu,
um von einer bereits vorhandenen allgemeineren Klasse eine spezialisierte Klasse
abzuleiten. Mit anderen Worten, Vererbung dient dem Subtyping, d. h. dem Bilden
eines Untertyps für einen vorhandenen Typ. Als Beispiel für einen Typ soll die Klasse
Person dienen. Ein Untertyp von Person ist die Klasse Student. Ein Objekt eines
Untertyps (einer abgeleiteten Klasse) muss auch als Objekt des allgemeineren Typs
(der Basisklasse) auftreten können. Dies kommt auch darin zum Ausdruck, dass die
Beziehung zwischen den beiden Klassen als "is a"-Beziehung bezeichnet wird.
Eine "is a"-Beziehung ist in Bild 4-9 zu sehen. Sie wird dargestellt durch einen Pfeil
von der abgeleiteten Klasse zu der Basisklasse, wobei die Pfeilspitze ein nicht aus-
gefülltes Dreieck ist.

Abgeleitet werden Klassen. Objekte können nicht abgeleitet werden.
Durch Ableitung wird ein Untertyp geschaffen. Dies nennt man auch
Subtyping.

Person

setNachname()
setVorname()
print()

nachname
vorname

Student

matrikelnummer

setMatrikelnummer()
printMatrikelnummer()

"is-a"-Beziehung

Bild 4-9 Ableitung der Klasse Student von der Klasse Person

Der Mechanismus der Vererbung hat auch den Vorteil, dass dem Programmierer
beim Erstellen eines Untertyps ein fehlerträchtiges "Copy and Paste" der Datenfelder
und Methoden des allgemeineren Typs in den Subtyp erspart bleibt.

Nun zum Beispiel des Studenten. Ein Student ist bekanntermaßen eine Person, die
studiert. Wenn man studieren möchte, muss man immatrikuliert werden und erhält
eine Matrikelnummer. Kurz, wer eine Matrikelnummer hat, ist eingeschrieben und ist
somit ein Student. Also kann man einen Studenten beschreiben als eine Person, die
eine Matrikelnummer hat.

// Datei: Person.java

import java.util.Scanner;

public class Person
{

98 Kapitel 4

 private String name; // Namen sind konstante Zeichenketten
 private String vorname; // und können in einer Variable vom
 // Typ String gespeichert werden. Die
 // Klasse String ist eine Bibliotheks-
 // klasse.
 public Person()
 {
 System.out.print ("\nNachnamen eingeben ");
 System.out.print ("(Ende mit <CR>): ");
 name = input();

 System.out.print ("Vornamen eingeben ");
 System.out.print ("(Ende mit <CR>): ");
 vorname = input();
 }

 public String input() // bitte überlesen Sie diese Methode
 {
 Scanner eingabe = new Scanner (System.in);
 return eingabe.next();
 }

 public void print()
 {
 System.out.print ("\nNachname: " + name);
 System.out.print ("\nVorname: " + vorname);
 }
}

// Datei: Student.java

public class Student extends Person
{
 private String matrikelnummer;

 public Student()
 {
 super(); // Aufruf des Konstruktors der Vaterklasse

 System.out.print ("Matrikelnummer eingeben ");
 System.out.print ("(Ende mit <CR>): ");
 matrikelnummer = input();
 }

 public void printMatrikelnummer()
 {
 System.out.print ("\nMatrikelnummer : " + matrikelnummer);
 }

 public static void main (String[] args)
 {
 System.out.print ("\nErfasse Person");
 Person pers1 = new Person();

 System.out.print ("\nErfasse Student");
 Student stud1 = new Student();

Einfache Beispielprogramme 99

 System.out.print ("\nAusgabe Person");
 pers1.print();

 System.out.print ("\n\nAusgabe Student");
 stud1.print();
 stud1.printMatrikelnummer();
 }
}

Die Ausgabe des Programms ist:

Erfasse Person
Nachnamen eingeben (Ende mit <CR>): Schmidt
Vornamen eingeben (Ende mit <CR>): Georg

Erfasse Student
Nachnamen eingeben (Ende mit <CR>): Meiser
Vornamen eingeben (Ende mit <CR>): Myriam
Matrikelnummer eingeben (Ende mit <CR>): 512346

Ausgabe Person
Nachname: Schmidt
Vorname: Georg

Ausgabe Student
Nachname: Meiser
Vorname: Myriam
Matrikelnummer : 512346

Beachten Sie, dass der Compiler automatisch den Default-Konstruktor der Vater-
klasse als erste Anweisung im Konstruktor der Sohnklasse aufruft, wenn es der Pro-
grammierer nicht durch den Aufruf super() selbst tut. Der Aufruf des Default-Kon-
struktors der Vaterklasse dient dazu, im Sohn-Objekt die Datenfelder, die vom Vater
geerbt sind, zu initialisieren. In Kapitel 11.3.2 wird der Aufruf von Konstruktoren einer
Basisklasse ausführlich behandelt.

4.8 Die Methode printf() und die Klasse Scanner

Das Programm Fahrenheit4 verwendet anstelle der Methode print() die Metho-
de printf(). Die Methode printf() erwartet als ersten Parameter einen Format-
string, der von doppelten Hochkommata begrenzt ist. Innerhalb des Formatstrings
stehen Formatelemente, welche die Formatierung der Ausgabe regeln. Format-
elemente erkennt man an dem Zeichen %. Nach dem Formatstring kommen als wei-
tere Parameter die auszugebenden Variablen bzw. Ausdrücke, jeweils getrennt
durch ein Komma. Für jeden auszugebenden Wert muss im Formatstring ein Format-
element vorhanden sein.

Vor dem Programm zwei Beispiele:

System.out.printf ("%3d", 10);
System.out.printf ("%6.2f %6.2f", 1.0f, 2.2f);

100 Kapitel 4

Im ersten Beispiel wird die Zahl 10 rechtsbündig ausgegeben in ein Feld, das 3
Zeichen breit ist. Das d steht für dezimal. Da die Zahl 10 nicht die volle Feldbreite
ausfüllt, wird links mit einem Leerzeichen aufgefüllt. Im zweiten Beispiel werden die
float-Zahlen 1.0 und 2.2 mit jeweils 2 Stellen hinter dem Punkt ausgegeben. Für
den Punkt selbst wird eines der genannten 6 Zeichen verbraucht. Damit verbleiben
vor dem Punkt noch 3 Zeichen, die von links mit Leerzeichen aufgefüllt werden. Wie
aus dem Formatstring ersichtlich ist, stehen zwischen den beiden Feldern für die
beiden Zahlen genau 3 Leerzeichen. Und nun das Programm Fahrenheit4:

// Datei: Fahrenheit4.java

public class Fahrenheit4
{
 // Klassenmethode main() zur Ausgabe der Temperaturtabelle
 public static void main (String[] args)
 {
 // Konstanten
 final int UPPER = 300; // obere Grenze
 // UPPER ist eine symbol. Konstante
 // 300 ist eine literale Konstante
 final int LOWER = 0; // untere Grenze
 final int STEP = 20; // Schrittweite

 // Variablen
 int fahr; // Definition der lokalen Variablen
 // fahr für die Temperatur in
 // Fahrenheit
 int celsius; // Definition der lokalen Variablen
 // celsius für die Temperatur in
 // Celsius
 // Anweisungen
 fahr = LOWER; // als Anfangswert wird fahr
 // der Wert 0 zugewiesen
 while (fahr <= UPPER)
 {
 // nach dieser Formel berechnet sich der Celsius-Wert aus
 // einem Fahrenheit-Wert
 celsius = 5 * (fahr - 32) / 9;

 // die Werte von fahr und celsius werden jeweils rechtsbün-
 // dig in einem 3 Zeichen breiten Feld ausgegeben
 System.out.printf ("\n%3d %3d", fahr, celsius);
 fahr = fahr + STEP; // nächsten Wert von fahr berechnen
 }
 }
}

Hier ein Auszug der Programmausgabe:

 0 -17
 20 -6
 40 4
 . . .
280 137
300 148

Einfache Beispielprogramme 101

Neben der einfachen Ausgabemöglichkeit mit printf() gibt es seit dem JDK 5.0
auch eine einfache Möglichkeit für die Eingabe. Die Klasse Scanner kann aus einer
Instanz vom Typ InputStream (siehe Kap. 16.4.2.1), aber auch aus einer Datei
oder einer Variablen vom Typ String lesen. Dazu bietet sie verschiedene Metho-
den, mit denen Text und Werte primitiver Datentypen eingelesen werden können.
Darüber hinaus bietet die Klasse Scanner die Möglichkeit, die Eingabedaten mit
Hilfe von regulären Ausdrücken nach bestimmten Zeichenmustern zu durchsuchen.
Auf reguläre Ausdrücke kann an dieser Stelle nicht näher eingegangen werden. Es
wird hier auf die API-Dokumentation verwiesen.

Das folgende Beispiel zeigt das Einlesen einer Zeichenkette und von ganzen Zahlen
mit den Methoden next() und nextInt() der Klasse java.util.Scanner:

// Datei: EingabeTest.java

import java.util.Scanner;

public class EingabeTest
{
 public static void main (String[] args)
 {
 // Erzeugen eines Objektes der Klasse Scanner, um von
 // der Standard-Eingabe (Tastatur) einzulesen.
 Scanner eingabe = new Scanner (System.in);

 System.out.print ("Geben Sie Ihren Namen ein: ");
 String name = eingabe.next();
 System.out.println ("Hallo " + name +
 "! Heute wollen wir zwei Zahlen addieren.");

 System.out.print (name + ", gib die erste Zahl ein: ");
 int zahl1 = eingabe.nextInt();
 System.out.print ("OK. Und nun die zweite Zahl: ");
 int zahl2 = eingabe.nextInt();
 System.out.println ("Das Ergebnis ist: " + zahl1 +
 " + " + zahl2 + " = " + (zahl1 + zahl2));
 }
}

Die Ausgabe des Programms ist:

Geben Sie Ihren Namen ein: Martin
Hallo Martin! Heute wollen wir zwei Zahlen addieren.
Martin, gib die erste Zahl ein: 5
OK. Und nun die zweite Zahl: 4
Das Ergebnis ist: 5 + 4 = 9

Wie aus dem Programm ersichtlich ist, werden Zeichenketten mit der Methode
next() eingelesen, int-Werte mit der Methode nextInt(). Analog gibt es weitere
Methoden wie nextFloat(), nextDouble() und nextByte().

Die vollständigen Möglichkeiten der Klasse java.util.Scanner können der API-
Dokumentation entnommen werden.

102 Kapitel 4

4.9 Übungen

Aufgabe 4.1: Schleifen

4.1.1 Summe der Zahlen 1 bis 9

Berechnen Sie die Summe der Zahlen 1 bis 9.

Hinweis: Führen Sie eine Variable summe vom Typ int ein. Diese Variable
soll den Wert der Summe repräsentieren. Setzen Sie den Anfangswert von
summe auf 0. Erhöhen Sie dann den Wert von summe bei jedem Schleifen-
durchgang um 1. Geben Sie bei jedem Durchlauf den Wert der Summe aus,
um zu verfolgen, ob Ihr Programm richtig rechnet.

4.1.2 Fakultät von n berechnen

Schreiben Sie ein Programm, das die Fakultät von n in einer Schleife berech-
net. Die Variable n soll dabei vom Typ int sein. Für n dürfen Sie einen
beliebigen Wert auswählen. Geben Sie das Ergebnis am Bildschirm aus.

Hinweis: n! = 1 * 2 * 3 * … * (n-1) * n

4.1.3 Fibonacci-Folge

Schreiben Sie ein Programm, das die Fibonacci-Folge auf der Konsole aus-
gibt. Führen Sie hierzu 3 Variablen von Typ int ein. Die Berechnung der
Folgezahlen soll in einer Schleife gemacht werden.

Hinweis: Für die ersten beiden Zahlen sollen die Werte 0 und 1 ange-
nommen werden. Jede weitere Zahl ist die Summe ihrer beiden Vorgänger.
Eine Fibonacci-Folge sieht wie folgt aus: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

4.1.4 Größter gemeinsamer Teiler

In Kapitel 1.2.1 wurde der Algorithmus von Euklid zur Bestimmung des
größten gemeinsamen Teilers vorgestellt. Entwickeln Sie eine Anwendung,
welche diesen Algorithmus implementiert. Berechnen Sie den größten
gemeinsamen Teiler von:

24 und 9

Beachten Sie, dass das in Kapitel 1.3.4 vorgestellte Nassi-Shneiderman-
Diagramm bei der Implementierung eine zusätzliche Hilfe darstellt.

Aufgabe 4.2: Zeichen

4.2.1 Zeichen zählen

Erweitern Sie das Programm Zeichen aus Kapitel 4.2, sodass die Anzahl
der eingegebenen Leerzeichen ermittelt wird.

Einfache Beispielprogramme 103

4.2.2 Zeilen zählen

Erweitern Sie das Programm Zeichen aus Kapitel 4.2, sodass die Anzahl
der eingegebenen Zeilen sowie die Anzahl der Zeichen pro Zeile ermittelt
wird.

Aufgabe 4.3: Klassen und Objekte

4.3.1 Erste Versuche mit der Klasse Person

Schreiben Sie eine Klasse Person mit den Datenfeldern:

private String name;
private String vorname;

und mit den Methoden:

public void setName (String n)
public String getName()
public void setVorname (String n)
public String getVorname()

Testen Sie diese Klasse mit der Klasse TestPerson:

// Datei: TestPerson.java

public class TestPerson
{
 public static void main (String[] args)
 {
 String vorname;
 String name;
 Person schoettle;

 schoettle = new Person();

 schoettle.setName ("Schöttle");
 schoettle.setVorname ("Lothar");

 name = schoettle.getName();
 vorname = schoettle.getVorname();

 System.out.println ("Vorname: " + vorname);
 System.out.println ("Name: " + name);
 }
}

4.3.2 Definition einer Klasse für Schuhe

a) Definieren Sie eine Klasse Schuh mit den folgenden Eigenschaften:

• einem Datenfeld groesse vom Typ int,

• je einem Datenfeld hersteller und modellbezeichnung vom Typ
String,

104 Kapitel 4

• den folgenden Methoden zum Setzen und Lesen der Datenfelder:

public void setGroesse (int groesse)
public void setHersteller (String hersteller)
public void setModellbezeichnung (String modell)
public int getGroesse()
public String getHersteller()
public String getModellbezeichnung()

Beachten Sie, dass kein direkter Zugriff auf die Datenfelder eines Objek-
tes durch Methoden außerhalb der Klasse erfolgen darf.

b) Schreiben Sie eine Testklasse, die nur eine Methode main() enthält.
Innerhalb dieser Methode soll ein Objekt der Klasse Schuh erzeugt wer-
den, auf das mit der Referenz s gezeigt wird. Setzen Sie nun in der Test-
klasse die Daten des Schuhs mit Hilfe obiger Methoden auf folgende Da-
ten (Größe 42, Hersteller "Mike" und Modellbezeichnung "Air Ultramatic").
Erweitern Sie zusätzlich die Klasse Schuh um die Methode print(), um
alle Datenfelder eines Schuhs auf dem Bildschirm auszugeben.

Aufgabe 4.4: Konstruktoren

4.4.1 Konstruktoren für Schuhe

Ergänzen Sie die Klasse Schuh um einen Default-Konstruktor. Fügen Sie
zur Kontrolle des Konstruktoraufrufs eine Protokoll-Ausgabe ein. Überladen
Sie den Default-Konstruktor mit einem (oder mehreren) Konstruktor(en) mit
Parametern. Fügen sie wiederum Protokoll-Ausgaben ein und überzeugen
Sie sich, welcher Konstruktor bei der Erzeugung der Schuhe (z. B. durch new
Schuh(), new Schuh (44), new Schuh (41, "Panther")) aufgeru-
fen wird.

4.4.2 Überladene Konstruktoren für die Klasse Punkt2

Schreiben Sie für die Klasse Punkt2:

• einen Konstruktor ohne Parameter, der die Koordinaten auf x = 0 und y
= 0 initialisiert,

• einen Konstruktor mit einem Parameter, der den x-Wert des Punktes mit
dem übergebenen Wert initialisiert und die y-Komponente auf 0 setzt,

• einen Konstruktor mit 2 Parametern, der den x-Wert und den y-Wert des
Punktes mit den übergebenen Werten initialisiert.

Fehlende Stellen sind durch markiert.

// Datei: Punkt2.java

public class Punkt2
{
 private int x;
 private int y;

Einfache Beispielprogramme 105

 public Punkt2()
 {
 System.out.println ("Konstruktor ohne Parameter");

 }

 public Punkt2 (int u)
 {
 System.out.println
 ("Konstruktor mit einem Parameter: x = " + u);

 }

 public Punkt2 (int u, int v)
 {
 System.out.print ("Konstruktor mit zwei Parametern: ");
 System.out.println ("x = " + u + " y = " + v);

 }

 public int getX()
 {
 return x;
 }

 public int getY()
 {
 return y;
 }

 public void print()
 {
 System.out.println ("x = " + x);
 System.out.println ("y = " + y);
 }
}

Schreiben Sie eine Testklasse TestPunkt2, die 3 Punkte in der Methode
main() erzeugt. Der erste Punkt soll mit dem Konstruktor ohne Parameter,
der zweite Punkt mit dem Konstruktor mit 1 Parameter und der dritte Punkt
mit dem Konstruktor mit 2 Parametern initialisiert werden. Anschließend sind
die Koordinaten aller 3 Punkte auszugeben.

Aufgabe 4.5: Klasse Scanner

4.5.1 Durchschnittsberechnung

Schreiben Sie ein Programm, welches mit Hilfe der Klasse Scanner drei
float-Zahlen von der Tastatur einliest und dann deren Durchschnitt auf
dem Bildschirm ausgibt.

106 Kapitel 4

4.5.2 Flächenberechnung – Konstruktor mit Parametern

Schreiben Sie eine Klasse Rechteck mit den Instanz-Variablen a und b und
eine weitere Klasse Quadrat mit der Instanz-Variable a. Beide Klassen
sollen eine Methode zum Berechnen der Fläche getFlaeche() haben.

In einer main()-Methode soll der Benutzer nun die Möglichkeit haben, für
ein Rechteck-Objekt und ein Quadrat-Objekt Werte einzugeben. Die
Eingabe soll mittels der bereits bekannten Java-Klasse Scanner erfolgen.
Die eingegebenen Werte sollen dem jeweiligen Objekt beim Konstruktor-
aufruf übergeben werden.

In der main()-Methode sollen getrennt die beiden Flächeninhalte sowie der
gesamte Flächeninhalt am Bildschirm ausgegeben werden. Hier das Pro-
gramm:

// Datei: Flaechenberechnung.java

import java.util.Scanner;

class Quadrat
{
 // Hier sind Sie an der Reihe
}

class Rechteck
{
 // Hier sind Sie gefragt
}

public class Flaechenberechnung
{
 public static void main (String[] args)
 {
 System.out.println ("Flaechenprogramm\n");

 // Hier sind Sie am Zug
 }
}

Aufgabe 4.6: Instanzmethoden

4.6.1 Ein einfacher Taschenrechner

Schreiben Sie einen einfachen Taschenrechner, der die vier Grundrechen-
arten Addition, Subtraktion, Multiplikation und Division unterstützt. Beim Star-
ten des Taschenrechners wird der Benutzer gefragt, welche Rechenope-
ration er ausführen möchte. Die Auswahl der Rechenoperation erfolgt durch
die Eingabe einer ganzen Zahl zwischen 1 und 4.

Anschließend werden vom Taschenrechner zwei Zahlen a und b vom Typ
int eingelesen, die als Operanden für die ausgewählte Rechenoperation
verwendet werden.

Einfache Beispielprogramme 107

Zum Bestimmen des Ergebnisses müssen Sie ein Objekt der Klasse Rech-
ner erzeugen und dort die entsprechende Instanzmethode aufrufen.

Der Taschenrechner wird solange ausgeführt, bis der Benutzer die Frage
zum Beenden des Taschenrechners mit der Zahl 0 beantwortet.

Achten Sie bei der Division darauf, ob das richtige Ergebnis zurückgeliefert
wird.

Fehlende Stellen sind im Programmcode mit gekennzeichnet.

// Datei Taschenrechner.java

import java.util.Scanner;

public class Taschenrechner
{
 public static void main (String[] args)
 {
 Scanner eingabe = ;
 int ;
 float ;

 do
 {
 System.out.println ("\n=======================");
 System.out.println ("Einfacher Taschenrechner");
 System.out.println ("=========================\n");
 System.out.println ("\nFolgende Operationen sind "
 + "verfuegbar:");
 System.out.println ("Addition...............[1]");
 System.out.println ("Subtraktion............[2]");
 System.out.println ("Multiplikation.........[3]");
 System.out.println ("Division...............[4]");
 System.out.print ("Treffen Sie Ihre Auswahl: ");
 auswahl = eingabe.nextInt();

 System.out.print ("Bitte geben Sie die "
 + "erste Zahl ein: ");
 a = eingabe.nextInt();
 System.out.print ("Bitte geben Sie die "
 + "zweite Zahl ein: ");
 b = eingabe.nextInt();

 Rechner rechner = ;

 if (auswahl == 1)
 {
 ergebnis = ;
 System.out.println
 (a + " + " + b + " = " + ergebnis);
 }
 else if (auswahl == 2)
 {
 ergebnis = ;

108 Kapitel 4

 System.out.println
 (a + " - " + b + " = " + ergebnis);
 }
 else if (auswahl == 3)
 {
 ergebnis = ;
 System.out.println
 (a + " * " + b + " = " + ergebnis);
 }
 else if (auswahl == 4)
 {
 ergebnis = ;
 System.out.println
 (a + " / " + b + " = " + ergebnis);
 }
 else
 {
 System.out.println
 ("\nUnbekannte Auswahl getroffen !");
 }
 System.out.println
 ("\nWollen Sie den Taschenrechner beenden?");
 System.out.print ("So geben Sie '0' ein: ");
 prgEnde = eingabe.nextInt();
 }while (.);
 }
}

class Rechner
{
 public int addition (.)
 {

 }

 public int subtraktion (.)
 {

 }

 public int multiplikation (.)
 {

 }

 public float division (.)
 {

 }
}

4.6.2 Ein erweiterter Taschenrechner

Erweitern Sie den Taschenrechner aus Aufgabe 4.6.1 um die Funktionalität
zur Berechnung von Zinseszinsen. Verwenden Sie dazu folgende Formel:

Einfache Beispielprogramme 109

K0: Anfangskapital (� 0)
Kn: Endkapital nach n Jahren
p: Zinsatz (� 0 %)
n: Laufzeit der Verzinsung nach n ganzen Jahren (� 0)

Kn = K0 * (1 + p/100)n

Beachten Sie folgende Punkte:

• Sie müssen das Menü der verfügbaren Rechenoperationen erweitern.
• Die Berechnung der Zinseszinsen benötigt 3 anstatt 2 Operanden, d. h.

die Anzahl der einzulesenden Zahlen ist abhängig von der ausgewählten
Rechenoperation.

• Die obige Zinseszins-Formel enthält einen Term mit einer Potenz. Ver-
wenden Sie zum Potenzieren NICHT die entsprechende Methode der
Java Bibliotheksklasse Math. Erweitern Sie stattdessen die Klasse
Rechner um eine einfache Hilfsmethode, welche die Potenz mit Hilfe
einer Schleife berechnet. Die Hilfsmethode muss keine Sonderfälle
abdecken, es genügt wenn sie mit positiven Exponenten und Basen
funktioniert. Tipp: (…)3 = (…) * (…) * (…).

• Die Klasse Rechner muss um eine Instanzmethode zum Berechnen von
Zinseszinsen erweitert werden. Diese Methode verwendet die oben ge-
nannte Hilfsmethode.

4.6.3 Ein einfacher Temperaturkonverter

Verwenden Sie den einfachen Taschenrechner aus Aufgabe 4.6.1 als Vor-
lage und schreiben Sie das Programm so um, dass daraus ein einfacher
Temperaturkonverter entsteht. Der Temperaturkonverter liest einen Tem-
peraturwert (Datentyp float) von der Kommandozeile ein. Anschließend
kann der Benutzer aus einem Menü auswählen, ob die Temperatur von Grad
Celsius nach Grad Fahrenheit oder umgekehrt umgerechnet werden soll.
Nach der Umrechnung wird das Ergebnis wieder auf der Kommandozeile
ausgegeben.

Die Temperaturumrechnung erfolgt gemäß den folgenden Formeln:

°C = (°F - 32) * 5/9
°F = °C * 1,8 + 32

Beachten Sie folgende Punkte:

• Das Auswahlmenü der verfügbaren Umrechnungen soll so oft angezeigt
werden bis eine gültige Option ausgewählt wird.

• Die Klasse Rechner wird durch eine Klasse Konverter ersetzt, welche
die oben genannten Temperaturumrechnungen in Form von Instanz-
methoden bereitstellt.

• Nach der Ausgabe des Ergebnisses wird der Benutzer gefragt, ob das
Programm beendet werden soll. Dieses Mal soll das Programm nicht
durch Eingabe der Zahl 0 beendet werden, sondern durch Eingabe des
Zeichens 'j'.

Lexikalische Konventionen

5.1 Zeichenvorrat von Java

5.2 Der Unicode
5.3 Lexikalische Einheiten

5.4 Übungen

5 Lexikalische Konventionen

Nachdem jetzt schon eine gewisse Erfahrung im Programmieren vorliegt, sollen in
den Kapiteln 5.1 bis 5.3 die "Rechtschreibregeln" von Java behandelt werden. Wer
nur für "die Schule programmiert" und viel Zeit hat, kann sich auch vom Compiler be-
lehren lassen. Da Fehlermeldungen in manchen Fällen wie das Orakel von Delphi
klingen können, kann die Fehlerbeseitigung durchaus zu einer spannenden Ge-
schichte werden. Wer industriell programmieren möchte und von vornherein mög-
lichst keine Fehler machen will, wird sich aus Effizienzgründen zuerst mit den Regeln
befassen. Es bleiben ihm dann einige langwierige Diskussionen mit dem Compiler
erspart.

"Lexikalisch" bedeutet "ein Wort (eine Zeichengruppe) betreffend", ohne den Textzu-
sammenhang (Kontext), in dem dieses Wort steht, zu berücksichtigen. Im Folgenden
werden also die Konventionen, um Wörter in der Programmiersprache Java zu
bilden, besprochen.

Die Wörter oder Zeichengruppen, aus denen ein Programmtext aufge-
baut ist, werden als lexikalische Einheiten bzw. als Token bezeich-
net.

5.1 Zeichenvorrat von Java

Ein Java-Programm wird als Programmtext aus einer Folge von lexikalischen Einhei-
ten geschrieben. In der Regel wird ein solches Programm am Bildschirm erstellt. Es
erhält damit zwangsläufig eine Zeilenstruktur42. Eine jede Anweisung endet mit
einem Strichpunkt. Normalerweise schreibt man in eine Zeile nur eine einzige Anwei-
sung. Eine Anweisung kann sich aber auch über mehrere Zeilen erstrecken oder
mehrere Anweisungen können in einer Zeile stehen. Jede lexikalische Einheit darf
nur Zeichen aus dem Zeichenvorrat (Zeichensatz) der Sprache umfassen.

Java benutzt den Unicode-Zeichensatz.

Der Zeichenvorrat von Java umfasst:

• Buchstaben
lateinische Buchstaben nach ASCII und ISO-Latin-143 als Groß- und Kleinbuch-
staben:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
den Unterstrich _, das Dollarzeichen $, das Pfundzeichen £ und weitere Wäh-

42 Eine Zeile wird vom Programmierer durch Betätigung der <RETURN>-Taste abgeschlossen.
43 ISO-Latin-1 ist ein 8 Bit-Zeichensatz.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_5,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Lexikalische Konventionen 113

rungssymbole sowie weitere Buchstaben aus dem Unicode (siehe Kap. 5.2) wie
z. B. griechische Symbole

• Ziffern
Ziffern nach ASCII und ISO-Latin-1
0 1 2 3 4 5 6 7 8 9
und weitere Ziffern aus dem Unicode wie z. B. thailändische Ziffern

• das Leerzeichen (blank)
• die Steuerzeichen

Zeilenendezeichen, horizontaler Tabulator und Seitenvorschub
• die Sonderzeichen für die Satzzeichen (Interpunktionszeichen, engl.

separators)
() {} [] ; , .

• die Sonderzeichen für die Operatoren
= > < ! ∼ ? : & | + - * / ^ %

• für Ersatzdarstellungen das Sonderzeichen
\

• für Zeichen das einfache Anführungszeichen
'

• und für Strings (konstante Zeichenketten) das doppelte Anführungszeichen
"

In Java gehören der Unterstrich _ und das $-Zeichen sowie weitere Buchstaben aus
dem Unicode mit zu den Buchstaben des Zeichensatzes von Java. Das Semikolon
; dient als Satzzeichen und dabei hauptsächlich zum Abschluss einer Anweisung.
Die Sonderzeichen für die Operatoren werden gebraucht, um Operatoren darzu-
stellen wie z. B. den Zuweisungsoperator = oder das logische UND, welches durch
den Operator && bzw. den Operator44 & dargestellt wird. Verschiedene Sonderzei-
chen finden sich sowohl bei den Operatoren, als auch bei den Satzzeichen. Ein
Beispiel hierfür sind die runden Klammern, die als Operator für einen Methodenaufruf
und als Satzzeichen zum Einschließen der Bedingung bei einer Selektion Verwen-
dung finden. Zeichen werden begrenzt durch einfache Hochkommata, wie z. B. 'a'.
Konstante Zeichenketten werden begrenzt durch Anführungszeichen, wie z. B.
"Zeichenkette". Das Sonderzeichen \ wird für die Ersatzdarstellungen benötigt,
die im Folgenden vorgestellt werden. Dieses Sonderzeichen wird als Backslash
(Gegenschrägstrich) bezeichnet.

Java-Programme kann man vollständig in ASCII-Zeichen schreiben.
Ist ein gewünschtes Unicode-Zeichen nicht auf der Tastatur verfüg-
bar – eine Tastatur hat üblicherweise einen sehr eingeschränkten
Zeichensatz – so kann dieses Zeichen durch eine Ersatzdarstellung
der Form \ux1x2x3x4 durch ASCII-Zeichen dargestellt werden.

Der Backslash \, das u und die Zeichen x1, x2, x3 und x4 sind ASCII-Zeichen. x1, x2,
x3 und x4 sind dabei hexadezimale Zeichen, d. h. Zeichen aus dem Wertevorrat 0, 1,
2, ... , 9, A, B, ... , F. Die Buchstaben A ... F sind Abkürzungen. A entspricht der 10, B

44 Siehe Kap. 7.6.5.

114 Kapitel 5

der 11, ... F der 15. Es spielt dabei keine Rolle, ob die Buchstaben A ... F groß oder
klein geschrieben werden. a ist äquivalent zu A, b ist äquivalent zu B, usw.

Die Ersatzdarstellung

\ux1x2x3x4

entspricht dem Unicode-Zeichen, welches an der Position mit der
dezimalen Nummer

x1 * 163 + x2 * 162 + x3 * 161 + x4 * 160

des Unicode-Zeichensatzes steht.

Groß- und Kleinschreibung

Java ist case sensitiv. Das bedeutet, dass Groß- und Kleinbuchstaben in Java
streng unterschieden werden. Alle reservierten Wörter müssen klein geschrieben
werden. Namen, die sich nur durch Groß- bzw. Kleinschreibung unterscheiden,
stellen verschiedene Namen dar. So ist beispielsweise der Name alpha ein anderer
Name als Alpha.

5.2 Der Unicode

Java basiert auf einem Zeichensatz, der geeignet ist, viele Zeichen aufzunehmen.
Der gewählte Zeichensatz ist der so genannte Unicode. Unter der Adresse

http://www.unicode.org

kann man im Internet Informationen zu diesem Code abrufen45.

Der Unicode war ursprünglich ein 16 Bit-Code, bestehend aus 2 Bytes. Der Unicode-
Standard erlaubt in der Zwischenzeit auch Zeichen, deren Darstellung mehr als 16
Bit erfordert. Der Zahlenraum des Unicode erstreckt sich seit dem Unicode-Standard
2.0 von 0 bis 10FFFF16,, wodurch insgesamt 1.114.112 Zeichen möglich sind. Der
Unicode-Standard definiert drei Unicode-Codierformen, nämlich UTF-846, UTF-16
und UTF-32. Java verwendet für Zeichen die UTF-16-Darstellung, wobei Zeichen, die
einem Wert größer als FFFF entsprechen, als ein Paar von Zeichen dargestellt wer-
den. Das heißt, dass Java mit 16-Bit-Unicode-Zeichen arbeitet. Die ersten 128 Zei-
chen des verwendeten klassischen Unicodes sind die Zeichen des 7-Bit-ASCII-
Zeichensatzes und seine ersten 256 Zeichen die Zeichen des Zeichensatzes ISO-
Latin-1.

5.3 Lexikalische Einheiten

Ein Programm besteht für einen Compiler zunächst nur aus einer Folge von Zeichen.
Der Scanner-Anteil des Compilers hat die Aufgabe, Zeichengruppen zu finden. Zei-

45 Der Unicode Standard, Version 5.0, ist als Buch erhältlich [7].
46 UTF = Unicode Transformation Format.

Lexikalische Konventionen 115

chengruppen werden gefunden, indem man nach den Trennern sucht, beispielsweise
einem Leerzeichen (Whitespace-Zeichen) oder einem Kommentar. Whitespace-
Zeichen werden in Kapitel 5.3.1.1, Kommentare in Kapitel 5.3.1.2 behandelt. Stehen
zwischen zwei Trennern noch weitere Zeichen, die keine Trenner enthalten, so ist
eine lexikalische Einheit (Token) gefunden. Diese lexikalischen Einheiten werden
dann vom Parser auf die Einhaltung der Syntax geprüft. Lexikalische Einheiten sind
die Wörter einer Sprache.

Lexikalische Einheiten sind:

• Namen,
• Schlüsselwörter (reservierte Wörter),
• Konstanten,
• Satzzeichen (Interpunktionszeichen, engl. separators)
• und Operatoren.

Ersatzdarstellungen \ux1x2x3x4 werden erkannt und in Unicode-Zeichen umgesetzt.

Bei der Kompilierung wird vor der Ermittlung der lexikalischen
Einheiten eine vorliegende Java-Quelltext-Datei, die z. B. in ASCII
oder ISO-Latin-1 geschrieben wurde, in Unicode gewandelt.

Zu beachten ist, dass in Java wie in C Operatoren und Satzzeichen
auch als Trenner wirken. Dies hat zum Beispiel die Konsequenz,
dass Operatoren und Operanden zusammengeschrieben werden kön-
nen, wie z. B. a+b. Der Compiler bildet immer die größt möglichen To-
ken. So wird a--b stets als a -- b erkannt (wie später noch erklärt
wird, ist -- der Dekrement-Operator) und nicht als a - - b (a ab-
züglich minus b), selbst wenn aus dieser Interpretation ein Kompilier-
fehler resultiert.

5.3.1 Trenner

Eine lexikalische Einheit wird gefunden, indem man die Trenner findet, die sie be-
grenzen.

Trenner sind Zwischenraum (Whitespace-Zeichen), Kommentare,
Satzzeichen (Separatoren) und Operatoren.

Für den Compiler ist beispielsweise A&&B das logische UND (&&) zwischen A und B,
da Operatoren Trenner sind. Denkt man an den menschlichen Leser des Pro-
gramms, so empfiehlt es sich, nicht die Trenner-Eigenschaft der Operatoren zu ver-
wenden, sondern nach jeder lexikalischen Einheit Leerzeichen einzugeben, damit

116 Kapitel 5

das Programm leichter lesbar ist. Im genannten Beispiel also besser A && B schrei-
ben!

5.3.1.1 Whitespace-Zeichen

Zu den Whitespace-Zeichen gehören Leerzeichen, horizontaler Tabulator, Zei-
lentrenner und Seitenvorschub.

Zwischen zwei aufeinander folgenden lexikalischen Einheiten kann eine beliebige
Anzahl an Whitespaces eingefügt werden. Damit hat man die Möglichkeit, ein Pro-
gramm optisch so zu gestalten, dass die Lesbarkeit verbessert wird. Üblicherweise
wird vor jeder Methode mindestens eine Leerzeile eingefügt oder innerhalb eines
Blocks47 etwas eingerückt.

5.3.1.2 Kommentare

Java hat drei verschiedene Arten von Kommentaren:

• Kommentarblock,
• Zeilenkommentar
• und Dokumentationskommentar.

Kommentare dienen dazu, die Bedeutung von Anweisungen und Programmeinheiten
schriftlich direkt an der entsprechenden Stelle im Quellcode festzuhalten. Da Kom-
mentare Trenner sind, dürfen sie nicht innerhalb von Zeichenkonstanten (siehe Kap.
5.3.5.4) oder konstanten Zeichenketten (siehe Kap. 5.3.5.5) auftreten.

Kommentarblock

Ein Kommentarblock wird durch die Zeichen /* eingeleitet und durch die Zeichen */
beendet. Der ganze Block zwischen /* und */, der auch über mehrere Zeilen gehen
kann, wird vom Compiler als Trenner betrachtet und ignoriert. Kommentarblöcke dür-
fen nicht verschachtelt werden.

Beispiel:

/* dies ist ein Kommentar */
/* dieser Unfug /* ist auch ein Kommentar */

Zeilenkommentar

Alle Zeichen von // bis zum Zeilenende werden vom Compiler ignoriert.

// Hier ist die ganze Zeile Kommentar
int x; // Hier ist nur ein Teil der Zeile Kommentar

47 Ein Block wird begrenzt durch die Blockbegrenzer { und }. Die Definition eines Blockes wird in

Kap. 9 behandelt.

Lexikalische Konventionen 117

Dokumentationskommentar

Mit Hilfe des Dokumentationskommentars kann man im Gegensatz zum Kommen-
tarblock und zum Zeilenkommentar nicht nur den Quellcode kommentieren, sondern
es besteht auch die Möglichkeit, den Dokumentationskommentar unter Verwendung
eines Werkzeugs zu einer richtigen Dokumentation in Form von HTML-Dateien
aufbereiten zu lassen. Das Werkzeug javadoc, das Teil des JDK ist, filtert alle
Informationen, die sich zwischen den Kommentarsymbolen /** und */ befinden,
heraus und legt diese Information in HTML-Dateien ab. Diese HTML-Dateien können
dann mit einem Web-Browser angesehen werden.

Dokumentationskommentare können nur direkt vor einer Klassendeklaration,
einem Datenfeld, einer Methode oder einem Konstruktor stehen48. Das folgende
Beispiel zeigt eine Klasse, die mit Dokumentationskommentaren versehen ist:

// Datei: DocuTest1.java

/** Ich bin ein Kommentar und erläutere die Klasse DocuTest1 */
public class DocuTest1
{
 /** Ich bin ein Kommentar und erläutere das Datenfeld x */
 public int x;

 /** Ich bin ein Kommentar und erläutere die Methode
 * meth()
 */
 public void meth()
 {
 // Weitere Anweisungen
 }
}

Um die Dokumentationskommentare zu extrahieren, geht man am besten wie im
folgenden Beispiel vor:

• In das Verzeichnis wechseln, in dem die .java-Datei liegt – hier die Datei
DocuTest1.java.

• In der Kommandozeile javadoc DocuTest1.java eingeben.

Es ist zu beachten, dass nur aus den Quellcode-Dateien *.java Dokumentations-
kommentare extrahiert werden können, da in den .class-Dateien diese Information
gar nicht mehr vorhanden ist.

Es werden mehrere HTML-Dateien erzeugt, die alle in das aktuelle Verzeichnis
gelegt werden. Es lohnt sich auf jeden Fall, alle diese Dateien mit einem Web-
Browser anzuschauen. Die wesentliche Information steht in der Datei Datei-
name.html – hier also in der Datei DocuTest1.html (siehe Bild 5-1).

48 Sie können auch vor Schnittstellen stehen. Schnittstellen (siehe Kap. 14) sind an dieser Stelle noch

nicht bekannt.

118 Kapitel 5

Bild 5-1 Ausschnitt aus der Datei DocuTest1.html in einem Web-Browser

Zusätzlich zu den Kommentaren von Klassen, Datenfeldern, Methoden und
Konstruktoren können noch Übergabeparameter, Rückgabewerte und vieles mehr
genauer durch so genannte Tags beschrieben werden. Diese Tags werden innerhalb
der Dokumentationskommentare für Klassen, Datenfelder, Methoden und
Konstruktoren verwendet. Die folgende Tabelle zeigt einen Ausschnitt der
vorhandenen Tags und beschreibt, mit welchem Kommentartyp (Klasse, Datenfeld
oder Methode) diese eingesetzt werden können:

Lexikalische Konventionen 119

Tag Bedeutung Kommentartyp
@see erstellt einen Link zu anderen Klassen Klasse, Datenfeld, Methode
@version gibt die Version an Klasse
@author gibt den Autor an Klasse
@param beschreibt einen Parameter näher Methode
@return beschreibt den Rückgabewert Methode
@exception beschreibt die Exception näher Methode
@deprecated markiert ein Element als deprecated49 Klasse, Datenfeld, Methode

Tabelle 5-1 Tags zum Einsatz mit Dokumentationskommentaren

Eine ausführliche Beschreibung der oben genannten und eine Auflistung aller verfüg-
baren Tags kann auf der javadoc-Homepage

http://download.oracle.com/javase/1.5.0/docs/guide/javadoc

nachgelesen werden. Im folgenden Beispiel werden einige der aufgelisteten Tags
verwendet:

// Datei: DocuTest2.java

/** Ich bin ein Kommentar und erläutere die Klasse DocuTest2
 * @version 1.0
 * @author Rainer Brang
 */
public class DocuTest2
{
 /** Ich bin ein Kommentar und erläutere das Datenfeld x */
 public int x;

 /** Erläuterung der Methode meth()
 * @param para Hier die Beschreibung des Parameters
 * @return Kein Rückgabewert
 */
 public void meth (int para)
 {
 // Anweisungen
 }
}

Dem Werkzeug javadoc können beim Aufruf einige Optionen mitgegeben werden,
mit deren Hilfe sich die Ausgabe in die HTML-Dateien steuern lässt. Wird für obiges
Beispiel einfach javadoc DocuTest2.java eingegeben, so enthalten die erzeug-
ten HTML-Dateien die Informationen über Autor und Version nicht. Durch Eingabe
von javadoc -version -author DocuTest2.java werden auch diese Infor-
mationen extrahiert. Wer mehr über die Optionen erfahren möchte, gibt auf der
Kommandozeile einfach nur javadoc ein. Dann wird eine Auflistung der zulässigen
Optionen und deren Beschreibung ausgegeben.

49 Engl. für missbilligt. Beschreibt, dass das markierte Element nicht mehr verwendet werden soll, da

es in neueren Versionen der Bibliothek nicht mehr vorhanden sein muss.

120 Kapitel 5

5.3.2 Namen

Namen bezeichnen in Java:

• Klassen,
• Methoden,
• Konstruktoren,
• Datenfelder,
• lokale Variablen,

• Parameter (einer Methode, eines Konstruktors oder eines catch-Konstruktes50),
• Schnittstellen
• und Pakete.

Ein Name (Bezeichner) besteht aus einer beliebig langen Zeichenfolge aus Buch-
staben und Ziffern, die mit einem Buchstaben beginnt. In Java zählen – wie bereits
erwähnt – auch der Unterstrich _ und das $-Zeichen sowie andere Währungs-
symbole zu den Buchstaben. Zu den bereits vom ASCII-Code bekannten Zeichen
kommen die Unicode-spezifischen Buchstaben und Ziffern hinzu.

Generell wird in Java und natürlich auch bei Namen zwischen Groß- und Klein-
buchstaben unterschieden. Reservierte Wörter (siehe Kap. 5.3.4) und die literalen
Konstanten true, false und null dürfen nicht als Namen verwendet werden.

5.3.3 Programmier-Style Guide

Eine Gestaltungsrichtlinie (engl. Style Guide) für das Erstellen von Programmen
umfasst Darstellungsregeln, welche die Lesbarkeit der Programme erleichtern sollen.
Solche Regeln beruhen immer auf einer gegenseitigen Übereinkunft (Konvention).
Die Anwendung dieser Regeln ist nicht zwingend, da nicht die Korrektheit, sondern
die Lesbarkeit der Programme von ihrer Einhaltung abhängt. Ein Programmierer, der
sich an den im Projekt vereinbarten Style Guide hält, arbeitet teamorientiert, da seine
Programme übersichtlich sind.

Zum Style Guide gehört auch eine Konvention über das Einrücken in Blöcken oder
dass vor der Definition einer Methode eine Leerzeile stehen soll, damit man leichter
erkennt, dass jetzt eine neue Methode kommt.

Für Namen hat sich in Java der folgende Programmierstil durchgesetzt:

Name Konvention Beispiel
Variablennamen Kleinbuchstaben variable
Datenfeldnamen Kleinbuchstaben vorname
Methodennamen Kleinbuchstaben methode()
Klassennamen 1. Buchstaben groß, Rest klein Person
symbolische Konstanten51 alle Buchstaben groß MAXIMUM

Tabelle 5-2 Style Guide-Konventionen

50 Siehe Kap. 13.2.
51 Siehe Kap. 5.3.5.

Lexikalische Konventionen 121

Aus mehreren Wörtern zusammengesetzte Namen werden ohne Unterstrich ge-
schrieben. Dabei wird ab dem zweiten Wort jeweils der erste Buchstabe eines
Wortes groß geschrieben. Für das erste Wort gilt die normale Konvention. Beispiele
hierfür sind dritteWurzel als Variablennamen oder verschiebeSchwer-
punkt() als Methodennamen. Im Falle der symbolischen Konstanten werden, da
alle Buchstaben groß geschrieben sind, zur optischen Trennung der Wörter wie im
Falle von MAX_VALUE Unterstriche verwendet.

5.3.4 Reservierte Wörter

Die Schlüsselwörter in der folgenden Tabelle sind in Java reserviert. Sie müssen
stets klein geschrieben werden. Die Bedeutung dieser Schlüsselwörter ist festgelegt
und kann nicht verändert werden. Eine vollständige Erklärung dieser Schlüsselwörter
kann erst in späteren Kapiteln erfolgen. Hier die Schlüsselwörter:

abstract Dient zur Deklaration abstrakter Klassen und Methoden.
assert Hiermit lassen sich Zusicherungen (Assertions) gezielt überprüfen.
boolean Einfacher Java-Datentyp, der einen Booleschen Wahrheitswert

enthält.
break Zum Herausspringen aus Schleifen oder der switch-Anweisung.
byte Einfacher Java-Datentyp, der eine 8-Bit-Zahl enthält.
case Auswahl-Fall in der switch-Anweisung.
catch Leitet einen Programmblock zur Ausnahmebehandlung ein.
char Einfacher Java-Datentyp, der ein 16-Bit-Unicode-Zeichen enthält.
class Dient zur Deklaration einer Klasse.
const Dieses Schlüsselwort ist reserviert, wird aber nicht benutzt.
continue Starten eines neuen Durchgangs in einer Schleife.
default Standard-Einsprungmarke in einer switch-Anweisung.
do Teil einer Schleifen-Anweisung.
double Einfacher Java-Datentyp, der eine 64-Bit-Fließkommazahl enthält.
else Teil einer bedingten Anweisung.
enum Dient zur Definition eines Aufzählungstyps.
extends Dient zur Angabe der Vaterklasse bei der Klassendeklaration.
final Modifikator für Klassen, Methoden, Datenfelder und Variablen.
finally Dient zur Einleitung des finally-Blocks einer try-Anweisung.
float Einfacher Java-Datentyp, der eine 32-Bit-Fließkommazahl enthält.
for Schleifenanweisung.
goto Dieses Schlüsselwort ist reserviert, wird aber nicht benutzt.
if Teil einer bedingten Anweisung.
implements Gibt bei der Klassendeklaration an, welche Schnittstelle imple-

mentiert wird.
import Dient zur Bekanntgabe von Klassen und Schnittstellen aus ande-

ren Paketen.
instanceof Operator, der überprüft, ob eine Referenz auf ein Objekt zeigt, das

vom Typ einer bestimmten Klasse ist.
int Einfacher Java-Datentyp, der eine 32-Bit-Ganzzahl enthält.
interface Dient zur Deklaration einer Schnittstelle.
long Einfacher Java-Datentyp, der eine 64-Bit-Ganzzahl enthält.
native Dient als Modifikator für Methoden, die in einer anderen Sprache

als Java implementiert sind.
new Erzeugt ein neues Objekt auf dem Heap.

122 Kapitel 5

package Dient zur Deklaration eines Paketes.
private Zugriffsmodifikator für Methoden, Konstruktoren, Datenfelder und

Elementklassen.
protected Zugriffsmodifikator für Methoden, Konstruktoren, Datenfelder und

Elementklassen.
public Zugriffsmodifikator für Methoden, Konstruktoren, Datenfelder, Ele-

mentklassen und Klassen.
return Anweisung für den Rücksprung aus einer Methode zur aufru-

fenden Methode.
short Einfacher Java-Datentyp, der eine 16-Bit-Ganzzahl enthält.
static Dient als Modifikator für Methoden, Datenfelder und Klassen und

wird auch beim statischen Initialisierungsblock verwendet.
strictfp Kennzeichnet eine Methode, die Zwischenwerte von Operationen

nach IEEE 754 (siehe [10]) berechnet.
super Erlaubt den Zugriff im eigenen Objekt auf überschriebene Metho-

den und verdeckte Datenfelder, die von der Vaterklasse geerbt
wurden. Weiterhin wird mit super der Aufruf des Konstruktors der
Vaterklasse ermöglicht.

switch Auswahlanweisung.
synchronized Dient zur Thread-Synchronisation.
this Bezeichnet eine Referenz auf das eigene Objekt oder dient zum

Aufruf eines klasseneigenen Konstruktors.
throw Dient zum Auswerfen einer Ausnahme.
throws Dient zur Auflistung der Ausnahmen bei der Deklaration von

Methoden.
transient Kennzeichnung für Datenfelder, die bei der Serialisierung nicht

berücksichtigt werden sollen.
try Kennzeichnet einen Programmblock, in dem eine Ausnahme

auftreten kann.
void Dient zur Anzeige, dass eine Methode keinen Rückgabewert hat.
volatile Kennzeichnet ein Datenfeld, das gleichzeitig von mehreren

Threads verändert werden kann.
while Schleifenanweisung.

Tabelle 5-3 Reservierte Wörter

5.3.5 Literale und symbolische Konstanten

In Java gibt es zwei Arten von Konstanten:

• literale Konstanten
• und symbolische (benannte) Konstanten.

Symbolische Konstanten haben einen Namen, der ihren Wert repräsentiert.
Symbolische Konstanten sind Variablen, die nach ihrer Initialisierung nicht verän-
dert werden dürfen. Zur Definition von symbolischen Konstanten wird in Java das
Schlüsselwort final verwendet. Im folgenden Beispiel wird die symbolische Kon-
stante UPPER definiert:

final int UPPER = 300;

Lexikalische Konventionen 123

Das Schlüsselwort final, welches die Konstanz gewährleistet, kann auf Klassenva-
riablen, Instanzvariablen und lokale Variablen (siehe Kap. 9.1.3) in Methoden ange-
wandt werden.

Symbolische Konstanten, die zusammengehören und oft gebraucht werden, werden
in der Regel in einer Klasse gruppiert wie in folgendem Beispiel:

public final class Math52
{
 public static final double PI = 3.141592654;
 public static final double E = 2.718281828;

}

Da es unerwünscht ist, dass Konstanten als Instanzvariablen angelegt werden –
Konstanten sind für jedes Objekt einer Klasse gleich – werden Konstanten als
Klassenvariablen angelegt. Damit werden sie nur einmal angelegt, wie viele Objekte
es auch immer von dieser Klasse gibt. Klassenvariablen werden in Java mit Hilfe des
Schlüsselwortes static erzeugt.

Literale Konstanten – oft auch nur Konstanten oder Literale genannt – haben
keinen Namen, sie werden durch ihren Wert dargestellt. So ist im letzten Beispiel die
Zahl 3.141592654 eine literale Konstante. Überall, wo von der Syntax her Kon-
stanten erlaubt sind, können auch konstante Ausdrücke53 stehen. Dies liegt daran,
dass ein konstanter Ausdruck ein Ausdruck ist, an dem nur Konstanten beteiligt sind.
Überall, wo von der Syntax her Konstanten oder konstante Ausdrücke erlaubt sind,
kann man literale Konstanten oder symbolische Konstanten einsetzen. Es gibt ver-
schiedene Arten von literalen Konstanten:

• Ganzzahlige Konstanten,
• Gleitpunktkonstanten,
• Boolesche Konstanten,
• Aufzählungskonstanten (bei enum),
• Zeichenkonstanten,
• String-Konstanten (konstante Zeichenketten)
• und die Nullkonstante.

Jede dieser Konstanten hat einen definierten Datentyp. Aufzählungskonstanten wer-
den in Kapitel 6.6 besprochen, die anderen werden im Folgenden betrachtet.

5.3.5.1 Ganzzahlige Konstanten

Ganzzahlige Konstanten wie 1234 sind vom Typ int. Wenn der Typ-Suffix l oder
L an eine Konstante angehängt ist, so ist sie vom Typ long.

52 Die Klasse Math stellt eine Bibliotheksklasse dar.
53 Ein konstanter Ausdruck ist eine Verknüpfung von Konstanten mit Operatoren und runden Klam-

mern. Konstante Ausdrücke spielen eine Rolle bei den case-Marken der switch-Anweisung
(siehe Kap. 8.2.3).

124 Kapitel 5

Zahlensysteme

Ganzzahlige Konstanten können in verschiedenen Zahlensystemen aufgeschrieben
werden. Neben der normalen Dezimaldarstellung ist auch die Angabe als oktale
(Basis 8) oder hexadezimale Konstante (Basis 16) möglich. Eine ganzzahlige dezi-
male Konstante ist die Konstante 0, sowie Konstanten, die mit einer Ziffer zwischen
1 und 9 beginnen. Konstanten, die mit einer 0 beginnen und weitere Ziffern haben,
werden oktal interpretiert. Oktalzahlen haben die Ziffern 0, 1, 2, ..., 7. Beginnt die
Konstante mit 0X oder 0x, also einer Null, gefolgt von einem großen oder einem
kleinen x, so wird die Zahl hexadezimal interpretiert. Hexadezimale Ziffern sind: 0,
1, ..., 9, a (oder A), b (oder B), c (oder C), d (oder D), e (oder E) und f (oder F).

Mit Java 7 können ganzzahlige Konstante als binäre Konstante aufgeschrieben
werden. Beginnt eine Konstante mit 0b der 0B, so wird die Zahl binär interpretiert.
Binäre Ziffern sind 0 und 1.

Eine allein stehende 0 wird vom Compiler als Dezimalzahl betrachtet, 00 als Oktal-
zahl, 0x0 als Hexadezimalzahl. Alle drei Zahlen haben denselben Wert. Ansonsten
gilt natürlich, dass mehrstellige, gleichlautende Ziffernfolgen in den drei Zahlen-
systemen unterschiedliche Werte haben. Dezimale Konstanten sind immer positiv
oder null, oktale und hexadezimale Konstanten können positiv, null oder nega-
tiv sein. Der Hintergrund, warum oktale und hexadezimale Konstanten negativ wer-
den können, dezimale Konstanten aber nicht, ist, dass int-Werte in der so genann-
ten Zweierkomplementdarstellung berechnet werden, wobei der Compiler für oktale
und hexadezimale Konstanten beliebige Werte zulässt, solange sie sich mit 32 Bit
darstellen lassen, und bei dezimalen Konstanten nur die Werte von 0 bis zur größten
positiven Zahl 2147483647. Beispiele für ganzzahlige Konstanten sind:

14 int-Konstante in Dezimaldarstellung mit dem Wert 14 dezimal
-14 positive int-Konstante, auf die der Vorzeichenoperator -
 angewandt wird
014 int-Konstante in Oktaldarstellung mit dem Wert 12 dezimal
0x14 int-Konstante in Hexadezimaldarstellung mit dem Wert 20 dezimal
14L long-Konstante in Dezimaldarstellung mit dem Wert 14

Die hexadezimale und oktale Schreibweise findet ihren Einsatz bei Bitmustern, an-
sonsten ist die dezimale Schreibweise vorzuziehen. Auf eine Konstante kann der
negative Vorzeichenoperator angewendet werden. Das Ergebnis dieser Operation
ist der mit (-1) multiplizierte Wert der Konstanten.

Den Wert einer oktalen bzw. hexadezimalen Zahl im Dezimalsystem kann man mit
Hilfe einer Stellenwert-Tabelle berechnen. Solange das oberste Bit – bei einer int-
Konstanten das 32. Bit, bei einer long-Konstanten das 64. Bit – auf 0 gesetzt ist, ist
die Berechnung des dezimalen Wertes einer oktalen bzw. hexadezimalen Konstan-
ten ganz einfach, so wie im folgenden Beispiel:

162 161 160
2 0 a

Tabelle 5-4 Stellenwert-Tabelle für Hexadezimalzahlen

Lexikalische Konventionen 125

So berechnet sich der dezimale Wert der in Tabelle 5-4 dargestellten Hexadezimal-
zahl 20a zu 2*162+0*161+10*160 = 522. In entsprechender Weise kann auch bei
einer anderen Basis als 16 wie z. B. 8 vorgegangen werden. Ist das oberste Bit in der
Zweierkomplementdarstellung auf 1 gesetzt, so ist es am einfachsten, eine Wand-
lung in Bits durchzuführen. Ein Beispiel hierfür zeigt Bild 5-2:

1111 1111 1111 1111 1111 1111 1111 1111

 f f f f f f f f

Bild 5-2 Die Konstante 0xffffffff

Eine Ziffer einer hexadezimalen Zahl ist eine Folge von 4 Bits. Eine Folge von 4 Bits
wird auch als Halbbyte bezeichnet. 0xf entspricht dem Bitmuster 1111.
0xffffffff ist ein Bitmuster aus 8 Halbbytes, welches – wie in Bild 5-2 gezeigt –
eine Folge von 32 Einsern ist.

Bits werden üblicherweise von rechts nach links durchnummeriert. Das Bit ganz
rechts wird als Bit 0, das Bit ganz links in Bild 5-2 als Bit 31 bezeichnet. Der Stellen-
wert von Bit 31 des Typs int hat im Rahmen der Zweierkomplementdarstellung ein
negatives Vorzeichen. Der Stellenwert ist -231. Alle anderen Bits haben den üblichen
positiven Stellenwert. Wie man aus dem Beispiel mit 8 Bits in Kapitel 6.2.2 ableiten
kann, ist der Wert des angegebenen Bitmusters gleich minus Eins (-1).

Mit Java 7 wird die Angabe von ganzzahligen Konstanten vereinfacht. Als visuelles
Trennglied kann der Unterstrich _ an jeder Stelle in einer Ziffernfolge verwendet wer-
den. So ist die folgende Schreibweise beispielsweise mit Java 7 zulässig:

int personalNummer = 50_775_13;

Durch die Schreibweise mit Unterstrich kann die Lesbarkeit für den Menschen erhöht
werden. Der Unterstrich darf nur zwischen Ziffern in einer ganzzahligen Konstanten
auftauchen.

5.3.5.2 Gleitpunktkonstanten

Eine Gleitpunktkonstante (Fließkommakonstante) wird in Dezimalform angegeben
und kann aus

• einer Mantisse,
• einem Exponential-Anteil
• und aus einer angehängten Typkennung für einen Gleitpunkttyp (Typ-Suffix)

bestehen, wie das folgende Beispiel zeigt:

 1.23 e-8 f

Mantisse Exponential-
Anteil

Typ-Suffix

126 Kapitel 5

Beispiele für Gleitpunktkonstanten sind:

500. .5 -500.6 5E2 5.e2 .5E3 1f

Der Teil einer Fließkommazahl vor dem E bzw. e ist die Mantisse. Der Exponential-
Anteil besteht aus einem e oder E gefolgt von einer ganzen Zahl, die den Exponen-
ten darstellt. Wird ein Exponent angegeben, so ist die Mantisse mit 10Exponent zu
multiplizieren. Der Dezimalpunkt der Mantisse, der Exponent und der Typ-Suffix
können fehlen, aber nicht alle drei zugleich. Entweder der ganzzahlige Anteil vor dem
Punkt oder der Dezimalbruch-Anteil nach dem Dezimalpunkt darf fehlen, aber nicht
beide zugleich.

Eine Gleitpunktkonstante hat den Typ double. Durch die Angabe eines Typ-
Suffixes f oder F wird sie zu float. Es ist auch möglich, den Typ-Suffix d oder D
für double anzuhängen, wie z. B. 1D. Die Gleitpunktkonstanten float und double
werden nach dem Format IEEE 754 repräsentiert54, wobei der Datentyp float 32
Bits und der Datentyp double 64 Bits hat.

Symbolische Gleitpunkt-Konstanten

In den Wrapper-Klassen55 Float und Double gibt es die in Tabelle 5-5 aufgeführten
symbolischen Gleitpunkt-Konstanten. In der Wrapper-Klasse Float sind die symbo-
lischen Gleitpunkt-Konstanten dabei vom Typ float und in der Wrapper-Klasse
Double vom Typ double. Dass ein und dieselbe Konstante das eine Mal vom Typ
float und das andere Mal vom Typ double ist, darf nicht verwirren. Angesprochen
werden die Konstanten über den Namen der jeweiligen Klasse, also z. B. als
Float.MIN_VALUE bzw. Double.MIN_VALUE. Damit gibt es keine Doppeldeutig-
keit.

Konstanten-Name Bedeutung Wert
MIN_VALUE Kleinster positiver Wert des

Typs float bzw. double,
der von Null verschieden ist.

1.4E-45f für float
5E-324 für double

MAX_VALUE Größter positiver endlicher
Wert des Typs float bzw.
double.

3.4028235E+38f für float
1.7976931348623157E+308
für double

NEGATIVE_INFINITY Negativ Unendlich des Typs
float bzw. double.

-1.0f/0.0f für float
-1.0/0.0 für double

POSITIVE_INFINITY Positiv Unendlich des Typs
float bzw. double.

1.0f/0.0f für float
1.0/0.0 für double

NaN Not-a-Number, d. h. eine
Zahl außerhalb des Wer-
tebereichs der float- bzw.
double-Zahlen.

0.0f/0.0f für float
0.0/0.0 für double

Tabelle 5-5 Symbolische Konstanten für den Typ float und double

54 Siehe Kap. 6.2.3.
55 Siehe Kap. 6.8.

Lexikalische Konventionen 127

Der Wert NaN kann beispielsweise verwendet werden, um einen nicht zulässigen
Wert anzuzeigen.

5.3.5.3 Boolesche Konstanten

Logische Ausdrücke wie z. B. a > b (a größer b) können prinzipiell nur zwei Werte
annehmen. Entweder ist ein logischer Ausdruck wahr oder er ist nicht wahr, d. h. er
ist falsch. Die Werte wahr bzw. true und falsch bzw. false werden als Wahr-
heitswerte oder Boolesche Werte56 bezeichnet. In Java werden die literalen Kon-
stanten true und false als Wahrheitswerte verwendet. Die Konstanten true und
false tragen keinen numerischen Wert.

5.3.5.4 Zeichenkonstanten

Eine Zeichenkonstante – auch Zeichenliteral genannt – ist ein Zeichen, einge-
schlossen in einfache Anführungszeichen.

In Java ist eine Zeichenkonstante vom Typ char.

Mit Zeichenkonstanten kann man rechnen wie mit ganzen Zahlen. Man kann sie in
ganzzahligen Ausdrücken verwenden. So hat beispielsweise das Zeichen '0' im
Unicode-Zeichensatz den Wert 48. Meistens verwendet man Zeichenkonstanten
jedoch, um Zeichen zu vergleichen.

Das folgende Beispiel zeigt die Ausgabe von Zeichen:

// Datei: Zeichen.java

public class Zeichen
{
 public static void main (String[] args)
 {
 char c;
 int d = 0;
 c = '3';
 System.out.println (c); // Ausgabe des Zeichens 3

 c = 49;
 System.out.println (c); // Ausgabe des Zeichens 1
 System.out.println (d); // Ausgabe der int-Zahl 0
 d = d + c;
 System.out.println (d); // Ausgabe der int-Zahl 49
 }
}

56 Benannt nach dem engl. Mathematiker George Boole (1815-1864), dem Begründer der mathema-

tischen Logik.

128 Kapitel 5

Die Ausgabe des Programms ist:

3
1
0
49

In Java repräsentiert ein Zeichenliteral immer genau ein Zeichen. Zeichenkonstanten
dürfen das Zeichen ' sowie Zeilentrenner nicht enthalten. Mit Hilfe von Ersatzdar-
stellungen kann man auch nicht darstellbare Zeichen aufschreiben. So entspricht \n
einem Zeilentrenner. Ein Zeilentrenner ist ein auf dem Papier unsichtbares Zeichen
(white space). \n sorgt dafür, dass die Ausgabe am linken Rand und auf einer neuen
Zeile fortgesetzt wird. Das n in \n kommt von new line = Zeilenendezeichen.

Ersatzdarstellungen in Zeichenkonstanten und konstanten Zeichenketten

Ersatzdarstellungen – auch Fluchtzeichenfolgen (engl. Escape-Sequences) ge-
nannt – wie \n können in Zeichenkonstanten und in konstanten Zeichenketten ver-
wendet werden.

Ersatzdarstellungen werden stets mit Hilfe eines Backslash \ (Gegenschrägstrich)
konstruiert. Mit solchen Ersatzdarstellungen kann man Steuerzeichen oder Zeichen,
die auf dem Eingabegerät nicht vorhanden oder nur schwer zu erhalten sind, dar-
stellen.

 Bezeichnung ASCII-Zeichensatz Erläuterung
 Char. Dez.
\n Zeilentrenner

(New Line bzw. Line Feed)
NL (LF) 10

\t Tabulatorzeichen
(Horizontal Tabulator)

HT 9

\b Backspace BS 8
\r Wagenrücklauf

(Carriage Return)
CR 13

\f Seitenvorschub
(Form Feed)

FF 12

\\ Gegenschrägstrich
(Backslash)

\ 92

\' Anführungszeichen
(Einfaches Hochkomma)

' 39 wird gebraucht für das
Zeichen einfaches Hoch-
komma

\" Doppelanführungszeichen
(Doppeltes Hochkomma)

" 34 wird gebraucht für das
Zeichen doppeltes Hoch-
komma in Zeichenketten

\o1o2o3 oktale Zahl o1, o2, o3 aus {0,...,7}

Tabelle 5-6 Ersatzdarstellungen für Zeichenkonstanten und konstante Zeichenketten

Die Ersatzdarstellungen in Tabelle 5-6 werden zwar als zwei Zeichen oder mehr
im Programmcode hingeschrieben, werden aber vom Compiler wie ein Zeichen

Lexikalische Konventionen 129

behandelt. Das erste Zeichen muss immer ein Backslash sein. Das zweite bzw.
die weiteren Zeichen legen die Bedeutung der Ersatzdarstellung fest.

Die Ersatzdarstellung \' stellt ein einfaches Hochkomma dar und die Ersatzdar-
stellung \o1o2o3 besteht aus einem Gegenschrägstrich \ gefolgt von 1, 2 oder 3
Oktalziffern, die als Wert des gewünschten Zeichens interpretiert werden. Auf diese
Art kann eine Zeichenkonstante direkt über ihre oktale Zahlendarstellung angegeben
werden. Werden drei Oktalziffern angegeben, so kann die erste Ziffer nur eine 0, 1, 2
oder 3 sein. Damit ist 255 die größte durch eine Fluchtzeichenfolge darstellbare Zahl.

Unicode-Ersatzdarstellungen

Die Unicode-Ersatzdarstellung \ux1x2x3x4 – bestehend aus einem Gegenschräg-
strich \ gefolgt von dem ASCII-Zeichen u und 4 hexadezimalen Ziffern – wird als
Wert des gewünschten Unicode-Zeichens interpretiert.

Solche Unicode-Ersatzdarstellungen sind nicht beschränkt auf Zei-
chenkonstanten oder konstante Zeichenketten. Sie können auch in
Namen (Bezeichnern) auftreten.

Die Ersatzdarstellung \ux1x2x3x4 ermöglicht, dass jedes beliebige
Java-Programm vollständig durch ASCII-Zeichen geschrieben werden
kann.

5.3.5.5 Konstante Zeichenketten

Konstante Zeichenketten (String-Konstanten, String-Literale) sind Folgen von
Zeichen, die in doppelten Anführungszeichen eingeschlossen sind. Die Doppelan-
führungszeichen sind nicht Teil der Zeichenketten, sondern begrenzen sie nur.
Beispiele für konstante Zeichenketten sind etwa "Max" oder "Moritz".

In Java sind konstante Zeichenketten Instanzen der Klasse String. Mit anderen
Worten, wird eine konstante Zeichenkette in Programmen angegeben, so wird bei
der Abarbeitung des Programms ein Objekt der Klasse String erzeugt, das mit den
Zeichen der konstanten Zeichenkette initialisiert wird. Innerhalb einer Zeichenkette
dürfen Zeichen sowie Ersatzdarstellungen stehen.

Mit Hilfe des Verkettungsoperators (Konkatenationsoperators) + kann man
mehrere Zeichenketten verketten. So hat der Ausdruck

"Max & " + "Moritz"

die gleiche Wirkung wie

"Max & Moritz"

130 Kapitel 5

Ist eine Zeichenkettenkonstante länger als eine Zeile, so stellt man sie
als Summe ihrer Bestandteile verknüpft durch den Verkettungsopera-
tor + dar.

In Zeichenketten sollten bei oktalen Ersatzdarstellungen stets drei
Ziffern angegeben werden, z. B. \033 statt \33. Dadurch wird ver-
mieden, dass eine eventuell nachfolgende Ziffer zur Ersatzdarstellung
gerechnet wird.

5.3.5.6 Nullkonstante

Die Nullkonstante (null-Referenz)

null

ist vom Typ null. Wie noch behandelt wird (siehe Kap. 10.4.1), initialisiert Java
automatisch die Datenfelder von Objekten und Klassen mit Default-Werten. Handelt
es sich bei den Datenfeldern um Referenzen, so werden sie mit der null-Referenz
initialisiert.

5.3.6 Satzzeichen

Ein Satzzeichen (Interpunktionszeichen) ist ein Zeichen, das keine Operation spezifi-
ziert. Es hat eine unabhängige syntaktische und semantische Bedeutung. Dasselbe
Symbol kann auch als Operator oder Teil eines Operators vorkommen. In Java gibt
es die folgenden Satzzeichen:

[] () {} ; , .

Tabelle 5-7 Satzzeichen der Sprache Java

Die Satzzeichen [], () und {} treten dabei stets in Paaren auf. So werden die ecki-
gen Klammern für die Definition der Größe eines Arrays, die runden Klammern bei-
spielsweise für das Aufnehmen einer Bedingung in einer if-Anweisung und die
geschweiften Klammern als Blockbegrenzer und für Initialisierungslisten gebraucht.
Das Komma wird beispielsweise benötigt als Trenner von Listenelementen etwa in
der Parameterliste von Methoden, der Strichpunkt als Ende einer Anweisung und der
Punkt z. B. zur Trennung eines Paketnamens von einem Unterpaketnamen bzw.
einem Klassen- oder Schnittstellennamen. Satzzeichen wirken als Trenner.

5.3.7 Operatoren

Operatoren werden auf Operanden angewandt, um Operationen durchzuführen.
Operanden können beispielsweise Konstanten, Variablen oder auch komplizierte
Ausdrücke sein. Durch Operationen werden in der Regel Werte gebildet, aber auch
so genannte Nebeneffekte (siehe Kap 7.3 und Kap. 7.8) durchgeführt. In Java gibt es
die folgenden Operatoren:

Vorsicht!

Lexikalische Konventionen 131

= > < ! ∼ ? :
== >= <= != && || ++ -- () [] .
+ - * / & | ^ % << >> >>>
+= -= *= /= &= |= ^= %= <<= >>= >>>=

 (type) instanceof new

Tabelle 5-8 Operatoren der Sprache Java

Operatoren wirken als Trenner. Operatoren werden detailliert in Kapitel 7 bespro-
chen.

5.4 Übungen

Aufgabe 5.1: Zeichensatz von Java

5.1.1 Auf welchem Zeichensatz basiert Java?
5.1.2 Welche Zeichen verbergen sich hinter folgenden Werten des Unicodes?

a) dezimal 65
b) dezimal 122
c) dezimal 33

5.1.3 Wie kann ein Zeichen eingegeben werden, welches nicht auf der Tastatur
vorhanden ist?

5.1.4 Wie können in Java folgende Zeichen in einem String dargestellt werden?
a) <RETURN>-Steuerzeichen zum Sprung des Cursors in eine neue Zeile
b) <TAB>-Steuerzeichen zur Positionierung des Cursors auf die nächste

Tabulatorposition
c) doppeltes Hochkomma, d. h. das Zeichen "
d) Gegenschrägstrich (Backslash), d. h. das Zeichen \
e) eine oktale Zahl

Aufgabe 5.2: Lexikalische Einheiten

5.2.1 Nennen Sie verschiedene Arten von literalen Konstanten und jeweils ein

Beispiel.
5.2.2 Was sind symbolische Konstanten?
5.2.3 Nennen Sie alle möglichen Satzzeichen und erklären Sie kurz, was ein

Satzzeichen ist.
5.2.4 Nennen Sie die zwei literalen Konstanten für Wahrheitsausdrücke.
5.2.5 Nennen Sie fünf reservierte Schlüsselwörter.
5.2.6 Welche drei Arten von Kommentaren gibt es in Java?
5.2.7 In Kapitel 4.6 wurde das Programm Kreiseck vorgestellt. Alle Klassen dieses

Programms sollen in dieser Aufgabe mit Dokumentationskommentaren
versehen werden. Was ein Dokumentationskommentar ist, wurde in Kapitel
5.3.1.2 anhand eines Beispiels erläutert.

Nachdem Sie die einzelnen Klassen und ihre Methoden dokumentiert haben,
erzeugen Sie mit Hilfe des Werkzeugs javadoc eine HTML-Hilfe. Der Aufruf
sollte wie folgt aussehen:

javadoc Punkt5.java Eck.java Kreis.java Kreiseck.java
 KreiseckTest.java

Datentypen und Variable

6.1 Klassifikation der Datentypen von Java
6.2 Einfache Datentypen
6.3 Klassen-Typ
6.4 Variable
6.5 Array-Typ
6.6 Aufzählungstyp
6.7 Zeichenketten
6.8 Wandlung von Datentypen
6.9 Übungen

6 Datentypen und Variable

Datentypen stellen den Bauplan für Variable dar. Alle Variablen eines Datentyps
haben dieselbe Darstellung im Arbeitsspeicher, d. h. dieselbe Anzahl von Speicher-
zellen und dieselbe Interpretation der einzelnen Bits. Verschiedene Variable können
dabei individuelle Werte tragen. Eine Klassifikation der in Java verfügbaren Daten-
typen finden Sie im anschließenden Kapitel.

6.1 Klassifikation der Datentypen von Java

Die Datentypen in Java können, wie in Bild 6-1 dargestellt, klassifiziert werden. Es
wird generell zwischen konkreten und generischen Datentypen unterschieden. Den
Unterschied zwischen konkreten und generischen Datentypen müssen Sie an dieser
Stelle noch nicht verstehen. Die generischen Datentypen gibt es in Java erst seit
dem JDK 5.0. Auf generische Datentypen – und damit auch auf den Unterschied zu
den konkreten Datentypen – wird erst in Kapitel 17 eingegangen.

logischer Typ

generischer Typ

Datentyp

einfacher
(elementarer, primitiver) Typ

Referenztyp

Integer-Typen
- char
- byte
- short
- int
- long

Gleitpunkt-Typen
- float
- double

Schnittstellen-
Typ

Array-Typ Klassen-Typ
boolean

numerischer Typ Schnittstellen-
Typ

Aufzählungs-
Typ

konkreter Typ

Bild 6-1 Klassifikation der Datentypen

Es stehen also zuerst die konkreten Datentypen im Vordergrund. Bei den konkreten
Datentypen unterscheidet Java zwischen:

• einfachen (elementaren, primitiven) Datentypen
• und Referenztypen.

Einfache Datentypen sind in Java durch die Sprache vorgegeben. Selbst definierte
einfache Datentypen gibt es in Java nicht.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_6,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Datentypen und Variable 135

In Java gibt es die folgenden einfachen Datentypen:

• die ganzzahligen Typen byte, short, int, long, char,

• die Gleitpunkttypen float und double

• und den logischen Typ boolean.

Das Schlüsselwort void stellt keinen Datentyp dar, sondern ist lediglich eine Kenn-
zeichnung für Methoden, die keinen Rückgabewert haben.

Während die einfachen Datentypen in Java durch die Sprache vorgegeben sind, sind
die Referenztypen in Java so genannte selbst definierte Datentypen. Eine Aus-
nahme bildet der so genannte null-Typ, der nur die null-Referenz als Wert
zulässt. Die null-Referenz wird durch die Nullkonstante null repräsentiert.

Referenztypen sind in Java – bis auf den Typ null – vom Program-
mierer selbst definierte Datentypen oder Datentypen der Klassen-
bibliothek wie z. B. Bibliotheksklassen.

Bei den Referenztypen können Klassen-Typ, Schnittstellen-Typ, Aufzählungstyp und
Array-Typ unterschieden werden. Nach der Erläuterung der einfachen Datentypen in
Kapitel 6.2 erfolgt in Kapitel 6.3 eine erste Einführung in die Definition der Klassen-
Typen. Schnittstellen-Typen werden erst in Kapitel 14 behandelt. Der Array-Typ wird
in Kapitel 6.5 und der Aufzählungstyp in Kapitel 6.6 erläutert.

6.2 Einfache Datentypen

Tabelle 6-1 fasst die einfachen Datentypen von Java zusammen und gibt den
zulässigen Wertebereich für jeden Typ an:

Typ Inhalt Wertebereich
boolean true oder false true und false
char 16 Bit-Unicode

Zeichen

0 bis 65535

byte 8 Bit-Ganzzahl
mit Vorzeichen

-27 bis +27-1

short 16 Bit-Ganzzahl
mit Vorzeichen

-215 bis +215-1

int 32 Bit-Ganzzahl
mit Vorzeichen

-231 bis +231-1

long 64 Bit-Ganzzahl
mit Vorzeichen

-263 bis +263-1

float Gleitpunkttyp
mit Vorzeichen

-3.4*1038 bis +3.4*1038

double Gleitpunkttyp
mit Vorzeichen

-1.7*10308 bis +1.7*10308

Tabelle 6-1 Einfache Datentypen

136 Kapitel 6

6.2.1 Der logische Typ boolean

Logische Variable sind in Java vom Typ boolean. Der Typ boolean hat die beiden
Werte true und false. Diese Werte stellen Konstanten dar, keine Schlüsselwörter.

6.2.2 Die Integer-Typen byte, short, int, long, char

In Java werden die Datentypen byte, short, int, long, char auf allen Rechnern
gleich dargestellt. Die Typen byte, short, int und long sind ganze Zahlen in der
Zweierkomplementdarstellung und umfassen 8, 16, 32 bzw. 64 Bits. Der Datentyp
char umfasst 16 Bits. Er hat als einziger ganzzahliger Datentyp kein Vorzeichenbit
und dient zur Darstellung von Unicode-Zeichen.

Ganze Zahlen werden meist im so genannten Zweierkomplement gespeichert. Das
höchste Bit der Zweierkomplement-Zahl gibt das Vorzeichen an. Ist es Null, so ist die
Zahl positiv, ist es 1, so ist die Zahl negativ. Zur Erläuterung soll folgendes Beispiel
einer Zweierkomplement-Zahl von der Größe 1 Byte dienen:

Bitmuster MSB LSB

1 0 1 0 0 1 1 1

Stellen- -27 +26 +25 +24 +23 +22 +21 +20
wertigkeit
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bild 6-2 Zweierkomplementdarstellung

Beachten Sie, dass Bit 0 das so genannte least significant bit (LSB) ist. Das höchste
Bit wird als most significant bit (MSB) bezeichnet.

Der Wert dieses Bitmusters errechnet sich aufgrund der Stellenwertigkeit zu:

-1*27 + 0*26 + 1*25 + 0*24 + 0*23 + 1*22 + 1*21 + 1*20 =
-128 + 0 + 32 + 0 + 0 + 4 + 2 + 1 = -89

Die dem Betrag nach größte positive Zahl in dieser Darstellung ist:

(0111 1111)2 = 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127

Die dem Betrag nach größte negative Zahl in dieser Darstellung ist:

(1000 0000)2 = -128

Die tief gestellte 2 bedeutet, dass es sich bei der Zahl um ein Bitmuster, welches be-
kanntlich die Basis 2 hat, handelt.

Eine andere (äquivalente) Rechenvorschrift zur Berechnung des Wertes negativer
Zahlen ist:

Schritt 1: Da das höchste Bit 1 ist, ist die Zahl negativ
Schritt 2: Invertiere alle Bits

Datentypen und Variable 137

Schritt 3: Addiere die Zahl 1
Schritt 4: Berechne die Zahl in der üblichen Binärdarstellung mit den Stellenwerten 27 ...

20 und füge anschließend das negative Vorzeichen (von Schritt 1) hinzu

Wendet man diese Rechenvorschrift auf das obige Beispiel an, so erhält man:

Schritt 1: Zahl ist negativ
Schritt 2: 01011000
Schritt 3: 01011001
Schritt 4: -(26 + 24 + 23 + 1) = - (64 + 16 + 8 + 1) = - 89

6.2.3 Die Gleitpunkttypen float und double

Gleitpunktzahlen sind das computergeeignete Modell der in der Mathematik vorkom-
menden reellen Zahlen. Nach IEEE 754 [10] werden die folgenden internen Darstel-
lungen für float- und double-Zahlen verwendet:

float: 1 Vorzeichenbit (Bit 31)
 8 Bits für Exponenten (Bit 23 - 30)
 23 Bits für Mantisse (Bit 0 - 22)

Mantisse

V Exponent Mantisse

 0 15

16 22 23 30 31

Bild 6-3 Darstellung einer float-Zahl (IEEE-Format)

double: 1 Vorzeichenbit
 11 Bits für Exponenten
 52 Bits für Mantisse

Das Vorzeichenbit hat für negative Zahlen den Wert 1, sonst den Wert 0.

Der Wertebereich der float-Zahlen liegt zwischen -1038 und 1038, der von double-
Zahlen zwischen -10308 und 10308. Die Genauigkeit beträgt 7 Stellen bei float-
Zahlen und 15 Stellen bei double-Zahlen.

6.3 Klassen-Typ

Bevor auf die Definition von Klassentypen in Kapitel 6.3.2 eingegangen wird, soll in
Kapitel 6.3.1 das Konzept eines abstrakten Datentyps erläutert werden. Dieses
Kapitel kann beim ersten Lesen übersprungen werden.

6.3.1 Abstrakte Datentypen und Klassen

Ein großer Fortschritt in der Geschichte der Programmiersprachen war die Datenab-
straktion. Mit dem Konzept der Datenabstraktion wurde das Ziel verfolgt, die Einzel-
heiten der Datendarstellung von den Beschreibungen der Operationen auf den Daten

138 Kapitel 6

zu trennen, um eine gesteigerte Übertragbarkeit und Wartbarkeit, sowie höhere
Sicherheit zu erreichen. Bei diesem Konzept ist dem Programmierer die Darstellung
der Daten verborgen, er kennt nur die Operationen zum Zugriff auf die Daten.

Ein abstrakter Datentyp entspricht dem Konzept der Datenabstraktion in vollem
Maße. Ein abstrakter Datentyp wird spezifiziert durch die Festlegung seiner Operatio-
nen, die öffentlich bekannt sind. Die Darstellung des Typs und die Implementierung
der Operationen kennt nur der Ersteller des Typs, dem Benutzer des Typs sind sie
verborgen. Bertrand Meyer [5] symbolisiert einen abstrakten Datentyp (ADT) durch
einen Eisberg, von dem man nur den Teil über Wasser – sprich die Aufrufschnitt-
stellen der Operationen – sieht. "Unter Wasser" und damit im Verborgenen liegen die
Repräsentation des Typs und die Implementierung der Operationen.

 Sichtbarer Teil des ADT:
Aufrufschnittstellen der
Operationen

Unsichtbarer Teil des ADT:
Repräsentation des Typs +

Implementierung der Operationen

Bild 6-4 Verbergen der Implementierung eines abstrakten Datentyps

Als Beispiel für einen abstrakten Datentyp soll ein Stack von Elementen betrachtet
werden. Ein Stack von Elementen ist eine lineare Datenstruktur. Man kann ihn sich
am besten am Beispiel eines Bücherstapels veranschaulichen. Auf dem Stapel liegt
eine bestimmte Anzahl von Büchern übereinander. Mit der Operation put57 legt man
ein weiteres Buch oben auf den Stapel. Mit der Operation get58 kann man ein Buch
oben an der Spitze des Stapels entnehmen. Ein Buch aus der Mitte des Stapels oder
von ganz unten herauszuziehen, ist jedoch nicht erlaubt.

Mathematisch formulieren kann man den abstrakten Datentyp eines Stacks durch:
STACK[G]. Hierbei kann G ein Element irgendeines beliebigen Typs sein. Die
Operation put lässt sich formulieren durch:

put: STACK[G] x G -> STACK[G]

In Worten ausgedrückt bedeutet dies: Die Operation put hat zwei Parameter, den
Stack aus Instanzen von G und eine Instanz von G. Als Resultat der Operation
(siehe rechts vom Pfeil) resultiert ein neuer Stack. Entsprechendes gilt für get.

Eine Klasse, die den abstrakten Datentyp STACK implementiert, muss die Methoden
put() und get() in ausprogrammierter Form zur Verfügung stellen, genauso wie
die Datenstruktur eines Stacks, die beispielsweise durch ein Array oder eine ver-

57 Statt put wird oft der Name push verwendet.
58 Wird push verwendet, so tritt pop an die Stelle von get.

Datentypen und Variable 139

kettete Liste realisiert wird. Nach außen werden nur die Aufrufschnittstellen der
Methoden angeboten. Die Implementierung, d. h. die Datenstruktur und die Metho-
denrümpfe sind verborgen, sodass der Aufrufer gar nicht wissen kann, ob der Stack
als Array oder verkettete Liste implementiert ist.

Erst die Klassen in objektorientierten Programmiersprachen erlauben es, dass Da-
ten und die Operationen, die mit diesen Daten arbeiten, zu Datentypen zusammen-
gefasst werden können.

Die Klasse implementiert die Operationen des abstrakten Datentyps in
ihren Methoden.

 Abstrakter Datentyp (ADT)

Operationen

Klasse ist Datentyp

implementiert

Definition der
Aufrufschnittstellen
der Methoden

Implementierung der
Datenstrukturen und
der Methoden

Bild 6-5 Eine Klasse implementiert einen abstrakten Datentyp

Objekte sind die Variablen der Klassen. Ein Ersteller eines objektorientierten Pro-
gramms konzipiert Klassen, die seine Anwendungswelt widerspiegeln.

Im Falle von Klassen kann ein Programmierer – wie bei Java – im Idealfall auf die
Daten eines Objektes nicht direkt zugreifen, sondern nur über die Methoden eines
Objektes. Zu einer Klasse gehören die Methoden, die beschreiben, was man mit
einem Objekt der Klasse tun kann. Dabei kann man nur auf jene Daten zugreifen, für
die explizit eine Methode zur Verfügung gestellt wird. Daten, für die es keine
Methode gibt, dienen zu internen Berechnungen und bleiben nach außen verborgen.

6.3.2 Definition eines Klassen-Typs

Wie in Kapitel 6.3.1 erläutert, implementiert eine Klasse einen abstrakten Datentyp.
Die Realisierung des abstrakten Datentyps beschreibt man in der Klassendefinition.

Eine Klassendefinition gibt den Namen eines neuen Datentyps be-
kannt und definiert zugleich dessen Methoden und Datenfelder.

Das Schlüsselwort zur Definition einer neuen Klasse ist class. Auf das Schlüssel-
wort class folgt der Klassenname. Der Klassenname stellt den Namen für den

140 Kapitel 6

neuen Datentyp dar. Er muss ein gültiger Java-Namen sein. Er sollte, wie in der
Java-Welt allgemein üblich, mit einem Großbuchstaben beginnen. Hier ein Beispiel:

class Punkt // Deklaration des neuen Klassennamens Punkt
{ // Der Klassenrumpf enthält
 // Datenfelder
} // und Methoden

Eine Deklaration gibt dem Compiler einen neuen Namen bekannt.
Die Definition einer Klasse, d. h. die Festlegung ihrer Datenfelder und
die Definition ihrer Methoden erfolgt innerhalb der geschweiften Klam-
mern des Klassenrumpfes.

6.3.2.1 Methoden

Eine Methode ist eine Anweisungsfolge, die unter einem Namen abge-
legt ist und über ihren Namen aufrufbar ist.

Eine Methode muss in einer Klasse definiert werden. Eine Methode besteht aus der
Methodendeklaration und dem Methodenrumpf. Die Methodendeklaration gibt
dem Compiler die Aufrufschnittstelle der Methode bekannt. Die Methodendeklaration
wird auch als Methodenkopf bezeichnet.

Methodendeklaration // Methodenkopf
{ //
 // Methodenrumpf
} //

Die Methodendeklaration beinhaltet im Minimalfall den Namen der Methode, dahinter
eine öffnende und eine schließende runde Klammer und vor dem Methodennamen
den Rückgabetyp der Methode oder das Schlüsselwort void.

Im folgenden Beispiel wird die Definition der Klasse Punkt betrachtet:

public class Punkt
{ // Mit der öffnenden geschweiften Klammer
 // beginnt der Klassenrumpf

 private int x; // x-Koordinate vom Typ int

 public int getX() // getX ist der Name der Methode. Die runden
 // Klammern ohne Inhalt besagen, dass die
 // Methode ohne Übergabeparameter aufgerufen
 // wird. Das vor den Methodennamen gestellte
 // int bedeutet, dass die Methode an der Stelle
 // ihres Aufrufs einen int-Wert zurückliefert.

 { // Der Methodenrumpf beginnt mit einer öffnen-
 // den geschweiften Klammer.

Datentypen und Variable 141

 // Zwischen den geschweiften Klammern, die den
 // Beginn und das Ende des Methodenrumpfes
 // bilden, stehen die Anweisungen der Methode.

 return x; // Die einzige Anweisung hier ist: return x.
 // return x gibt an den Aufrufer der Methode
 // den Wert des Datenfeldes x zurück.

 } // Der Methodenrumpf endet mit der
 // schließenden geschweiften Klammer.

 // Die weiteren Methoden dieser Klasse werden
 // hier nicht betrachtet.

} // Mit der schließenden geschweiften Klammer
 // endet der Klassenrumpf.

Die Methoden eines Objektes haben direkten Zugriff auf die Daten-
felder und Methoden desselben Objektes.

Das folgende Beispiel zeigt den Zugriff einer Methode eines Objektes auf eine
Methode desselben Objektes, nämlich den Zugriff der Methode print() auf die
Methode printSterne(), und den Zugriff einer Methode eines Objektes auf ein
Datenfeld desselben Objektes, nämlich den Zugriff auf das Datenfeld x durch die
Methoden getX() und setX()59.

// Datei: Punkt6.java

public class Punkt6
{
 private int x; // x-Koordinate vom Typ int

 public int getX()
 { // Zugriff der Methode getX() auf das
 return x; // Datenfeld x desselben Objektes.
 }

 public void setX (int i)// Eine Methode, um den x-Wert zu setzen.
 {
 x = i; // Zugriff der Methode setX() auf das
 // Datenfeld x desselben Objektes.
 }

 public void printSterne()
 {
 System.out.println ("***********************************");
 }

59 Werden Methoden im Text zitiert, so können die runden Klammern () nach dem Methodennamen

leer bleiben, obwohl die Methode Parameter hat.

142 Kapitel 6

 public void print()
 {
 printSterne(); // Zugriff der Methode print() auf die
 // Methode printSterne() desselben
 // Objektes.
 System.out.println ("Die Koordinate des Punktes ist: " + x);
 printSterne();
 }
}

// Datei: Punkt6Test.java

public class Punkt6Test
{
 // mit main() beginnt eine Java-Anwendung ihre Ausführung.
 public static void main (String[] args)
 {
 Punkt6 p = new Punkt6(); // Hiermit wird ein Punkt erzeugt.
 p.setX (3); // Setzen der x-Koordinate auf 3.
 p.print(); // Aufruf der Methode print().
 }
}

Die Ausgabe des Programmes ist:

Die Koordinate des Punktes ist: 3

In Java werden konventionsgemäß die Namen von Methoden kleingeschrieben. Bei
zusammengesetzten Namen beginnt jedes Wort bis auf das erste mit einem Groß-
buchstaben. Wird das Schlüsselwort void anstelle des Rückgabetyps angegeben,
so gibt die Methode nichts zurück und deshalb ist kein return notwendig60, ansons-
ten muss immer ein Wert mit Hilfe einer return-Anweisung zurückgegeben werden.

Klassen-Typen sind Referenztypen (siehe Bild 6-1). Eine Variable eines Klassen-
Typs ist eine Referenz auf ein Objekt dieser Klasse.

Referenztypen haben als Variablen Zeiger auf Objekte.

Von einem fremden Objekt aus wird eine Methode ohne Parameter
eines anderen Objektes aufgerufen, indem das fremde Objekt auf eine
Referenz auf das andere Objekt den Punktoperator anwendet und
den Methodennamen gefolgt von einem leeren Klammerpaar ()
angibt.

60 Eine return-Anweisung ist nicht erforderlich, aber möglich. Die return-Anweisung gibt hier aber

keinen Wert zurück, sondern bedeutet nur einen Rücksprung (siehe Kap. 9.2.3).

Datentypen und Variable 143

Von einem fremden Objekt aus wird eine Methode mit Parametern61
eines anderen Objektes aufgerufen, indem das fremde Objekt auf eine
Referenz auf das andere Objekt den Punktoperator anwendet und
den Methodennamen gefolgt von den benötigten Parametern der
Methode in runden Klammern() angibt.

Jede Operation auf einer Referenz erfolgt tatsächlich auf dem referenzierten Objekt.
Die Methode print() wird über die Referenzvariable p folgendermaßen aufgerufen:

p.print();

Die Notation p.print() bedeutet, dass die Methode print() des
Objektes, auf das die Referenz p zeigt, aufgerufen wird.

6.3.2.2 Datenfelder

Die Datenfelder (Variablen) einer Klasse werden im Klassenrumpf definiert. Die De-
finition kann an jeder Stelle des Klassenrumpfes erfolgen. Es empfiehlt sich jedoch –
aus Gründen der Übersichtlichkeit – die Variablen am Anfang einer Klasse zu defi-
nieren. Die Vereinbarung einer Variablen im Klassenrumpf erfolgt durch:

datentyp name;

In Java werden konventionsgemäß die Namen von Variablen kleingeschrieben. Bei
zusammengesetzten Namen beginnt jedes Wort bis auf das erste mit einem Groß-
buchstaben.

Der Zugriff auf ein Datenfeld eines fremden Objektes erfolgt ebenfalls mit der Punkt-
notation wie der Zugriff auf Methoden. So sei p eine Referenz auf ein Objekt der
Klasse Punkt. Der Zugriff auf das Datenfeld x des Objektes, auf das die Referenz p
zeigt, erfolgt dann mit62:

p.x;

6.4 Variable

Prinzipiell unterscheidet man bei Programmiersprachen zwischen statischen63 und
dynamischen Variablen. Im Folgenden werden an einem Beispiel eine statische
und eine dynamische Variable in Java gezeigt:

61 Auf die Parameter von Methoden wird ausführlich in Kapitel 9.2 eingegangen.
62 Unter der Voraussetzung, dass der Zugriff erlaubt ist (siehe Kap. 12.7.2).
63 Statisch im Sinne des Unterschieds zwischen statisch und dynamisch hat überhaupt nichts mit den

static-Variablen (Klassenvariablen) von Java zu tun. In diesem Kapitel kommen statische
Variablen nur in ihrer allgemeinen Bedeutung als Gegensatz zu dynamischen Variablen vor.

144 Kapitel 6

// Datei: Punkt7.java

public class Punkt7 // Deklaration der Klasse Punkt7
{
 private int x; // Datenfeld für die x-Koordinate
 // vom Typ int

 public int getX() // eine Methode, um den Wert
 { // von x abzuholen
 return x;
 }

 public void setX (int i) // eine Methode, um den Wert
 { // von x zu setzen
 x = i;
 }
}

// TestPunkt7.java

public class TestPunkt7
{
 public static void main (String[] args)
 {
 int x = 3; // x ist eine statische Variable
 // eines einfachen Datentyps
 Punkt7 p; // Die Referenzvariable p ist
 // eine statische Variable

 p = new Punkt7(); // Erzeugen einer dynamischen
 // Variablen mit dem new-Operator
 p.setX (x); // Aufruf der Methode setX()
 System.out.println ("Die Koordinate des Punktes p ist: ");
 System.out.println (p.getX());
 }
}

Die Ausgabe des Programmes ist:

Die Koordinate des Punktes p ist:
3

Im obigen Beispiel stellen die lokalen Variablen64 x und p statische Variablen dar.
Mit new Punkt7() wird auf dem Heap65 ein namenloses Objekt der Klasse
Punkt7 als dynamische Variable mit Hilfe des new-Operators erzeugt. Der
Rückgabewert des new-Operators ist eine Referenz auf die dynamische Variable.
Die zurückgegebene Referenz wird der statischen Referenzvariablen mit dem
Namen p zugewiesen. Die statische Referenzvariable p stellt im obigen Beispiel die
einzige Möglichkeit dar, auf das namenslose Objekt vom Typ Punkt7 zuzugreifen.

64 Lokale Variablen sind Variablen, die innerhalb von Methoden definiert werden.
65 Der Heap ist ein von der virtuellen Maschine verwalteter Speicherbereich, in welchem die mit dem

new-Operator dynamisch erzeugten Objekte abgelegt werden (siehe Kap. 6.4.5.2).

Datentypen und Variable 145

Eine Variable, die in einer Methode definiert wird, ist sowohl eine
lokale Variable als auch eine statische Variable.

Eine statische Variable hat immer einen Typ und einen Namen (Bezeichner). Bei
einer Definition – hier wird die Variable angelegt – muss der Typ und der Variablen-
name wie in folgendem Beispiel angegeben werden:

int x;

Nach der Definition kann auf die Variable über ihren Namen zugegrif-
fen werden. Eine solche Variable heißt statisch, weil ihr Gültigkeits-
bereich und ihre Lebensdauer durch die statische Struktur des
Programms festgelegt ist. Der Gültigkeitsbereich einer lokalen,
statischen Variablen umfasst alle Stellen im Programm, an denen ihr
Name durch die Vereinbarung bekannt ist.

Die Lebensdauer einer lokalen, statischen Variablen erstreckt sich über den Zeit-
raum der Abarbeitung der Methode bzw. des Blocks66, zu dem sie gehört. Das
heißt, während dieser Zeit ist für sie Speicherplatz vorhanden.

Die Gültigkeit und Lebensdauer einer dynamischen Variablen wird
nicht durch die statische Struktur des Programms, wie z. B. die
Blockgrenzen, bestimmt.

Dynamische Variablen erscheinen nicht explizit in einer Definition.
Sie tragen keinen Namen. Daher kann auf sie nicht über einen Be-
zeichner zugegriffen werden. Dynamische Variablen werden mit dem
Operator new im Heap angelegt. Der Zugriff auf dynamische Variable
erfolgt mit Hilfe von Referenzen.

Statische Variablen sind entweder Variablen einfacher Datentypen
oder Referenzvariablen. Dynamische Variablen sind in Java immer
Objekte.

6.4.1 Variable einfacher Datentypen

Von einfachen Datentypen kann man eine Variable erzeugen, die einen einfachen
Wert in der ihr zugeteilten Speicherstelle aufnehmen kann. So enthält eine Variable
vom Typ int genau einen int-Wert wie z. B. die Zahl 3.

66 Ein Block (siehe Kap. 9) stellt eine zusammengesetzte Anweisung dar. Als Blockbegrenzer dienen

die geschweiften Klammern. In jedem Block können Variablen definiert werden.

146 Kapitel 6

Eine Definition einer Variablen

• legt den Namen und die Art einer Variablen
 − nämlich ihren Typ
 − und Modifikatoren wie public, static etc. fest

• und sorgt gleichzeitig für die Reservierung des Speicherplatzes.

Mit einer Definition ist stets auch eine Deklaration verbunden. Die
Deklaration einer Variablen umfasst den Namen einer Variablen,
ihren Typ und ggf. ihren Typmodifikator. Mit der Deklaration wird
dem Compiler bekanntgegeben, mit welchem Typ und mit welchem
Typmodifikator er einen Namen verbinden muss.

Kurz und bündig ausgedrückt, bedeutet dies:

Definition = Deklaration + Reservierung des Speicherplatzes.

In Java ist es nicht möglich, Variable nur zu deklarieren und sie an anderer Stelle zu
definieren, wohl aber in der Programmiersprache C.

Eine einzige Variable eines einfachen Datentyps wird definiert zu

datentyp name;

also beispielsweise durch

int x;

Mehrere Variablen vom selben Typ können in einer einzigen Vereinbarung defi-
niert werden, indem man wie im folgenden Beispiel die Variablennamen durch
Kommata trennt:

int x, y, z;

Die Namen der Variablen müssen den Namenskonventionen (siehe Kap. 5.3.2) ge-
nügen. Ein Variablenname darf nicht identisch mit einem Schlüsselwort sein.

6.4.2 Referenzvariable von Klassen-Typen

Referenzvariable ermöglichen den Zugriff auf Objekte im Heap. Als Wert enthalten
sie die Adresse67, an der sich das Objekt im Heap befindet.

67 Es handelt sich hierbei nicht um die physikalische Adresse im Arbeitsspeicher des Rechners, son-

dern um eine logische Adresse, die von der virtuellen Maschine in die physikalische Adresse um-
gesetzt wird. Dass die Referenz nicht die physikalische Adresse enthält, hat Sicherheitsgründe.

Datentypen und Variable 147

Referenzvariable zeigen in Java entweder auf:

• Objekte,
• oder nichts, wenn sie die null-Referenz als Wert enthalten.

Referenzvariable können auch auf Arrays, Aufzählungskonstanten und auf Objekte,
deren Klassen Schnittstellen implementieren, zeigen, da es sich hierbei auch um
Objekte handelt. Arrays werden in Kapitel 6.5 vorgestellt, Aufzählungstypen in
Kapitel 6.6 und Schnittstellen in Kapitel 14.

Eine Referenzvariable kann als Wert enthalten:

• die Adresse eines Objektes, dessen Klasse zuweisungskompatibel68 zum Typ der
Referenzvariablen ist,

• die null-Referenz.

In Java gibt es – wie bereits erwähnt – den so genannten null-Typ. Von diesem
Typ gibt es nur einen einzigen Wert, die Konstante null. Diese Konstante wird
verwendet als null-Referenz für Referenzvariable, die noch auf kein Objekt
zeigen. Die Referenz null ist eine vordefinierte Referenz, deren Wert sich von
allen regulären Referenzen unterscheidet. Wird einer Referenzvariablen, die auf
ein gültiges Objekt im Speicher zeigt, die null-Referenz zugewiesen, so können
keine Methoden und keine Datenfelder über diese Referenzvariable mehr ange-
sprochen werden. Eine null-Referenz ist zu allen anderen Referenztypen zu-
weisungskompatibel, d. h. jeder Referenzvariablen kann die Referenz null
zugewiesen werden.

Objekte und Referenzvariablen haben einen Datentyp. Will man mit einer Referenz-
variablen auf ein Objekt zeigen, so muss die Klasse des Objektes zuweisungskom-
patibel68 zum Typ der Referenzvariablen sein. Vereinfacht ausgedrückt bedeutet
dies: Ist ein Objekt vom Typ Klassenname, so braucht man eine Referenzvariable
vom Typ Klassenname, um auf dieses Objekt zeigen zu können.

Eine Referenzvariable wird formal wie eine einfache Variable definiert:

Klassenname referenzName;

Die Definition wird von rechts nach links gelesen zu: "referenzName
ist vom Typ Klassenname und ist eine Referenz auf ein Objekt der
Klasse Klassenname".

Durch diese Definition wird eine Referenzvariable referenzName vom Typ Klas-
senname definiert, wobei der Compiler für diese Referenzvariable Platz vorsehen
muss. Beispiele für die Definition von Referenzvariablen sind:

68 Zuweisungskompatibilität wird in Kap. 11.3.1 erläutert.

148 Kapitel 6

ClassA refA;
ClassB refB;
ClassC blubb; //damit niemand meint, es müsse immer ref heißen

Durch die Definition sind Referenz und zugeordneter Typ miteinander verbunden.
Durch die Definition einer Referenzvariablen wird noch kein Speicherplatz für ein
Objekt vorgesehen, sondern nur für die Referenzvariable. Ebenso wie bei jeder
anderen Variable ist der Wert einer Referenzvariablen nach der Variablendefinition
zunächst unbestimmt69. Der Wert ist noch nicht definiert! Die Referenz zeigt auf
irgendeine Speicherstelle im Adressraum des Programms.

Wie bei einfachen Datentypen kann man mehrere Referenzvariable vom selben
Typ in einem Schritt definieren, indem man in der Definition eine Liste von
Variablennamen angibt, wobei die verschiedenen Variablennamen durch Kommata
voneinander getrennt sind wie im folgenden Beispiel:

Punkt p1, p2, p3;

Eine Referenzvariable ist also in Java eine Variable, die eine Verknüpfung zu
einem im Speicher befindlichen Objekt beinhaltet. Die Verknüpfung mit dem
referenzierten Objekt erfolgt durch einen logischen Namen. Eine Referenzvariable
enthält als Variablenwert also einen logischen Namen, der auf das entsprechende
Objekt verweist. Dieser logische Name wird von der virtuellen Maschine in eine
Adresse umgesetzt. Von Java aus sind also die physikalischen Adressen des Ar-
beitsspeichers nicht direkt sichtbar. In Java kann damit die Adresse einer Variablen
nicht ermittelt werden.

Referenzen gibt es in Java nur auf Objekte, nicht auf Variable ein-
facher Datentypen.

 ref

Referenzvariable vom
Typ Klasse. Auf das
namenlose Objekt vom
Typ Klasse kann mit
Hilfe der Referenz-
variablen ref zuge-
griffen werden.

Objekt vom Typ
Klasse.

Adresse 0

Arbeitsspeicher

Bild 6-6 Referenzvariable können auf Objekte zeigen

Bruce Eckel [11] verwendet für Referenzen ein treffendes Beispiel. Er vergleicht das
Objekt mit einem Fernseher und die Referenz mit der Fernsteuerung, die auf den
Fernseher zugreift. Will man den Fernseher bedienen, so bedient man direkt die

69 Es sei denn, die Referenz stellt eine Instanz- oder Klassenvariable dar. Hierfür gibt es eine Default-

Initialisierung.

Datentypen und Variable 149

Fernsteuerung und damit indirekt den Fernseher. Während man jedoch bei Fern-
sehgeräten oftmals auch ohne Fernsteuerung auskommen und den Fernsehapparat
direkt einstellen kann, ist dies bei Objekten in Java nicht möglich. Objekte tragen in
Java keinen Namen. Werden sie erzeugt, so erhält man eine Referenz auf das
entsprechende Objekt. Diese Referenz muss man einer Referenzvariablen zuweisen,
um den Zugriff auf das Objekt nicht zu verlieren.

Objekte können in Java nicht direkt manipuliert werden. Sie können
nur "ferngesteuert bedient" werden. Mit anderen Worten, man kann
auf Objekte nur indirekt mit Hilfe von Referenzen zugreifen.

Eine Referenzvariable muss nicht immer auf das gleiche Objekt zeigen. Der Wert
einer Referenzvariablen kann durch eine erneute Zuweisung auch verändert werden.
Bei der Zuweisung

a = b; // a und b sollen Variable vom selben Typ sein

findet im Falle von einfachen Datentypen ein Kopieren des Wertes von b in die
Variable a statt. Sind a und b Referenzvariable, so wird der Wert der Referenz-
variable b in die Referenzvariable a kopiert. Nach einer solchen Zuweisung zeigen
die Referenzvariablen a und b auf dasselbe Objekt. Das folgende Beispiel zeigt die
Zuweisung des Werts einer Referenzvariable p1 an eine andere Referenzvariable
p2. Nach dieser Zuweisung zeigt die Referenzvariable p2 auf dasselbe Objekt wie
p1, um dann nach der Zuweisung p2 = p3 auf dasselbe Objekt wie p3 zu zeigen:

p2 = p1;

p3

p1

p2

:Punkt

x = 1

:Punkt

x = 3

Bild 6-7 Nach der Zuweisung p2 = p1

p2 = p3;

p3

p1

p2

:Punkt

x = 1

:Punkt

x = 3

Bild 6-8 Nach der Zuweisung p2 = p3

150 Kapitel 6

// Datei: Punkt8.java

public class Punkt8
{
 private int x;

 public int getX()
 {
 return x;
 }

 public void setX (int u)
 {
 x = u;
 }
}

// Datei: TestPunkt8.java

public class TestPunkt8
{
 public static void main (String[] args)
 {
 Punkt8 p1 = new Punkt8(); // Anlegen eines Punkt-Objektes
 p1.setX (1); // Dieses enthält den Wert x = 1
 Punkt8 p2; // Anlegen einer Referenzvariablen
 // vom Typ Punkt
 Punkt8 p3 = new Punkt8(); // Anlegen eines Punkt-Objektes
 p3.setX (3); // x wird 3

 p2 = p1; // Nun zeigt p2 auf dasselbe Objekt
 // wie p1
 System.out.println ("p1.x hat den Wert " + p1.getX());
 System.out.println ("p2.x hat den Wert " + p2.getX());
 System.out.println ("p3.x hat den Wert " + p3.getX());

 p2 = p3; // Nun zeigt p2 auf dasselbe
 // Objekt wie p3
 System.out.println ("p2.x hat den Wert " + p2.getX());

 p2.setX (20);
 System.out.println ("p2.x hat den Wert " + p2.getX());
 System.out.println ("p3.x hat den Wert " + p3.getX());
 }
}

Die Ausgabe des Programms ist:

p1.x hat den Wert 1
p2.x hat den Wert 1
p3.x hat den Wert 3
p2.x hat den Wert 3
p2.x hat den Wert 20
p3.x hat den Wert 20

Datentypen und Variable 151

6.4.3 Dynamische Variablen – Objekte

Referenzen auf Objekte – die Referenzvariablen – können in Java als statische Vari-
able angelegt werden. Die Objekte selbst werden mit Hilfe des new-Operators als
dynamische Variable auf dem Heap angelegt.

Ein Objekt wird in Java erzeugt durch die Anweisung:

new Klassenname();

Ein Objekt wird vom Laufzeitsystem als dynamische Variable auf
dem Heap, der ein Speicherreservoir für dynamische Variablen dar-
stellt, angelegt.

Ist nicht genug Platz zum Anlegen des Objektes vorhanden, so muss das Laufzeit-
system versuchen, über eine Speicherbereinigung (Garbage Collection) Platz zu ge-
winnen. Schlägt dies fehl, so wird eine Exception vom Typ OutOfMemoryError70
ausgelöst.

Dynamische Variable erscheinen nicht in einer Variablendefinition. Auf dynamische
Variable kann man nicht über einen Bezeichner zugreifen. Der Zugriff auf dyna-
mische Variable erfolgt in Java mit Hilfe von Referenzen, den Referenzvariablen.

Die Definition einer Referenzvariablen und die Erzeugung eines Ob-
jektes lassen sich in einem Schritt wie folgt durchführen:

Klassenname var = new Klassenname();

Oftmals – wenn es nicht so genau darauf ankommt, oder wenn man mit der Sprache
etwas nachlässig ist – verwendet man statt "Referenz auf ein Objekt" auch das Wort
"Objekt". Liest man dann an einer Stelle das Wort "Objekt", so muss man aus dem
Zusammenhang erschließen, ob das Objekt im Heap oder die Referenz auf das
Objekt gemeint ist – denn woher soll man wissen, ob sich der Autor gerade "locker"
oder präzise ausdrückt.

Bei einer exakten Sprechweise werden "Referenz auf ein Objekt" und
"Objekt" unterschieden.

Objekte werden in der Regel mit new auf dem Heap angelegt. Es gibt noch einen
zweiten Weg, Objekte zu schaffen. Dies erfolgt mit Hilfe der Methode newIn-
stance() der Klasse Class<T> und wird in Kapitel 17 erklärt. Im Weiteren soll je-

70 Siehe Kap. 13.4.

152 Kapitel 6

doch die Erzeugung eines Objektes mit dem new-Operator am Beispiel der Klasse
Punkt betrachtet werden:

public class Punkt
{
 private int x; // x-Koordinate vom Typ int

 public static void main (String[] args)
 {
 Punkt p = null;
 p = new Punkt(); // hiermit wird ein Punkt erzeugt
 // weitere Anweisungen
 }
}

Die Definition Punkt p; erzeugt die Referenzvariable p, die auf ein Objekt der
Klasse Punkt zeigen kann. Mit new Punkt() wird ein Objekt ohne Namen auf dem
Heap angelegt. Der new-Operator gibt eine Referenz auf das erzeugte Objekt
zurück. Diese Referenz wird der Referenzvariablen p zugewiesen.

p

Stack

Punkt p;

p

Das im Heap
geschaffene Objekt
wird referenziert.

Stack

p = new
Punkt();

Punkt-Objekt

Heap Heap

null

Bild 6-9 null-Referenz und Referenz auf ein Objekt

Eine Referenzvariable als lokale Variable in einer Methode wird vom
Compiler nicht automatisch initialisiert.

Wird versucht, mit dem Punktoperator auf eine nicht initialisierte lokale Referenz-
variable zuzugreifen, so meldet der Compiler einen Fehler. Dies soll anhand des
folgenden Beispiels erläutert werden:

// Datei: CompilerTest.java

class Punkt
{
 private int x;
 public void print()
 {
 System.out.println ("x: " + x);
 }
}

Datentypen und Variable 153

public class CompilerTest
{
 public static void main (String[] args)
 {
 // Anlegen der nicht initialisierten lokalen Variablen p
 Punkt p;

 // Zugriff auf die nicht initialisierte lokale Variable p
 p.print();
 }
}

Der Aufruf des Compilers lautet:

javac CompilerTest.java

Die Ausgabe des Compilers ist:

CompilerTest.java:21: variable p might not have
been initialized
 p.print();
 ^

Um das obige Beispielprogramm für den Compiler akzeptabel umzuschreiben, wird
im folgenden Beispiel die lokale Variable p vom Typ Punkt mit der null-Referenz
initialisiert. Wird das Programm nach der erfolgreichen Übersetzung gestartet, gene-
riert das Laufzeitsystem jedoch eine Exception vom Typ NullPointerException.
Dies bedeutet, dass wir wieder nichts gedacht haben. Das Programm ist also immer
noch falsch. Es gibt zwar keinen Kompilierfehler mehr, aber einen Laufzeitfehler.
Was ist los? Die Antwort ist klar. Wir haben vergessen, der Variablen p eine
Referenz auf ein Objekt der Klasse Punkt zuzuweisen. Eine NullPointer-
Exception wird immer dann geworfen, wenn auf eine mit der null-Referenz
initialisierte Referenzvariable zugegriffen wird, beispielsweise durch einen Methoden-
aufruf. Das folgende Beispielprogramm verdeutlicht den Zusammenhang:

// Datei: CompilerTest2.java

class Punkt
{
 private int x;

 public void print()
 {
 System.out.println ("x: " + x);
 }
}

public class CompilerTest2
{
 public static void main (String[] args)
 {
 // Anlegen einer mit null initialisierten lokalen Variablen
 Punkt p = null;

154 Kapitel 6

 // Zugriff auf die mit null initialisierte lokale Variable p
 p.print();
 }
}

Die Ausgabe des Programms ist:

Exception in thread "main" java.lang.NullPointerException
 at CompilerTest2.main(CompilerTest2.java:21)

Beim Zugriff auf eine mit null initialisierte Referenzvariable erzeugt
die Laufzeitumgebung eine Exception vom Typ NullPointer-
Exception. Diese Exception führt zu einem Programmabsturz. Ein
Zugriff auf eine mit null initialisierte Referenzvariable stellt einen
häufigen Programmierfehler dar.

Um das Beispielprogramm nun zu korrigieren und eine fehlerfreie Übersetzung und
Ausführung zu ermöglichen, wird die Referenzvariable p durch

p = new Punkt();

mit einer Referenz auf ein Objekt vom Typ Punkt initialisiert. Danach kann der
Aufruf

p.print();

problemlos durchgeführt werden. Mit dieser Korrektur läuft dann das Programm ohne
Fehler.

6.4.4 Klassenvariable, Instanzvariable und lokale Variable

Neben der Unterscheidung zwischen statischen und dynamischen Variablen (den
Objekten) ist die Unterscheidung zwischen lokalen Variablen, Instanzvariablen und
Klassenvariablen von Bedeutung.

In Java gibt es die folgenden Arten von Variablen:

• Klassenvariable,
• Instanzvariable
• und lokale Variable.

Klassenvariable werden für jede Klasse einmal angelegt. Instanz-
variable gibt es für jede Instanz einer Klasse, also für jedes Objekt.
Lokale Variable gibt es in Methoden. Die Gültigkeit der lokalen
Variablen kann sich auf den Methodenrumpf oder auf einen inneren
Block – zum Beispiel den einer for-Schleife – erstrecken.

Vorsicht!

Datentypen und Variable 155

Übergabeparameter sind spezielle lokale Variable. Übergabeparameter gibt es bei
Methoden, Konstruktoren (siehe Kap. 10.4.4) und catch-Konstrukten. catch-
Konstrukte dienen zur Behandlung von Ausnahmen (siehe Kap. 13.5). Übergabe-
parameter werden noch ausführlich in Kapitel 9.2.5 behandelt.

Das folgende Beispiel zeigt die Verwendung von Klassenvariablen, Instanzvariablen
und lokalen Variablen:

// Datei: VariablenTypen.java

public class VariablenTypen
{
 private int x; // dies ist eine Instanzvariable
 private static int y; // dies ist eine Klassenvariable

 public void print()
 {
 int z = 0; // dies ist eine lokale Variable
 }
}

In Java werden Klassenvariable und Instanzvariable (Datenfelder eines Objektes)
automatisch mit einem Default-Wert initialisiert (siehe Kap. 10.4.1). Lokale Variable
hingegen werden nicht automatisch initialisiert.

Der Compiler prüft, ob lokale Variable initialisiert wurden. Eine lokale
Variable muss dabei entweder manuell initialisiert werden wie im
folgenden Beispiel

int x = 3;

oder mit Hilfe einer Zuweisung vor ihrer Verwendung mit einem Wert
belegt werden, z. B.

int x;
.
x = 3;
a = x + 2; // hier wird x verwendet

Werden lokale Variable verwendet, bevor sie initialisiert wurden, so
erzeugt der Compiler eine Fehlermeldung.

Lokale Variable sind statische Variable und werden auf dem Stack
angelegt. Instanzvariable bilden einen Teil eines Objektes und sind
damit Bestandteil einer dynamischen Variablen. Sie liegen deshalb
auf dem Heap. Klassenvariable sind statische Variable und werden
in der Method Area abgelegt.

Dabei kann eine lokale Variable, eine Instanzvariable und eine Klassenvariable
entweder einen einfachen Datentyp haben oder eine Referenzvariable darstellen.

156 Kapitel 6

Die Speicherbereiche für Variable – Stack, Heap und Method-Area – werden im
nächsten Kapitel genauer erläutert.

6.4.5 Speicherbereiche für Variable

Die drei Variablenarten – lokale Variable, Instanzvariable und Klassenvariable – wer-
den in verschiedenen Speicherbereichen abgelegt. Diese Speicherbereiche – Stack,
Heap und Method Area – werden alle von der virtuellen Maschine verwaltet. In den
nächsten drei Abschnitten folgt deren kurze Vorstellung.

6.4.5.1 Der Stack

Als Stack wird ein Speicherbereich bezeichnet, auf dem Informationen temporär ab-
gelegt werden können. Ein Stack wird auch als Stapel bezeichnet. Ganz allgemein
ist das Typische an einem Stack, dass auf die Information, die zuletzt abgelegt
worden ist, als erstes wieder zugegriffen werden kann. Denken Sie z. B. an einen
Bücherstapel. Sie beginnen mit dem ersten Buch, legen darauf das zweite, dann das
dritte und so fort. In diesem Beispiel soll beim fünften Buch Schluss sein. Beim
Abräumen nehmen Sie erst das fünfte Buch weg, dann das vierte, dann das dritte,
und so weiter, bis kein Buch mehr da ist. Bei einem Stack ist es nicht erlaubt,
Elemente von unten oder aus der Mitte des Stacks wegzunehmen.

Eine solche Datenstruktur wird als LIFO-Datenstruktur bezeichnet. LIFO bedeutet
"Last in first out", d. h. das, was als Letztes abgelegt wird, wird als Erstes wieder
entnommen. Das Ablegen eines Elementes auf dem Stack wird als push-Operation,
das Wegnehmen eines Elementes als pop-Operation bezeichnet. Ein Stack wird
damit durch seine beiden Operationen push und pop gekennzeichnet und der Ein-
schränkung, dass die Zahl der Elemente auf dem Stack nicht kleiner als Null werden
kann und auch nicht höher als die Stackgröße.

 d) nach zweitem push und vor pop

c) nach push

a) Stapel vor push

b) push

push

e) pop

pop

Bild 6-10 Auf- und Abbau eines Bücherstapels

In Programmen wird eine solche Datenstruktur dazu benutzt, um die Daten eines
Programms zu organisieren. Auf einem Programmstack werden zum Beispiel lokale
Variable einer Methode gespeichert. Ruft eine Methode eine weitere Methode auf, so
muss auch der Befehlszeiger der aufrufenden Methode zwischengespeichert wer-

Datentypen und Variable 157

den, damit – wenn die aufgerufene Methode fertig ist – an der richtigen Stelle der
aufrufenden Methode weiter gearbeitet werden kann. Dass auch die Übergabewerte
für eine Methode sowie der Rückgabewert einer aufgerufenen Methode und der In-
halt der Prozessorregister vorübergehend auf dem Stack abgelegt werden, soll hier
nur beiläufig erwähnt und nicht vertieft werden.

Der Stack dient bei Programmen als Speicherbereich, um Daten zu
organisieren. Bei einem Methodenaufruf werden auf dem Stack die
lokalen Variablen einer Methode und die Rücksprungadresse einer
Methode hinterlegt, die durch den Aufruf einer anderen Methode in
ihren eigenen Anweisungen unterbrochen wurde.

6.4.5.2 Der Heap

Aufgabe des Heap ist es, Speicherplatz für die Schaffung dynamischer Variablen
bereit zu halten. Der new-Operator, der vom Anwendungsprogramm aufgerufen wird,
um eine Variable auf dem Heap anzulegen, gibt dem Anwendungsprogramm eine
Referenz auf die im Heap erzeugte dynamische Variable zurück. Die erhaltene
Referenz ermöglicht den Zugriff auf die dynamische Variable im Heap. An welcher
Stelle des Heap die dynamische Variable angelegt wird, entscheidet nicht der Pro-
grammierer, sondern die virtuelle Maschine.

Die dynamischen Variablen stehen von ihrer Erzeugung bis zum Programmende zur
Verfügung, es sei denn, der Programmierer benötigt diese Variablen nicht mehr.
Dann kann der Programmierer die Referenz aufheben – dies erfolgt in Java, indem
der Referenzvariablen die null-Referenz zugewiesen wird. Dies ist für den Garbage
Collector in Java ein Zeichen, dass er das nicht mehr referenzierte Objekt aus dem
Heap entfernen kann, sofern keine weitere Referenz mehr auf das entsprechende
Objekt zeigt. Damit kann der Speicherplatz im Heap für andere dynamische Variable
benutzt werden. Die Größe des Heap ist beschränkt. Daher kann es zu einem
Überlauf des Heap kommen, wenn ständig nur Speicher angefordert und nichts
zurückgegeben wird. Ein solcher Überlauf resultiert in einer Exception vom Typ
OutOfMemoryError (siehe Kap. 13.4).

In Java werden Objekte im Heap nicht explizit freigegeben. Es wird vielmehr in
unregelmäßigen Abständen durch die virtuelle Maschine der so genannte Garbage
Collector aufgerufen. Der Garbage Collector gibt den Speicherplatz, der nicht mehr
referenziert wird, frei.

Der Heap ist ein Speicherbereich, in dem von der virtuellen Maschine
die dynamisch erzeugten Objekte abgelegt werden. Wird ein Objekt
auf dem Heap von keiner Referenzvariablen mehr referenziert, so wird
der von dem Objekt belegte Speicherbereich durch den Garbage
Collector wieder freigegeben.

158 Kapitel 6

6.4.5.3 Die Method-Area

In der Method-Area befindet sich der Speicherbereich für die Klassenvariablen.
Klassenvariable sind durch die Summe ihrer Eigenschaften statische Variable – denn
sie tragen einen Namen und ihr Gültigkeitsbereich und ihre Lebensdauer ist durch
die statische Struktur des Programms bestimmt. Der Gültigkeitsbereich einer
Klassenvariablen hängt von ihrem Zugriffsmodifikator (siehe Kap. 6.4.7) ab. Die
Lebensdauer einer Klassenvariablen beginnt mit dem Laden der Klasse und endet,
wenn die Klasse vom Programm nicht mehr benötigt wird. Nicht nur Klassenvariable
liegen in der Method-Area, sondern der gesamte Programmcode einer Klasse. Damit
der Programmcode einer Klasse ausgeführt werden kann, muss die Klasse erst
einmal in die Method-Area geladen werden.

Den Speicherbereich, in den die virtuelle Maschine den Programm-
code einer Klasse und die Klassenvariablen ablegt, bezeichnet man
als Method-Area.

6.4.6 Konstante Variablen

Mit dem Modifikator final kann jede Variable – Klassenvariable, Instanzvariable
und lokale Variable – unabhängig davon, ob es nun eine Referenzvariable oder eine
Variable eines einfachen Datentyps ist, konstant gemacht werden. Das heißt, ihr
Wert ist konstant und kann nicht mehr verändert werden. Mit

final int konstantVar = 1;

wird eine Variable vom Typ int angelegt. Nach der Initialisierung mit dem Wert 1
kann keine weitere Zuweisung an die konstante Variable konstantVar erfolgen.
Das Gleiche gilt für Referenzvariable. Wird eine Referenzvariable mit Hilfe des
Modifikators final zu einer konstanten Referenzvariablen gemacht, so muss diese
Referenz immer auf das Objekt zeigen, mit dessen Adresse die Referenzvariable
initialisiert wurde. Die folgende Codezeile legt eine konstante Referenz p an, die
immer auf dasselbe Objekt der Klasse Punkt zeigt, mit dessen Referenz es initiali-
siert wurde:

final Punkt p = new Punkt();

Die Inhalte eines Objektes, auf das eine konstante Referenz zeigt,
können problemlos verändert werden, da ja nur die Referenz
konstant ist. Es gibt in Java keine Möglichkeit, ein Objekt konstant
zu machen.

Wird mit dem Schlüsselwort final eine Variable zur Konstanten ge-
macht, so ist immer ihr Wert konstant. Im Falle von Referenzvariablen
bedeutet dies, dass die Referenz als Wert immer die gleiche Adresse
auf ein Objekt beinhalten muss und damit nie auf ein anderes Objekt
zeigen kann.

Datentypen und Variable 159

6.4.7 Modifikatoren

Bei der Deklaration von Datenfeldern können zusätzlich Modifikatoren (engl. modi-
fier) angegeben werden. Es gibt aber nicht nur Modifikatoren für Datenfelder, son-
dern auch für Methoden, Konstruktoren, Klassen und Schnittstellen. Im Folgenden
werden alle Modifikatoren aufgelistet:

• public, private, protected für die Zugriffsrechte (siehe Kap. 12.7),

• static für Klassenvariablen, Klassenmethoden, geschachtelte Klassen und
Schnittstellen.

• final für benannte (symbolische) Konstanten,

• transient für Datenfelder, die nicht serialisiert werden sollen (siehe Kap.
16.7.3),

• volatile für Datenfelder, die von mehreren Threads gleichzeitig benutzt werden
können,

• abstract für die Kennzeichnung von abstrakten Klassen und Methoden,

• native für die Kennzeichnung von Methoden, die in einer anderen Sprache als
Java implementiert sind,

• synchronized für den wechselseitigen Ausschluss von Methoden bzw. Blöcken
(siehe Kap. 19).

Die Definition einer konstanten Klassenvariablen könnte zum Beispiel folgenderma-
ßen aussehen:

final static float PI = 3.14f;

Die folgende Tabelle zeigt, welcher Modifikator mit einem Datenfeld, einer Methode,
einem Konstruktor, einer Klasse oder einer Schnittstelle eingesetzt werden darf:

 Datenfeld Methode Konstruktor Klasse Schnittstelle
abstract ja ja
final ja ja ja
native ja
private ja ja ja ja ja
protected ja ja ja ja ja
public ja ja ja ja ja
static ja ja ja ja
synchronized ja
transient ja
volatile ja

Tabelle 6-2 Verwendung von Zugriffsmodifikatoren

6.5 Array-Typ

Eine Variable eines Array-Typs ist eine Referenz auf ein Array-Objekt. Arrays sind
in Java immer Objekte – es geht gar nicht anders!

160 Kapitel 6

Ein Array ist ein Objekt, das aus Komponenten (Elementen) zusam-
mengesetzt ist, wobei jedes Element eines Arrays vom selben Daten-
typ sein muss.

int int int int int

Bild 6-11 Ein Array aus 5 int-Elementen

Man kann in Java Arrays aus Elementen eines einfachen Datentyps
oder aus Elementen eines Referenztyps anlegen. Ein Element eines
Arrays kann auch selbst wieder ein Array sein. Dann entsteht ein
mehrdimensionales Array.

Im Folgenden werden zunächst eindimensionale Arrays betrachtet. Mehrdimen-
sionale Arrays werden in Kapitel 6.5.4 besprochen. Die Länge oder Größe eines
Arrays legt die Anzahl der Elemente des Arrays fest. Die Länge muss als Wert immer
eine positive ganze Zahl haben. Ist laenge die Länge des Arrays, so werden die
Elemente von 0 bis laenge - 1 durchgezählt. Die Nummer beim Durchzählen wird
als Index des Arrays bezeichnet. Über den Index kann man auf ein Element zu-
greifen. Der Zugriff auf das i-te Element des Arrays mit dem Namen arrayName er-
folgt durch arrayName [i - 1].

Der Zugriff auf ein Element eines Arrays erfolgt über den Array-Index.
Hat man ein Array mit n Elementen definiert, so ist darauf zu achten,
dass in Java die Indizierung der Arrayelemente mit 0 beginnt und
bei n - 1 endet.

Der Vorteil von Arrays gegenüber mehreren einfachen Variablen ist,
dass Arrays sich leicht mit Schleifen bearbeiten lassen, da der Index
einer Array-Komponente eine Variable sein kann und als Laufvariable
in einer Schleife benutzt werden kann.

In Java sind Arrays stets Objekte, auch wenn man Arrays aus einfachen Daten-
typen anlegt. Arrays werden zur Laufzeit im Heap angelegt. Dabei kann die Länge
des anzulegenden Arrays zur Laufzeit berechnet werden. Ist das Array angelegt, so
kann seine Länge nicht mehr verändert werden. Der Zugriff auf die Komponenten
des Arrays erfolgt über die Referenz auf das Array-Objekt.

Die Definition einer Array-Variable bedeutet in Java nicht das Anle-
gen eines Arrays, sondern die Definition einer Referenzvariablen, die
auf ein Array-Objekt zeigen kann. Dieses Array-Objekt muss im
Heap angelegt werden.

Datentypen und Variable 161

Die allgemeine Form der Definition einer Referenzvariablen zum Zugriff auf ein
eindimensionales Array ist:

Typname[] arrayName;

Ein konkretes Beispiel hierfür ist:

int[] alpha;

wobei alpha eine Referenzvariable ist, die auf ein Array aus Elementen vom Typ
int zeigen kann.

int

int

int

int

int

alpha

Bild 6-12 Ein Array-Objekt im Heap, auf das die Referenzvariable alpha zeigt

Die Referenzvariable alpha kann auf ein Array-Objekt aus beliebig vielen Kompo-
nentenvariablen vom Typ int verweisen.

Die Definition

int[] alpha;

wird von rechts nach links gelesen: alpha ist eine Referenzvariable,
die auf ein Array-Objekt aus Elementen vom Typ int zeigen kann.

Die Namensgebung Array ist nicht einheitlich. In der Literatur findet man die syno-
nyme Verwendung der Namen Feld und Array. Für Arrays in Java gibt es kein spe-
zielles Schlüsselwort. Der Java-Compiler erkennt ein Array an den eckigen Klam-
mern.

Arrays werden in 3 Schritten angelegt:

Schritt 1: Definition einer Referenzvariablen, die auf das Array-
Objekt zeigen soll.

Schritt 2: Erzeugen des Arrays, d. h. eines Array-Objektes, welches
aus Komponenten (Elementen) besteht.

Schritt 3: Belegen der Array-Elemente mit Werten, d. h. Initiali-
sierung des Arrays.

Wie in Kapitel 6.5.1 gezeigt wird, können diese Schritte auch zusammengefasst
werden.

Eine weitere Eigenschaft von Arrays in Java ist, dass eine genaue Überwachung
der Grenzen des Arrays durchgeführt wird.

162 Kapitel 6

Es ist in Java nicht möglich, über die Grenzen eines Arrays hinaus
andere Speicherbereiche zu überschreiben oder auszulesen. Bei
einem solchen Versuch wird sofort eine Exception vom Typ Array-
IndexOutOfBoundsException geworfen. Exceptions werden in
Kapitel 13 behandelt.

6.5.1 Arrays aus Elementen eines einfachen Datentyps

Zunächst muss eine Referenzvariable für ein Array-Objekt definiert werden. Dies
erfolgt, ohne die Länge anzugeben:

byte[] bArray;

Damit wird eine Referenzvariable bArray angelegt.

bArray

Bild 6-13 Die Referenzvariable bArray

Eine Array-Variable ist eine Referenz auf ein Array-Objekt. Mit der
Definition einer Array-Variablen ist aber das Array-Objekt selbst noch
nicht angelegt.

Erzeugen des Array-Objektes

Zum Erzeugen des Array-Objektes gibt es 2 Möglichkeiten:

• Die erste Möglichkeit ist, das Array mit new zu erzeugen und an-
schließend die Elemente mit den gewünschten Werten zu initiali-
sieren.

• Die andere Möglichkeit ist, das Array über eine Initialisierungs-
liste anzulegen und gleichzeitig zu initialisieren.

Beim Erzeugen des Array-Objektes wird die Länge des Arrays festge-
legt. Die Länge kann danach nicht mehr geändert werden.

Wenn ein Array angelegt ist, kann man über das Datenfeld length,
das jedes Array besitzt, dessen Länge ermitteln.

Vorsicht!

Datentypen und Variable 163

Im Folgenden werden die beiden Möglichkeiten, ein Array-Objekt zu schaffen, vorge-
stellt:

• Erzeugung mit dem new-Operator

Zunächst die erste Möglichkeit, d. h. die Verwendung von new, anhand eines
Beispiels:

bArray = new byte [4];

Mit new byte [4] wird ein neues Array-Objekt erstellt, das Werte vom Typ
byte aufnehmen kann. Es hat vier Komponenten, die beim Erstellen des Objektes
mit dem Default-Wert71 0 initialisiert werden.

 bArray[3]
Wert: 0

bArray[2]
Wert: 0

bArray[1]
Wert: 0

bArray[0]
Wert: 0

bArray

Bild 6-14 Mit 0 initialisiertes byte-Array

Es ist auch möglich, beide Schritte auf einmal durchzuführen:

byte[] bArray = new byte [4];

Die Länge des Arrays kann auch durch eine Variable angegeben werden. Damit
kann die Länge des anzulegenden Arrays zur Laufzeit festgelegt werden:

int i = 5;
byte[] bArray = new byte [i];

Der Wert der Variablen i könnte somit auch von der Tastatur eingegeben oder mit
Hilfe einer Berechnung bestimmt werden.

Initialisierung

Durch Zuweisung von Werten an die Komponenten können dann die Default-
Werte mit sinnvollen Werten überschrieben werden, z. B.:

bArray [2] = 6;

• Implizites Erzeugen über eine Initialisierungsliste

Die andere Möglichkeit, das Array anzulegen, ist, das Array implizit über eine
Initialisierungsliste zu erzeugen und gleichzeitig zu initialisieren:

byte[] bArray = {1, 2, 3, 4};

Das Erzeugen des Array-Objektes wird hier vom Compiler im Verborgenen durch-
geführt. Hierbei wird also die Definition der Referenzvariablen bArray, das Anle-

71 Bei Array-Komponenten gelten dieselben Default-Werte wie bei Datenfeldern (siehe Kap. 10.4.1).

164 Kapitel 6

gen des Array-Objektes und die Initialisierung der Array-Elemente in einem Schritt
durchgeführt. Dabei wird das in Bild 6-15 dargestellte Array angelegt.

 bArray[3]
Wert: 4

bArray[2]
Wert: 3

bArray[1]
Wert: 2

bArray[0]
Wert: 1

bArray

Bild 6-15 Mit einer Initialisierungsliste erzeugtes und initialisiertes byte-Array

Hervorzuheben ist, dass die Initialisierungsliste auch Ausdrücke und Variable
enthalten darf wie in folgendem Beispiel:

byte i = 1;
byte[] bArray = {i, i + 1, i + 2, i * 4};

6.5.2 Arrays aus Referenztypen

Zunächst muss die Referenzvariable, die auf das noch anzulegende Array-Objekt
zeigen soll, definiert werden. Dies erfolgt, ohne die Länge des Arrays anzugeben:

Klasse[] kArray;

Damit wird eine Referenzvariable kArray angelegt. Das Array-Objekt selbst ist
jedoch noch nicht angelegt. Wenn das Array-Objekt angelegt ist, kann man über das
Datenelement length, welches jedes Array-Objekt hat, dessen Länge ermitteln.

kArray

Bild 6-16 Die Referenzvariable kArray

Erzeugen des Array-Objektes

Auch hier gibt es die beiden schon bei den Arrays aus einfachen Datentypen gezeig-
ten Möglichkeiten, nämlich die Array-Elemente mit new zu erzeugen oder eine
Initialisierungsliste zu verwenden:

• Erzeugen mit dem new-Operator

Zunächst die Verwendung von new anhand eines Beispiels:

kArray = new Klasse [4];

Mit new Klasse [4] wird ein neues Array-Objekt erstellt. Die vier Komponenten
sind Referenzvariablen vom Typ Klasse.

Datentypen und Variable 165

kArray[3]kArray[2]kArray[1]kArray[0]

kArray

nullnullnullnull

Bild 6-17 Mit null initialisiertes Array aus Referenzvariablen

Jede angelegte Referenzvariable vom Typ Klasse wird mit dem Default-Wert
null initialisiert.

Es ist auch möglich, beide Schritte auf einmal durchzuführen:

Klasse[] kArray = new Klasse [4];

Initialisierung

Durch Zuweisung von Werten an die Komponenten können die Default-Werte mit
sinnvollen Werten überschrieben werden, z. B.:

Klasse refAufObj = new Klasse();
.
kArray [2] = refAufObj;
.

Das folgende Bild zeigt eine mit einer Referenz auf ein Objekt der Klasse Klasse
initialisierte Referenzvariable kArray [2] des Arrays:

kArray[3] kArray[2] kArray[1] kArray[0]

kArray

null null null

:Klasse

Bild 6-18 Initialisierung der Referenzvariablen kArray [2]

Das folgende Beispiel zeigt die Initialisierung des Arrays mit Hilfe von Objekten
der Klasse Klasse:

for (int lv = 0; lv < kArray.length; lv = lv + 1)
 kArray [lv] = new Klasse();

166 Kapitel 6

kArray[3] kArray[2] kArray[1] kArray[0]

kArray

:Klasse

:Klasse

:Klasse

:Klasse

Bild 6-19 Mit Referenzen auf Instanzen initialisiertes Array aus Referenzvariablen

• Implizites Erzeugen über eine Initialisierungsliste

Die andere Möglichkeit, das Array implizit über eine Initialisierungsliste anzulegen
und gleichzeitig zu initialisieren, funktioniert auch bei Arrays aus Referenz-
variablen:

Klasse[] kArray = {refK1, refK2, refK3, new Klasse()};
 // dabei müssen refK1, refK2 und refK3
 // Referenzen auf vorhandene Objekte
 // vom Typ Klasse sein

In der Initialisierungsliste können entweder Referenzvariablen angegeben, oder
direkt Objekte eines bestimmten Typs mit Hilfe des new-Operators erzeugt
werden.

Die Erzeugung des Array-Objektes wird dabei implizit von der virtuellen Maschine
durchgeführt. Mit einem Programmausschnitt soll das Anlegen eines Arrays über
eine Initialisierungsliste und der Zugriff auf die in den Array-Elementen referen-
zierten Objekte demonstriert werden:

// Die Referenzen p1 und p2 sollen auf Objekte der Klasse
// Person zeigen. Die folgende Codezeile legt eine Referenz-
// variable arr für ein Array von Personen an. Es wird ein
// Array-Objekt mit 2 Elementen auf dem Heap angelegt und
// mit den Referenzvariablen p1 und p2 initialisiert.
Person[] arr = {p1, p2};

// Die folgende Codezeile zeigt einen Aufruf der Methode
// print() für das erste Array-Element.
arr [0].print();

6.5.3 Objektcharakter von Arrays

Arrays sind Objekte. Array-Variablen sind Referenzen auf Array-Objekte, die zur
Laufzeit des Programms dynamisch auf dem Heap angelegt werden. Jedes Array
wird implizit, d. h. ohne eine explizite Angabe des Programmierers, von der Klasse
Object abgeleitet. Damit beinhaltet jedes Array automatisch alle Methoden der

Datentypen und Variable 167

Klasse Object. Zusätzlich enthält jedes Array das konstante Datenfeld length vom
Typ int, das die Anzahl der Array-Elemente als Wert beinhaltet.

 Object

Person[] int[]

Bild 6-20 Arrays als implizite Subklassen von Object

Das folgende Beispiel demonstriert den Aufruf der Methode equals() der Klasse
Object für Arrays sowie die Verwendung des Datenfeldes length. Die Methode
equals() hat die Schnittstelle

public boolean equals (Object ref)

Diese Methode gibt bei einem Aufruf

x.equals (y)

true zurück, wenn x und y Referenzen auf dasselbe Objekt sind.

Beispiel:

// Datei: Arrays.java

public class Arrays
{
 public static void main (String[] args)
 {
 int[] alpha = new int [2];
 int[] beta;
 beta = alpha; // beta zeigt auf dasselbe
 // Array-Objekt wie alpha
 System.out.println ("alpha equals beta ist " +
 alpha.equals (beta));
 System.out.println ("alpha hat " + alpha.length +
 " Komponenten");
 }
}

Die Ausgabe des Programms ist:

alpha equals beta ist true
alpha hat 2 Komponenten

168 Kapitel 6

Arrays aus Basisklassen dienen zur flexiblen Speicherung von Objekten verschie-
denster abgeleiteter Klassen. Arrays aus Basisklassen werden in Kapitel 11.4.2
behandelt.

6.5.4 Mehrdimensionale Arrays

Mehrdimensionale Arrays stellen Arrays aus Arrays dar und werden wie in folgendem
Beispiel erzeugt:

int[][][] dreiDimArray = new int [10][20][30];

Es können auch offene Arrays erzeugt werden. Offene Arrays sind Arrays, bei
denen die Länge einzelner Dimensionen nicht angegeben wird. Hierfür lässt man
einfach bei der Speicherplatz-Allokierung mit new die eckigen Klammern leer. Dies
ist jedoch nur bei mehrdimensionalen Arrays möglich, da der ersten Dimension eines
Arrays immer ein Wert zugewiesen werden muss. Es ist allerdings nicht erlaubt, nach
einer leeren eckigen Klammer noch einen Wert in einer der folgenden Klammern
anzugeben.

So ist beispielsweise

int[][][][] matrix = new int[5][3][][];

erlaubt, aber

int[][][][] matrix = new int[5][][][4];

nicht und genauso wenig die folgende Codezeile:

int[][][][] matrix = new int[][][][];

Mehrdimensionale Arrays müssen nicht unbedingt rechteckig sein. Es spricht nichts
dagegen, die Elemente eines mehrdimensionalen Arrays einzeln mit unterschiedlich
langen Arrays zu initialisieren.

Das folgende Beispielprogramm wendet dies an. Es legt ein dreiecksförmiges Array
an, füllt es mit den Werten des Pascalschen Dreiecks bis zur zehnten Ebene und gibt
dieses am Bildschirm aus.

// Datei: PascalDreieck.java

public class PascalDreieck
{
 public static void main (String[] args)
 {
 final int EBENE = 10;
 int i, j;
 int [][] binom = new int [EBENE][];

 for (i = 0; i < binom.length; i++)
 {
 // Anlegen eines Arrays mit der Größe der entsprechenden
 // Ebene.
 binom [i] = new int [i + 1];

Datentypen und Variable 169

 // Erstes Element einer Ebene mit 1 belegen.
 binom [i][0] = 1;

 // Letztes Element einer Ebene mit 1 belegen.
 binom [i][binom [i].length - 1] = 1;
 System.out.printf ("%1d ", binom [i][0]);

 for (j = 1; j < binom [i].length - 1; j++)
 {
 binom [i][j] = binom [i - 1][j - 1] + binom [i - 1][j];
 System.out.printf ("%3d ", binom [i][j]);
 }

 if (i > 0)
 {
 // Für alle Ebenen ausser der ersten wird zum Schluss
 // noch eine 1 ausgegeben.
 System.out.printf ("%3d", binom[i][binom[i].length-1]);
 }
 // Ausgabe eines Zeilenumbruchs nach jeder Ebene.
 System.out.println();
 }
 }
}

Die Ausgabe des Programms ist:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

Mit int[][] binom = new int [EBENE][] wird ein Array mit 2 Dimensionen
angelegt. Dabei sind in der ersten Dimension 10 Elemente vorhanden. Die zweite
Dimension wird noch nicht mit Elementen belegt. Bild 6-21 zeigt diesen Sachverhalt:

 null null null

binom[0] binom[1] binom[9] ...

binom

Bild 6-21 Ein zweidimensionales Array mit 10 Elementen in der ersten Dimension

170 Kapitel 6

Man beachte, dass in der zweiten Dimension int-Arrays mit unterschiedlichen
Größen angelegt werden können. Da diese aber noch nicht angelegt wurden, zeigen
alle Array-Elemente der ersten Dimension auf null.

Danach wird das Array – auf das binom zeigt – vom ersten Element an durchlaufen
und jedem Element wird mit der Anweisung binom [i] = new int [i + 1];
ein int-Array von der Größe der Variablen i + 1 zugewiesen. Das int-Array, das
binom [0] zugewiesen wird, hat also die Größe 1. Nach dem zweiten Schleifen-
durchlauf sieht der Sachverhalt folgendermaßen aus:

null

binom

null

binom[0] binom[1] ... binom[2] binom[9]

binom[0][0]
Wert: 1

binom[1][0]
Wert: 1

binom[1][1]
Wert: 1

Bild 6-22 Von der Referenzvariable binom referenziertes Array nach dem

zweiten Schleifendurchlauf

Entsprechend werden die weiteren int-Arrays für die zweite Dimension angelegt.

6.5.5 Schreibweise von Arrays

Java erlaubt mehrere Syntax-Varianten bei der Definition von Referenzvariablen auf
Arrays.

Die Array-Klammern können entweder hinter oder vor dem Namen der
Referenzvariablen angegeben werden:

int zahl[];
char[] buffer;

Die zweite Variante bedeutet zwar eine Umstellung zu der von C gewohnten Schreib-
weise, sie entspricht aber der von den einfachen Datentypen bekannten Form:

datentypname variablenname;

Es ist auch eine gemischte Schreibweise möglich:

byte[] zeile, spalte, matrix[];

Von der gemischten Schreibweise ist jedoch abzuraten.

Datentypen und Variable 171

6.6 Aufzählungstyp

Mit dem JDK 5.0 sind in Java Aufzählungstypen hinzugekommen, die in der Ver-
gangenheit schmerzlich vermisst wurden. Aufzählungstypen sind vom Prinzip her
einfache Datentypen – wie in Pascal oder C. Zur Erläuterung, was ein Aufzählungs-
typ prinzipiell ist, hier ein Beispiel in der Programmiersprache Pascal:

type werktag = (Mo, Di, Mi, Dn, Fr, Sa);
var x: werktag;

Mit dem Typ werktag wird festgelegt, dass eine Variable x dieses Typs als Wert
genau eine der Aufzählungskonstanten Mo (steht für Montag), Di (Dienstag), etc.
annehmen kann. Die Zuweisung anderer Werte an eine Variable, als in der Liste der
Aufzählungskonstanten aufgeführt, wird vom Compiler abgelehnt. Damit wird die
Typsicherheit bereits beim Kompilieren garantiert. Hätte man stattdessen die Wo-
chentage durch ganze Zahlen beschrieben, könnten einer solchen Variablen
beliebige ganze Zahlen zugewiesen werden, die keinen Wochentagen entsprechen
würden – und der Compiler hätte keine Möglichkeit, solche Fehler zu verhindern.

Eine Variable eines Aufzählungstyps enthält nur einen einzigen Wert, der sich nicht
aus weiteren Werten zusammensetzt. Mit anderen Worten, der Wert einer Variablen
eines Aufzählungstyps ist atomar. Daher sind Aufzählungstypen in ihrer ursprüng-
lichen Form wie in Pascal oder C einfache Datentypen.

In Java werden die Aufzählungstypen jedoch zu selbst definierten Klassen. Damit
gehören sie in Java zu den Referenztypen und sind im Unterbaum Referenztypen in
Bild 6-1 eingeordnet.

Aufzählungstypen – auch enums genannt – sind Datentypen, die als Wertebereich
eine endliche geordnete Menge von Konstanten zulassen. Da die Elemente einer
endlichen geordneten Menge abzählbar sind, erhielten diese Datentypen den Namen
Aufzählungstypen (engl. enumeration type). Die Konstanten werden als Auf-
zählungskonstanten bezeichnet. Eine Variable eines Aufzählungstyps kann als
Wert eine dieser Aufzählungskonstanten besitzen.

Enums wurden in Java mit dem JDK 5.0 eingeführt und funktionieren
mit älteren Versionen des Compilers nicht.

Ein Aufzählungstyp trägt einen Namen. Bei der Definition des Typs werden die
Aufzählungskonstanten in Form einer Liste wie im folgenden Beispiel angegeben:

enum AmpelFarbe {ROT, GELB, GRUEN}

AmpelFarbe ist hier der Name des Aufzählungstyps und ROT, GELB und GRUEN sind
Aufzählungskonstanten. Durch die Angabe der Aufzählungskonstanten in Form einer
Liste entsteht eine Reihenfolge. Ein Aufzählungstyp ist daher ein ordinaler Datentyp.
Das bedeutet, dass den Aufzählungskonstanten vom Compiler Werte in aufsteigen-
der Reihenfolge zugeordnet werden. Hier ein Programmbeispiel, das den Aufzäh-
lungstyp AmpelFarbe definiert und verwendet:

Vorsicht!

172 Kapitel 6

// Datei: Ampel.java

public class Ampel
{
 // Der Aufzählungstyp wird hier in der Klasse definiert, in der
 // er verwendet wird. Die Ampel kann ROT, GELB oder GRUEN sein.
 public enum AmpelFarbe {ROT, GELB, GRUEN}

 // Instanzvariable des Aufzählungstyps Ampelfarbe
 private AmpelFarbe farbe;

 public void setAmpelFarbe (AmpelFarbe ampelFarbe)
 {
 farbe = ampelFarbe;
 }

 public AmpelFarbe getAmpelFarbe()
 {
 return farbe;
 }

 // main()-Methode zum Testen
 public static void main (String[] args)
 {
 Ampel ampel = new Ampel();

 // funktioniert
 ampel.setAmpelFarbe (AmpelFarbe.ROT);

 // Das Folgende geht nicht! Es können nur die Aufzählungs-
 // konstanten des Aufzählungstyps AmpelFarbe verwendet werden
 // ampel.setAmpelFarbe (3);

 System.out.println ("Die Ampel ist: "
 + ampel.getAmpelFarbe());
 System.out.println ("Die Ordinalzahl ist: "
 + ampel.getAmpelFarbe().ordinal());

 ampel.setAmpelFarbe (AmpelFarbe.GELB);
 System.out.println ("Der Name ist: "
 + ampel.getAmpelFarbe().name());
 System.out.println ("Die Ordinalzahl ist: "
 + ampel.getAmpelFarbe().ordinal());
 }
}

Die Ausgabe des Programms ist:

Die Ampel ist: ROT
Die Ordinalzahl ist: 0
Der Name ist: GELB
Die Ordinalzahl ist: 1

Wie im obigen Beispiel zu sehen ist, sind Aufzählungstypen typsicher, d. h. der
Compiler lässt keine ungültigen Zuweisungen zu.

Datentypen und Variable 173

Einer Variablen eines Aufzählungstyps können nur Werte aus der
Menge der Aufzählungskonstanten zugewiesen werden.

Die einfache Notation

public enum AmpelFarbe {ROT, GELB, GRUEN}

setzt der Compiler in eine Notation der folgenden Art um:

public final class AmpelFarbe extends Enum
{
 public static final AmpelFarbe ROT = new AmpelFarbe ("ROT", 0);
 public static final AmpelFarbe GELB = new AmpelFarbe ("GELB", 1);
 public static final AmpelFarbe GRUEN =new AmpelFarbe ("GRUEN",2);

 private AmpelFarbe (String s, int i)
 {
 super (s, i);
 }
}

Ein Aufzählungstyp ist in Java eine Klasse und die Aufzählungs-
konstanten sind Referenzvariable auf Objekte des Aufzählungs-
typs. Dem Aufzählungstyp können deshalb auch Methoden und Da-
tenfelder hinzugefügt werden.

Die Klasse Enum ist in der Java-Klassenbibliothek im Paket java.lang zu finden. In
der Klasse Enum werden auch die Methoden ordinal() und name() definiert, die
damit zu jedem Aufzählungstyp aufgerufen werden können.

Wird eine Referenzvariable als final deklariert, so kann dieser Variablen kein an-
derer Wert zugewiesen werden und damit zeigt diese Referenzvariable immer auf
dasselbe Objekt. Des Weiteren ist zu beachten, dass der Compiler für jede Auf-
zählungskonstante genau ein Objekt des Aufzählungstyps anlegt. Es ist nicht mög-
lich, dass der Programmierer selbst mit Hilfe des new-Operators weitere Objekte
eines Aufzählungstyps anlegt. Der Programmierer kann nur Referenzvariable des
Aufzählungstyps anlegen, die auf eine der definierten Aufzählungskonstanten zeigen
können.

Jede Aufzählungskonstante zeigt auf ein Objekt des Aufzählungstyps,
welches den Namen der Aufzählungskonstante als String und auch
den Ordinalwert der Aufzählungskonstante als Instanzvariable enthält.

Da für jede Aufzählungskonstante nur ein einziges Objekt existiert,
kann der Operator == verwendet werden, um Aufzählungskonstanten
zu vergleichen.

174 Kapitel 6

Da ein Aufzählungstyp eine Klasse darstellt, können die Aufzählungstypen auch
Datenfelder und Methoden haben, wie folgendes Beispiel zeigt:

// Datei: Name1.java

public enum Name1
{
 // Definition der Aufzählungskonstanten
 PETER,
 HANS,
 JULIA,
 ROBERT;

 // Datenfeld
 private int note;

 // Methoden, um auf das Datenfeld zuzugreifen
 public int getNote()
 {
 return note;
 }

 public void setNote (int var)
 {
 note = var;
 }
}

Die folgende Klasse holt die Aufzählungskonstante HANS des Aufzählungstyps
Name1 und setzt die Note dieses Objektes. Anschließend wird die Note ausgelesen
und ausgegeben:

// Datei: NameTest.java

public class NameTest
{
 public static void main (String[] args)
 {
 // Zuweisen des Elementes HANS aus dem Aufzählungstyp Name1
 // an die Variable des Aufzählungstyps Name1.
 Name1 name = Name1.HANS;

 // Aufrufen von Methoden des Objektes des Aufzählungstyps
 name.setNote (2);
 System.out.println ("Hans hat die Note: " + name.getNote());
 }
}

Die Ausgabe des Programms ist:

Hans hat die Note: 2

Datentypen und Variable 175

Ebenso wie normale Methoden können die Aufzählungstypen auch Konstruktoren
enthalten. Um dies zu zeigen, wird dem obigen Beispiel noch ein Konstruktor hinzu-
gefügt und entsprechend verwendet:

// Datei: Name2.java

public enum Name2
{
 // Definition der Aufzählungskonstanten
 PETER (2), // In den runden Klammern steht der Parameter,
 HANS (4), // der an den Konstruktor übergeben wird.
 JULIA (1),
 ROBERT (2);

 // Datenfeld
 private int note;

 // Konstruktor
 Name2 (int var)
 {
 note = var;
 }

 // Methoden, um auf das Datenfeld zuzugreifen
 public int getNote()
 {
 return note;
 }

 public void setNote (int var)
 {
 note = var;
 }
}

Wird der Konstruktor – wie oben gezeigt – verwendet, wird das Datenfeld note für
alle Elemente der Menge entsprechend initialisiert. Es gelten dieselben Regeln wie
bei normalen Klassen: Wird ein eigener Konstruktor bereitgestellt, wird dadurch der
Default-Konstruktor, der durch den Compiler bereitgestellt wird, unsichtbar und kann
nicht mehr verwendet werden.

Jede Aufzählungskonstante kann die Methoden, welche im Aufzählungstyp definiert
sind, überschreiben. Dies ist zunächst etwas gewöhnungsbedürftig. Das folgende
Beispiel soll den Sachverhalt veranschaulichen: Hans möchte immer der Beste sein
und behauptet daher, immer eine 1 geschrieben zu haben.

// Datei: Name3.java

public enum Name3
{
 // Definition der Aufzählungskonstanten
 PETER (1),
 // Überschreiben der Methode getNote()
 // für die Aufzählungskonstante HANS
 HANS (5){public int getNote(){return 1;}},

176 Kapitel 6

 JULIA (1),
 ROBERT (2);

 // Datenfeld
 private int note;

 Name3 (int var)
 {
 note = var;
 }

 // Methoden, um auf das Datenfeld zuzugreifen
 public int getNote()
 {
 return note;
 }

 public void setNote (int var)
 {
 note = var;
 }
}

In diesem Fall wird der Methodenaufruf getNote() für Hans immer 1 zurückliefern.
Werden Methoden eines Aufzählungstyps als abstract definiert, müssen sie von
allen Aufzählungskonstanten des Aufzählungstyps überschrieben werden.

Methoden können bei Aufzählungstypen für jede Aufzählungskon-
stante überschrieben werden. Dies geschieht an der Stelle, an der die
Aufzählungskonstanten erzeugt werden.

Das folgende Beispielprogramm verwendet den oben angegebenen Aufzählungstyp
Name3:

// Datei: NameTest2.java

public class NameTest2
{
 public static void main (String[] args)
 {
 // Zuweisen der Objekte JULIA und HANS aus der Menge der Auf-
 // zählungskonstanten an lokale Variablen des Aufzählungstyps.
 Name3 julia = Name3.JULIA;
 Name3 hans = Name3.HANS;
 // Beide bekommen ihre Note mitgeteilt
 System.out.println ("Professor: Julia hat die Note 2");
 julia.setNote (2);
 System.out.println ("Professor: Hans hat die Note 5");
 hans.setNote (5);
 // Beide werden nach ihren Noten gefragt
 System.out.println ("Julia: Ich habe eine "+ julia.getNote());
 System.out.println ("Hans: Ich habe eine " + hans.getNote());
 }
}

Datentypen und Variable 177

Die Ausgabe des Programms ist:

Professor: Julia hat die Note 2
Professor: Hans hat die Note 5
Julia: Ich habe eine 2
Hans: Ich habe eine 1

Da die Aufzählungskonstante HANS die Methode getNote() überschrieben hat,
wird immer seine Wunschnote, die 1, zurückgegeben.

Neben den schon vorgestellten Instanzmethoden name() und ordinal(), die jeder
Aufzählungstyp von der Klasse Enum erbt, werden vom Compiler beim Übersetzen
des Aufzählungstyps automatisch die folgenden Klassenmethoden hinzugefügt:

public static E[] values()
public static E valueOf (String name)

Hierbei ist E der Name eines Aufzählungstyps. So liefert der Aufruf

Name3.values();

ein Array von Referenzvariablen, die auf alle Aufzählungskonstanten zeigen, die
innerhalb des Aufzählungstyps Name3 definiert sind, zurück. Die Reihenfolge der
Definition innerhalb des Arrays wird eingehalten. Dahingegen liefert der Aufruf

Name3.valueOf ("HANS");

eine Referenz auf die Aufzählungskonstante HANS zurück. Das folgende Beispiel
zeigt die Verwendung der Methoden values() und valueOf() am Beispiel des
Aufzählungstyps Name3:

// Datei: NameTest3.java

public class NameTest3
{
 public static void main (String[] args)
 {
 // Abfragen aller in Name3 definierten Konstanten
 Name3[] alleNamen = Name3.values();
 System.out.println
 ("Folgende Konstanten sind in Name3 definiert:");

 // Ausgabe aller Namen auf dem Bildschirm
 // mit Hilfe einer for-Schleife.
 for (int i = 0; i < alleNamen.length; i++)
 {
 System.out.println (alleNamen [i].name());
 }

 // Beschaffen einer Referenz auf die Konstante HANS in Name3
 Name3 hans = Name3.valueOf ("HANS");
 System.out.println (hans + " ist in Name3 definiert.");
 }
}

178 Kapitel 6

Die Ausgabe des Programms ist:

Folgende Konstanten sind in Name3 definiert:
PETER
HANS
JULIA
ROBERT
HANS ist in Name3 definiert.

6.7 Zeichenketten

Strings sind in Java – wie auch in anderen Programmiersprachen – Zeichenketten,
d. h. Folgen von Zeichen. In Java sind Strings Objekte.

In Java gibt es drei verschiedene String-Klassen:

• die Klasse String für konstante Zeichenketten

• und die Klasse StringBuffer, sowie die Klasse StringBuilder
für variable Zeichenketten.

Diese Datentypen sollen in den nächsten Unterkapiteln näher erläutert werden.

6.7.1 Konstante Zeichenketten

Eine konstante Zeichenkette ist eine Folge von Zeichenkonstanten, die nicht abge-
ändert werden kann. Sie kann also nur gelesen werden (engl. read only). Tabelle
6-3 zeigt exemplarisch den Aufbau konstanter Zeichenketten aus Zeichenkon-
stanten.

konstante Zeichenkette (Objekt) Enthält
"alpha" 'a''l''p''h''a'
"Pia" 'P''i''a'

Tabelle 6-3 Beispiel für den Aufbau konstanter Zeichenketten

Konstante Zeichenketten sind in Java Objekte der Klasse String. Die Klasse
String repräsentiert eine Zeichenkette mit folgenden Eigenschaften:

• Die Länge eines Strings steht fest und kann auch nicht verändert werden.
• Der Inhalt des Strings kann nicht verändert werden.

Kurz und gut, der String ist eine Konstante. Ziel dieser zwei Eigenschaften ist es, ein
ungewolltes Überschreiben von Speicherinhalten in Programmen zu vermeiden und
die Programme dadurch sicherer zu machen.

Eine konstante Zeichenkette "Peter" ist ein Ausdruck und hat als
Rückgabewert eine Referenz auf das String-Objekt, das den Inhalt
'P''e''t''e''r' hat.

Datentypen und Variable 179

Um das Ende eines Strings bei vorgegebener Anfangsposition des Strings zu finden,
gibt es zwei prinzipielle Möglichkeiten:

• Erstens, sich die Länge des Strings zu merken. Dann weiß man, an welcher
Position das letzte Zeichen des Strings steht.

• Zweitens, ein besonderes Zeichen zu verwenden, das unter den Buchstaben und
Ziffern des Alphabets nicht vorkommt und das an das letzte Zeichen des Strings
angehängt wird, um das Ende anzuzeigen.

 'Z''e''i''c''h''e''n''k''e''t''t''e'

 erstes Zeichen

 Anzahl Zeichen

 'Z''e''i''c''h''e''n''k''e''t''t''e'♣

 erstes Zeichen Endezeichen

Bild 6-23 Erkennen des Stringendes mit Stringlänge oder speziellem Endezeichen

In Java wird die erste Methode angewandt.

Das Datenfeld, in dem die Länge eines Strings abgelegt ist, lässt sich
mit der Methode length() der Klasse String abfragen. Beim Aufruf
gibt sie die Anzahl der Zeichen des Strings zurück.

6.7.1.1 Erzeugung von Strings

Für die Erzeugung von Strings gibt es zwei prinzipielle Möglichkeiten:

• Erzeugung eines Objektes vom Typ String mit dem new-Operator und
Initialisierung mit einem Konstruktor72

Durch die Erzeugung eines Strings mit new wird ein neues Objekt vom Typ
String im Heap angelegt. Zur Initialisierung bietet die Klasse String ver-
schiedene Möglichkeiten. So kann das Objekt vom Typ String mit einer kon-
stanten Zeichenkette initialisiert werden wie in folgendem Beispiel:

String name1 = new String ("Anja");

Der new-Operator gibt dabei einen Zeiger auf das auf dem Heap angelegte
String-Objekt "Anja" zurück, welcher in der Referenzvariablen name1 abge-
speichert wird.

72 Konstruktor siehe Kap. 10.4.4.

180 Kapitel 6

In Analogie dazu zeigt die Referenzvariable name2 auf das String-Objekt
"Herbert" auf dem Heap:

String name2 = new String ("Herbert");

Objekte vom Typ String können nicht abgeändert werden.

Durch die Zuweisung

name1 = name2;

zeigt nun die Referenzvariable name1 auch auf das String-Objekt "Herbert".

Heap

String "Anja" name1

name2 String "Herbert"

Bild 6-24 Referenzen und String-Objekte vor der Zuweisung name1 = name2

 Heap

String "Anja" name1

name2 String "Herbert"

Bild 6-25 Referenzen und String-Objekte nach der Zuweisung name1 = name2

Einer Referenzvariablen vom Typ String kann eine Referenz auf
ein anderes String-Objekt zugewiesen werden. Die auf dem Heap
angelegten String-Objekte sind also unveränderlich, den Referenz-
variablen vom Typ String können jedoch neue Werte zugewiesen
werden.

Im nächsten Beispiel erfolgt die Initialisierung mit Hilfe einer Referenzvariablen,
die auf ein Array von Zeichen zeigt, das mit Hilfe einer Initialisierungsliste angelegt
wurde:

char[] data = {'A', 'n', 'j', 'a'}; // Array von Zeichen
String name = new String ("Anja");
String gleicherName = new String (data);

Datentypen und Variable 181

Für mit new erzeugte Strings wird immer ein neues String-Objekt
im Heap erzeugt.

 Heap

String "Anja" name

gleicherName String "Anja"

Bild 6-26 Heap nach der Erzeugung zweier Strings mit new

•••• Implizites Erzeugen eines Objektes vom Typ String

Strings können – wie Arrays – auch ohne expliziten Aufruf von new erzeugt wer-
den. Die Erzeugung erfolgt implizit, wenn im Programm eine konstante Zeichen-
kette verwendet wird. Allerdings wird dabei nicht immer im Heap ein neues Objekt
vom Typ String angelegt.

Bei optimierenden Compilern können Objekte vom Typ String, die
den gleichen Inhalt haben und implizit erzeugt werden, wieder ver-
wendet werden.

Durch diese Wiederverwendung werden die .class-Dateien kleiner und es ist
eine Einsparung von Speicher im Heap möglich. Im folgenden Beispiel werden
zwei Referenzvariablen name und gleicherName vom Typ String angelegt und
mit "Anja" initialisiert:

String name = "Anja";
String gleicherName = "Anja";

Der Compiler kann beiden Referenzvariablen die Adresse auf dasselbe Objekt
vom Typ String zuweisen. Da die .class-Datei kleiner wird, ist sie für eine
eventuelle Übertragung über ein Netzwerk optimiert.

Heap

String "Anja" name

gleicherName

Bild 6-27 Heap nach der impliziten Erzeugung zweier Strings

Nicht nur der Compiler kann Optimierungen durchführen, auch der Interpreter hat
die Möglichkeit, eine ähnliche Speicherplatzoptimierung durchzuführen. Während

182 Kapitel 6

der Compiler die Optimierung einer einzelnen .class-Datei durchführt, kann
der Interpreter zur Laufzeit klassenübergreifend optimieren. Werden in zwei
unterschiedlichen Klassen die gleichen konstanten Zeichenketten verwendet, hat
der Compiler keine Möglichkeit zu optimieren. Dagegen kann der Interpreter beim
Laden einer Klasse prüfen, ob schon ein Objekt vom Typ String mit dieser kon-
stanten Zeichenkette existiert. Existiert schon ein Objekt vom Typ String mit
dem Inhalt der konstanten Zeichenkette, muss kein neues Objekt angelegt wer-
den.

6.7.1.2 Vergleichen von Strings

Wenn zwei Referenzvariablen, die auf ein Objekt vom Typ String zeigen, mit Hilfe
des == Operators verglichen werden, so werden ihre Werte, d. h. die Referenzen,
verglichen. Mit anderen Worten, es wird verglichen, ob sie auf das gleiche Objekt
vom Typ String zeigen. Es wird jedoch nicht geprüft, ob der Inhalt der Objekte
übereinstimmt. Würden die in Kapitel 6.7.1 angesprochenen Optimierungen in jedem
Fall greifen, so würde dieser Vergleich tatsächlich funktionieren. Da jedoch die Opti-
mierung zumindest bei mit new erzeugten Strings nicht durchgeführt wird und bei
implizit erzeugten Objekten vom Typ String nicht zwingend vorgeschrieben ist,
muss zum Vergleich des Inhalts zweier Objekte vom Typ String die Methode
equals() der Klasse String verwendet werden.

Zeigen name1 und name2 auf Objekte vom Typ String, so wird der Vergleich

if (name1.equals (name2))

korrekt durchgeführt, ungeachtet dessen, ob die Objekte vom Typ String explizit
oder implizit erzeugt wurden.

6.7.1.3 Stringverarbeitung – Methoden der Klasse String

Da eine konstante Zeichenkette ein Objekt der Klasse String ist, können auch alle
Methoden dieser Klasse angewendet werden. Zu beachten ist:

Jede Methode der Klasse String, die eine Veränderung der Zei-
chenkette zur Folge hat, z. B. der Aufruf der Methode substring(),
liefert ein neues Objekt der Klasse String zurück und nicht das glei-
che Objekt mit einem geänderten Inhalt. Objekte vom Typ String
können nicht geändert werden.

Die Klasse String ist im Paket java.lang definiert. Eine ausführliche Beschrei-
bung aller Methoden kann in der Dokumentation der Java-API (siehe Kap. 3.3.2)
gefunden werden. Im Folgenden sind kurz die gebräuchlichsten Methoden und ihre
Aufgaben aufgezählt:

• public int length()
Gibt die Anzahl der Zeichen einer Zeichenkette zurück.

Datentypen und Variable 183

• public boolean equals (Object obj)
Vergleicht zwei Zeichenketten miteinander und gibt true zurück, falls die Zei-
chenketten den gleichen Inhalt haben. Ansonsten wird false zurückgegeben. Die
Methode equals(), die in der Klasse String implementiert ist, unterscheidet
sich von der Methode equals() der Klasse Object. Die Methode equals() der
Klasse Object überprüft nur, ob die beiden Referenzen, die am Vergleich betei-
ligt sind, auf das gleiche Objekt zeigen. Bei zwei unterschiedlichen Objekten mit
gleichem Inhalt gibt diese Methode immer false zurück.

• public String substring (int anfang, int ende)
Schneidet eine Zeichenkette zwischen anfang und ende - 1 aus und gibt den
ausgeschnittenen Teil als neues Objekt vom Typ String zurück. Beachten Sie,
dass das erste Zeichen den Index 0 hat. Ist der Wert von anfang negativ oder
geht der Wert von ende über die tatsächliche Länge hinaus, so wird eine
Exception vom Typ StringIndexOutOfBoundsException73 geworfen.

• public String trim()
Entfernt alle Leerzeichen am Anfang und am Ende der Zeichenkette und gibt den
bearbeiteten String als neues Objekt vom Typ String zurück.

Im folgenden Beispiel werden diese Methoden verwendet:

// Datei: Zeichenkette.java

public class Zeichenkette
{
 public static void main (String[] args)
 {
 String buchtitel = "Java als erste Programmiersprache";
 String buchtitelAnfang;
 System.out.println (buchtitel);
 System.out.println ("Anzahl der Zeichen des Buchtitels: "
 + buchtitel.length());

 // Zuweisung eines Teilstrings an buchtitelAnfang
 buchtitelAnfang = buchtitel.substring (0, 5);
 System.out.println ("Anzahl der Zeichen des Buchtitel"
 + "anfangs vor trim(): " + buchtitelAnfang.length());

 // Entfernen der Leerzeichen von beiden Enden des Strings
 buchtitelAnfang = buchtitelAnfang.trim();
 System.out.println ("Anzahl der Zeichen des Buchtitel"
 + "anfangs nach trim(): " + buchtitelAnfang.length());

 if (buchtitelAnfang.equals ("Java"))
 {
 System.out.println ("Buchtitel fängt mit Java an");
 }
 }
}

73 Exceptions siehe Kap. 13.

184 Kapitel 6

Hier die Ausgabe des Programms:

Java als erste Programmiersprache
Anzahl der Zeichen des Buchtitels: 33
Anzahl der Zeichen des Buchtitelanfangs vor trim(): 5
Anzahl der Zeichen des Buchtitelanfangs nach trim(): 4
Buchtitel fängt mit Java an

6.7.2 Variable Zeichenketten mit der Klasse StringBuffer

Die Klasse StringBuffer gehört auch zum Paket java.lang und repräsentiert
eine Zeichenkette mit den folgenden Eigenschaften:

• Die Länge der Zeichenkette in einem StringBuffer-Objekt ist nicht festgelegt.

• Die Länge vergrößert sich automatisch, wenn im StringBuffer-Objekt weitere
Zeichen angefügt werden und der vorhandene Platz nicht ausreicht.

• Der Inhalt eines Objektes der Klasse StringBuffer lässt sich verändern.

Die Länge der Zeichenkette in einem Objekt vom Typ StringBuffer wird – wie
auch bei der Klasse String – in einem zusätzlichen Datenfeld des Objektes abge-
legt.

6.7.2.1 Erzeugung eines StringBuffer-Objektes

Im Gegensatz zur Klasse String gibt es bei der Klasse StringBuffer nicht die
Möglichkeit, ein Objekt implizit zu erzeugen. Die Erzeugung ist nur mit dem Ope-
rator new möglich. Die Initialisierung eines Objektes der Klasse StringBuffer er-
folgt durch Aufruf des Konstruktors, der im Anschluss an den new-Operator folgt und
durch den Klassennamen, die runden Klammern und ihren Inhalt gegeben ist. Im
Folgenden werden die Konstruktoren

StringBuffer()
StringBuffer (int length)
StringBuffer (String str)

vorgestellt. Dem ersten Konstruktor werden keine Parameter zur Initialisierung über-
geben. Es wird ein StringBuffer-Objekt auf dem Heap angelegt, das 16 Zeichen
aufnehmen kann. Hierbei wird – für den Programmierer unsichtbar – innerhalb des
Konstruktors ein zweites Mal mit dem new-Operator Speicher auf dem Heap allokiert
und die Referenz auf diesen Speicher dem privaten Datenfeld value vom Typ
private char[] des StringBuffer-Objektes zugewiesen:

value = new char [16];

Ein StringBuffer-Objekt, das mit folgender Anweisung

StringBuffer str1 = new StringBuffer();

erzeugt wird, ist in folgendem Bild zu sehen:

Datentypen und Variable 185

Heap

str1 :StringBuffer

 private char[] value;
 private int count = 16;

char-Array der Länge 16

Bild 6-28 Mit dem parameterlosen Konstruktor initialisiertes StringBuffer-Objekt

Wird als aktueller Parameter des Konstruktors ein int-Wert übergeben, so wird ein
StringBuffer-Objekt der Länge des übergebenen int-Wertes angelegt. Die An-
weisung

StringBuffer str2 = new StringBuffer (10);

legt also ein StringBuffer-Objekt an, das 10 Zeichen aufnehmen kann. Man
beachte, dass auch hier innerhalb des Konstruktors noch einmal vom new-Operator
Gebrauch gemacht wird, um ein char-Array der entsprechenden Länge auf dem
Heap zu allokieren.

Heap

str2 :StringBuffer

 private char[] value;
 private int count = 10;

char-Array der Länge 10

Bild 6-29 Erzeugtes StringBuffer-Objekt, das 10 Zeichen aufnehmen kann

StringBuffer-Objekte, die mit dem Konstruktor ohne Parameter bzw. mit dem
Konstruktor, der die Länge eines StringBuffer-Objektes entgegennimmt, initiali-
siert werden, haben noch keine Zeichenkette, die sie beinhalten. Um ein String-
Buffer-Objekt nach der Erzeugung mit einer Zeichenkette zu füllen, existieren die
Methoden append() und insert() in unterschiedlichen Ausprägungen in der
Java-API. Genauso kann nachträglich der schon bestehende Inhalt eines String-
Buffer-Objektes durch Methoden wie insert(), delete() und setCharAt()
verändert werden. Der volle Umfang der Methoden der Klasse StringBuffer und
deren detaillierte Beschreibung kann der Dokumentation der Java-Klassenbibliothek
entnommen werden.

Wird als aktueller Parameter des Konstruktors eine konstante Zeichenkette angege-
ben, so wird damit das StringBuffer-Objekt initialisiert. Mit der Codezeile

StringBuffer name = new StringBuffer ("Anja");

wird also ein StringBuffer-Objekt auf dem Heap angelegt und zusätzlich mit der
konstanten Zeichenkette "Anja" initialisiert (siehe Bild 6-30).

186 Kapitel 6

Heap

name :StringBuffer

 private char[] value;
 private int count = 4;

‘A‘ ‘n‘ ‘j‘ ‘a‘

:String

 private char[] value;
 private int count = 4;

‘A‘ ‘n‘ ‘j‘ ‘a‘

Bild 6-30 Mit "Anja" initialisiertes StringBuffer-Objekt und String-Objekt "Anja"

Auch hier wird innerhalb des Konstruktors vom new-Operator Gebrauch gemacht und
ein entsprechendes char-Array auf dem Heap angelegt, das mit den Zeichen 'A'
'n' 'j' 'a' initialisiert wird. Dabei wird in das private Datenfeld count die Länge
der Zeichenkette "Anja", d. h. die Zahl 4, eingetragen.

Da bei der Erzeugung des Objektes der Klasse StringBuffer eine Referenz auf
ein Objekt vom Typ String übergeben wird, kommt die Zeichenkette "Anja"
zweimal im Heap vor, einmal als Objekt vom Typ String und einmal als Objekt vom
Typ StringBuffer. Die Darstellung eines Strings im Arbeitsspeicher wurde bis zu
Bild 6-30 noch nicht vorgestellt. Obwohl Objekte vom Typ String konstant und
Objekte vom Typ StringBuffer variabel sind, sind ihre Datenfelder gleich, aller-
dings sind ihre Methoden verschieden.

Bei Objekten vom Typ StringBuffer wird in keinem Fall eine Speicherplatz-
optimierung wie bei Objekten vom Typ String vorgenommen. Es wird stets ein
neues Objekt vom Typ StringBuffer im Heap angelegt.

6.7.2.2 Vergleichen von Objekten vom Typ StringBuffer

Da für jede Zeichenkette ein neues Objekt der Klasse StringBuffer erzeugt wird,
sollte man meinen, dass auch in diesem Fall ein Vergleich zweier Zeichenketten mit
der Methode equals() erfolgt. Die Klasse StringBuffer erbt zwar wie jede Klas-
se die Methode equals() von der Klasse Object, allerdings wird sie jedoch nicht
wie bei der Klasse String überschrieben und kann daher nicht sinnvoll eingesetzt
werden. Wird sie für den Vergleich von StringBuffer-Objekten verwendet, so
liefert sie ein unbrauchbares Ergebnis. Ein Vergleich der Zeichenketten zweier
Objekte vom Typ StringBuffer ist nur über den Umweg der Konvertierung
beider Objekte in zwei Objekte vom Typ String möglich. Die Konvertierung
erfolgt mit der Methode toString(). Dies wird in folgendem Beispiel vorgestellt:

StringBuffer name1 = new StringBuffer ("Anja");
StringBuffer name2 = new StringBuffer ("Peter");

Datentypen und Variable 187

String name1String = name1.toString();
String name2String = name2.toString();

if (name1String.equals (name2String)).

6.7.3 Verkettung von Strings und StringBuffern

Die Verkettung von Zeichenketten aus Objekten der Klassen String und String-
Buffer wird in diesem Kapitel zusammengefasst, da die Verkettung von String-
Objekten auf der Verkettung von StringBuffer-Objekten aufsetzt.

6.7.3.1 Anhängen von Zeichenketten an einen StringBuffer

Das Anhängen einer konstanten Zeichenkette an ein Objekt der Klasse String-
Buffer erfolgt mit der Methode append() der Klasse StringBuffer wie in
folgendem Beispiel:

StringBuffer name = new StringBuffer ("Anja");
name.append (" Christina");

Heap

nach der
Operation

name

StringBuffer "Anja Christina"

String " Christina"

String "Anja"

Bild 6-31 Anhängen einer Zeichenkette

Die beiden String-Objekte "Anja" und " Christina" werden, sofern sie nicht von
anderen Stellen in der virtuellen Maschine referenziert werden, zur gegebenen Zeit
durch den Garbage Collector entfernt.

Die Verkettung von StringBuffer-Objekten erfolgt analog, wie im folgenden Bei-
spiel gezeigt wird:

StringBuffer name1 = new StringBuffer ("Anja");
StringBuffer name1 = new StringBuffer (" Christina");
name1.append (name2);

6.7.3.2 Verkettung von String-Objekten

Zur Verkettung von String-Objekten gibt es in Java den Operator + als Ver-
kettungsoperator. Da Objekte der Klasse String unveränderlich sind, wird hierbei
eine neues String-Objekt erzeugt, welches die neue, verkettete Zeichenkette
aufnimmt. Dies ist im folgenden Beispiel zu sehen:

188 Kapitel 6

String name = "Anja";
name = name + " Christina";

Lassen Sie sich hier nicht verblüffen. Objekte vom Typ String können tatsächlich
nicht verändert werden. Mit name + " Christina" wird ein neues Objekt vom Typ
String geschaffen. Mit name = name + " Christina" wird die Referenz-
variable name auf das neu erzeugte Objekt gerichtet.

Der Operator + wird dabei vom Compiler in einen append()-Aufruf der Klasse
StringBuffer übersetzt. Die zwei Codezeilen des vorherigen Beispiels werden
dabei sinngemäß in die folgenden Anweisungen übersetzt:

String name = "Anja";
StringBuffer b = new StringBuffer (name);
b.append (" Christina");
name = b.toString();

Im Heap werden mit diesen Anweisungen die in Bild 6-32 gezeigten String- und
StringBuffer-Objekte angelegt.

 Heap

vor der
Operation

nach der
Operation

name String " Christina"

String "Anja Christina"

String "Anja"

StringBuffer "Anja Christina"

Bild 6-32 Zeichenketten im Heap vor und nach der Verkettung

Es werden also zwei Objekte vom Typ String erzeugt und miteinander über Um-
wege zu einem neuen Objekt vom Typ String verkettet. Die String-Objekte
" Christina" und "Anja" sowie das StringBuffer-Objekt "Anja Christi-
na" können, wenn sie nicht mehr durch eine andere Referenzvariable referenziert
werden, vom Garbage Collector entfernt werden. Dieses Vorgehen ist, da die Erzeu-
gung von Objekten viel Rechenzeit verbraucht, nicht besonders effizient. In Schleifen
sollte deshalb die Verkettung von Strings vermieden werden. Stattdessen sollten
besser StringBuffer-Objekte verwendet werden. Das folgende Beispiel zeigt, wie
in einer for-Schleife der bestehende String jedesmal um ein Sternchen erweitert
wird:

String s = "*";
for (int i = 0; i < 5000; i++)
{
 s = s + "*"; // Dies sollte vermieden werden
}

Datentypen und Variable 189

Für das vorangehende Beispiel empfiehlt sich daher die folgende Optimierung:

String s = "*";
StringBuffer tmp = new StringBuffer (s);
for (int i = 0; i < 5000; i++)
{
 tmp.append ("*"); // So ist es besser
}
s = tmp.toString();

Durch dieses Vorgehen ergibt sich eine Geschwindigkeitserhöhung.

6.7.4 Variable Zeichenketten mit der Klasse StringBuilder

Seit dem JDK 5.0 stellt das Paket java.lang auch eine Klasse StringBuilder
zur Verfügung. Bisher war die Klasse StringBuffer die einzige Möglichkeit, um
Zeichenketten zu verändern. Die Klasse StringBuilder ist eine neue Klasse mit
einer höheren Performanz, die jedoch nicht verwendet werden darf, wenn eine
Zeichenkette von mehreren Threads (siehe Kap. 19) parallel bearbeitet wird.

Die Klassen StringBuffer und StringBuilder werden hauptsächlich dazu
verwendet, Zeichenketten aufzubauen oder abzuändern. Bestehende Zeichenketten,
die in einem Objekt der Klasse StringBuilder oder StringBuffer gespeichert
sind, werden dabei durch Anfügen oder Einfügen von neuen Zeichen oder Abändern
von bestehenden Zeichen modifiziert.

Zu diesem Zweck bietet die Klasse StringBuilder die Methoden append(),
insert() und setCharAt() an. Diese Methoden sind überladen, sodass sie Para-
meter verschiedener Datentypen entgegennehmen können. Die übergebenen Para-
meter werden gegebenenfalls in Strings konvertiert. Die Methode append() hängt
die Stringrepräsentation ihres Parameters an das Ende einer Zeichenkette an. Im
Gegensatz dazu wird der Parameter der Methode insert() an einer definierbaren
Stelle in eine Zeichenkette eingefügt. Mit der Methode setCharAt() kann an einer
bestimmten Stelle in der Zeichenkette ein Zeichen verändert werden. Die Methode
erwartet als ersten Parameter einen int-Wert, der die Stelle in der Zeichenkette
angibt, und als zweiten Parameter das neu zu setzende Zeichen vom Typ char.

Hierzu ein Beispiel:

// Datei: StringBuilderTest.java

public class StringBuilderTest
{
 public static void main (String[] args)
 {
 StringBuilder sb = new StringBuilder ("Wilhelm Röntgen");
 System.out.println (sb);

 sb.insert (7, " Konrad");
 sb.append (", Matrikelnummer: ");
 sb.append (123456);
 System.out.println (sb);

190 Kapitel 6

 System.out.println();

 // Ein neues StringBuilder-Objekt erzeugen
 sb = new StringBuilder ("Tasse");
 System.out.println (sb);

 sb.setCharAt (0, 'K');
 System.out.println (sb);

 sb.setCharAt (0, 'M');
 System.out.println (sb);
 }
}

Die Ausgabe des Programms ist:

Wilhelm Röntgen
Wilhelm Konrad Röntgen, Matrikelnummer: 123456

Tasse
Kasse
Masse

Die Konstruktoren und Methoden der Klasse StringBuilder entsprechen den
Konstruktoren und Methoden der Klasse StringBuffer (siehe Kap. 6.7.2).

6.8 Wandlung von Datentypen

In diesem Kapitel steht die Wandlung von Variablen eines einfachen Datentyps in
Variablen eines Klassen-Typs und umgekehrt, sowie die Wandlung von Variablen
beliebiger Datentypen in Zeichenketten im Fokus. Typkonvertierungen von Referenz-
typen in andere Referenztypen sowie Typkonvertierungen einfacher Datentypen in
andere einfache Datentypen werden hierbei gesondert in den Kapiteln 7.7 und 11.3.1
behandelt. Für die Wandlung von Variablen eines einfachen Datentyps in Variable
eines Klassen-Typs werden Ihnen Wrapper-Klassen sowie die Bedeutung von
Boxing und Unboxing in Kapitel 6.8.1 vorgestellt. Die Wandlung von Variablen belie-
biger Datentypen in Zeichenketten wird aufbauend auf den Konzepten der Wrapper-
Klassen und des Boxing und Unboxing in Kapitel 6.8.2 erläutert.

6.8.1 Wrapper-Klassen mit Boxing und Unboxing

Wrapper-Klassen sind Klassen, die dazu dienen, um eine Anweisungsfolge oder
einen einfachen Datentyp in die Gestalt einer Klasse zu bringen.

Wrapper-Klassen dienen dazu, ein nicht-objektorientiertes Konstrukt in
die Form einer Klasse einzubetten.

Datentypen und Variable 191

Wrapper-Klassen, die nur eine Methode main() enthalten, wurden in Kapitel 4 vor-
gestellt. Die Wrapper-Klassen in diesem Kapitel sind Bibliotheksklassen, die geschaf-
fen wurden, um einfache Datentypen aufzunehmen. Für alle einfachen Datentypen
gibt es in Java im Paket java.lang die folgenden Wrapper-Klassen:

Einfache
Datentypen

Wrapper-Klassen

Char Character
Boolean Boolean
Byte Byte
Short Short
Int Integer
Long Long
Double Double
Float Float

Tabelle 6-4 Einfache Datentypen und die zugehörigen Wrapper-Klassen

Es gibt auch eine Wrapper-Klasse Void, obwohl void in Java kein Datentyp ist. Da
void eine leere Menge bedeutet und keine Informationen enthält, besitzt die Klasse
Void weder Konstruktoren noch Methoden.

Die in Tabelle 6-4 aufgeführten Wrapper-Klassen stellen Methoden zur Bearbeitung
der entsprechenden einfachen Datentypen bereit. Beispiele hierfür sind Methoden
zum Umwandeln von Zahlen in Strings und von Strings in Zahlen. Viele der
vorhandenen Methoden sind static, sodass sie auch benutzt werden können, ohne
dass ein Objekt einer Wrapper-Klasse gebildet werden muss. Die Wrapper-Klassen
Float, Double, Byte, Short, Integer und Long stellen Klassenmethoden bereit,
um ein Objekt vom Typ String in die einfachen Datentypen float, double, byte,
short, int und long zu wandeln. So stellt die Wrapper-Klasse Integer die Klas-
senmethode parseInt() zur Verfügung, die den Inhalt eines Objektes vom Typ
String als int-Wert zurückgibt. Das folgende Beispielprogramm zeigt, wie aus
einem String-Objekt mit Hilfe der Klassenmethode parseInt() der Wrapper-
Klasse Integer eine Wandlung eines String-Objektes in den Datentyp int durch-
geführt werden kann:

// Datei: WrapperTest.java

public class WrapperTest
{
 public static void main (String[] args)
 {
 String s1 = "100";
 System.out.println ("100 im Dezimalsystem hat den Wert: "
 + Integer.parseInt (s1));
 System.out.println ("100 im Oktalsystem hat den Wert: "
 + Integer.parseInt (s1, 8));
 System.out.println ("100 im Hexadezimalsystem hat den Wert: "
 + Integer.parseInt (s1, 16));
 }
}

192 Kapitel 6

Hier die Ausgabe des Programms:

100 im Dezimalsystem hat den Wert: 100
100 im Oktalsystem hat den Wert: 64
100 im Hexadezimalsystem hat den Wert: 256

Die Werte von einfachen Datentypen können in Objekte der entsprechenden
Wrapper-Klassen verpackt werden. Entsprechend gibt es auch eine Möglichkeit,
Werte von einfachen Datentypen, die in Objekten von Wrapper-Klassen verpackt
sind, wieder herauszuholen. Das folgende Beispiel zeigt das "Verpacken" und das
"Auspacken". Mit den "ausgepackten" Werten der einfachen Datentypen werden
dann Berechnungen durchgeführt.

// Datei: Wrapper.java

public class Wrapper
{
 public static void main (String[] args)
 {
 Integer i1 = new Integer (1);
 Integer i2 = Integer.valueOf (2);
 Double d = new Double (2.2);

 int summe = i1.intValue() + i2.intValue();
 double produkt = d.doubleValue() * 2;

 System.out.println ("Wert der Variablen summe: " + summe);
 System.out.println ("Wert der Variablen produkt: " + produkt);
 }
}

Hier die Ausgabe des Programms:

Wert der Variablen summe: 3
Wert der Variablen produkt: 4.4

Um einen Ausdruck eines einfachen Datentyps in ein Objekt vom Typ einer Wrapper-
Klasse zu verpacken, kann entweder der new-Operator oder die Klassenmethode
valueOf() der entsprechenden Wrapper-Klasse verwendet werden. Im obigen Pro-
grammbeispiel sind beide Möglichkeiten zu sehen. Jede Wrapper-Klasse besitzt eine
Klassenmethode valueOf(), die eine Referenz auf ein Objekt vom Typ der jewei-
ligen Wrapper-Klasse zurückgibt. Die folgenden Zeilen zeigen die beiden Alter-
nativen:

Integer i = Integer.valueOf (2); // Äquivalente Alternativen
Integer j = new Integer (2); // zur Objekterzeugung

Um einen Wert wieder aus einem Objekt einer Wrapper-Klasse "auszupacken",
stellen Wrapper-Klassen entsprechende Methoden bereit. Im Falle der Wrapper-
Klasse Integer ist dies die Methode intValue(), die den einfachen Datentyp int
als Rückgabewert liefert.

Datentypen und Variable 193

Vor dem JDK 5.0 war es nicht möglich, mit den Objekten von Wrapper-Klassen zu
rechnen wie mit den Variablen einfacher Datentypen. Auf Variable einfacher Daten-
typen kann man zum Beispiel die Operatoren + und – anwenden. In der alten Tech-
nik des JDK 1.4 und älteren Versionen musste man, um mit den Werten, die in
Objekten von Wrapper-Klassen gespeichert sind, rechnen zu können, diese wie im
vorangegangenen Beispielprogramm zuerst "auspacken". Ab dem JDK 5.0 wird das
"Verpacken" und "Auspacken" automatisch durch den Compiler durchgeführt. Das
"Verpacken" bezeichnet man als Boxing, das "Auspacken" als Unboxing.

Boxing (in eine Schachtel packen) bedeutet, dass ein Wert eines
einfachen Typs in ein Objekt einer Wrapper-Klasse umgewandelt wird.
Bildlich gesehen stellt das Objekt der Wrapper-Klasse eine Box dar, in
welche die Variable des einfachen Typs hineingelegt wird.

Unboxing ist genau das Gegenteil von Boxing. Bildlich gesehen wird
hier die Variable des einfachen Typs aus der Schachtel (dem Objekt
der Wrapper-Klasse) wieder herausgenommen.

Da der ganze Mechanismus von Boxing und Unboxing vom Compiler automatisch
umgesetzt wird, spricht man auch von Auto-Boxing und Auto-Unboxing. Durch das
Auto-Boxing wird es auch möglich, fast alle Operatoren, die bisher nur auf einfache
numerische Datentypen anwendbar waren, auch für die entsprechenden Wrapper-
Klassen zu verwenden. Beispielsweise können die Werte von zwei Objekten der
Wrapper-Klasse Integer mit dem Operator + addiert werden, ohne sie vorher
manuell auszupacken:

// Datei: AutoBoxing2.java

public class AutoBoxing2
{
 public static void main (String[] args)
 {
 // Anlegen von zwei Objekten der Wrapper-Klasse Integer
 // und Zuweisen von Werten eines einfachen Typs (der Compiler
 // fügt Boxing-Code ein).
 Integer i1 = 10;
 Integer i2 = 5;

 // Auto-Unboxing von i1 und i2, Addieren der Werte, danach
 // Auto-Boxing des Wertes für die Zuweisung an i3.
 Integer i3 = i1 + i2;

 // Ausgeben der einzelnen Werte und des Ergebnisses
 System.out.println (i1 + " + " + i2 + " = " + i3);
 }
}

194 Kapitel 6

Die Ausgabe des Programms ist:

10 + 5 = 15

Die folgende Tabelle zeigt Boxing und Unboxing jeweils manuell und automatisch für
den einfachen Datentyp int und die entsprechende Wrapper-Klasse Integer.
Dabei ist die Variable i vom Typ int und die Variable wi vom Typ Integer.

Boxing Unboxing
Manuell Automatisch Manuell Automatisch
Integer wi =
new Integer(i);

Integer wi = i; int i =
wi.intValue();

int i = wi;

Tabelle 6-5 Beispiele für Boxing und Unboxing

Durch das Auto-Unboxing können Referenzvariablen auf Objekte von Wrapper-
Klassen numerischer Datentypen auch als Operanden der Postfix- und Präfix-
Operatoren ++ und –– verwendet werden, genauso wie als Operanden der binären
arithmetischen Rechenoperationen (+, -, / ,*, %) oder der bitweisen Operationen (&,
^, |, >>, <<, >>>).

Referenzvariablen auf Objekte der Wrapper-Klasse Boolean können Operanden
von bestimmten relationalen Operationen werden oder in die Bedingung des Be-
dingungsoperators eingesetzt werden. Genauso können die logischen Operatoren
nicht nur auf Boolesche Ausdrücke, sondern auch auf Referenzvariablen, die auf
Objekte vom Typ der Wrapper-Klasse Boolean zeigen, angewendet werden.

Zahlreiche Operatoren, die auf Variablen einfacher Datentypen ange-
wandt werden können, können auch auf Referenzvariablen, die auf
Objekte von Wrapper-Klassen zeigen, angewandt werden.

Werden die relationalen Operatoren == und != bei Referenzvariablen,
die auf Objekte von Wrapper-Klassen zeigen, verwendet, so werden
aber – wie bei Referenzvariablen üblich – die Referenzen verglichen
und nicht die Inhalte!

Das folgende Beispiel zeigt die Verwendung von Wrapper-Klassen, wenn an eine
Methode Referenzen als Parameter übergeben werden müssen, der Aufrufer aber
einen einfachen Zahlenwert übergeben möchte. Die Methode push() der Klasse
EasyStack erwartet als Übergabeparameter eine Referenzvariable auf die Wrap-
per-Klasse Integer. Beim Aufruf der Methode push() wird allerdings eine Variable
des einfachen Datentyps int übergeben. Der Compiler fügt automatisch den
Boxing-Code ein. Entsprechend gibt die Methode pop() eine Referenz vom Typ der
Wrapper-Klasse Integer zurück. Die zurückgegebene Referenz wird automatisch in
den einfachen Datentyp int gewandelt.

Vorsicht!

Datentypen und Variable 195

// Datei: EasyStack.java

public class EasyStack
{
 // Anlegen eines Integer-Arrays, das 3 Elemente aufnehmen kann.
 private Integer[] stack = new Integer [3];
 private int top = -1;

 public void push (Integer i) // Methode zum Ablegen eines Elemen-
 { // tes auf dem Stack.
 top = top + 1;
 stack [top] = i;
 }

 public Integer pop() // Methode, um ein Element vom Stack
 { // abzuholen.
 top = top - 1;
 return stack [top + 1];
 }
}

// Datei: EasyStackTest.java

public class EasyStackTest
{
 public static void main (String[] args)
 {
 // Ein Objekt der Klasse EasyStack erzeugen.
 EasyStack arr = new EasyStack();

 arr.push (1); // Stack befüllen. Der Compiler
 arr.push (2); // fügt automatisch den Boxing-Code
 arr.push (3); // ein.

 int wert1 = arr.pop(); // Daten vom Stack abholen.
 int wert2 = arr.pop(); // Der Compiler fügt automatisch
 int wert3 = arr.pop(); // Unboxing-Code ein.

 // Daten ausgeben
 System.out.println ("Wert 1. Element: " + wert1);
 System.out.println ("Wert 2. Element: " + wert2);
 System.out.println ("Wert 3. Element: " + wert3);
 }
}

Hier die Ausgabe des Programms:

Wert 1. Element: 3
Wert 2. Element: 2
Wert 3. Element: 1

196 Kapitel 6

Die Stärke der Wrapper-Klassen in der Kombination mit dem automa-
tischen Boxing und Unboxing liegt darin, dass man Variable einfacher
Datentypen in der Hülle eines Objektes einer Wrapper-Klasse an Me-
thoden übergeben kann, die als Übergabeparameter einen Referenz-
typ erwarten.

Das Auto-Boxing kann jedoch auch Probleme verursachen: Existieren beispielsweise
in einer Klasse zwei überladene Methoden74, deren Methodenköpfe sich nur dadurch
unterscheiden, dass einmal einfache Typen verwendet werden und einmal die
entsprechenden Wrapper-Klassen, ist für den Compiler nicht klar, welche Methode
aufgerufen werden soll. Dies wird durch einen Fehler beim Kompilieren angezeigt.
Das folgende Beispiel zeigt diese Situation:

public void testMethode (int x)
{
 ...// nicht relevant
}
public void testMethode (Integer x)
{
 ...// nicht relevant
}

// Welche Methode soll der Compiler aufrufen?
// Durch Auto-Boxing ist der folgende Aufruf nicht mehr eindeutig.
testMethode (1)

Solche Mehrdeutigkeiten treten vor allem in Code auf, der vor dem JDK 5.0 ge-
schrieben wurde, da dort noch kein Auto-Boxing enthalten war und sich viele Ent-
wickler mit entsprechenden überladenen Methoden behalfen. Durch eine explizite
Typkonvertierung beim Aufruf kann dieses Problem umgangen werden.

Bei der Deklaration von überladenen Methoden muss darauf geachtet
werden, dass keine Mehrdeutigkeiten auftreten. Beim Überladen einer
Methode sollte kein einfacher Typ in der Parameterliste durch einen
Typ der Wrapper-Klasse ersetzt werden (und umgekehrt).

Auch bei Kontrollflusskonstrukten (siehe Kap. 8.2 und 8.3) kann dieser neue Mecha-
nismus hilfreich sein. Es besteht nun auch die Möglichkeit, bei if-Anweisungen als
Ausdruck eine Referenzvariable auf ein Objekt der Klasse Boolean zu verwenden.
Gleiches gilt ebenfalls für while-, do-while- oder for-Schleifen, die nun in ihrem
Ausdruck auch eine Referenzvariable auf ein Objekt der Klasse Boolean akzep-
tieren.

Der Ausdruck der switch-Anweisung (siehe Kap. 8.2.3) kann wie bisher vom Typ
char, byte, short, int sein oder aber nun auch vom Typ String, Character,
Byte, Short oder Integer.

74 Was das Überladen einer Methode genau bedeutet, wird in Kapitel 9.4 noch ausführlich behandelt.

Vorsicht!

Datentypen und Variable 197

6.8.2 Wandlung beliebiger Datentypen in Zeichenketten

In Java existieren Mechanismen, die es ermöglichen, Variable beliebiger Datentypen
in Zeichenketten zu wandeln. Bei vielen Programmausgaben ist dieser Mechanismus
bei der Verkettung von Zeichenketten mit Variablen anderer Datentypen schon oft
verwendet worden. Die folgende Programmzeile ist aus der Klasse Punkt ent-
nommen:

System.out.println ("Die Koordinate des Punktes ist: " + x);

Die Variable x ist dabei vom Typ int. Um die Ausgabe zu bewerkstelligen, muss die
Variable x vom Typ int in ein Objekt vom Typ String gewandelt werden und
danach an den vorangehenden String angehängt werden. Die Umwandlung eines
einfachen Datentyps in ein Objekt vom Typ String erfolgt dabei über die Verwen-
dung der entsprechenden Wrapper-Klasse. Die obige Variable x wird somit in einen
Aufruf new Integer (x) verpackt. Natürlich hat man durch diese Umsetzung noch
keine String-Repräsentation der einfachen Datentypen erlangt – aber da jeder
einfache Datentyp nun in einem Objekt eines Referenztyps gekapselt ist, wird jetzt
einfach die toString()-Methode der entsprechenden Wrapper-Klasse verwendet.
Jede Klasse in Java erbt die toString()-Methode der Klasse Object. Die Wrap-
per-Klassen stellen für diese Methode jeweils eine spezielle Implementierung bereit,
die dafür sorgt, dass die einfachen Datentypen richtig in ein Objekt vom Typ String
konvertiert werden.

Die folgende Tabelle zeigt, welche Umsetzung bei den restlichen einfachen Daten-
typen erfolgt:

Datentyp Umsetzung über Wrapper-Klasse
Boolean new Boolean (x)
Char new Character (x)
byte, short, int new Integer (x)
Long new Long (x)
Float new Float (x)
Double new Double (x)

Tabelle 6-6 Wandlung von einfachen Datentypen in einen Referenztyp

Wird auf einen Referenztyp der Zeichenverkettungsoperator ange-
wandt, so wird die toString()-Methode des entsprechenden Objek-
tes aufgerufen.

Wird an println() eine Referenzvariable ref übergeben:

System.out.println (ref);

so wird

System.out.println (ref.toString());

aufgerufen.

198 Kapitel 6

6.9 Übungen

Aufgabe 6.1: Arrays

6.1.1 int-Array als Stack

Die Klasse Stack soll ein int-Array kapseln, welches als Stack dienen soll.
Die Funktionsweise eines Stack wird in Kapitel 6.4.5.1 erklärt. Zum Zugriff
auf den Stack sollen die Methoden

public void push (int u)
public int pop()

bereitgestellt werden. Die Methode

public boolean isEmpty()

überprüft, ob der Stack leer ist, und liefert in diesem Fall true zurück, an-
sonsten wird false zurückgeliefert. Die Methode

public void stackPrint()

soll zu Testzwecken dienen und den Inhalt des gesamten Stacks ausgeben.
Die Größe des Stacks soll dem Konstruktor übergeben werden können.
Testen Sie die Klasse Stack mit Hilfe der folgenden Wrapper-Klasse:

// Datei: TestStack.java

public class TestStack
{
 public static void main (String[] args)
 {
 Stack stackRef = new Stack (5);
 stackRef.push (7);
 stackRef.push (3);
 stackRef.push (4);
 stackRef.push (9);
 stackRef.push (1);

 stackRef.stackPrint();

 System.out.println ("\nAusgabe der Zahlen: ");
 while (stackRef.isEmpty() == false)
 {
 int rückgabe;
 // oberste Zahl des Stacks wird
 // mit pop() vom Stack geholt
 rückgabe = stackRef.pop();
 System.out.println ("Die Zahl war " + rückgabe);
 }
 }
}

Datentypen und Variable 199

6.1.2 Array mit einfachen Datentypen – FloatQueue

Die Klasse FloatQueue ist eine Warteschlange für float-Werte. In dieser
Warteschlange können sich mehrere float-Werte befinden. Es kann jeweils
nur ein Element gleichzeitig in die Warteschlange (hinten) eingereiht werden
(enqueue()-Methode) oder aus der Warteschlange (vorne) entnommen
werden (dequeue()-Methode). Im Gegensatz zu einem Stapelspeicher
(Stack) handelt es sich bei einer Warteschlange um einen FIFO-Speicher
("First In First Out").

Die Klasse FloatQueue soll folgende Methoden beinhalten:

• Konstruktor: public FloatQueue (int laenge)
Der Übergabeparameter int laenge gibt die Anzahl der maximalen
Speicherstellen der Warteschlange an.

• In Warteschlange einfügen: public void enqueue (float wert)
Diese Methode fügt den Wert am Ende der Warteschlange ein.

• Aus Warteschlange entnehmen: public float dequeue()
Diese Methode entfernt den ersten Wert aus der Warteschlange und gibt
diesen an den Aufrufer zurück. Ist die Warteschlange leer, so wird der
Wert –1 zurückgegeben.

• Ausgabe des Inhalts der Warteschlange: public void queuePrint()
Diese Methode gibt alle in der Warteschlange enthaltenen Werte aus.

• Überprüfen, ob Warteschlange leer ist: public boolean isEmpty()
Diese Methode liefert true zurück, falls die Warteschlange leer ist. An-
dernfalls gibt die Methode false zurück.

• Leeren der Warteschlange: public void clear()
Diese Methode löscht alle in der Warteschlange enthaltenen Werte.

Testen Sie die Klasse FloatQueue mit Hilfe folgender Testklasse:

// Datei: TestFloatQueue.java

public class TestFloatQueue
{
 public static void main (String[] args)
 {
 FloatQueue queue = new FloatQueue(5);
 queue.enqueue (2.45f);
 queue.enqueue (1.29f);
 queue.enqueue (4.31f);
 queue.enqueue (7.85f);

 queue.queuePrint();

 System.out.println ("\nAusgabe der Zahlen: ");
 while (queue.isEmpty() == false)
 {
 float rueckgabe;
 rueckgabe = queue.dequeue();
 System.out.println ("Die Zahl war " + rueckgabe);
 }

200 Kapitel 6

 queue.enqueue (1.11f);
 queue.queuePrint();
 queue.clear();
 queue.queuePrint();
 }
}

6.1.3 Größte Entfernung zwischen Punkten

Es soll ein Programm geschrieben werden, welches es erlaubt, die größte
Entfernung zwischen beliebigen Punkten in einer Ebene zu berechnen.

Der Einfachheit halber beschränkt sich das folgende Programm auf 3 belie-
bige Punkte. Die Koordinaten dieser Punkte können im Dialog eingegeben
werden.

Das Programm besteht aus drei Klassen:

• der schon bekannten Klasse Punkt,

• einer Klasse PunktArray,

• und einer Testklasse TestPunktArray.

Die Klasse Punkt ist bereits bekannt.

//Datei Punkt.java

import java.util.Scanner;

public class Punkt
{
 double x;
 double y;

 double getX ()
 {
 return x;
 }

 void setX (double u)
 {
 x = u;
 }

 double getY ()
 {
 return y;
 }

 void setY (double v)
 {
 y = v;
 }

Datentypen und Variable 201

 void print ()
 {
 System.out.println ("x = " + x);
 System.out.println ("y = " + y);
 }

 public Punkt ()
 {
 Scanner eingabe = new Scanner (System.in);

 System.out.println ("\nGib den x-Wert ein: ");
 x = eingabe.nextDouble();

 System.out.println ("Gib den y-Wert ein: ");
 y = eingabe.nextDouble();
 }
}

Die Klasse TestPunktArray soll ein Objekt der Klasse PunktArray er-
zeugen. Dem Konstruktor wird der Parameter 3 mitgegeben. Dies bedeutet,
dass das erzeugte Objekt der Klasse PunktArray 3 Punkte enthalten soll.

class TestPunktArray
{
 public static void main (String args[])
 {
 PunktArray arrayref = new PunktArray (3);
 System.out.println ("Maximale Entfernung: " +
 arrayref.maximum());
 }
}

 Array-Objekt aus

Referenzen

Referenz

Referenz

Referenz

Objekt der Klasse
PunktArray

Objekt der
Klasse Punkt

Objekt der
Klasse Punkt

Objekt der
Klasse Punkt

Referenz
ref

Die Klasse PunktArray soll in ihrem Konstruktor die geforderte Anzahl von
Punkten erzeugen und eine Methode maximum() für die Berechnung der
größten Entfernung zwischen beliebigen 2 dieser Punkte bereit stellen. Diese
Methode soll die schon bekannte Methode entfernung() verwenden.

Ergänzen Sie die fehlenden Teile:

//Datei PunktArray.java

public class PunktArray
{
 Punkt [] ref;

202 Kapitel 6

 PunktArray (int anzahl)
 {

 }

 double entfernung (Punkt q1, Punkt q2)
 {
 return Math.sqrt ((double)
 (q1.getX() - q2.getX()) *
 (q1.getX() - q2.getX()) +
 (q1.getY() - q2.getY()) *
 (q1.getY() - q2.getY()));
 }

 public double maximum()
 {
 double max = 0;
 for (int i = 0; i < ref.length; i++)
 for (int j = 0; j < ref.length; j++)
 {

 }
 return max;
 }
}

Aufgabe 6.2: Strings

6.2.1 Performance

Führen Sie die folgende Klasse TestString aus, welche zum Testen der
Performance des Verkettungsoperators + von Strings dient. Die Zeit, welche
die for-Schleife benötigt, wird in Millisekunden gemessen. Die Zeitmessung
erfolgt mit Hilfe der Klasse System (siehe Anhang C).

// Datei: TestString.java

public class TestString
{
 public static void main (String[] args)
 {
 String s = "Hello";
 System.out.println ("Starte Schleife, Bitte warten");
 long startTime = System.currentTimeMillis();

 for (int n = 0; n < 10000; n++)
 {
 s += "World";
 }

 long endTime = System.currentTimeMillis();

 System.out.println ("Mit dem + Operator braucht man " +
 (endTime-startTime) +
 " Millisekunden");

Datentypen und Variable 203

 System.out.println ("Der zusammengesetzte String hat " +
 "eine Länge von " + s.length () +
 " Zeichen");
 }
}

Die gemessene Zeit erscheint recht hoch. Wir benötigen allerdings einen
Vergleich. Fügen Sie einen Block an, in dem der String "Hello" in einem
Objekt der Klasse StringBuffer steht und der String "World" nicht über
den Verkettungsoperator, sondern über die Methode append() der Klasse
StringBuffer hinzugefügt wird. Sie können natürlich auch andere oder
weitere Möglichkeiten programmieren und die Zeit messen.

Um welchen Faktor unterscheiden sich die Laufzeiten der beiden Möglich-
keiten? Geben Sie eine Erklärung für die Laufzeitunterschiede an.

6.2.2 Dateiname

Benutzen Sie die Methoden der Klasse String, um eine Klasse Parser zu
schreiben. Diese Klasse hat die Aufgabe, aus einem vollständigen Pfad in
Form eines Strings das Verzeichnis, den Dateinamen und die Extension der
Datei zu ermitteln. Lautet zum Beispiel der gesamte Pfad:

C:\Eigene Daten\Javatest\Beispiel.java

dann soll das Programm folgendes extrahieren:

Extension: java

Dateiname: Beispiel

Verzeichnis: C:\Eigene Daten\Javatest

Aufgabe 6.3: Aufzählungstypen

6.3.1 Wochentage

Definieren Sie einen Aufzählungstyp Wochentag, der die Tage der Woche
repräsentiert, und eine Klasse WochentagAusgabe. In der main()-Metho-
de der Klasse WochentagAusgabe soll die Methode values() des Auf-
zählungstyps verwendet werden, um alle Wochentage auszugeben. Zu je-
dem Wochentag soll die jeweilige Ordinal-Zahl ausgegeben werden. Die
Ausgabe soll folgendermaßen aussehen:

MONTAG ist der 1. Tag der Woche.
DIENSTAG ist der 2. Tag der Woche.
MITTWOCH ist der 3. Tag der Woche.
DONNERSTAG ist der 4. Tag der Woche.
FREITAG ist der 5. Tag der Woche.
SAMSTAG ist der 6. Tag der Woche.
SONNTAG ist der 7. Tag der Woche.

204 Kapitel 6

6.3.2 Rechenmaschine

Definieren Sie einen Aufzählungstyp Operation mit den Aufzählungskon-
stanten PLUS, MINUS, TIMES und DIVIDE. Der Aufzählungstyp soll die
Methode eval (double arg0, double arg1) haben, die für jede Auf-
zählungskonstante entsprechend überschrieben werden muss. Implemen-
tieren Sie ein Klasse Rechenmaschine, die ein privates Datenfeld vom Typ
Operation hat. Die Rechenmaschine soll so funktionieren, dass zuerst eine
Operation gesetzt wird, dann werden zwei Parameter vom Typ double über-
geben. Abschließend wird die Methode ausfuehren() aufgerufen, die das
Ergebnis berechnet und ausgibt. Schreiben Sie eine main()-Methode, um
die Klasse Rechenmaschine und den Aufzählungstyp zu testen. Nutzen Sie
die Methode values() des Aufzählungstyps, um alle Operationen in einer
Schleife zu testen.

Die Ausgabe soll folgendermaßen aussehen:

Die Operation PLUS ergibt für die Parameter 2.0 und 3.0
das Ergebnis 5.0.
Die Operation MINUS ergibt für die Parameter 2.0 und 3.0
das Ergebnis -1.0.
Die Operation TIMES ergibt für die Parameter 2.0 und 3.0
das Ergebnis 6.0.
Die Operation DIVIDE ergibt für die Parameter 2.0 und 3.0
das Ergebnis 0.6666666666666666.

6.3.3 Münzen

Ergänzen Sie die Klasse Muenze, die einen Aufzählungstyp darstellt, mit
dem alle Münzen der Euro-Währung abgebildet werden können. Jeder de-
finierten Aufzählungskonstanten von diesem Typ soll als Wert der entspre-
chende Münzbetrag in Cent zugewiesen werden, d. h. der Aufzählungskon-
stanten für das Ein-Cent-Stück der Wert 1, der Aufzählungskonstanten für
das Zwei-Cent-Stück der Wert 2 usw.

// Datei: Muenze.java

public enum Muenze
{
 // Definition der Aufzählungskonstanten
 EinCent,
 ZweiCent,
 FuenfCent,
 ZehnCent,
 ZwanzigCent,
 FuenfzigCent,
 EinEuro,
 ZweiEuro;

 // Datenfeld
 private int wert;

Datentypen und Variable 205

 // Konstruktor
 Muenze (int wert)
 {
 this.wert = wert;
 }

 // Methode zum Auslesen des Wertes
 public int value()
 {
 return wert;
 }
}

Definieren Sie außerdem einen Aufzählungstyp, der alle Metalle enthält, aus
denen die Euro-Münzen hergestellt sind. Die Ein-, Zwei und Fünf-Cent-
Münzen bestehen auf Kupfer, die Zehn-, Zwanzig- und Fünfzig-Cent-Münzen
bestehen aus Messing und die Ein- und Zwei-Euro-Münzen sind aus den
Metallen Messing und Nickel zusammengesetzt. Schreiben Sie hierzu den
Aufzählungstyp Metall, in dem die Aufzählungskonstanten Kupfer, Mes-
sing und MessingUndNickel definiert sind.

Die beiden Aufzählungstypen Muenze und Metall werden mit der Test-
klasse Kleingeld getestet. Ergänzen Sie die fehlenden Stellen im Quell-
code der Testklasse.

// Datei: Kleingeld.java

public class Kleingeld
{
 public static void main (String [] args)
 {
 System.out.println ("Es gibt die folgenden Muenzen:");
 Muenze[] euroMuenzen =;
 for (int i = 0; i < euroMuenzen.length; i++)
 {
 System.out.print (euroMuenzen [i] + " ");
 }
 System.out.println();

 for (int i = 0; i < euroMuenzen.length; i++)
 {
 switch (.)
 {
 case:
 case:
 case:
 {
 System.out.println ("Die Muenze " +
 euroMuenzen[i]. + " ist aus " +
 Metall.Kupfer. + " und hat den Wert " +
 euroMuenzen[i]. + " Cent");
 break;
 }
 case:
 case:

206 Kapitel 6

 case:
 {
 System.out.println ("Die Muenze " +
 euroMuenzen[i]. + " ist aus " +
 Metall.Messing. +" und hat den Wert " +
 euroMuenzen[i]. + " Cent");
 break;
 }
 case:
 case:
 {
 System.out.println ("Die Muenze " +
 euroMuenzen[i]. + " ist aus " +
 Metall.MessingUndNickel. +
 " und hat den Wert " +
 euroMuenzen[i]. + " Cent");
 break;
 }
 }
 }
 }
}

Die Ausgabe der Testklasse Kleingeld sieht folgendermaßen aus:

Es gibt die folgenden Münzen:
EinCent ZweiCent FuenfCent ZehnCent ZwanzigCent FuenfzigCent
EinEuro ZweiEuro
Die Muenze EinCent ist aus Kupfer und hat den Wert 1 Cent
Die Muenze ZweiCent ist aus Kupfer und hat den Wert 2 Cent
Die Muenze FuenfCent ist aus Kupfer und hat den Wert 5 Cent
Die Muenze ZehnCent ist aus Messing und hat den Wert 10 Cent
Die Muenze ZwanzigCent ist aus Messing und hat den Wert 20
Cent
Die Muenze FuenfzigCent ist aus Messing und hat den Wert 50
Cent
Die Muenze EinEuro ist aus MessingUndNickel und hat den Wert
100 Cent
Die Muenze ZweiEuro ist aus MessingUndNickel und hat den Wert
200 Cent

Aufgabe 6.4: Boxing und Unboxing

6.4.1 Auto-Boxing und Auto-Unboxing von aktuellen Parametern

Erstellen Sie eine Klasse BoxingUnboxing mit zwei Methoden. Die eine
Methode soll einen Übergabeparameter vom Typ int und die andere einen
Übergabeparameter vom Typ Integer haben. Erstellen Sie eine main()-
Methode, in der sie eine Variable vom Typ int und eine andere Variable
vom Typ Integer anlegen. Rufen Sie die Methoden so auf, dass der Com-
piler Auto-Boxing bzw. Auto-Unboxing durchführen muss.

Datentypen und Variable 207

6.4.2 Operatoren mit Auto-Boxing und Auto-Unboxing

Erstellen Sie eine Klasse BoxingUnboxing2 mit einer main()-Methode.
Legen Sie in dieser Methode zwei Variablen vom Typ Integer an und ini-
tialisieren Sie diese mit Hilfe von Auto-Boxing.

Ändern Sie den Wert der beiden Variablen mit Hilfe der unären Operatoren
++ und --.

Legen Sie eine dritte Variable vom Typ int an und initialisieren Sie diese mit
der Differenz der Werte von Variable1 und Variable2.

Vergleichen Sie den Wert zweier Variablen vom Typ Integer mit Hilfe der
relationalen Operatoren. Überlegen Sie, welche relationalen Operatoren nicht
verwendet werden dürfen, da damit nicht die Werte verglichen werden.

Nutzen Sie einen Bit-Operator, um den Wert einer der Variablen vom Typ
Integer zu verdoppeln.

Legen Sie eine Variable vom Typ Boolean an und verwenden Sie diese mit
dem Bedingungsoperator ?:, um den jeweiligen Wert mit den Strings "wahr"
oder "falsch" auszugeben.

Schreiben Sie eine switch-Anweisung, wobei Sie nach dem Wert einer
Variablen vom Typ Character unterscheiden.

Die Ausgabe des Programms soll folgendermaßen aussehen:

Der Wert von i3 ist: 3
i1 > i2 : true
i1 < i2 : false
i1 == i2 : false
i1 != i2 : true
i1 vor der Bit-Operation: 4
i1 nachher: 8
b ist wahr
Der Ausdruck der switch-Anweisung hat den Wert 'c'.

Ausdrücke und Operatoren

X = (A + B) * C

7.1 Operatoren und Operanden
7.2 Ausdrücke und Anweisungen
7.3 Nebeneffekte
7.4 Auswertungsreihenfolge
7.5 L-Werte und R-Werte
7.6 Zusammenstellung der Operatoren
7.7 Konvertierung von Datentypen
7.8 Ausführungszeitpunkt von Nebeneffekten
7.9 Übungen

7 Ausdrücke und Operatoren

Ein Ausdruck ist in Java im einfachsten Falle der Bezeichner (Name) einer Variab-
len oder einer Konstanten. Meist interessiert der Wert eines Ausdrucks. So hat eine
Konstante einen Wert, eine Variable kann einen Wert liefern, aber auch der Aufruf
einer Instanz- oder Klassenmethode kann einen Wert liefern. Der Wert eines Aus-
drucks wird oft auch als Rückgabewert des Ausdrucks bezeichnet. Alles das, was
einen Wert zurückliefert, stellt einen Ausdruck dar.

Verknüpft man Operanden – ein Operand ist selbst ein Ausdruck – durch Operatoren
und gegebenenfalls auch runde Klammern, so entstehen komplexe Ausdrücke.
Runde Klammern beeinflussen dabei die Auswertungsreihenfolge. Das Ziel dieser
Verknüpfungen ist die Berechnung neuer Werte oder auch das Erzeugen von ge-
wollten Nebeneffekten (siehe Kap. 7.3).

7.1 Operatoren und Operanden

Um Verknüpfungen mit Operanden durchzuführen, braucht man Operatoren (siehe
Kap. 5.3.7).

Es gibt in Java die folgenden Arten von Operatoren:

• einstellige (unäre, monadische)
• zweistellige (binäre, dyadische)
• und einen einzigen dreistelligen (ternären, tryadischen), nämlich

den Bedingungsoperator ? :

Ein einstelliger (unärer) Operator hat einen einzigen Operanden. Ein Beispiel hier-
für ist der Minusoperator als Vorzeichenoperator, der auf einen einzigen Operanden
wirkt und das Vorzeichen des Wertes des Operanden ändert. So ist in –a das – ein
Vorzeichenoperator, der das Vorzeichen des Wertes von a umkehrt.

- a

Ausdruck

Operand
einstelliger (unärer)

Operator

Bild 7-1 Ein unärer Operator angewandt auf einen Operanden

Benötigt ein Operator 2 Operanden für die Verknüpfung, so spricht man von einem
zweistelligen (binären) Operator. Ein vertrautes Beispiel für einen binären Operator
ist der Additionsoperator, der hier zur Addition der beiden Zahlen 3 und 4 verwendet
werden soll:

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_7,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Ausdrücke und Operatoren 211

3 + 4

Ausdruck

2. Operand1. Operand

zweistelliger
arithmetischer Operator

Bild 7-2 Ein binärer Operator verbindet zwei Operanden zu einem Ausdruck

Operatoren kann man auch nach ihrer Wirkungsweise klassifizieren. So gibt es
außer den arithmetischen Operatoren beispielsweise auch logische Operatoren,
Zuweisungsoperatoren oder Vergleichsoperatoren (relationale Operatoren).

Unäre Operatoren – Postfix- und Präfixoperatoren

Unäre Operatoren können vor oder hinter ihren Operanden stehen. Der Ausdruck

u++

stellt die Anwendung des Postfix-Operators ++ auf seinen Operanden u dar.

Postfix-Operatoren sind unäre Operatoren, die hinter (post) ihrem
Operanden stehen. Präfix-Operatoren sind unäre Operatoren, die
vor (prä) ihrem Operanden stehen.

Ein Beispiel für einen Präfix-Operator ist das unäre Minus (Minus als Vorzeichen),
ein anderes Beispiel ist der Präfix-Operator ++, siehe folgendes Beispiel:

++u

Der Rückgabewert des Ausdrucks ++u ist u+1. Zusätzlich wird als Nebeneffekt die
Variable u inkrementiert75 und erhält den Wert u+1.

7.2 Ausdrücke und Anweisungen

Anweisungen und Ausdrücke sind nicht das Gleiche. Sie unterscheiden sich durch
den Rückgabewert:

Ausdrücke in Java haben stets einen Rückgabewert. Alles das, was
einen Wert zurückliefert, stellt einen Ausdruck dar. Anweisungen
haben keinen Rückgabewert.

Was ist aber nun genau der Rückgabewert? Das soll anhand des Ausdrucks 3 + 4
erklärt werden. Durch die Anwendung des Additionsoperators + auf seine Operanden
3 und 4 ist der Rückgabewert des Ausdrucks 3 + 4 eindeutig festgelegt. Aus den

75 Siehe Kap. 7.3.

212 Kapitel 7

Typen der Operanden ergibt sich immer eindeutig der Typ des Rückgabewertes.
Da beide Operanden vom Typ int sind, ist der Rückgabewert der Addition ebenfalls
vom Typ int und hat den Wert 7.

Der Wert eines Ausdrucks wird auch als sein Rückgabewert be-
zeichnet. Jeder Rückgabewert hat auch einen Typ.

Es werden die folgenden Anweisungen unterschieden:

• Selektionsanweisungen (siehe Kapitel 8.2),
• Iterationsanweisungen (siehe Kapitel 8.3),
• Sprunganweisungen (siehe Kapitel 8.4),
• die leere Anweisung (siehe Kapitel 9.1.2),

• die try-Anweisung (siehe Kapitel 13.2),

• die throw-Anweisung (siehe Kapitel 13.3),

• die assert-Anweisung (siehe Kapitel 13.7.1),

• die synchronized-Anweisung (siehe Kapitel 19)
• und Ausdrucksanweisungen.

Ausdrucksanweisungen werden sogleich im Folgenden behandelt.

Ausdrucksanweisungen

In Java kann man bei bestimmten Arten von Ausdrücken durch
Anhängen eines Semikolons an den Ausdruck erreichen, dass der
Ausdruck zu einer Anweisung wird. Man spricht dann von einer so
genannten Ausdrucksanweisung.

In einer solchen Ausdrucksanweisung wird der Rückgabewert eines Ausdrucks
nicht verwendet. Lediglich wenn Nebeneffekte zum Tragen kommen, ist eine Aus-
drucksanweisung sinnvoll.

Die folgenden Ausdrücke können in Java zu einer Anweisung werden:

• Zuweisungen
(= und kombinierte Zuweisungsoperatoren wie z. B. +=),

• Postfix- und Präfix-Inkrement- und -Dekrementoperator
(++ und --) angewandt auf eine Variable,

• Methodenaufrufe, unbenommen davon, ob sie einen Rückgabewert
haben oder nicht,

• und Ausdrücke, die mit new ein Objekt erzeugen.

Ausdrücke und Operatoren 213

Das folgende Beispiel zeigt eine zulässige und eine unzulässige Ausdrucksanwei-
sung:

.
int c = 0;
// 5 * 5; // nicht zulässige Ausdrucksanweisung
.
c++; // zulässige Ausdrucksanweisung

7.3 Nebeneffekte

Nebeneffekte werden auch als Seiteneffekte oder als Nebenwirkungen bezeich-
net. Es gibt Operatoren, die eine schnelle und kurze Programmierschreibweise erlau-
ben. Es ist nämlich möglich, während der Auswertung eines Ausdrucks Programm-
variablen nebenbei zu verändern. Ein Beispiel dazu ist:

int u = 1;
int v;
v = u++;

Der Rückgabewert des Ausdrucks u++ ist hier der Wert 1. Mit dem Zuweisungs-
operator wird der Variablen v der Rückgabewert von u++, d. h. der Wert 1, zuge-
wiesen. Die Zuweisung v = u++ ist ebenfalls ein Ausdruck und v = u++; stellt
eine Ausdrucksanweisung dar. Als Nebeneffekt des Operators ++ wird die Variable
u inkrementiert und hat nach der Inkrementierung den Wert 2. Man sollte aber mit
Nebeneffekten sparsam umgehen, da sie leicht zu unleserlichen und fehlerträchtigen
Programmen führen.

In Java gibt es zwei Sorten von Nebeneffekten:

• Nebeneffekte von Operatoren
• und Nebeneffekte bei Methoden, die nicht nur lesend, sondern auch

schreibend auf Variable zugreifen.

7.4 Auswertungsreihenfolge

Wie in der Mathematik spielt es auch bei Java eine Rolle, in welcher Reihenfolge ein
Ausdruck berechnet wird. Genau wie in der Mathematik gilt auch in Java die Regel
"Punkt vor Strich", weshalb 5 + 2 * 3 gleich 11 und nicht 21 ist. Allerdings gibt es in
Java sehr viele Operatoren. Daher muss für alle Operatoren festgelegt werden,
welcher im Zweifelsfall Priorität hat.

7.4.1 Einstellige und mehrstellige Operatoren

Die Auswertung eines Ausdrucks mit Operatoren76 wie ++, +, * etc. wird nach
folgenden Regeln durchgeführt:

76 Methodenaufruf-, Array-Index- und Punktoperator werden hier noch nicht betrachtet.

214 Kapitel 7

1. Wie in der Mathematik werden als erstes Teilausdrücke in Klam-
mern ausgewertet. Der Wert und Typ eines Ausdrucks ändert sich
nicht, wenn er in Klammern gesetzt wird. So sind beispielsweise die
beiden Zuweisungen a = b und a = (b) identisch.

2. Dann werden Ausdrücke mit unären Operatoren ausgewertet.
Unäre Operatoren werden von rechts nach links angewendet.
Dies bedeutet, dass -~x gleichbedeutend ist mit -(~x). Anzumer-
ken ist, dass der hier verwendete unäre Operator ~ alle Bits seines
Operanden invertiert.

3. Abschließend werden Teilausdrücke mit mehrstelligen Operatoren
ausgewertet.

Unäre Operatoren haben alle dieselbe Priorität. Die Abarbeitung mehrstelliger Ope-
ratoren erfolgt nach der Prioritätstabelle der Operatoren (siehe Kap. 7.6.8), wenn
Operatoren verschiedener Prioritäten nebeneinander stehen. Bei Operatoren ver-
schiedener Priorität erfolgt zuerst die Abarbeitung der Operatoren mit höherer Priori-
tät. Bei gleicher Priorität entscheidet die Assoziativität (siehe Kap. 7.4.2) der Opera-
toren, ob die Verknüpfung von links nach rechts oder von rechts nach links erfolgt.

Durch das Setzen von Klammern (Regel 1) kann man von der festgelegten Reihen-
folge abweichen.

7.4.2 Mehrstellige Operatoren gleicher Priorität

Unter Assoziativität versteht man die Reihenfolge, wie Operatoren
und Operanden verknüpft werden, wenn Operanden durch Opera-
toren derselben Priorität (Vorrangstufe) verknüpft werden.

Ist ein Operator rechtsassoziativ, so wird eine Verkettung von Operatoren und
Operanden von rechts nach links abgearbeitet, bei Linksassoziativität dementspre-
chend von links nach rechts.

2.

1.

 A op B op C

Bild 7-3 Verknüpfungsreihenfolge bei einem linksassoziativen Operator op

Im Beispiel von Bild 7-3 wird also zuerst der linke Operator op auf die Operanden A
und B angewendet, als zweites wird dann die Verknüpfung op mit C durchgeführt.

Da Additions- und Subtraktionsoperator linksassoziativ sind und dieselbe Priorität
haben, wird beispielsweise der Ausdruck a - b + c wie (a - b) + c verknüpft
und nicht wie a - (b + c). Es gibt zwei Möglichkeiten für die Verknüpfung des
Ausdrucks a - b + c:

Ausdrücke und Operatoren 215

Fall 1: a - b + c wird verknüpft wie (a - b) + c.
Also erst a und b verknüpfen zu a - b, dann (a - b) und c ver-
knüpfen zu (a - b) + c. Damit kam der linke Operator vor dem rech-
ten an die Reihe. Die Linksassoziativität wurde nicht verletzt.

Fall 2: a - b + c wird verknüpft wie a - (b + c).
Hier werden zuerst die Operanden b und c durch den Additionsoperator
verknüpft. Die Linksassoziativität ist damit verletzt, da als erstes der
Operator - hätte dran kommen müssen.

Einige der in Java vorhandenen Operatoren sind jedoch nicht links-, sondern rechts-
assoziativ (siehe Zuweisungsoperator).

7.4.3 Bewertungsreihenfolge von Operanden

In Java werden die Operanden eines Operators strikt von links
nach rechts ausgewertet.

Da in Java die Bewertungsreihenfolge von Operanden definiert ist, ist in Java auch
ein Ausdruck

a++ - a

zulässig. Vor der binären Operation muss der linke Operand vollständig bewertet
sein, d. h. der Nebeneffekt muss stattgefunden haben. Dass der linke Operand voll-
ständig bewertet sein muss, bedeutet, dass sein Wert zwischengespeichert werden
muss, um anschließend in einer Operation – hier der Subtraktion – verwendet zu
werden. Der Rückgabewert des Operanden a++ ist a, nach Abarbeitung des
Nebeneffekts ist der Wert von a um 1 erhöht. Dies bedeutet, dass a++ - a den
Wert -1 hat.

In Java ist festgelegt, dass jeder Operand eines Operators mit Aus-
nahme der Operatoren &&, || und ? : vollständig ausgewertet wird,
bevor irgendein Teil der Operation begonnen wird.

7.5 L-Werte und R-Werte

Die Begriffe L-Wert und R-Wert sind in C geläufig. Gosling [12] spricht statt von L-
Wert von Variablen, statt R-Wert von Wert. Aus Gründen der Präzision behalten wir
die Begriffe L- und R-Wert bei.

Einen Ausdruck, der eine Variable im Speicher bezeichnet, nennt man
einen L-Wert (lvalue oder left value).

216 Kapitel 7

In Java stellt der Name var einer lokalen Variablen einen solchen Ausdruck dar.
Andere Möglichkeiten für L-Werte sind der Name einer Instanzvariablen oder einer
Klassenvariablen, der Zugriff auf ein Arrayelement, eine Variable eines Schnitt-
stellentyps oder eine Variable eines Aufzählungstyps.

Das 'L' steht für links (left) und deutet darauf hin, dass dieser Ausdruck links vom
Zuweisungsoperator = stehen kann. Natürlich kann ein L-Wert auch rechts vom
Zuweisungsoperator stehen wie in

a = b

wobei a und b Variablen sind.

Ein L-Wert zeichnet sich dadurch aus, dass er einen Speicherplatz
irgendwo im Arbeitsspeicher besitzt.

Steht ein Variablenname rechts neben dem Zuweisungsoperator, so wird über den
Variablennamen der Wert an der entsprechenden Speicherstelle ausgelesen, d. h. es
interessiert hier nur sein R-Wert. Links neben dem Zuweisungsoperator muss immer
ein L-Wert stehen, da man eine Speicherstelle benötigt, die den Wert der Zuweisung
aufnehmen kann.

Ist ein Ausdruck kein L-Wert, so ist er ein R-Wert (rvalue oder right
value) und kann nicht links, sondern nur rechts vom Zuweisungs-
operator stehen. Einem R-Wert kann man keinen Wert zuweisen, da
er keine feste Speicherstelle besitzt.

i = 5 * 5 ;

L-Wert R-Wert R-WertL-Wert

 k = i * i ;

int i;
int k;

L-WertR-Wert L-Wert

Bild 7-4 Beispiele für L- und R-Werte

Des Weiteren wird zwischen modifizierbarem und nicht modifizierbarem L-Wert
unterschieden. Das oben aufgeführte Beispiel beschreibt modifizierbare L-Werte. Ein
Ausdruck, welcher eine final-Variable bezeichnet, ist zwar ein L-Wert, jedoch nur
ein nicht modifizierbarer L-Wert. Auf der linken Seite einer Zuweisung darf also nur
ein modifizierbarer L-Wert stehen, jedoch weder ein R-Wert noch ein nicht modifizier-
barer L-Wert. Bestimmte Operatoren können nur auf modifizierbare L-Werte ange-
wendet werden, wie z. B. der Inkrementoperator ++ oder der Dekrementoperator --.
5++ ist falsch, i++, wobei i eine Variable darstellt, ist jedoch korrekt.

Ausdrücke und Operatoren 217

7.6 Zusammenstellung der Operatoren

In den folgenden Kapiteln wird ein unärer Operator stets mit seinem Operanden bzw.
binäre und tertiäre Operatoren mit ihren Operanden gezeigt. Es wird also stets die
ganze Operation vorgestellt.

7.6.1 Einstellige arithmethische Operatoren

Im Folgenden werden die einstelligen (unären) Operatoren

• positiver Vorzeichenoperator: +A

• negativer Vorzeichenoperator: -A

• Postfix-Inkrementoperator: A++

• Präfix-Inkrementoperator: ++A

• Postfix-Dekrementoperator: A--

• Präfix-Dekrementoperator: --A

anhand von Beispielen vorgestellt. Die Inkrement- und Dekrementoperatoren können
seit dem JDK 5.0 auch auf Referenzen auf Objekte numerischer Wrapper-Klassen
angewendet werden.

Positiver Vorzeichenoperator: +A

Der positive Vorzeichenoperator wird selten verwendet, da er lediglich den Wert
seines Operanden wiedergibt. Es gibt keine Nebeneffekte.

Beispiel:

+a // +a hat denselben Rückgabewert wie a.

Negativer Vorzeichenoperator: -A

Will man den Wert des Operanden mit umgekehrtem Vorzeichen erhalten, so ist der
negative Vorzeichenoperator von Bedeutung. Es gibt keine Nebeneffekte.

Beispiel:

-a // -a hat vom Betrag denselben Rückgabe-
 // wert wie a. Der Rückgabewert hat aber
 // das umgekehrte Vorzeichen.

Postfix-Inkrementoperator: A++

Der Rückgabewert ist der unveränderte Wert des Operanden. Als Nebeneffekt wird
der Wert des Operanden um 1 inkrementiert. Der Inkrementoperator kann auf
modifizierbare L-Werte eines ganzzahligen oder eines Gleitpunkt-Typs – nicht jedoch
auf nicht modifizierbare L-Werte und R-Werte – angewandt werden.

218 Kapitel 7

Beispiele:

a = 1
b = a++ // Erg.: b = 1, Nebeneffekt: a = 2

Präfix-Inkrementoperator: ++A

Der Rückgabewert ist der um 1 inkrementierte Wert des Operanden. Als Neben-
effekt wird der Wert des Operanden um 1 inkrementiert. Der Inkrementoperator kann
nur auf modifizierbare L-Werte eines ganzzahligen oder eines Gleitpunkt-Typs ange-
wandt werden.

Beispiele:

a = 1
b = ++a // Erg.: b = 2, Nebeneffekt: a = 2

Postfix-Dekrementoperator: A--

Der Rückgabewert ist der unveränderte Wert des Operanden. Als Nebeneffekt wird
der Wert des Operanden um 1 dekrementiert. Der Dekrementoperator kann nur auf
modifizierbare L-Werte eines ganzzahligen oder eines Gleitpunkt-Typs angewandt
werden.

Beispiele:

a = 1
b = a-- // Erg.: b = 1, Nebeneffekt: a = 0

Präfix-Dekrementoperator: --A

Der Rückgabewert ist der um 1 dekrementierte Wert des Operanden. Als Neben-
effekt wird der Wert des Operanden um 1 dekrementiert. Der Dekrementoperator
kann nur auf modifizierbare L-Werte eines ganzzahligen oder eines Gleitpunkt-Typs
angewandt werden.

Beispiele:

a = 1
b = --a // Erg.: b = 0, Nebeneffekt: a = 0

7.6.2 Zweistellige arithmetische Operatoren

Im Folgenden werden die zweistelligen Operatoren

• Additionsoperator: A + B

• Subtraktionsoperator: A - B

• Multiplikationsoperator: A * B

• Divisionsoperator: A / B

• Restwertoperator: A % B

Ausdrücke und Operatoren 219

anhand von Beispielen vorgestellt. Seit dem JDK 5.0 gelten diese Operatoren auch
für Referenzen auf Objekte numerischer Wrapper-Klassen, da hier beim Anwenden
der arithmetischen Operatoren ein automatisches Unboxing erfolgt.

Additionsoperator: A + B

Wendet man den zweistelligen Additionsoperator auf seine Operanden an, so ist der
Rückgabewert die Summe der Werte der beiden Operanden. Es gibt hier keine
Nebeneffekte.

Beispiele:

6 + (4 + 3)
a + 1.1E1
PI + 1 // PI ist eine symbolische Konstante.
ref.meth() + 1 // Hier muss der Aufruf der Methode meth()
 // einen arithmetischen Wert zurückgeben.

Subtraktionsoperator: A - B

Wendet man den zweistelligen Subtraktionsoperator auf die Operanden A und B an,
so ist der Rückgabewert die Differenz der Werte der beiden Operanden. Es gibt
keine Nebeneffekte.

Beispiel:

6 – 4

Multiplikationsoperator: A * B

Es wird die Multiplikation des Wertes von A mit dem Wert von B durchgeführt. Es
gelten hier die "üblichen" Rechenregeln, d. h. Klammerung vor Punkt und Punkt vor
Strich. Deshalb wird im Beispiel 3 * (5 + 3) zuerst der Ausdruck (5 + 3) aus-
gewertet, der dann anschließend mit 3 multipliziert wird. Es gibt keine Nebeneffekte.

Beispiele:

3 * 5 + 3 // Erg.: 18
3 * (5 + 3) // Erg.: 24

Divisionsoperator: A / B

Bei der Verwendung des Divisionsoperators mit ganzzahligen Operanden ist das Er-
gebnis wieder eine ganze Zahl. Der Nachkommateil des Ergebnisses wird abge-
schnitten.

In Java führt die Division durch 0 nicht wie in vielen anderen Sprachen
zum Absturz des Programms. Bei der Ganzzahldivision durch 0 wird
eine Ausnahme vom Typ ArithmeticException ausgelöst. Bei der
Gleitpunktdivision wird als Ergebnis Infinity mit Berücksichtigung
des Vorzeichens geliefert.

220 Kapitel 7

Ist bei einer ganzzahligen Division entweder der Zähler oder der Nenner negativ,
so ist das Ergebnis negativ. Dabei bestimmt sich der Quotient vom Betrag her nach
der Vorschrift, dass der Quotient die größtmögliche Ganzzahl ist, für die gilt:
|Quotient * Nenner| <= |Zähler|. Wird also -7 durch 2 geteilt, so ist das Ergebnis -3
mit dem Rest -1, da |-3 * 2| <= |-7| ist.

Ist mindestens ein Operand eine double- oder float-Zahl, d. h. eine Gleitpunkt-
Zahl, so ist das Ergebnis eine Gleitpunktzahl. Es gibt keine Nebeneffekte.

Beispiele:

5 / 5 // Erg.: 1
5 / 3 // Erg.: 1
11.0 / 5 // Erg.: 2.2

Beispiel für die Division durch 0:

// Datei: DivisionTest.java

public class DivisionTest
{
 public static void main (String[] args)
 {
 float ergebnis;
 float nenner;
 float zaehler;
 zaehler = 20;
 nenner = 0;
 ergebnis = zaehler / nenner;
 System.out.println (zaehler + " / " + nenner + " = "
 + ergebnis);
 zaehler = 0;
 nenner = 0;
 ergebnis = zaehler / nenner;
 System.out.println (zaehler + " / " + nenner + " = "
 + ergebnis);
 }
}

Die Ausgabe des Programms ist:

20.0 / 0.0 = Infinity
0.0 / 0.0 = NaN

Die Division durch 0 ergibt mathematisch korrekt Unendlich (Infinity). Das Ergeb-
nis der Division von 0 durch 0 ergibt keine Zahl (NaN – Not a Number).

Restwertoperator: A % B

Der Restwertoperator oder Modulo-Operator gibt für ganzzahlige Operanden A und B
den Rest bei der ganzzahligen Division des Operanden A durch den Operanden B
an. Das Ergebnis der Restwert-Operation A % B ergibt sich aus: A – (A / B) *
B. Es gibt keine Nebeneffekte.

Ausdrücke und Operatoren 221

Beispiele:

 5 % 3 = 2
 8 % 4 = 0
 3 % 7 = 3
(-7) % 2 = -1 // denn (-7) / 2 ergibt -3
(-7) % (-2) = -1 // denn (-7) / (-2) ergibt 3
 7 % (-2) = 1 // denn 7 / (-2) ergibt –3
 7 % 2 = 1 // denn 7 / 2 ergibt 3

Die Restwertbildung für den Nenner 0 führt nicht zum Absturz des
Programms. Es wird eine Ausnahme vom Typ ArithmeticExcep-
tion ausgelöst.

In Java gibt es den Restwertoperator nicht nur für ganzzahlige Operanden, sondern
auch für Gleitpunktoperanden. Hierfür wird auf [12] verwiesen.

7.6.3 Zuweisungsoperatoren

Zu den Zuweisungsoperatoren gehören

der einfache Zuweisungsoperator: A = B

sowie die kombinierten Zuweisungsoperatoren:

Additions-Zuweisungsoperator: A += B
Subtraktions-Zuweisungsoperator: A -= B
Multiplikations-Zuweisungsoperator: A *= B
Divisions-Zuweisungsoperator: A /= B
Restwert-Zuweisungsoperator: A %= B
Bitweises-UND-Zuweisungsoperator: A &= B
Bitweises-ODER-Zuweisungsoperator: A |= B
Bitweises-Exklusiv-ODER-Zuweisungsoperator: A ^= B
Linksschiebe-Zuweisungsoperator: A <<= B
Rechtsschiebe-Zuweisungsoperator: A >>= B
Vorzeichenloser Rechtsschiebe-Zuweisungsoperator A >>>= B

Dabei darf zwischen den Zeichen eines kombinierten Zuweisungsoperators kein
Leerzeichen stehen. Die Operanden eines kombinierten Zuweisungsoperators
müssen einen einfachen Datentyp haben oder Referenzen auf Objekte numerischer
Wrapper-Klassen sein. Die einzige Ausnahme ist der Operator +=. Hier kann der
linke Operand vom Typ String – und in diesem Fall – der rechte Operand von
jedem beliebigen Typ sein.

Zuweisungsoperator A = B

Der Zuweisungsoperator wird in Java als binärer Operator betrachtet und liefert als
Rückgabewert den Wert des rechten Operanden – es handelt sich bei einer
Zuweisung also um einen Ausdruck. Zuweisungen können wiederum in Aus-

222 Kapitel 7

drücken weiter verwendet werden. Bei einer Zuweisung wird zusätzlich zur Erzeu-
gung des Rückgabewertes – und das ist der Nebeneffekt – dem linken Operanden
der Wert des rechten Operanden zugewiesen. Sonst wäre es ja auch keine Zuwei-
sung! Im übrigen muss der linke Operand A ein modifizierbarer L-Wert sein. Wie zu
sehen ist, sind dadurch auch Mehrfachzuweisungen möglich. Da der Zuweisungs-
operator rechtsassoziativ ist, wird der Ausdruck a = b = c von rechts nach links
verknüpft. Er wird also abgearbeitet wie a = (b = c).

1. Schritt: a = (b = c)

Rückgabewert c
Nebeneffekt: in der Speicherstelle b
wird der Wert von c abgelegt, d. h. b
nimmt den Wert von c an

2. Schritt: a = c

Rückgabewert c
Nebeneffekt: in der Speicherstelle a
wird der Wert von c abgelegt

Zuweisungsoperatoren haben eine geringe Priorität (siehe Kap. 7.6.8), sodass man
beispielsweise bei einer Zuweisung b = x + 3 den Ausdruck x + 3 nicht in
Klammern setzen muss. Erst erfolgt die Auswertung des arithmetischen Ausdrucks,
dann erfolgt die Zuweisung.

Der Ausdruck rechts des Zuweisungsoperators wird implizit in den
Typ der Variablen links des Zuweisungsoperators gewandelt, es
sei denn, die Typen sind identisch oder die implizite Typkonvertierung
ist nicht möglich.

Die implizite Typkonvertierung wird in Kapitel 7.7.2 behandelt.

Beispiele:

b = 1 + 3
c = b = a // Mehrfachzuweisung
Math.abs (x = 1.4) // Zuweisung als aktueller Parameter
 // beim Aufruf der Klassenmethode
 // abs() der Klasse Math

Additions-Zuweisungsoperator: A += B

Der Additions-Zuweisungsoperator ist – wie der Name schon verrät – ein zusammen-
gesetzter Operator. Zum einen wird die Addition A + (B) durchgeführt. Der Rück-
gabewert dieser Addition ist A + (B). Zum anderen erhält die Variable A als Ne-
beneffekt den Wert dieser Addition zugewiesen. Damit entspricht der Ausdruck
A += B semantisch genau dem Ausdruck A = A + (B). Die Klammern sind nötig,
da B selber ein Ausdruck wie z. B. b = 3 sein kann. Es wird also zuerst der Aus-
druck B ausgewertet, bevor A + (B) berechnet wird.

Ausdrücke und Operatoren 223

Beispiel:

a += 1 // hat den gleichen Effekt wie ++a

Wie zuvor erwähnt, kann der Additions-Zuweisungsoperator auf Referenzen auf
Objekte der Klasse String angewandt werden. Es können Ausdrücke einfacher
Datentypen wie int, float oder boolean über den Operator += mit einer Referenz
auf ein String-Objekt verknüpft werden.

Beispiel:

s1 = �Hallo � // s1 zeigt auf den String �Hallo �
s2 = �Myriam � // s2 zeigt auf den String �Myriam �
s1 += s2 // s1 zeigt jetzt auf den neuen
 // String �Hallo Myriam �.
s1 += 2 // s1 zeigt jetzt auf den neuen
 // String �Hallo Myriam 2�.

Sonstige kombinierte Zuweisungsoperatoren

Für die sonstigen kombinierten Zuweisungsoperatoren gilt das Gleiche wie für den
Additions-Zuweisungsoperator. Außer der konventionellen Schreibweise:

A = A op (B)

gibt es die zusammengesetzte kurze Schreibweise:

A op= B

Beispiele:

a -= 1 // a = a - 1
b *= 2 // b = b * 2
c /= 5 // c = c / 5
d %= 5 // d = d % 5
a &= 8 // a = a & 8 Bitoperator
b |= 4 // b = b | 4 Bitoperator
c ^= d // c = c ^ d Bitoperator
a <<= 1 // a = a << 1 Bitoperator
b >>= 1 // b = b >> 1 Bitoperator
b >>>= 5 // b = b >>> 5 Bitoperator

Bit-Operatoren werden in Kapitel 7.6.6 besprochen.

7.6.4 Relationale Operatoren

In diesem Kapitel werden anhand von Beispielen die folgenden zweistelligen
relationalen Operatoren vorgestellt:

Gleichheitsoperator: A == B
Ungleichheitsoperator: A != B
Größeroperator: A > B

224 Kapitel 7

Kleineroperator: A < B
Größergleichoperator: A >= B
Kleinergleichoperator: A <= B

Relationale Operatoren werden auch als Vergleichsoperatoren bezeichnet. Ne-
beneffekte treten bei Vergleichsoperationen nicht auf. Die Priorität der Operatoren ==
und != ist kleiner als die der Operatoren >, >=, < und <=. Besitzen die Operanden
unterschiedliche, aber verträgliche Datentypen, werden implizite Typkonvertierungen
durchgeführt. Bei den Vergleichsoperatoren >, >=, < und <= ist darauf zu achten,
dass der Typ der Operanden nur ein numerischer Typ bzw. eine numerische
Wrapper-Klasse sein darf. Hat einer der Operanden einen anderen Typ, so gibt der
Compiler eine Fehlermeldung aus. Der Rückgabewert von Vergleichsoperationen ist
immer vom Datentyp boolean. Wenn ein Vergleich falsch ist, ist der Rückgabewert
false, wenn er wahr ist, ist er true.

Gleichheitsoperator: A == B

Mit dem Gleichheitsoperator wird überprüft, ob der Wert des linken Operanden mit
dem Wert des rechten Operanden übereinstimmt. Verglichen werden können zwei
Operanden von einem numerischen Typ, zwei Operanden vom Typ boolean oder
zwei Operanden eines Referenztyps bzw. vom Typ null. Bei Referenztypen (auch
bei Referenzen auf Objekte von Wrapper-Klassen) wird verglichen, ob die Referen-
zen gleich sind – mit dem Vergleichsoperator lässt sich also nicht prüfen, ob zwei
Objekte inhaltlich gleich sind. Im Falle von Aufzählungstypen können Aufzählungs-
konstanten mit dem Gleichheitsoperator verglichen werden. Ist ein Vergleich wahr,
hat der Rückgabewert den Wert true. Andernfalls, d. h., wenn ein Vergleich falsch
ist, hat der Rückgabewert den Wert false.

Beispiele:

3 == 3 // Erg.: true
2 == 3 // Erg.: false

Ein folgenschwerer Fehler ist in Java, statt des Gleichheitsoperators
== versehentlich den Zuweisungsoperator = anzuschreiben. Ein sol-
ches Programm ist oft kompilier- und lauffähig, erzeugt aber andere
Ergebnisse als erwartet. Programmiert man aber defensiv und
schreibt bei einem Vergleich einer Konstanten mit einer Variablen die
Konstante stets links und die Variable rechts, also z. B.

true == a

so merkt der Compiler den Fehler, da einer Konstanten kein Wert
zugewiesen werden kann, weil sie kein L-Wert ist.

Im folgenden Beispiel wird dieser Umstand nochmals verdeutlicht:

Der Ausdruck in der if-Anweisung

if (Ausdruck)
{.}

Vorsicht!

Ausdrücke und Operatoren 225

muss zu einem Booleschen Wert – also zu true oder zu false – auswertbar sein.
Beispielsweise wird der Ausdruck

boolValue == true

zu false ausgewertet, wenn die Boolesche Variable boolValue den Wert false
hat. Passt der Programmierer jedoch nicht auf und schreibt den Vergleichsoperator
== nur mit einem Gleichheitszeichen, so hat der Compiler keine Chance, denn ein
Gleichheitszeichen bedeutet Zuweisung.

boolean boolValue = false;
if (boolValue = true)
{
 //
}

Die Anweisungen im if-Block werden immer ausgeführt, da zuerst die Zuweisung
boolValue = true erfolgt und danach der Ausdruck ausgewertet wird.

Vermeiden lassen sich solche ungewollten semantischen Fehler, indem auf der
linken Seite des Vergleichs-Ausdrucks die Konstante steht – beispielsweise true –
und die Variable, deren Inhalt überprüft werden soll, sich auf der rechten Seite des
Ausdrucks befindet. Der Compiler wird die Zeile

if (true = boolValue)

nicht übersetzen, weil hier versucht wird, einem R-Wert einen neuen Wert zuzu-
weisen.

Die defensive Programmierung beschreibt einen Ansatz, um die Qualität des
Quellcodes zu verbessern. Dabei setzt man sich das Ziel, die Robustheit des Codes
zu erhöhen und zufällige Fehler bei Programmänderungen zu verhindern.

Die defensive Programmierung definiert Techniken und Richtlinien, welche helfen,
die oben aufgeführten Ziele zu erreichen. Dazu gehört unter anderem, dass unzu-
lässige Benutzereingaben konsequent abgewiesen werden, was ein Abstürzen ver-
hindert (Robustheit), und dass man Code-Konstrukte so formuliert, dass sie nicht
fehlerträchtig sind und leicht erweitert werden können. Beispiele für defensiv for-
mulierte Code-Konstrukte sind:

� Bei Vergleichen mit Konstanten die Konstante als linken Operanden anschreiben,
was eine versehentliche Zuweisung statt eines Vergleichs verhindert, z. B. true
== boolValue.

� Bei Selektionen und Iterationen stets einen Block verwenden, auch wenn der
Block nur eine einzige Anweisung enthält. Damit sind Erweiterungen um Anwei-
sungen nicht fehlerträchtig, da die Klammern schon da sind. Ein Beispiel für eine
Selektion befindet sich im Kapitel 8.2.1.

Ungleichheitsoperator: A != B

Mit dem Ungleichheitsoperator wird überprüft, ob der Wert des linken Operanden
ungleich dem Wert des rechten Operanden ist. Es können dieselben Operanden wie

226 Kapitel 7

im Falle des Gleichheitsoperators verwendet werden. Bei Ungleichheit hat der Rück-
gabewert den Wert true. Andernfalls hat der Rückgabewert den Wert false.

Beispiele:

5 != 5 // Erg.: false
3 != 5 // Erg.: true

Größeroperator: A > B

Mit dem Größeroperator wird überprüft, ob der Wert des linken Operanden größer als
der Wert des rechten Operanden ist. Ist der Vergleich wahr, so hat der Rück-
gabewert den Wert true. Andernfalls hat der Rückgabewert den Wert false.

Beipiele:

5 > 3 // Erg.: true
3 > 3 // Erg.: false

Kleineroperator: A < B

Mit dem Kleineroperator wird überprüft, ob der Wert des linken Operanden kleiner als
der Wert des rechten Operanden ist. Ist der Vergleich wahr, hat der Rückgabewert
den Wert true. Andernfalls hat der Rückgabewert den Wert false.

Beispiel:

5 < 5 // Erg.: false

Größergleichoperator: A >= B

Der Größergleichoperator ist aus den Zeichen > und = zusammengesetzt. Der Grö-
ßergleichoperator liefert genau dann den Rückgabewert true, wenn entweder der
Wert des linken Operanden größer als der Wert des rechten Operanden ist oder der
Wert des linken Operanden dem Wert des rechten Operanden entspricht.

Beispiele:

2 >= 1 // Erg.: true
1 >= 1 // Erg.: true

Kleinergleichoperator: A <= B

Der Kleinergleichoperator ist aus den Zeichen < und = zusammengesetzt. Der Klei-
nergleichoperator liefert genau dann den Rückgabewert true, wenn entweder der
Wert des linken Operanden kleiner als der Wert des rechten Operanden ist oder der
Wert des linken Operanden dem Wert des rechten Operanden entspricht. Ansonsten
ist der Rückgabewert false.

Beispiele:

10 <= 11 // Erg.: true
11 <= 11 // Erg.: true

Ausdrücke und Operatoren 227

7.6.5 Logische Operatoren

In diesem Kapitel werden anhand von Beispielen die folgenden logischen Ope-
ratoren vorgestellt:

• Operatoren für das logische UND: A && B bzw. A & B

• Operatoren für das logische ODER: A || B bzw. A | B

• Logischer Exklusiv-ODER-Operator: A ^ B

• Logischer Negationsoperator (unär): !A

Die Operatoren für das logische UND/ODER sowie das logische Exklusiv-ODER sind
zweistellig, der logische Negationsoperator ist einstellig. Mit diesen Operatoren
lassen sich logische Verknüpfungen von Ausdrücken durchführen. Wie schon
erwähnt, können die Operanden selber zusammengesetzte Ausdrücke sein. Von den
logischen Operatoren hat der Negationsoperator die höchste Priorität, der Operator
|| für das logische ODER die geringste (siehe Kap. 7.6.8).

Die logischen Operatoren &&, ||, ! können nur auf Operanden vom
Typ boolean – und seit JDK 5.0 auch vom Typ Boolean –
angewandt werden. Andere Typen führen zu einer Fehlermeldung des
Compilers. Der Ergebnistyp ist ebenfalls vom Typ boolean.

Die Operatoren &, |, ^ können als logische Operatoren auf Operan-
den vom Typ boolean (bzw. Boolean) und als logische Bit-Operato-
ren (siehe Kap. 7.6.6.1) auch auf Operanden numerischer Datentypen
(bzw. numerischer Wrapper-Klassen) angewandt werden.

Operatoren für das logische UND: A && B und A & B

Java bietet zwei verschiedene Operatoren für das logische UND an: Den Operator
&& und den Operator &. Beide Operatoren haben eine identische Wahrheitstabelle.
Sie liefern genau dann den Rückgabewert true, wenn beide Operanden den Wahr-
heitswert true haben. Ansonsten ist der Rückgabewert false.

A B A && B
false false false
false true false
true false false
true true true

Tabelle 7-1 Wahrheitstabelle für das logische UND A && B

Die Wahrheitstabelle in Tabelle 7-1 wird wie folgt interpretiert: Der logische Ausdruck
A && B ist nur dann true, wenn der Ausdruck A und der Ausdruck B gleich true ist.

Beispiele:

true && false // Erg.: false
true && true // Erg.: true

228 Kapitel 7

Wird der Operator & zwischen zwei Operanden verwendet, so wird der
rechte Operand immer ausgewertet, egal ob der linke Operand true
oder false ist. Wird dagegen der Operator && verwendet, so wird der
rechte Ausdruck nur dann ausgewertet, wenn der linke Ausdruck
true ist. Dies ist zu beachten, wenn die Operanden Nebeneffekte
beinhalten.

Operatoren für das logische ODER: A || B und A | B

Java bietet zwei verschiedene Operatoren für das logische ODER an: Den Operator
|| und den Operator |. Beide Operatoren haben eine identische Wahrheitstabelle.
Ein Operator für das logische ODER liefert genau dann den Rückgabewert true,
wenn der linke oder der rechte Operand oder beide Operanden den Wahrheitswert
true haben. Ansonsten ist der Rückgabewert false.

A B A || B
false false false
false true true
true false true
true true true

Tabelle 7-2 Wahrheitstabelle für das logische ODER A || B

Beispiele:

false || true // Erg.: true
false || false // Erg.: false

Wird der Operator | zwischen zwei Operanden verwendet, so wird der
rechte Operand immer ausgewertet, egal ob der linke Operand true
oder false ist. Wird dagegen der Operator || verwendet, so wird der
rechte Ausdruck nur dann ausgewertet, wenn der linke Ausdruck
false ist. Dies ist zu beachten, wenn die Operanden Nebeneffekte
beinhalten.

Logischer Exklusiv-ODER-Operator: A ^ B

Ein Operator für das logische Exklusiv-ODER liefert genau dann den Rückgabewert
true, wenn entweder der linke oder der rechte Operand den Wert true haben.
Haben beide Operanden denselben Wert (beide true oder beide false), so ist das
Ergebnis false.

A B A ^ B
false false false
false true true
true false true
true true false

Tabelle 7-3 Wahrheitstabelle für das logische Exklusiv-ODER A ^ B

Ausdrücke und Operatoren 229

Beispiele:

false ^ true // Erg.: true
false ^ false // Erg.: false
true ^ true // Erg.: false

Logischer Negationsoperator: !A

Mit dem einstelligen Negationsoperator werden Wahrheitswerte negiert, d. h. aus
true wird false und aus false wird true. Wird der Negationsoperator zweimal
auf seinen Operanden angewendet, bleibt der Wahrheitswert unverändert.

A !A
true false
false true

Tabelle 7-4 Wahrheitstabelle für die Negation

Die Wahrheitstabelle wird folgendermaßen interpretiert: Der logische Ausdruck !A ist
nur dann true, wenn der Ausdruck A false ist.

Beispiele:

!false // Erg.: true
!!true // Erg.: true

Priorität der logischen Operatoren

Die Operatoren für das logische UND/ODER haben eine sehr geringe Bindekraft. Die
Vergleichsoperatoren haben eine höhere Priorität als die logischen Operatoren.
Deshalb sind Klammern für die Bewertung der Ausdrücke oft nicht notwendig. So
entspricht (a < b) && (c == d) dem Ausdruck a < b && c == d. Die Klam-
mern erhöhen lediglich die Übersichtlichkeit der Programme.

Verknüpfungsreihenfolge

Ausdrücke, die durch den UND-Operator && verknüpft sind, werden
von links nach rechts zusammengefasst. Dasselbe gilt für Ausdrücke,
die durch den ODER-Operator || verknüpft sind. Dies gilt nicht, wenn
&& oder ||-Operatoren gemischt sind, da der Operator && eine
höhere Priorität hat als der ||-Operator.

Nebeneffekte

Nebeneffekte des rechten Operanden kommen bei den Operatoren & und | immer
zum Tragen, bei den Operatoren && und || nur, wenn der rechte Operand ausge-
wertet wird. Das kann dazu führen, dass Nebeneffekte der weiter rechts stehenden
Ausdrücke nicht mehr ausgeführt werden:

1 < 0 && 2 < a++ // a++ wird nie ausgeführt, da die
 // Auswertung vorher beendet ist.

230 Kapitel 7

7.6.6 Bit-Operatoren

Java besitzt auch Operatoren zur Bit-Manipulation. Im Folgenden werden die vier
logischen Bit-Operatoren:

• UND-Operator für Bits: A & B

• ODER-Operator für Bits: A | B

• Exklusiv-ODER-Operator für Bits: A ^ B

• Negationsoperator für Bits (unär): ~A

und die drei Shift-Operatoren für Bits:

• Vorzeichenbehafteter Rechtsshift-Operator: A >> B

• Vorzeichenloser Rechtsshift-Operator: A >>> B

• Linksshift-Operator: A << B

anhand von Beispielen vorgestellt. Mit Einführung des JDKs 5.0 können diese Ope-
ratoren auch auf Referenzen auf Objekte vom Typ einer numerischen Wrapperklasse
angewendet werden. Dabei findet ein automatisches Unboxing und Boxing statt.

7.6.6.1 Logische Bit-Operatoren

Bit-Operationen finden auf allen Bits der Operanden statt. Bei den Bit-
Operationen werden jeweils die Bits der entsprechenden Position mit-
einander verknüpft.

Bits können bekanntermaßen zwei Zustände annehmen: 0 oder 1. Die 1 wird bei Bits
in Java als true interpretiert, die 0 als false. Nebeneffekte treten bei den logischen
Bit-Operatoren nicht auf.

UND-Operator für Bits: A & B

Die Operation bitweises UND findet auf allen Bits der Operanden statt. Dabei werden
jeweils die Bits der entsprechenden Position miteinander verknüpft.

Bit n von A Bit n von B Bit n von A & B
0 0 0
0 1 0
1 0 0
1 1 1

Tabelle 7-5 Wahrheitstabelle für das bitweise UND

Die Wahrheitstabelle wird folgendermaßen interpretiert: Bei der UND-Verknüpfung ist
die 0 dominant, d. h. ist mindestens eines der Bits (Bit n von A oder Bit n von B) eine
0, so ist das Ergebnis 0 (false). Damit kann man Bits in Bitmustern ausblenden.
Der logische UND-Operator für Bits hat eine höhere Priorität als der logische ODER-
Operator für Bits.

Ausdrücke und Operatoren 231

Beispiele:

0 & 1 // 0 & 1 = 0
14 & 1 // 1110 & 0001 = 0000
var & var // var & var = var

ODER-Operator für Bits: A | B

Die Operation bitweises ODER findet auf allen Bits der Operanden statt, dabei
werden jeweils die Bits der entsprechenden Position miteinander verknüpft.

Bit n von A Bit n von B Bit n von A | B
0 0 0
0 1 1
1 0 1
1 1 1

Tabelle 7-6 Wahrheitstabelle für das bitweise ODER

Die Wahrheitstabelle wird folgendermaßen interpretiert: Bei der ODER-Verknüpfung
ist die 1 dominant, d. h. ist mindestens eines der Bits (Bit n von A oder Bit n von B)
eine 1, so ist das Ergebnis 1 (true). Damit kann man Bits in Bitmustern einblenden.

Beispiele:

 0 | 1 // 0 | 1 = 1
 14 | 1 // 1110 | 0001 = 1111 = 15
var | 0 // var | 0 = var

Exklusiv-ODER-Operator für Bits: A ^ B

Die Operation bitweises Exklusiv-ODER findet auf allen Bits der Operanden statt,
dabei werden jeweils die Bits der entsprechenden Position miteinander verknüpft.

Bit n von A Bit n von B Bit n von A ^ B
0 0 0
0 1 1
1 0 1
1 1 0

Tabelle 7-7 Wahrheitstabelle für das bitweise Exklusiv-ODER

Die Wahrheitstabelle wird folgendermaßen interpretiert: Bei der Exklusiv-ODER-
Verknüpfung ist das Ergebnis 1 (true), wenn entweder Bit n von Operand A oder
Bit n von Operand B eine 1 ist. Haben beide zu vergleichende Bits denselben Wert
(beide 0 oder beide 1), so ist das Ergebnis der Exklusiv-ODER-Verknüpfung gleich 0.

Beispiele:

0 ^ 1 // 0 ^ 1 = 1
14 ^ 1 // 1110 ^ 0001 = 1111 = 15
var ^ 0 // var ^ 0 = var
14 ^ 3 // 1110 ^ 0011 = 1101 = 13
 // Bit 0 und Bit 1 von 1110 invertieren

232 Kapitel 7

Negationsoperator für Bits: ~A

Die Operation einer bitweisen Negation findet auf allen Bits des Operanden statt.

Bit n von A Bit n von ~A
0 1
1 0

Tabelle 7-8 Wahrheitstabelle für die bitweise Negation

Die Wahrheitstabelle wird folgendermaßen interpretiert: Bei der Negation für Bits wird
jedes Bit invertiert. Aus der 0 wird durch Negation eine 1 und aus der 1 eine 0.

Beispiel:

int a = 9; // a = 00000000 00000000 00000000 00001001
int b = ~a; // b = 11111111 11111111 11111111 11110110
 // b hat den Wert –10

7.6.6.2 Shift-Operatoren für Bits

Shift-Operatoren (Verschiebeoperatoren) können nur auf ganzzahlige Werte bzw.
auf Objekte der entsprechenden Wrapper-Klassen angewandt werden. Mit dem Shift-
Operator << werden Bits nach links, mit dem Shift-Operator >> nach rechts mit
Beachtung des Vorzeichens verschoben (engl. shift). Der Operator >>> wurde in
Java eingeführt. Er verschiebt nach rechts ohne Beachtung des Vorzeichens.

Der linke Operand eines Shift-Operators ist stets der zu verschiebende Wert. Der
rechte Operand gibt die Anzahl der Stellen an, um die verschoben werden soll.

Obwohl Verschiebeoperatoren binär sind, wird auf ihre Operanden nicht die Typan-
passung für binäre Operatoren (siehe Kap. 7.7.3.4), sondern die Typanpassung für
unäre Operatoren (siehe Kap. 7.7.3.3) in impliziter Weise angewandt. Der Rückga-
betyp eines Shift-Ausdrucks ist der angepasste Typ des linken Operanden.

Wenn der (implizit angepasste) Typ des linken Operanden der Typ int ist, so wer-
den nur die 5 niederwertigsten Bits des rechten Operanden als Verschiebe-
Distanz interpretiert. Mit den 5 niederwertigsten Bits kann maximal die Zahl 32 dar-
gestellt werden, denn 25 ergibt 32. Daher kann nur um 0 bis 31 Stellen verschoben
werden. Wird als Verschiebung beispielsweise -1 angegeben, so wird tatsächlich um
(20 + 21 + 22 + 23 + 24) = 31 verschoben. Dies bedeutet, dass alle Verschiebungen –
auch bei Angabe negativer Zahlen – um ganzzahlige positive Stellen von Bits erfol-
gen.

11111111111111111111111111111111

nur die untersten 5 Bits werden akzeptiert

angegebene Verschiebung

Bild 7-5 Verschiebealgorithmus

Ausdrücke und Operatoren 233

Ist der angepasste Typ des linken Operanden der Typ long, so werden die nieder-
sten 6 Bits des rechten Operanden interpretiert. Mit anderen Worten, es kann
zwischen 0 und 63 Stellen verschoben werden (24 ergibt 64). Die Verschiebe-Ope-
rationen werden auf der Basis der Zweierkomplement-Darstellung des linken
Operanden durchgeführt.

Vorzeichenbehafteter Rechtsshift-Operator: A >> B

Mit dem Rechtsshift-Operator A >> B werden B Bitstellen von A nach rechts gescho-
ben. Dabei gehen die B niederwertigen Bits von A verloren. Ist die Zahl A positiv, so
werden von links Nullen nachgeschoben, ist A negativ, werden Einsen nachge-
schoben.

Beispiel:

int a;

a = 8; // 00000000 00000000 00000000 00001000

a = a >> 3; // 00000000 00000000 00000000 00000001

a = -7; // 11111111 11111111 11111111 11111001

a = a >> 3; // 11111111 11111111 11111111 11111111

aufgefüllt

verloren

verloren

aufgefüllt

Für nicht negative Werte entspricht eine Verschiebung um 3 Bits nach rechts einer
abschneidenden Ganzzahl-Division durch 23 = 8.

Vorzeichenloser Rechtsshift-Operator: A >>> B

Mit dem Rechtsshift-Operator A >>> B werden B Bitstellen von A nach rechts
geschoben. Dabei gehen die B niederwertigen Bits von A verloren. Es werden stets
Nullen von links nachgeschoben, egal ob die Zahl negativ oder positiv ist.

Beispiel:

int a;

a = 8; // 00000000 00000000 00000000 00001000

a = a >>> 3; // 00000000 00000000 00000000 00000001

a = -7; // 11111111 11111111 11111111 11111001

a = a >>> 3; // 00011111 11111111 11111111 11111111

aufgefüllt

verloren

verloren

aufgefüllt

234 Kapitel 7

Linksshift-Operator: A << B

Bei dem Linksshift-Operator A << B werden B Bitstellen von A nach links geschoben.
Dabei gehen die B höherwertigen Bits von A verloren.

Beispiel:

int a;

a = 8; // 00000000 00000000 00000000 00001000

a = a << 3; // 00000000 00000000 00000000 01000000
aufgefüllt

verloren

Die Verschiebung um 3 Bits nach links entspricht (auch bei einem Überlauf) einer
Multiplikation mit 23.

7.6.7 Der Bedingungsoperator: A ? B : C

Eine echte "Rarität" ist der Bedingungsoperator. Er ist nämlich der einzige Operator,
der drei Operanden verarbeitet. In einem bedingten Ausdruck A ? B : C wird
zuerst der Boolesche Ausdruck A ausgewertet. Der Ausdruck A kann seit JDK 5.0
auch eine Referenz auf ein Objekt der Wrapper-Klasse Boolean sein. Ist der Rück-
gabewert von Ausdruck A true, also wahr, so wird der Ausdruck B ausgewertet. Das
Ergebnis von B ist dann der Rückgabewert des Bedingungsoperators. Ist jedoch der
Ausdruck A gleich false, also falsch, so wird der Ausdruck C ausgewertet. Die
Ausdrücke B und C müssen beide von einem numerischen Typ, beide vom Typ
boolean oder beide jeweils entweder von einem Referenztyp oder vom null-Typ
sein. Die Typen der Ergebnisausdrücke B bzw. C müssen zueinander zuweisungs-
kompatibel (siehe Kap. 7.7.2) sein. Eine Methode kann (siehe Kap. 9.2.3) mit der
return-Anweisung einen Wert an den Aufrufer zurückliefern. Soll je nach dem
Wahrheitswert von A der Wert von B bzw. C zurückgegeben werden, so kann statt

if (A)
 return B;
else
 return C;

knapper

return A ? B : C;

geschrieben werden.

Der Typ des bedingten Ausdrucks A ? B : C ist – unabhängig davon, ob der Rück-
gabewert dieses Ausdrucks B oder C ist – stets der breitere Typ (siehe Kap. 7.7.3)
der beiden Ausdrücke B und C. So ist beispielsweise der Rückgabetyp von

(3 > 4) ? 5.0 : 6

vom Typ double und der Rückgabewert ist 6.0.

Ausdrücke und Operatoren 235

Bedingte Ausdrücke enthalten Ausdrücke, die selbst wieder bedingt sein können. Die
Abarbeitungsreihenfolge ist von rechts her (Rechtsassoziativität). So wird

A ? B : C ? D : E ? F : G

abgearbeitet wie

A ? B : (C ? D : (E ? F : G))

7.6.8 Prioritätentabelle der Operatoren

Die in Tabelle 7-9 gezeigte Vorrangtabelle enthält die Priorität (Rangfolge) und die
Assoziativität der Operatoren. Grau hinterlegt in Tabelle 7-9 sind die unären Operato-
ren.

Priorität Operatoren Bedeutung Assoziativität

Priorität 1 [] Array-Index links
 () Methodenaufruf links
 . Komponentenzugriff links
 ++ Postinkrement links
 -- Postdekrement links

Priorität 2 ++ Präinkrement rechts
 -- Prädekrement rechts
 + - Vorzeichen (unär) rechts
 ~ bitweises Komplement rechts
 ! logischer Negationsoperator rechts

Priorität 3 (type) Typ-Umwandlung rechts
 new Erzeugung rechts

Priorität 4 * / % Multiplikation, Division, Rest links
Priorität 5 + - Addition, Subtraktion links

 + Stringverkettung links
Priorität 6 << Linksshift links

 >> Vorzeichenbehafteter Rechtsshift links
 >>> Vorzeichenloser Rechtsshift links

Priorität 7 < <= Vergleich kleiner, kleiner gleich links
 > >= Vergleich größer, größer gleich links
 instanceof Typüberprüfung eines Objektes links

Priorität 8 == Gleichheit links
 != Ungleichheit links

Priorität 9 & bitweises/logisches UND links
Priorität 10 ^ bitweises/logisches Exclusiv-ODER links
Priorität 11 | bitweises/logisches ODER links
Priorität 12 && logisches UND links
Priorität 13 || logisches ODER links
Priorität 14 ? : Bedingungsoperator rechts
Priorität 15 = Wertzuweisung rechts

 *= /= %= +=
-= <<= >>=
>>>= &= ^=
|=

kombinierter Zuweisungsoperator rechts

Tabelle 7-9 Priorität und Assoziativität der Operatoren von Java

236 Kapitel 7

Priorität 1 ist die höchste Priorität. So hat beispielsweise der Multiplikations- bzw.
der Divisionsoperator eine höhere Priorität als der Additions- bzw. der Subtraktions-
operator. Durch gezielte Klammerungen () lässt sich die Abarbeitungsreihenfolge
verändern. Das wird im nächsten Beispiel ersichtlich:

5 * (3 + 4) das Ergebnis ist 35
A && (B || C) dieser Ausdruck ist true, wenn die Bedingung A und B er-

füllt ist, oder wenn A und C erfüllt ist.

Wie man der Tabelle 7-9 entnehmen kann, gilt die folgende Aussage bezüglich der
Assoziativität:

Rechtsassoziativ sind Zuweisungsoperatoren, der Bedingungsopera-
tor und unäre Operatoren. Alle anderen Operatoren sind linksasso-
ziativ.

7.7 Konvertierung von Datentypen

In Java ist es nicht notwendig, dass die Operanden eines arithmetischen Ausdrucks
vom selben Typ sind. Genauso wenig muss bei einer Zuweisung der Typ der Ope-
randen übereinstimmen77. In solchen Fällen kann der Compiler selbsttätig implizite
(automatische) Typkonvertierungen durchführen, die nach einem von der Sprache
vorgeschriebenen Regelwerk ablaufen. Diese Regeln sollen in diesem Kapitel vorge-
stellt werden. Wenn man selbst dafür sorgt, dass solche Typverschiedenheiten nicht
vorkommen, braucht man sich um die implizite Typkonvertierung nicht zu kümmern.
Insbesondere kann man auch selbst mit Hilfe des cast-Operators explizite Typkon-
vertierungen durchführen.

7.7.1 Der cast-Operator

Eine explizite Typumwandlung eines beliebigen Ausdrucks kann man mit dem
cast-Operator (Typkonvertierungsoperator) durchführen. Das englische Wort cast
heißt unter anderem "in eine Form gießen". Durch (Typname) Ausdruck wird der
Wert des Ausdrucks in den Typ gewandelt, der in den Klammern eingeschlossen ist.
Der Typkonvertierungsoperator hat einen einzigen Operanden und ist damit ein
unärer Operator.

Es kann nicht jeder Typ eines Operanden explizit in einen beliebigen
anderen Typ gewandelt werden. Möglich sind Wandlungen

• zwischen numerischen Datentypen
• und zwischen Referenztypen.

77 Auch bei der Übergabe von Werten an Methoden und bei Rückgabewerten von Methoden (siehe

Kap. 9.2.3) kann der Typ der übergebenen Ausdrücke bzw. des rückzugebenden Ausdrucks vom
Typ der formalen Parameter bzw. vom Rückgabetyp verschieden sein.

Ausdrücke und Operatoren 237

Die explizite Typkonvertierung soll anhand eines Beispiels veranschaulicht werden:

int a = 1; // a hat den Wert 1
double b = 3.5; // b hat den Wert 3.5
a = (int) b; // Explizite Typkonvertierung in den Typ int

Der Ausdruck (int) b hat den Rückgabewert 3 (die 0.5 wird abgeschnitten). Der
Variablen a wird dann der Rückgabewert 3 zugewiesen.

 3.5 1 3.5

 3.5 3

 Typ int b vom Typ double

Vor Cast:

Casten:

 3.5

Nach Cast:

3.5

Bild 7-6 Typkonvertierung

Ein weiteres Beispiel ist:

a = (int) 4.1 // a bekommt den Wert 4 zugewiesen.
a = (int) 4.9 // a bekommt ebenfalls den Wert 4 zugewiesen.

7.7.2 Implizite und explizite Typkonvertierungen

Eine implizite Typumwandlung hat dasselbe Resultat wie die entsprechende explizite
Typumwandlung. Allerdings sind bei Zuweisungen, wenn auf der rechten Seite Vari-
able stehen, nur implizite Typumwandlungen in einen "breiteren" Typ möglich.
Mit dem cast-Operator sind auch Wandlungen in einen "schmäleren" Typ mög-
lich. Allerdings sind solche Wandlungen potentiell sehr gefährlich, da nicht nur die
Genauigkeit, sondern auch das Vorzeichen und die Größe verloren gehen können
(für Beispiele siehe Kap. 7.7.4).

Typkonvertierungen erfolgen in Java prinzipiell nur zwischen verträglichen Da-
tentypen. Zwischen nicht verträglichen Datentypen gibt es keine Umwandlungen.
Hier muss der Compiler bzw. das Laufzeitsystem einen Fehler melden.

Kann ein Ausdruck in den Typ einer Variablen durch Zuweisung um-
gewandelt werden, so ist der Typ des Ausdrucks zuweisungskom-
patibel mit dem Typ der Variablen. Es findet eine implizite Typkon-
vertierung statt.

Implizite Typkonvertierungen gibt es:

• zwischen einfachen, numerischen (arithmetischen) Typen,
• zwischen Referenztypen,

238 Kapitel 7

• bei Verknüpfungen von Objekten der Klasse String mit Operanden anderer
Datentypen

• und seit JDK 5.0 durch das automatische Boxing bzw. Unboxing zwischen ein-
fachen numerischen Typen und Referenztypen numerischer Wrapper-Klassen.

Explizite Umwandlungen funktionieren wie implizite Umwandlungen,
allerdings können mit expliziten Typumwandlungen auch Wandlungen
durchgeführt werden, die implizit nicht zulässig sind.

Das folgende Kapitel 7.7.3 behandelt die Typkonvertierung von einfachen Daten-
typen. Typkonvertierungen bei der Verknüpfung von String-Objekten mit Operanden
anderer Datentypen wurden bereits in Kapitel 6.8.2 behandelt. Das explizite und
implizite Casten – d. h. die explizite und implizite Typumwandlung – bei Referenzen
wird in Kapitel 11.3.1 behandelt.

7.7.3 Typkonvertierungen bei einfachen Datentypen

Zu den einfachen Datentypen gehören der Typ boolean und die numerischen Da-
tentypen. Zwischen dem Typ boolean und den numerischen Datentypen kann
weder explizit noch implizit gecastet werden. Somit kann eine Typkonvertierung von
einfachen Datentypen nur innerhalb der numerischen Datentypen erfolgen. Typum-
wandlungen in einen "breiteren" Typ bzw. mit anderen Worten "erweiternde Um-
wandlungen" sind in Bild 7-7 dargestellt:

double

float

long

int

short char

byte
Bild 7-7 Erweiternde Umwandlungen numerischer Datentypen

Bei erweiternden Umwandlungen ist der Wert immer darstellbar. Allerdings kann man
an Genauigkeit verlieren, z. B. bei der Wandlung von int nach float, da die Gleit-
punktzahlen nicht unendlich dicht aufeinander folgen. Typumwandlungen in einen
"schmäleren" Typ bzw. mit anderen Worten "einschränkende Umwandlungen" sind in
Bild 7-8 dargestellt. Bei Wandlungen in einen "schmäleren" Typ kann es zu Informa-
tionsverlusten in der Größe, dem Vorzeichen und der Genauigkeit kommen. Wand-
lungen in einen "schmäleren" Typ sind in der Regel bei der impliziten Typkon-
vertierung nicht möglich und müssen explizit mit dem cast-Operator durchgeführt
werden.

Ausdrücke und Operatoren 239

double

float

long

int

short char

byte

Bild 7-8 Einschränkende Umwandlungen numerischer Datentypen

7.7.3.1 Implizite Typkonvertierungen bei numerischen Datentypen

Welche Wandlung wann vorgenommen wird, hängt davon ab, ob es sich:

• um eine Typkonvertierung von numerischen Operanden bei unären Operatoren,
• um eine Typkonvertierung von numerischen Operanden bei binären Operatoren,
• bzw. um eine Zuweisung

handelt.

Das Ergebnis einer bestimmten Typwandlung, die sowohl bei numerischen Operan-
den als auch bei Zuweisungen vorkommt, ist stets dasselbe. Bei numerischen Ope-
randen gilt generell, dass der "kleinere" ("schmälere") Datentyp in den "größeren"
("breiteren") Datentyp umgewandelt wird. Bei Zuweisungen ist dies auch die Regel,
es gibt jedoch einen Fall – siehe Kap. 7.7.3.5 – wo vom "größeren" in den "kleineren"
Datentyp gewandelt wird.

7.7.3.2 Die Integer-Erweiterung

Mit byte-, short- oder char-Werten werden in Java in der Regel keine Ver-
knüpfungen zu Ausdrücken durchgeführt. Operanden dieser Typen werden oftmals
vor der Verknüpfung mit einem Operator in den Datentyp int konvertiert. Dies gilt für
unäre und binäre Operatoren (siehe Kap. 7.7.3.3 und Kap. 7.7.3.4). Dieser Vorgang
wird als Integer-Erweiterung (integral promotion) bezeichnet.

7.7.3.3 Anpassungen numerischer Typen bei unären Operatoren

Die Integer-Erweiterung eines einzelnen Operanden wird angewandt auf:

• den Dimensionsausdruck bei der Erzeugung von Arrays (siehe Kap. 6.5),
• den Indexausdruck in Arrays (siehe Kap. 6.5),

• Operanden der unären Operatoren + und -,

• den Operanden des Negationsoperators für Bits ~,

• jeden Operanden separat der Schiebeoperatoren >>, >>> und >>.

240 Kapitel 7

7.7.3.4 Anpassungen numerischer Typen bei binären Operatoren

Bei binären Operatoren mit Ausnahme von Zuweisungen, logischen Operatoren
und Bitshift-Operatoren werden implizite Typkonvertierungen von numerischen
Typen durchgeführt mit dem Ziel, einen gemeinsamen numerischen Typ der Operan-
den des binären Operators zu erhalten, der auch der Typ des Ergebnisses ist. Diese
Typkonvertierungen finden bei den folgenden binären Operatoren statt: *, /, %, +,
-, <, <=, >, >=, !=, ==, den bitweisen Operatoren &, ^ und |, sowie in gewissen
Fällen (siehe [12]) beim ternären Bedingungsoperator ?:.

Wird beispielsweise eine Temperaturangabe von Grad Fahrenheit – hinterlegt in der
Variablen fahr – nach Grad Celsius – abzuspeichern in der Variablen celsius vom
Typ double – umgerechnet, wobei die Rechenvorschrift

celsius = (5.0 / 9) * (fahr - 32);

lautet, so werden bei der Berechnung der rechten Seite der Zuweisung automatisch
die int-Konstante 9 und der Ausdruck (fahr - 32) in die double-Darstellung
gewandelt, da 5.0 eine double-Zahl ist. Dieses Beispiel ist eine Anwendung der
folgenden Regel:

Verknüpft ein binärer Operator einen ganzzahligen und einen Gleit-
punktoperanden, so erfolgt eine Umwandlung des ganzzahligen Ope-
randen in einen Gleitpunktwert. Anschließend wird eine Gleitpunkt-
operation durchgeführt.

Allgemeines Regelwerk

Bei binären Operatoren werden – bis auf die bereits genannten Ausnahmen – arith-
metische Operanden in einen gemeinsamen Typ umgewandelt. D. h. in

Ausdruck1 Operator Ausdruck2

werden Ausdruck1 und Ausdruck2 auf den gleichen Typ gebracht. Von diesem
Typ ist auch das Ergebnis. Die Umwandlung erfolgt in den höheren Typ der folgen-
den Hierarchie:

long

int

float

double

Bild 7-9 Wandlungen bei binären Operatoren

Das allgemeine Regelwerk für diese Konvertierung lautet dabei:

1. Zunächst wird geprüft, ob einer der beiden Operanden vom Typ double ist. Ist
einer von diesem Typ, dann wird der andere ebenfalls in double umgewandelt.

Ausdrücke und Operatoren 241

2. Ist dies nicht der Fall, so wird, wenn einer der beiden Operanden vom Typ float
ist, der andere in float umgewandelt.

3. Ist dies nicht der Fall, so wird, wenn einer der beiden Operanden vom Typ long
ist, der andere in long umgewandelt.

4. Ist dies nicht der Fall, so werden beide der Integer-Erweiterung unterworfen und
in den Typ int umgewandelt.

Beispiel:

2 * 3L + 1.1

Die Multiplikation wird vor der Addition ausgeführt. Bevor die Multiplikation durch-
geführt wird, wird die 2 in den Typ long gewandelt. Das Ergebnis der Multiplikation
wird in den Typ double gewandelt und anschließend wird die Addition ausgeführt.

7.7.3.5 Implizite Typkonvertierung von numerischen Typen bei Zuweisungen,
Rückgabewerten und Übergabeparametern von Methoden

Stimmt der Typ der Variablen links des Zuweisungsoperators = nicht mit dem Typ
des Ausdrucks auf der rechten Seite des Zuweisungsoperators überein, so findet
eine implizite Konvertierung statt, wenn die Typen links und rechts "verträglich" sind.
Bei nicht verträglichen Typen wird eine Fehlermeldung generiert. Numerische Typen
sind verträgliche Typen. Zulässig bei einer Zuweisung sind erweiternde Umwand-
lungen in einen "breiteren" Typ. Eine implizite Umwandlung in einen schmäleren
Typ ist nur zulässig, wenn auf der rechten Seite der Zuweisung ein konstanter Aus-
druck vom Typ int steht und auf der linken Seite eine Variable vom Typ byte,
short oder char und wenn der Wert des Ausdrucks im Typ der Variablen darstell-
bar ist.

Bei der Zuweisung wird – wenn zulässig – der rechte Operand in den
Typ des linken Operanden umgewandelt, d. h. der Resultattyp einer
Zuweisung ist der Resultattyp des linken Operanden, und der Wert ist
der, der sich nach der Zuweisung im linken Operanden befindet.

Bei Rückgabewerten von Methoden wird der Ausdruck, der mit return zurück-
gegeben wird – wie bei einer Zuweisung – in den Rückgabetyp der Methode umge-
wandelt. Dies gilt auch für einen konstanten Ausdruck vom Typ int als Rückgabe-
wert, der passend in den Typ byte, short oder char gewandelt wird (sofern der
konstante Ausdruck vom Typ int im jeweiligen Typ dargestellt werden kann). Im
Falle von Übergabeparametern bei Methodenaufrufen ist das jedoch nicht zuge-
lassen.

Verlangt eine Methode einen Parameter vom Typ byte, short oder
char, so darf kein konstanter Ausdruck vom Typ int übergeben
werden. Es ist in diesen Fällen immer eine explizite Typkonvertierung
erforderlich.

Vorsicht!

242 Kapitel 7

7.7.4 Konvertiervorschriften für einfache Datentypen

Im Folgenden werden die Wandlungsvorschriften zwischen verschiedenen Typen
behandelt.

Umwandlungen eines vorzeichenbehafteten Integer-Typen in den breiteren Typ

Wird ein Integer-Wert in einen größeren Integer-Typ mit Vorzeichen78 gewandelt, so
bleibt sein Wert unverändert. Es wird dabei links mit Nullen aufgefüllt und das
Vorzeichenbit wird passend gesetzt.

Umwandlungen eines vorzeichenbehafteten Integer-Typen in den Typ char

Wird ein Integer-Wert vom Typ short in den Typ char gewandelt, so bleibt das Bit-
muster erhalten, jedoch nicht die Bedeutung des Bitmusters. Dies bedeutet, dass
eine negative Zahl als positive Zahl interpretiert wird. Ein korrektes Resultat ist
deshalb nur für positive Zahlen möglich. Dies zeigt das folgende Beispiel:

// Datei: Short2Char.java
public class Short2Char
{
 public static void main (String[] args)
 {
 char posChar, negChar;
 short posShort = 1;
 short negShort = -1;
 posChar = (char) posShort; // explizites Casten
 negChar = (char) negShort; // explizites Casten

 // Bei der Ausgabe muss vom Typ char nach int konvertiert wer-
 // den, da sonst ein entsprechendes Zeichen angezeigt wird.
 System.out.println ("positiver Short: " + posShort
 + " hat als Char den Dezimalwert " + (int) posChar);
 System.out.println ("negativer Short: " + negShort
 + " hat als Char den Dezimalwert " + (int) negChar);
 }
}

Die Ausgabe des Programms ist:

positiver Short: 1 hat als Char den Dezimalwert 1
negativer Short: -1 hat als Char den Dezimalwert 65535

Wird ein Integer-Wert vom Typ byte in den Typ char gewandelt, so wird von links
mit Null-Bits aufgefüllt und das Vorzeichen propagiert. Da sich die Interpretation
ändert, bleibt der Wert einer negativen Zahl nicht erhalten, jedoch der Wert einer
positiven Zahl. Dies ist im folgenden Programm zu sehen:

// Datei: Byte2Char.java

public class Byte2Char
{

78 Die Integer-Typen byte, short, int und long haben ein Vorzeichen, der Typ char nicht.

Ausdrücke und Operatoren 243

 public static void main (String[] args)
 {
 char posChar, negChar;
 byte posByte = 3;
 byte negByte = -1;
 posChar = (char) posByte;
 negChar = (char) negByte;

 // Bei der Ausgabe muss vom Typ char nach int konvertiert wer-
 // den, da sonst ein entsprechendes Zeichen angezeigt wird.
 System.out.println ("positives Byte: " + posByte
 + " hat als char den Dezimalwert "
 + (int) posChar);
 System.out.println ("negatives Byte: " + negByte
 + " hat als char den Dezimalwert "
 + (int) negChar);
 }
}

Die Ausgabe des Programms ist:

positives Byte: 3 hat als char den Dezimalwert 3
negatives Byte: -1 hat als char den Dezimalwert 65535

Wird ein Integer-Wert vom Typ int oder long in den Typ char gewandelt, so ist ein
korrektes Resultat für große Zahlen nicht gegeben, was in folgendem Programm
demonstriert wird:

// Datei: Int2Char.java

public class Int2Char
{
 public static void main (String[] args)
 {
 int wert1 = 65535;
 int wert2 = 65536;
 char wert1Char = (char) wert1;
 char wert2Char = (char) wert2;

 // Bei der Ausgabe muss vom Typ char nach int konvertiert wer-
 // den, da sonst ein entsprechendes Zeichen angezeigt wird.
 System.out.println (wert1 + " hat als char den Dezimalwert "
 + (int) wert1Char);
 System.out.println (wert2 + " hat als char den Dezimalwert "
 + (int) wert2Char);
 }
}

Die Ausgabe des Programms ist:

65535 hat als char den Dezimalwert 65535
65536 hat als char den Dezimalwert 0

244 Kapitel 7

Umwandlungen zwischen Integer- und Gleitpunkt-Typen

• Integer nach Gleitpunkt

Wenn ein Wert aus einem Integer-Typ in einen Gleitpunkttyp umgewandelt wird,
so werden als Nachkommastellen Nullen eingesetzt. In der Realität kann eine
solche Zahl jedoch nicht exakt dargestellt werden. Das Resultat ist dann entweder
der nächst höhere oder der nächst niedrigere darstellbare Wert.

• Gleitpunkt nach Integer

Bei der Wandlung einer Gleitpunktzahl in eine Integerzahl werden die Stellen
hinter dem Komma abgeschnitten. Bei zu großen Zahlen ist ein korrektes Ergebnis
nicht möglich, wie folgendes Beispiel zeigt:

// Datei: Double2Int.java

public class Double2Int
{
 public static void main (String[] args)
 {
 double d = 2147483642d;
 int i;

 for (int count = 0; count < 10; count++)
 {
 i = (int) d;
 System.out.println("Double " + d + " ist als int " + i);
 d++;
 }
 }
}

Die Ausgabe des Programms ist:

Double 2.147483642E9 ist als int 2147483642
Double 2.147483643E9 ist als int 2147483643
Double 2.147483644E9 ist als int 2147483644
Double 2.147483645E9 ist als int 2147483645
Double 2.147483646E9 ist als int 2147483646
Double 2.147483647E9 ist als int 2147483647
Double 2.147483648E9 ist als int 2147483647
Double 2.147483649E9 ist als int 2147483647
Double 2.14748365E9 ist als int 2147483647
Double 2.147483651E9 ist als int 2147483647

Umwandlungen zwischen Gleitpunkttypen

Wenn ein Gleitpunktwert mit niedrigerer Genauigkeit in einen Gleitpunkttyp mit einer
höheren Genauigkeit umgewandelt wird, so gibt es keine Probleme. Die Größe bleibt
selbstverständlich unverändert. Wenn ein Gleitpunktwert mit höherer Genauigkeit in
einen Gleitpunkttyp mit einer niedrigeren Genauigkeit umgewandelt wird, so kann –
wenn der Wert im zulässigen Wertebereich liegt – der neue Wert wegen der unter-
schiedlichen Genauigkeit der beteiligten Typen der nächst höhere oder der nächst

Ausdrücke und Operatoren 245

niedrigere darstellbare Wert sein. Liegt der Wert nicht im zulässigen Wertebereich,
so ist ein korrektes Ergebnis nicht möglich. Dies ist in folgendem Beispiel zu sehen:

// Datei: Double2Float.java

public class Double2Float
{
 public static void main (String[] args)
 {
 double smallDouble = 9.999999999d;
 double bigDouble = 1.23E145;
 float smallFloat = (float) smallDouble;
 float bigFloat = (float) bigDouble;

 System.out.println ("kleiner Double-Wert: " + smallDouble
 +" wird zu " + smallFloat);
 System.out.println ("grosser Double-Wert: " + bigDouble
 +" wird zu " + bigFloat);
 }
}

Die Ausgabe des Programms ist:

kleiner Double-Wert: 9.999999999 wird zu 10.0
grosser Double-Wert: 1.23E145 wird zu Infinity

7.8 Ausführungszeitpunkt von Nebeneffekten

Die Berechnung von Ausdrücken kann mit Nebeneffekten verbunden sein.

In Java wird jeder Operand eines Operators vollständig ausgewertet,
bevor irgendein Teil der Operation begonnen wird. Damit haben (mit
Ausnahme der Operatoren &&, || und ? :) vor einer Operation die
Nebeneffekte der Operanden stattgefunden.

In Java werden die Operanden eines Operators strikt von links
nach rechts ausgewertet. Dies bedeutet, dass der Nebeneffekt des
linken Operanden vor der Bewertung des rechten Operanden
erfolgt ist.

In Java werden die aktuellen Parameter eines Methodenaufrufs von
links nach rechts bewertet. Dies bedeutet, dass nach der Bewertung
eines aktuellen Parameters ein Nebeneffekt dieses aktuellen Para-
meters stattgefunden hat und erst dann der rechts davon stehen-
de aktuelle Parameter bewertet wird.

Ein Beispiel für die Auswertungsreihenfolge der aktuellen Parameter bei einem
Methodenaufruf wird in Kapitel 9.2.6 gegeben.

246 Kapitel 7

Ein Nebeneffekt hat stattgefunden nach der Auswertung der folgenden Ausdrücke:

• Initialisierungsausdruck einer manuellen Initialisierung,
• Ausdruck in einer Ausdrucksanweisung,

• Bedingung in einer if-Anweisung (siehe Kap. 8.2.1),

• Selektionsausdruck in einer switch-Anweisung (siehe Kap. 8.2.3),

• Bedingung einer while- oder do while-Schleife (siehe Kap. 8.3.5),

• Initialierungsklausel in Form eines einzelnen Ausdrucks oder einer Aus-
drucksliste, Booolescher Ausdruck, Aktualisierungs-Ausdrucksliste
der for-Schleife (siehe Kap. 8.3.2),

• Ausdruck einer return-Anweisung (siehe Kap. 9.2.3).

7.9 Übungen

Aufgabe 7.1: Operatoren, Ausdrücke und Anweisungen

7.1.1 Verständnisfragen

a) Welche Arten von Operatoren gibt es in Java:

• nach Anzahl der Operatoren?
• nach Art der Wirkungsweise?

b) Was sind Ausdrücke?
c) Was sind Anweisungen?
d) Was sind Nebeneffekte?

7.1.2 Zuordnen von Operatoren

Ordnen Sie die folgenden Operatoren den Operator-Arten zu, nach denen
Sie in Aufgabe 7.1.1 a) gefragt wurden:

a) i++
b) if(x && y) …
c) a?b:c

Aufgabe 7.2: Verwendung von Operatoren

7.2.1 Zahlen vergleichen mit Vergleichsoperatoren

Gegeben ist eine Klasse ZahlenVergleich, welche die Methode einga-
beZahl() enthält. Diese Methode ermöglicht es Ihnen, eine int-Zahl von
der Tastatur einzulesen:

//Datei: ZahlenVergleich.java

public class ZahlenVergleich
{
 public int eingabeZahl()
 {

Ausdrücke und Operatoren 247

 try
 {
 java.util.Scanner scanner =
 new java.util.Scanner (System.in);
 System.out.print ("Gib einen Wert ein: ");
 return scanner.nextInt();
 }
 catch (Exception e)
 {
 System.out.println (e);
 }
 return -1;
 }

}

Ergänzen Sie die fehlende Stelle im Programm (.), sodass mit Hilfe der
Methode eingabeZahl() zwei Zahlen von der Tastatur eingelesen werden.
Anschließend vergleichen Sie die Zahlen miteinander auf Gleichheit (==).
Sind die Zahlen gleich, so wird folgender Text ausgegeben:

Die Zahlen sind gleich!

Bei Ungleichheit der Zahlen ermitteln Sie die größere Zahl. Eine mögliche
Ausgabe würde folgendermaßen aussehen:

Die Zahl 5 ist größer als die Zahl 2!

7.2.2 Bedingungen auswerten mit dem Bedingungsoperator

Gegeben seien folgende Codezeilen:

int x = 5;
int y = 7;
int i = (x == y) ? 1 : 0;

a) Welchen Wert hat i?
b) Wie würden obige Codezeilen mit Hilfe einer if-else-Abfrage ausse-

hen?

7.2.3 Modulo-Operator

Vervollständigen Sie das folgende Code-Fragment, um die Funktion des
Modulo-Operators (Restwert-Operator) nachzubilden:

// Datei: ZuweisungsOperator.java

public class ZuweisungsOperator
{
 public static void main (String[] args)
 {
 int a = 39;
 int b = 5;

248 Kapitel 7

 while (a b) a b;

 System.out.println ("39 Modulo 5 ist: " + a);
 }
}

Aufgabe 7.3: Auswertungsreihenfolge

7.3.1 Erläutern Sie folgende Begriffe:

a) Operatorpriorität
b) Operatorassoziativität
c) Bewertungsreihenfolge

7.3.2 Operatorpriorität und - assoziativität

Vor jeder Anweisung seien folgende Werte gegeben:

int a = 2;
int b = 1;

Finden Sie ohne Java-Compiler heraus, welchen Wert die Variablen a und b
nach den einzelnen Anweisungen a) bis m) haben. Beachten Sie hierbei ge-
nau die Priorität und Assoziativität der entsprechenden Operatoren. Erläutern
Sie, wie Sie auf das Ergebnis kommen. Verifizieren Sie ihr theoretisch er-
mitteltes Ergebnis gegebenenfalls durch einen Programmlauf:

a) a = b = 2;
b) a = b * 3 + 2;
c) a = b * (3 + 2);
d) a *= b + 5;
e) b %= 2 * a;
f) a = --b;
g) b = ~a;
h) b = b++ * a;
i) a = - 5 - 5;
j) b = b << 2;
k) b = (a == b) ? 5 : 7;
l) a = --b * b++;
m) a = a ^ b;

Aufgabe 7.4: L-Werte und R-Werte

7.4.1 Was versteht man unter L-Werten und R-Werten?
7.4.2 Ist das folgende Code-Fragment korrekt?

.
int x = 5;
final int y = 2;
y = x;
.

Ausdrücke und Operatoren 249

Aufgabe 7.5: Konvertierung von Datentypen

7.5.1 Implizite Konvertierung bei numerischen Datentypen

Welche Ausgabe erhalten Sie von folgendem Programm? Begründen Sie
Ihre Antwort! Hier das Programm:

// Datei: ImpliziteKonvertierung.java

public class ImpliziteKonvertierung
{
 public static void main (String[] args)
 {
 System.out.println ("Division von 10 durch 12: "
 + (10/12));
 System.out.println ("Division von 10. durch 12: "
 + (10./12));
 System.out.println ("Division von 10 durch 12.: "
 + (10/12.));
 }
}

7.5.2 Explizite Konvertierung bei numerischen Datentypen

Welche Ausgabe erhalten Sie von folgendem Programm? Begründen Sie
Ihre Antwort! Hier das Programm:

// Datei: ExpliziteKonvertierung.java

public class ExpliziteKonvertierung
{
 public static void main (String[] args)
 {
 int k;
 float f = 1.5f, g;
 k = 10 * (int) f;
 g = 10 * f;

 System.out.println ("Multiplikation (int)1.5f * 10: "
 + k);
 System.out.println ("Multiplikation 1.5f * 10: " + g);
 }
}

�

Kontrollstrukturen

8.1 Blöcke – Kontrollstrukturen für die Sequenz
8.2 Selektion
8.3 Iteration
8.4 Sprunganweisungen
8.5 Übungen

8 Kontrollstrukturen

Kontrollstrukturen steuern den Kontrollfluss eines sequenziellen Programms. So
können beispielsweise in Abhängigkeit von der Bewertung von Ausdrücken gewisse
Anweisungen übergangen oder ausgeführt werden. Da Kontrollstrukturen einen
einzigen Eingang und einen einzigen Ausgang haben, bleibt der Kontrollfluss einer
Methode dennoch sequenziell.

8.1 Blöcke – Kontrollstrukturen für die Sequenz

Erfordert die Syntax genau eine Anweisung, so können dennoch mehrere Anwei-
sungen geschrieben werden, wenn man sie in Form eines Blockes79 zusammenfasst:

{
 Anweisung_1
 Anweisung_2
 .
 .
 Anweisung_n
}

Die geschweiften Klammern { und } stellen die Blockbegrenzer dar. Die Anwei-
sungen zwischen den Blockbegrenzern werden sequenziell abgearbeitet. Ein Block
wird deshalb auch als Kontrollstruktur für die Sequenz bezeichnet. Bild 8-1 zeigt
mehrere Anweisungen, die zu einem Block gruppiert sind.

Anweisungen

Bild 8-1 Ein Block ist eine Sequenz von Anweisungen

Ein Block (eine zusammengesetzte Anweisung) kann an jeder
Stelle stehen, an der eine einzelne Anweisung angeschrieben werden
kann.

8.2 Selektion

Die Selektion ermöglicht die Abarbeitung von Anweisungen abhängig von einer Be-
dingung. In Java gibt es die bedingte Anweisung, die einfache Alternative mit if und
else und die mehrfache Alternative in den Ausprägungen else-if und switch.

79 Blöcke werden in Kap. 9 behandelt.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_8,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Kontrollstrukturen 253

8.2.1 Bedingte Anweisung und einfache Alternative

Die Syntax der einfachen Alternative ist:

if (Ausdruck)
 Anweisung1
else
 Anweisung2

Ausdruck

wahr falsch

Anweisung1 Anweisung2

Bild 8-2 Struktogramm der einfachen Alternative (if-else-Anweisung)

Der Ausdruck in Klammern wird berechnet und ausgewertet. Trifft die Bedingung zu
(hat also Ausdruck den Wert true), so wird Anweisung1 ausgeführt. Trifft die
Bedingung nicht zu (hat also Ausdruck den Wert false), so wird Anweisung2
ausgeführt, falls ein else-Zweig vorhanden ist. Soll mehr als eine einzige Anweisung
ausgeführt werden, so ist ein Block zu verwenden, der syntaktisch als eine einzige
Anweisung zählt. Der else-Zweig ist optional. Entfällt der else-Zweig, so spricht
man von einer bedingten Anweisung.

Ausdruck

wahr

Anweisung1

Bild 8-3 Struktogramm der bedingten Anweisung mit if

Die Syntax der bedingten Anweisung ist:

if (Ausdruck) Anweisung1

Fällt einem jetzt plötzlich ein, dass man eigentlich zwei Anweisungen ausführen
wollte, wenn die Bedingung zutrifft, so darf man nicht die zweite Anweisung Anwei-
sung2 einfach hinter Anweisung1 notieren. Bei

if (Ausdruck) Anweisung1
Anweisung2

wird nämlich die Anweisung2 stets ausgeführt, auch wenn die Bedingung Aus-
druck nicht zutrifft. Hier ist ein Block zu verwenden:

if (Ausdruck)
{
 Anweisung1
 Anweisung2
}

254 Kapitel 8

Für eine defensive Programmierung (siehe Kap. 7.6.4) sollten stets
geschweifte Klammern verwendet werden, damit der Handlungsablauf
leicht um weitere Anweisungen ergänzt werden kann:

if (Ausdruck)
{
 Anweisung1
}

Geschachtelte if-else-Anweisungen

Da der else-Zweig einer if-else-Anweisung optional ist, entsteht eine Mehrdeutig-
keit, wenn ein else-Zweig in einer verschachtelten Folge von if-else-Anwei-
sungen fehlt. Der letzte else-Zweig wird deshalb immer mit dem letzten if ver-
bunden, für das noch kein else-Zweig existiert. So gehört im folgenden Beispiel

if (n > 0)
 if (a > b)
 z = a;
 else
 z = b;

der else-Zweig – wie die Regel oben aussagt – zum letzten, inneren if. Eine von
Programmierern eventuell versuchte Umgehung der Zuordnung der if- und else-
Zweige durch Einrücken (z. B. mit Tabulator) kann der Compiler nicht erkennen, da
für ihn Whitespaces nur die Bedeutung von Trennern haben, aber sonst vollkommen
bedeutungslos sind. Um eine andere Zuordnung zu erreichen, müssen entsprechen-
de geschweifte Klammern gesetzt und somit Blöcke definiert werden:

if (n > 0)
{
 if (a > b)
 z = a;
}
else
 z = b;

8.2.2 Mehrfache Alternative – else-if

Die else-if-Anweisung ist die allgemeinste Möglichkeit für eine Mehrfach-Selek-
tion, d. h., um eine Auswahl unter verschiedenen Alternativen zu treffen. Die Syntax
dieser Anweisung ist:

if (Ausdruck_1)
 Anweisung_1
else if (Ausdruck_2)
 Anweisung_2
 .
 .
 .

Vorsicht!

Kontrollstrukturen 255

else if (Ausdruck_n)
 Anweisung_n
else // der else-Zweig
 Anweisung_else // ist optional

In der angegebenen Reihenfolge wird ein Vergleich nach dem anderen durchgeführt.
Bei der ersten Bedingung, die true ist, wird die zugehörige Anweisung abgearbeitet
und die Mehrfach-Selektion abgebrochen. Dabei kann statt einer einzelnen Anwei-
sung stets auch ein Block von Anweisungen stehen, da ein Block syntaktisch einer
einzigen Anweisung gleichgestellt ist. Der letzte else-Zweig ist optional. Hier können
alle anderen Fälle behandelt werden, die nicht explizit aufgeführt wurden. Ist dies
nicht notwendig, so kann der else-Zweig entfallen. Dieser else-Zweig wird oft zum
Abfangen von Fehlern, z. B. bei einer Benutzereingabe, verwendet. Betätigt der Be-
nutzer eine ungültige Taste, kann er in diesem else-Teil "höflichst" auf sein Ver-
sehen hingewiesen werden.

Ausdruck_1
wahr falsch

wahr
Ausdruck_2

falsch

wahr

Ausdruck_3

falsch
Anweisung_1

Anweisung_2 Anweisung_3 Anweisung_else

Bild 8-4 Beispiel für ein Struktogramm der else-if-Anweisung

8.2.3 Mehrfache Alternative – switch

Für eine Mehrfach-Selektion, d. h. eine Selektion unter mehreren Alternativen, kann
auch die switch-Anweisung verwendet werden. Der Ausdruck in der switch-An-
weisung muss vom Typ char, byte, short, int, Character, Byte, Short, In-
teger, einem Aufzählungstyp oder – seit JDK 7 – vom Typ String sein. Ferner
muss jeder konstante Ausdruck konstanter_Ausdruck_n dem Typ von Aus-
druck zuweisbar sein80. Die Syntax der switch-Anweisung lautet:

switch (Ausdruck)
{
 case konstanter_Ausdruck_1:
 Anweisungen_1
 break; // ist optional
 case konstanter_Ausdruck_2:
 Anweisungen_2
 break; // ist optional
 .
 .
 .

80 Siehe Kap. 7.7.3.5. Ist beispielsweise Ausdruck vom Typ byte, so kann konstanter_Aus-

druck_1 z. B. nicht den Wert 1000 annehmen.

256 Kapitel 8

 case konstanter_Ausdruck_n:
 Anweisungen_n
 break; // ist optional
 default: // ist
 Anweisungen_default // optional
}

Das Struktogramm der vorangegangenen switch-Anweisung sieht wie folgt aus:

Ausdruck
case1

case2

..... caseN default

Bild 8-5 Struktogramm einer switch-Anweisung

Jeder Alternative geht eine einzige oder eine Reihe von case-Marken mit ganz-
zahligen Konstanten oder konstanten Ausdrücken voraus. Ein Beispiel für eine ein-
zige case-Marke ist:

case 5:

Ein Beispiel für eine Reihe von case-Marken ist:

case 1: case 3: case 5:

Eine Konstante kann eine literale Konstante oder eine symbolische Konstante sein.
Die symbolische Konstante wird meist mit final deklariert, kann aber auch als Auf-
zählungskonstante festgelegt werden. Dies wird in den folgenden Beispielprogram-
men demonstriert.

// Datei: SwitchTest.java

public class SwitchTest
{
 private static final int EINS = 1; //symbolische Konstante mit
 //dem Namen EINS
 public void testSwitch (int zahl)
 {
 switch (zahl)
 {
 case EINS:
 {
 System.out.println ("Testergebnis: " + EINS);
 break;
 }

Kontrollstrukturen 257

 case 2:
 {
 System.out.println ("Testergebnis: " + 2);
 break;
 }
 }
 }

 public static void main (String[] args)
 {
 SwitchTest test = new SwitchTest();
 test.testSwitch (1);
 test.testSwitch (2);
 test.testSwitch (EINS);
 }
}

Die Ausgabe des Programms ist:

Testergebnis: 1
Testergebnis: 2
Testergebnis: 1

Ist der Wert des Ausdrucks einer switch-Anweisung identisch mit dem Wert eines
der konstanten Ausdrücke der case-Marken, wird die Ausführung des Programmes
dort weitergeführt. Stimmt keiner der konstanten Ausdrücke im Wert mit dem
switch-Ausdruck überein, wird zu default gesprungen. default ist optional.
Benötigt die Anwendung keinen default-Fall, kann dieser entfallen und das
Programm wird beim Nichtzutreffen aller aufgeführten konstanten Ausdrücke nach
der switch-Anweisung fortgeführt. Die Reihenfolge der case-Marken ist beliebig.
Auch die default-Marke muss nicht als letzte stehen. Am übersichtlichsten ist es
allerdings, wenn die case-Marken nach aufsteigenden Werten geordnet sind und
default am Schluss steht.

Soll eine switch-Anweisung auf Aufzählungskonstanten angewendet werden, so
muss der Ausdruck in der switch-Anweisung dem Aufzählungstyp entsprechen. Die
konstanten Ausdrücke der case-Marken müssen die Aufzählungskonstanten des
verwendeten Typs sein, da sie dem Ausdruck zuweisbar sein müssen.

// Datei: Richtungsweiser.java

public class Richtungsweiser
{
 public enum Richtung {LINKS, RECHTS}

 public static void main (String[] args)
 {
 Richtung ref = Richtung.RECHTS;
 switch (ref)
 {
 case LINKS:
 System.out.println ("LINKS");
 break;

258 Kapitel 8

 case RECHTS:
 System.out.println ("RECHTS");
 break;
 }
 }
}

Die Ausgabe des Programms ist:

RECHTS

Beachten Sie, dass Aufzählungskonstanten nicht qualifiziert sein dür-
fen, wenn sie als case-Marken verwendet werden. An allen anderen
Stellen sind qualifizierte Namen (siehe Kap. 12.4) erforderlich.

Im Falle der Marken geht der Typ der Aufzählungskonstanten aus dem Ausdruck der
switch-Anweisung hervor. Eine wichtige Bedingung für die switch-Anweisung ist,
dass alle case-Marken unterschiedlich sein müssen. Vor einer einzelnen Befehls-
folge können – wie bereits erwähnt – mehrere verschiedene case-Marken stehen:

// Datei: ZeichenTester.java

public class ZeichenTester
{
 public void testeZeichen (char c)
 {
 switch (c)
 {
 case '\t':
 case '\n':
 case '\r':
 System.out.println ("Steuerzeichen");
 break;
 default:
 System.out.println ("Kein Steuerzeichen: " + c);
 }
 }
 public static void main (String[] args)
 {
 ZeichenTester pars = new ZeichenTester();
 pars.testeZeichen ('\t');
 pars.testeZeichen ('A');
 pars.testeZeichen ('\r');
 }
}

Die Ausgabe des Programms ist:

Steuerzeichen
Kein Steuerzeichen: A
Steuerzeichen

Kontrollstrukturen 259

Wird in der switch-Anweisung eine passende case-Marke gefunden, werden hinter
dieser Marke die anschließenden Anweisungen bis zum break ausgeführt. break
springt dann an das Ende der switch-Anweisung (siehe auch Kapitel 8.4.2).

Fehlt die break-Anweisung, so werden die Anweisungen nach der
nächsten case-Marke abgearbeitet. Dies geht so lange weiter, bis ein
break gefunden wird oder bis das Ende der switch-Anweisung
erreicht ist.

Im Gegensatz zur if-Anweisung prüft die switch-Anweisung nur auf die Gleichheit
von Werten. Bei der if-Anweisung wird ein logischer Ausdruck ausgewertet

8.3 Iteration

Eine Iteration ermöglicht das mehrfache (iterative) Ausführen von Anweisungen. In
Java gibt es abweisende Schleifen, annehmende Schleifen und die Endlos-Schleife.

8.3.1 Abweisende Schleife mit while

Die Syntax der while-Schleife lautet:

while (Ausdruck)
 Anweisung

solange Ausdruck

Anweisung

Bild 8-6 Struktogramm der while-Schleife

In einer while-Schleife kann eine Anweisung in Abhängigkeit von der Bewertung
eines Ausdrucks wiederholt ausgeführt werden. Da der Ausdruck vor der Aus-
führung der Anweisung bewertet wird, spricht man auch von einer "abweisenden"
Schleife. Der Ausdruck wird berechnet und die Anweisung dann und nur dann
ausgeführt, wenn der Ausdruck true ist. Danach wird die Berechnung des Aus-
drucks und die eventuelle Ausführung der Anweisung wiederholt. Um keine Endlos-
Schleife zu erzeugen, muss daher ein Teil des Bewertungsausdrucks im Schleifen-
rumpf, d. h. in der Anweisung, manipuliert werden. Sollen mehrere Anweisungen
ausgeführt werden, so ist ein Block zu verwenden. Das folgende Beispiel zeigt die
Manipulation der Abbruchbedingung im Schleifenrumpf:

while (i < 100)
{

 i++; // manipuliert Variable i der Abbruchbedingung i < 100
}

260 Kapitel 8

8.3.2 Abweisende Schleife mit for

Erste Erfahrungen mit der for-Schleife wurden bereits in Kapitel 4.1 gewonnen. Ein
Beispiel für eine einfache for-Schleife ist:

for (int lv = 1; lv <= 5; lv++)
 System.out.println (lv);

Hierbei werden die Zahlen 1 bis 5 nacheinander jeweils in einer eigenen Zeile ausge-
geben. Die for-Schleife ist wie die while-Schleife eine abweisende Schleife, da
erst geprüft wird, ob die Bedingung für ihre Ausführung zutrifft. Die Syntax der for-
Schleife lautet:

for (Initialisierungsklausel; BoolescherAusdruck;
 Aktualisierungs-Ausdrucksliste)
 Anweisung

Die for-Anweisung ist per Sprachdefinition äquivalent zu81:

{
 Initialisierungsklausel;
 while (BoolescherAusdruck)
 {
 Anweisung
 Aktualisierungs-Ausdrucksliste
 }
}

Beachten Sie die erste und die letzte geschweifte Klammer. Durch den umfassenden
Block wird in Java eine Schleifenvariable, die in der Initialisierungsklausel
definiert wurde, beim Verlassen der for-Schleife ungültig. Das Struktogramm sieht
wie folgt aus:

Initialisierungsklausel

solange BoolescherAusdruck

Anweisung

Aktualisierungs-
Ausdrucksliste

Bild 8-7 Struktogramm der zur for-Anweisung äquivalenten while-Schleife

81 Vorausgesetzt, der bei der for-Schleife optionale BoolescherAusdruck ist tatsächlich vorhan-

den. Die Äquivalenz ist auch gegeben, wenn die optionale Initialisierungsklausel bzw. die
Aktualisierungs-Ausdrucksliste fehlen. Fehlt BoolescherAusdruck, so entsteht eine
Endlos-Schleife, da in der äquivalenten while-Schleife anstelle von BoolescherAusdruck die
Konstante true tritt.

Kontrollstrukturen 261

Die Initialisierungsklausel

Zu Beginn der Schleife wird einmalig die Initialisierungsklausel zur Initiali-
sierung der Schleife berechnet. In der Regel stellt die Initialisierungsklausel
die Definition und Initialisierung einer lokalen Variablen dar, die als Lauf-
variable82 verwendet wird und nach der Beendigung der for-Schleife ungültig
ist. Eine Initialisierungsklausel kann bestehen aus:

• einem einzelnen Ausdruck
• oder einer Ausdrucksliste als Folge von Ausdrücken, getrennt durch Kommata.

Wird eine Ausdrucksliste verwendet, so können die Laufvariablen einzeln vor der
for-Schleife definiert werden. Sind die Laufvariablen vom gleichen Typ – z. B. es
werden nur Laufvariablen vom Typ int verwendet – so können diese innerhalb der
Initialisierungsklausel in einer einzelnen Vereinbarung definiert werden
(siehe Kap. 6.2), beispielsweise wie folgt:

for (int i = 0, j = 0; i < 10, j < 10; i++, j++)

BoolescherAusdruck, Anweisung und Aktualisierungs-Ausdrucksliste

Nach der Auswertung der Initialisierungsklausel wird der Ausdruck Boole-
scherAusdruck berechnet. Ist dieser Ausdruck true, wird die Anweisung ausge-
führt und anschließend die Aktualisierungs-Ausdrucksliste berechnet. Die
Bewertung von BoolescherAusdruck, die Ausführung von Anweisung und die
Berechnung von Aktualisierungs-Ausdrucksliste werden solange wieder-
holt, bis der Ausdruck BoolescherAusdruck false wird.

Gebräuchliche Form der for-Schleife in Java

In einer gebräuchlichen Form wird die for-Schleife so verwendet, dass die Ini-
tialisierungsklausel eine Laufvariable definiert und initialisiert und dass die
Aktualisierungs-Ausdrucksliste ein einzelner Ausdruck in Form einer Zu-
weisung an die Laufvariable ist. Dies wird im folgenden Beispiel gezeigt, in welchem
ein int-Array mit dem Wert der Laufvariablen initialisiert wird:

int[] a = new int [20];
for (int i = 0; i < 20; i = i + 1)
 a [i] = i;

Die Variable i in diesem Beispiel zählt die Zahl der Schleifendurchläufe hoch. Sie
wird als Laufvariable bezeichnet. Für die Erhöhung des Wertes der Laufvariablen
kann statt i = i + 1 auch genauso gut i++ oder ++i geschrieben werden. Alle
drei Schreibweisen sind hier äquivalent. Entscheidend ist nur, dass die Laufvariable
erhöht wird. Der Rückgabewert von Aktualisierungs-Ausdrucksliste wird ja
nicht abgeholt. Natürlich ist es von der Syntax her möglich, dass statt i++ beispiels-
weise auch x = i++83 geschrieben wird, wobei x eine bereits definierte Variable
sein soll. Dann wird ebenfalls der Schleifenindex (die Laufvariable) erhöht, aber

82 Die Laufvariable kann natürlich auch vor der for-Schleife definiert werden.
83 x = i++ stellt ja – wie bereits in Kap. 7.2 vorgestellt – einen Ausdruck dar.

262 Kapitel 8

darüber hinaus noch der Wert der Variablen x verändert. Solche Kunststücke können
leicht übersehen werden und machen deshalb das Programm schlecht lesbar.

Ausdruckslisten aus Folgen von Ausdrücken

In Java kann eine Initialisierungsklausel der for-Schleife entweder die De-
finition einer Laufvariablen mit Initialisierung sein oder ein einzelner Ausdruck oder
eine Liste von Ausdrücken, die durch Kommata getrennt sind. Die Aktualisie-
rungs-Ausdrucksliste kann ein einzelner Ausdruck sein oder eine Liste von
Ausdrücken. Mit Hilfe dieser Listen von Ausdrücken ist es möglich, mehrere Lauf-
variablen gleichzeitig zu bearbeiten. Im Folgenden einige Beispiele:

// Datei: Schleifen.java

public class Schleifen
{
 public static void main (String[] args)
 {
 //Dieses Beispiel funktioniert
 int i = 0;
 int j = 0;
 for (i = 0, j = 1; j >= 0; i++, j--) //Liste von Ausdrücken
 {
 System.out.println ("i: " + i);
 System.out.println ("j: " + j);
 }

 // Dieses Beispiel funktioniert auch
 for (int k = 0, l = 1; l >= 0; k++, l--)
 {
 System.out.println ("k: " + k);
 System.out.println ("l: " + l);
 }

 // Dieses Beispiel funktioniert nicht.
 // Es ist nur eine Liste von Ausdrücken zulässig, nicht
 // aber eine Liste von Definitionen von Laufvariablen.
 // for (int m = 0, int n = 2; n >= 0; m++, n--)
 // {
 // System.out.println ("m: " + m);
 // System.out.println ("n: " + n);
 // }
 }
}

Die Ausgabe des Programms ist:

i: 0
j: 1
i: 1
j: 0
k: 0
l: 1
k: 1
l: 0

Kontrollstrukturen 263

Beachten Sie, dass int k = 0, l = 1; eine einzige Definition darstellt. Es ent-
spricht von der Wirkung her

int k = 0;
int l = 1;

Allerdings ist in der for-Schleife eine Liste von Definitionen nicht zugelassen.

8.3.3 For-each-Schleife

Die for-Schleife wird besonders gerne verwendet, um über Arrays oder die Elemen-
te von Collection-Klassen (siehe Kap. 18) zu iterieren. Bei Arrays war dazu bisher
immer die Einführung einer Laufvariablen (meist i genannt) notwendig. Mit der
erweiterten for-Schleife, die seit dem JDK 5.0 Bestandteil von Java ist, wird der-
selbe Code wesentlich kürzer und prägnanter. Das folgende Beispiel zeigt das Iterie-
ren über ein Array:

// Datei: ForEachTest.java

public class ForEachTest
{
 public static void main (String[] args)
 {
 String[] testArray =
 new String[] {"Hallo", "for-each", "Schleife"};
 // Array mit Hilfe der erweiterten for-Schleife auslesen.
 for (String element : testArray)
 {
 // Zugriff auf das Element des Arrays
 System.out.println (element);
 }
 }
}

Hier die Ausgabe des Programms:

Hallo
for-each
Schleife

In der erweiterten for-Schleife wird zuerst eine Variable vom Typ eines Elements
des Arrays definiert, im obigen Beispiel durch String element. Nach dem Doppel-
punkt steht der Name des zu durchlaufenden Arrays. Das obige Beispiel for
(String element : testArray) kann gelesen werden als: "Für alle Elemente
des Arrays testarray, das aus Referenzen auf Objekte vom Typ String besteht".

Die erweiterte for-Schleife wird auch for-each Schleife genannt, da sie immer über
alle Elemente eines Arrays läuft. Sie kann durch eine break-Anweisung abge-
brochen werden. Zudem kann die Reihenfolge, in der über die Elemente iteriert wird,
nicht beeinflusst werden. Arrays werden immer in aufsteigender Reihenfolge durch-
laufen. Damit ist die erweiterte for-Schleife nicht für Aufgaben geeignet, die eine
andere als die aufsteigende Reihenfolge ohne Auslassungen verlangen.

264 Kapitel 8

8.3.4 Endlos-Schleife

Fehlt der Ausdruck BoolescherAusdruck in einer for-Schleife, so gilt die Bedin-
gung immer als true und die Schleife wird nicht mehr automatisch beendet. Durch
Weglassen von BoolescherAusdruck kann somit in einfacher Weise eine Endlos-
Schleife programmiert werden. Die geläufigste Form ist dabei, alle drei Ausdrücke
wegzulassen, wie im folgenden Beispiel:

for (; ;) // Endlosschleife
{

}

Beachten sie hierbei, dass die beiden Semikolon trotzdem hingeschrieben werden
müssen. Eine schönere Möglichkeit ist, die while-Schleife zu verwenden und die
Bedingung auf true zu setzen:

while (true) // Endlosschleife
{

}

8.3.5 Annehmende Schleife mit do-while

Die Syntax der do-while-Schleife ist:

do
 Anweisung
while (Ausdruck);

solange Ausdruck

Anweisung

Bild 8-8 Struktogramm der do-while-Schleife

Die do-while-Schleife ist eine "annehmende Schleife". Zuerst wird die Anweisung
der Schleife einmal ausgeführt. Danach wird der Ausdruck bewertet. Ist er true,
wird die Ausführung der Anweisung und die Bewertung des Ausdrucks solange
fortgeführt, bis der Ausdruck zu false ausgewertet wird.

Die do-while-Schleife wird somit auf jeden Fall mindestens einmal durchlaufen, da
die Bewertung des Ausdrucks erst am Ende der Schleife erfolgt. Das folgende Pro-
gramm gibt zu einer Zahl in Dezimaldarstellung den entsprechenden Wert in der Bi-
närdarstellung aus:

// Datei: BinaerWandler.java

public class BinaerWandler
{

Kontrollstrukturen 265

 public static void main (String[] args)
 {
 int zahl = 100;
 String binaer = "";
 // Variable, die den Rest der Division durch 2 speichert
 int rest;

 do
 {
 // Der Rest kann immer nur 1 oder 0 sein.
 rest = zahl % 2;
 zahl = zahl / 2;
 // Zusammensetzen des Strings zur Binärdarstellung
 binaer = rest + binaer;
 }while (zahl > 0);

 System.out.println ("100 dezimal ist: " + binaer + " binär");
 }
}

Die Ausgabe des Programms ist:

100 dezimal ist: 1100100 binär

8.4 Sprunganweisungen

Mit der break-Anweisung (siehe Kap. 8.4.2) kann eine while-, do-while-, for-
Schleife und switch-Anweisung abgebrochen werden. Die continue-Anweisung
(siehe Kap. 8.4.3) dient zum Sprung in den nächsten Schleifendurchgang bei einer
while-, do-while- und for-Schleife. Sowohl bei break- als auch bei continue-
Anweisungen können Marken verwendet werden. Eine Marke hat die gleiche Form
wie ein Variablenname. Anschließend folgt ein Doppelpunkt. Eine Marke steht
vor einer Anweisung. Zu den Sprunganweisungen zählt auch die return-Anwei-
sung. Mit return springt man aus einer Methode an die aufrufende Stelle zurück.
Die return-Anweisung wird in Kapitel 9.2.3 behandelt.

8.4.1 Marken

In Java können Anweisungen mit Marken versehen werden:

int a = 0;
int b = 1;
marke: if (a < b)

Hierbei trennt ein Doppelpunkt die Marke von der ihr zugeordneten Anweisung. Dass
eine Marke vor der Anweisung steht, ändert nichts an dem Charakter der Anweisung.
Anweisungen oder Blöcke mit Marken können bei break- und continue-Anwei-
sungen eingesetzt werden. Ein Programm ist aber besser lesbar, wenn Marken ver-
mieden werden. Für die Syntax einer Marke gelten dieselben Konventionen wie für

266 Kapitel 8

einen Bezeichner (Namen). Der Gültigkeitsbereich einer Marke ist der Block, in dem
sie enthalten ist. Eine Marke in einem äußeren Block darf denselben Namen tragen
wie eine Marke in einem inneren Block. Wird zu einer Marke gesprungen, so wird zur
innersten Marke mit diesem Namen gesprungen.

8.4.2 break

Die break-Anweisung ohne Marke erlaubt es, eine for-, do-while- und while-
Schleife sowie die switch-Anweisung vorzeitig zu verlassen. Bei geschachtelten
Schleifen bzw. switch-Anweisungen wird jeweils nur die Schleife bzw. switch-
Anweisung verlassen, aus der mit break herausgesprungen wird. Die Abarbeitung
des Programms wird mit der Anweisung fortgesetzt, welche direkt der verlassenen
Schleife bzw switch-Anweisung folgt. Bild 8-9 zeigt die Anwendung der break-
Anweisung bei zwei ineinander verschachtelten for-Schleifen.

if (Bedingung) break;

{

}

for (.)

for (.)

 ...

... {

}

...

...

Bild 8-9 Beispiel einer break-Anweisung bei geschachtelten for-Schleifen

Beachten Sie, dass die Abarbeitung des Programms nach der schließenden Klam-
mer der inneren for-Schleife fortgesetzt wird.

Im folgenden Beispiel wird eine Endlosschleife mit Hilfe von break verlassen. Der
gezeigte Anmeldevorgang ist nur dann erfolgreich, wenn exakt "Anja" gefolgt von
<RETURN> eingegeben wird. Bei korrekter Eingabe wird die Meldung "Anmelde-
vorgang erfolgreich!" ausgegeben. Bei einer Falsch-Eingabe wird der Benut-
zer aufgefordert, einen erneuten Anmeldeversuch zu starten.

// Datei: Login.java

import java.util.Scanner;

public class Login
{
 public static void main (String[] args)
 {
 Scanner scanner = new Scanner (System.in);
 String eingabe = null;

 while (true)
 {
 System.out.print ("Bitte geben Sie Ihr Login ein: ");
 eingabe = scanner.next();

Kontrollstrukturen 267

 if (eingabe.equalsIgnoreCase ("Anja"))
 {
 System.out.println ("Anmeldevorgang erfolgreich!");
 break;
 }
 else
 {
 System.out.println ("Falsche Eingabe!");
 }
 }
 }
}

Der folgende Dialog wurde geführt:

Bitte geben Sie Ihr Login ein: Mathias
Falsche Eingabe!
Bitte geben Sie Ihr Login ein: Anja
Anmeldevorgang erfolgreich!

8.4.3 continue

Die continue-Anweisung ist wie die break-Anweisung eine Sprung-Anweisung. Im
Gegensatz zu break wird aber eine Schleife nicht verlassen, sondern der Rest der
Anweisungsfolge der Schleife übersprungen und ein neuer Schleifendurchgang ge-
startet. Die continue-Anweisung kann auf die for-, die while- und die do-while-
Schleife angewandt werden. Bei while und do-while wird nach continue direkt
zum Bedingungstest der Schleife gesprungen. Bei der for-Schleife wird zuerst
noch die Aktualisierungs-Ausdrucksliste (siehe Kap. 8.3.2) bewertet.

Angewandt wird die continue-Anweisung zum Beispiel, wenn an einer gewissen
Stelle des Schleifenrumpfes mit einem Test festgestellt werden kann, ob der "um-
fangreiche" Rest noch ausgeführt werden muss.

...

a) b)

c)

...

{

}

...continue;

while (z < 50)

...

{

}

...continue;

for (z = 0; z < 50; z++)

...

{

} while (z < 50);

...continue;

do

...

...

Bild 8-10 Kontrollfluss bei der continue-Anweisung für eine for-Schleife (a),

eine while-Schleife (b) und eine do-while-Schleife (c)

268 Kapitel 8

Das folgende Beispiel zeigt die Verwendung der continue-Anweisung in einer
while-Schleife. Es wird wiederum – wie im Beispiel mit der break-Anweisung – die
Eingabe des Benutzers auf die Übereinstimmung mit "Anja" überprüft.

// Datei: Login2.java

import java.util.Scanner;

public class Login2
{
 public static void main (String[] args)
 {
 Scanner scanner = new Scanner (System.in);
 String eingabe = null;

 while (true)
 {
 System.out.print ("Bitte geben Sie Ihr Login ein: ");
 eingabe = scanner.next();
 if (!eingabe.equalsIgnoreCase ("Anja"))
 {
 System.out.println ("Falsche Eingabe!");
 continue;
 }
 System.out.println ("Anmeldevorgang erfolgreich!");
 break;
 }
 }
}

Der folgende Dialog wurde geführt:

Bitte geben Sie Ihr Login ein: anja
Anmeldevorgang erfolgreich!

Es gibt die Möglichkeit, in Verbindung mit der continue-Anweisung Marken zu
verwenden. Soll nicht zum Bedingungstest des innersten Blocks mit der continue-
Anweisung gesprungen werden, sondern zum Bedingungstest eines äußeren Blocks,
so ist die Anweisung, die den Bedingungstest enthält, mit einer Marke amarke zu
versehen. Mit continue amarke kann dann dieser Bedingungstest angesprungen
werden. Da jedoch bei einer disziplinierten Programmierung das Springen an Marken
vermieden werden kann, wird hierzu kein Beispiel gezeigt.

Kontrollstrukturen 269

8.5 Übungen

Aufgabe 8.1: Iteration

8.1.1 Rechteck zeichnen

Das folgende Programm wurde umständlicherweise nur mit while- und do-
while-Schleifen geschrieben. Schreiben Sie das Programm so um, dass es
übersichtlicher wird. Verwenden Sie hierzu die for-Schleife.

// Datei: RechteckZeichnen.java

public class RechteckZeichnen
{
 static final int BREITE = 20;
 static final int HOEHE = 10;

 public static void main (String[] args)
 {
 int hoehe; // Zaehlvariable für die Hoehe
 int breite; // Zaehlvariable für die Breite
 breite = 0;
 do
 {
 System.out.print ("*");
 breite++;
 }
 while (breite < BREITE);

 System.out.println();
 hoehe = 0;
 while (hoehe < HOEHE - 2)
 {
 System.out.print ("*");

 breite = 1;
 do
 {
 System.out.print (" ");
 breite++;
 }
 while (breite < BREITE - 1);
 System.out.println ("*");
 hoehe++;
 }

 breite = 0;
 while (breite < BREITE)
 {
 System.out.print ("*");
 breite++;
 }
 System.out.println();
 }
}

270 Kapitel 8

8.1.2 Dreieck zeichnen

Schreiben Sie ein Programm, das ein gefülltes Dreieck auf dem Bildschirm
ausgibt. Geben Sie hierzu in jeder Zeile mit Hilfe einer Schleife zuerst die
entsprechende Anzahl von Leerzeichen aus. Verwenden Sie dann eine
zweite Schleife, um die entsprechende Anzahl von Sternchen ’*’ aus-
zugeben. Verwenden Sie zur Ausgabe der einzelnen Zeichen die Methode
System.out.print(). Eine Beispielausgabe könnte z. B. so aussehen:

 *

Aufgabe 8.2: Selektion

8.2.1 Mehrfache Alternative

Analysieren Sie das unten stehende Programm. Was erwarten Sie als Aus-
gabe? Schreiben Sie das Programm so um, dass es anstatt der if-else-
Anweisungen eine switch-Anweisung verwendet. Hier das Programm:

// Datei: Zahlen.java

import java.io.BufferedReader;
import java.io.InputStreamReader;

public class Zahlen
{
 // Verwenden Sie die Methode eingabeZahl(),
 // ohne sie genauer zu studieren
 public static int eingabeZahl()
 {
 int wert = -1;
 try
 {
 java.util.Scanner scanner =
 new java.util.Scanner (System.in);
 System.out.print ("Gib einen Wert ein: ");
 wert = scanner.nextInt();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(-1);
 }
 return wert;
 }

 public static void main (String[] args)
 {
 int zahl = eingabeZahl();

 System.out.print ("Die eingegebene Zahl ist ");

Kontrollstrukturen 271

 if (zahl == 1)
 {
 System.out.println ("EINS");
 }
 else if (zahl == 2)
 {
 System.out.println ("ZWEI");
 }
 else if (zahl == 3)
 {
 System.out.println ("DREI");
 }
 else if (zahl == 4)
 {
 System.out.println ("VIER");
 }
 else if (zahl == 5)
 {
 System.out.println ("FUENF");
 }
 else
 {
 System.out.println ("UNBEKANNT");
 }
 }
}

8.2.2 Vereinfachen einer if-else-Anweisung

Wie lassen sich folgende Codezeilen vereinfachen?

if (wert > 0)
{
 if (wert < 5)
 {
 System.out.println ("Der Wert ist innerhalb 0 und 5");
 }
 else
 {
 System.out.println ("Der Wert ist ausserhalb 0 und 5");
 }
}
else
{
 System.out.println ("Der Wert ist ausserhalb 0 und 5");
}

Aufgabe 8.3: Sprunganweisungen

8.3.1 Endlosschleife

Ein Programmierer hat im folgenden Programmcode einen Fehler eingebaut,
wodurch das Programm in einer Endlosschleife hängen bleibt. Eigentlich
sollte das Programm beim Erreichen des Werts 10 beendet werden. Behe-

272 Kapitel 8

ben Sie den Fehler mit Hilfe einer bedingten Sprunganweisung. Hier ist das
fehlerhafte Programm:

// Datei: Endlos.java

public class Endlos
{
 public static void main (String[] args)
 {
 int i = 0;
 while (true)
 {
 i++;
 System.out.println (i);
 }
 }
}

8.3.2 Ungerade Zahlen ausgeben

a) Ergänzen Sie das folgende Programmfragment unter Verwendung einer
continue-Anweisung, sodass nur die ungeraden Zahlen ausgegeben
werden. Die fehlenden Stellen sind mit markiert.

// Datei: UngeradeZahlen.java

import java.io.BufferedReader;
import java.io.InputStreamReader;

public class UngeradeZahlen
{
 // Verwenden Sie die Methode eingabeZahl(),
 // ohne sie genauer zu studieren
 public static int eingabeZahl()
 {
 int wert = -1;
 try
 {
 java.util.Scanner scanner =
 new java.util.Scanner (System.in);
 wert = scanner.nextInt();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(-1);
 }
 return wert;
 }

 public static void main (String[] args)
 {
 int startwert = -1;
 int endwert = -1;

Kontrollstrukturen 273

 System.out.println ("Dieses Programm gibt alle " +
 "ungeraden Zahlen zwischen " +
 "dem Startwert und Endwert aus.");
 System.out.print ("Gib den Startwert ein: ");
 startwert = eingabeZahl();

 do
 {
 System.out.print ("Gib den Endwert ein: ");
 endwert = eingabeZahl();
 System.out.println();
 } while (endwert < startwert);

 for (int i = startwert; i <= endwert; i++)
 {

 System.out.println
 ("Die Zahl " + i + " ist ungerade!");
 }
 }
}

b) Verändern Sie Ihre Lösung aus Teilaufgabe a), indem Sie die for-Schlei-

fe durch eine while-Schleife ersetzen. Wie verhält sich eine continue-
Anweisung bei einer while-Schleife? An welcher Stelle müssen Sie auf-
passen?

Blöcke und Methoden

 Methoden

Methodenkopf

 Block

 Block
Methoden -

rumpf

9.1 Blöcke und ihre Besonderheiten
9.2 Methodendefinition und -aufruf
9.3 Polymorphie von Operationen
9.4 Überladen von Methoden
9.5 Parameterliste variabler Länge
9.6 Parameterübergabe beim Programmaufruf
9.7 Iteration und Rekursion
9.8 Übungen

9 Blöcke und Methoden

Ein Block ist eine Folge von Anweisungen, die sequenziell hintereinander ausgeführt
wird. Eine Methode ist eine Folge von Anweisungen, die unter einem Namen aufge-
rufen werden kann. Diese beiden Sätze enthalten bereits die Definition von Block
und Methode. Den Aufbau von Blöcken und Methoden und die Verwendung lokaler
Variablen als Zwischenspeicher für Daten benötigen Sie als grundlegendes Hand-
werkszeug beim Programmieren.

9.1 Blöcke und ihre Besonderheiten

Der Block als Kontrollstruktur für die Sequenz wurde bereits in Kapitel 8.1 vorge-
stellt. Die Anweisungen eines Blockes werden durch Blockbegrenzer – in C, C++ und
Java sind dies die geschweiften Klammern – zusammengefasst. Statt Block ist auch
die Bezeichnung zusammengesetzte Anweisung üblich.

Einen Block benötigt man aus zwei Gründen:

• zum einen ist der Rumpf einer Methode ein Block,
• zum anderen gilt ein Block syntaktisch als eine einzige Anweisung.

Daher kann ein Block auch da stehen, wo von der Syntax her nur
eine einzige Anweisung zugelassen ist, wie z. B. im if- oder else-
Zweig einer if-else-Anweisung.

Ein Block in Java hat den folgenden Aufbau:

{
 Anweisungen
}

Nach dem Blockbegrenzer, der schließenden geschweiften Klammer, kommt kein
Strichpunkt.

9.1.1 Die Deklarationsanweisung

Während in einem Block in der Programmiersprache C zuerst alle Vereinbarungen
angeschrieben werden mussten und erst dahinter die Anweisungen:

{
 Vereinbarungen /* Aufbau eines */
 Anweisungen /* Blockes in C */
}

können seit C++ in einem Block Vereinbarungen und Anweisungen "wild" gemischt
werden. Möglich wurde dies durch das von Stroustrup – dem Vater von C++ – aus-
gedachte Konzept der Deklarationsanweisung. Mit diesem Konzept wird jede Ver-
einbarung als Anweisung gesehen und daher ist die Reihenfolge von Vereinba-
rungen und "echten" Anweisungen nicht mehr fest vorgegeben. Java folgt hier C++

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_9,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Blöcke und Methoden 277

und daher ist es nicht erforderlich, dass zu Beginn eines Blockes erst alle Verein-
barungen angeschrieben werden, auch wenn dies übersichtlicher wäre. In Bild 9-1 ist
die zulässige Blockstruktur für Java dargestellt:

 {

 Deklarationsanweisungen

 Anweisungen

 Deklarationsanweisungen

 Anweisungen

}

Bild 9-1 Zulässige Blockstruktur in Java

In Java können an einer beliebigen Stelle innerhalb eines Blockes
Variablen mit Hilfe einer Deklarationsanweisung definiert werden.

9.1.2 Die leere Anweisung und der leere Block

Eine so genannte leere Anweisung besteht nur aus einem leeren Block {} oder
einem Strichpunkt wie in folgendem Beispiel:

.
// primitive Warteschleife des Programmes
for (int i = 0; i < 100000; i++)
 ; // Der Strichpunkt ist fett gedruckt,
. // damit er auffällt.

Ist an einer von der Syntax für eine Anweisung vorgesehenen Stelle in
einem Programm keine Anweisung notwendig, so muss dort eine
leere Anweisung, d. h. ein ; oder ein {}, stehen, um die Syntax zu er-
füllen.

Damit man ein Semikolon als leere Anweisung besser erkennt, wird üblicherweise
das Semikolon für sich auf eine eigene Zeile geschrieben.

9.1.3 Lokale Variable

Variable, die innerhalb eines Blockes vereinbart werden, sind lokal für diesen Block
und werden lokale Variable genannt. Sie werden angelegt, wenn der entsprechende
Block aufgerufen wird und im Programmcode des Blocks die Definition84 der Variab-
len erreicht wird.

84 In Java bedeutet die Vereinbarung einer Variablen stets die Definition dieser Variablen.

278 Kapitel 9

Ein Block zählt syntaktisch als eine einzige Anweisung. Im Gegensatz
zu einer normalen Anweisung besteht bei einem Block jedoch die
Möglichkeit, Block-lokale Variable einzuführen.

Lokale Variable werden durch das Laufzeitsystem auf dem Stack angelegt. Beim
Verlassen des Blocks, d. h. beim Erreichen der schließenden geschweiften Klammer,
werden die lokalen Variablen wieder ungültig und werden auf dem Stack zum Über-
schreiben freigegeben.

9.1.4 Schachtelung von Blöcken

Da eine Anweisung eines Blocks selbst wieder ein Block sein kann, können Blöcke
geschachtelt werden.

Äußerer
Block

Innerer
Block

{

 {

 }

}

Bild 9-2 Schachtelung von Blöcken

In Java können in jedem Block – auch in inneren Blöcken – Variable
definiert werden.

In einem inneren Block definierte Variable sind nur innerhalb
dieses Blockes sichtbar, in einem umfassenden Block sind sie
unsichtbar. Variable, die in einem umfassenden Block definiert sind,
sind für einen folgenden inneren Block auch sichtbar.

Bei Java sind identische Namen im inneren und äußeren Block
nicht zugelassen. Es resultiert ein Kompilierfehler.

Das folgende Programm demonstriert die Sichtbarkeit von Variablen in inneren und
äußeren Blöcken. Auf Variable, die in äußeren Blöcken definiert wurden, kann in
inneren Blöcken zugegriffen werden.

// Datei: BlockTest.java

public class BlockTest
{

Blöcke und Methoden 279

 public void zugriff()
 {
 int aussen = 7;
 if (aussen == 7)
 {
 int innen = 8;
 System.out.print ("Zugriff auf die Variable");
 System.out.println (" des äußeren Blocks: " + aussen);
 System.out.print ("Zugriff auf die Variable");
 System.out.println (" des inneren Blocks: " + innen);
 }
 }

 public static void main (String[] args)
 {
 BlockTest ref = new BlockTest();
 ref.zugriff();
 }
}

Die Ausgabe des Programms ist:

Zugriff auf die Variable des äußeren Blocks: 7
Zugriff auf die Variable des inneren Blocks: 8

9.1.5 Gültigkeit, Sichtbarkeit und Lebensdauer

Im Folgenden werden neben lokalen Variablen auch Datenfelder betrachtet.

Die Lebensdauer ist die Zeitspanne, in der die virtuelle Maschine der
Variablen einen Platz im Speicher zur Verfügung stellt. Mit anderen
Worten, während ihrer Lebensdauer besitzt eine Variable einen Spei-
cherplatz.

Die Gültigkeit einer Variablen bedeutet, dass an einer Programm-
stelle der Namen einer Variablen dem Compiler durch eine Verein-
barung bekannt ist.

Die Sichtbarkeit einer Variablen bedeutet, dass man von einer Pro-
grammstelle aus die Variable sieht, das heißt, dass man auf sie über
ihren Namen zugreifen kann.

Eine Variable kann aber gültig sein und von einer Variable desselben Namens ver-
deckt werden und deshalb nicht sichtbar sein. Ein lokaler Variablenname kann ein
Datenfeld mit demselben Namen verdecken. Dann ist das Datenfeld zwar gültig,
aber nicht sichtbar. Es ist aber möglich, mit Hilfe der this-Referenz (siehe Kap.
10.3) auf eine verdeckte Instanzvariable zuzugreifen. Auf eine verdeckte Klassen-

280 Kapitel 9

variable kann über den Klassennamen oder die this-Referenz zugegriffen werden.
Das folgende Programm zeigt den Zugriff auf ein verdecktes Datenfeld:

// Datei: Sichtbar.java

public class Sichtbar
{
 private int x = 0; // Datenfeld x

 public void zugriff()
 {
 int x = 7; // lokale Variable x

 // Ausgabe der lokalen Variablen x
 System.out.println ("Lokale Variable x: " + x);

 // this zeigt auf das aktuelle Objekt und damit ist this.x die
 // x-Komponente des aktuellen Objektes
 // Ausgabe des Datenfeldes x
 System.out.println ("Datenfeld x: " + this.x);
 }

 public static void main (String[] args)
 {
 Sichtbar sicht = new Sichtbar();
 sicht.zugriff();
 }
}

Die Ausgabe des Programms ist:

Lokale Variable x: 7
Datenfeld x: 0

Wird das Verdecken von Datenfeldern durch lokale Variablen außer Acht gelassen,
sind in Java Sichtbarkeits- und Gültigkeitsbereich identisch, wie in folgender Tabelle
zu sehen ist:

Variable Sichtbarkeits- und
Gültigkeitsbereich

Lebensdauer

Lokal

im Block einschließlich inneren
Blöcken

Block ab Definition

Instanzvariable

im Objekt selbst85

vom Anlegen des Objektes
bis das Objekt nicht mehr
referenziert wird

Klassenvariable

in allen Objekten der entspre-
chenden Klasse und in allen
zugehörigen Klassenmethoden85

vom Laden der Klasse bis
die Klasse nicht mehr
benötigt wird

Tabelle 9-1 Sichtbarkeit, Gültigkeit und Lebensdauer

85 Bei entsprechenden Zugriffsmodifikatoren kann auch aus anderen Klassen zugegriffen werden.

Darauf wird an späterer Stelle eingegangen.

Blöcke und Methoden 281

Bei lokalen Variablen fallen Gültigkeit und Sichtbarkeit zusammen. Bei
Datenfeldern muss man prinzipiell zwischen Gültigkeit und Sichtbar-
keit unterscheiden.

9.2 Methodendefinition und -aufruf

Methoden stellen Anweisungsfolgen dar, die unter einem Namen aufgerufen werden
können. Methoden werden stets für Objekte – im Falle von Instanzmethoden – bzw.
Klassen – im Falle von Klassenmethoden – aufgerufen.

Wie aus Kapitel 6.3.2.1 bekannt, besteht die Definition einer Methode in Java aus der
Methodendeklaration und dem Methodenrumpf:

Methodendeklaration // Methodenkopf
{ //
 // Methodenrumpf
} //

Methoden können einen Rückgabewert haben. Sie können auch Übergabeparameter
besitzen. Der Methodenrumpf stellt einen Block dar. Im Methodenrumpf stehen die
Anweisungen der Methode.

Die Methodendeklaration sieht im allgemeinen Fall folgendermaßen aus:

Modifikatoren Rückgabetyp Methodenname (Typ1 formalerParameter1,
 Typ2 formalerParameter2,

 TypN formalerParameterN)

Ein Beispiel für einen Modifikator ist das Schlüsselwort static. Ein Beispiel für
einen Rückgabetyp ist int.

9.2.1 Parameterlose Methoden

Bei parameterlosen Methoden wie z. B.:

int getX() // Deklaration
{ // Definition des Rumpfes
 return x; // der parameterlosen
} // Methode getX()

folgt in der Deklaration ein leeres Paar runder Klammern dem Methodennamen.
Der Aufruf erfolgt durch Anschreiben des Methodennamens, gefolgt von einem
leeren Paar runder Klammern, z. B.:

alpha = ref.getX(); // Aufruf

Dabei stellt ref eine Referenz auf ein Objekt dar86.

86 Klassenmethoden können auch über den Klassennamen aufgerufen werden.

282 Kapitel 9

9.2.2 Methoden mit Parametern

Hat eine Methode formale Parameter – das sind die Parameter in den runden
Klammern der Deklaration der Methode – so muss der Aufruf mit aktuellen Para-
metern erfolgen (siehe auch Kap. 9.2.4).

Beispiel:

void setX (int var) // var ist der Name des formalen Parame-
{ // ters. Der Typ von var ist int.
 x = var;
}

Der Aufruf von setX() kann beispielsweise erfolgen durch:

ref.setX (intAusdruck);

Hier ist intAusdruck der aktuelle Parameter.

9.2.3 Der Rückgabewert – die return-Anweisung

Die Methodendeklaration einer parameterlosen Methode beinhaltet im Minimalfall
den Rückgabetyp sowie den Namen der Methode und ein Paar runder Klammern.
Anstelle eines Rückgabetyps kann auch das Schlüsselwort void stehen. Eine
Methode zur Rückgabe des Wertes eines Datenfeldes x könnte wie folgt aussehen:

int getX()
{
 return x;
}

Mit Hilfe der return-Anweisung ist es möglich, den Wert eines Ausdrucks an den
Aufrufer der Methode zurückzugeben. Nach return kann ein Ausdruck stehen:

return expression;

Im obigen Beispiel steht x als Ausdruck hinter return. Es kann aber auch ein belie-
biger anderer Ausdruck wie beispielsweise x * x hinter return stehen. Der Typ
des zurückzugebenden Wertes steht vor dem Methodennamen. Der zurückgegebene
Wert ist im Beispiel also vom Typ int. Zurückgegeben wird der Wert des Ausdrucks
hinter dem return, im Beispiel also der Wert von x. Stimmen Rückgabetyp und Typ
des zurückzugebenden Ausdrucks nicht überein, so erfolgt eine implizite Typkon-
vertierung in den Rückgabetyp der Methode, wenn die Typen verträglich sind (siehe
Kap. 7.7.3.5). Sind die Typen nicht verträglich, so resultiert ein Kompilierfehler.

Wird das Schlüsselwort void statt eines Rückgabetyps angegeben,
so ist kein return notwendig. Es kann aber jeder Zeit mit return die
Abarbeitung der Methode abgebrochen werden. Damit wird ein so-
fortiger Rücksprung zur Aufrufstelle bewirkt. In diesem Fall darf mit der
return-Anweisung kein Wert zurückgegeben werden.

Blöcke und Methoden 283

Wird keine return-Anweisung angegeben, so wird der Methodenrumpf bis zu
seinem Ende abgearbeitet. Ist nicht void, sondern ein Rückgabetyp angegeben, so
ist ein return erforderlich und es muss immer ein zum Rückgabetyp kompatibler
Ausdruck hinter return stehen.

Eine return-Anweisung ohne einen nachfolgenden Ausdruck beendet die Ausfüh-
rung einer Methode, liefert aber keinen Wert an den Aufrufer. Gleiches gilt, wenn das
Ende des Programmtextes einer Methode – also die abschließende geschweifte
Klammer des Methodenrumpfes – erreicht wird.

Eine Methode kann mit return nur einen einzigen Wert zurück-
geben. Möchte man mehrere Werte zurückgeben, so kann dies über
Referenzen auf Objekte in der Parameterliste gehen oder über die
Schaffung eines Objektes mit mehreren Datenfeldern, auf das mit
return eine Referenz zurückgegeben wird.

Gibt die Methode einen Wert zurück, so kann er – muss aber nicht – abgeholt wer-
den, z. B. indem man den Rückgabewert einer Variablen zuweist:

alpha = ref.getX();

oder an eine andere Methode übergibt:

System.out.println (ref.getX());

Ebenso ist es erlaubt, den Rückgabewert wie in folgendem Beispiel zu ignorieren.
Die Methodendeklaration soll

boolean insert (String s)

lauten. Dabei soll insert() die Instanzmethode eines Objektes sein, auf das ref
zeigt. Der folgende Methodenaufruf ist dann erlaubt:

ref.insert ("Hanna");

An der aufrufenden Stelle darf der Wert, den eine Methode liefert,
ignoriert werden. Mit anderen Worten, man kann eine Methode, die
einen Rückgabewert hat, einfach aufrufen, ohne den Rückgabewert
abzuholen.

9.2.4 Formale und aktuelle Parameter

In der Parameterliste der Methodendeklaration werden so genannte formale Para-
meter aufgelistet:

Modifikatoren Rückgabetyp Methodenname (Typ1 formalerParameter1,
 Typ2 formalerParameter2,

 TypN formalerParameterN)

284 Kapitel 9

Mit den formalen Parametern wird festgelegt, wie viele Übergabe-
parameter existieren, von welchem Typ diese sind und welche Rei-
henfolge sie haben.

Die Bezeichnung formal soll andeuten, dass sie zur Beschreibung der Methode
verwendet werden.

Beim Aufruf werden den formalen Parametern die Werte der aktuel-
len Parameter zugewiesen.

Die formalen Parameter sind Variablen, welche die Werte der aktuellen Parameter
entgegennehmen. Mit den Werten der aktuellen Parameter wird dann die Methode
ausgeführt.

Beim Aufruf einer Methode mit Parametern finden Zuweisungen statt.
Der Wert eines aktuellen Parameters wird dem entsprechenden for-
malen Parameter zugewiesen. Eine solche Aufrufschnittstelle wird
als call by value-Schnittstelle bezeichnet.

Die Namen der formalen Parameter können völlig frei vereinbart werden. Sie sind nur
lokal in der jeweiligen Methode sichtbar. Der formale Parameter kann denselben
Namen wie der aktuelle Parameter haben, muss es aber nicht.

Hat beispielsweise die Methode setX() den formalen Parameter newX vom Typ
int, wie aus der Methodendeklaration void setX (int newX) ersichtlich ist, so
wird der aktuelle Parameter, der beim Methodenaufruf ref.setX (intAusdruck)
übergeben wird, dem formalen Parameter beim Aufruf zugewiesen. Beim Aufruf
wird der formale Parameter als spezielle lokale Variable angelegt und mit dem
Wert des aktuellen Parameters initialisiert. Dies kann man sich für das obige
Beispiel so vorstellen, als ob quasi eine manuelle Initialisierung der lokalen Variablen
newX bei ihrer Definition durchgeführt würde:

int newX = intAusdruck;

Ein formaler Parameter hat den Charakter einer lokalen Variablen. Mit
anderen Worten, ein formaler Parameter stellt eine spezielle lokale
Variable dar. Dies hat zur Konsequenz, dass eine im Methodenrumpf
definierte lokale Variable nicht gleich heißen darf wie ein formaler
Parameter.

Ein formaler Parameter stellt stets eine Variable dar. Ein aktueller
Parameter muss keine Variable sein. Ein aktueller Parameter ist
irgendein Ausdruck eines passenden Typs, den der Aufrufer an
den formalen Parameter übergibt.

Blöcke und Methoden 285

9.2.5 Übergabe von einfachen Datentypen und Referenzen

Generell finden bei Übergabeparametern und Rückgabewerten Kopiervorgänge
statt. Unabhängig davon, ob es sich um einfache Datentypen oder Referenzen han-
delt, werden Werte kopiert. Bei einfachen Datentypen stellen die Werte Zeichen,
Zahlen oder Boolesche Werte der Anwendung dar, im Falle von Referenzen werden
Adressen kopiert. Adressen sind für den Anwender unsichtbare Größen. Sie stellen
Verweise dar und erlauben den Zugriff auf Objekte.

Dies soll das nachfolgende Beispielprogramm für Übergabeparameter verdeutlichen.
Der formale Parameter par der Methode methode1() ist von einem einfachen
Datentyp, der formale Parameter refPara der Methode methode2() stellt eine
Referenz auf ein Objekt der Klasse RefTyp dar. In beiden Fällen wird der Wert des
aktuellen Parameters in den formalen Parameter kopiert. Die Änderungen, welche
die Methode methode1() an der Variablen par vornimmt, haben keine Auswirkung
auf den aktuellen Übergabeparameter var. Genauso hat eine Änderung an der Re-
ferenzvariablen refPara keine Auswirkung auf die Referenzvariable ref. Das Ent-
scheidende jedoch ist, dass über refPara auf ein Objekt zugegriffen werden kann
und über diese Referenz die Datenfelder dieses Objektes geändert werden können.
Hier das Beispiel:

// Datei: Parameter.java

class RefTyp
{
 int x;
}

public class Parameter
{
 public static void methode1 (int par)
 {
 par = 2; // Änderung an der Kopie
 }

 public static void methode2 (RefTyp refPara)
 { // Änderung an dem Datenfeld x des Objektes,
 refPara.x = 2; // auf das refPara zeigt
 }

 public static void main (String[] args)
 {
 int var = 1;
 RefTyp ref = new RefTyp();
 ref.x = 1;

 System.out.println ("Übergabeparameter ist von einem" +
 " einfachen Datentyp");
 System.out.println ("aktueller Parameter vor Aufruf : "+ var);
 methode1 (var);
 System.out.println ("aktueller Parameter nach Aufruf: "+ var);

 System.out.println ("Übergabeparameter ist ein Referenztyp");
 System.out.println ("Datenfeld vor Aufruf : " + ref.x);

286 Kapitel 9

 methode2 (ref);
 System.out.println ("Datenfeld nach Aufruf: " + ref.x);
 }
}

Die Ausgabe des Programms ist:

Übergabeparameter ist von einem einfachen Datentyp
aktueller Parameter vor Aufruf : 1
aktueller Parameter nach Aufruf: 1
Übergabeparameter ist ein Referenztyp
Datenfeld vor Aufruf : 1
Datenfeld nach Aufruf: 2

Bei einfachen Datentypen als Übergabeparameter wirken sich Änderungen am Wert
des formalen Parameters – genauso wie bei Referenztypen – nur auf die Kopie aus –
es gibt keinerlei Rückwirkungen auf das Original.

Da jedoch im Falle von Referenzen Kopie und Original dasselbe Objekt referen-
zieren, kann aus der Methode heraus über den Zugriff mit Hilfe des formalen Para-
meters das Original verändert werden. Das Bild 9-3 zeigt, wie die Referenz ref auf
das Objekt der Klasse RefTyp zeigt. Beim Aufruf der Methode methode2() wird
dem formalen Parameter refPara der Wert des aktuellen Parameters ref zuge-
wiesen. Nach dieser Zuweisung zeigen beide Referenzen auf das gleiche Objekt.

 Heap

ref

Objekt der
Klasse
RefTyp refPara

refPara = ref

Bild 9-3 Der formale Parameter referenziert dasselbe Objekt wie der aktuelle Parameter

Ist der formale Parameter von einem einfachen Datentyp, so wird der Wert des
aktuellen Parameters in den formalen Parameter kopiert. Damit sind formaler und ak-
tueller Parameter vollständig entkoppelt. Änderungen am formalen Parameter haben
keine Auswirkungen auf den aktuellen Parameter. Da der Wert des aktuellen Para-
meters zugewiesen wird, braucht der aktuelle Parameter keine Variable zu sein,
sondern kann ein beliebiger Ausdruck sein. Da der Wert übergeben wird, spricht
man auch von einem call by value.

Auf Objekte wird in Java über Referenzen zugegriffen. Beim Aufruf einer Methode
wird dem formalen Parameter der Wert des aktuellen Parameters zugewiesen (call
by value), d. h. eine Referenzvariable als formaler Parameter erhält als Kopie die Re-
ferenz auf das Objekt, das der aktuelle Parameter referenziert. Es gilt auch hier, dass
formaler und aktueller Parameter entkoppelt sind. Änderungen am formalen Para-
meter haben keine Auswirkungen auf den aktuellen Parameter. Der aktuelle Para-
meter kann ein Ausdruck sein. Dieser Ausdruck muss aber eine Referenz als Rück-
gabewert haben.

Blöcke und Methoden 287

Da eine Referenz kopiert wird und man mit Hilfe dieser Referenz auf ein Objekt zu-
greifen kann, spricht man auch von einem simulierten call-by-reference. Tatsäch-
lich liegt jedoch wie bei einfachen Datentypen eine call-by-value Schnittstelle vor,
da der Wert des aktuellen Parameters in den formalen Parameter kopiert wird.

Sowohl einfache Datentypen (int, char, ...) als auch Referenzen
werden "by value" übergeben. Da Referenzen aber auf Objekte zei-
gen, wird quasi ein "call by reference" simuliert.

Werden Referenzen übergeben, so referenziert der formale Parameter
dasselbe Objekt wie der aktuelle Parameter. Eine Operation auf dem
formalen Referenzparameter erfolgt auf dem Objekt, auf das die
Referenz zeigt, in anderen Worten auf dem referenzierten Objekt.

9.2.6 Auswertungsreihenfolge der aktuellen Parameter

Die Auswertung der aktuellen Parameter in der Parameterliste erfolgt von links nach
rechts. Die genauen Abläufe beim Aufruf einer Methode sollen am folgenden Beispiel
erklärt werden:

// Datei: Auswertung.java

public class Auswertung
{
 public static void main (String[] args)
 {
 int aktuell = 1;

 methode (aktuell++, aktuell);
 System.out.println ("Nach Methodenaufruf:");
 System.out.println ("Wert von aktuell: " + aktuell);
 }

 public static void methode (int formalA, int formalB)
 {
 System.out.println ("Innerhalb der Methode:");
 System.out.println ("Wert von formalA: " + formalA);
 System.out.println ("Wert von formalB: " + formalB);
 }
}

Die Ausgabe des Programms ist:

Innerhalb der Methode:
Wert von formalA: 1
Wert von formalB: 2
Nach Methodenaufruf:
Wert von aktuell: 2

288 Kapitel 9

Beim Aufruf der Methode methode() laufen folgende Zuweisungen ab:

formalA = aktuell++;
formalB = aktuell;

Als aktuelle Werte werden die Rückgabewerte der Ausdrücke aktuell++ und
aktuell an die formalen Parameter der Methode methode() zugewiesen. In Java
werden die aktuellen Parameter von links nach rechts bewertet. Zuerst wird also
der erste aktuelle Parameter ausgewertet. Der Rückgabewert 1 des Ausdrucks
aktuell++ wird dem ersten formalen Parameter zugewiesen. Nach der Bewertung
des ersten aktuellen Parameters hat die Variable aktuell den Wert 2. Dieser Wert
wird dem zweiten formalen Parameter zugewiesen.

9.2.7 Beispielprogramm für die Verwendung von Methoden

Im Folgenden soll ein größeres Beispiel die Verwendung von verschiedenen Metho-
den zeigen. Die Klasse IntArray hat die Aufgabe, ein int-Array zu kapseln und
komfortable Methoden bereitzustellen:

• Die beiden Methoden min() und max() geben jeweils den minimalen bzw. maxi-
malen Wert im Array zurück.

• Die Methode average() hat die Aufgabe, den Durchschnitt aller Arraywerte zu
berechnen.

• Die Methode expand() hat die Aufgabe, das Array zu vergrößern. Die Zahl der
zusätzlich anzulegenden Array-Elemente wird durch den Wert des Übergabepara-
meters festgelegt.

• Die Methode sort() hat die Aufgabe, das Array zu sortieren. Der kleinste Wert
soll sich nach dem Sortieren im Element mit dem Index 0 befinden. Als Sortier-
verfahren wird der "Bubble Sort"-Algorithmus benutzt. Beim Bubble Sort werden
jeweils benachbarte Elemente vertauscht, wenn sie nicht wie gewünscht geordnet
sind. Dabei steigt das jeweils größte Element wie eine Blase im Wasser auf, was
dem Verfahren seinen Namen gegeben hat.

• Die Methode swap() tauscht den Inhalt von zwei Array-Elementen mit gegebenen
Indexwerten.

Hier das Programm:

// Datei: IntArray.java

public class IntArray
{
 private int[] arrayOfInt = null;

 public IntArray()
 {
 arrayOfInt = new int [1];
 }

Blöcke und Methoden 289

 // Erweitern der Arraygröße um anzahlElemente Array-Elemente.
 public void expand (int anzahlElemente)
 {
 int size = arrayOfInt.length;
 // neues größeres Array anlegen
 int[] tmp = new int [size + anzahlElemente];
 // bestehendes zu kleines Array umkopieren
 for (int i = 0; i < size; i++)
 {
 tmp [i] = arrayOfInt [i];
 }
 arrayOfInt = tmp;
 }

 public int max()
 {
 int max = arrayOfInt [0];
 for (int element : arrayOfInt)
 {
 // Ist ein Element größer als das vorliegende Maximum, so
 // wird sein Wert zum neuen Maximum.
 if (element > max)
 max = element;
 }
 return max;
 }

 public int min()
 {
 int min = arrayOfInt [0];
 for (int element : arrayOfInt)
 {
 if (element < min)
 min = element;
 }
 return min;
 }

 public void put (int index, int newValue)
 {
 // Liegt die Position, an die der neue Wert geschrieben werden
 // soll, außerhalb der aktuellen Dimension, dann muss dass
 // Array vergrößert werden.
 if (arrayOfInt.length <= index)
 expand (index - arrayOfInt.length + 1);
 arrayOfInt [index] = newValue;
 }

 public int get (int index)
 {
 if (arrayOfInt.length > index)
 return arrayOfInt [index];
 // Fehlerfall, der angegebene Index ist zu groß.
 return -1;
 }

290 Kapitel 9

 public void swap (int index1, int index2)
 {
 if ((index1 < 0) || (index2 < 0))
 return;

 int size = arrayOfInt.length;

 if ((index1 > size) || (index2 > size))
 return;

 int hilf = arrayOfInt [index1];
 arrayOfInt [index1] = arrayOfInt [index2];
 arrayOfInt [index2] = hilf;
 }

 public float average()
 {
 // Es ist ein Cast erforderlich, da Gleitpunktkonstanten vom
 // Typ double sind.
 float average = (float) 0.0;

 for (int element : arrayOfInt)
 {
 average += element;
 }

 average = average / arrayOfInt.length;
 return average;
 }

 public void sort()
 {
 // Anmerkung: Zu Beginn des bubblesort-Algorithmus ist die
 // Obergrenze gleich der Dimension des zu sortierenden
 // Arrays, d. h. gleich der Anzahl seiner Elemente
 // Hier der bubblesort-Algorithmus:
 // while Obergrenze > Index des 2. Feldelementes:
 // Gehe in einer Schleife vom 2. bis zum letzten zu sortie-
 // renden Array-Element (dessen Array-Index ist um 1 geringer
 // als die Obergrenze). Wenn ein Element kleiner ist als sein
 // Vorgänger, werden beide vertauscht. (Hinweis: Nach dem
 // ersten Durchlauf steht das größte Element am Ende). Nun
 // wird die Obergrenze um 1 verringert.

 int obergrenze = arrayOfInt.length;
 while (obergrenze > 1)
 {
 for (int lauf = 1; lauf < obergrenze; lauf++)
 {
 if (arrayOfInt [lauf] < arrayOfInt [lauf - 1])
 swap (lauf, lauf - 1);
 }
 obergrenze--;
 }
 }

Blöcke und Methoden 291

 public void print()
 {
 System.out.println ("Ausgabe des Array-Inhaltes: ");
 for (int i = 0; i < arrayOfInt.length; i++)
 {
 System.out.print ('\t' + "Index: " + i + " Wert: ");
 System.out.println (arrayOfInt [i]);
 }
 }
}

// Datei: IntArrayTest.java

public class IntArrayTest
{
 public static void main (String[] args)
 {
 int[] array = {4, 19, 20, 7, 36, 18, 1, 5};
 IntArray intArray = new IntArray();

 // Das intArray mit den Werten von array füllen
 for (int i = 0; i < array.length; i++)
 {
 intArray.put (i, array [i]);
 }
 intArray.print();
 System.out.println ("Minimum: " + intArray.min());
 System.out.println ("Maximum: " + intArray.max());
 System.out.println ("Average: " + intArray.average());
 intArray.sort();
 intArray.print();
 }
}

Die Ausgabe des Programms ist:

Ausgabe des Array-Inhaltes:
 Index: 0 Wert: 4
 Index: 1 Wert: 19
 Index: 2 Wert: 20
 Index: 3 Wert: 7
 Index: 4 Wert: 36
 Index: 5 Wert: 18
 Index: 6 Wert: 1
 Index: 7 Wert: 5
Minimum: 1
Maximum: 36
Average: 13.75
Ausgabe des Array-Inhaltes:
 Index: 0 Wert: 1
 Index: 1 Wert: 4
 Index: 2 Wert: 5
 Index: 3 Wert: 7
 Index: 4 Wert: 18
 Index: 5 Wert: 19
 Index: 6 Wert: 20
 Index: 7 Wert: 36

292 Kapitel 9

9.3 Polymorphie von Operationen

Es ist problemlos möglich, dass Methoden in verschiedenen Klassen mit gleichen
Methodenköpfen existieren. Dies liegt daran, dass eine Methode ja zu einer Klasse
gehört und jede Klasse einen eigenen Namensraum darstellt.

Eine Klasse stellt einen Namensraum dar. Damit ist es möglich, dass
verschiedene Klassen dieselbe Operation implementieren, in anderen
Worten, derselbe Methodenkopf kann in verschiedenen Klassen auf-
treten.

Je nach Klasse kann eine Operation in verschiedenen Implementie-
rungen – sprich in verschiedener Gestalt – auftreten. Man spricht hier-
bei auch von der Vielgestaltigkeit (Polymorphie) von Operationen.

Ein einfaches Beispiel ist die Methode print(). Alle Klassen, die ihren Objekten die
Möglichkeit geben wollen, auf dem Bildschirm Informationen über sich auszugeben,
stellen eine print()-Methode zur Verfügung. Von außen betrachtet macht die
print()-Methode – unabhängig davon, zu welcher Klasse sie gehört – immer das
Gleiche – sie gibt Informationen auf dem Bildschirm aus. Vom Standpunkt der Imple-
mentierung aus sind die Methoden grundverschieden, weil jede print()-Methode
einen für die Klasse spezifischen Methodenrumpf hat. Das folgende Beispiel zeigt die
Polymorphie von Methoden anhand der Klasse Person2 und der Klasse Bruch2.
Beide Klassen implementieren jeweils eine print()-Methode. Die Klasse Poly-
morphie dient als Testklasse. In der main()-Methode wird ein Objekt von beiden
Klassen erzeugt und die print()-Methode für jedes erzeugte Objekt aufgerufen.

// Datei: Person2.java

public class Person2
{
 private String name;
 private String vorname;
 private int alter;

 // Konstruktur für die Initialisierung der Datenfelder
 public Person2 (String name, String vorname, int alter)
 {
 this.name = name;
 this.vorname = vorname;
 this.alter = alter;
 }

 public void print()
 {
 System.out.println ("Name : " + name);
 System.out.println ("Vorname : " + vorname);
 System.out.println ("Alter : " + alter);
 }
}

Blöcke und Methoden 293

// Datei: Bruch2.java

public class Bruch2
{
 private int zaehler;
 private int nenner;

 public Bruch2 (int zaehler, int nenner)
 {
 this.zaehler = zaehler;
 this.nenner = nenner;
 }

 public void print()
 {
 System.out.print ("Der Wert des Quotienten von " + zaehler);
 System.out.print (" und " + nenner + " ist " + zaehler
 + " / ");
 System.out.println (nenner);
 }
}

// Datei: Polymorphie.java

public class Polymorphie
{
 public static void main (String[] args)
 {
 Bruch2 b;
 b = new Bruch2 (1, 2);
 b.print();

 Person2 p;
 p = new Person2 ("Müller", "Fritz", 35);
 p.print();
 }
}

Die Ausgabe des Programms ist:

Der Wert des Quotienten von 1 und 2 ist 1 / 2
Name : Müller
Vorname : Fritz
Alter : 35

Jedes Objekt trägt die Typinformation, von welcher Klasse es ist,
immer bei sich. Das heißt, dass ein Objekt immer weiß, zu welcher
Klasse es gehört. Da ein Methodenaufruf immer an ein Objekt (im
Falle von Instanzmethoden) bzw. an die Klasse (im Falle von Klassen-
methoden) gebunden ist, ist immer eine eindeutige Zuordnung eines
Methodenaufrufs möglich.

294 Kapitel 9

9.4 Überladen von Methoden

In der Regel gibt man verschiedenen Methoden verschiedene Namen. Oftmals ver-
richten aber verschiedene Methoden dieselbe Aufgabe, allerdings für verschiedene
Datentypen der Übergabeparameter. Denken Sie z. B. an eine Ausgabe-Methode,
welche die Ausgabe eines Übergabeparameters auf den Bildschirm bewerkstelligt.
Je nach Datentyp des Parameters braucht man eine andere Methode. Jede der
Methoden muss dabei im Detail etwas anderes tun, um die Ausgabe durchzuführen.
Erlaubt eine Sprache das Überladen von Methoden (engl. overloading), so können
jedoch alle diese Methoden denselben Namen tragen. Anhand des Datentyps des
Übergabeparameters erkennt der Compiler, welche der Methoden gemeint ist. Der
Nutzen ist, dass man gleichartige Methoden mit dem gleichen Namen ansprechen
kann. Die Verständlichkeit der Programme kann dadurch erhöht werden.

Ein Überladen erfolgt durch die Definition verschiedener Methoden
mit gleichem Methodennamen, aber verschiedenen Parameter-
listen. Der Aufruf der richtigen Methode ist Aufgabe des Compilers.

Überladen wird der Methodenname, da er nun für verschiedene Methoden verwendet
wird. Der Methodenname allein ist also mehrdeutig. Überladene Methoden müssen
sich deshalb in der Liste ihrer formalen Parameter unterscheiden, um eindeutig iden-
tifizierbar zu sein. Mit anderen Worten: Die Signatur einer Methode muss eindeutig
sein.

Die Signatur setzt sich zusammen aus dem Methodennamen und der
Parameterliste:

Signatur = Methodenname + Parameterliste

Der Rückgabetyp ist in Java nicht Bestandteil der Signatur!

Beachten Sie,

• dass es nicht möglich ist, in der gleichen Klasse zwei Methoden mit
gleichem Methodennamen und gleicher Parameterliste – d. h. glei-
cher Signatur – aber verschiedenen Rückgabetypen zu verein-
baren.

• dass, wenn keine exakte Übereinstimmung gefunden wird, vom
Compiler versucht wird, die spezifischste Methode zu finden. Bes-
ser ist es jedoch stets, selbst für passende aktuelle Parameter zu
sorgen, gegebenenfalls durch eine explizite Typkonvertierung.

Dass zwei Methoden mit identischer Signatur und verschiedenem Rückgabetyp in
Java nicht zulässig sind, liegt daran, dass der Compiler keine Chance hat, die rich-
tige Methode aufzurufen, wenn der Rückgabewert gar nicht abgeholt wird. Dass der
Rückgabewert nicht abgeholt wird, ist zulässig.

Vorsicht!

Blöcke und Methoden 295

Ein Überladen mit gleicher Signatur, aber verschiedenem Rückgabe-
typ ist nicht möglich.

Die Methode static int parse (String var) kann deshalb nicht in derselben
Klasse wie die Methode static float parse (String var) vorkommen. Der
Compiler könnte an dieser Stelle nicht unterscheiden, ob der Methodenaufruf
Klasse.parse ("7.7") die Methode mit float als Rückgabetyp oder die Metho-
de mit int als Rückgabetyp bezeichnet. Deshalb sind Methoden mit gleicher Signa-
tur, aber unterschiedlichem Rückgabetyp in der gleichen Klasse in Java nicht erlaubt.

Als erstes Beispiel soll die in der java.lang.Math-Klasse in überladener Weise
definierte Methode abs() zur Ermittlung des Betrags eines arithmetischen Aus-
drucks erwähnt werden. Die Methode abs() liefert den absoluten Wert im Format
des jeweiligen Datentyps zurück. Die Methoden abs() sind wie folgt deklariert:

public static int abs (int)
public static float abs (float)
public static long abs (long)
public static double abs (double)

Das nächste Beispiel zeigt eine Klasse Parser, die überladene Methoden mit unter-
schiedlichen Parameterlisten für das Umwandeln von Strings in int-Werte zur Ver-
fügung stellt. Alle diese Methoden sind als Klassenmethoden realisiert, da sie auch
ohne die Existenz eines Objektes zur Verfügung stehen sollen:

// Datei: Parser.java

public class Parser
{
 // Wandelt den String var in einen int-Wert.
 public static int parseInt (String var)
 {
 return Integer.parseInt (var);
 }

 // Wandelt den Stringanteil von der Position pos
 // bis zum Stringende in einen int-Wert.
 public static int parseInt (String var, int pos)
 {
 var = var.substring (pos);
 return Integer.parseInt (var);
 }

 // Wandelt den Stringanteil von der Position von bis
 // zur Position bis in einen int-Wert.
 public static int parseInt (String var, int von, int bis)
 {
 var = var.substring (von, bis);
 return Integer.parseInt (var);
 }
}

296 Kapitel 9

// Datei: TestParser.java

public class TestParser
{
 public static void main (String[] args)
 {
 String[] daten =
 {"Rainer Brang", "Hauptstr. 17", "73732 Esslingen", "25"};
 System.out.println ("Alter: " + Parser.parseInt (daten [3]));
 System.out.println ("Hausnummer: " +
 Parser.parseInt (daten [1], 10));
 System.out.println ("Postleitzahl: " +
 Parser.parseInt (daten [2], 0, 5));
 }
}

Die Ausgabe des Programms ist:

Alter: 25
Hausnummer: 17
Postleitzahl: 73732

9.5 Parameterliste variabler Länge

Methoden konnten in Java bis zu JDK 5.0 nur eine feste Anzahl von Parametern
haben. Sollten bisher in Java unterschiedlich viele Parameter an eine Methode über-
geben werden, so gab es zwei verschiedene Wege:

• für jede Parametervariante schrieb man eine überladene Methode
• oder man verpackte die zu übergebenden Werte in einem Array oder Container.

Eine Referenz auf das Array bzw. den Container wurde als aktueller Parameter an
die Methode übergeben, die dadurch Zugriff auf die einzelnen Werte erhielt.

Seit JDK 5.0 ist dies nicht mehr notwendig, da Methoden eine Parameterliste mit
variabler Länge – varargs genannt – besitzen können. In Anlehnung an die Ellipse in
der Programmiersprache C, d. h. die drei Punkte ... am Ende der Parameterliste,
führt auch Java eine variable Parameterliste ein.

In Java gibt es jedoch eine wesentliche Einschränkung gegenüber C:
die Zahl der Parameter einer variablen Parameterliste kann zwar be-
liebig sein, jedoch muss jeder dieser Parameter denselben Typ be-
sitzen. Um eine Parameterliste variabler Länge zu deklarieren, werden
in Java drei Punkte ... an den Datentyp des entsprechenden Para-
meters angefügt.

Eine Parameterliste kann sich in zwei Teile aufteilen: in einen Teil fester Länge, d. h.
mit einer festen Anzahl von Parametern, und einen Teil variabler Länge. Dabei ist zu
beachten, dass der variable Anteil sich nur auf einen spezifizierten Typ beschränkt
und stets nach den explizit definierten Parametern der Parameterliste stehen muss:

public void myTestMethod (fester Anteil, variabler Anteil);

Blöcke und Methoden 297

Dabei gilt:

fester Anteil z. B.: int a, String b
variabler Anteil z. B.: int... c

Die variable Parameterliste muss immer am Ende der Parameterliste
stehen.

Das folgende Beispiel veranschaulicht die Benutzung:

// Datei: TestVarargs.java

public class TestVarargs
{
 public static void main (String[] args)
 {
 varPar (1, 2, 3, "Dies", "ist", "ein", "Test!");
 }

 public static void varPar (int a, int b, int c, String... str)
 {
 System.out.printf ("Erster Parameter: %d\n", a);
 System.out.printf ("Zweiter Parameter: %d\n", b);
 System.out.printf ("Dritter Parameter: %d\n", c);

 for (String element : str)
 {
 System.out.println ("Variabler Anteil: " + element);
 }
 }
}

Die Ausgabe des Programms ist:

Erster Parameter: 1
Zweiter Parameter: 2
Dritter Parameter: 3
Variabler Anteil: Dies
Variabler Anteil: ist
Variabler Anteil: ein
Variabler Anteil: Test!

Jetzt ein Beispiel mit einer variablen Liste von Objekten:

// Datei: VarargsTest.java

public class VarargsTest
{
 public static void main (String[] args)
 {
 // Ein Beispiel mit 3 Parametern
 printAllObjects ("Jetzt folgen 2 Objekte",
 new Integer (10), new Double (2.0));

298 Kapitel 9

 // Ein Beispiel mit 4 Parametern
 printAllObjects ("Jetzt folgen 3 Objekte",
 new Integer (10),
 new Integer (11),
 new Double (3.0));
 }

 // Definition einer Methode mit einem festen Parameter und
 // einer beliebigen Anzahl von Parametern vom Typ Object.
 // Ein Leerzeichen nach dem Typ (hier Object) ist optional
 public static void printAllObjects (String text,
 Object... parameters)
 {
 // Text ausgeben
 System.out.println (text);
 // Parameter ausgeben - dabei wird automatisch die
 // toString()-Methode der Parameter aufgerufen.
 for (Object element : parameters)
 {
 System.out.println (element);
 }
 }
}

Die Ausgabe des Programmes ist:

Jetzt folgen 2 Objekte
10
2.0
Jetzt folgen 3 Objekte
10
11
3.0

Variable Parameterlisten werden innerhalb der Methode als Arrays
des spezifizierten Typs behandelt.

Wie die beiden Beispiele zeigen, bietet der Aufruf einer Methode mit varargs gegen-
über einer Methode mit einem Array als Parameter den Vorteil, dass die Übergabe-
werte direkt im Methodenaufruf angegeben werden können und nicht zuvor ein Array
angelegt werden muss.

9.6 Parameterübergabe beim Programmaufruf

In Java ist es möglich, Übergabeparameter an ein Programm zu übergeben. Diese
Möglichkeit wird durch den Übergabeparameter String[] args bereitgestellt:

public static void main (String[] args)

Blöcke und Methoden 299

Die Array-Variable args ist eine Referenz auf ein Array von Referenzen, die auf die
in der Kommandozeile übergebenen String-Objekte zeigen. Die Zahl der übergebe-
nen Parameter kann dem Wert des Datenfeldes args.length entnommen werden.

C-Programmierer müssen berücksichtigen, dass sich an der ersten
Position des String-Arrays args bereits der erste Übergabepara-
meter befindet.

Im folgenden Programm wird getestet, ob ein auf der Kommandozeile als Parameter
mitgegebener String der Zeichenkette "Java" entspricht. Da die Inhalte der Strings
mit der Methode equals() verglichen werden, ist der Vergleich true, wenn als
Übergabe die Zeichenkette "Java" übergeben wird.

// Datei: StringTest.java

public class StringTest
{
 public static void main (String[] args)
 {
 String a = "Java";
 String b = args [0];
 if (a.equals (b))
 {
 System.out.println ("Der String war Java");
 }
 else
 {
 System.out.println ("Der String war nicht Java");
 }
 }
}

Aufruf des Programms:

java StringTest Java

Die Ausgabe des Programms ist:

Der String war Java

Im nächsten Beispiel werden Zahlen als Strings übergeben. Sie werden mit Hilfe der
Klassenmethode parseInt() der Wrapper-Klasse Integer in einen int-Wert
gewandelt. Die Integer-Zahlen werden dann addiert und das Ergebnis ausgegeben:

// Datei: AddInteger.java

public class AddInteger
{
 public static void main (String[] args)
 {

Vorsicht!

300 Kapitel 9

 if (args.length != 2)
 {
 System.out.println ("FEHLER: Falsche Parameteranzahl");
 System.out.println ("Bitte zwei Parameter eingeben");
 System.out.println ("AddInteger <int1> <int2>");
 }
 else
 {
 int i1 = Integer.parseInt (args [0]);
 int i2 = Integer.parseInt (args [1]);
 System.out.println (args [0]+" + "+args [1]+" = "+(i1+i2));
 }
 }
}

Aufruf des Programms:

java AddInteger 5 4

Die Ausgabe des Programms ist:

5 + 4 = 9

9.7 Iteration und Rekursion

Ein Algorithmus heißt iterativ, wenn bestimmte Abschnitte des Algorithmus innerhalb
einer einzigen Ausführung des Algorithmus mehrfach durchlaufen werden. Er heißt
rekursiv87, wenn er Abschnitte enthält, die sich selbst direkt oder indirekt aufrufen.

Iteration und Rekursion sind Prinzipien, die oft als Alternativen für die Programm-
konstruktion erscheinen. Theoretisch sind Iteration und Rekursion äquivalent, weil
man jede Iteration in eine Rekursion umformen kann und umgekehrt. In der Praxis
gibt es allerdings oftmals den Fall, dass die iterative oder rekursive Lösung auf der
Hand liegt, dass man aber auf die dazu alternative rekursive bzw. iterative Lösung
nicht so leicht kommt.

Programmtechnisch läuft eine Iteration auf eine Schleife, eine direkte Rekursion auf
den Aufruf einer Methode durch sich selbst hinaus. Es gibt aber auch eine indirekte
Rekursion. Eine indirekte Rekursion liegt beispielsweise vor, wenn zwei Methoden
sich wechselseitig aufrufen.

Das Prinzip der Iteration und der Rekursion soll an dem folgenden Beispiel der
Berechnung der Fakultätsfunktion veranschaulicht werden.

Iterative Berechnung der Fakultätsfunktion

Bei der iterativen Berechnung der Fakultätsfunktion geht man aus von der Definition
der Fakultät

0! = 1
n! = 1 * 2 * ... * n für n > 0

87 lateinisch recurrere = zurücklaufen

Blöcke und Methoden 301

und beginnt bei den kleinen Zahlen. Der Wert von 0! ist 1, der Wert von 1! ist 0! * 1,
der Wert von 2! ist 1! * 2, der Wert von 3! ist 2! * 3, usw.

Nimmt man eine Schleifenvariable i, die von 1 bis n durchgezählt wird, so muss
innerhalb der Schleife lediglich der Wert der Fakultät vom vorhergehenden Schleifen-
durchlauf mit dem aktuellen Wert der Schleifenvariablen multipliziert werden.

Das folgende Programm zeigt die iterative Berechnung der Fakultätsfunktion:

// Datei: IterativFaku.java

public class IterativFaku
{
 public static long berechneFakultaet (int n)
 {
 long faku = 1;
 for (int i = 1; i <= n; i++)
 faku = faku * i;
 return faku;
 }

 public static void main (String[] args)
 {
 long faku = berechneFakultaet (5);
 System.out.println ("5! = " + faku);
 }
}

Die Ausgabe des Programms ist:

5! = 120

Rekursive Berechnung der Fakultätsfunktion

Bei der rekursiven Berechnung der Fakultätsfunktion geht man ebenfalls aus von der
Definition der Fakultät, beginnt aber nicht bei den kleinen Zahlen, sondern bei den
großen Zahlen und läuft dann zu den kleinen Zahlen zurück.

n! = n * (n-1)! für n > 0
0! = 1

Im Gegensatz zur Iteration schaut man jetzt auf die Funktion f(n) und versucht, diese
Funktion durch sich selbst – aber mit anderen Aufrufparametern – darzustellen. Die
mathematische Analyse ist hier ziemlich leicht, denn man sieht sofort, dass

f(n) = n * f (n-1)

ist. Damit hat man das Rekursionsprinzip bereits gefunden. Dies ist jedoch nur die
eine Seite der Medaille, denn die Rekursion darf nicht ewig gehen! Das Abbruch-
kriterium wurde bereits oben erwähnt. Es heißt:

0! = 1

302 Kapitel 9

Durch n! = n * (n-1)! lässt sich also die Funktion f(n) auf sich selbst zurückführen,
d. h. f(n) = n * f(n-1). f(n-1) ergibt sich wiederum durch f(n-1) = (n-1) * f(n-2). Nach
diesem Algorithmus geht es jetzt solange weiter, bis das Abbruchkriterium erreicht
ist. Das Abbruchkriterium ist bei 0! erreicht, da 0! nicht auf (-1)! zurückgeführt werden
kann, sondern per Definition gleich 1 ist.

Dieser Algorithmus lässt sich leicht programmieren. Die Methode berechnefa-
kultaet() enthält zwei Zweige:

• Der eine Zweig wird angesprungen, wenn die Abbruchbedingung nicht erfüllt
ist. Hier ruft die Methode sich selbst wieder auf. Hierbei ist zu beachten, dass die
Anweisung, welche die Methode aufruft, gar nicht abgearbeitet werden kann,
solange die aufgerufene Methode kein Ergebnis zurückliefert.

• Der andere Teil wird angesprungen, wenn die Abbruchbedingung erfüllt ist. In
diesem Fall liefert die Methode zum ersten Mal einen Rückgabewert.

Rekursive Berechnung der Fakultätsfunktion als Programm

// Datei: RekursivFaku.java

public class RekursivFaku
{
 public static long berechneFakultaet (int n)
 {
 System.out.println ("Aufruf mit: " + n);
 if (n >= 1) // Abbruchbedingung noch nicht erreicht
 return n * berechneFakultaet (n - 1);
 else // Abbruchbedingung erfüllt, d. h. n ist gleich 0.
 return 1;
 }

 public static void main (String[] args)
 {
 int n = 5;
 long z = berechneFakultaet (n);
 System.out.println ("5! = " + z);
 }
}

Die Ausgabe des Programms ist:

Aufruf mit: 5
Aufruf mit: 4
Aufruf mit: 3
Aufruf mit: 2
Aufruf mit: 1
Aufruf mit: 0
5! = 120

Die folgende Skizze in Bild 9-4 veranschaulicht die Berechnung der Fakultät für n =
3. Das Bild 9-5 zeigt den Aufbau des Stacks durch den rekursiven Aufruf der
Methode berechneFakultaet(), bis das Abbruchkriterium erreicht ist. Das Ab-
bruchkriterium liegt dann vor, wenn berechneFakultaet() mit n = 0 aufgerufen

Blöcke und Methoden 303

wird. Danach beginnt durch die Beendigung aller wartenden berechneFakul-
taet()-Methoden der Abbau des Stacks. Der Abbau des Stacks wird in Bild 9-6
gezeigt.

Fakultät von 3 rekursiv berechnen:

2
 *

 1
 w

ird
 z

ur
üc

kg
eg

eb
en

public static void main (String[] args)
{
 long faku = berechneFakultaet (3);
 System.out.println ("3! = " + faku);
}

static long berechneFakultaet (int n)
{

 if (n >= 1)
 {
 return n * berechneFakultaet (n-1);
 }
 return 1;
}

static long berechneFakultaet (int n)
{

 if (n >= 1)
 {
 return n * berechneFakultaet (n-1);
 }
 return 1;
}

Aufruf: berechne-
Fakultaet() mit
Parameter 3

Aufruf: berechne-
Fakultaet() mit
Parameter 2

wahr

static long berechneFakultaet (int n)
{

 if (n >= 1)
 {
 return n * berechneFakultaet (n-1);
 }
 return 1;
}

Aufruf: berechne-
Fakultaet() mit
Parameter 1

wahr

wahr

3
 *

 2
 w

ird
 z

ur
üc

kg
eg

eb
en

Rekursion 1

Rekursion 2

Rekursion 3

n hat den Wert 3

n hat den Wert 2

n hat den Wert 1

static long berechneFakultaet (int n)
{

 if (n >= 1)
 {
 return n * berechneFakultaet (n-1);
 }
 return 1;
}

Aufruf: berechne-
Fakultaet() mit
Parameter 0

n hat den Wert 0

falsch

1
w

ird
 z

ur
üc

kg
eg

eb
en

1

 *
 1

 w
ird

 z
ur

üc
kg

eg
eb

en

Rekursion 4

Bild 9-4 Verfolgung der rekursiven Aufrufe für berechneFakultaet (3)

In den folgenden zwei Bildern ist für die Fortgeschrittenen der Auf- und Abbau des
Stacks für den Aufruf berechneFakultaet (3) zu sehen. Aus Platzgründen
wurde dort der Methodenaufruf berechneFakultaet() mit faku() abgekürzt.

304 Kapitel 9

Aufruf faku(3) von main()

Stack
Variable n = 3
Variable z
Rücksprungadresse in
main() und weitere
Verwaltungsinformationen...
Parameter n = 3

main()

Stack
Variable n = 3
Variable z

Aufruf faku(2) von faku(3)

Stack
Variable n = 3
Variable z
Rücksprungadresse in
main() und
Parameter n = 3
Rücksprungadresse in
faku(3) und
Parameter n = 2

Aufruf faku(1) von faku(2)

Stack
Variable n = 3
Variable z
Rücksprungadresse in
main() und
Parameter n = 3
Rücksprungadresse in
faku(3) und
Parameter n = 2
Rücksprungadresse in
faku(2) und
Parameter n = 1

Aufbau des Stacks für faku (3):

Bei jedem Aufruf von faku() werden die
Rücksprungadresse und weitere Verwal-
tungsinformationen auf einem Stack abgelegt,
der durch die virtuelle Maschine verwaltet
wird. Auch die übergebenen Parameter (hier
nur einer) werden auf diesem Stack abgelegt.
Dabei wächst der Stack mit der Rekursions-
tiefe der Funktion.

Der letzte Aufruf von faku() mit dem Para-
meter n = 0 bewirkt keine weitere Rekur-
sion, da ja die Abbruchbedingung erfüllt ist.

Aufruf faku(0) von faku(1)

Stack
Variable n = 3
Variable z
Rücksprungadresse in
main() und
Parameter n = 3
Rücksprungadresse in
faku(3) und
Parameter n = 2
Rücksprungadresse in
faku(2) und
Parameter n = 1
Rücksprungadresse in
faku(1) und
Parameter n = 0

Bild 9-5 Aufbau des Stacks für faku (3)

Der Abbau des Stacks geschieht in umgekehrter Reihenfolge. Dies wird im folgenden
Bild 9-6 gezeigt.

Blöcke und Methoden 305

Übergabe des Rückgabewertes über Register

faku(3) beendet sich mit
return 6

Stack
Variable n = 3
Variable z
Rücksprungadresse in
main() und weitere
Verwaltungsinformationen...
Parameter n = 3

main()

Stack
Variable n = 3
Variable z = 6

faku(1) beendet sich mit
return 1

Stack
Variable n = 3
Variable z
Rücksprungadresse in
main() und
Parameter n = 3
Rücksprungadresse in
faku(3) und
Parameter n = 2
Rücksprungadresse in
faku(2) und
Parameter n = 1

faku(2) beendet sich mit
return 2

Stack
Variable n = 3
Variable z
Rücksprungadresse in
main() und
Parameter n = 3
Rücksprungadresse in
faku(3) und
Parameter n = 2

Abbau des Stacks für faku (3):

Beim Beenden der aufgerufenen Funktion wer-
den auf dem Stack die lokalen Variablen
(übergebene Parameter) freigegeben und die
Rücksprungadresse und sonstigen Verwal-
tungsinformationen abgeholt. Der Rückgabe-
wert wird in diesem Beispiel über ein Register
an die aufrufenden Funktionen zurückgege-
ben. Der Rückgabewert kann auf verschiede-
ne Weise an die aufrufende Funktion zurück-
gegeben werden, beispielsweise auch über
den Stack. Dies ist vom Compiler abhängig.

Übergabe des Rückgabewertes über Register

Übergabe des Rückgabewertes über Register

faku(0) beendet sich mit
return 1

Stack
Variable n = 3
Variable z
Rücksprungadresse in
main() und
Parameter n = 3
Rücksprungadresse in
faku(3) und
Parameter n = 2
Rücksprungadresse in
faku(2) und
Parameter n = 1
Rücksprungadresse in
faku(1) und
Parameter n = 0

Bild 9-6 Abbau des Stacks für faku (3)

306 Kapitel 9

9.8 Übungen

Aufgabe 9.1: Blöcke

9.1.1 Sichtbarkeit von Variablen

Analysieren Sie das folgende Programm. Was erwarten Sie als Ausgabe?

// Datei: SichtbarAufg.java

public class SichtbarAufg
{
 private int wert = 7;

 public int zugriff()
 {
 int wert = 77;
 return wert;
 }

 public static void main (String [] args)
 {
 SichtbarAufg sich = new SichtbarAufg();
 System.out.println (sich.zugriff());
 }
}

9.1.2 Gültigkeit von Variablen

Analysieren Sie das folgende Programm. Was erwarten Sie als Ausgabe?

// Datei: GueltigkeitAufg.java

public class GueltigkeitAufg
{
 private int wert = 7;

 public int zugriff()
 {
 int tmp = wert;
 int wert = 77;
 return tmp;
 }

 public static void main (String [] args)
 {
 GueltigkeitAufg guelt = new GueltigkeitAufg();
 System.out.println (guelt.zugriff());
 }
}

9.1.3 Sichtbarkeit und Verdecken von Instanzvariablen

Ausgangspunkt ist das Programm aus Aufgabe 9.1.1. Wie muss die zu-
griff()-Methode verändert werden, damit sie nicht den Wert der lokalen

Blöcke und Methoden 307

Variablen, sondern der Instanzvariablen zurückgibt? Die lokale Variable soll
nicht umbenannt oder entfernt werden! Ergänzen Sie das Programm.

Aufgabe 9.2: Polymorphie von Operationen

9.2.1 Berechnung von Flächeninhalten

Die Flächeninhalte von Quadraten und Kreisen werden unterschiedlich be-
rechnet. Ergänzen Sie das folgende Programmfragment um die polymorphe
Operation "berechne Flächeninhalt", sodass der jeweils korrekte Flächen-
inhalt ermittelt wird. Fehlende Stellen sind durch markiert.

// Datei: PolymorpheOperation.java

public class PolymorpheOperation
{
 public static void main (String [] args)
 {
 Quadrat quad = new Quadrat (5.0);
 Kreis kreis = new Kreis (3.0);

 //Flaecheninhalt des Quadrats
 System.out.println ("Flaecheninhalt des Quadrats: " +
 );

 //Flaecheninhalt des Kreises
 System.out.println ("Flaecheninhalt des Kreises: " +
 );
 }
}

class Quadrat
{
 private double seitenlaenge;

 public Quadrat(double seitenlaenge)
 {
 this.seitenlaenge = seitenlaenge;
 }

}

class Kreis
{
 private double pi;
 private double radius;

 public Kreis(double radius)
 {
 pi = 3.14;
 this.radius = radius;
 }

}

308 Kapitel 9

9.2.2 Figurgröße skalieren

Ausgangspunkt ist das Programm aus Aufgabe 9.2.1. Erweitern Sie das Pro-
gramm um die polymorphe Operation "skaliere Figur". Der Operation wird ein
Skalierungsfaktor übergeben, mit dem die Größe des Kreises bzw. des
Quadrats skaliert wird.

Aufgabe 9.3: Überladen von Methoden

9.3.1 Überladene Methode zur Summenberechnung

Das folgende Programmfragment stellt einen minimalistischen Taschenrech-
ner dar. Überladen Sie die Methode zur Summenberechnung, damit auch
Kommazahlen addiert werden können. Fehlende Stellen sind durch
markiert.

// Datei: UeberladeneMethoden.java

public class UeberladeneMethoden
{
 public static void main (String [] args)
 {
 int intSumme = 0;
 int a = 1;
 int b = 2;
 double doubleSumme = 0.0;
 double c = 1.5;
 double d = 0.25;

 Taschenrechner tr = new Taschenrechner();
 intSumme = tr.addiere (a, b);
 System.out.println (a + " + " + b + " = " +
 intSumme);

 doubleSumme =
 System.out.println (c + " + " + d + " = " +
 doubleSumme);
 }
}

class Taschenrechner
{
 public int addiere (int a, int b)
 {
 return a + b;
 }

}

9.3.2 Methoden zur Produktberechnung

Ausgangspunkt ist das Programm aus Aufgabe 9.3.1. Ergänzen Sie den
Taschenrechner um eine Methode zum Multiplizieren zweier ganzer Zahlen.
Überladen Sie die Methode, sodass auch Kommazahlen miteinander multi-
pliziert werden können.

Blöcke und Methoden 309

Aufgabe 9.4: Variable Länge einer Parameterliste

9.4.1 Variable Anzahl von Summanden

Erstellen Sie eine Klasse mit einer Methode, die eine variable Parameterliste
vom Typ int und einen Parameter vom Typ String hat. Die Methode soll
zuerst das String-Objekt auf der Kommandozeile ausgeben. Anschließend
werden die Parameter der variablen Parameterliste addiert, und das Ergeb-
nis wird ebenfalls auf der Kommandozeile ausgegeben.

Schreiben Sie auch eine entsprechende main()-Methode, um Ihre Methode
zu testen.

9.4.2 Ausgabe von Strings

Das folgende Programm enthält eine Methode printObjects(), der
mittels einer variablen Parameterliste beliebig viele Objekte übergeben wer-
den können. Anschließend gibt diese Methode eine String-Repräsentation
der übergebenen Objekte auf der Standardausgabe bzw. Standardfehleraus-
gabe aus. Dabei hat sich ein Fehler eingeschlichen. Finden und korrigieren
sie den Fehler.

// Datei: VariableParameterlisteTest2.java

public class VariableParameterlisteTest2
{
 private void printObjects (Object... objects,
 boolean useStdErr)
 {
 if (useStdErr == true)
 {
 for (Object o : objects)
 {
 System.err.println (o.toString());
 }
 }
 else
 {
 for (Object o : objects)
 {
 System.out.println (o.toString());
 }
 }
 }

 public static void main (String[] args)
 {
 VariableParameterlisteTest2 vpt =
 new VariableParameterlisteTest2();
 vpt.printObjects (new Integer (1), new Double (3.5),
 "Hello", "World!", false);
 }
}

310 Kapitel 9

Aufgabe 9.5: Parameterübergabe beim Programmaufruf

9.5.1 Text parametergesteuert ausgeben

Entwickeln Sie ein einfaches Java-Programm, das beim Programmaufruf
einen Parameter vom Typ String entgegennimmt, der eine ganze Zahl
darstellt. Durch diese Zahl wird festgelegt, wie oft die Zeile "Hallo, Welt!" auf
dem Bildschirm ausgegeben wird. Der übergebene String kann, wie im
Beispiel AddInteger in Kapitel 9.6 gezeigt, mit Hilfe der Methode parse-
Int() der Wrapper-Klasse Integer in einen int-Wert gewandelt werden.

Ein beispielhafter Programmaufruf könnte folgendermaßen aussehen:

java MassenGruss 4
Hallo, Welt!
Hallo, Welt!
Hallo, Welt!
Hallo, Welt!

9.5.2 Einfacher Taschenrechner mit Parameterübergabe

Entwickeln Sie einen einfachen Rechner, der die vier Grundrechenarten (+, -,
*, /) beherrscht. Dieser Rechner soll durch Parameter beim Programmaufruf
gesteuert werden. Hierzu werden dem Programm beim Aufruf zwei Zahlen
als Strings sowie ein Schlüsselwort für die durchzuführende Operation über-
geben. Diese Zahlen können, wie im Beispiel AddInteger in Kapitel 9.6 ge-
zeigt, mit Hilfe der Methode parseInt() der Wrapper-Klasse Integer in
einen int-Wert gewandelt werden.

Die Reihenfolge der Parameter ist folgendermaßen definiert:

[Zahl1] [Operation] [Zahl2]

Verwenden Sie die folgenden Schlüsselworte für die Rechenoperationen:

add Addition: Zahl1 + Zahl2
sub Subtraktion: Zahl1 – Zahl2
mul Multiplikation: Zahl1 * Zahl2
div Division: Zahl1 / Zahl2

Ein Aufruf des Programms könnte beispielsweise so aussehen:

java Rechner 13 add 7

und würde zu folgendem Ergebnis führen:

13 add 7 ist 20

Blöcke und Methoden 311

Aufgabe 9.6: Iteration und Rekursion

9.6.1 Analyse eines rekursiven Algorithmus

Analysieren Sie das folgende Programm. Was wird hier berechnet? Ist Ihnen
ein alternativer (nicht rekursiver) Lösungsweg bekannt?

// Datei: Rekursion.java

public class Rekursion
{
 public int rekursAufruf (int n)
 {
 if (n > 1)
 return n + rekursAufruf (n - 1);
 return 1;
 }

 public static void main (String [] args)
 {
 Rekursion rek = new Rekursion();
 System.out.println (rek.rekursAufruf (50));
 }
}

9.6.2 Analyse eines iterativen Algorithmus

Welche mathematische Formel berechnet das Programm? Wie lautet das
Ergebnis?

// Datei: Iteration.java

public class Iteration
{
 public int iterativAufruf (int n)
 {
 int wert = 1;

 for (int i = 2; i <= n; i++)
 {
 wert *= i;
 }
 return wert;
 }

 public static void main (String [] args)
 {
 Iteration it = new Iteration();
 System.out.println (it.iterativAufruf (4));
 }
}

312 Kapitel 9

9.6.3 Berechnung der Potenz an

a) Berechnen Sie mit Hilfe einer Rekursion die Potenz an. Die Variablen a
und n sollen sich auf Werte größer 0 beschränken und von der Tastatur
eingelesen werden. Vervollständigen Sie hierzu im folgenden Programm
die mit gekennzeichneten Stellen.

// Datei: PotenzRekursiv.java

public class PotenzRekursiv
{
 public static berechnePotenz (.)
 {

 }

 public static void main (String [] args)
 {
 java.util.Scanner scanner =
 new java.util.Scanner (System.in);
 try
 {
 System.out.println
 ("Gib einen Wert >0 für a ein: ");
 int a = scanner.nextInt();

 System.out.println
 ("Gib einen Wert >0 für n ein: ");
 int n = scanner.nextInt();

 int ergebnis = berechnePotenz (a, n);
 System.out.println ("Das Ergebnis ist: " +
 ergebnis);
 }
 catch (Exception ex)
 {
 System.out.println (ex.toString());
 }
 }
}

b) Erweitern Sie die Methode berechnePotenz(), sodass sie auch mit den

Werten a = 0 und n = 0 zurechtkommt. Negative Werte werden weiter-
hin nicht betrachtet. Beachten Sie, dass eine Potenz für den Exponenten
0 immer 1 liefert. Ausnahme: Falls a den Wert 0 hat, ist das Ergebnis im-
mer 0.

c) Schreiben Sie eine neue Klasse PotenzIterativ. Diese Klasse imple-

mentiert die Lösung aus Aufgabe 9.6.3 b) mit Hilfe einer Iteration. Verwen-
den Sie dazu eine for-Schleife.

Klassen und Objekte

10.1 Information Hiding
10.2 Klassenvariable und Klassenmethoden
10.3 Die this-Referenz
10.4 Initialisierung von Datenfeldern
10.5 Instantiierung von Klassen
10.6 Freigabe von Speicher
10.7 Die Klasse Object
10.8 Übungen

10 Klassen und Objekte

In Java kann man nur objektorientiert programmieren. Die Klassenbäume der Verer-
bungshierarchien, die Zerlegungshierarchien für aggregierte Klassen und der Aufbau
der einzelnen Klassen aus Datenfeldern und Methoden stellen das Skelett eines
Programms dar. Das Fleisch auf den Knochen und die Muskeln, die das Skelett zum
Leben und in Bewegung bringen, sind die Methoden, welche die Dynamik, d. h. die
Verarbeitung von Daten, beschreiben.

Alle Klassen in Java haben die Klasse java.lang.Object als Urvater. Klassen
sind vom Programmschreiber selbst entworfene und implementierte Datentypen oder
von der Java-Plattform bereitgestellte Bibliotheksklassen. Die Klassen enthalten die
Daten und die auf diesen Daten möglichen Operationen in Form von Methoden.

Wenn eine Klasse nicht explizit von einer anderen Klasse abgeleitet
wird, so ist die Klasse java.lang.Object automatisch ihre Vater-
klasse.

Die Methoden repräsentieren die Schnittstellen eines Objektes bzw. einer Klasse
nach außen. Objekte sind Variablen, die nach dem Bauplan der Klasse gebaut sind.
Klassenbezogene Datenfelder stellen benannte Speicherstellen in einer Klasse, die
Klassenvariablen, dar. Objektbezogene Datenfelder werden in Form von Instanz-
variablen in jedem Objekt angelegt.

10.1 Information Hiding

Ein Ziel der objektorientierten Programmierung ist es, die Repräsentation der Daten
und die Implementierung der Methoden zu verbergen. Das bedeutet, dass das Prin-
zip des Information Hidings angewandt werden soll. Es soll kein Unbefugter die
Daten verändern können. Nur die Methoden eines Objektes sollen auf die Daten Zu-
griff haben. Dies bedeutet, dass das folgende Beispiel zwar syntaktisch korrekt ist,
jedoch diesen Zielvorstellungen widerspricht.

// Datei: Person.java

public class Person
{
 public String name; // Der Zugriffsmodifikator public erlaubt
 public String vorname; // einen Zugriff auf die Daten und ermög-
 public int alter; // licht damit eine unzulässige Manipula-
 // tion von "außen"!
 public void print()
 {
 System.out.println ("Name : " + name);
 System.out.println ("Vorname : " + vorname);
 System.out.println ("Alter : " + alter);
 }
}

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_10,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Klassen und Objekte 315

// Datei: TestPerson.java

public class TestPerson
{
 public static void main (String[] args)
 {
 Person p = new Person();

 // Die Daten der Klasse Person sind nicht geschützt, es kann
 // auf sie problemlos aus einer anderen Klasse heraus zuge-
 // griffen werden!
 p.name = "Müller";
 p.vorname = "Fritz";
 p.alter = 35;
 p.print();
 }
}

Die Ausgabe des Programms ist:

Name: Müller
Vorname: Fritz
Alter: 35

Aus Gründen des Software Engineerings sollte es keinen direkten
Zugriff auf die Daten eines Objektes von anderen Klassen aus
geben. Direkter Zugriff bedeutet, dass über eine Referenz direkt auf
ein Datenfeld zugegriffen werden kann.

Das Verbergen von Daten erfolgt mit Hilfe des Schlüsselworts private:

// Datei: Person.java

public class Person
{
 private String name;
 private String vorname;
 private int alter;

 public void print()
 {
 System.out.println ("Name : " + name);
 System.out.println ("Vorname : " + vorname);
 System.out.println ("Alter : " + alter);
 }

 // Es folgen die anderen Methoden

}

Damit hat man von der Methode main() der Klasse TestPerson aus keinen
direkten Zugriff mehr auf die Daten eines Objektes der Klasse Person, sondern nur
noch über die Methode print() der Klasse Person.

316 Kapitel 10

Dies ist die generelle Vorgehensweise. Man erlaubt klassenfremden Methoden in der
Regel nicht den Zugriff auf die Daten einer Klasse. Dies ist ausschließlich Aufgabe
der klasseneigenen Methoden. Damit ist auch bei fehlerhaften Datenbearbeitungen
automatisch die Fehlersuche auf die Methoden, die innerhalb der Klasse liegen, be-
schränkt.

Das hier vorgestellte Schlüsselwort private ist ein Zugriffsmodifikator, der den Zu-
griffsschutz regelt. Kapitel 12.7 behandelt auch die Zugriffsmodifikatoren public
und protected und den Fall, dass kein Zugriffsmodifikator angegeben wird.

10.2 Klassenvariable und Klassenmethoden

Klassenvariable und Klassenmethoden wurden bereits in Kapitel 2.1.5 vorgestellt.
Klassenvariable und Klassenmethoden werden in Java mit Hilfe des Schlüsselwortes
static deklariert. Die folgenden Unterkapitel zeigen Beispiele, in denen Klassen-
variable bzw. Klassenmethoden Anwendung finden.

10.2.1 Klassenvariable

Klassenvariable, die für alle Objekte einer Klasse als globale Daten zur Verfügung
stehen, werden mit Hilfe des Schlüsselwortes static deklariert. Das folgende Bei-
spiel behandelt die Schüler einer Schulklasse als Objekte. Die Schülerzahl ist keine
Eigenschaft, die einem individuellen Objekt zugeordnet werden kann. Sie ist eine
Eigenschaft des Verbunds aus allen Schüler-Individuen und wird daher als Eigen-
schaft der gesamten Schulklasse betrachtet und damit als Klassenvariable definiert.

// Datei: Schueler.java

public class Schueler
{
 private int nummerDesSchuelers;
 public static int klassenStaerke = 0;

 public void setzeNummer()
 {
 nummerDesSchuelers = ++klassenStaerke;
 }

 public void abzaehlen()
 {
 System.out.println ("Ich bin die Nr.: " + nummerDesSchuelers);
 }
}

// Datei: SchuelerTest.java

public class SchuelerTest
{
 public static void main (String[] args)
 {
 System.out.println ("Klassenstärke vor der Einschulung: "
 + Schueler.klassenStaerke);

Klassen und Objekte 317

 // Erzeugung eines Arrays für Schüler
 Schueler[] schuelerInKlasse = new Schueler [10];

 for (int lv = 0; lv < schuelerInKlasse.length; lv++)
 {
 schuelerInKlasse [lv] = new Schueler();
 schuelerInKlasse [lv].setzeNummer();
 }

 // Ausgabe der Schüler
 for (Schueler element : schuelerInKlasse)
 {
 element.abzaehlen();
 }

 System.out.println ("Klassenstärke nach der Einschulung: "
 + schuelerInKlasse [0].klassenStaerke);
 }
}

Hier ein Auszug der Programmausgabe:

Klassenstärke vor der Einschulung: 0
Ich bin die Nr.: 1

Ich bin die Nr.: 10
Klassenstärke nach der Einschulung: 10

Klassenvariable sind nicht Teil von Objekten, sondern werden bei der
Klasse geführt und sind deshalb für alle Objekte einer Klasse nur
einmal vorhanden.

Der Zugriff auf Klassenvariable ist ohne die Existenz einer Instanz
einer Klasse möglich. Der Zugriff erfolgt über den Klassennamen wie
z. B. Schueler.klassenStaerke.

Innerhalb der eigenen Klasse kann der Zugriff auch direkt über den Namen der
Klassenvariablen erfolgen, hier also über klassenStaerke.

Der Zugriff auf eine Klassenvariable kann auch über eine Referenz auf
ein Objekt der entsprechenden Klasse erfolgen wie z. B. schueler-
InKlasse[0].klassenStaerke, da ein Objekt weiß, zu welcher
Klasse es gehört.

10.2.2 Klassenmethoden

Im Folgenden soll das Programm aus Kapitel 10.2.1 erweitert werden. Es soll die
Klassenmethode holeSchuelerAnzahl() hinzukommen, welche die aktuelle

318 Kapitel 10

Klassenstärke – also den Wert der Klassenvariablen klassenStaerke – zurück-
gibt. Die Klassenvariable klassenStaerke wird als private deklariert.

// Datei: Schueler2.java

public class Schueler2
{
 private int nummerDesSchuelers;

 private static int klassenStaerke = 0;

 public void setzeNummer()
 {
 klassenStaerke++;
 nummerDesSchuelers = klassenStaerke;
 }

 public void abzaehlen()
 {
 System.out.println ("Ich bin die Nr.: " + nummerDesSchuelers);
 }

 public static int holeSchuelerAnzahl()
 {
 return klassenStaerke;
 }
}

// Datei: Schueler2Test.java

public class Schueler2Test
{
 public static void main (String[] args)
 {
 // Zugriff auf Klassenmethode, ohne dass ein Objekt existiert
 System.out.println ("Klassenstärke vor der Einschulung: "
 + Schueler2.holeSchuelerAnzahl());

 Schueler2[] schuelerInKlasse = new Schueler2 [10];

 for (int lv = 0; lv < schuelerInKlasse.length; lv++)
 {
 schuelerInKlasse [lv] = new Schueler2();
 schuelerInKlasse [lv].setzeNummer();
 }

 for (Schueler2 element : schuelerInKlasse)
 {
 element.abzaehlen();
 }

 System.out.println("Klassenstärke nach der Einschulung: "
 + schuelerInKlasse [0].holeSchuelerAnzahl());
 }
}

Klassen und Objekte 319

Hier ein Auszug der Programmausgabe:

Klassenstärke vor der Einschulung: 0
Ich bin die Nr.: 1
Ich bin die Nr.: 2

Ich bin die Nr.: 10
Klassenstärke nach der Einschulung: 10

Sie sehen an diesem Beispiel, dass eine Klassenmethode aufgerufen werden kann:

• als Komponente der Klasse, wie im Falle

Schueler2.holeSchuelerAnzahl();

• oder durch Zugriff über eine Referenz auf ein Objekt, wie in folgendem Beispiel:

SchuelerInKlasse [0].holeSchuelerAnzahl();

In Java ist es möglich, eine Klassenmethode über die Klasse selbst
oder über eine Referenz auf ein Objekt anzusprechen. Instanz-
methoden sind nur über eine Referenz auf ein Objekt aufrufbar.

Es zeugt jedoch für einen guten Programmierstil, wenn Klassenvariab-
le und Klassenmethoden nur über den Klassennamen wie beispiels-
weise

Klassenname.klassenvariable

angesprochen werden.

10.2.3 Übergabe von Objekten an Klassenmethoden

Bild 10-1 zeigt die UML-Notation für eine Klasse Dampfer. Jedes Schiff einer Flotte
von Ausflugsdampfern wie z. B. der Dampfer "Michelangelo" oder "Leonardo da
Vinci" ist eine Instanz dieser Klasse.

Dampfer

dampferNummer
anzahlSitzplaetze
anzahlDampfer

getAnzahlSitzplaetze()
setAnzahlSitzplaetze()
getAnzahlDampfer()
setAnzahlSitzplaetze()

Bild 10-1 Klasse Dampfer

320 Kapitel 10

Bitte beachten Sie, dass Klassenvariablen und Klassenmethoden in einer UML-
Klasse unterstrichen dargestellt werden. Jeder Dampfer erhält eine laufende Num-
mer, das Datenfeld dampferNummer. Bei jeder Inbetriebnahme eines neuen Damp-
fers wird die Anzahl der Dampfer, geführt in der Klassenvariable anzahlDampfer,
um eins erhöht. Jeder Dampfer hat eine individuelle Sitzplatzkapazität anzahlSitz-
plaetze. Die Datenfelder dampferNummer und anzahlSitzplaetze sind In-
stanzvariablen, da sie für jedes Objekt der Klasse Dampfer – also für jeden Dampfer
– angelegt werden. Schließlich hat jeder Dampfer eine eigene Nummer und auch
eine bestimmte Anzahl Sitzplätze. Die Anzahl der Dampfer einer Flotte gehört jedoch
nicht zu einem individuellen Dampfer, sondern ist eine Eigenschaft der gesamten
Flotte. Daher ist das Datenfeld anzahlDampfer eine Klassenvariable.

Die Instanzmethode getAnzahlSitzplaetze() gibt den Wert der Instanzvari-
ablen anzahlSitzplaetze eines bestimmten Dampfers, d. h. einer bestimmten In-
stanz, zurück. Mit Hilfe der Instanzmethode setAnzahlSitzplaetze() kann die
Sitzplatzanzahl für jeden Dampfer – also für jedes Objekt der Klasse Dampfer –
individuell gesetzt werden. Mit dem Aufruf

michelangelo.setAnzahlSitzplaetze (100);

wird der Wert der Instanzvariablen anzahlSitzplaetze für das Dampfer-Objekt
michelangelo auf 100 gesetzt.

Mit Hilfe der überladenen Klassenmethode setAnzahlSitzplaetze() wird im
folgenden Beispiel ebenfalls die Anzahl der Sitzplätze eines Dampfers festgelegt. Da
diese Klassenmethode aber nicht das Objekt kennt, auf dessen Methoden und
Variablen sie arbeiten soll, muss ihr eine Referenz auf das entsprechende Objekt
übergeben werden. Sie kann wie folgt aufgerufen werden:

Dampfer.setAnzahlSitzplaetze (michelangelo, 60);

Weiterhin stellt die Klasse Dampfer die Klassenmethode getAnzahlDampfer()
bereit. Diese liefert den aktuellen Wert der Klassenvariablen anzahlDampfer zu-
rück.

Instanzmethoden haben stets Zugriff auf Instanzvariablen und auf
Klassenvariablen. Eine Instanzmethode kennt ihre Instanzvariablen,
da diese zum gleichen Objekt gehören. Sie kennt auch ihre Klassen-
variablen, da Klassenvariable globale Variable für alle Objekte einer
Klasse darstellen.

Eine Klassenmethode kann auch auf Instanzvariablen und In-
stanzmethoden arbeiten, wenn ihr explizit eine Referenz auf das
entsprechende Objekt übergeben wird.

Klassen und Objekte 321

Hier nun das beschriebene Beispielprogramm:

// Datei: Dampfer.java

public class Dampfer
{
 private int dampferNummer = 0;
 private int anzahlSitzplaetze = 0;
 private static int anzahlDampfer = 0;

 public void init()
 {
 anzahlDampfer++; // Zugriff auf Klassenvariable
 dampferNummer = anzahlDampfer;
 System.out.print ("Dampfer Nr. " + dampferNummer);
 System.out.print (" angelegt, Dampfer insgesamt: ");
 // Zugriff auf Klassenvariable
 System.out.println (anzahlDampfer);
 }

 public static int getAnzahlDampfer()
 {
 // Klassenmethode hat Zugriff auf Klassenvariable
 return anzahlDampfer;
 }

 // Der Klassenmethode wird ein Objekt der eigenen Klasse
 // übergeben
 public static void setAnzahlSitzplaetze (Dampfer dampfer,
 int sitzplaetze)
 {
 dampfer.setAnzahlSitzplaetze (sitzplaetze);
 }

 public void setAnzahlSitzplaetze (int sitzplaetze)
 {
 anzahlSitzplaetze = sitzplaetze;
 System.out.println ("Sitzplätze von Dampfer Nr. "
 + dampferNummer + ": " + anzahlSitzplaetze);
 }

 public int getAnzahlSitzplaetze()
 {
 return anzahlSitzplaetze;
 }
}

// Datei: DampferTest.java

public class DampferTest
{
 public static void main (String[] args)
 {
 // Zugriff auf Klassenmethode, ohne dass ein Objekt existiert.
 System.out.println ("Dampfer insgesamt: "
 + Dampfer.getAnzahlDampfer());

322 Kapitel 10

 // Zwei Dampfer anlegen
 Dampfer michelangelo = new Dampfer();
 michelangelo.init();
 Dampfer leonardoDaVinci = new Dampfer();
 leonardoDaVinci.init();

 // Sitzplätze festlegen
 michelangelo.setAnzahlSitzplaetze (100);
 leonardoDaVinci.setAnzahlSitzplaetze (150);

 // Leonardo Da Vinci wurde vergrößert
 Dampfer.setAnzahlSitzplaetze (leonardoDaVinci, 170);
 // Michelangelo wurde verkleinert
 Dampfer.setAnzahlSitzplaetze (michelangelo, 60);

 // Zugriff auf Klassenmethode über den Klassennamen.
 System.out.println ("Dampfer insgesamt: "
 + Dampfer.getAnzahlDampfer());
 }
}

Hier die Ausgabe des Programms:

Dampfer insgesamt: 0
Dampfer Nr. 1 angelegt, Dampfer insgesamt: 1
Dampfer Nr. 2 angelegt, Dampfer insgesamt: 2
Sitzplätze von Dampfer Nr. 1: 100
Sitzplätze von Dampfer Nr. 2: 150
Sitzplätze von Dampfer Nr. 2: 170
Sitzplätze von Dampfer Nr. 1: 60
Dampfer insgesamt: 2

Instanzmethoden können zwar Klassenvariablen lesen. Das Schrei-
ben von Klassenvariablen sollte jedoch nur in Klassenmethoden, Kon-
struktoren oder so genannten statischen Initialisierungsblöcken ge-
schehen.

Aus Gründen des Software Engineering sollen Klassenmethoden nicht
auf Instanzvariablen zugreifen, es sei denn, es handelt sich um allge-
meine Hilfsmethoden. Beispiele für solche Hilfsmethoden sind Klas-
senmethoden zum Vertauschen von Objekten oder zum Umwandeln
von Objekten von Wrapper-Klassen in Werte einfacher Datentypen.

10.3 Die this-Referenz

Jedes Objekt hat seine individuellen Instanzvariablen und in logischer Sicht diesel-
ben Methoden. Diese Methoden sind jedoch für alle Objekte einer Klasse stets die-
selben. Daher ist es aus Gründen des Speicherverbrauchs effizienter, diese Metho-
den an zentraler Stelle im Speicher abzulegen. Als zentrale Stelle bietet sich natür-
lich die Klasse selbst an. Dieser Sachverhalt soll an der vereinfachten Klasse Per-
son1 im Folgenden diskutiert werden.

Klassen und Objekte 323

// Datei: Person1.java

public class Person1
{
 private int alter;

 public void print()
 {
 System.out.println ("Alter: " + alter);
 }

 public void setzeAlter (int alt)
 {
 alter = alt;
 }
}

// Datei: TestPerson1.java

public class TestPerson1
{
 public static void main (String[] args)
 {
 Person1 p = new Person1();
 p.setzeAlter (10);
 p.print();
 }
}

Die Ausgabe des Programms ist:

Alter: 10

Bei der Ausführung eines Programms liegen die Methoden in der Method-Area der
virtuellen Maschine und die Objekte mit ihren Instanzvariablen auf dem Heap, wie in
Bild 10-2 zu sehen ist.

Programmcode der
Methode main()

Method-Area Heap

Referenz p

Programmcode der
Methode setzeAlter()

Programmcode der
Methode print()

:Person

int alter = 10;

Bild 10-2 Instanzmethoden müssen Zugriff auf die Instanzvariablen im Heap haben

324 Kapitel 10

Damit gibt es zwei Probleme: zum einen muss ein Objekt seine Klasse finden und
zum anderen muss eine Methode das Objekt finden, für welches sie aufgerufen wird.
Das erste Problem wird in Kapitel 11.6 behandelt und auf das zweite Problem soll im
Folgenden eingegangen werden. Die Fragestellung ist also, woher die Methode
print() weiß, wo das Datenfeld des Objektes liegt, wenn sie aufgerufen wird?
Eigentlich bräuchte jede Methode, die auf Instanzvariablen arbeitet, auch eine Refe-
renz auf die im Heap befindlichen Daten, die sie bearbeiten soll. Wenn 100 Personen
angelegt werden, muss die print()-Methode in der Lage sein, auf die Daten der
100 verschiedenen Objekte zuzugreifen. Sie benötigt also zum Zeitpunkt der Abar-
beitung immer eine Referenz genau auf die Daten desjenigen Objektes, zu dem der
Methodenaufruf aktiviert wurde.

Also wäre es sinnvoll, wenn jede Instanzmethode einen zusätzlichen Übergabepara-
meter bekommen würde, an den beim Methodenaufruf die Referenz auf das im Heap
befindliche Objekt übergeben werden kann. Über diese Referenz kann dann auf die
Daten zugegriffen werden. Genau auf diese Art und Weise wird der Zugriff einer
Instanzmethode auf die entsprechenden Datenfelder zur Laufzeit auch realisiert.
Diese ganze Umsetzung erfolgt jedoch für den Programmierer unsichtbar. Zur Erläu-
terung wird in folgendem Beispiel so getan, als würde der Compiler diesen zusätz-
lichen Übergabeparameter einführen. Beachten Sie, dass dies nur fiktiv ist. Welche
Rolle hierbei der Compiler und welche Rolle die virtuelle Maschine spielt, kann hier
nicht untersucht werden. Das folgende Programmbeispiel dient also nur zu Demon-
strationszwecken und ist natürlich nicht kompilierbar.

public class Person
{
 private int alter;

 public void print (Person this)
 {
 System.out.println ("Name: " + this.name);
 }

 public void setzeAlter (Person this, int alt)
 {
 this.alter = alt;
 }
}

public class PersonTest
{
 public static void main (String[] args)
 {
 Person p = new Person();
 Person.setzeAlter (p, 10);
 Person.print (p);
 }
}

Auf alle Datenfelder wird nun mit Hilfe der übergebenen Referenz zugegriffen. Diese
fiktive Umsetzung veranschaulicht sehr schön, dass eine Methode zur Klasse gehört,
denn mit dem Aufruf

Person.setzeAlter (p, 10)

Klassen und Objekte 325

wird gesagt: Rufe die Methode setzeAlter() der Klasse Person auf. Dabei soll
die Methode auf den Daten des Objektes arbeiten, dessen Referenz als erster
Parameter übergeben wurde. Es ist kein Zufall, dass im obigen Beispiel dieser
formale Parameter den Namen this trägt. Dieser Name ist bewusst gewählt, um
nun die this-Referenz einführen zu können. Das oben Beschriebene ist für den
Programmierer zwar unsichtbar realisiert, aber er hat trotzdem die Möglichkeit, die
this-Referenz in seinen Programmen in folgenden Fällen zu benutzen:

• Der Programmierer möchte explizit darauf aufmerksam machen, dass er auf eine
Instanzvariable bzw. auf eine Instanzmethode des eigenen Objektes zugreift.

// Datei: Person2.java

public class Person2
{
 private int alter;

 public void print()
 {
 this.printSterne();
 System.out.println ("Alter: " + this.alter);
 this.printSterne();
 }

 private void printSterne()
 {
 System.out.println ("*******************");
 }

 public void setzeAlter (int alt)
 {
 this.alter = alt;
 }
}

// Datei: TestPerson2.java

public class TestPerson2
{
 public static void main (String[] args)
 {
 Person2 p = new Person2();
 p.setzeAlter (10);
 p.print();
 }
}

Die Ausgabe des Programms ist:

Alter: 10

326 Kapitel 10

• Ein Datenfeld hat den gleichen Namen wie eine lokale Variable. In diesem Fall
kann mit der this-Referenz auf das verdeckte Datenfeld zugegriffen werden.

// Datei: Person3.java

public class Person3
{
 private int alter;
 private String vorname;
 private String name;

 public void print()
 {
 System.out.println ("Name: " + name);
 System.out.println ("Vorname: " + vorname);
 System.out.println ("Alter: " + alter);
 }

 public void setzeDaten (String name, String vorname, int alter)
 {
 // Zugriff auf verdeckte Datenfelder.
 this.name = name; // Beachten Sie, dass die formalen
 this.vorname = vorname; // Parameter lokale Variable dar-
 this.alter = alter; // stellen.
 }
}

// Datei: TestPerson3.java

public class TestPerson3
{
 public static void main (String[] args)
 {
 Person3 p = new Person3();
 p.setzeDaten ("Brang", "Rainer", 25);
 p.print();
 }
}

Die Ausgabe des Programms ist:

Name: Brang
Vorname: Rainer
Alter: 25

• Eine Referenz auf das aktuelle Objekt soll als Rückgabewert zurückgegeben

werden. Damit können Methodenaufrufe für dasselbe Objekt verkettet werden.

// Datei: Bruch.java

public class Bruch
{
 private int zaehler;
 private int nenner;

Klassen und Objekte 327

 public void print()
 {
 System.out.println (zaehler + "/" + nenner);
 }

 public Bruch setzeWerte (int zaehler, int nenner)
 {
 this.zaehler = zaehler;
 this.nenner = nenner;
 return this;
 }

 public Bruch multipliziere (int faktor)
 {
 setzeWerte (zaehler * faktor, nenner);
 return this;
 }
}

// Datei: BruchTest.java

public class BruchTest
{
 public static void main (String[] args)
 {
 Bruch b1 = new Bruch();
 System.out.print ("Wert des Bruches b1: ");
 b1.setzeWerte (1, 2).print();

 Bruch b2 = new Bruch();
 System.out.print ("Wert des Bruches b2: ");
 b2.setzeWerte (1, 3).print();

 System.out.print ("Wert des Bruches b1: ");
 b1.multipliziere (10).print();
 }
}

Die Ausgabe des Programms ist:

Wert des Bruches b1: 1/2
Wert des Bruches b2: 1/3
Wert des Bruches b1: 10/2

• Eine Referenz auf das aktuelle Objekt soll als Übergabeparameter an eine Metho-

de übergeben werden. Im folgenden Beispiel wird das vorangehende Beispiel der
Klasse Bruch modifiziert:

// Datei: Bruch2.java

public class Bruch2
{
 private int zaehler;
 private int nenner;

328 Kapitel 10

 public void print()
 {
 System.out.println (zaehler + "/" + nenner);
 }

 public void setzeWerte (int zaehler, int nenner)
 {
 this.zaehler = zaehler;
 this.nenner = nenner;
 }

 // Eine Klassenmethode zum Erweitern eines Bruches
 public static Bruch2 erweitere (Bruch2 b, int faktor)
 {
 Bruch2 tmp = new Bruch2();
 tmp.setzeWerte (b.zaehler * faktor, b.nenner * faktor);
 return tmp;
 }

 public void addiere (Bruch2 b)
 {
 // Benutzt zur Berechnung die Klassenmethode erweitere()
 Bruch2 tmp1 = erweitere (b, nenner);
 Bruch2 tmp2 = erweitere (this, b.nenner);
 zaehler = tmp1.zaehler + tmp2.zaehler;
 nenner = tmp1.nenner;
 }
}

// Datei: Bruch2Test.java

public class Bruch2Test
{
 public static void main (String[] args)
 {
 Bruch2 b1 = new Bruch2();
 b1.setzeWerte (1, 2);
 System.out.print ("Wert des Bruches b1: ");
 b1.print();
 Bruch2 b2 = new Bruch2();
 b2.setzeWerte (1,3);
 System.out.print ("Wert des Bruches b2: ");
 b2.print();
 System.out.print ("b1 + b2 = ");
 b1.addiere (b2);
 b1.print();
 }
}

Die Ausgabe des Programms ist:

Wert des Bruches b1: 1/2
Wert des Bruches b2: 1/3
b1 + b2 = 5/6

Klassen und Objekte 329

Am Schluss soll nochmals darauf hingewiesen werden, dass Klassenmethoden keine
this-Referenz besitzen.

Klassenmethoden können nicht über die this-Referenz auf Instanz-
variablen bzw. Instanzmethoden zugreifen.

10.4 Initialisierung von Datenfeldern

Dieses Kapitel behandelt, wie Datenfelder von Klassen und Objekten initialisiert wer-
den. Nimmt der Programmierer keine Initialisierung vor, so werden die vom Compiler
zur Verfügung gestellten Default-Initialisierungen implizit durchgeführt (siehe Kap.
10.4.1). Explizite Initialisierungen des Programmierers können sein:

• eine manuelle Initialisierung (siehe Kap. 10.4.2),
• eine Initialisierung mit einem Initialisierungsblock (siehe Kap. 10.4.3)
• sowie eine Initialisierung mit einem Konstruktor im Falle von Objekten. Klassen

können jedoch nicht damit initialisiert werden (siehe Kap. 10.4.4).

10.4.1 Default-Initialisierungen von Datenfeldern

In Java werden Klassenvariablen und Instanzvariablen, d. h. klassen- und objektbe-
zogene Datenfelder, automatisch mit Default-Werten (Standard-Werten) initialisiert.
Lokale Variablen werden nicht automatisch initialisiert. Sie müssen von Hand initiali-
siert werden, wie bereits in Kapitel 6.4.4 behandelt. Die folgende Tabelle zeigt, mit
welchen Default-Werten Datenfelder bei der automatischen Initialisierung (Default-
Initialisierung) belegt werden. Dabei ist zu beachten, dass Datenfelder, die Referenz-
variablen sind, mit der null-Referenz als Default-Wert belegt werden.

Typ Default-Wert
boolean false
char '\u0000'
byte 0
short 0
int 0
long 0
float 0.0f
double 0.0d
Referenztyp null

Tabelle 10-1 Default-Werte für Datenfelder

10.4.2 Manuelle Initialisierung von Datenfeldern

Will man die Datenfelder mit anderen Werten als Default-Werten belegen, so kann
man die Datenfelder manuell wie im folgenden Beispiel initialisieren:

Vorsicht!

330 Kapitel 10

// Datei: Punkt2.java

public class Punkt2
{
 // Manuelle Initialisierung von anzahl könnte entfallen, da der
 // Default-Wert auch 0 ist.
 private static int anzahl = 0;
 private int x; // Der Default-Wert ist 0
 private int y = 1; // Manuelle Initialisierung

 public void print()
 {
 System.out.println ("Die Koordinaten des Punktes sind:");
 System.out.println ("x = " + x + ", y = " + y);
 }

 public static void main (String[] args)
 {
 System.out.println ("Anzahl der Punkte: " + anzahl);
 Punkt2 p1 = new Punkt2(); // Anlegen eines Punkt-Objektes
 p1.print();
 anzahl++; // Eine bessere Lösung wird später gezeigt
 System.out.println ("Anzahl der Punkte: " + anzahl);
 }
}

Die Ausgabe des Programms ist:

Anzahl der Punkte: 0
Die Koordinaten des Punktes sind:
x = 0, y = 1
Anzahl der Punkte: 1

Klassenvariable, hier:

private static int anzahl = 0;

werden beim Laden der Klasse initialisiert.

Instanzvariablen, hier:

private int x;
private int y = 1;

werden beim Anlegen eines Objektes initialisiert. Wird einer Instanzvariablen kein
Wert manuell zugewiesen, d. h. wird sie nicht manuell initialisiert, so erhält sie als
Default-Wert den entsprechenden "Null"-Wert (false, '\u0000', 0, 0.0, null)
aus Tabelle 10-1.

In Java ist es möglich, bei einer manuellen Initialisierung nicht nur Konstanten zur
Initialisierung zu verwenden, sondern beliebige Ausdrücke. Das folgende Beispiel
zeigt die Möglichkeiten zur Initialisierung, die hierdurch entstehen:

Klassen und Objekte 331

public class Init
{
 // Eine Klassenmethode zur Initialisierung aufrufen
 private static int anzahl = Math.abs (-239);
 // Eine Klassenvariable der eigenen Klasse benutzen
 private int x = anzahl + 10;
 // Ein zuvor initialisierte Instanzvariable verwenden
 private int y = x - 100;
 // Ein Objekt mit Hilfe des new-Operators erzeugen
 private String str = new String ("Guten" + " Morgen");
}

Klassenvariablen werden beim Laden der Klasse initialisiert.

Instanzvariablen werden beim Erzeugen eines Objektes initialisiert.

Wird also irgendwo in einem Programmstück entweder auf eine Klassenvariable oder
eine Klassenmethode zugegriffen, so wird die Klasse – sofern sie nicht schon früher
benutzt wurde – in die virtuelle Maschine geladen und unmittelbar danach werden
die Initialisierungen der Klassenvariablen der Reihe nach durchgeführt. Das Gleiche
läuft ab, wenn mit Hilfe des new-Operators eine Instanz einer Klasse erzeugt wird.
Auch dann wird zuerst die Klasse in die virtuelle Maschine geladen, die Initialisie-
rungen der Klassenvariablen werden durchgeführt und erst danach kann das Objekt
mit Hilfe des new-Operators erzeugt und die manuellen Initialisierungen für die In-
stanzvariablen durchgeführt werden.

Initialisierungen erfolgen stets der Reihe nach. Deshalb ist es nicht
erlaubt, eine Klassenvariable manuell mit dem Wert einer anderen
Klassenvariablen zu initialisieren, welche erst später definiert wird.
Dasselbe gilt sinngemäß für Instanzvariable.

Folgendes ist deshalb unzulässig:

public class Init
{
 // Benutzt Klassenvariable zur Initialisierung, die erst weiter
 // unten definiert ist. Der Compiler gibt einen Fehler aus.
 private static int anzahl = stat;
 private static int stat = 999;

 // Benutzt Instanzvariable zur Initialisierung, die erst weiter
 // unten definiert ist. Der Compiler gibt einen Fehler aus.
 private int y = x - 100;
 private int x = anzahl + 10;
}

332 Kapitel 10

Dagegen ist es natürlich möglich, bei der Initialisierung einer Instanzvariablen eine
Klassenvariable zu benutzen, die erst weiter unten in der Klasse definiert ist. Dies
liegt daran, dass Initialisierungen von Klassenvariablen beim Laden der Klasse erfol-
gen und Instanzvariable erst nach der Erzeugung eines Objektes initialisiert werden.
Das Folgende ist also korrekt:

public class Init
{
 private int x = anzahl + 10;
 private static int anzahl = Math.abs (999);
}

10.4.3 Initialisierung mit einem Initialisierungsblock

Eine weitere Möglichkeit zur Initialisierung von Datenfeldern ist die Initialisierung mit
Hilfe eines Initialisierungsblocks. Ein Block, der mit dem Schlüsselwort static
eingeleitet wird, ist ein statischer Initialisierungsblock. Ein solcher Block wird im
Rahmen der Initialisierung von Klassenvariablen, d. h. beim Laden der Klasse
genau einmal ausgeführt. Dies wird in folgendem Beispiel demonstriert:

// Datei: StaticBlockTest.java

class StaticBlock
{
 // Zählt die erzeugten Objekte von der Klasse.
 public static int anzahl = 0;
 // Anzahl der Aufrufe des statischen Initialisierungsblocks.
 public static int anzahlAufrufeStaticBlock = 0;

 static
 {
 System.out.println ("* Betreten des statischen Blocks *");
 anzahlAufrufeStaticBlock++;
 }
}

public class StaticBlockTest
{
 public static void main (String[] args)
 {
 StaticBlock objekt1 = new StaticBlock();
 StaticBlock.anzahl++;
 System.out.println ("Anzahl erzeugter Objekte: "
 + StaticBlock.anzahl);
 System.out.println ("Aufrufe stat. Initialisierungsblock: "
 + StaticBlock.anzahlAufrufeStaticBlock);

 StaticBlock objekt2 = new StaticBlock();
 StaticBlock.anzahl++;
 System.out.println ("Anzahl erzeugter Objekte: "
 + StaticBlock.anzahl);
 System.out.println ("Aufrufe stat. Initialisierungsblock: "
 + StaticBlock.anzahlAufrufeStaticBlock);
 }
}

Klassen und Objekte 333

Die Ausgabe des Programms ist:

* Betreten des statischen Blocks *
Anzahl erzeugter Objekte: 1
Aufrufe stat. Initialisierungsblock: 1
Anzahl erzeugter Objekte: 2
Aufrufe stat. Initialisierungsblock: 1

Das Anschreiben des Klassennamens StaticBlock in der zweiten Zeile der
main()-Methode signalisiert der Laufzeitumgebung, dass der Code dieser Klasse
nun benötigt wird und in die virtuelle Maschine geladen werden soll. Dabei werden
die Klassenvariablen anzahl und anzahlAufrufeStaticBlock von der virtuellen
Maschine jeweils mit ihrem Default-Wert 0 initialisiert. Nachdem diese Initialisierung
stattgefunden hat, wird der statische Initialisierungsblock abgearbeitet und die Anwei-
sungen darin ausgeführt. Dort wird der Wert der Klassenvariablen anzahlAufrufe-
StaticBlock auf 1 gesetzt. Nach der Abarbeitung des Blocks ist die Initialisierung
der Klasse abgeschlossen und es kann das erste Objekt objekt1 erzeugt werden.
Danach wird die Klassenvariable anzahl um 1 erhöht. Bei der Erzeugung des zwei-
ten Objektes objekt2 ist der Code der Klasse StaticBlock schon in der virtuellen
Maschine vorhanden. Es findet also kein Laden und auch keine Initialisierung der
Klassenvariablen mehr statt. Der statische Initialisierungsblock wird also nicht mehr
durchlaufen und es kann sofort das Objekt erzeugt werden. Die Klassenvariable
anzahlAufrufeStaticBlock hat somit immer noch den Wert 1 und wird nicht
mehr verändert. Die Klassenvariable anzahl hingegen wird erneut um 1 erhöht und
hat dann den Wert 2. Das Besondere an einem statischen Initialisierungsblock ist,
dass in ihm wie in jedem anderen Block beliebige Anweisungen stehen können.

Ein statischer Initialisierungsblock kann beliebige Anweisungen ent-
halten. Er wird im Rahmen der Initialisierung von Klassenvariablen ge-
nau einmal ausgeführt.

Auch für die Initialisierung von Instanzvariablen gibt es einen Initialisierungs-
block. Dieser ist allerdings nicht statisch, wie in folgendem Beispiel zu sehen ist:

// Datei: Punkt3.java

public class Punkt3
{
 public static int anzahl = 0;
 private int x;
 private int y;

 {
 System.out.println ("Wert von x: " + x);
 System.out.println ("Wert von y: " + y);
 anzahl++;
 y = 1;
 }

334 Kapitel 10

 public void print()
 {
 System.out.println ("Die Koordinaten des Punktes sind:");
 System.out.println ("x = " + x + ", y = " + y);
 }
}

// Datei: TestPunkt3.java

public class TestPunkt3
{
 public static void main (String[] args)
 {
 System.out.println ("Anzahl der Punkte: " + Punkt3.anzahl);
 Punkt3 p1 = new Punkt3(); // Anlegen eines Punkt-Objektes
 p1.print();
 System.out.println ("Anzahl der Punkte: " + Punkt3.anzahl);
 }
}

Die Ausgabe des Programms ist:

Anzahl der Punkte: 0
Wert von x: 0
Wert von y: 0
Die Koordinaten des Punktes sind:
x = 0, y = 1
Anzahl der Punkte: 1

Der nicht statische Initialisierungsblock wird einfach durch eine geschweifte öffnende
Klammer eingeleitet und durch eine geschweifte schließende Klammer beendet. In
ihm können wie im statischen Initialisierungsblock beliebige Anweisungen stehen.
Ein nicht statischer Initialisierungsblock wird im Zuge der Initialisierung von Instanz-
variablen ausgeführt. Im obigen Beispiel ist zu erkennen, dass die Default-Initialisie-
rungen der Instanzvariablen x und y schon durchgeführt sind, wenn mit der Abarbei-
tung des Initialisierungsblocks begonnen wird.

Der nicht statische Initialisierungsblock wird jedes Mal dann aus-
geführt, wenn ein Objekt dieser Klasse angelegt wurde.

Damit ist der Initialisierungsblock dafür geeignet, die Klassenvariable anzahl, wel-
che die Zahl der erzeugten Objekte der Klasse Punkt als Wert enthält, zu erhöhen.

Zuerst werden die Default-Initialisierungen durchgeführt. Manuelle Ini-
tialisierungen und Initialisierungen mit einem Initialisierungsblock wer-
den der Reihe nach abgearbeitet und überschreiben die entsprechen-
den Default-Initialisierungen.

Klassen und Objekte 335

Anstatt des nicht statischen Initialisierungsblocks kann auch ein Konstruktor verwen-
det werden. Für die Initialisierung der Objekte anonymer Klassen (siehe Kap. 15.3)
wird jedoch der nicht statische Initialisierungsblock benötigt, da anonyme Klassen
keinen Konstruktor besitzen.

10.4.4 Konstruktoren zur Initialisierung

Konstruktoren sind Initialisierungsroutinen, die automatisch beim Erzeugen eines
Objektes ausgeführt werden. Das bedeutet, dass die Initialisierung eines Objektes
sofort nach dem Anlegen des Objektes durch Aufruf des Konstruktors erfolgt. Hierzu
ist es lediglich erforderlich, dass der Name der Initialisierungsroutine gleich dem
Namen der Klasse ist. Dies wird in dem folgenden Beispiel demonstriert:

// Datei: Punkt4.java

public class Punkt4
{
 public static int anzahl = 0; // Anzahl der Punkte.

 private int x;
 private int y = 1;

 public Punkt4() // Dies ist ein Konstruktor.
 {
 System.out.println ("Anfang des Konstruktors");
 print();
 System.out.println ("Klassenvariable anzahl " +
 "noch unverändert");
 System.out.println ("anzahl hat den Wert " + anzahl);

 // Initialisieren von Instanzvariablen
 x = 2;
 y = 3;
 print();

 // Hochzählen der Klassenvariable anzahl.
 anzahl++;
 System.out.println ("\nKlassenvariable anzahl " +
 "inkrementiert");
 System.out.println ("anzahl hat den Wert " + anzahl);
 System.out.println ("Ende des Konstruktors");
 }

 public void print()
 {
 System.out.println ("\nDie Koordinaten des Punktes sind:");
 System.out.println ("x = " + x + ", y = " + y);
 }
}

// Datei: TestPunkt4.java

public class TestPunkt4
{

336 Kapitel 10

 public static void main (String[] args)
 {
 System.out.println ("Anzahl der Punkte: " + Punkt4.anzahl);
 Punkt4 p1 = new Punkt4(); // Anlegen eines Punkt-Objektes
 // und Aufruf des Konstruktors
 }
}

Die Ausgabe des Programms ist:

Anzahl der Punkte: 0
Anfang des Konstruktors

Die Koordinaten des Punktes sind:
x = 0, y = 1
Klassenvariable anzahl noch unverändert
anzahl hat den Wert 0

Die Koordinaten des Punktes sind:
x = 2, y = 3

Klassenvariable anzahl inkrementiert
anzahl hat den Wert 1
Ende des Konstruktors

Mit

Punkt4 p1 = new Punkt4(); // Anlegen eines Punkt-Objektes
 // und Aufruf des Konstruktors

wird die Referenzvariable p1 angelegt, ein Objekt der Klasse Punkt4 ohne Namen
auf dem Heap durch den new-Operator geschaffen und die Referenz auf das namen-
lose Objekt – die der new-Operator zurückgibt – an die Referenzvariable p1 zuge-
wiesen. Im Anschluss an das Anlegen des Objektes auf dem Heap wird von der
virtuellen Maschine automatisch der Konstruktor aufgerufen. Das Anlegen eines Ob-
jektes und der Konstruktoraufruf sind untrennbar miteinander verknüpft.

Beachten Sie, dass in obigem Beispiel im Konstruktor zum einen die Initialisierung
des Punktes erfolgt und zum anderen auch die Anzahl der angelegten Punkte
durch anzahl++ hochgezählt wird. Bei jedem Aufruf des Konstruktors wird die
Klassenvariable anzahl automatisch inkrementiert.

Da ein Konstruktor automatisch nach der Allokierung des Speicher-
platzes für ein Objekt aufgerufen wird, wird

• in der Regel die Initialisierung im Konstruktor durchgeführt
• und die Anzahl der erzeugten Objekte am besten auch im Konstruk-

tor hochgezählt.

Klassen und Objekte 337

Konstruktoren werden zu Beginn der Lebensdauer eines Objektes automatisch
aufgerufen. Im Einzelnen gilt:

• Konstruktoren werden unmittelbar nach der durchgeführten Reservierung des
Speicherplatzes auf dem Heap durch den new-Operator aufgerufen.

• Konstruktoren von Basisklassen werden vor den Konstruktoren ihrer Nachkom-
men aufgerufen (siehe Kap. 11.3.2).

Ein Konstruktor

• dient zum Initialisieren eines Objektes,
• unterscheidet sich von einer normalen Methode unter anderem da-

durch, dass der Konstruktor ohne Rückgabewert (auch nicht void)
deklariert wird,

• unterscheidet sich weiterhin von einer normalen Methode auch da-
durch, dass er nicht an eine abgeleitete Klasse vererbt wird,

• wird vom Compiler dadurch erkannt, dass er den gleichen Namen
trägt, wie die Klasse selbst.

10.4.4.1 Beispiel zur Initialisierungsreihenfolge

Das folgende Beispiel zeigt, wie die Instanzvariablen eines Objektes zunächst mit
manuell angegebenen Anfangswerten belegt werden. Mit Hilfe des Konstruktors
können diese anschließend überschrieben werden:

// Datei: Person5.java

public class Person5
{
 private String vorname = "Rainer";
 private String name = "Brang";
 private int alter = 25;

 // Dies ist ein selbst geschriebener Default-Konstruktor
 public Person5()
 {
 System.out.print ("Felder beim Eintritt in den ");
 System.out.println ("Konstruktor:");
 print();
 vorname = "Franz";
 name = "Müller";
 alter = 35;
 }

 public void print()
 {
 System.out.println ("Vorname: " + vorname);
 System.out.println ("Name: " + name);
 System.out.println ("Alter: " + alter);
 }
}

338 Kapitel 10

// Datei: TestPerson5.java

public class TestPerson5
{
 public static void main (String[] args)
 {
 Person5 p1 = new Person5();
 System.out.println ("Felder nach dem Konstruktoraufruf: ");
 p1.print();
 }
}

Die Ausgabe des Programms ist:

Felder beim Eintritt in den Konstruktor:
Vorname: Rainer
Name: Brang
Alter: 25
Felder nach dem Konstruktoraufruf:
Vorname: Franz
Name: Müller
Alter: 35

Die Default-Werte von Datenfeldern werden durch eine manuelle Ini-
tialisierung oder einen Initialisierungsblock überschrieben. Initialisie-
rungen, die im Konstruktor durchgeführt werden, überschreiben so-
wohl Default-Werte als auch die Werte einer manuellen Initialisierung
und die Werte der Initialisierungen eines Initialisierungsblocks.

10.4.4.2 Konstruktoren mit Parametern

Wie Methoden können auch Konstruktoren mit formalen Parametern versehen wer-
den. Auch der Rumpf des Konstruktors ist wie bei einer normalen Methode aufge-
baut. Bei der Erzeugung eines Objektes werden die aktuellen Parameter übergeben.
Die folgende Klasse Bruch3 hat einen Konstruktor mit zwei Parametern:

public class Bruch3
{
 private int zaehlerFeld;
 private int nennerFeld;

 public Bruch3 (int zaehler, int nenner)
 {
 zaehlerFeld = zaehler;
 nennerFeld = nenner;
 }

 public void print()
 {

 }
}

Klassen und Objekte 339

Beim Anlegen eines Objektes mit dem new-Operator müssen die aktuellen Para-
meter für den nachfolgenden Konstruktoraufruf übergeben werden. So bewirkt die
Codezeile

Bruch3 refBruch = new Bruch3 (2, 4);

das Anlegen eines Objektes der Klasse Bruch3 auf dem Heap, gefolgt vom Aufruf
des Konstruktors mit 2 Parametern.

10.4.4.3 Voreingestellter Default-Konstruktor

Der voreingestellte Default-Konstruktor wird vom Compiler zur Verfügung gestellt.
Er ist für jede Klasse automatisch definiert, vorausgesetzt, es wird kein Konstruktor
selbst definiert. Ein voreingestellter Default-Konstruktor einer Klasse hat keine Para-
meter. Er ist ein parameterloser Konstruktor.

Bevor weitere Erläuterungen folgen, sollen die Begriffe, die für Konstruktoren in den
folgenden Kapiteln verwendet werden, hier nochmals zusammengefasst und gegen-
einander abgegrenzt werden:

• Ein Default-Konstruktor ist ein Konstruktor ohne Parameter, der dem Benutzer in
der Regel88 keine frei vorgebbare individuelle Initialisierung von Datenfeldwerten
ermöglicht, da keine Parameter übergeben werden können.

• Der voreingestellte Default-Konstruktor ist der vom Compiler zur Verfügung ge-
stellte Default-Konstruktor ohne Parameter.

• Der selbst geschriebene Default-Konstruktor ist ein Konstruktor ohne Para-
meter, der jedoch selbst geschrieben wurde.

• Konstruktoren mit Parametern erlauben eine frei vorgebbare individuelle Initiali-
sierung von Objekten.

Wird also überhaupt kein Konstruktor selbst geschrieben, so wird automatisch nach
dem Anlegen eines jeden Objektes der voreingestellte Default-Konstruktor auf-
gerufen. So war zum Beispiel im Programm Bruch.java in Kapitel 10.3 gar kein
selbst geschriebener Konstruktor vorhanden. Mit

b = new Bruch();

wurde der voreingestellte Default-Konstruktor Bruch() des Compilers aufgerufen.

Konstruktoren können genauso wie normale Methoden überladen werden. Es kön-
nen beliebig viele Konstruktoren selbst geschrieben werden, die sich in Typ und
Anzahl der Übergabeparameter unterscheiden. Es ist jedoch folgendes zu beachten:
Sobald nur ein einziger selbst geschriebener Konstruktor existiert – gleichgültig ob
mit oder ohne Parameter –, ist der vom Compiler zur Verfügung gestellte voreinge-
stellte Default-Konstruktor nicht mehr sichtbar. Deshalb kann von einer Klasse, die

88 Eine frei vorgebbare individuelle Initialisierung kann hier lediglich dadurch erreicht werden, dass im

Konstruktur der Benutzer aufgefordert wird, von der Tastatur aus individuelle Werte einzugeben.

340 Kapitel 10

nur Konstruktoren mit Parametern zur Verfügung stellt, kein Objekt mehr mit der An-
weisung

Klassenname refK = new Klassenname();

erzeugt werden. Der Compiler gibt in diesem Fall eine Fehlermeldung aus.

Sobald nur ein einziger selbst geschriebener Konstruktor existiert, ist
der vom Compiler zur Verfügung gestellte voreingestellte Default-Kon-
struktor nicht mehr vorhanden.

10.4.5 Aufruf eines Konstruktors im Konstruktor

Ein Konstruktor einer Klasse kann in seiner ersten Anweisung einen anderen
Konstruktor derselben Klasse aufrufen. So kann beispielsweise ein selbst ge-
schriebener Default-Konstruktor einer Klasse Person4 einen Konstruktor mit Para-
metern aufrufen und dabei die Default-Werte – bzw. die durch manuelle Initiali-
sierung und Initialisierungen in einem nicht statischen Initialisierungsblock erzeugten
Werte – der Datenfelder überschreiben. Mit Hilfe von

this (parameterliste)

kann ein solcher Aufruf erfolgen. Dies wird in folgendem Beispiel gezeigt:

// Datei: Person4.java

public class Person4
{
 private String vorname;
 private String name;

 public Person4 (String v, String n)
 {
 System.out.println ("Im Konstruktor mit Parametern!");
 System.out.println (" Name: " + n);
 System.out.println (" Vorname: " + v);
 vorname = v;
 name = n;
 }

 public Person4()
 {
 this ("Vorname unbekannt", "Nachname unbekannt");
 System.out.println ("Im parameterlosen Konstruktor!");
 }

 public void print()
 {
 System.out.println ("Ausgabe der print()-Methode");
 System.out.println (" Name: " + name);
 System.out.println (" Vorname: " + vorname);
 }
}

Vorsicht!

Klassen und Objekte 341

// Datei: TestPerson4.java

public class TestPerson4
{
 public static void main (String[] args)
 {
 Person4 p = new Person4();
 p.print();
 }
}

Die Ausgabe des Programms ist:

Im Konstruktor mit Parametern!
 Name: Nachname unbekannt
 Vorname: Vorname unbekannt
Im parameterlosen Konstruktor!
Ausgabe der print()-Methode
 Name: Nachname unbekannt
 Vorname: Vorname unbekannt

Bei der Ausgabe des Programms ist zu beachten, dass im parameterlosen Konstruk-
tor als allererstes der Konstruktor mit den Parametern aufgerufen werden muss.
Deshalb kann die Ausgabe "Im parameterlosen Konstruktor!" erst nach der
Abarbeitung des Konstruktors mit Parametern erfolgen. Genauso kann ein Konstruk-
tor mit Parametern mit this() als erste Anweisung den entsprechenden parameter-
losen Konstruktor aufrufen.

Mit Hilfe von this (parameterliste) kann aus einem Konstruktor
ein anderer Konstruktor der gleichen Klasse aufgerufen werden. Diese
Anweisung muss allerdings die erste Anweisung im Rumpf des Kon-
struktors sein.

10.4.6 Arbeitsteilung zwischen new-Operator und Konstruktor bei
einer Aggregation

Das folgende Beispiel soll dazu dienen, die Arbeitsweise des new-Operators und des
Konstruktors im Falle einer Aggregation zu diskutieren.

Beim Erzeugen eines Objektes der Klasse BspKlasse:

BspKlasse p1 = new BspKlasse();

wird durch new BspKlasse der new-Operator aufgerufen89. Der new-Operator legt
gemäß dem Klassennamen BspKlasse ein Objekt dieser Klasse auf dem Heap an,
wobei die entsprechenden Instanzvariablen angelegt und initialisiert werden. An-
schließend wird dann durch BspKlasse() der Default-Konstruktor der Klasse
BspKlasse aufgerufen.

89 Siehe Kap. 10.5.1.

342 Kapitel 10

Im Falle einer Aggregation90 enthält das aggregierende Objekt ("Groß"-Objekt) Refe-
renzen auf die aggregierten Objekte ("Klein"-Objekte). Im folgenden Beispiel soll dis-
kutiert werden, wie die aggregierten Objekte erzeugt werden. Bereits von vornherein
muss klar sein, dass die "Klein"-Objekte nicht in einem Schritt zusammen mit dem
"Gross"-Objekt erzeugt werden können, da die aggregierende Klasse ja nur Refe-
renzen auf die aggregierten Objekte enthält. Dies bedeutet, dass der new-Operator
für die aggregierende Klasse nur die Referenzen auf die aggregierten Objekte in der
Form von Datenfeldern anlegen kann, mehr aber nicht!

Als Beispiel für diese Diskussion soll ein Programm geschrieben werden, welches es
erlaubt, die größte Entfernung zwischen beliebigen Punkten in einer Ebene zu be-
rechnen. Der Einfachheit halber soll sich das Test-Programm der Klasse Punkt-
ArrayTest auf 3 beliebige Punkte beschränken. Die Koordinaten dieser Punkte
sollen im Dialog eingegeben werden können. Das Programm soll aus der Testklasse
PunktArrayTest, aus der Klasse PunktArray und aus der schon bekannten
Klasse Punkt bestehen. Die Klasse PunktArray soll eine Referenzvariable auf ein
Array aus Referenzen auf Punkte enthalten. Diese Referenzen zeigen wiederum auf
die Punkt-Objekte (siehe Bild 10-3):

:PunktArray

Array aus Referenzen
auf Punkt-Objekte

ref[1]

ref[0]

ref[2]

:Punkt

:Punkt

:Punkt

ref

Referenz auf das Array
aus Referenzen

Bild 10-3 Datenstruktur eines Objektes der Klasse PunktArray

Wie viele Punkte ein Array-Objekt der Klasse PunktArray enthält, muss flexibel
sein und muss im Rahmen der Initialisierung festgelegt werden können. Die Initiali-
sierung ist Sache des Konstruktors PunktArray(). Er muss also einen Übergabe-
parameter besitzen, der die Anzahl der zu erzeugenden Punkte aufnimmt:

PunktArray (int anzahl)

Die Anzahl der zu erzeugenden Punkte wird dem Konstruktor dann als aktueller
Parameter übergeben. Die Klasse PunktArrayTest soll ein Objekt der Klasse
PunktArray erzeugen. Dem Konstruktor der Klasse PunktArray wird als aktueller
Parameter 3 mitgegeben. Dies bedeutet, dass das erzeugte Objekt der Klasse
PunktArray 3 Punkte enthalten soll.

// Datei: PunktArrayTest.java

public class PunktArrayTest
{

90 Siehe Kap. 2.3 und 4.6.

Klassen und Objekte 343

 public static void main (String args[])
 {
 PunktArray ref = new PunktArray (3);
 System.out.println ("Maximale Entfernung: " + ref.maximum());
 }
}

Die Klasse PunktArray soll in ihrem Konstruktor die geforderte Anzahl von Punkten
erzeugen und soll ferner eine Methode maximum() für die Berechnung der größten
Entfernung bereitstellen. Diese Methode soll die Methode entfernung() verwen-
den, die den Abstand zwischen 2 Punkten berechnet.

// Datei: PunktArray.java

public class PunktArray
{
 private Punkt5[] ref;

 PunktArray (int anzahl)
 {
 ref = new Punkt5 [anzahl]; // Schritt 1
 for (int lv = 0; lv < ref.length; lv = lv + 1)
 ref [lv] = new Punkt5(); // Schritt 2
 }

 double entfernung (Punkt5 q1, Punkt5 q2)
 {
 // Der Quellcode wird später diskutiert
 }

 public double maximum()
 {
 // Der Quellcode wird später diskutiert
 }
}

Referenz auf das Array
aus Referenzen

Der new-Operator legt das
Objekt der Klasse Punkt-
Array mit dem Datenfeld ref
als Referenz auf das Array
aus Referenzen auf Punkte
durch new PunktArray an.

Der Konstruktor-Aufruf PunktArray (3) erzeugt in
Schritt 1 das Array aus Referenzen auf 3 Punkte und
weist die Referenz auf das erzeugte Array-Objekt dem Da-
tenfeld ref zu. In Schritt 2 erzeugt der Konstruktor die 3
dazugehörigen Punkte und weist deren Referenzen den 3
Referenzvariablen ref [0], ref [1] und ref [3] zu.

:PunktArray

ref[1]

ref[0]

ref[2]

:Punkt

:Punkt

:Punkt

ref

Array aus Referenzen
auf Punkt-Objekte

Bild 10-4 Arbeitsteilung bei der Objekterzeugung

344 Kapitel 10

Mit dem new-Operator werden für ein Objekt einer aggregierenden
Klasse nur die Referenzen auf die aggregierten Objekte angelegt.
Im Konstruktor werden dann die aggregierten Objekte erzeugt und
die Referenzen auf die erzeugten aggregierten Objekte den Referen-
zen des aggregierenden Objektes zugewiesen.

Hier der Vollständigkeit halber der Quellcode der Methoden entfernung() und
maximum():

double entfernung (Punkt5 q1, Punkt5 q2)
{
 return Math.sqrt ((q1.getX() - q2.getX()) *
 (q1.getX() - q2.getX()) +
 (q1.getY() - q2.getY()) *
 (q1.getY() - q2.getY()));
 // Satz des Pythagoras
}

Die Methode sqrt() der Bibliotheksklasse Math liefert die Quadratwurzel eines
Ausdrucks. Die Methode maximum() bestimmt den größten Abstand:

public double maximum()
{
 double max = 0;

 for (int i = 0; i < ref.length; i++)
 {
 for (int j = 0; j < i; j++)
 {
 double entfernung = entfernung (ref [i], ref [j]);
 if (entfernung >= max)
 max = entfernung;
 }
 }
 return max;
}

Hier zum Abschluss die Klasse Punkt5:

// Datei: Punkt5.java

import java.util.Scanner;

public class Punkt5
{
 private double x;
 private double y;

 public Punkt5() // Ignorieren Sie den Konstruktor.
 // Benutzen Sie ihn einfach unbesehen
 {
 Scanner scanner = new Scanner (System.in);

Klassen und Objekte 345

 String eingabeX;
 String eingabeY;
 System.out.println ("Gib den x-Wert ein: ");
 eingabeX = scanner.next();
 System.out.println ("Gib den y-Wert ein: ");
 eingabeY = scanner.next();

 try
 {
 x = Double.valueOf (eingabeX);
 y = Double.valueOf (eingabeY);
 }
 catch (NumberFormatException e)
 {
 System.out.println (e.toString());
 System.exit (1);
 }
 }

 public double getX()
 {
 return x;
 }

 public void setX (double u)
 {
 x = u;
 }

 public double getY()
 {
 return y;
 }

 public void setY (double v)
 {
 y = v;
 }
}

Nach Aufruf der Klasse PunktArrayTest wurde folgender
Dialog geführt:

Gib den x-Wert ein:
1
Gib den y-Wert ein:
1
Gib den x-Wert ein:
2
Gib den y-Wert ein:
2
Gib den x-Wert ein:
3
Gib den y-Wert ein:
3
Maximale Entfernung: 2.8284271247461903

346 Kapitel 10

10.5 Instantiierung von Klassen

Objekte werden nach dem Bauplan einer Klasse erzeugt.

Das Erzeugen eines Objektes einer Klasse wird auch als Instanti-
ierung oder Instantiieren einer Klasse bezeichnet. Damit soll zum
Ausdruck gebracht werden, dass eine Instanz dieser Klasse geschaf-
fen wird.

Zwei Begriffe, deren Bedeutung oft verwechselt wird, sind Instanti-
ierung und Initialisierung:

• Bei der Instantiierung wird ein neues Objekt einer Klasse auf dem
Heap angelegt. Die Instantiierung wird mit dem new-Operator
durchgeführt.

• Bei der Initialisierung werden die Datenfelder des erzeugten (instan-
tiierten) Objektes mit Werten belegt. Die Initialisierung kann mit De-
fault-Werten, mit Hilfe einer manuellen Initialisierung, mit einem
nicht statischen Initialisierungsblock oder mit Hilfe des Konstruktors
erfolgen.

Wird ein Objekt mit Hilfe des new-Operators geschaffen, so wird Speicher für dieses
Objekt bereitgestellt. Durch Aufruf des Konstruktors wird das Objekt initialisiert.

10.5.1 Ablauf bei der Instantiierung

Anhand der folgenden Anweisung, in der p1 ein Datenfeld einer Klasse sein soll und
keine lokale Variable, wird betrachtet, welche Schritte in welcher Reihenfolge bei der
Instantiierung

Person p1 = new Person();

ablaufen:

• In Schritt 1 wird die Referenzvariable p1 vom Typ Person angelegt und mit
null initialisiert.

• In Schritt 2 wird durch new Person der new-Operator aufgerufen und die Klasse
Person instantiiert, mit anderen Worten, es wird ein Objekt der Klasse Person
auf dem Heap erzeugt.

• Schließlich erfolgt in Schritt 3 die Initialisierung des Objektes. Es werden De-
fault-Initialisierungen der Instanzvariablen durchgeführt (je nach Typ mit 0, 0.0f,
0.0d, '\u0000', false bzw. null) und dann eventuell angegebene manuelle
Initialisierungen und Initialisierungen durch einen nicht statischen Initialisierungs-
block. Anschließend wird der Konstruktor aufgerufen.

• In Schritt 4 gibt der new-Operator eine Referenz auf das neu im Heap erzeugte
Objekt zurück, welche der Referenzvariablen p1 zugewiesen wird.

Klassen und Objekte 347

Beachten Sie, dass in der Tat der Konstruktor den gleichen Namen wie die Klasse
tragen muss. Zum einen sagt in Schritt 2 der Klassenname Person dem new-Opera-
tor, dass ein Objekt der Klasse Person geschaffen werden soll. Weiterhin wird der
new-Operator nach der Erzeugung des Objektes in Schritt 3 veranlasst, den Kon-
struktor Person() aufzurufen.

10.5.2 Verhindern der Instantiierung einer Klasse

Deklariert man alle selbst geschriebenen Konstruktoren als private, so ist es nicht
möglich, in einer anderen Klasse Objekte dieser Klasse mit dem new-Operator zu
erzeugen. Als private deklarierte Konstruktoren werden eingesetzt, um sicherzu-
stellen, dass nur genau ein Objekt einer Klasse erzeugt werden kann. Die Erzeugung
des einzigen Objektes erfolgt über eine speziell zur Verfügung gestellte Klassenme-
thode. Das folgende Programm zeigt eine Implementierung des Singleton-Ent-
wurfsmusters und stellt sicher, dass nur ein Objekt einer Klasse erzeugt wird:

// Datei: Test.java

class Singleton
{
 private static Singleton instance;

 private Singleton()
 {
 System.out.println ("Bin im Konstruktor");
 }

 public static Singleton getInstance()
 {
 if (instance == null)
 {
 instance = new Singleton();
 }
 return instance;
 }
}

public class Test
{
 public static void main (String[] args)
 {
 // Singleton s = new Singleton(); gibt Fehler
 Singleton s2 = Singleton.getInstance(); // new wird
 // aufgerufen
 Singleton s3 = Singleton.getInstance(); // new wird nicht
 // mehr aufgerufen
 }
}

 Die Ausgabe des Programms ist:

Bin im Konstruktor

348 Kapitel 10

10.6 Freigabe von Speicher

In der Programmiersprache Java hat der Programmierer nicht die Möglichkeit – aber
auch nicht die Pflicht – Speicherplatz auf dem Heap, der nicht länger benötigt wird,
selbst freizugeben. Der Garbage Collector der virtuellen Maschine hat alleine die
Verantwortung, Speicherplatz auf dem Heap, der nicht länger benötigt wird, aufzu-
spüren und freizugeben. Der Programmierer kann die Freigabe eines Objektes nur
dadurch beeinflussen, indem er alle Referenzen auf dieses Objekt auf null setzt.
Denn wenn ein Objekt von niemanden mehr referenziert wird, kann es der Garbage
Collector freigeben. Wann dies erfolgt, ist jedoch Sache der virtuellen Maschine.

In Java wird nicht garantiert, dass während der Laufzeit eines Programmes ein
Objekt zerstört wird. Der Garbage Collector wird nur tätig, wenn er spürt, dass es eng
im Heap wird. Wenn zum Anlegen eines neuen Objektes der vorhandene Platz im
Heap nicht ausreicht91, muss die virtuelle Maschine versuchen, durch eine Spei-
cherbereinigung des Garbage Collectors Platz zu gewinnen. Schlägt dieser Versuch
fehl, so wird eine Exception vom Typ OutOfMemoryError ausgelöst.

Bei einer Speicherbereinigung werden die nicht referenzierten Objekte
aus dem Heap entfernt. Mit anderen Worten, ihr Platz wird zum Über-
schreiben freigegeben.

Lässt man im Beispiel

Person p1 = new Person();

durch

p1 = null;

die Referenz p1 nicht länger auf das mit new geschaffene Objekt, sondern auf null
zeigen, so wird damit vom Programmierer explizit das Objekt im Heap zur Speicher-
bereinigung freigegeben – vorausgesetzt, es existiert keine weitere Referenz auf
dieses Objekt.

Wann die virtuelle Maschine einen Lauf des Garbage Collectors durchführt, ist Sache
der virtuellen Maschine.

Beeinflussen der Heap-Größe

Beim Start eines Java-Programms mit

java Klassenname

legt die virtuelle Maschine die maximale Heap-Größe in Abhängigkeit vom verwen-
deten Betriebssystem und der verwendeten Prozessor-Architektur fest. Die Aus-
führung des Java-Interpreters java kann durch Hinzufügen verschiedenster Kom-
mandozeilen-Optionen beeinflusst werden. So gibt es unter anderem die beiden

91 Der Speicherbereich des Heap stößt dann an seine Grenzen, wenn mehr Objekte erzeugt werden,

als der Heap aufnehmen kann.

Klassen und Objekte 349

Optionen –XMm und –XMx, mit deren Hilfe die minimale bzw. maximale Größe des
Heap der gestarteten virtuellen Maschine individuell festgelegt werden kann. So
startet der Aufruf

java –XMx100m Klassenname

eine virtuelle Maschine mit einer maximalen Heap-Größe von 100 MB. Eine Möglich-
keit, wie man den Heap komplett belegen kann, wird im folgenden Beispielprogramm
gezeigt92. Ein Objekt der generischen Klasse93 Vector<T> wird verwendet, um
beliebig viele Objekte vom Typ StringBuffer aufzunehmen. Das Füllen des Vec-
tor<T>-Objektes erfolgt innerhalb einer Endlosschleife. Es werden somit so lange
Objekte vom Typ StringBuffer erzeugt und in das Vector<T>-Objekt eingefügt,
bis der Heap keine Objekte mehr aufnehmen kann und der Speicher voll ist. Es wird
dann eine Exception vom Typ OutOfMemoryError geworfen. Dies bedeutet, dass
die Endlosschleife verlassen wird und das Programm normalerweise abbricht. In dem
Beispiel unten wird die geworfene Exception durch das try/catch-Konstrukt abge-
fangen und behandelt. Innerhalb des catch-Blocks findet die Fehlerbehandlung
statt. Es wird zuerst eine Referenz auf das Objekt vom Typ Runtime besorgt. Durch
Aufruf der Methode freeMemory() für das Objekt vom Typ Runtime kann dann
der noch freie Heap-Speicher abgefragt werden. Nachdem der freie Speicher auf
dem Heap abgefragt und ausgegeben wurde, wird den Referenzen auf die erzeugten
Objekte vom Typ StringBuffer, die das Vector<T>-Objekt hält, durch Aufruf der
Methode clear() zum Vector<T>-Objekt die null-Referenz zugewiesen. Damit
werden die StringBuffer-Objekte nicht mehr referenziert und können jetzt durch
den Garbage Collector freigegeben werden. Zwei weitere Abfragen des freien Spei-
chers zeigen allerdings, dass der Garbage Collector nicht wirklich viel Speicher frei-
gibt. Erst nachdem wieder erneut Speicher durch das Erzeugen eines StringBuf-
fer-Objektes angefordert wird, gibt der Garbage Collector den Speicher frei.

// Datei: GarbageCollectorTest.java

import java.util.*;

public class GarbageCollectorTest
{
 // Bitte beachten Sie nicht das throws Exception-Konstrukt
 public static void main (String[] args) throws Exception
 {
 Vector<StringBuffer> v = new Vector<StringBuffer>();

 try // try-Block
 {
 for(;;) // Endlosschleife
 {
 // Viele String-Buffer-Objekte erzeugen
 v.add (new StringBuffer (2000));
 }
 }

92 Es wird hierbei auf die Themen Ausnahmebehandlung (siehe Kap. 13) und Collections (siehe Kap.

18) vorgegriffen. Das Beispielprogramm wird besser verstanden, wenn die beiden genannten
Kapitel zuvor behandelt wurden.

93 Generische Klassen werden in Kapitel 17 behandelt.

350 Kapitel 10

 catch (Throwable e) // catch-Block für die Fehlerbehandlung
 {
 // Hier wird die Exception vom Typ OutOfMemoryError
 // abgefangen. Es kann nun der Fehler behandelt werden.

 // Referenz auf die aktuelle Laufzeitumgebung.
 Runtime r = Runtime.getRuntime();

 // Der Aufruf von freeMemory() auf dem Runtime-Objekt frägt
 // von diesem den im Moment des Aufrufs zur Verfügung
 // stehenden freien Speicher des Heap ab.
 System.out.println (
 "Freier Speicher vor clear(): " + r.freeMemory());

 // Das Vector<T>-Objekt wurde mit Referenzen auf Objekte
 // vom Typ StringBuffer gefüllt. Das bedeutet, dass die
 // erzeugten StringBuffer-Objekte nur vom Vector<T>-Objekt
 // referenziert werden. Der Aufruf von clear() auf dem
 // Vector<T>-Objekt löscht nun alle im Vector gespeicherten
 // Referenzen. Somit werden die erzeugten StringBuffer-
 // Objekte nicht mehr referenziert und der Garbage
 // Collector kann die Objekte auf dem Heap löschen.
 v.clear();

 // Alle zuvor erzeugten Objekte vom Typ StringBuffer
 // werden nicht mehr referenziert und sind Datenmüll.
 // Sie können vom Garbage Collector beseitigt werden.
 System.out.println (
 "Freier Speicher nach clear(): " + r.freeMemory());

 // Fünf Sekunden warten. Vielleicht hat danach
 // die virtuelle Maschine aufgeräumt?
 Thread.sleep (5000);

 System.out.println (
 "Freier Speicher 5s nach clear(): " + r.freeMemory());

 System.out.println ("Wieder Speicher belegen!");
 v.add (new StringBuffer (2000));

 System.out.println ("Freier Speicher: " + r.freeMemory());
 }
 }
}

 Die Ausgabe des Programms ist:

Freier Speicher vor clear(): 3912
Freier Speicher nach clear(): 3912
Freier Speicher 5s nach clear(): 3832
Wieder Speicher belegen!
Freier Speicher: 226531216

In Zusammenhang mit dem Garbage Collector wird auch oft die Methode fina-
lize() erwähnt. Die Methode finalize() ist in der Klasse Object definiert. Da
jede Klasse in Java von der Klasse Object abgeleitet ist, besitzt auch jedes Objekt

Klassen und Objekte 351

in Java eine geerbte Methode finalize(). Die Methode finalize() der Klasse
Object hat allerdings einen leeren Methodenrumpf. Das Besondere an der Methode
finalize() ist nun, dass der Garbage Collector die Methode finalize() aufruft,
bevor er ein Objekt aus dem Speicher entfernt. Damit könnte man durch Über-
schreiben der Methode finalize() (das Überschreiben von Methoden wird erst in
Kapitel 11.2.2 behandelt) beispielsweise nicht mehr benötigte Ressourcen für ein
Objekt freigeben. Da allerdings weder definiert ist, wann der Garbage Collector die
Objekte aus dem Speicher entfernt, noch sichergestellt ist, dass der Garbage Collec-
tor auf jeden Fall eine Speicherbereinigung vor der Beendigung eines Programms
durchführt, ist generell von der Verwendung der Methode finalize() abzuraten.

10.7 Die Klasse Object

Jede Klasse und jeder Array-Typ wird implizit, d. h. ohne eine explizite Angabe des
Programmierers, von der Klasse Object abgeleitet. Damit beinhaltet jede Klasse
und ein jedes Array automatisch alle Methoden der Klasse Object. Die Methoden
der Klasse Object lassen sich in zwei Kategorien einteilen:

• in Methoden, die Threads (siehe Kap. 19) unterstützen
• und in allgemeine Utility-Methoden.

Hier werden nur die Utility-Methoden aufgeführt:

• public String toString()

Die Methode toString() ermöglicht die Ausgabe eines Strings, der für das
Objekt charakteristisch ist. Der Rückgabewert von toString() ist eine Zeichen-
kette, die das entsprechende Objekt charakterisiert.

• public boolean equals (Object obj)

Diese Methode gibt bei einem Aufruf x.equals (y) das Ergebnis true zurück,
wenn x und y Referenzen auf dasselbe Objekt sind.

• protected Object clone() throws CloneNotSupportedException94

Die Methode clone() erlaubt es, eine Kopie eines Objektes zu erzeugen. Die
Methode clone() wird in Kapitel 14.6 vorgestellt.

• protected void finalize() throws Throwable95

Die Methode finalize() erlaubt "Aufräumarbeiten" vor der Zerstörung eines
Objektes. Von der Verwendung der Methode finalize() wird allerdings abgera-
ten.

94 Auf die Exception-Klasse CloneNotSupportedException soll hier nicht eingegangen werden.
95 Die Exception-Klasse Throwable soll hier nicht betrachtet werden.

352 Kapitel 10

10.8 Übungen

Aufgabe 10.1: Information Hiding

10.1.1 Kontovergleich

Es soll eine Klasse Konto entwickelt werden. Ein Konto beinhaltet den Kon-
tostand und wird einer Person zugeordnet. Um eine Person zu beschreiben,
wird die schon bekannte Klasse Person mit den Instanzvariablen name und
vorname verwendet. Die Klasse KontoTest wird zum Testen der Klasse
Konto verwendet. Sie beinhaltet neben der main()-Methode eine weitere
Klassenmethode mit der Bezeichnung kontoVergleich(). Dieser Metho-
de werden zwei Objekte der Klasse Konto übergeben. Die übergebenen
Konten werden dann auf die Höhe des Kontostands hin verglichen und das
Ergebnis auf dem Bildschirm ausgegeben. Ergänzen Sie das folgende Pro-
grammfragment. Fehlende Stellen sind durch markiert.

// Datei: KontoTest.java

public class KontoTest
{
 public static void kontoVergleich (.)
 {
 if (.)
 {
 System.out.println (k1.getName()
 + " hat mehr Geld auf dem Konto als "
 + k2.getName());
 }
 else
 {
 System.out.println (k2.getName()
 + " hat mehr Geld auf dem Konto als "
 + k1.getName());
 }
 }

 public static void main (String[] args)
 {
 Konto konto1 = new Konto ("Müller", "Hans", 500);
 Konto konto2 = new Konto ("Krause", "Peter", 1500);
 Konto konto3 = new Konto ("Böhm", "Harald", 330);
 kontoVergleich (konto1, konto2);
 kontoVergleich (konto2, konto3);
 kontoVergleich (konto1, konto3);
 }
}

// Datei: Konto.java

public class Konto
{
 private Person person;
 private double kontostand;

Klassen und Objekte 353

 public Konto (String name,
 String vorname,
 float kontostand)
 {

 }

}

10.1.2 Die Klasse Buch

Entwickeln Sie eine Klasse Buch, die ein Buch nach folgenden Attributen
beschreibt: Titel, Autor, Verlag und Anzahl der Seiten. Alle Instanzvariablen
sollen private sein und nur über entsprechende get- und set-Methoden zu-
gänglich sein. Schreiben Sie zusätzlich einen Konstruktor, der es erlaubt, die
Instanzvariablen benutzerdefiniert zu initialisieren.

Schreiben Sie eine Testklasse, die in ihrer main()-Methode mehrere Instan-
zen der Klasse Buch erzeugt und deren Inhalt auf dem Bildschirm ausgibt.

Aufgabe 10.2: Klassenvariable und Klassenmethoden

10.2.1 Klassenvariable für die Kfz-Zulassung

a) Es soll eine Klasse für Kfz-Zulassungen erstellt werden. Schreiben Sie
hierzu eine Klasse KfzZulassung. Die Informationen einer Kfz-Zulas-
sung bestehen aus den beiden Datenfeldern kennzeichen und fahr-
zeughalter, die jeweils aus einem String bestehen und private sein
sollen. Es soll eine Klassenvariable anzahl vom Typ int geben, welche
die Anzahl der erzeugten Zulassungen zählt und public ist. Als Metho-
den sollen zur Verfügung stehen:

1. eine Methode print() zur Ausgabe der beiden Datenfelder kenn-
zeichen und fahrzeughalter,

2. ein Konstruktor mit 2 Parametern zur Initialisierung von kennzeichen
und fahrzeughalter,

3. eine Methode main() zum Testen.
 Erzeugen Sie in der Methode main() zwei Objekte der Klasse KfzZu-
lassung mit folgenden Werten:

• "ES-FH 2003" und "Martin Mustermann"

• "ES-FH 2004" und "Markus Müller"

Die Referenz z1 verweist auf das erste Objekt, die Referenz z2 ver-
weist auf das zweite Objekt. Bei jedem Erzeugen eines Objektes der
Klasse KfzZulassung wird die Klassenvariable anzahl in der Me-
thode main() um 1 hochgezählt. Vor als auch nach dem Erzeugen
eines Objektes wird der Wert der Klassenvariable anzahl am Bild-
schirm ausgegeben.

354 Kapitel 10

b) Nehmen Sie Ihre Lösung von a) und verlagern Sie die Methode main() in
die Klasse TestKfzZulassung. Die Klasse KfzZulassung soll in die
Klasse KfzZulassung2 ohne eine Methode main() umgeschrieben
werden. Versuchen Sie in der Methode main() der Klasse TestKfzZu-
lassung, ob Sie über die Referenz z1 das Kennzeichen ändern können
durch

z1.kennzeichen = "N-EU 1111";

Ändern Sie den Zugriffsmodifikator des Datenfeldes kennzeichen von
private auf public und versuchen Sie es erneut. Versuchen Sie das-
selbe in der Methode main() der Klasse KfzZulassung aus Teilauf-
gabe a). Gibt es einen Unterschied?

c) Verbessern Sie Ihr Programm, indem Sie das Hochzählen der Anzahl der

Zulassungen im Konstruktor durchführen.

10.2.2 Klassenvariable und Klassenmethoden für Kinos

Ein Kinobesitzer möchte seine Kinosäle in einem Informationssystem halten
können. Hierzu sind die Klassen Kinosaal und TestKinosaal zu ent-
wickeln. Die Klasse Kinosaal besitzt folgende Eigenschaften:

• einen parameterlosen Konstruktor,

• die beiden Instanzvariablen saalNummer und
anzahlSitzplaetzeSaal,

• die beiden Klassenvariablen anzahlSitzplaetzeKino und
anzahlKinosaele,

• eine get- und set-Methode, um die Anzahl der Sitzplätze eines Saals
auszulesen bzw. festzulegen,

• die beiden Klassenmethoden getAnzahlSitzplaetzeKino() und
getAnzahlKinosaele().

Die Klasse TestKinosaal ist eine Wrapper-Klasse für die Methode
main(). In dieser Methode soll die Klasse Kinosaal getestet werden. Hier-
zu sollen zwei Kinosäle mit 50 bzw. 100 Sitzplätzen angelegt werden. Alle
Variablen sollen vom Typ int und private sein.

a) Schreiben Sie die Klasse Kinosaal. Bei jedem Erzeugen eines Kinosaals

soll der Wert der Variablen anzahlKinosaele um 1 erhöht werden. Je-
der Kinosaal soll beim Erzeugen eine eindeutige Nummer saalNummer
erhalten, die direkt aus der Anzahl der Kinosäle abgeleitet wird. Mit der
Methode

public void setAnzahlSitzplaetzeSaal (int
 anzahlSitzplaetzeSaal)

soll für einen neu erzeugten Kinosaal die anzahlSitzplaetzeSaal ge-
setzt werden. Dabei soll die anzahlSitzplaetzeKino um den Wert
anzahlSitzplaetzeSaal erhöht werden.

Klassen und Objekte 355

b) Schreiben Sie die Methode setAnzahlSitzplaetzeSaal() aus Teil-
aufgabe a) so um, dass die Anzahl der Sitzplätze eines Kinosaals nach-
träglich geändert werden kann und die Anzahl der Sitzplätze des Kinos
entsprechend angepasst wird.

Aufgabe 10.3: Selbstreferenzierung mit der this-Referenz

10.3.1 Verkettung von Methodenaufrufen

Wie bereits in Kapitel 10.3 erklärt wurde, können mit Hilfe der this-Referenz
Methodenaufrufe verkettet werden. Erweitern Sie das folgende Programm-
fragment, sodass die Methode zum Skalieren der Seitenlänge eines Würfels
sowie die Methoden zum Berechnen der Grundfläche, der Oberfläche und
des Volumens miteinander verkettet werden können. Fehlende Stellen sind
durch markiert.

//MethodenverkettungTest.java

public class MethodenverkettungTest
{
 static public void main (String[] args)
 {
 Wuerfel w = new Wuerfel (5.0f);

 w.berechneGrundflaeche()
 .berechneOberflaeche()
 .berechneVolumen()
 .print();
 w.skaliereSeitenlaenge (2.0f)
 .berechneGrundflaeche()
 .berechneOberflaeche()
 .berechneVolumen()
 .print();
 }
}

class Wuerfel
{
 private float seitenlaenge;
 private float grundflaeche;
 private float oberflaeche;
 private float volumen;

 public Wuerfel (float s)
 {
 this.seitenlaenge = s;
 this.grundflaeche = s * s;
 this.oberflaeche = this.grundflaeche * 6;
 this.volumen = this.grundflaeche * s;
 }

 public float getSeitenlaenge()
 {
 return this.seitenlaenge;
 }

356 Kapitel 10

 public float getGrundflaeche()
 {
 return this.grundflaeche;
 }

 public float getOberflaeche()
 {
 return this.oberflaeche;
 }

 public float getVolumen()
 {
 return this.volumen;
 }

 public Wuerfel setSeitenlaenge (float s)
 {
 this.seitenlaenge = s;

 }

 public Wuerfel skaliereSeitenlaenge (float faktor)
 {
 this.seitenlaenge = this.seitenlaenge * faktor;

 }

 public Wuerfel berechneGrundflaeche()
 {
 this.grundflaeche =
 this.seitenlaenge * this.seitenlaenge;

 }

 public Wuerfel berechneOberflaeche()
 {
 this.oberflaeche =
 this.seitenlaenge * this.seitenlaenge * 6;

 }

 public Wuerfel berechneVolumen()
 {
 this.volumen =
 this.seitenlaenge
 * this.seitenlaenge
 * this.seitenlaenge;

 }

 public void print()
 {
 System.out.println ("Seitenlaenge: "
 + this.seitenlaenge);
 System.out.println ("Grundflaeche: "
 + this.grundflaeche);

Klassen und Objekte 357

 System.out.println ("Oberflaeche: "
 + this.oberflaeche);
 System.out.println ("Volumen: "
 + this.volumen);
 }
}

10.3.2 Hello World mit statischen Methoden

Im folgenden "Hello World"-Programm hat sich ein Fehler eingeschlichen.
Finden und korrigieren Sie den Fehler.

//HelloWorld.java

public class HelloWorld
{
 public static void main (String[] args)
 {
 this.print();
 }

 public static void print()
 {
 System.out.println ("Hello World!");
 }
}

Aufgabe 10.4: Flughafen-Projekt

In Kapitel 2.5 wurde das Flughafen-Projekt vorgestellt. Dieses Projekt soll nun als
eine durchgehende Projektaufgabe in diesem und in den restlichen Kapiteln realisiert
werden. Diese Aufgabe unterscheidet sich hierbei von den Übungen dahingehend,
dass der durch die Problemlösung entstehende Quellcode einer Projektaufgabe
immer als Basis für die darauf folgende Projektaufgabe dient. Hierbei wird versucht,
das jeweils neu erworbene Wissen direkt in die Projektaufgaben der einzelnen Ka-
pitel einfließen zu lassen. Auch soll bei diesen Projektaufgaben lediglich ein roter Fa-
den vorgegeben werden. Die eigentliche Implementierung kann dabei von der Mus-
terlösung erheblich abweichen. Die Musterlösung soll somit nur als eine mögliche
Beispiellösung dienen. Da die Realisierung des kompletten Flughafensystems den
Rahmen dieses Buches sprengen würde, wird nur ein ausgesuchter Teil realisiert.
Dieser Teil beschränkt sich auf die Rolle des Lotsen. Es werden dabei folgende Use
Cases betrachtet:

• Zeitplan anfordern
• Landung durchführen
• Start durchführen

10.4.1 Erste Schritte mit der Klasse Flugzeug

Das wichtigste Objekt eines Flughafens ist das Flugzeug. Denn ohne Flug-
zeuge wird auch kein Flughafen benötigt. Aus diesem Grund beschäftigt sich
diese Aufgabe damit, eine erste Version der Klasse Flugzeug zu erstellen.

358 Kapitel 10

Diese Klasse soll dabei den Vorgang der Landung und den darauf folgenden
Start eines Flugzeugs auf sehr einfache Weise ermöglichen.

Die Klasse Flugzeug soll folgende Instanzvariablen besitzen (wählen Sie
jeweils einen Ihrer Meinung nach passenden Typ für die einzelnen Instanz-
variablen):

• fluggesellschaft Name der Fluggesellschaft, welcher das Flugzeug
gehört,

• flugnummer kennzeichnet das Flugzeug durch eine eindeutige Flug-
nummer,

• flugzeugtyp gibt den Typ des Flugzeugs an,

• istzeitLandung die Istzeit, an der das Flugzeug gelandet ist,

• istzeitStart die Istzeit, an der das Flugzeug gestartet ist,

• landebahn die Bahn, welche dem Flugzeug zur Landung zugeteilt wird,

• parkstelle gibt an, wo das Flugzeug nach der Landung parken soll.
Eine Parkstelle kann dabei eine Parkposition, die Werft oder ein separates
Parkfeld sein,

• sollzeitLandung die Sollzeit, an der das Flugzeug wahrscheinlich
landet,

• sollzeitStart die Sollzeit, an der das Flugzeug wahrscheinlich startet,

• startbahn die Bahn, welche vom Flugzeug beim Start verwendet wird,

• status gibt den aktuellen Status des Flugzeugs an. Mögliche Stati sind:
Wartend, Landeanflug, Gelandet, Geparkt, Startvorbereitung und Gestar-
tet.

Des Weiteren soll die Klasse Flugzeug eine Klassenvariable anzahlFlug-
zeuge besitzen. Diese Klassenvariable soll die Anzahl der erzeugten Flug-
zeuge zählen.

Die Landung lässt sich vorläufig in die folgenden vier Phasen einteilen:

• Neues Flugzeug melden

Die Klasse soll hierzu einen Konstruktor mit drei Übergabeparametern be-
sitzen. Diese drei Übergabeparameter beschreiben den Flugzeugtyp des
Flugzeugs, die Fluggesellschaft, welcher das Flugzeug gehört, sowie die
Sollzeit der Landung. Innerhalb des Konstruktors soll auch eine eindeutige
Flugnummer generiert werden. Der Status des Flugzeugs soll auf "War-
tend" gesetzt werden.

• Landebahn vergeben

Hierfür soll eine Methode vergebeLandebahn() zuständig sein. Ihr soll
die zu belegende Landebahn übergeben werden. Außerdem soll der Sta-
tus des Flugzeugs auf "Landeanflug" gesetzt werden96.

96 Bitte beachten Sie, dass die Projektaufgabe hier von den Kundenanforderungen abweicht. Ein

Abbruch der Landung muss bis zum Aufsetzen des Flugzeugs in der Realität möglich sein.

Klassen und Objekte 359

• Parkstelle vergeben

Der Methode vergebeParkstelle() soll die zu belegende Parkstelle
übergeben werden. Zusätzlich soll der Status auf "Gelandet" gesetzt wer-
den.

• Erfolgreiche Landung melden

Hierzu soll eine weitere Methode meldeGelandet() implementiert wer-
den. Ihr wird die Istzeit der Landung übergeben. Des Weiteren soll der
Status des Flugzeugs auf "Geparkt" gesetzt werden.

Für den Start können derzeit folgende zwei Phasen definiert werden:

• Startbahn vergeben

Die Methode vergebeStartbahn() setzt die zu verwendende Start-
bahn, die erwartete Sollzeit für den Start und den Status auf "Startvor-
bereitung".

• Erfolgreichen Start melden

Der Methode meldeGestartet() wird die Istzeit des Starts übergeben.
Der Status wird auf "Gestartet" gesetzt.

Als letztes soll der Klasse Flugzeug eine Methode print() hinzugefügt wer-
den. Diese Methode dient dazu, den aktuellen Zustand eines Flugzeuges auf
dem Bildschirm auszugeben. Eine Darstellung einer möglichen Klasse ist in
Bild 10-5 zu sehen. Ein – in Bild 10-5 bedeutet hierbei private, ein + be-
deutet public.

 Flugzeug

- anzahlFlugzeuge : int
- fluggesellschaft : String
- flugnummer : String
- flugzeugtyp : String
- istzeitLandung : String
- istzeitStart : String
- landebahn : int
- parkstelle : String
- sollzeitLandung : String
- sollzeitStart : String
- startbahn : int
- status : String

+ Flugzeug()
+ meldeGelandet()
+ meldeGestartet()
+ print()
+ vergebeLandebahn()
+ vergebeParkstelle()
+ vergebeStartbahn()

Bild 10-5 Klasse Flugzeug

360 Kapitel 10

Schreiben Sie zum Testen der Klasse Flugzeug eine Klasse namens
Client. Ein Programmablauf könnte wie folgend aussehen:

Flugzeug MI 101 befindet sich im Status 'wartend'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microair.

Flugzeug MI 101 befindet sich im Status 'Landeanflug'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1

Flugzeug MI 101 befindet sich im Status 'Gelandet'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1
- Parkposition 7

Flugzeug MI 101 befindet sich im Status 'Geparkt'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1
- Parkposition 7

Flugzeug MI 101 befindet sich im Status 'Startvorbereitung'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1
- Parkposition 7
- Startbahn 2

Flugzeug MI 101 befindet sich im Status 'Gestartet'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1
- Parkposition 7
- Startbahn 2

10.4.2 Benutzereingabe

In Projektaufgabe 10.4.1 wurde ein Flugzeug mit fest vorgegebenen Werten
initialisiert. Teil dieser Projektaufgabe soll es sein, die für die Landung und
den Start notwendigen Informationen interaktiv vom Benutzer abzufragen.
Ändern Sie hierzu die Klasse Client ab. Ein möglicher Dialog könnte wie
folgend aussehen:

Geben Sie den Flugzeug Typ ein: Bowling 474
Geben Sie die Fluggesellschaft ein: Microwing
Geben Sie die Sollzeit der Landung ein: 7:49

Flugzeug MI 101 befindet sich im Status 'wartend'.

Klassen und Objekte 361

Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microwing.

Geben Sie die Landebahnnummer ein: 3

Flugzeug MI 101 befindet sich im Status 'Landeanflug'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microwing.
Es wird verwendet/wurde verwendet:
- Landebahn 3

Soll das Flugzeug in die Werft verlegt werden? (j/n) n
Soll das Flugzeug auf ein separates Parkfeld verlegt werden?
(j/n) n

Geben Sie die Parkposition ein: 7

Flugzeug MI 101 befindet sich im Status 'Gelandet'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microwing.
Es wird verwendet/wurde verwendet:
- Landebahn 3
- Parkposition 7

Geben Sie die Istzeit der Landung ein: 7:53

Flugzeug MI 101 befindet sich im Status 'Geparkt'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microwing.
Es wird verwendet/wurde verwendet:
- Landebahn 3
- Parkposition 7

Geben Sie die Startbahn ein: 1
Geben Sie die Sollzeit für den Start ein: 9:13

Flugzeug MI 101 befindet sich im Status 'Startvorbereitung'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microwing.
Es wird verwendet/wurde verwendet:
- Landebahn 3
- Parkposition 7
- Startbahn 1

Geben Sie die Istzeit des Starts ein: 9:12

Flugzeug MI 101 befindet sich im Status 'Gestartet'.
Es ist vom Typ Bowling 474 und gehört der Fluggesellschaft
Microwing.
Es wird verwendet/wurde verwendet:
- Landebahn 3
- Parkposition 7
- Startbahn 1

Für die Eingabe von der Tastatur können Sie folgende Klasse Abfrage ver-
wenden:

362 Kapitel 10

// Datei: Abfrage.java

public class Abfrage
{
 public static int abfrageInt (String frage)
 {
 try
 {
 int zahl = Integer.parseInt (abfrageString (frage));
 if (zahl < 0)
 throw new NumberFormatException ("");
 return zahl;
 }
 catch (NumberFormatException e)
 {
 System.out.println ("Bitte eine gültige Zahl "
 + "eingeben");
 return abfrageInt (frage);
 }
 }

 public static String abfrageString (String frage)
 {
 try
 {
 System.out.print (frage + " ");
 java.util.Scanner eingabe =
 new java.util.Scanner (System.in);
 return eingabe.nextLine();
 }
 catch (Exception e)
 {
 return "";
 }
 }
}

Vererbung und Polymorphie

A

B C D

11.1 Das Konzept der Vererbung
11.2 Erweitern und Überschreiben
11.3 Besonderheiten bei der Vererbung
11.4 Polymorphie und das Liskovsche Substitutionsprinzip
11.5 Verträge
11.6 Identifikation der Klasse eines Objektes
11.7 Konsistenzhaltung von Quell- und Bytecode
11.8 Übungen

11 Vererbung und Polymorphie

Neben der Aggregation stellt die Vererbung ein wesentliches Sprachmittel der objekt-
orientierten Programmiersprachen dar, um Programmcode wiederverwenden zu
können. Bei der Vererbung wird der Quellcode einer Superklasse in einer abgeleite-
ten Klasse wiederverwendet. Bei der Aggregation werden vorhandene Klassen von
den aggregierenden Klassen benutzt und damit wiederverwendet.

Polymorphie erlaubt die Wiederverwendung nicht nur von Klassen,
sondern von ganzen Programmsystemen.

11.1 Das Konzept der Vererbung

Bei der Vererbung erbt eine Sohnklasse alle Eigenschaften (Datenfelder, Metho-
den) ihrer Vaterklasse und fügt ihre eigenen individuellen Eigenschaften hinzu. Die
Eigenschaften der Vaterklasse müssen nicht in der Spezifikation der Sohnklasse wie-
derholt werden. Man sagt, die Sohnklasse wird von der Vaterklasse abgeleitet. Am
einfachsten soll dies anhand des Beispiels eines Studenten erläutert werden. Ein
Student ist bekanntermaßen eine Person, die studiert. Wenn man studieren möchte,
muss man immatrikuliert werden und erhält eine Matrikelnummer. Kurz, wer eine Ma-
trikelnummer hat, ist eingeschrieben und ist somit ein Student. Also kann man einen
Studenten beschreiben als eine Person, die eine Matrikelnummer hat.

 Person

nachname
vorname

setNachname()
setVorname()
print()

Student

matrikelnummer

setMatrikelnummer()
printMatrikelnummer()

"is-a"-Beziehung

Bild 11-1 Ableitung der Klasse Student von der Klasse Person

Beachten Sie, dass der Ableitungspfeil von der Subklasse (abgelei-
tete Klasse, Unterklasse, Sohnklasse) zu der Superklasse (Basis-
klasse, Oberklasse, Vaterklasse) zeigt. Eine Superklasse merkt
nicht, dass sie abgeleitet wird. Sie wird beim Vererben nicht aktiv.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_11,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Vererbung und Polymorphie 365

Gibt es mehrere Hierarchieebenen der Vererbung, so wird mit Super-
klasse oder Basisklasse eine an einer beliebigen höheren Stelle des
Vererbungspfades stehende Klasse, mit Subklasse oder abgeleitete
Klasse eine an einer beliebigen tieferen Stelle des Vererbungspfades
liegende Klasse bezeichnet. Mit Vater- und Sohnklasse werden von
uns zwei Klassen, die in zwei direkt übereinander liegenden Ebenen
eines Vererbungspfades angeordnet sind, benannt. Die oberste Klas-
se eines Klassenbaumes wird Wurzelklasse oder Rootklasse ge-
nannt.

Ein Student ist eine Person ("is a"-Beziehung). Damit kann man den Studenten
durch eine Vererbungsbeziehung von Person ableiten. Dies bedeutet, dass infolge
der Vererbungsbeziehung jedes Objekt der Klasse Student automatisch alle In-
stanzvariablen besitzt, die auch ein Objekt der Klasse Person hat. Genauso verfügt
ein Objekt der Klasse Student auch über alle Methoden der Klasse Person. Dass
ein Student eine spezielle Person ist, kommt dadurch zum Ausdruck, dass er zusätz-
liche Eigenschaften gegenüber einer normalen Person hat, nämlich die Matrikel-
nummer und die ihr zugeordneten Methoden.

eigene
Datenfelder
und Methoden
der Klasse
Student

von der Klasse
Person ererbte
Datenfelder
und Methoden

nachname
vorname
setNachname()
setVorname()
print()

matrikelnummer
setMatrikelnummer()
printMatrikelnummer()

nachname
vorname
setNachname()
setVorname()
print()

Jedes Objekt der Klasse Jedes Objekt der Klasse Student
Person hat die Daten- hat die Datenfelder und Methoden:
felder und Methoden:

Bild 11-2 Eigenschaften von Objekten der Klasse Person und der Klasse Student

Bild 11-3 zeigt ein Objekt der Klasse Person und ein Objekt der Klasse Student:

 Müller:Person Maier:Student

 nachname = "Müller" nachname = "Maier"
 vorname = "Peter" vorname = "Fritz"
 matrikelnummer = 56123

Bild 11-3 Objekt Müller der Klasse Person und Objekt Maier der Klasse Student

Dieses Beispiel für eine Vererbung kann als Java-Programm – wie im Folgenden
gezeigt – realisiert werden. Beachten Sie die fett gedruckten Teile.

366 Kapitel 11

// Datei: Person.java

public class Person
{
 private String nachname;
 private String vorname;

 public void setNachname (String nachname)
 {
 this.nachname = nachname;
 }

 public void setVorname (String vorname)
 {
 this.vorname = vorname;
 }

 public void print()
 {
 System.out.println ("Nachname: " + nachname);
 System.out.println ("Vorname: " + vorname);
 }
}

// Datei: Student.java

public class Student extends Person // die Klasse Student wird von
{ // der Klasse Person abgeleitet
 private int matrikelnummer;

 // Methoden der Klasse Student
 public void setMatrikelnummer (int matrikelnummer)
 {
 this.matrikelnummer = matrikelnummer;
 }

 public void printMatrikelnummer()
 {
 System.out.println ("Matrikelnummer: " + matrikelnummer);
 }
}

// Datei: Test.java

public class Test
{
 public static void main (String[] args)
 {
 System.out.println ("Student");
 Student studiosus = new Student();
 studiosus.setNachname ("Maier");
 studiosus.setVorname ("Fritz");
 studiosus.setMatrikelnummer (56123);
 studiosus.print();
 studiosus.printMatrikelnummer();

Vererbung und Polymorphie 367

 System.out.println ("Person");
 Person pers = new Person();
 pers.setNachname ("Müller");
 pers.setVorname ("Peter");
 pers.print();
 }
}

Die Ausgabe des Programms ist:

Student
Nachname: Maier
Vorname: Fritz
Matrikelnummer: 56123
Person
Nachname: Müller
Vorname: Peter

Das folgende Bild visualisiert die Methodenaufrufe:

setVorname()

setMatrikelnummer()

print()

printMatrikelnummer()

setNachname()

setVorname()

print()

Instanz der Klasse
Student

Instanz der
Klasse Person

Test

 main()

nachname
vorname

nachname
vorname
matrikelnummer

setNachname()

Bild 11-4 Visualisierung der Methodenaufrufe der Methode main()

In der Klassenmethode main() werden die Methoden setNachname(), setVor-
name(), setMatrikelnummer(), print() und printMatrikelnummer() zu
einem Objekt der Klasse Student aufgerufen. Danach werden die Methoden set-
Nachname(), setVorname() und print() zu einem Objekt der Klasse Person
aufgerufen.

Das Konzept der Vererbung erlaubt es, dass eine Klasse, die von einer anderen
Klasse abgeleitet wird, automatisch alle Eigenschaften (Datenfelder und Methoden)
dieser anderen Klasse erhält, ohne diese explizit anschreiben zu müssen. Eine abge-
leitete Klasse stellt eine Spezialisierung ihrer Vaterklasse dar. In der abgeleiteten
Klasse sind nur die neuen spezifischen und zusätzlichen Eigenschaften festzulegen.

368 Kapitel 11

Umgekehrt stellt natürlich eine Vaterklasse eine Generalisierung ihrer abgeleiteten
Klassen dar (siehe Bild 11-5):

Vaterklasse

Generalisierung Spezialisierung

 abgeleitete
 Klasse2

 abgeleitete
 Klasse1

Bild 11-5 Vererbungshierarchie mit Generalisierung und Spezialisierung

Mit dem Konzept der Vererbung können Wiederholungen im Entwurf vermieden
werden. Gemeinsame Eigenschaften mehrerer Klassen werden in gemeinsame
Oberklassen ausgelagert. Dies führt zu mehr Übersicht und zu weniger Wieder-
holung. Beim Entwurf werden also Datenfelder und Methoden, die mehreren Klassen
gemeinsam sind, nach oben in der Klassenhierarchie geschoben, da sie dann
automatisch durch Vererbung wieder zu den abgeleiteten Klassen weitergegeben
werden. Bild 11-6 zeigt ein Beispiel für die Generalisierung und die Spezialisierung
in einer Klassenhierarchie.

Generalisierung Spezialisierung

Gerät

GeräteIdentifier

Fax

übertragen()

Telekommunikationsanlage

übertragen()
vermitteln()

ServerRechner

dienstleistungenErbringen()

NetzwerkRechner

übertragen()

Rechner

verarbeiten()

speichern()
einUndAusgeben()

ClientRechner

ausgabenDarstellen()

Bild 11-6 Beispiel für eine Klassenhierarchie

So ist ein NetzwerkRechner ein Rechner, der mit Hilfe einer Kommunikations-
schnittstelle Daten übertragen kann. Ein ClientRechner wiederum ist ein Rechner-
typ, der von Server-Rechnern Dienstleistungen erbringen lassen kann, um deren
Ergebnisse darzustellen. Das heißt, ein ClientRechner verfügt gegenüber einem
NetzwerkRechner über die zusätzliche Methode ausgabenDarstellen(). Ein

Vererbung und Polymorphie 369

ServerRechner hat die zusätzliche Methode dienstleistungenErbringen().
Die abgeleiteten Klassen stellen hier also Erweiterungen ihrer Basisklassen dar.

11.2 Erweitern und Überschreiben

Neben der Erweiterung einer Vaterklasse in einer Sohnklasse können auch Metho-
den einer Vaterklasse in einer Sohnklasse überschrieben werden, um eine Spe-
zialisierung zu erreichen. Das Erweitern und Überschreiben wird in den folgenden
Kapiteln erläutert.

11.2.1 Erweitern

Wie in Kapitel 11.1 am Beispiel der Klassen Person und Student vorgestellt wurde,
erweitert die Klasse Student die Klasse Person. So erhält die Klasse Student die
zusätzliche Aufrufschnittstelle aus den beiden Methoden setMatrikelnummer()
und printMatrikelnummer(). Die Methoden der Vaterklasse werden im Rahmen
der Vererbung von der Sohnklasse unverändert übernommen. Dies bedeutet, dass in
der Sohnklasse zur Aufrufschnittstelle der Vaterklasse, die geerbt wird, noch eine
für die Sohnklasse spezifische Aufrufschnittstelle hinzukommt (siehe Bild 11-7). Ein
Objekt der Klasse Sohn besitzt also sowohl die Aufrufschnittstelle der Vaterklasse
als auch die Aufrufschnittstelle der Sohnklasse.

Aufrufschnittstelle
Vaterklasse

Aufrufschnittstelle
Sohnklasse

Vater

Sohn

Aufrufschnittstelle
Vaterklasse

Aufrufschnittstelle
Sohnklasse

:Sohn

Bild 11-7 Zusätzliche Aufrufschnittstelle eines Objektes einer abgeleiteten Klasse

Es werden sowohl Instanzvariablen und Instanzmethoden, als auch Klassenvariablen
und Klassenmethoden vererbt. Eine Sohnklasse erbt also grundsätzlich alles – auch
private Datenfelder und Methoden. Dabei ist aber nicht alles, das geerbt wurde, in
der Sohnklasse automatisch sichtbar und damit zugreifbar. Die Vaterklasse kann die
Sichtbarkeit ihrer Datenfelder und Methoden über Zugriffsmodifikatoren steuern. Die
in der Vaterklasse festgelegten Zugriffsmodifikatoren haben auch Konsequenzen bei
der Vererbung (siehe Kap. 12.7).

11.2.2 Überschreiben

Enthält eine abgeleitete Klasse eine Methode mit gleicher Signatur und mit gleichem
Rückgabetyp wie eine Methode aus einer Basisklasse, so sagt man, dass die
Methode der Basisklasse durch die Methode der abgeleiteten Klasse überschrieben

370 Kapitel 11

wurde. Dabei müssen die formalen Parameter beider Methoden identisch sein, d. h.
es müssen dieselbe Anzahl, derselbe Typ und dieselbe Reihenfolge der formalen
Parameter vorliegen.

Beim Überschreiben von Methoden müssen die Signatur und der
Rückgabewert der überschriebenen Methode identisch mit der Sig-
natur und dem Rückgabewert der ursprünglichen Methode sein.

Im folgenden Bild wird das Überschreiben der Methode print() gezeigt:

 Person
nachname
vorname

setNachname()
setVorname()
print()

Student
matrikelnummer

setMatrikelnummer()
print()

Bild 11-8 Überschreiben der Methode print()

Die Methode print() der Klasse Person2 gibt die Datenfelder nachname und
vorname aus. Die Methode print() der Klasse Student2 hingegen sorgt dafür,
dass die genannten Datenfelder und zusätzlich noch das Datenfeld matrikel-
nummer ausgegeben wird wie in folgendem Beispiel gezeigt:

// Datei: Person2.java

public class Person2
{
 protected String nachname;
 protected String vorname;

 public Person2 (String vorname, String nachname)
 {
 this.nachname = nachname;
 this.vorname = vorname;
 }

 public void print()
 {
 System.out.println ("Nachname: " + nachname);
 System.out.println ("Vorname: " + vorname);
 }
}

Vererbung und Polymorphie 371

// Datei: Student2.java
public class Student2 extends Person2
{
 private int matrikelnummer;

 public Student2 (String vorname, String nachname,
 int matrikelnummer)
 {
 super (vorname, nachname);
 this.matrikelnummer = matrikelnummer;
 }

 public void print()
 {
 System.out.println ("Nachname: " + nachname);
 System.out.println ("Vorname: " + vorname);
 System.out.println ("Matr. Nr: " + matrikelnummer);
 }
}

// Datei: Test2.java
public class Test2
{
 public static void main (String[] args)
 {
 Person2 p1 = new Person2 ("Rainer", "Brang");
 System.out.println ("\nAusgabe der Person: ");
 p1.print();
 Student2 s1 = new Student2 ("Karl", "Klug", 123456);
 System.out.println ("\nAusgabe des Studenten: ");
 s1.print();
 }
}

Die Ausgabe des Programms ist:

Ausgabe der Person:
Nachname: Brang
Vorname: Rainer

Ausgabe des Studenten:
Nachname: Klug
Vorname: Karl
Matr. Nr: 123456

Beachten Sie, dass der Ausdruck super (vorname, nachname) im Konstruktor
der Klasse Student2 den Konstruktor

public Person2 (String vorname, String nachname)

der Vaterklasse Person2 aufruft. In Kapitel 11.3.2 wird auf diesen Sachverhalt aus-
führlich eingegangen. In der main()-Methode der Klasse Test2 wird zuerst ein
neues Objekt der Klasse Person2 erzeugt und dann dessen print()-Methode
aufgerufen. Wie nicht anders zu erwarten war, gibt die print()-Methode den Nach-
namen und Vornamen des Objektes der Klasse Person2 aus. Danach wird ein Ob-
jekt der Klasse Student2 erzeugt und wieder die print()-Methode aufgerufen.

372 Kapitel 11

Betrachtet man die Ausgabe des Programms, so stellt man fest, dass nun die
überschreibende, den Bedürfnissen der Klasse Student2 angepasste Methode
print() aufgerufen wird, die zusätzlich noch die Matrikelnummer ausgibt.

Private Methoden einer Basisklasse können – da sie in einer Sohn-
klasse gar nicht sichtbar sind – nicht überschrieben werden. Es kann
deshalb in einer Klasse eine Methode geben, welche die gleiche Sig-
natur und den gleichen Rückgabetyp wie eine private Methode einer
Oberklasse hat, ohne dass ein Überschreiben dabei stattfindet. Es
handelt sich um eine Neudefinition.

Gründe für das Überschreiben einer Methode können sein:

• Überschreiben zur Verfeinerung
Dieser Fall wurde soeben besprochen. Die Klasse Student2 verfeinert die Klasse
Person2. Die Methode print() der Klasse Person2 kann die im Rahmen der
Verfeinerung hinzugefügten zusätzlichen Datenfelder der Klasse Student2 nicht
kennen. Daher muss diese Methode in der Klasse Student2 überschrieben wer-
den.

• Überschreiben zur Optimierung
Es kann nützlich sein, in einer abgeleiteten Klasse interne Datenstrukturen oder
die Implementierung eines Algorithmus zu optimieren. Das Außenverhalten der
Klasse darf sich dabei jedoch nicht ändern.

Überschriebene Methoden können in der überschreibenden Methode aufgerufen
werden. Im vorigen Beispiel wurde die Methode print() in der Klasse Student2
komplett neu geschrieben. Es wurden die Ausgaben von name und vorname wieder
neu programmiert. Dies ist aber unnötig, da man zur Ausgabe von name und vor-
name die von Person2 ererbte print()-Methode verwenden kann. Der Zugriff auf
ein Element einer Basisklasse erfolgt mit Hilfe des Schlüsselwortes super. Im
folgenden Beispiel wurde die Klasse Student2 so verändert, dass sie die Methode
print() der Klasse Person2 für die Ausgabe von Name und Vorname verwendet:

// Datei: Student3.java
public class Student3 extends Person2
{
 private int matrikelnummer;

 public Student3 (String vorname, String nachname,
 int matrikelnummer)
 {
 super (vorname, nachname);
 this.matrikelnummer = matrikelnummer;
 }

 public void print()
 {
 super.print();
 System.out.println ("Matr. Nr: " + matrikelnummer);
 }
}

Vererbung und Polymorphie 373

// Datei: Test3.java

public class Test3
{
 public static void main (String args[])
 {
 Person2 p1 = new Person2 ("Rainer", "Brang");
 System.out.println ("\nAusgabe der Person:");
 p1.print();

 Student3 s1 = new Student3 ("Karl", "Klug", 123456);
 System.out.println ("\nAusgabe des Studenten:");
 s1.print();
 }
}

Die Ausgabe des Programms ist:

Ausgabe der Person:
Nachname: Brang
Vorname: Rainer

Ausgabe des Studenten:
Nachname: Klug
Vorname: Karl
Matr. Nr: 123456

Überschriebene Instanzmethoden einer Basisklasse können mit Hilfe
von super nur innerhalb von Instanzmethoden einer abgeleiteten
Klasse angesprochen werden, da der Compiler den Aufruf su-
per.methode() in ((Vaterklasse) this).methode() umsetzt.

Das modifizierte Beispiel ist also um zwei Codezeilen kleiner geworden und verwen-
det die Methode print() der Klasse Person2 in der Methode print() der Klasse
Student3. Dass der Codeumfang hier reduziert wird, ist relativ belanglos. Wichtiger
ist, dass der Code robuster wird, da Änderungen an der print()-Methode der
Vaterklasse automatisch auch in der Sohnklasse wirksam werden.

Überschriebene Instanzmethoden einer Basisklasse können mit
super.methode() in der überschreibenden Instanzmethode aufge-
rufen werden.

Wird eine Methode mit Hilfe von super angesprochen, so werden ausgehend von
der aktuellen Klasse alle darüber liegenden Klassen des Vererbungsbaums der
Reihe nach solange durchsucht, bis zum ersten Mal eine Methode methode() ge-
funden wird. Ein Aufruf einer Methode einer Großvaterklasse ist deshalb mit su-
per.methodenname() nur dann möglich, wenn diese Methode in der Vaterklasse
nicht überschrieben wurde. Einen Aufruf super.super gibt es nicht.

374 Kapitel 11

Überschriebene Klassenmethoden einer bekannten Basisklasse
werden einfach durch Angabe des Klassennamens mit Klassenna-
me.methode() aufgerufen.

11.3 Besonderheiten bei der Vererbung

In diesem Kapitel werden wichtige Besonderheiten bei der Vererbung vorgestellt. Für
den problemlosen Einsatz der Vererbung in der Praxis muss man Kenntnisse über
die Typkonvertierung von Referenzen besitzen (siehe Kap. 11.3.1), die Initialisierung
mittels Konstruktoren in einer Vererbungshierarchie beherrschen (siehe Kap. 11.3.2),
wissen, dass Datenfelder beim Ableiten verdeckt werden können (siehe Kap. 11.3.3)
und dass man das Ableiten von Klassen bzw. das Überschreiben von Methoden
gezielt verhindern kann (siehe Kap. 11.3.4). Abschließend werden in Kapitel 11.3.5
abstrakte Basisklassen vorgestellt.

11.3.1 Typkonvertierung von Referenzen

In Java ist es nicht unbedingt erforderlich, dass der Typ einer Referenzvariablen
identisch mit dem Typ des Objektes ist, auf das die Referenzvariable zeigt. Genauso
wenig muss bei einer Zuweisung der Typ der an der Zuweisung beteiligten Referen-
zen identisch sein. Dies gilt auch bei der Zuweisung von aktuellen Parametern an
formale Parameter bei einem Methodenaufruf – der Typ eines aktuellen Parameters
muss nicht identisch mit dem Typ des formalen Parameters sein, er muss nur zuwei-
sungskompatibel sein – und bei Rückgabewerten. Es gibt wie bei der Typkonver-
tierung von einfachen Datentypen auch bei Referenztypen eine implizite (automa-
tische) Typkonvertierung und eine explizite Typkonvertierung mit Hilfe des cast-
Operators (siehe Kap. 7.7.1).

11.3.1.1 Implizite Typkonvertierung von Referenzen

Eine implizite Typkonvertierung von Referenzen findet immer dann statt, wenn eine
Referenzvariable vom Typ einer Sohnklasse einer Referenzvariablen vom Typ einer
Basisklasse zugewiesen wird. Die folgende Vererbungshierarchie zeigt zwei Klassen
in Vater-Sohn-Beziehung:

Vater

wert1

methode1()

Sohn

wert2

methode2()

Bild 11-9 Vater-Sohn-Vererbungshierarchie

Vererbung und Polymorphie 375

Die implizite Typkonvertierung soll anhand des folgenden Codes diskutiert werden:

Sohn refSohn = new Sohn();
Vater refVater = refSohn;

Die Referenz refVater ist vom Referenztyp Vater und zeigt auf ein Objekt der
Klasse Sohn. Dies ist deshalb zulässig und möglich, weil ein Sohnobjekt durch den
Vererbungsmechanismus auf jeden Fall alle Eigenschaften besitzt, die auch ein
Vaterobjekt besitzt. Ein Objekt der Klasse Sohn ist stets vom Typ Sohn und vom Typ
Vater. Allerdings hat die Referenz refVater nur Zugriff auf die Vateranteile des
Sohnobjektes – die Sohnanteile sind für die Referenz refVater unsichtbar und
damit auch nicht zugreifbar.

Ein Sohnobjekt ist sowohl vom Typ der eigenen Klasse als auch vom
Typ jeder zugehörigen Basisklasse.

Bei der Zuweisung refVater = refSohn wird auf die Referenz refSohn implizit
der cast-Operator (Vater) angewandt. Da die cast-Operation für den Program-
mierer unsichtbar erfolgt, spricht man auch von impliziter Typkonvertierung. Der
Rückgabewert dieser impliziten cast-Operation ist eine Referenz vom Typ Vater auf
das gleiche Objekt, allerdings mit einer eingeschränkten Sichtweise. Nach dieser
cast-Operation zeigen also zwei Referenzen auf das Objekt. Das folgende Bild zeigt
diesen Zusammenhang:

:Sohn

wert1
wert2

methode1()
methode2()

refSohn

Sicht einer Referenz
vom Typ Sohn

refVater

Sicht einer Referenz
vom Typ Vater

implizites
Casten

wert1
wert2

methode1()
methode2()

wert1
wert2

methode1()
methode2()

Bild 11-10 Vom Typ der Referenz abhängige Sicht auf ein Objekt

Die Referenz vom Typ Sohn sieht das gesamte Objekt und die
Referenz vom Typ Vater sieht nur die Vateranteile des Sohn-
Objektes.

376 Kapitel 11

Die unsichtbaren Teile des Sohn-Objektes sind in Bild 11-10 durch einen schwarzen
Balken97 symbolisiert. Die implizite Typkonvertierung in eine Superklasse bezeichnet
man auch als Up-Cast. Für einen gültigen Up-Cast gilt die folgende Regel:

Bei einer Zuweisung refVater = refSohn wird implizit der cast-
Operator angewandt, wenn der Typ der Referenz refVater ein Su-
pertyp der Referenz refSohn ist. Ansonsten resultiert ein Kompilier-
fehler.

11.3.1.2 Explizite Typkonvertierung von Referenzen

Eine explizite Typkonvertierung von Referenzen mit Hilfe des cast-Operators muss
immer dann erfolgen, wenn bei einer Zuweisung eine Referenzvariable vom Typ
Vater, die auf ein Objekt der Klasse Sohn zeigt, einer Referenzvariablen vom Typ
Sohn zugewiesen wird. Im folgenden Codestück ist eine explizite cast-Operation bei
einer Zuweisung zu sehen:

Sohn refSohn = new Sohn();
Vater refVater = refSohn;
Sohn refSohn2 = (Sohn) refVater;

Die Referenz refVater zeigt auf ein Objekt der Klasse Sohn. Auf dieser Referenz
wird nun eine explizite cast-Operation ausgeführt. Der Rückgabewert der cast-Ope-
ration ist eine Referenz vom Typ Sohn, die der Referenz refSohn2 zugewiesen
wird. Das folgende Bild zeigt diesen Sachverhalt:

:Sohn

wert1
wert2

methode1()
methode2()

refVater

Sicht einer Referenz
vom Typ Vater

refSohn2

Sicht einer Referenz
vom Typ Sohn

explizites
Casten

wert1
wert2

methode1()
methode2()

wert1
wert2

methode1()
methode2()

Bild 11-11 Verdeckte Eigenschaften durch Casten der Referenz wieder sichtbar machen

97 Diese Darstellung gilt für den Fall, dass die Sohnklasse die Vaterklasse erweitert. Der Fall des

Überschreibens wird erst später behandelt.

Vererbung und Polymorphie 377

Eine solche explizite Typkonvertierung mit Hilfe des cast-Operators bezeichnet man
auch als Down-Cast. Für einen gültigen Down-Cast gilt die folgende Regel:

Bei einer Zuweisung refSohn = (Sohn) refVater ist die explizite
cast-Operation nur dann zulässig, wenn die Referenz refVater

• auf ein Objekt vom Typ Sohn zeigt

• oder auf ein Objekt eines Subtyps der Klasse Sohn zeigt.

11.3.1.3 Gültige Up- und Down-Cast Operationen

Up-Cast bezeichnet einen Cast in einen Typ, der in der Verer-
bungshierarchie weiter oben liegt und Down-Cast bezeichnet einen
Cast in einen Typ, der in der Vererbungshierachie weiter unten
liegt.

Anhand der folgenden einfachen Vererbungshierarchie sollen nochmals die gültigen
Up- und Down-Cast-Operationen erläutert werden:

A

B

C

Bild 11-12 Vererbungshierarchie zur Diskussion der zulässigen cast-Operationen

In Bild 11-13 und in Bild 11-14 ist zu sehen, welche Referenz auf welches Objekt
zeigen darf, und welche impliziten Up-Cast-Operationen bzw. welche expliziten
Down-Cast-Operationen erlaubt sind.

Ein Down-Cast erfordert immer die explizite Angabe des cast-Ope-
rators.

Dies erklärt sich dadurch, dass der Compiler nicht wissen kann, auf welches Objekt
eine Referenz in Wirklichkeit zeigt. Eine Referenz der Klasse A kann beispielsweise
auf Objekte der Klasse A, B oder C zeigen.

378 Kapitel 11

Dagegen ist es bei einem gültigen Up-Cast nie erforderlich, den
cast-Operator anzugeben.

Ein Up-Cast erfolgt bei Bedarf automatisch durch den Compiler.

:A

refA

:C

refA

refB

refC

:B

refA

refB

zulässige
Up-Cast-
Operationen

Bild 11-13 Zulässige implizite Up-Cast-Operationen

 :A

refA

:C

refA

refB

refC

:B

refA

refB

zulässige
Down-Cast-
Operationen

(B)

(C)

(B)
(C)

Bild 11-14 Zulässige explizite Down-Cast-Operationen

Durch den impliziten Up-Cast-Mechanismus ist es auch möglich, dass einer Metho-
de, die als formalen Parameter eine Referenz einer Basisklasse hat, als aktueller
Parameter eine Referenz vom Typ der Basisklasse oder eine Referenz vom Typ
einer abgeleiteten Klasse übergeben werden kann. Bei der Zuweisung des aktuellen
Parameters an den formalen Parameter findet eine implizite Typumwandlung des
aktuellen Parameters in den Typ der Basisklasse statt.

Ist der formale Parameter einer Methode eine Referenz der Klasse
Object, so kann jede beliebige Referenz an diese Methode über-
geben werden, da bekanntlich jede Klasse von Object abgeleitet ist.

Vererbung und Polymorphie 379

Wird – wie in Kapitel 11.3.1.1 besprochen – mit folgender Anweisung

B refB = new C();

eine Instanz der Klasse C angelegt, so ist das auf dem Heap erzeugte Objekt vom
Typ C, aber die Referenz vom Typ B. Bei der Zuweisung findet implizit ein Cast auf
die Klasse B statt.

Auf die Referenz refB kann nun – wie in Kapitel 11.3.1.2 gezeigt – der cast-Ope-
rator (C) wie in folgender Anweisung angewandt werden:

C refC = (C) refB;

Beim Down-Cast wird die Aufrufschnittstelle des Typs, auf den gecas-
tet wird, sichtbar.

Mit dem cast-Operator kann auch explizit auf die Basisklasse A und die Basisklasse
Object gecastet werden. Allerdings ist dann natürlich nur die entsprechende Aufruf-
schnittstelle sichtbar, die zum Typ der Referenz gehört, in den gecastet wird.

Wird versucht, eine Referenz explizit auf einen Typ zu casten, der nicht zulässig ist,
so wird eine Exception vom Typ ClassCastException zur Laufzeit geworfen. Die-
se Exception wird nur bei expliziten Cast-Operationen geworfen, da die Korrektheit
einer impliziten Cast-Operation immer schon zum Kompilierzeitpunkt überprüft wer-
den kann.

Folgendes Beispiel zeigt gültige und ungültige Cast-Operationen. Es wird die Verer-
bungshierarchie in Bild 11-15 zugrunde gelegt.

Object

A

D

B

C

Bild 11-15 Klassenhierarchie

380 Kapitel 11

Man beachte, dass die Klasse D weder Subtyp noch Supertyp der Klassen A, B oder
C ist. Cast-Operationen einer Referenz auf ein Objekt der Klasse A, B oder C in den
Typ der Klasse D sind also unzulässig. Umgekehrt gilt natürlich das Gleiche: Eine
Referenz auf ein Objekt der Klasse D kann nie in den Typ der Klasse A, B oder C
gecastet werden.

// Datei: Cast.java

class A
{
 private int x = 1;
}

class B extends A
{
 private int y = 2;
}

class C extends B
{
 private int z = 3;
}

class D
{
 private float f = 2.0f;
}

public class Cast
{
 public static void main (String[] args)
 {
 B b = new C(); // Referenz vom Typ B auf ein neues Objekt der
 // Klasse C. Impliziter Cast nach B.

 A a = b; // Impliziter Cast zu einer Basisklasse.
 Object o = b; // Impliziter Cast nach Object.

 C c = (C) b; // Expliziter Cast zur ursprünglichen Klasse.
 C c2 = (C) o; // Expliziter Cast von Object zur
 // ursprünglichen Klasse.

 //D d = (D) b; // Fehler, da D nichts mit C zu tun hat.
 }
}

Casten auf Array-Typen

Da Array-Typen Subtypen der Klasse Object sind, kann auch auf Referenzen, die
auf Arrays zeigen, der cast-Operator angewandt werden. Die folgenden Codeaus-
schnitte zeigen das Casten auf Arrays:

String[] arr1 = {"Anna", "Katharina"};
Object ref1 = arr1; // Impliziter Up-Cast
String[] arr2 = (String[]) ref1; // Expliziter Down-Cast

Vererbung und Polymorphie 381

Beachten Sie, dass wenn eine Referenz ref, auf der eine cast-Ope-
ration (String[]) erfolgt, nicht auf ein Array des Typs String[]
zeigt, eine ClassCastException zur Laufzeit geworfen wird.

Der folgende Codeausschnitt verdeutlicht nochmals, dass Arrays von elementaren
Datentypen genauso Objekte sind wie Arrays aus Referenztypen:

int[] arr3 = {1, 2};
Object ref2 = arr3;
int[] arr4 = (int[]) ref2;

11.3.2 Konstruktoren bei abgeleiteten Klassen

Möchte man dem Benutzer einer Klasse die Möglichkeit bieten, zusammen mit der
Objekterzeugung eine Initialisierung vorzunehmen, so stellt man ihm Konstruktoren
zur Verfügung. Dieser Sachverhalt wurde bereits in Kapitel 10.4.4 vorgestellt. Natür-
lich besteht für Objekte abgeleiteter Klassen genauso wie für Objekte der Basis-
klassen der Bedarf zur Initialisierung von Datenfeldern. Um die ererbten Datenfelder
einer Vaterklasse zu initialisieren, würde man sich wünschen, dass man einen Kon-
struktor einer Vaterklasse aus dem Konstruktor einer Sohnklasse aufrufen kann. Da-
mit könnte man die Konstruktoren der Vaterklasse wiederverwenden. Ein Konstruktor
der Vaterklasse könnte dann den von der Vaterklasse geerbten Anteil der Sohn-
klasse initialisieren, der Konstruktor der Sohnklasse müsste dann nur noch die neu
hinzu gekommenen Datenfelder initialisieren.

Person

String name
String vorname

.

Student

int matrikelnummer

.

Bild 11-16 Vererbungshierarchie zur Diskussion von Konstruktoraufrufen

Und so ist es auch: Es ist möglich, innerhalb eines Konstruktors einen Konstruktor
der Vaterklasse aufzurufen. Dies wird mit dem Schlüsselwort super gemacht. Wie
dieses Schlüsselwort eingesetzt wird, kann man sich zum größten Teil vom Compiler
abschauen. Der Compiler ergänzt nämlich den folgenden Programmcode:

public class Person
{
 private String name;
 private String vorname;

382 Kapitel 11

 public Person()
 {
 name = "Unbekannt";
 vorname = "Unbekannt";
 }
}
public class Student extends Person
{
 private int matrikelnummer
}

zu:

public class Person extends Object
{
 private String name;
 private String vorname;

 public Person()
 {
 super();
 name = "Unbekannt";
 vorname = "Unbekannt";
 }
}

public class Student extends Person
{
 private int matrikelnummer

 public Student() // Voreingestellter Default-Konstruktor wird
 { // vom Compiler eingefügt.
 super();
 }
}

Der super()-Aufruf muss immer in der ersten Zeile des Konstruktors
stehen. Lässt man ihn weg, so fügt Java implizit einen Aufruf des
Default-Konstruktors der Superklasse ein.

Dass die Anweisung super() im selbst geschriebenen Default-Konstruktor der Klas-
se Person in der ersten Codezeile steht, ist kein Zufall, es ist sogar ein Muss! Das
bedeutet, dass der Konstruktor der obersten Klasse im Hierarchiebaum mit der
Initialisierung beginnt und an letzter Stelle die Initialisierungsanweisungen des Kon-
struktors des mit new erzeugten Objektes abgearbeitet werden. Man beachte, dass
mit dem Aufruf super() im selbst geschriebenen Default-Konstruktor der Klasse
Person der voreingestellte Default-Konstruktor der Klasse Object aufgerufen wird.

Der voreingestellte Default-Konstruktor der Klasse Object hat
einen leeren Rumpf, d. h. er tut nichts. Ein voreingestellter Default-
Konstruktor einer anderen Klasse ruft automatisch den parame-
terlosen Konstruktor der Vaterklasse auf.

Vererbung und Polymorphie 383

Ein Konstruktor der Basisklasse wird immer vor den Initialisierungs-
anweisungen des Konstruktors der abgeleiteten Klasse ausgeführt.

Der Grund dafür ist, dass die Initialisierungen des Konstruktors der Basisklasse über-
nommen werden können, aber auch bei Bedarf – sofern die Datenfelder der Basis-
klasse nicht private sind – im Konstruktor der abgeleiteten Klasse überschrieben
werden können.

Der Compiler stellt immer einen Default-Konstruktor für jede Klasse zur Verfügung,
wie in der obigen Klasse Student. Dieser voreingestellte Default-Konstruktor nimmt
keine Initialisierungen vor und wird deshalb oft überschrieben, wie in der Klasse
Person zu sehen ist. Wird ein selbst geschriebener Default-Konstruktor für eine
Klasse zur Verfügung gestellt, so wird vom Compiler automatisch der selbst ge-
schriebene Konstruktor verwendet.

Ein Default-Konstruktor hat keine Parameter. Der Programmierer
kann selbst einen Konstruktor ohne Parameter schreiben. Dann
wird vom Compiler dieser selbst geschriebene Default-Konstruktor
und nicht der vom Compiler zur Verfügung gestellte Default-Konstruk-
tor aufgerufen.

Die Probleme der Initialisierung der von der Vaterklasse geerbten Datenfelder sind
durch den einfachen Aufruf von super() natürlich noch nicht gelöst, da nur der
Default-Konstruktor damit aufgerufen werden kann. Für den Fall, dass Parameter im
Konstruktor der Vaterklasse benötigt werden, kann man die Parameter mit Hilfe des
Schlüsselwortes super an den Konstruktor der Vaterklasse weiterreichen. Bekannt-
lich besteht die Möglichkeit, für jede Klasse beliebig viele Konstruktoren zu schrei-
ben. Die einzige Einschränkung hierfür ist: Die Parameterliste zweier Konstruktoren
darf in Typ, Reihenfolge und Anzahl der Parameter nicht identisch sein. Wenn der
Konstruktor der Basisklasse Parameter erwartet, so müssen diese vom Konstruktor
der abgeleiteten Klasse bereitgestellt und mit Hilfe des Schlüsselwortes super an
den entsprechenden Konstruktor der Basisklasse weitergereicht werden. Dabei gilt:

Ein formaler Parameter des Konstruktors der abgeleiteten Klasse
kann als aktueller Parameter an den Konstruktor der Basisklasse
übergeben werden.

Das folgende Beispiel zeigt die Übergabe von Parametern an den Konstruktor der
Vaterklasse:

// Datei: Person4.java

public class Person4
{
 private String name;
 private String vorname;

384 Kapitel 11

 public Person4 (String name, String vorname)
 {
 System.out.println ("Konstruktoraufruf von Person4");
 this.name = name;
 this.vorname = vorname;
 }
}

// Datei: Student4.java
public class Student4 extends Person4
{
 private int matrikelnummer;

 public Student4 (String name, String vorname, int m)
 {
 super (name, vorname); // Aufruf des Konstruktors der
 // Superklasse
 System.out.println ("Konstruktoraufruf von Student4");
 matrikelnummer = m;
 }
}

// Datei: Test4.java
public class Test4
{
 public static void main (String[] args)
 {
 Person4 p = new Person4 ("Müller", "Peter");
 Student4 s = new Student4 ("Brang", "Rainer", 666666);
 }
}

Die Ausgabe des Programms ist:

Konstruktoraufruf von Person4
Konstruktoraufruf von Person4
Konstruktoraufruf von Student4

Zum Schluss soll noch eine Kleinigkeit erwähnt werden, die des Öfteren zu unerwar-
teten Fehlern führt. Wird vom Programmierer ein Konstruktor mit Parametern ge-
schrieben, so steht für diese Klasse kein Konstruktor mit leerer Parameterliste mehr
zur Verfügung. Wird diese Klasse dann als Vaterklasse für eine andere Klasse ver-
wendet, so setzt der Compiler automatisch in jeden Konstruktor der Sohnklasse – in
dem kein expliziter Aufruf von super() mit Parametern erfolgt – den Aufruf von
super() ein. Dieser Aufruf bezieht sich allerdings auf den Default-Konstruktor der
Basisklasse, der ja gar nicht mehr existiert. Da die vom Compiler eingefügten Aufrufe
von super() für den Programmierer nicht sichtbar sind, kann die Fehlersuche lang-
wierig sein.

In den Konstruktor einer abgeleiteten Klasse wird automatisch vom
Compiler der Aufruf des Default-Konstruktors der Vaterklasse durch
super() eingefügt, es sei denn der Programmierer führt einen su-
per()-Aufruf explizit selbst durch.

Vererbung und Polymorphie 385

Dies hat die folgende Konsequenz:

Ein Programmierer sollte stets auch einen Default-Konstruktor für eine
Klasse schreiben, wenn er einen Konstruktor mit Parametern schreibt,
weil durch das Schreiben des Konstruktors mit Parametern der vor-
eingestellte Default-Konstruktor nicht mehr zur Verfügung steht.

Bestimmt erinnern Sie sich an das Lernkästchen in Kapitel 10.4.5, in dem stand,
dass mit Hilfe von this (.) aus einem Konstruktor ein anderer Kon-
struktor derselben Klasse aufgerufen werden kann, und dass dieser Aufruf in der
ersten Codezeile des Konstruktors stehen muss. Das Gleiche gilt allerdings auch für
den super()-Aufruf. Deshalb gilt:

In einem Konstruktor kann entweder ein anderer überladener Kon-
struktor derselben Klasse aufgerufen werden oder ein Konstruktor der
Vaterklasse.

11.3.3 Verdecken

Es ist möglich, dass eine abgeleitete Klasse ein Datenfeld mit demselben Namen
einführt. Das entsprechende Datenfeld einer Vaterklasse wird zwar beim Sohn auch
angelegt, ist aber infolge der Namensgleichheit verdeckt, d. h. unter dem Namen
wird immer das entsprechende Datenfeld, das im Sohn neu eingeführt wurde, ange-
sprochen.

11.3.3.1 Verdecken von Datenfeldern

Vom Verdecken eines Datenfeldes spricht man, wenn in der Sohn-
klasse ein Datenfeld angelegt wird, das den gleichen Namen trägt wie
ein von der Vaterklasse geerbtes Datenfeld.

Das folgende Bild zeigt eine solche Vererbungshierarchie:

Vater

int x

Sohn

int x

Bild 11-17 Sohnklasse definiert das gleiche Datenfeld wie die Vaterklasse

Vorsicht!

386 Kapitel 11

Da eine Instanz der Klasse Sohn einmal die eigenen Datenfelder besitzt und zum
anderen die Datenfelder der Vaterklasse erbt, kann es also vorkommen, dass das
Sohnobjekt zwei Datenfelder mit dem gleichen Namen besitzt.

Wird von der Klasse Sohn mit

Sohn s = new Sohn();

eine Instanz gebildet, so enthält die Instanz der Sohnklasse sowohl die Datenfelder
der Vaterklasse, als auch die Datenfelder der Sohnklasse. Ein Objekt der Sohn-
klasse ist in Bild 11-18 zu sehen:

verdeckt

:Sohn

int x

int x

Datenfeld geerbt von der Vaterklasse

Datenfeld der Sohnklasse

Bild 11-18 Doppelte Datenfelder in der Instanz der Sohnklasse

Dabei verdeckt aber das gleichnamige Datenfeld der Sohnklasse das von der Vater-
klasse geerbte Datenfeld. Das bedeutet, dass man im Sohn über den Namen x stets
auf das Datenfeld der Sohnklasse zugreift.

Das Verdecken von Datenfeldern erfolgt grundsätzlich bei Namens-
gleichheit. Deshalb wird ein float-Datenfeld x des Sohnes, das von
der Vaterklasse geerbt wurde, auch durch ein int-Datenfeld x der
Sohnklasse verdeckt.

Dies zeigt das folgende Bild:

Vater

float x

Sohn

int x

verdeckt

:Sohn

float x

int x

Datenfeld geerbt von
der Vaterklasse

Datenfeld der Sohnklasse

Bild 11-19 Verdecken eines geerbten gleichnamigen Datenfeldes eines anderen Typs

11.3.3.2 Verwendung verdeckter Datenfelder

Zugriff auf verdeckte Instanzvariablen der Vaterklasse

Es soll folgendes Beispiel betrachtet werden: Die Klasse Vater hat ein Datenfeld
int x. Die Klasse Sohn, die von Vater abgeleitet ist, definiert ebenfalls ein Daten-
feld int x. Beide Datenfelder können unabhängig voneinander in der Sohnklasse

Vererbung und Polymorphie 387

existieren, und es kann sogar auf beide Datenfelder von der Sohnklasse aus zuge-
griffen werden, sofern das Datenfeld des Vaters nicht den Zugriffsmodifikator pri-
vate hat.

// Datei: VaterSohnTest.java

class Vater
{
 int x = 2;
}

class Sohn extends Vater
{
 int x = 1;

 public Sohn()
 {
 System.out.println ("x des Sohnes: " + x);
 System.out.println ("x des Sohnes: " + this.x);
 System.out.println ("vom Vater geerbtes x: " + super.x);
 System.out.println ("vom Vater geerbtes x: "+((Vater)this).x);
 }
}

public class VaterSohnTest
{
 public static void main (String[] args)
 {
 Sohn s = new Sohn();
 }
}

Die Ausgabe des Programms ist:

x des Sohnes: 1
x des Sohnes: 1
vom Vater geerbtes x: 2
vom Vater geerbtes x: 2

Für den Zugriff auf das eigene Datenfeld der Sohnklasse hat das
Sohn-Objekt zwei Möglichkeiten, die schon bekannt sind:

• einfach über den Namen der Variablen: x

• mit Hilfe des this-Referenz: this.x

Dabei wird die erste Variante vom Compiler automatisch in die zweite Variante um-
gesetzt.

Auf das von der Vaterklasse geerbte Element, das von der Sohnklasse durch ein
gleichnamiges Element verdeckt wird, kann nicht mehr einfach über den Namen der
Variablen zugegriffen werden.

388 Kapitel 11

Für den Zugriff auf ein von der Vaterklasse ererbtes und verdecktes
Datenfeld bestehen die beiden folgenden Möglichkeiten:

• Über das Schlüsselwort super mit super.x.

• Über einen Cast der this-Referenz in das Vaterobjekt: ((Vater)
this).x.

Dabei wird die erste Möglichkeit vom Compiler automatisch in die zweite Möglichkeit
umgesetzt. Das Schlüsselwort super wurde schon in Kapitel 11.3.2 vorgestellt. Dort
wurde es in der Notation super() verwendet, um den Konstruktor der Basisklasse
aufzurufen. An dieser Stelle wird es dazu verwendet, um ein verdecktes Datenfeld
der Vaterklasse aufzurufen. In der zweiten Möglichkeit wird von der this-Referenz
Gebrauch gemacht.

Wie bekannt, ist die this-Referenz eine Referenz auf das eigene
Objekt und kann genauso wie andere Referenzen auf den Typ der
Vaterklasse gecastet werden. Für eine Referenz, die auf den Vater
gecastet wird, sind nur noch die Datenfelder des Vaters sichtbar und
nicht mehr die des Sohnes.

Zugriff auf verdeckte Instanzvariablen einer "Großvaterklasse"

Hierzu soll folgendes Beispiel betrachtet werden: Die Klasse Grossvater hat ein
Datenfeld float x. Die Klasse Vater, die von Grossvater abgeleitet ist, hat ein
Datenfeld int x und die Klasse Sohn, die von Vater abgeleitet ist, ein Datenfeld
String x. Es soll hier der Fall betrachtet werden, wie auf verdeckte Datenfelder
zugegriffen werden kann, die im Klassenbaum weiter oben liegen und somit nicht
von der Vaterklasse stammen. Weiterhin wird demonstriert, dass zum Verdecken von
Datenfeldern nur Namensgleichheit jedoch nicht die Typgleichheit erforderlich ist.

// Datei: Sohn2.java

class Grossvater2
{
 float x = 2.2F;
}

class Vater2 extends Grossvater2
{
 int x = 2;
}

public class Sohn2 extends Vater2
{
 String x = "Ich bin der Sohn";

 public Sohn2()
 {
 System.out.println ("x des Sohnes: " + x);
 System.out.println ("x des Sohnes: " + this.x);
 System.out.println ("ererbtes x vom Vater: " + super.x);

Vererbung und Polymorphie 389

 System.out.println ("ererbtes x vom Vater: "
 + ((Vater2) this).x);
 System.out.println ("ererbtes x vom Grossvater: "
 + ((Grossvater2) this).x);
 // Das Folgende funktioniert nicht!
 // System.out.println ("ererbtes x vom Grossvater: "
 // + super.super.x);
 }

 public static void main (String[] args)
 {
 Sohn2 s = new Sohn2();
 }
}

Die Ausgabe des Programms ist:

x des Sohnes: Ich bin der Sohn
x des Sohnes: Ich bin der Sohn
ererbtes x vom Vater: 2
ererbtes x vom Vater: 2
ererbtes x vom Grossvater: 2.2

Nach wie vor gibt es jeweils 2 Möglichkeiten, um auf die Datenfelder der eigenen
Klasse und die ererbten Datenfelder der Vaterklasse zuzugreifen.

Es existiert aber in diesem Fall nur eine einzige Möglichkeit, um auf
die ererbten Datenfelder der "Großvaterklasse" zuzugreifen. Nur der
Cast der this-Referenz in die Grossvater-Klasse ermöglicht den
Zugriff auf das verdeckte Datenfeld. Eine Aneinanderreihung von su-
per.super gestattet der Compiler nicht!

Wird in obigem Programm nur die folgende minimale Abänderung gemacht:

class Vater2 extends Grossvater2
{
 int y = 2;
}

dann erhält man folgende Ausgabe des Programms:

Die Ausgabe des Programms ist:

x des Sohnes: Ich bin der Sohn
x des Sohnes: Ich bin der Sohn
ererbtes x vom Vater: 2.2
ererbtes x vom Vater: 2.2
ererbtes x vom Grossvater: 2.2

Es gibt jetzt 3 Möglichkeiten, auf das ererbte x der Klasse Grossvater zuzugreifen:

• über das Schlüsselwort super durch super.x

• über den Cast der this-Referenz in den Vater: ((Vater2)this).x

• über den Cast der this-Referenz in den Grossvater: ((Grossvater2)this).x

390 Kapitel 11

Der Zugriff mit super.x auf das Datenfeld x des Großvaters ist deshalb möglich,
weil in der Klasse Vater2 kein Datenfeld vorhanden ist, welches das geerbte x-
Datenfeld der Klasse Grossvater2 verdeckt.

Wird ein Datenfeld x mit Hilfe von super gesucht, so wird ausgehend
von der aktuellen Klasse die gesamte Klassenhierarchie aufwärts der
Reihe nach solange durchsucht, bis zum ersten Mal ein Datenfeld x
gefunden wird. An dieser Stelle wird die Suche abgebrochen.

Zugriff auf verdeckte Klassenvariablen

Der Zugriff auf verdeckte Klassenvariablen erfolgt über den Klassennamen. Da ein
Objekt seine Klasse kennt, kann auf eine verdeckte Klassenvariable genau wie auf
eine verdeckte Instanzvariable zugegriffen werden. Das folgende Beispiel ist iden-
tisch mit dem vorhergehenden, mit dem einen Unterschied, dass alle Datenfelder
static sind.

// Datei: Sohn3.java

class Grossvater3
{
 static float x = 2.2F;
}

class Vater3 extends Grossvater3
{
 static int x = 2;
}

public class Sohn3 extends Vater3
{
 static String x = "Ich bin der Sohn";

 Sohn3()
 {
 System.out.println ("x des Sohnes: " + x);
 System.out.println ("x des Sohnes: " + this.x);
 System.out.println ("x des Sohnes: " + Sohn3.x);

 System.out.println ("geerbtes x vom Vater: " + super.x);
 System.out.println ("geerbtes x vom Vater: "
 + ((Vater3) this).x);
 System.out.println ("geerbtes x vom Vater: " + Vater3.x);

 System.out.println ("geerbtes x vom Grossvater: "
 + ((Grossvater3) this).x);
 System.out.println ("geerbtes x vom Grossvater: "
 + Grossvater3.x);

 // Das Folgende funktioniert nicht!
 // System.out.println ("geerbtes x vom Grossvater: "
 // + super.super.x);
 }

Vererbung und Polymorphie 391

 public static void main (String[] args)
 {
 Sohn3 s = new Sohn3();
 }
}

Die Ausgabe des Programms ist:

x des Sohnes: Ich bin der Sohn
x des Sohnes: Ich bin der Sohn
x des Sohnes: Ich bin der Sohn
geerbtes x vom Vater: 2
geerbtes x vom Vater: 2
geerbtes x vom Vater: 2
geerbtes x vom Grossvater: 2.2
geerbtes x vom Grossvater: 2.2

Wie aus dem Programm ersichtlich wird, besteht für Klassenvariablen immer die
Möglichkeit, dass auf sie über den Klassennamen zugegriffen wird. Somit kann auf
das x aus der Klasse Grossvater3 mit Grossvater3.x und auf das x aus der
Klasse Vater3 mit Vater3.x und natürlich auf das x aus der Klasse Sohn3 mit
Sohn3.x zugegriffen werden.

11.3.4 Finale Methoden und finale Klassen

Mit dem Schlüsselwort final gekennzeichnete Methoden lassen sich nicht über-
schreiben. Wird das aus Kapitel 11.2.2 bekannte Beispiel so modifiziert, dass man
die Methode print() der Klasse Person2 als final deklariert, so lässt sich die
Klasse Student2 nicht mehr kompilieren:

public final void print()
{
 System.out.println ("Nachname :" + nachname);
 System.out.println ("Vorname :" + vorname);
}

Die Ausgabe des Compilers ist:

Student2.java:12: print() in Student2 cannot override
print() in Person2; overridden method is final
 public void print()
 ^
1 error

Finale Methoden können in einer Subklasse nicht überschrieben
werden.

392 Kapitel 11

Finale Klassen sind Klassen, von denen man keine weiteren Klassen
ableiten kann. Damit kann man nur die Benutzung von Klassen, aber
nicht die Ableitung erlauben.

Hierfür sind konzeptionelle Gründe des Designs denkbar – das Problem ist gelöst –,
aber auch Sicherheitsgründe. Da ein abgeleitetes Objekt überall dort stehen kann,
wo ein Vaterobjekt steht, kann auf diese Weise beispielsweise kein Trojanisches
Pferd von einem Hacker eingeschleust werden. Finale Klassen werden mit dem
Schlüsselwort final gekennzeichnet.

Datenfelder, die mit dem Schlüsselwort final gekennzeichnet werden, tragen einen
konstanten Wert. Mit einer finalen Klasse lässt sich auch eine Konstantenklasse
aufbauen. Da Konstantenklassen nur Konstanten enthalten, macht es keinen
Sinn, solche Klassen zu instantiieren. Deshalb wird gerne der Konstruktor auf
private gesetzt. Damit kann dann eine Instantiierung gezielt verhindert werden.
Allerdings müssen dann auch alle Konstanten static sein, damit sie von anderen
Klassen aus als Klassenvariablen angesprochen werden können.

Eine Konstantenklasse könnte zum Beispiel so aussehen:

// Datei: Konstanten.java

public final class Konstanten
{
 private Konstanten() // Von der Klasse können keine
 { // Objekte erzeugt werden.
 }

 public static final float PI = 3.141f;
 public static final int MAX = 255;
}

Der Zugriff auf die Datenfelder erfolgt nun z. B. über

System.out.println (Konstanten.PI);

11.3.5 Abstrakte Basisklassen

In einer Klassenhierachie werden Klassen von unten nach oben zunehmend gene-
ralisiert und abstrahiert. Umgekehrt: je weiter man in der Hierarchie nach unten geht,
desto mehr Datenfelder und Methoden werden eingebracht, um die speziellen Eigen-
schaften der abgeleiteten Klassen zum Ausdruck zu bringen. Datenfelder und Metho-
den, welche bei mehreren Klassen gemeinsam vorhanden sind, werden in einer Ba-
sisklasse zusammengefasst.

Wird in einer Basisklasse nur die Schnittstelle von Methoden festge-
legt und die eigentliche Implementierung einer, mehrerer oder aller
Methoden erst in den abgeleiteten Klassen vorgenommen, so liegt
eine abstrakte Basisklasse vor.

Vererbung und Polymorphie 393

Abstrakte Basisklassen können nicht instantiiert werden, jedoch kann mit Referen-
zen, die vom Typ einer abstrakten Basisklasse sind, gearbeitet werden. Solche Refe-
renzen können dann auf Objekte zeigen, deren Klassen von der abstrakten Basis-
klasse abgeleitet sind und alle abstrakten Methoden implementieren.

Methoden, für die nur die Schnittstelle festgelegt werden soll, die in
einer Klasse also keinen Methodenrumpf besitzen, müssen mit dem
Schlüsselwort abstract deklariert werden.

Ist auch nur eine einzige abstrakte Methode in einer Klasse enthalten,
so ist die Klasse zwangsläufig abstrakt und ist damit mit dem Schlüs-
selwort abstract zu deklarieren. Abstrakte Klassen können nicht
instantiiert werden.

Eine Klasse, in der alle Methoden implementiert sind, kann mit dem
Schlüsselwort abstract zur einer abstrakten Klasse gemacht wer-
den. Damit kann die Instantiierung einer solchen Klasse verhindert
werden. Eine solche Klasse ist zwar vollständig, sie stellt aber eine
Abstraktion dar, von der es in der Realität keine Objekte gibt. Eine
solche abstrakte Basisklasse dient allein dem Ziel der Generalisierung
in der Klassenhierarchie.

Klassen, die von einer abstrakten Klasse ableiten, müssen nicht unbedingt alle ab-
strakten Methoden implementieren. Implementiert eine abgeleitete Klasse nicht alle
abstrakten Methoden, ist sie wiederum wie die Basisklasse abstrakt und muss des-
halb mit dem Schlüsselwort abstract deklariert werden.

Ein kleines Programm soll die abstrakten Klassen verdeutlichen:

// Datei: AbstractTest.java

abstract class X
{
 public X()
 {
 System.out.println ("Konstruktor X");
 }

 public abstract void testPrint (int x);
}

class Y extends X
{
 public Y()
 {
 System.out.println ("Konstruktor Y");
 }

394 Kapitel 11

 public void testPrint (int x)
 {
 System.out.println ("Übergabeparameter: " + x);
 }
}

public class AbstractTest
{
 public static void main (String[] args)
 {
 // X x = new X(); Fehler!!
 Y y = new Y(); // OK!
 X z = new Y(); // auch OK!
 }
}

Die Ausgabe des Programms ist:

Konstruktor X
Konstruktor Y
Konstruktor X
Konstruktor Y

11.4 Polymorphie und das Liskovsche Substitutionsprinzip

Polymorphie ist neben Identität und Vererbung ein weiterer wichtiger Aspekt des
objektorientierten Ansatzes. Polymorphie bedeutet Vielgestaltigkeit. Das Wort Poly-
morphie gibt es bei Operationen und Objekten.

Polymorphie von Operationen bedeutet, dass eine Operation in ver-
schiedenen Klassen durch eine jeweils eigene Methode, welche den
Namen der Operation trägt, implementiert wird.

Gleiche Methodenköpfe in verschiedenen Klassen stellen kein Problem dar, da jede
Klasse einen eigenen Namensraum bildet. Polymorphie von Operationen wurde
bereits in Kapitel 9.3 behandelt.

Eine Polymorphie von Objekten gibt es nur bei Vererbungshierar-
chien. An die Stelle eines Objektes einer Klasse in einem Programm
kann problemlos stets auch ein Objekt einer von dieser Klasse abge-
leiteten Klasse treten, solange nur erweitert wird, also nur Datenfelder
oder Methoden hinzugefügt werden. Findet ein Überschreiben – also
die Neudefinition einer Operation in einer abgeleiteten Klasse – statt,
so muss darauf geachtet werden, dass in der abgeleiteten Klasse die
Verträge der Methoden der Basisklasse eingehalten werden.

Tritt ein Objekt einer abgeleiteten Klasse an die Stelle eines Objektes einer Basis-
klasse, so wird einfach der spezialisierte Anteil der abgeleiteten Klasse ausgeblen-
det. Dies hat zur Konsequenz, dass ein Objekt einer abgeleiteten Klasse in der Ge-

Vererbung und Polymorphie 395

stalt eines Objektes einer Basisklasse auftritt und sich damit vielgestaltig oder poly-
morph verhält.

11.4.1 Polymorphes Verhalten bei der Erweiterung

Bei der Erweiterung von Basisklassen in Sohnklassen ist ein polymorphes Verhalten
von Objekten der Sohnklasse problemlos möglich, da ein Objekt einer abgeleiteten
Klasse alle Methoden und Datenfelder einer Basisklasse erbt, wie in Bild 11-20 zu
sehen ist, und sie im Falle der Erweiterung nur um zusätzliche Datenfelder und Me-
thoden ergänzt.

Ein Objekt einer Unterklasse kann auch Methodenaufrufe beantworten, die in der
Basisklasse implementiert sind. Natürlich kann ein Objekt einer abgeleiteten Klasse
zusätzliche Datenfelder oder Methoden besitzen. Aber an der Stelle im Programm-
code, an der ein Objekt einer Basisklasse stehen kann, kann auch ein Objekt einer
abgeleiteten Klasse die Aufgaben erfüllen. Es verhält sich an dieser Stelle als Objekt
der Basisklasse. Die weiteren Eigenschaften des Objektes der abgeleiteten Klasse
wie zusätzliche Datenfelder oder Methoden werden dann ausgeblendet bzw. sind
über die Referenzvariable vom Typ einer Basisklasse nicht sichtbar. Dies bedeutet,
dass ein Objekt einer abgeleiteten Klasse in verschiedenen Gestalten auftreten
kann. Bild 11-20 zeigt, dass sich ein Sohn-Objekt auch als Vater- bzw. als Großva-
ter-Objekt verhalten kann und dass sich ein Vater-Objekt auch als Großvater-Objekt
verhalten kann.

:Vater

wert1

wert2

methode1()

methode2()

:Großvater

wert1

methode1()

:Sohn

wert1

wert2

wert3

methode1()

methode2()

methode3()

Großvater

wert1

methode1()

Vater

wert2

methode2()

Sohn

wert3

methode3()

Bild 11-20 Polymorphes Verhalten von Objekten abgeleiteter Klassen

Diese Polymorphie ist der Grund für die wunderbare Möglichkeit, dass sich ganze
Klassenbibliotheken problemlos wiederverwenden lassen. Polymorphie von Objek-

396 Kapitel 11

ten erlaubt es, einen wiederverwendbaren Code zu schreiben, der nur Referenzen
auf Objekte einer Basisklasse enthält. Da ein Objekt einer abgeleiteten Klasse,
welche eine Basisklasse erweitert, die Aufrufschnittstelle der Basisklasse und diesel-
ben Datenfelder wie die Basisklasse hat, kann ein Objekt einer abgeleiteten Klasse
sich ohne jegliches Problem wie ein Objekt einer Basisklasse verhalten. Eine Zu-
satzaufrufschnittstelle aufgrund weiterer Methoden der abgeleiteten Klasse kommt
nicht zum Tragen, da diese Methoden im Quellprogramm, das nur die Basisklasse
kennt, überhaupt nicht angesprochen werden. Die Zusatzaufrufschnittstelle und die
zusätzlichen Datenfelder einer abgeleiteten Klasse bleiben also unsichtbar.

Das folgende Beispielprogramm demonstriert die Wiederverwendung von Quellcode
durch den polymorphen Einsatz von Objekten. Das Programm besteht aus den
Klassen Person5, Student5, Utility und Test5. Die Klasse Student5 erwei-
tert die Klasse Person5. In der Klasse Utility existieren die Klassenmethoden
sortByName(), swap() und print(). Die Methode sortByName() kann ein
Array von Personen nach dem Namen sortieren. Hierbei kommt der aus Kapitel 9.2.7
bekannte Bubblesort-Algorithmus zum Einsatz. Alle drei Methoden besitzen als
formalen Parameter ein Array von Personen. Das Besondere ist nun, dass sämtliche
Methoden der Klasse Utility nicht nur für ein Array von Personen verwendet
werden können, sondern auch für ein Array von Studenten.

// Datei: Person5.java

public class Person5
{
 private String nachname;
 private String vorname;

 public Person5 (String nachname, String vorname)
 {
 this.nachname = nachname;
 this.vorname = vorname;
 }

 public String getNachname()
 {
 return nachname;
 }

 public void print()
 {
 System.out.println (nachname + ", " + vorname);
 }
}

// Datei: Student5.java

public class Student5 extends Person5
{
 private int matrikelnummer;

 public Student5 (String nachname, String vorname,
 int matrikelnummer)
 {

Vererbung und Polymorphie 397

 super (nachname, vorname);
 this.matrikelnummer = matrikelnummer;
 }
 // weitere studentenspezifische Methoden
}

// Datei: Utility.java

public class Utility
{
 public static void sortByName (Person5[] ref)
 {
 int obergrenze = ref.length;

 while (obergrenze > 1)
 {
 for (int i = 1; i < obergrenze; i++)
 {
 String a = ref [i].getNachname();
 String b = ref [i - 1].getNachname();
 if(a.compareTo(b) < 0)
 swap (ref, i, i - 1);
 }
 obergrenze--;
 }
 }

 public static void swap (Person5[] ref, int index1, int index2)
 {
 Person5 tmp = ref [index1];
 ref [index1] = ref [index2];
 ref [index2] = tmp;
 }

 public static void print (Person5[] ref)
 {
 for (int i = 0; i < ref.length; i++)
 {
 ref [i].print();
 }
 }
}

// Datei: Test5.java

public class Test5
{
 public static void main (String[] args)
 {
 // Sortieren von Personen
 Person5[] refPersonen = new Person5 [3];
 refPersonen [0] = new Person5 ("Müller", "Max");
 refPersonen [1] = new Person5 ("Auer", "Ulrike");
 refPersonen [2] = new Person5 ("Zink", "Mareike");
 Utility.sortByName (refPersonen);
 System.out.println ("Sortiertes Array mit Personen:");
 Utility.print (refPersonen);

398 Kapitel 11

 // Sortieren von Studenten
 Student5[] refStudenten = new Student5[3];
 refStudenten [0] = new Student5 ("Wunder", "Emanuel", 14567);
 refStudenten [1] = new Student5 ("Maier", "Sabrina", 14568);
 refStudenten [2] = new Student5 ("Binder", "Katharina",14569);
 Utility.sortByName (refStudenten);
 System.out.println ("\nSortiertes Array mit Studenten:");
 Utility.print (refStudenten);
 }
}

Die Ausgabe des Programms ist:

Sortiertes Array mit Personen:
Auer, Ulrike
Müller, Max
Zink, Mareike

Sortiertes Array mit Studenten:
Binder, Katharina
Maier, Sabrina
Wunder, Emanuel

In der Klasse Utility wird nur die Vaterklasse Person5 verwendet. Trotzdem
kann der komplette Programmcode der Klasse Utility auch für Objekte der Klasse
Student5 verwendet werden, da sich ein Student auch wie eine Person verhalten
kann. Die Wiederverwendung kompletter Programmsysteme (im Beispiel die Klasse
Utility) ist deutlich mehr als nur die Wiederverwendung von Klassen im Rahmen der
Vererbung oder die Wiederverwendung von Klassen im Falle der Aggregation. Dass
ganze Klassenbibliotheken infolge der Polymorphie wiederverwendet werden kön-
nen, macht den eigentlichen Erfolg der Objektorientierung aus. Barbara Liskov [23]
hat sich im Jahre 1988 mit der Polymorphie und Wiederverwendung befasst. Sie for-
mulierte

Was gebraucht wird, ist etwas wie das folgende Substitutionsprinzip:

Wenn es für jedes Objekt o1 vom Typ T ein Objekt o2 vom Typ S gibt,
sodass für alle Programme P, die auf der Basis des Typs S definiert
wurden, das Verhalten von P unverändert bleibt, wenn o1 für o2 ein-
gesetzt wird, dann stellt T einen Subtyp von S dar.

Mit dem Ziel der Wiederverwendung eines Programmcodes P, der für eine Basisklas-
se S geschrieben wurde, lässt sich das Liskov Substitution Principle formulieren zu:

Liskov Substitution Principle im Falle der Erweiterung:

Im Falle der Erweiterung kann ein Objekt einer abgeleiteten Klasse
problemlos an die Stelle eines Objektes einer Basisklasse treten.

Als Beispiel hierfür wurden Objekte der Klasse Student betrachtet. Ein Student ist
eine Person. Deshalb kann ein Objekt der Klasse Student auch überall dort stehen,
wo ein Objekt der Klasse Person verlangt wird. Umgekehrt ist nicht jede Person ein

Vererbung und Polymorphie 399

Student. Daher kann ein Objekt der Klasse Person im Programm nicht überall dort
stehen, wo ein Objekt der Klasse Student steht. Quellcode, der für eine Basisklasse
geschrieben wurde, kann im Falle der Erweiterung also von jeder beliebigen abgelei-
teten Klasse benutzt werden.

Die Polymorphie erlaubt es, gegebenenfalls große Mengen von gene-
ralisiertem Code für Basisklassen zu schreiben, der dann später von
Objekten beliebiger abgeleiteter Klassen benutzt werden kann. Dabei
ist natürlich beim Schreiben des Codes für die Basisklasse überhaupt
nicht bekannt, welche Klassen zu späteren Zeitpunkten von der Basis-
klasse abgeleitet werden.

11.4.2 Polymorphes Verhalten beim Überschreiben

Etwas diffiziler wird es, wenn das Überschreiben von Methoden ins Spiel kommt.
Hier ist das Liskov Substitution Principle nicht mehr selbstverständlich gegeben. Der
Programmierer muss hierfür selbst etwas tun! Er muss dafür sorgen, dass die Client-
Programme, wie im vorherigen Beispiel die Klasse Utility, welche mit Referenzen
auf Objekte einer Basisklasse arbeiten, keine Schwierigkeiten bekommen, wenn an
die Stelle eines Objektes einer Basisklasse plötzlich ein Objekt einer abgeleiteten
Klasse tritt.

Liskov Substitution Principle im Falle des Überschreibens:

Im Falle des Überschreibens muss der Programmierer selbst dafür
sorgen, dass ein Objekt einer abgeleiteten Klasse an die Stelle eines
Objektes einer Basisklasse treten darf. Er muss hierfür beim Über-
schreiben die Einhaltung der Verträge der Basisklasse gewährleisten.

Auf Verträge wird in Kapitel 11.5 eingegangen. Werden Instanzmethoden in einer
Sohnklasse überschrieben, so tritt die überschreibende Instanzmethode an die Stelle
der überschriebenen Methode.

Im Folgenden wird ein etwas umfangreicheres Beispiel vorgestellt, in dem gezeigt
wird, wie eine abgeleitete Klasse den Code, der für eine Basisklasse geschrieben
wurde, benutzen kann. Es soll eine kleine Bibliothek erstellt werden, die Klassen für
ein Waren-Management-System enthält. Je nachdem, welche Waren verwaltet wer-
den müssen (Lebensmittel, Drogeriewaren, etc.) können spezialisierte Unterklassen
gebildet werden, die von den bestehenden Klassen in der Bibliothek abgeleitet wer-
den. Als erstes wird die Klasse Ware vorgestellt. Die Klasse Ware hat die Instanz-
variablen nummer (eindeutige Nummer für einen Warentyp), name (Bezeichnung für
eine Ware), preis und anzahl (womit die zur Verfügung stehende Menge der Ware
gemeint ist). Zusätzlich ist noch eine Klassenvariable aktuelleNummer vorhanden,
die zum eindeutigen Durchnummerieren der Warentypen benutzt werden soll. Die
Methode print() ist fett hervorgehoben, da diese später in der Sohnklasse Milch
überschrieben wird.

400 Kapitel 11

// Datei: Ware.java

public class Ware
{
 protected int nummer;
 protected String name;
 protected float preis;
 protected int anzahl;
 protected static int aktuelleNummer = 0;

 public Ware (String name, float preis)
 {
 nummer = aktuelleNummer++;
 this.name = name;
 this.preis = preis;
 anzahl = 0;
 }

 public int getNummer()
 {
 return nummer;
 }

 public void stueckzahlErhoehen (int anzahl)
 {
 this.anzahl += anzahl;
 }

 public int getAnzahl()
 {
 return anzahl;
 }

 public void print()
 {
 System.out.print ("ID: " + nummer + " Bezeichnung: " + name +
 " Anzahl: " + anzahl);
 }
}

Die folgende Klasse Warenlager stellt eine Methode aufnehmen() zur Verfügung,
die es erlaubt, neue Waren ins Lager aufzunehmen oder bereits im Lager vorhan-
dene Artikel nachzufüllen. Als Übergabeparameter erwartet diese Methode eine
Referenz auf ein Objekt vom Typ Ware. Die Methode ausgeben() ermöglicht die
Ausgabe des gesamten Lagerinhalts auf dem Bildschirm. Fett hervorgehoben sind
hier einige Programmzeilen, in denen der Typ Ware verwendet wird.

// Datei: Warenlager.java

public class Warenlager
{
 protected Ware[] arr;
 public Warenlager (int max)
 {
 arr = new Ware [max];
 }

Vererbung und Polymorphie 401

 // Die Methode aufnehmen() kann neue, noch nicht im Lager enthal-
 // tene Waren aufnehmen. Zu einer schon im Lager befindlichen Wa-
 // re wird die Anzahl der vorhandenen Exemplare erhöht. Das Array
 // wird beginnend vom Index 0 ab gefüllt. Die freien Array-Ele-
 // mente enthalten die null-Referenz. Wird die Ware erfolgreich
 // aufgenommen, wird der Wert 1, ansonsten -1 zurückgegeben.
 public int aufnehmen (Ware neueWare, int anzahl)
 {
 for (Ware ware : arr) // Prüfen, ob Ware schon vorhanden.
 {
 if((ware!=null)&& (ware.getNummer()==neueWare.getNummer()))
 {
 ware.stueckzahlErhoehen (anzahl);
 return 1;
 }
 }

 if (arr [arr.length - 1] != null) // Warenlager voll!
 return -1;

 for (int i = 0; i < arr.length; i++)
 {
 if (arr [i] == null) // Erstes freies Feld gefunden - die
 { // Ware ist somit noch nicht vorhanden
 arr [i] = neueWare;
 arr [i].stueckzahlErhoehen (anzahl);
 break;
 }
 }
 return 1;
 }

 public void ausgeben()
 {
 for (Ware ware : arr)
 {
 if (ware == null) break;
 ware.print();
 System.out.println();
 }
 }
}

Die soeben gezeigten Klassen könnten jetzt in einer Bibliothek zur Verfügung gestellt
werden und durch gezielte Ableitung an einen speziellen Problembereich angepasst
werden. Für einen Milchlieferanten gibt es zum Beispiel eine Klasse Milch und eine
Klasse Joghurt, die von der Klasse Ware abgeleitet sind. Für einen Lieferanten von
Drogeriewaren sind dagegen ganz andere Klassen von Bedeutung. Exemplarisch
wird hier eine von der Klasse Ware abgeleitete Klasse Milch gezeigt:

// Datei: Milch.java

import java.util.GregorianCalendar;

public class Milch extends Ware
{

402 Kapitel 11

 private String typ;

 // Die Klasse GregorianCalendar aus dem Paket java.util
 // ermöglicht die Speicherung und Bearbeitung von Datumswerten!
 private GregorianCalendar verfallsDatum;
 private double maxLagerTemperatur;

 public Milch (String typ, float preis,
 GregorianCalendar verfallsDatum, double maxTemp)
 {
 super ("Milch", preis);
 this.typ = typ;
 this.verfallsDatum = verfallsDatum;
 this.maxLagerTemperatur = maxTemp;
 }

 // Überschreiben der print()-Methode der Klasse Ware
 public void print()
 {
 super.print();
 System.out.print (" Typ: " + typ);
 }
 // weitere spezifische Methoden für die Klasse Milch!
}

Objekte der Klasse Milch können an die Methode aufnehmen() der Klasse Wa-
renlager übergeben werden. Dies funktioniert aus dem Grund, weil die Klasse
Milch eine Spezialisierung der Klasse Ware darstellt und die Klasse WarenLager
auf Referenzen auf Objekte der Klasse Ware arbeitet. Das folgende Testprogramm
zeigt, wie sich Objekte der Klasse Milch als Objekte der Klasse Ware verhalten und
durch diese Eigenschaft den gesamten Code der Klasse Warenlager mitbenutzen
können:

// Datei: Test8.java

import java.util.GregorianCalendar;

public class Test8
{
 public static void main (String[] args)
 {
 final int anzahl1 = 50;
 final int anzahl2 = 200;
 final int anzahl3 = 300;
 final int anzahl4 = 500;
 final int anzahl5 = 1000;

 // Erzeugen eines Warenlagers für 4 verschiedene Warengruppen.
 Warenlager lager = new Warenlager (4);
 // Die Klasse java.util.GregorienCalendar ermöglicht die
 // Speicherung und Bearbeitung von Datumswerten.
 // Der erste Parameter gibt das Jahr an, der zweite Parameter
 // den Monat und der dritte den Tag.
 GregorianCalendar date = new GregorianCalendar (1, 5, 5);

Vererbung und Polymorphie 403

 System.out.println ("Mit dem Einlagern wird begonnen");
 Milch milch = new Milch ("Fettarme Milch", 0.6f, date, 7.0);
 if (lager.aufnehmen (milch, anzahl4) < 0)
 System.out.println ("Lager voll");
 else
 System.out.println(anzahl4 +" Fettarme Milch eingelagert");

 if(lager.aufnehmen (new Milch ("Frischmilch", 0.8f, date, 6.0)
 , anzahl5) < 0)
 System.out.println ("Lager voll");
 else
 System.out.println (anzahl5 + " Frischmilch eingelagert");

 if (lager.aufnehmen (new Milch ("H-Milch", 0.5f, date, 7.5)
 , anzahl4) < 0)
 System.out.println ("Lager voll");
 else
 System.out.println (anzahl4 + " H-Milch eingelagert");

 if (lager.aufnehmen (milch, anzahl3) < 0)
 System.out.println ("Lager voll");
 else
 System.out.println(anzahl3 +" Fettarme Milch eingelagert");

 if (lager.aufnehmen (new Milch ("Dosenmilch", 8.8f, date, 18)
 , anzahl2) < 0)
 System.out.println ("Lager voll");
 else
 System.out.println (anzahl2 + " Dosenmilch eingelagert");

 if (lager.aufnehmen (new Milch ("Kakao", 9.9f, date, 18)
 , anzahl1) < 0)
 System.out.println ("Lager voll");
 else
 System.out.println (anzahl1 + " Kakao eingelagert");

 System.out.println ("\nDer Gesamtbestand des Lagers ist");
 lager.ausgeben();
 }
}

Die Ausgabe des Programms ist:

Mit dem Einlagern wird begonnen
500 Fettarme Milch eingelagert
1000 Frischmilch eingelagert
500 H-Milch eingelagert
300 Fettarme Milch eingelagert
200 Dosenmilch eingelagert
Lager voll

Der Gesamtbestand des Lagers ist
ID: 0 Bezeichnung: Milch Anzahl: 800 Typ: Fettarme Milch
ID: 1 Bezeichnung: Milch Anzahl: 1000 Typ: Frischmilch
ID: 2 Bezeichnung: Milch Anzahl: 500 Typ: H-Milch
ID: 3 Bezeichnung: Milch Anzahl: 200 Typ: Dosenmilch

404 Kapitel 11

Das Besondere ist nun, dass innerhalb der Methode ausgeben() der Klasse Wa-
renlager ein Array vom Typ Ware durchlaufen und für jedes Objekt in diesem
Array die print()-Methode aufgerufen wird. Hierbei wird immer die überschriebene
Methode der Klasse Milch aufgerufen, auch wenn die Referenzen, welche auf diese
Objekte zeigen, vom Typ Ware sind. Dies hat seine Ursache in der dynamischen
Bindung (siehe Kap. 11.4.3).

Hier noch ein weiteres Beispiel für ein polymorphes Verhalten beim Überschreiben:

Nach dem Liskov Substitution Principle kann eine Referenz auf ein Objekt einer
Superklasse stets auch auf ein Objekt einer Subklasse zeigen, wenn der Pro-
grammierer die Verträge der Methoden beim Überschreiben einhält. Geht man von
der in Bild 11-21 gezeigten Vererbungshierarchie aus, so können in einem Array aus
Referenzen auf Objekte der Klasse Object auch Referenzen auf Objekte der Klas-
sen X, A, B, C und D gespeichert werden. Weiterhin können in einem Array aus
Referenzen auf Objekte der Klasse A außer Referenzen auf Objekte der Klasse A
auch Referenzen auf Objekte der Klasse B, C und D hinterlegt werden.

 Object

A X

D

B C

Bild 11-21 Vererbungshierarchie zur Veranschaulichung des Liskov Substitution Principles

Das folgende Beispiel veranschaulicht dies für ein Array aus Referenzen auf Objekte
der Klasse Person6. Da ein Student eine Person ist, können in diesem Array auch
Referenzen auf Objekte der Klasse Student6 gespeichert werden, weil beim Über-
schreiben der Methode print() keine Vertragsverletzung erfolgt. Die Methode
print() gibt für das jeweilige Objekt die entsprechenden Daten aus. Handelt es
sich um ein Objekt der Klasse Person6, wird die print()-Methode der Klasse
Person6 aufgerufen, handelt es sich um ein Objekt der Klasse Student6, wird die
überschreibende print()-Methode der Klasse Student6 aufgerufen.

Vererbung und Polymorphie 405

// Datei: Person6.java

public class Person6 // dies ist die Vaterklasse
{
 private String nachname; // Datenfeld nachname
 private String vorname; // Datenfeld vorname

 public Person6 (String nachname, String vorname)
 {
 this.nachname = nachname;
 this.vorname = vorname;
 }

 public void print()
 {
 System.out.println ("Nachname: " + nachname);
 System.out.println ("Vorname: " + vorname);
 }
}

// Datei: Student6.java

public class Student6 extends Person6 // dies ist die Sohnklasse
{
 private int matrikelnummer;

 public Student6 (String nachname, String vorname,
 int matrikelnummer)
 {
 super (nachname, vorname);
 this.matrikelnummer = matrikelnummer;
 }

 public void print()
 {
 super.print();
 System.out.println ("Matrikelnummer: " + matrikelnummer);
 }
}

// Datei: Test6.java

public class Test6
{
 public static void main (String[] args)
 {
 Person6[] pa = new Person6 [3];
 pa [0] = new Person6 ("Brang", "Rainer");
 pa [1] = new Student6 ("Müller", "Peter", 123456);
 pa [2] = new Person6 ("Mayer", "Carl");
 for (Person6 person : pa)
 {
 person.print();
 System.out.println ("");
 }
 }
}

406 Kapitel 11

 Die Ausgabe des Programms ist:

Nachname: Brang
Vorname: Rainer

Nachname: Müller
Vorname: Peter
Matrikelnummer: 123456

Nachname: Mayer
Vorname: Carl

Betrachtet man die Ausgabe des Programms näher, so stellt man fest, dass obwohl
der zweite Aufruf der print()-Methode auf einer Referenzvariablen vom Typ Per-
son6 erfolgte, die print()-Methode der Klasse Student6 aufgerufen wurde. Die-
ses Verhalten ist vielleicht auf den ersten Blick etwas überraschend. Mit etwas Über-
legung erkennt man jedoch den Grund dafür. Wenn z. B. unterschiedliche Objekte,
die eine gemeinsame Basisklasse haben, von einem Array aus Referenzen aus refe-
renziert werden sollen, so ist von außen nicht erkennbar, auf welche Objekte die im
Array hinterlegten Referenzen im einzelnen zeigen. Wenn man jedoch über die in
dem Array gespeicherten Referenzen eine Methode aufruft, die in den abgeleiteten
Klassen und ihrer Basisklasse verschieden definiert ist, so muss gewährleistet sein,
dass die für die Klasse des vorliegenden Objektes implementierte Methode aufge-
rufen wird, auch wenn man gar nicht weiß, von welchem Typ das Objekt eigentlich
ist.

Damit beim Überschreiben von Methoden – wie erwartet – die überschreibende
Methode eines Objektes der abgeleiteten Klasse aufgerufen werden kann, benötigt
man den Mechanismus der dynamischen Bindung.

11.4.3 Statische und dynamische Bindung von Methoden

Unter dem Begriff der Bindung versteht man die Zuordnung eines Methodenrumpfes
zu einem aufgerufenen Methodenkopf. Wird eine Methode über ihren Namen aufge-
rufen, so ist der entsprechende Programmcode der Methode – das heißt der Metho-
denrumpf – auszuführen.

Methodenrumpf

Methodenkopf

Bild 11-22 Zuordnung des Methodenrumpfs zum Methodenkopf

In der Objektorientierung kommen zwei prinzipiell verschiedene Arten des Bindens
von Methoden in Programmen vor. Es gibt die frühe Bindung und die späte Bin-

Vererbung und Polymorphie 407

dung. Statt früher Bindung ist auch der Begriff statische Bindung üblich, und
genauso anstelle von später Bindung der Begriff dynamische Bindung.

Bei der frühen Bindung kann einem Methodenaufruf schon zum
Kompilierzeitpunkt der entsprechende Methodenrumpf zugeordnet
werden. Bei der späten Bindung wird dagegen einem Methodenauf-
ruf erst zur Laufzeit der entsprechende Methodenrumpf zugeord-
net.

Bindung

statisch == früh == zur Kompilierzeit dynamisch == spät == zur Laufzeit

Tabelle 11-1 Die beiden Bindungsarten

In Java hat man keinen direkten Einfluss darauf, ob spät oder früh
gebunden wird. Java verwendet in der Regel die späte Bindung, in
wenigen spezifizierten Ausnahmefällen jedoch die frühe Bindung.

Wie schon bekannt, kann an jeder Stelle eines Programms, bei der ein Objekt einer
Basisklasse verlangt wird, auch ein Objekt einer Klasse stehen, die von der Basis-
klasse abgeleitet wurde. Wird eine Instanzmethode aufgerufen, so wird stets –
wenn die Methode weder final noch private ist – die Methode des Objektes auf-
gerufen, auf das die Referenz zeigt. Zeigt die Referenz vom Typ einer Basisklasse
auf ein Objekt vom Typ einer Subklasse, so wird im Falle des Überschreibens die
überschreibende Methode aufgerufen.

Ist eine Methode static, handelt es sich um eine Klassenmethode, also eine
Methode, die exakt zu einer Klasse gehört. Da sie direkt zu einer Klasse gehört,
macht das im Beispiel erwähnte Verhalten für sie keinen Sinn, da es gar keine
Auswahl gibt. Es ist eindeutig, welche Methode aufgerufen werden muss. Wird nun
eine Klassenmethode über eine Referenz auf ein Objekt oder über den Klassen-
namen aufgerufen, so wird dieser Aufruf vom Compiler direkt an die Klasse, von
deren Typ die Referenz ist bzw. deren Klassennamen angegeben wird, gebunden.
Man sagt auch, sie wird statisch gebunden. Der Compiler weiß, welche Methode er
aufrufen muss.

Im nächsten Beispiel ist die Methode print() der Klassen Vater4 und Sohn4
static. Wie oben schon beschrieben, werden Aufrufe von Klassenmethoden sta-
tisch gebunden. Dies bedeutet, dass in beiden Fällen die Klassenmethode direkt auf-
gerufen wird.

// Datei: Vater4.java

public class Vater4
{
 public static void print()
 {
 System.out.println ("static print()-Methode des Vaters");
 }
}

408 Kapitel 11

// Datei: Sohn4.java

public class Sohn4 extends Vater4
{
 public static void print()
 {
 System.out.println ("static print()-Methode des Sohns");
 }
}

// Datei: Test9.java

public class Test9
{
 public static void main (String[] args)
 {
 Sohn4 s = new Sohn4();
 System.out.print ("s.print(): ");
 s.print();
 System.out.print ("Sohn4.print(): ");
 Sohn4.print();

 Vater4 v = s; // Impliziter Cast auf den Vater
 System.out.print ("v.print(): ");
 v.print();
 System.out.print ("Vater4.print(): ");
 Vater4.print();
 }
}

Die Ausgabe des Programms ist:

s.print(): static print()-Methode des Sohns
Sohn4.print(): static print()-Methode des Sohns
v.print(): static print()-Methode des Vaters
Vater4.print(): static print()-Methode des Vaters

Bei Instanzmethoden bestimmt der Typ des Objektes – und nicht der
Typ der Referenz – welche Instanzmethode der Klassenhierarchie
aufgerufen wird.

Bei Klassenmethoden bestimmt der Typ der Referenz bzw. der Klas-
senname, welche Klassenmethode der Klassenhierarchie aufgerufen
wird.

Ist eine Methode private, handelt es sich um eine Methode, die nur innerhalb der
Klasse sichtbar ist, in der sie definiert wird. Wird von einer Klasse abgeleitet, so wer-
den Methoden, die private sind, zwar an die Sohnklasse weitervererbt, es kann
aber nicht innerhalb des Sohnes darauf zugegriffen werden. Da die Methode außer-
halb der Klasse, in der sie definiert wurde, zu keiner Zeit sichtbar ist, kann ein Aufruf
der Methode nur innerhalb der Klasse erfolgen, in der sie definiert wurde. Für den

Vererbung und Polymorphie 409

Compiler ist es also bereits zur Zeit der Übersetzung des Quellcodes klar, dass er
den Aufruf einer mit private gekennzeichneten Methode statisch zur aktuellen
Klasse binden kann. Methoden, die private sind, werden also auch wie Klassen-
methoden früh gebunden.

Ist eine Methode mit dem Schlüsselwort final gekennzeichnet, so kann sie
niemals von einer abgeleiteten Klasse überschrieben werden. Wird nun eine Metho-
de, die mit final gekennzeichnet ist, aufgerufen, so kann ein Compiler feststellen,
zu welcher Klasse die Methode tatsächlich gehört. Der Methodenaufruf kann wie
zuvor schon bei private- oder static-Methoden früh gebunden werden.

Bei allen anderen Methoden kann der Compiler – da jede Referenz vom Typ einer
Basisklasse auch auf ein Objekt einer abgeleiteten Klasse zeigen kann – nicht
wissen, in welcher Klasse er eine Methode aufrufen muss. Es ist folglich die Aufgabe
des Interpreters, zur Laufzeit festzustellen, von welchem Typ ein Objekt ist, und
daraufhin die entsprechende Methode aufzurufen. Man sagt auch, dass die Methode
dynamisch oder spät gebunden wird.

Methoden, die private, static oder final sind, können vom
Compiler statisch oder früh gebunden werden. Alle anderen Metho-
den werden dynamisch oder spät gebunden.

11.5 Verträge

Entwurf durch Verträge (engl. Design by Contract) wurde von Bertrand Meyer,
dem Entwickler der Programmiersprache Eiffel, als Entwurfstechnik eingeführt. Diese
Technik wurde im Falle von Eiffel in einer konkreten Programmiersprache umgesetzt,
stellt aber ein allgemeingültiges Prinzip dar, das beim objektorientierten Entwurf un-
abhängig von der jeweiligen objektorientierten Programmiersprache eingesetzt wer-
den kann.

Eine Klasse besteht nicht nur aus Methoden und Datenfeldern – eine Klasse wird
benutzt von anderen Klassen, hier Kunden genannt, und hat damit Beziehungen zu
all ihren Kunden. Das Konzept "Design by Contract" sieht diese Beziehungen als
eine formale Übereinkunft zwischen den beteiligten Partnern an und definiert präzise,
unter welchen Umständen ein korrekter Ablauf des Programms erfolgt.

Worum es hier vor allem geht, ist, dass sich beim Aufruf einer Methode der Auf-
rufer und die aufgerufene Methode gegenseitig aufeinander verlassen können.
Die Beziehung zwischen Aufrufer und aufgerufener Methode kann man formal als
einen Vertrag einer Methode bezeichnen, der nicht gebrochen werden darf, da
ansonsten eine Fehlersituation entsteht. Bei einem Vertrag haben in der Regel beide
Seiten Rechte und Pflichten. So wie im Alltag ein Vertrag die Beziehungen zwi-
schen Vertragsparteien (Personen, Organisationen) regelt, beschreibt ein Vorbe-
dingungs-Nachbedingungs-Paar den Vertrag einer Methode mit ihrem Kunden,
dem Aufrufer.

410 Kapitel 11

Solange bei der Ableitung von einer Basisklasse der Vertrag der Basisklasse in einer
Unterklasse nicht gebrochen wird, ist es möglich, den für die Basisklasse geschrie-
benen Code auch für die Unterklassen, die eventuell erst später erfunden werden, zu
verwenden.

Kann in einem Programm die Aufrufschnittstelle einer abgeleiteten
Klasse anstelle der Aufrufschnittstelle der Basisklasse verwendet wer-
den, da der Vertrag der Basisklasse nicht verletzt wird, so kann im
Quellcode ein Objekt der abgeleiteten Klasse an die Stelle eines
Objektes der Basisklasse treten. Eine Zusatzaufrufschnittstelle der ab-
geleiteten Klasse wird nicht angesprochen.

Objekt der
abgeleiteten
Klasse

Client-
Objekt

Objekt der Basisklasse

überschreibende
Methode

überschriebene
Methode

Bild 11-23 Liskov Substitution Principle

Das Client-Objekt bemerkt den "Objekt-Tausch" nicht, solange der Vertrag nicht ge-
brochen wird.

11.5.1 Zusicherungen

Allgemein werden nach Bertrand Meyer Verträge spezifiziert durch so genannte
Zusicherungen. Eine Zusicherung ist ein Boolescher Ausdruck, der niemals falsch
werden darf.

Entwurf durch Verträge verwendet drei verschiedene Arten von Zu-
sicherungen:

• Vorbedingungen,
• Nachbedingungen
• und Invarianten.

Betrachtet werde nun ein Programmcode A, welcher den Zustand eines Programms
von einem Zustand P vor der Abarbeitung seiner Anweisungen in den Zustand Q
nach der Ausführung seiner Anweisungen überführt. Ein Zustand eines Programms
ist dabei gegeben durch die aktuellen Werte aller Variablen zu einem bestimmten
Zeitpunkt. Stellt P eine Vorbedingung dar, was bedeutet, dass die aktuellen Daten-
werte einen korrekten Ablauf des Programmcodes A ermöglichen, so ist der Pro-

Vererbung und Polymorphie 411

grammcode A korrekt, wenn der Zustand Q der Spezifikation entspricht. Dieser Um-
stand kann auch formal über das Hoare-Kalkül

{P} A {Q} (Hoare-Tripel)

ausgedrückt werden. Hierbei ist P die Vorbedingung, A die auszuführende Anwei-
sung bzw. der auszuführende Programmcode und Q die so genannte Nachbe-
dingung, d. h. der korrekte Zustand nach der Ausführung von A. Wenn die Vorbe-
dingung P erfüllt ist, dann muss A in einen Zustand terminieren, der Q entspricht.
Dann und nur dann ist A korrekt.

Der Vertrag einer Methode umfasst die Vor- und Nachbedingungen
einer Methode.

Eine Vorbedingung P (Precondition) stellt die Einschränkungen dar, unter denen
eine Methode korrekt funktioniert. So darf beispielsweise eine Methode push(), die
ein Element auf einem Stack ablegt, nicht aufgerufen werden, wenn der Stack voll
ist, genauso wenig wie eine Methode pop(), die ein Element von einem Stack abho-
len soll, aufgerufen werden darf, wenn kein Element mehr auf dem Stack ist.

Eine Vorbedingung stellt eine Pflicht für einen Aufrufer dar, sei es, dass der Aufruf
innerhalb der eigenen Klasse erfolgt oder von einem Kunden. Ein korrekt arbeitendes
System führt nie einen Aufruf in einem Zustand durch, der nicht die Vorbedingung
der gerufenen Methode erfüllen kann. Eine Vorbedingung bindet also einen Aufrufer.
Die Vorbedingung definiert die Bedingungen, unter denen ein Aufruf zulässig ist.
Sie stellt eine Pflicht für den Aufrufer dar und einen Nutzen für den Aufgeru-
fenen. Ist die Vorbedingung verletzt, so ist der Aufgerufene nicht an die Nachbeding-
ung gebunden und kann machen, was er will. Zum Beispiel kann die Verletzung der
Vorbedingung einen Programmabsturz verursachen.

Eine Nachbedingung Q (Postcondition) stellt den korrekten Zustand nach dem
Aufruf einer Methode dar. So kann nach dem Aufruf von push() der Stack nicht leer
sein und die Zahl der Elemente auf dem Stack muss um 1 höher sein als vor dem
Aufruf der Methode. Umgekehrt kann nach dem Aufruf von pop() der Stack leer
sein, wobei die Zahl der Elemente auf dem Stack um 1 geringer sein muss als vor
dem Aufruf.

Eine Nachbedingung bindet eine Methode einer Klasse. Die Nachbedingung stellt die
Bedingungen dar, die von der Methode eingehalten werden müssen. Die Nachbe-
dingung ist eine Pflicht für den Aufgerufenen und ein Nutzen für den Aufrufer.
Mit der Nachbedingung wird garantiert, dass der Aufrufer nach Ausführung der Me-
thode einen Zustand mit korrekten Eigenschaften vorfindet, natürlich immer unter der
Voraussetzung, dass beim Aufruf der Methode die Vorbedingung erfüllt war.

Wichtig ist, dass kein redundanter Code geschrieben wird. Das wäre zu fehlerträchtig
und außerdem nicht performant. Es gilt somit das single source-Prinzip. Die Vorbe-
dingung muss stets vom Aufrufer geprüft werden und keinesfalls vom Aufgerufenen.
Umgekehrt muss die Einhaltung der Nachbedingung stets vom Aufgerufenen über-
wacht werden. Der Aufrufer darf die Prüfung der Nachbedingung nicht durchführen.

412 Kapitel 11

Wie bei einem guten Vertrag im täglichen Leben haben also Aufrufer
und Aufgerufener Pflichten und Vorteile. Der Aufrufer hat die Pflicht,
den Aufgerufenen korrekt aufzurufen. Damit hat der Aufgerufene den
Vorteil, dass er in einer korrekten Umgebung abläuft.

Der Aufgerufene wiederum hat die Pflicht, korrekte Werte zurückzu-
geben. Diese Pflicht des Aufgerufenen ist der Vorteil des Aufrufers, da
er korrekte Werte erhält.

Invarianten beziehen sich nicht auf eine einzelne Methode. Invarianten beziehen
sich immer auf das gesamte Objekt. Eine Invariante muss also für jedes einzelne
Objekt erfüllt sein, damit ein System korrekt arbeitet oder in einem korrekten Zustand
ist.

Da die Invarianten von allen Methoden einer Klasse, die von einem
Kunden aufgerufen werden können, eingehalten werden müssen, um
die Korrektheit zu gewährleisten, spricht man auch von Klassenin-
varianten.

Eine Invariante ist eine Zusicherung bezüglich einer Klasse. Es soll dazu eine Klas-
se Polygon betrachtet werden. Ein Polygon besteht aus mindestens drei Eckpunk-
ten, die mit geraden Linien verbunden sind. Somit besitzt die Klasse Polygon die
Klasseninvariante, dass die Anzahl der aggregierten Punkte – die Punkte können
beispielsweise durch die Klasse Punkt repräsentiert werden – mindestens drei
betragen muss, damit ein Körper ein Polygon ist. Diese Eigenschaft gilt für die ge-
samte Klasse und nicht individuell nur für eine einzelne Methode. Sie ist damit eine
Klasseneigenschaft im Gegensatz zu Vor- und Nachbedingungen, die einzelne Me-
thoden charakterisieren.

Eine Invariante muss gelten vor Aufruf einer Methode und nach dem Aufruf einer
Methode durch einen Kunden. Eine Invariante kann temporär verletzt werden wäh-
rend der Ausführung einer Methode oder beim Aufruf von Service-Methoden, die
nicht außerhalb der Klasse sichtbar sind – also nicht exportiert werden. Dies stellt
kein Problem dar, da die Invariante dem Kunden erst nach Ausführung einer expor-
tierten Methode wieder zur Verfügung steht. Nach Ausführung einer exportierten
Methode muss die Klasseninvariante wieder eingehalten sein. So hat zum Beispiel
eine Klasse Quadrat – die Quadrate auf dem Bildschirm zeichnen, verschieben,
drehen und skalieren kann – die Invariante, dass vor und nach dem Aufruf einer der
Methoden zeichne(), verschiebe(), drehe() und skaliere() alle Seiten des
Quadrats gleich lang sind und jeder Winkel ein rechter Winkel ist. Innerhalb der
Methode verschiebe() kann aber temporär erst ein Teil der Eckpunkte verscho-
ben sein, sodass temporär gar kein Quadrat vorliegt.

Eine Klasseninvariante muss vor und nach dem Aufruf einer nach
außen sichtbaren Methode eingehalten sein.

Vererbung und Polymorphie 413

Werden Methoden intern aufgerufen, wird eine Invariante nicht geprüft. Wenn Metho-
den von außen aufgerufen werden, wird in der Regel die Invariante überprüft, um
sich der Korrektheit zu vergewissern.

Der Vertrag einer Klasse umfasst die Verträge der Methoden und die
Invarianten. Werden verschiedenen Kunden einer Klasse jedoch ver-
schiedene Leistungen der Klasse zur Verfügung gestellt, so ordnet
man die Verträge der Methoden in verschiedene Verträge der Klasse
jeweils mit dem entsprechenden Kunden ein.

11.5.2 Einhalten der Verträge bei der Vererbung

Leitet wie in Bild 11-24 gezeigt eine Klasse B von einer Klasse A ab, so müssen beim
Überschreiben der Methoden bestimmte Regeln eingehalten werden. Die abgeleitete
Klasse muss auch die Invarianten ihrer Basisklasse beachten. Auch hierfür gelten
Regeln, die in den folgenden zwei Kapiteln vorgestellt werden.

11.5.2.1 Regeln für das Einhalten der Methodenverträge

Beim Überschreiben von Methoden dürfen die Verträge nicht gebrochen werden.
Überschreibende Methoden dürfen die Vorbedingung der überschriebenen Methode
nur aufweichen und nicht verschärfen, da sonst ein Aufrufer damit nicht fertig werden
würde.

Überschreibende Methoden dürfen Nachbedingungen nur verschärfen, da mit
aufgeweichten Nachbedingungen ein Aufrufer nicht leben könnte.

Im Folgenden soll die Vererbungshierarchie aus Bild 11-24 betrachtet werden:

 A

g()

B

g()

Bild 11-24 Überschreiben der Methode g()

Die Klasse B sei von der Klasse A abgeleitet und soll die Methode g() aus A über-
schreiben. Aufrufer von g() sei eine Methode f() in einer Klasse C. Die Methode
f() soll die folgende Aufrufschnittstelle besitzen: f (A a). Mit anderen Worten: an
f() kann eine Referenz auf ein Objekt der Klasse A oder eine Referenz auf ein
Objekt der abgeleiteten Klasse B übergeben werden.

414 Kapitel 11

: B oder :A

Zur Laufzeit

void f (A a)
{
 . . .
 ergebnis = a.g();
 . . .
}

Bild 11-25 Eine Methode f() akzeptiert Referenzen auf Objekte vom Typ A und Typ B

Der Kunde f() kann zur Laufzeit nicht wissen, ob ihm eine Referenz auf ein Objekt
der Klasse A oder der Klasse B übergeben wird. Dem Kunden f() ist auf jeden Fall
nur die Klasse A bekannt und daran richtet er sich aus! Also kann f() nur den Ver-
trag der Methode g() aus A beachten. f() stellt also die Vorbedingungen für g()
aus A sicher und erwartet im Gegenzug, dass g() aus A seine Nachbedingungen
erfüllt.

Vorbedingung
g() aus A

Vorbedingung
g() aus B

f() kann diese
Vorbedingung einhalten.
f() kann aber keine
schärfere Vorbedingung
gewährleisten

f() hat kein
Problem, eine
schwächere
Vorbedingung zu
erfüllen

Bild 11-26 Aufweichen einer Vorbedingung in einer abgeleiteten Klasse

Wie im täglichen Leben auch, darf ein Vertrag übererfüllt, aber nicht verletzt werden!
Dies hat zur Konsequenz, dass g() aus B die Vorbedingungen nicht verschärfen
kann, denn darauf wäre der Kunde f() überhaupt nicht eingerichtet. g() aus B darf
aber die Vorbedingungen aufweichen, wie in Bild 11-26 gezeigt wird. Dies stellt für
f() kein Problem dar, denn aufgeweichte Vorbedingungen kann f() sowieso mühe-
los einhalten.

In entsprechender Weise liegt es auf der Hand, dass g() aus B die Nachbeding-
ungen nicht aufweichen darf, denn der Kunde f() erwartet die Ergebnisse in einem
bestimmten Bereich. Auf einen breiteren Bereich wäre der Kunde nicht eingerichtet,
was im Bild 11-27 verdeutlicht wird.

Vererbung und Polymorphie 415

Nachbedingung
g() aus B

Nachbedingung
g() aus A

f() erhält von
g() eine bessere
Qualität als
erwartet

f() verlässt sich
darauf, dass das
Ergebnis von g()
in einem gewissen
Bereich liegt und
korrekt ist

Bild 11-27 Verschärfen einer Nachbedingung in einer abgeleiteten Klasse

Eine Methode einer abgeleiteten Klasse darf:

• eine Nachbedingung nicht aufweichen, d. h. wenn eine Methode
z. B. einen Rückgabewert vom Typ int hat und garantiert, dass sie
nur Werte zwischen 1 und 10 liefert, so darf die überschreibende
Methode keine Werte außerhalb dieses Bereichs liefern.

• eine Vorbedingung nicht verschärfen, d. h. wenn eine Methode
z. B. einen formalen Parameter vom Typ int spezifiziert, und einen
gültigen Wertebereich zwischen 1 und 10 hat, so darf die über-
schreibende Methode diesen Wertebereich nicht einschränken.

11.5.2.2 Regeln für das Einhalten der Gültigkeit von Klasseninvarianten

Beim Erweitern einer Klasse muss darauf geachtet werden, dass die von ihr ableiten-
den Klassen die Gültigkeit der Klasseninvarianten der Basisklasse nicht verletzen.
Da eine Sohnklasse immer einen Vateranteil enthält, muss sichergestellt werden,
dass der Vateranteil nach wie vor korrekt arbeitet. Aus diesem Grund gilt bei der Ver-
erbung die Regel, dass sich die Invarianten einer abgeleiteten Klasse aus der Boole-
schen UND-Verknüpfung der Invarianten der Basisklasse und der in ihr definierten
Invarianten ergeben. Ein Client, der ausschließlich mit Referenzen auf Objekte der
Basisklasse arbeitet, kommt nur mit den Invarianten der Vaterklasse klar. Tritt an die
Stelle eines Objektes einer Basisklasse ein Objekt einer abgeleiteten Klasse, so darf
dieses Objekt die Invarianten der Basisklasse nicht verletzen, da der Client nicht
damit zurecht kommen würde.

Betrachten wir hierzu wieder das in Kap. 11.5.1 beschriebene Beispiel der Klasse
Polygon, dessen Invariante für die Anzahl an aggregierten Eckpunkten "mindestens
drei Punkte" lautet. Von der Klasse Polygon leitet nun die Klasse Rechteck ab.
Das Rechteck definiert nun eine Invariante für die Anzahl der aggregierten Punkte,
welche lautet: "genau vier Punkte". Mit anderen Worten, ein Objekt der Klasse
Rechteck muss genau vier Objekte vom Typ Punkt aggregieren, damit es ein
regelgerechtes Rechteck darstellt. Die Invariante des Vaters aus Client-Sicht ist
dadurch nicht verletzt. Wenn dem Client nun eine Referenz auf ein Objekt der Klasse

416 Kapitel 11

Rechteck zugewiesen wird, so kann er mit diesem Rechteck ohne Probleme ar-
beiten. Denn er weiß, dass die Klasseninvariante von Polygonen "mindestens drei
Punkte" lautet. Ein Rechteck hat genau vier Punkte, also auch mindestens drei. Die
Boolesche UND-Verknüpfung

"mindestens drei Punkte" && "genau vier Punkte"

hat den Wahrheitswert TRUE. Somit wurde die Invariante der Basisklasse Polygon
von der abgeleiteten Klasse Rechteck nicht verletzt.

Die Invarianten einer Klasse ergeben sich aus der Booleschen UND-
Verknüpfung der in ihr definierten Invarianten und der Invarianten, die
in der Vaterklasse definiert sind.

11.5.3 Klassen als Übergabetypen und Rückgabetypen

Aufweichen bedeutet im Zahlenraum einen größeren Wertebereich, Verschärfen be-
deutet im Zahlenraum einen schmäleren Wertebereich. Verschärfung bedeutet Spe-
zialisierung. Aufweichen bedeutet Generalisierung. Beim Überschreiben einer Metho-
de darf für den Typ eines Übergabeparameters eine Basisklasse gewählt werden.
Damit hat ein Kunde kein Problem, denn nach dem Liskov Substitution Principle
kann ein Objekt einer abgeleiteten Klasse stets an die Stelle eines Objektes einer
Basisklasse treten. Würde die überschreibende Methode an die Stelle der Klasse
des Übergabeparameters eine abgeleitete Klasse (Spezialisierung) setzen, so hätten
die Client-Programme Schwierigkeiten, da sie solche Objekte nicht liefern könnten.

Beim Rückgabewert kann man beim Überschreiben verschärfen, denn das macht
den Client-Programmen nichts aus. Verschärfen bedeutet Spezialisierung und Spe-
zialisierung bedeutet in der Objektorientierung die Bildung eines Subtyps durch
Ableitung. Wird in der überschreibenden Methode ein Subtyp des ursprünglichen
Typs zurückgegeben, so macht das nichts aus, denn beim Aufrufer tritt dann an die
Stelle eines Objektes der Basisklasse ein Objekt einer abgeleiteten Klasse. Und dies
ist nach dem Liskov Substitution Principle möglich.

Beim Überschreiben einer Methode dürfen die Übergabeparameter
nur durch den Typ einer Klasse ersetzt werden, die im Vererbungs-
baum weiter oben steht. Bei den Übergabeparametern ist nur eine
Generalisierung erlaubt.

Der Rückgabewert darf beim Überschreiben einer Methode nur ver-
schärft werden. Die überschreibende Methode darf nur den Typ einer
Klasse zurückgeben, die im Vererbungsbaum weiter unten steht.

11.5.4 Einhalten von Verträgen bei Rückgabewerten

Das folgende Programm greift das Beispiel des Waren-Management-Systems aus
Kapitel 11.4.2 auf. Die dort vorhandene Klasse Ware wird in Klasse Ware2 umbe-

Vererbung und Polymorphie 417

nannt und um die Methode void stueckzahlVerringern (int anzahl) zum
Auslagern von Waren erweitert. Weiterhin wird eine Klasse VerderblicheWare
von Ware2 abgeleitet. Die in Kapitel 11.4.2 vorhandene Klasse Warenlager wird in
Klasse Warenlager2 umbenannt und ebenfalls um zusätzliche Funktionen erwei-
tert. Weiterhin wird von Warenlager2 eine Klasse VerderblichesWarenlager
abgeleitet. Die Klasse Test10 dient zum Testen des neuen Waren-Management-
Systems.

Es wird nun die Situation betrachtet, dass ein Client-Programm eine Methode
methode() für ein Objekt einer Klasse1 aufruft, die in der von Klasse1 abge-
leiteten Klasse2 überschrieben wird. Der Rückgabetyp der überschreibenden Me-
thode soll ein Subtyp des Rückgabetyps der überschriebenen Methode sein.

:Client :Klasse2 methode() : Subklasse

:Client :Klasse1
methode() : Basisklasse

Bild 11-28 Subtyp als Rückgabetyp beim Überschreiben

Im folgenden Programm ist die Klasse Test10 die Client-Klasse. Die Klasse Klas-
se1 wird repräsentiert durch die Klasse Warenlager2. Die Klasse Klasse2 wird
repräsentiert durch die Klasse VerderblichesWarenlager, die von der Klasse
Warenlager2 abgeleitet wird.

 Warenlager2 Ware2

Verderbliches-
Warenlager

VerderblicheWare

Bild 11-29 Klassenhierarchie für die Implementierung

Wie aus Bild 11-29 ersichtlich ist, kann die Klasse VerderblichesWarenlager
wie Warenlager2 verderbliche und nicht verderbliche Waren enthalten, hat aber
spezielle Methoden für verderbliche Waren. Überschrieben wird in der Klasse Ver-
derblichesWarenlager die Methode entnehmen(). In der Klasse Warenla-
ger2 lautet der Methodenkopf:

Ware2 entnehmen (String warenname)

In der Klasse VerderblichesWarenlager lautet der überschreibende Methoden-
kopf:

VerderblicheWare entnehmen (String warenname)

418 Kapitel 11

Der Rückgabetyp der überschreibenden Methode ist also ein Subtyp des Rückgabe-
typs der überschriebenen Methode. Hier nun das Programm:

// Datei: Ware2.java

public class Ware2
{
 protected int warenId;
 protected String name;
 protected float preis;
 protected int anzahl;
 protected static int aktuelleNummer = 0;

 Ware2 (String name, float preis)
 {
 warenId = aktuelleNummer++;
 this.name = name;
 this.preis = preis;
 anzahl = 0;
 }

 int getWarenId()
 {
 return warenId;
 }

 String getName()
 {
 return name;
 }

 void stueckzahlErhoehen (int anzahl)
 {
 this.anzahl += anzahl;
 }

 void stueckzahlVerringern (int anzahl)
 {
 this.anzahl -= anzahl;
 }

 int getAnzahl()
 {
 return anzahl;
 }

 void setAnzahl(int zahl)
 {
 anzahl = zahl;
 }

 void print()
 {
 System.out.println ("ID: " + warenId + " Bezeichnung: "
 + name + " Anzahl: " + anzahl);
 }
}

Vererbung und Polymorphie 419

Eine VerderblicheWare ist eine Ware2 mit einer maximalen Lagertemperatur.

// Datei: VerderblicheWare.java

public class VerderblicheWare extends Ware2
{
 private double maxLagerTemperatur;

 VerderblicheWare (String name, float preis,
 double maxLagerTemperatur)
 {
 super (name, preis);
 this.maxLagerTemperatur = maxLagerTemperatur;
 }

 void print()
 {
 super.print();
 System.out.println ("maximale Lagertemperatur " +
 maxLagerTemperatur);
 }
}

Die Klasse Warenlager2 enthält Waren. Natürlich können dort auch verderbliche
Waren eingelagert werden, da nach dem Liskov Substitution Principle stets ein Ob-
jekt einer abgeleiteten Klasse an die Stelle eines Objektes einer Basisklasse treten
kann. Allerdings ist dort die Erweiterung der Waren zu verderblichen Waren nicht
sichtbar (wegen Cast).

// Datei: Warenlager2.java

public class Warenlager2
{
 protected Ware2[] arr;
 protected Warenlager2()
 {
 }

 protected Warenlager2 (int max)
 {
 arr = new Ware2 [max];
 }

 // Die Methode aufnehmen() kann neue, noch nicht im Lager enthal-
 // tene Waren aufnehmen. Sie kann aber auch zu einer schon im
 // Lager vorhandenen Ware die Anzahl der vorhandenen Elemente
 // erhöhen. Das Array wird beginnend vom Index 0 ab gefüllt.
 // Die freien Array-Elemente enthalten die null-Referenz.
 int aufnehmen (Ware2 ref, int anzahl)
 {
 // Prüfen, ob die Ware schon vorhanden ist.
 for (int i = 0; i < arr.length; i++)
 {
 if ((arr [i] != null) &&
 (ref.getWarenId() == arr [i].getWarenId()))
 {

420 Kapitel 11

 ref.stueckzahlErhoehen (anzahl);
 return 1;
 }
 }

 if (arr [arr.length - 1] != null)
 {
 return -1; // Warenlager voll!
 }
 else
 {
 for (int i = 0; i < arr.length; i++)
 {
 if (arr [i] == null) // Erstes freies Feld gefunden,
 { // Ware noch nicht vorhanden.
 arr [i] = ref;
 arr [i].stueckzahlErhoehen (anzahl);
 break;
 }
 }
 return 1;
 }
 }

 // Die Methode entnehmen() entnimmt 1 Exemplar einer Ware
 Ware2 entnehmen (String warenname)
 {
 Ware2 tmp = null;
 boolean gefunden = false;
 for (int i = 0; i < arr.length; i++)
 {
 if ((arr [i] != null) &&
 ((arr[i].getName()).equals (warenname)))
 {
 gefunden = true;

 if (arr[i].getAnzahl() >= 1)
 {
 arr[i].stueckzahlVerringern (1);
 tmp = arr[i];
 }
 else
 {
 System.out.println (
 "Ware nicht in ausreichender Anzahl am Lager");
 }
 }
 }
 if (gefunden == false)
 {
 System.out.println ("Gesuchte Ware " + warenname +
 " ist nicht im Lager");
 }
 return tmp;
 }

Vererbung und Polymorphie 421

 void print()
 {
 for (int i = 0; i < arr.length && arr [i] != null; i++)
 {
 arr [i].print();
 }
 }
}

// Datei: VerderblichesWarenlager.java

public class VerderblichesWarenlager extends Warenlager2
{
 public VerderblichesWarenlager (int max)
 {
 super (max);
 }

 // gibt nur verderbliche Waren aus
 void verderblicheWarenAusgeben ()
 {
 VerderblicheWare ref = null;
 for (int i = 0; i < arr.length && arr[i] != null; i++)
 {
 // Der Operator instanceof testet, ob die Referenz-
 // variable, welche in arr [i] gespeichert ist, vom Typ
 // VerderblicheWare ist.
 if (arr[i] instanceof VerderblicheWare)
 {
 ref = (VerderblicheWare) arr[i];
 }
 else
 {
 ref = null;
 }
 if (ref != null)
 {
 ref.print();
 }
 }
 }

 // Die Methode entnehmen() entnimmt 1 Exemplar einer
 // verderblichen Ware. Ist die Ware nicht im Lager oder
 // nicht verderblich, wird null zurückgegeben.
 VerderblicheWare entnehmen (String warenname)
 {
 VerderblicheWare tmp = null;
 boolean gefunden = false;
 for (int i = 0; i < arr.length; i++)
 {
 if ((arr [i] != null) &&
 ((arr[i].getName()).equals (warenname)))
 {
 gefunden = true;

422 Kapitel 11

 if (arr[i].getAnzahl() >= 1)
 {
 arr[i].stueckzahlVerringern (1);

 // Der Operator instanceof testet, ob die
 // Referenzvariable, welche in arr [i] gespeichert
 // ist, vom Typ VerderblicheWare ist.
 if (arr[i] instanceof VerderblicheWare)
 {
 tmp = (VerderblicheWare) arr[i];
 }
 else
 {
 System.out.println ("Ware " + warenname +
 " ist nicht verderblich");
 }
 }
 else
 {
 System.out.println (
 "Ware nicht in ausreichender Anzahl am Lager");
 }
 }
 }
 if (gefunden == false)
 {
 System.out.println ("Gesuchte Ware " + warenname +
 " ist nicht im Lager");
 }
 return tmp;
 }
}

// Datei: Test10.java

public class Test10
{
 public static void main (String[] args)
 {
 Warenlager2 lager = new VerderblichesWarenlager (4);
 VerderblicheWare vRef =
 new VerderblicheWare ("Milch", .99f, 6.0);
 Ware2 wareref = new Ware2 ("Seife", .79f);

 lager.aufnehmen (vRef, 500);
 lager.aufnehmen (wareref, 300);
 lager.aufnehmen (wareref, 300); // Lagerbestand erhöhen
 lager.print();

 VerderblichesWarenlager lager2 =
 (VerderblichesWarenlager) lager;
 System.out.println();
 System.out.println ("Aufruf von verderblicheWarenAusgeben()");
 lager2.verderblicheWarenAusgeben();
 System.out.println ("\nAufruf von lager.print()");
 lager.print();

Vererbung und Polymorphie 423

 System.out.println (
 "\nTest der Rückgabewerte von entnehmen():");

 Ware2 ware = lager.entnehmen ("Seife");
 if (ware != null)
 {
 System.out.println ("Die folgende Ware wurde entnommen:");
 ware.print();
 }

 Ware2 ware2 = lager.entnehmen ("Milch");
 if (ware2 != null)
 {
 System.out.println ("Die folgende Ware wurde entnommen:");
 ware2.print();
 }

 Ware2 ware3 = lager.entnehmen ("Rasierschaum");
 if (ware3 != null)
 {
 System.out.println ("Die folgende Ware wurde entnommen:");
 ware3.print();
 }
 }
}

 Die Ausgabe des Programms ist:

ID: 0 Bezeichnung: Milch Anzahl: 500
maximale Lagertemperatur 6.0
ID: 1 Bezeichnung: Seife Anzahl: 600

Aufruf von verderblicheWarenAusgeben()
ID: 0 Bezeichnung: Milch Anzahl: 500
maximale Lagertemperatur 6.0

Aufruf von lager.print()
ID: 0 Bezeichnung: Milch Anzahl: 500
maximale Lagertemperatur 6.0
ID: 1 Bezeichnung: Seife Anzahl: 600

Test der Rückgabewerte von entnehmen():
Ware Seife ist nicht verderblich
Die folgende Ware wurde entnommen:
ID: 0 Bezeichnung: Milch Anzahl: 499
maximale Lagertemperatur 6.0
Gesuchte Ware Rasierschaum ist nicht im Lager

11.6 Identifikation der Klasse eines Objektes

Wie Sie in den letzten Kapiteln feststellen konnten, kann es vorkommen, dass man
den Typ eines Objektes nicht kennt, auch wenn man eine Referenz hat, die auf die-
ses Objekt zeigt. Beispielsweise kann eine Referenz vom Typ Object auf jedes be-
liebige Objekt zeigen. Um den tatsächlichen Typ eines Objektes herausfinden zu
können oder um testen zu können, ob ein Objekt von einem bestimmten Typ ist, gibt

424 Kapitel 11

es Mechanismen, die in den folgenden beiden Kapiteln vorgestellt werden. Im An-
schluss an diese Kapitel werden die erlaubten Operatoren für Referenztypen vor-
gestellt.

11.6.1 Der instanceof-Operator

Mit dem instanceof-Operator kann getestet werden, ob eine Referenz auf ein
Objekt eines bestimmten Typs zeigt. Dies ist dann wichtig, wenn eine Referenz vom
Typ einer Basisklasse ist. Eine solche Referenz kann ja auf Objekte aller abge-
leiteten Klassen zeigen. Mit Hilfe des instanceof-Operators lässt sich nun nach-
prüfen, ob das referenzierte Objekt tatsächlich vom angenommenen Typ ist. Mit die-
ser Erkenntnis kann dann die Referenz in den entsprechenden Typ gecastet werden.
Das heißt, man kann überprüfen, ob ein expliziter Cast zulässig ist.

Die Syntax ist:

a instanceof Klassenname

Dieser Ausdruck gibt true zurück, wenn die Referenz a auf ein Objekt der Klasse
Klassenname – bzw. auf ein Objekt, dessen Klasse von der Klasse Klassen-
name abgeleitet ist – zeigt. Betrachten Sie hierzu die Vererbungshierarchie aus Bild
11-20 mit den Klassen Grossvater, Vater und Sohn. Es zeigen nun Referenzen
vom Typ Object auf Objekte aller drei Klassen:

Object refA = new Grossvater();
Object refB = new Vater();
Object refC = new Sohn();

Dann geben alle drei Ausdrücke

refA instanceof Grossvater
refB instanceof Grossvater
refC instanceof Grossvater

true zurück, da sowohl ein Objekt vom Typ Vater als auch ein Objekt vom Typ
Sohn vom Typ Grossvater ist. Wird die Referenz refB getestet, ob sie auf ein Ob-
jekt vom Typ Object, Grossvater, Vater oder Sohn zeigt, so geben alle Ver-
gleiche

refB instanceof Object
refB instanceof Grossvater
refB instanceof Vater

true zurück. Dahingegen liefert der Vergleich

refB instanceof Sohn

den Wert false.

Die null-Referenz zeigt auf kein Objekt eines bestimmten Typs, deshalb ist

null instanceof Klassenname

Vererbung und Polymorphie 425

immer false. Hier ein Beispiel für die Verwendung des instanceof-Operators:

// Test, ob ein Cast zulässig ist.

if (ref instanceof Sohn)
{
 Sohn refSohn = (Sohn) ref;

}

11.6.2 Run Time Type Identification

Run Time Type Identification (RTTI) ist die Erkennung des Typs eines Objektes zur
Laufzeit. In Bild 11-8 wurde die Vererbungshierarchie für eine Person und einen
Studenten gezeigt. Die Klasse Student ist dabei von der Klasse Person abgeleitet.
Beide Klassen definieren eine Methode print().

Tritt ein Objekt der Klasse Student als Person auf, so sind die zu-
sätzlichen Datenfelder und Methoden der Klasse Student zwar nicht
mehr ansprechbar, wird aber die Methode print() zu dem Studen-
ten aufgerufen, der gerade in Gestalt einer Person auftritt, so wird die
überschreibende print()-Methode des Studenten und nicht die
überschriebene Methode der Person aufgerufen. Es wird also zur
Laufzeit erkannt, dass die Person ja eigentlich ein Student ist.

Wie dies von der virtuellen Maschine erreicht wird, soll im Folgenden aufgezeigt
werden. Als Diskussionsgrundlage sollen nicht die Klassen Person und Student
dienen, sondern eine besonders einfache Klasse, die Klasse Test11. Die Klasse
Test11 soll nur die Instanzmethode toString() besitzen, eine main()-Methode
sowie das Datenfeld var. Die toString()-Methode der Klasse Object wird dabei
in der Klasse Test11 überschrieben.

// Datei: Test11.java

public class Test11 extends Object
{
 private int var = 1;

 public String toString()
 {
 return Integer.toString (var);
 }

 public static void main (String[] args)
 {
 Object ref = new Test11();
 System.out.println (ref);
 }
}

426 Kapitel 11

Die Ausgabe des Programms ist:

1

Es wird – wie zu erwarten – die toString()-Methode der Klasse Test11 aufge-
rufen und nicht die geerbte toString()-Methode der Klasse Object. Die virtuelle
Maschine muss also so organisiert sein, dass dieses Verhalten möglich ist. Bekannt-
lich liegen die Instanzvariablen eines Objektes im Heap und die Klassenvariablen
und der Bytecode für die Methoden in der Method-Area. Bis zu diesem Zeitpunkt
wurde zwar schon erwähnt, dass ein jedes Objekt seine Klasse kennt, aber es wurde
immer verschwiegen, wie dies realisiert ist – und dabei ist es ganz einfach. Die erste
Information, die zu einem Objekt im Heap abgelegt wird, ist ein Zeiger auf die in der
Method-Area liegende Klasse des Objektes. Erst dann folgen die Instanzvariablen.
Bild 11-30 soll diesen Zusammenhang zeigen:

Method-Area

Code und Klassenvariable
der Klasse Object

Code und Klassenvariable
der Klasse Test11

Heap

var = 1

Bild 11-30 Objekte im Heap zeigen auf die zugehörige Klasse in der Method-Area

Das obige Bild ist eine vereinfachte Darstellung und soll im Folgenden vervollständigt
werden. Damit es möglich wird, jedes Mal die richtige Methode aufzurufen, benötigt
jede Klasse noch zusätzlich eine Methodentabelle. In dieser Tabelle sind die Zeiger
auf die Methodenimplementierungen aller Methoden eines Typs, die dynamisch ge-
bunden werden können, zusammengestellt. Eine mögliche Realisierung der dynami-
schen Bindung könnte so wie in Bild 11-31 aussehen.

Heap

var = 1

Method-Area

 Methodentabelle der
 Klasse Test11

Code und Klassen-
variablen der Klasse
Object
.
equals (Object obj)
{

}
.

Code und Klassen-
variablen der Klasse
Test11

toString()
{

}

Zeiger auf getClass()

Zeiger auf toString()

Zeiger auf finalize()

Zeiger auf equals()

Bild 11-31 Zeiger in der Methodentabelle zeigen auf den Bytecode einer Methode

Vererbung und Polymorphie 427

Der Zeiger, der im Heap als erste Information vor den Instanzvariablen eines Objek-
tes liegt, zeigt jetzt auf den ersten Eintrag in der Methodentabelle. Dort verweist wie-
derum der erste Eintrag auf den Bytecode der Klasse Test11. Wird eine Methode in
der Klasse Test11 überschrieben, so zeigt der Eintrag in der Methodentabelle auf
die überschreibende Methode, hier also auf den Bytecode der Methode to-
String() der Klasse Test11. In der Methodentabelle befinden sich nur Zeiger auf
die Methoden, die für die dynamische Bindung in Frage kommen. Deshalb haben
private, statische oder finale Methoden keinen Eintrag in der Methodentabelle. Wird
nun die Methode toString() aufgerufen, so kommt man über den Verweis im
Heap zur Methodentabelle und von dort zum Bytecode der Methode. Hierbei wird
nun auch klar, dass es gar keine Rolle spielt, ob die Referenz vom Typ einer
Vaterklasse ist – hier Object – oder ob die Referenz den genau gleichen Typ trägt
wie das Objekt, auf das sie zeigt – es wird immer die gleiche Methodentabelle
verwendet, egal von welchem Typ die Referenz ist. Das bedeutet, dass immer die
überschreibende Methode des Objektes aufgerufen wird. Hierzu soll nochmals
folgendes Beispiel diskutiert werden.

Die Klasse Student und die Klasse Person implementieren beide eine print()-
Methode. Durch die folgenden beiden Aufrufe wird jeweils die print()-Methode der
Klasse Student aufgerufen:

Student refStud = new Student();
ref.print();
Person refPers = refStud;
ref.print();

Dies ist auch nicht weiter verwunderlich, denn das Objekt und die zugehörige Metho-
dentabelle in der Method-Area repräsentiert einen Studenten und keine Person, auch
wenn die Referenz vom Typ Person ist.

Beim Casten verändert sich nur die Sichtweise auf die zur Verfügung
stehenden Methodenköpfe. Das Objekt, auf das eine Referenz zeigt
und die zugehörige Methodentabelle bleiben beim Casten unverän-
dert. Allerdings werden beim Cast auf eine Superklasse die erweitern-
den Methoden der abgeleiteten Klassen unsichtbar.

11.6.3 Operatoren für Referenztypen

Nachdem nun alle Operatoren, die auf Referenzen angewandt werden können, vor-
gestellt wurden, erfolgt hier nochmals eine übersichtliche Zusammenfassung:

• cast-Operator (siehe Kap. 11.3.1).

• instanceof-Operator (siehe Kap. 11.6.1).

• Der Punkt-Operator . wird auf eine Referenz angewandt, wenn ein Datenfeld
eines Objektes angesprochen werden soll. Gleichermaßen findet der Punkt-
Operator Anwendung, wenn über eine Referenz eine Methode eines Objektes
aufgerufen wird.

428 Kapitel 11

• Der Gleichheitsoperator == und der Ungleichheitsoperator != können ebenso
wie für elementare Datentypen auch für Referenztypen eingesetzt werden. Der
Ausdruck ref1 == ref2 liefert dabei den Rückgabewert true, wenn ref1
und ref2 auf das gleiche Objekt zeigen und false, wenn sie auf verschiedene
Objekte zeigen. Der Ungleichheitsoperator liefert genau die entgegengesetzten
Ergebnisse. Im Falle von Aufzählungstypen können Aufzählungskonstanten auf
Gleichheit oder Ungleichheit geprüft werden (siehe Kap. 6.6).

• Wird der Ausdruck ref1 + ref2 in einem Programmstück geschrieben, so ist
dies ein gültiger Ausdruck, sofern mindestens eine der Referenzen auf ein
String-Objekt zeigt. Der Operator + wird dann als Verkettungsoperator für
String-Objekte (String-Concatenation-Operator) bezeichnet. Der Rückgabe-
wert eines solchen Ausdrucks ist eine Referenz auf ein String-Objekt, das die
Aneinanderreihung der String-Repräsentationen der Objekte enthält, auf die ref1
und ref2 zeigen. Die Stringrepräsentation eines Referenztyps wird erzeugt, in-
dem die toString()-Methode des entsprechenden Objektes aufgerufen wird.
Diese Methode ist bei jedem Objekt vorhanden, da sie in der Klasse Object
implementiert ist. Jede Klasse hat die Möglichkeit, diese Methode zu überschrei-
ben, um eine für die jeweiligen Objekte einer Klasse geeignete String-Repräsen-
tation zur Verfügung zu stellen. Überschreibt eine Klasse die toString()-Metho-
de nicht, so wird die toString()-Methode der Klasse Object aufgerufen. Der
Rückgabewert dieser Methode ist der Namen der Klasse, von deren Typ das
Objekt ist, gefolgt von dem Zeichen '@' und einer Nummer, welche die Identität
des Objektes in codierter Form widerspiegelt.

• Beim Bedingungsoperator A ? B : C können die Ausdrücke B und C
Referenztypen sein. Der Bedingungsoperator wurde ausführlich in Kapitel 7.6.7
behandelt. Die Bedingung A kann auch eine Referenz auf ein Objekt vom Typ
Boolean sein.

• Mit dem Zuweisungsoperator kann einer Referenzvariablen eine typkompatible
Referenz (siehe Kap. 11.3.1) oder die null-Referenz zugewiesen werden.

11.7 Konsistenzhaltung von Quell- und Bytecode

Der Ersteller eines Programms muss selbst darauf achten, dass der auszuführende
Bytecode nicht älter als der Quellcode seiner Klassen ist. Darauf wird im Folgenden
eingegangen. Es reicht aber überhaupt nicht aus, nur an seine eigenen Klassen zu
denken. Wenn man effizient arbeitet, verwendet man des Öfteren Basisklassen als
Ausgangspunkt für seine eigenen Klassen. Was aber, wenn die Basisklassen nach
dem Kompilieren des Programmsystems geändert werden? Zu all diesen Problemen
soll im Folgenden Stellung bezogen werden:

• Der einfachste Fall liegt vor, wenn man nur eine einzige Klasse hat. Hier ist der
Programmierer natürlich jedesmal selbst dafür verantwortlich, dass er seine Klas-
se neu kompiliert, wenn er Änderungen an ihr vorgenommen hat, und die Ausfüh-
rung des neuen Codes wünscht.

• Nicht wesentlich komplizierter wird es, wenn mehrere Klassen in einer Aggrega-
tionsbeziehung zueinander stehen. Es soll folgendes Beispiel betrachtet werden:

Vererbung und Polymorphie 429

// Datei: A.java

public class A
{
 private B bRef;
 //
}

// Datei: B.java

public class B
{
 //
}

Zu beachten ist, dass im Folgenden davon ausgegangen wird, dass Klassen, die
nichts miteinander zu tun haben, in jeweils unterschiedlichen Dateien liegen. Na-
türlich kann man die Konsistenzhaltungsprobleme auf unelegante Art und Weise
auch so lösen, dass man alle Klassen in einer einzigen Sourcecode-Datei unter-
bringt. Dies ist aber kein guter Programmierstil!

Innerhalb der Klasse A wird ein privates Datenfeld der Klasse B verwendet. Wird
nun die Klasse B verändert, so reicht es, die Klasse A neu zu kompilieren. Der
Compiler sorgt automatisch dafür, dass alle anderen Klassen, die innerhalb von
Klasse A – egal auf welche Weise – referenziert werden, neu kompiliert werden,
wenn die Sourcecode-Datei ein neueres Datum als die entsprechende Bytecode-
Datei hat. Dieser Vorgang setzt sich rekursiv fort, bis alle verwendeten Klassen mit
ihren aktualisierten .class Dateien vorliegen. Das klingt soweit wunderbar und
äußerst praktisch, aber dieser ganze Mechanismus gerät außer Tritt, sobald ent-
weder mehrere Klassen in einer gemeinsamen .java-Datei zusammengefasst
werden oder wenn der Name der Sourcecode-Datei nicht dem Klassennamen
entspricht. Denn dann hat der Compiler keine Möglichkeit mehr, aufgrund des
Klassennamens auf die entsprechende Sourcecode-Datei zu schließen, da es in
diesen Fällen ja keine Namensgleichheit der Klasse mit der Sourcecode-Datei
mehr gibt. Hierzu wird nochmals das obige Beispiel betrachtet:

// Datei: A.java

public class A
{
 private B bRef;

}

// Datei: MeineKlasseB.java

class B
{

}

Es existieren demnach die beiden Sourcecode-Dateien A.java und MeineKlas-
seB.java sowie die beiden Bytecode-Dateien A.class und B.class. Werden
nun beide Sourcecode-Dateien verändert und nur die Klasse A mit dem Aufruf

430 Kapitel 11

javac A.java kompiliert, so funktioniert die rekursive Kompilierung der Klasse B
nicht, da keine Sourcecode-Datei mit dem Namen B.java existiert.

Man sollte sich am besten nie auf die rekursive Kompilierung ver-
lassen und selbst eine Gesamtkompilierung durchführen.

• Im dritten Fall wird die Konsistenzhaltung von Quell- und Bytecode im Zusammen-

hang mit Vererbungshierarchien betrachtet. Hierzu soll das folgende Bild diskutiert
werden.

Vater

Sohn Test

Bild 11-32 Vererbungshierarchie zur Diskussion der Konsistenzprüfung

Die Klasse Test aggregiert als Datenfeld ein Objekt der Klasse Sohn. Die Klasse
Sohn ist wiederum von der Klasse Vater abgeleitet. Der Programmcode sieht
hierzu folgendermaßen aus:

// Datei: Vater.java
public class Vater
{
 //
}

// Datei: Sohn.java
public class Sohn extends Vater
{
 //
}

// Datei: Test.java
public class Test
{
 private Sohn refS;

 public Test()
 {
 refS = new Sohn();
 //
 }
 //
}

Vererbung und Polymorphie 431

Wird nun die Klasse Vater entweder an den Schnittstellen oder in den Methoden-
rümpfen verändert, erfolgt ebenfalls eine Neukompilierung der Klasse Vater,
wenn

javac Test.java

aufgerufen wird, obwohl der Quellcode der Klasse Sohn nicht verändert wurde.
Der Programmierer kann also stets davon ausgehen, dass immer alle Quellcode-
Dateien neu übersetzt werden, an denen Veränderungen vorgenommen wurden,
auch wenn die veränderten Dateien nicht direkt von der neu zu übersetzenden
Klasse abhängen. Das Verhalten des Compilers kann man sich veranschaulichen,
wenn javac mit der Option verbose aufgerufen wird. verbose veranlasst den
Compiler dazu, Informationen über seine Tätigkeiten auszugeben. Angenommen,
die Klasse Vater wird wie folgt verändert:

// Datei: Vater.java

public class Vater
{
 //
 public void f() //Diese Methode wurde hinzugefügt
 {
 // Mache etwas
 }
}

Dann gibt der Compiler beim Aufruf

javac –verbose Test.java

folgende Informationen aus98:

Die Ausgabe des Programms ist:

[parsing started Test.java]
[parsing completed 31ms]
. . .
[loading .\Sohn.class]
[checking Test]
[loading .\Vater.java]
[parsing started .\Vater.java]
[parsing completed 0ms]
[wrote Test.class]
[checking Vater]
[wrote .\Vater.class]
[total 234ms]

Es ist zu erkennen, dass der Compiler alle Klassen überprüft, von welchen die
Klasse Test direkt oder indirekt abhängt, also die Klassen Vater und Sohn. Die
Klasse Vater wird neu übersetzt, weil sich deren Quellcode seit der letzten Über-
setzung geändert hat.

98 Unwichtige Ausgaben sind durch die drei Punkt . . . ausgelassen worden.

432 Kapitel 11

11.8 Übungen

Aufgabe 11.1: Konzept der Vererbung

11.1.1 Vererbungshierarchie für Fahrzeuge

Die Klassen Pkw und Motorrad sollen von der Klasse Fahrzeug abgeleitet
werden. In der Klasse FahrzeugTest sollen die Klassen Pkw und Motor-
rad getestet werden. Das folgende Java-Programm enthält die Klassen
Fahrzeug, Pkw, Motorrad und FahrzeugTest. Die fehlenden und zu
ergänzenden Teile des Programms sind durch gekennzeichnet.
Lesen Sie zuerst die Fragen nach dem Programm, bevor Sie das Programm
vervollständigen!

// Datei: Fahrzeug.java

import java.util.*;

class Fahrzeug
{
 private float preis;
 private String herstellerName;
 protected static Scanner eingabe = new Scanner (System.in);

 public Fahrzeug()
 {
 System.out.println();
 System.out.print ("Geben Sie den "
 + "Herstellernamen ein: ");
 herstellerName = eingabe.next();

 System.out.print ("Geben Sie den Preis ein: ");
 try
 {
 preis = eingabe.nextFloat();
 }
 catch (InputMismatchException e)
 {
 System.out.println ("Keine gültige Preisangabe!");
 System.exit (1);
 }
 }

 public void print()
 {
 System.out.println();
 System.out.println ("Herstellername: "
 + herstellerName);
 System.out.println ("Preis : "
 + preis);
 }

 // Methode getPreis();

}

Vererbung und Polymorphie 433

// Datei: Pkw.java

class Pkw extends Fahrzeug
{
 private String fahrzeugtyp = "Pkw";
 private String modellBezeichnung;

 public Pkw()
 {
 // Aufruf des Konstruktors
 // der Basisklasse

 System.out.print ("Geben Sie die "
 + "Modellbezeichnung ein: ");
 modellBezeichnung = eingabe.next();
 }

 public void print()
 {

 }
}

// Datei: Motorrad.java

class Motorrad extends Fahrzeug
{
 private String fahrzeugtyp = "Motorrad";

 public void print()
 {

 }
}

// Datei: FahrzeugTest.java

public class FahrzeugTest
{
 public static void main (String args[])
 {
 System.out.println ("Start des Programms");

 // Anlegen eines Arrays aus 6 Fahrzeugen

 // Die ersten 3 Elemente des Arrays sollen mit Pkws
 // gefüllt werden
 System.out.println();
 System.out.println ("3 Pkws");

 // Die drei letzten Elemente mit Motorrädern füllen
 System.out.println();
 System.out.println ("3 Motorräder");

434 Kapitel 11

 // Geben Sie in einer Schleife für alle Array-Elemente
 // die entsprechenden Datenfelder aus

 // Ermittlung des Gesamtwerts aller Fahrzeuge

 System.out.println();
 System.out.println ("Gesamtwert aller Fahrzeuge: "
 + summe);
 }
}

a) Schreiben Sie die Methode getPreis() der Klasse Fahrzeug.

b) Vervollständigen Sie den Konstruktor der Klasse Pkw.

c) Überschreiben Sie in der Klasse Pkw die Methode print() der Klasse
Fahrzeug. Die Methode print() der Klasse Pkw soll alle Datenfelder
eines Objektes der Klasse Pkw unter Zuhilfenahme der Methode print()
der Basisklasse ausgeben. Ergänzen Sie die Methode print() der Klas-
se Pkw. Ergänzen Sie in analoger Weise die Methode print() der Klas-
se Motorrad.

d) Ergänzen Sie die fehlenden Teile der Klasse FahrzeugTest.

11.1.2 Vererbungshierarchie für Fertigungsgüter

Ein produzierender Betrieb verwaltet seine hergestellten Produkte zurzeit mit
folgenden drei Klassen:

public class Membranpumpe
{
 private String name;
 private int tiefe;
 private float maximalerBetriebsdruck;
 private int hoehe;
 private String membranmaterial;
 private int gewicht;
 private int maximaleFoerdermenge;
 private int breite;
}

public class Kreiselpumpe
{
 private int breite;
 private int hoehe;
 private int gewicht;
 private int anzahlSchaufeln;
 private int maximaleFoerdermenge;

Vererbung und Polymorphie 435

 private int maximaleDrehzahl;
 private String name;
 private int tiefe;
 private float maximalerBetriebsdruck;
}

public class Auffangbecken
{
 private int tiefe;
 private int volumen;
 private int breite;
 private int gewicht;
 private String name;
 private int hoehe;
}

Entwickeln Sie eine passende Vererbungshierarchie, welche die gemeinsam-
en Attribute in Basisklassen zusammenfasst.

Aufgabe 11.2: Konstruktoren bei abgeleiteten Klassen

11.2.1 Reihenfolge von Konstruktoraufrufen

Die folgende Klasse TestKonstruktoren dient zum Testen der Aufrufrei-
henfolge von Konstruktoren bei abgeleiteten Klassen.

// Datei: TestKonstruktoren

public class TestKonstruktoren
{
 public static void main (String[] args)
 {
 System.out.println ("Exemplar von A wird angelegt");
 A aRef = new A();

 System.out.println();
 System.out.println ("Exemplar von B wird angelegt");
 B bRef = new B();

 System.out.println();
 System.out.println ("Exemplar von C wird angelegt");
 C cRef = new C();
 System.out.println();
 }
}

Schreiben Sie die 3 Klassen A, B und C, welche jeweils nur einen Konstruktor
ohne Parameter enthalten. Im Konstruktor der Klasse A soll folgender Text
ausgegeben werden:

System.out.println ("Klasse A - Konstruktor ohne Parameter");

Schreiben Sie entsprechende Konstruktoren für die Klassen B und C. Beach-
ten Sie, dass B von A und C von B abgeleitet ist. Der Konstruktor der Klasse
C soll den Default-Konstruktor der Basisklasse B durch super() explizit

436 Kapitel 11

aufrufen. Beim Ausführen der Klasse TestKonstruktoren wird deutlich,
dass es in diesem Fall keinen Unterschied macht, ob der Aufruf super()
explizit durch den Programmierer eingefügt wird.

 A

 C

 B

Bild 11-33 Betrachtete Klassenhierarchie

11.2.2 Vererbungshierarchie für Fertigungsgüter, Teil 2

Ausgangspunkt ist das Programm aus Aufgabe 11.1.2. Erweitern Sie alle
Klassen der Vererbungshierarchie mit Konstruktoren, um eine einfache Ini-
tialisierung der Klassen zu ermöglichen.

Aufgabe 11.3: Abstrakte Basisklasse

11.3.1 Flächen- und Umfangsberechnung

In dieser Übung sollen die beiden Klassen Kreis und Quadrat implemen-
tiert werden. Hierzu leiten beide Klassen von der abstrakten Basisklasse
GeometrischeFigur ab und werden mit Hilfe der Klasse TestBerech-
nung getestet. Die beiden Klassen haben die Aufgabe, die Fläche und den
Umfang eines Kreises bzw. Quadrats zu berechnen.

 Umfang Fläche
Kreis r⋅⋅π2 ²r⋅π
Quadrat a⋅4 ²a

Eine Konstante für die Zahl π ist in der Klasse java.lang.Math definiert.

// Datei: GeometrischeFigur.java

public abstract class GeometrischeFigur
{
 protected abstract double berechneFlaeche();
 protected abstract double berechneUmfang();

 public void print()
 {
 System.out.println ("Die Fläche beträgt: " +
 berechneFlaeche());
 System.out.println ("Der Umfang beträgt: " +
 berechneUmfang());
 System.out.println();
 }
}

Vererbung und Polymorphie 437

// Datei: TestBerechnung.java

public class TestBerechnung
{
 public static void main (String [] args)
 {
 Kreis kreisRef = new Kreis (5);
 Quadrat quadratRef = new Quadrat (10);

 kreisRef.print();
 quadratRef.print();
 }
}

11.3.2 Hierarchie mehrerer abstrakter Klassen

Ein Getränkehändler verkauft eine Vielzahl unterschiedlicher Getränke. Es
findet eine Unterteilung zwischen alkoholfreien und alkoholhaltigen Geträn-
ken statt.

Getraenk

AlkoholfreiesGetraenk AlkoholhaltigesGetraenk

Bild 11-34 Klassenhierarchie der Getränke

Die Klasse Getraenk hat die Instanzvariablen hersteller, inhalts-
menge und preis. Die Klasse AlkoholischesGetraenk hat zusätzlich
die Instanzvariable alkoholgehalt.

Implementieren Sie die abstrakten Basisklassen Getraenk, Alkoholi-
schesGetraenk und AlkoholfreiesGetraenk entsprechend der Klas-
senhierarchie aus Bild 11-34. Ergänzend sollen die Klassen Bier, Cola,
Mineralwasser und Wein – die von AlkoholischesGetraenk oder Al-
koholfreiesGetraenk ableiten – mit eigenen Instanzvariablen erstellt
werden. Alle Instanzvariablen sollen in den Konstruktoren der jeweiligen
Klassen gesetzt werden, inklusive der geerbten Variablen aus den abstrakten
Basisklassen. Mit der Klasse GetraenkeTest sollen Objekte der verschie-
denen Getränke instantiiert werden.

Aufgabe 11.4: Polymorphie

11.4.1 Vererbungshierarchie für Fertigungsgüter, Teil 3

Ausgangspunkt ist das Programm aus Aufgabe 11.2.2. Erweitern Sie alle
Klassen der Vererbungshierarchie um eine Methode print(), um den Inhalt
der Klasse auf dem Bildschirm auszugeben. Schreiben Sie eine Testklasse,
die mehrere Produkte anlegt und deren Inhalt auf dem Bildschirm ausgibt.

438 Kapitel 11

11.4.2 Arzneimittel mit verschiedenen Maßeinheiten

Analysieren Sie das folgende Programm. Was erwarten Sie als Ausgabe?

public class Arzneimittel
{
 private String name;
 public Arzneimittel (String name)
 {
 this.name = name;
 }

 public void print()
 {
 System.out.println ("Das Arzneimittel heißt: " + name);
 }
}

public class Tablette extends Arzneimittel
{
 private int anzahl; // Anzahl der Tabletten

 public Tablette (String name, int anzahl)
 {
 super (name);
 this.anzahl = anzahl;
 }

 public void print()
 {
 super.print();
 System.out.println ("Es enthält "+anzahl+" Tabletten.");
 }
}

public class Salbe extends Arzneimittel
{
 private int menge; // Menge der Salbe in ml

 public Salbe (String name, int menge)
 {
 super (name);
 this.menge = menge;
 }

 public void print()
 {
 super.print();
 System.out.println ("Es enthält " + menge+" ml Salbe.");
 }

 public int getMenge()
 {
 return this.menge;
 }
}

Vererbung und Polymorphie 439

public class Augensalbe extends Salbe
{
 public Augensalbe (String name, int menge)
 {
 super (name, menge);
 }

 public void print()
 {
 System.out.println ("Die Augensalbe enthält "
 + super.getMenge() + " ml.");
 }
}

public class Arzneimittellager {

 public static void main (String[] args)
 {
 Arzneimittel mittel = Arzneimittel ("Schmerzmittel");
 Tablette tablette =
 new Tablette ("Schmerztablette", 12);
 Salbe salbe = new Salbe ("Wundsalbe", 200);
 Augensalbe augensalbe =
 new Augensalbe ("Augensalbe", 50);

 mittel.print();
 tablette.print();
 salbe.print();
 augensalbe.print();
 }
}

Aufgabe 11.5: Flughafen-Projekt – Einführung von Entity-Klassen

In der vorgehenden Projektaufgabe 10.4 wurden sämtliche Informationen in einer
einzigen Klasse gehalten. Die Informationen wurden dabei sehr einfach mit Werten
vom Typ int und vom Typ String gehalten. Dies ist im Falle des Flughafensys-
tems natürlich nicht ausreichend. So besitzt zum Beispiel eine Fluggesellschaft nicht
nur einen Namen, sondern auch ein Strasse und einen Ort. Deshalb sollen in dieser
Projektaufgabe neue Klassen – so genannte Entity-Klassen – eingeführt werden. Ein
Großteil der Arbeit wurde bereits durch das Finden dieser Klassen in der System-
analyse in Kapitel 2.5.2 erledigt. Ein Teil dieser Entity-Klassen soll jetzt implementiert
werden. Das Klassendiagramm in Bild 11-35 soll erstmal einen Überblick über eine
mögliche Lösung geben.

Die Klassen Fluggesellschaft und Flugzeugtyp sollten jeweils einen Kon-
struktor besitzen, der es ermöglicht, die einzelnen Strings zu setzen. Die Klasse
Bahn soll jeder erzeugten Instanz eine eindeutige Nummer vergeben. Der Auf-
zählungstyp Status definiert die unterschiedlichen Zustände, die ein Flugzeug
annehmen kann.

440 Kapitel 11

Parkstelle

Bahn
- anzahlBahnen : int
- nummer : int

+ Bahn()
+ toString()

Flugzeug
- anzahlFlugzeuge : int
- fluggesellschaft : Fluggesellschaft
- flugnummer : String
- flugzeugtyp : Flugzeugtyp
- istzeitLandung : Calendar
- istzeitStart : Calendar
- landebahn : Bahn
- parkstelle : Parkstelle
- sollzeitLandung : Calendar
- sollzeitStart : Calendar
- startbahn : Bahn
- status : Status
+ Flugzeug()
+ meldeGelandet()
+ meldeGestartet()
+ print()
+ vergebeLandebahn()
+ vergebeParkstelle()
+ vergebeStartbahn()

Status
+ Wartend : Status
+ Landeanflug : Status
+ Gelandet : Status
+ Geparkt : Status
+ Startvorbereitung : Status
+ Gestartet : Status

Fluggesellschaft

- name : String
- ort : String
- strasse : String

+ Fluggesellschaft()
+ getName()
+ getOrt()
+ getStrasse()
+ getKuerzel()
+ toString()

Flugzeugtyp
- bezeichnung : String

+ Flugzeugtyp()
+ toString()

Parkposition
- anzahlParkpositionen : int
- nummer: int

+ ParkPosition()
+ toString()

Werft

+ toString()

SeparateParkposition

+ toString()

Bild 11-35 Vorschlag: Klassendiagramm

Die Klasse Parkstelle stellt eine abstrakte Klasse dar, die keine Methoden und
auch keine Instanzvariablen hält. Sie dient lediglich als gemeinsame Basisklasse für
die drei Klassen Parkposition, Werft und SeparateParkposition. Jede In-
stanz der Klasse Parkposition soll eine eindeutige Nummer erhalten.

Für das Halten der Ist- und Sollzeiten soll die Klasse java.util.GregorianCa-
lendar verwendet werden. Diese Klasse wurde bereits in Kapitel 11.4.2 verwendet.
Zum Einlesen einer Uhrzeit von der Tastatur können Sie die Klasse Abfrage um
folgende Methode erweitern:

public static java.util.Calendar abfrageUhrzeit (String frage)
{
 java.text.SimpleDateFormat formatter;
 formatter = new java.text.SimpleDateFormat ("HH:mm");
 try
 {
 java.util.Date date;
 date = formatter.parse (abfrageString (frage + " (HH:mm):"));
 java.util.Calendar calendar =
 new java.util.GregorianCalendar();
 calendar.setTime (date);
 return calendar;
 }
 catch (java.text.ParseException e)
 {
 System.out.println ("Bitte eine gültige Uhrzeit eingeben!");
 return abfrageUhrzeit (frage);
 }
}

Pakete

12.1 "Programmierung im Großen"
12.2 Pakete als Entwurfseinheiten
12.3 Erstellung von Paketen
12.4 Benutzung von Paketen
12.5 Paketnamen
12.6 Gültigkeitsbereich von Klassennamen
12.7 Zugriffsmodifikatoren
12.8 Übungen

12 Pakete

12.1 "Programmierung im Großen"

Eine moderne Programmiersprache soll das Design (den Entwurf) eines Programms
unterstützen. Hierzu sind Sprachmittel erforderlich, die es erlauben, ein Programm in
Programmeinheiten zu unterteilen, um das Programm übersichtlich zu strukturieren.
Man spricht bei solchen Sprachmitteln auch vom "Programmieren im Großen".

Programmeinheiten sind grobkörnige Teile eines Programmes,
die einen Namen tragen.

In der klassischen Programmierung stellen das Hauptprogramm und die dazugehöri-
gen Unterprogramme in der Form von Funktionen die einzig möglichen Programm-
einheiten dar.

Programmeinheiten in Java sind:

• Klassen,
• Schnittstellen (Interfaces),
• Threads
• und Pakete.

Programmeinheiten stellen logische Bestandteile eines Programms
im Quellcode dar.

Threads werden eingesetzt, um eine quasiparallele99 Bearbeitung zur Laufzeit zu er-
möglichen. Beachten Sie, dass Threads mit Hilfe von Klassen definiert werden (siehe
Kap. 19). Programmeinheiten sind – wie schon gesagt – unter einem eigenen Namen
ansprechbar.

Die physikalisch greifbaren Bestandteile eines Programms in Form
von Quellcode sind die Dateien. Dateien, die Quellcode enthalten,
sind kompilierfähige Einheiten. Sie können an den Compiler über-
geben werden.

Kompilierfähige Einheiten werden oft auch als Module bezeichnet. Eine Datei kann
in Java Klassen, Schnittstellen und Threads enthalten.

99 Quasiparallel bedeutet, dass es für den Anwender nur so aussieht, als ob die Threads parallel

laufen würden. Tatsächlich erhalten die verschiedenen Threads jeweils nur abwechselnd für eine
gewisse Zeit den Prozessor. Ist die Wechselzeit für die Threads kurz wie z. B. 100 ms, so merkt
ein interaktiver Anwender nichts von dem Wechsel.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_12,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Pakete 443

Paket

Schnittstelle1

ThreadM

Klasse1

Thread1

SchnittstelleK

 .
 .

KlasseN

. . .

. . .

. . .

. . .

 .
 .

. . .

Datei1 DateiN

Bild 12-1 Bestandteile eines Java-Programms

Im Folgenden werden die Programmeinheiten kurz beschrieben:

• Eine Klasse implementiert einen abstrakten Datentyp und definiert die Methoden,
die für diesen Datentyp zur Verfügung gestellt werden.

• Eine Schnittstelle ist eine Zusammenstellung von Methodenköpfen und even-
tuell von Konstanten. Implementiert eine Klasse eine Schnittstelle, so stellt sie
eine konkrete Implementierung der Methoden der Schnittstelle bereit. Eine Schnitt-
stelle spezifiziert eine Aufrufschnittstelle.

• Ein Thread definiert einen Bearbeitungsablauf, der parallel zu anderen Threads
durchgeführt werden kann. Mehrere Threads können quasiparallel auf einem
Prozessor ablaufen.

Ein Paket trägt einen Namen und kann Klassen, Threads, Schnitt-
stellen und Unterpakete als Komponenten enthalten. Ein Paket kann
aus einer oder aus mehreren Dateien bestehen.

Der Zugriff auf die Komponenten des Pakets erfolgt über den Paketnamen. Ein Paket
ist auch ein Mittel zur Strukturierung der Sichtbarkeit von Klassen und Schnitt-
stellen. Klassen, Threads und Schnittstellen, die im selben Paket liegen, haben
wechselseitig mehr Zugriffsrechte – wenn keine Zugriffsmodifikatoren angege-
ben sind – als ein außenstehender Benutzer, der die Komponenten des Pakets
benutzen will. Ein Nutzer eines Pakets kann prinzipiell nur diejenigen Teile eines Pa-
kets nutzen, die der Ersteller des Pakets explizit zur externen Benutzung frei gege-
ben hat. Dies muss er mit Hilfe des Schlüsselwortes public zum Ausdruck bringen.
Ein Paket stellt nicht nur eine Strukturierungseinheit für die Sichtbarkeit dar, son-
dern auch einen eigenen Namensraum. Dies bedeutet, dass ein und derselbe Name
einer Komponente eines Pakets auch in einem anderen Paket vorkommen darf. Nur
innerhalb desselben Pakets darf der Name nicht ein zweites Mal vorkommen.

444 Kapitel 12

Der Einsatz von Paketen bietet die folgenden Vorteile:

• Pakete bilden eigene Bereiche für den Zugriffsschutz. Mit Paketen
kann man kapseln (Information Hiding).

• Jedes Paket bildet einen eigenen Namensraum. Damit können Na-
menskonflikte vermieden werden und identische Namen für Klas-
sen bzw. Schnittstellen in verschiedenen Paketen vergeben wer-
den.

• Pakete sind größere Einheiten für die Strukturierung von objekt-
orientierten Systemen als die Klassen.

Zwei Klassen oder zwei Schnittstellen mit identischen Namen können zwar nicht in
einem gemeinsamen Paket liegen, aber sehr wohl in zwei unterschiedlichen Pake-
ten. Hierzu stelle man sich eine Klasse Printer vor. Einmal kann diese Klasse in
einer Ausprägung zum Drucken von Grafiken im Paket grafiken vorhanden sein,
ein zweites Mal kann eine andere Klasse Printer zum Ausdrucken von Doku-
menten dem Paket dokumente angehören.

12.2 Pakete als Entwurfseinheiten

Pakete dienen dazu, die Software eines Projektes in größere inhaltlich zusammen-
gehörige Bereiche, mit anderen Worten, in verschiedene Klassenbibliotheken ein-
zuteilen. Jede Klassenbibliothek trägt einen Namen, den Paketnamen.

Pakete stellen die gröbsten Strukturierungseinheiten der objekt-
orientierten Technik dar. Pakete werden im Rahmen des Entwurfs der
Software konzipiert.

Da Pakete Bibliotheken darstellen und es der Übersichtlichkeit und Testbarkeit ab-
träglich ist, wenn die Software eines Pakets die Software eines jeden anderen Pa-
kets benutzen darf, versucht man in konkreten Projekten, eine gewisse Ordnung in
die Beziehungen zwischen den Paketen zu bringen. Hierbei werden oft Schichten-
modelle derart aufgestellt, dass die in einem Paket enthaltenen Klassen nur die Klas-
sen von Paketen in tieferen Schichten nutzen können.

Paket B

Paket A

Paket C

Bild 12-2 Schichtenmodell für Pakete. Der Pfeil bedeutet hier "benutzt"

Eine rekursive Benutzung (Paket A nutzt Paket B, Paket B nutzt Paket A) sollte aus
Gründen der Überschaubarkeit vermieden werden.

Pakete 445

12.3 Erstellung von Paketen

Ein Paket wird definiert, indem alle Dateien des Pakets mit der Deklaration des Pa-
ketnamens versehen werden. Die Deklaration eines Paketnamens erfolgt in Java mit
Hilfe des Schlüsselworts package wie in folgendem Beispiel:

// Datei: Artikel.java

package lagerverwaltung; // Deklaration des Paketnamens

public class Artikel // Definition der Komponente Artikel des
{ // Pakets lagerverwaltung
 private String name;
 private float preis;

 public Artikel (String name, float preis)
 {
 this.name = name;
 this.preis = preis;
 }
 // Es folgen die Methoden der Klasse
}

Dabei dürfen in einer Datei der Deklaration des Paketnamens allerhöchstens Kom-
mentare vorausgehen. Die Klasse Artikel gehört also zum Paket lagerver-
waltung.

Paketnamen werden konventionsgemäß kleingeschrieben.

Pakete können aus verschiedenen Quellcode-Dateien bestehen.
Eine jede Übersetzungseinheit (Quellcode-Datei), die zu einem Paket
gehört, muss mit derselben Paketdeklaration beginnen. Alle Pro-
grammeinheiten einer Quellcode-Datei gehören auf jeden Fall zum
gleichen Paket. Daraus resultiert, dass es für eine Datei nur eine
einzige Paketdeklaration geben darf.

Enthält eine Datei eine public Klasse, so muss der Dateiname
gleich sein wie der Name der public Klasse. Maximal eine Klasse
einer Quellcode-Datei kann public sein. Soll eine Klasse von
einem anderen Paket aus nutzbar sein, so muss sie public sein. Ist
sie es nicht, so ist sie nur innerhalb ihres eigenen Pakets als Service-
Klasse (Hilfsklasse) verwendbar.

446 Kapitel 12

// Datei: Lager.java
// Der Dateiname muss nicht dem Namen einer Klasse entsprechen,
// sofern keine Klasse in der Datei public ist.

package lagerverwaltung;

class Kunde
{
 private String name;
 private String vorname;
 private int kundennummer;

 public Kunde (String n, String v, int knr)
 {
 name = n;
 vorname = v;
 kundennummer = knr;
 }
 // Es folgen die Methoden der Klasse
}

class Lieferant
{
 private String lieferantenName;
 private int lieferantenNummer;

 public Lieferant (String name, int nummer)
 {
 lieferantenName = name;
 lieferantenNummer = nummer;
 }
 // Es folgen die Methoden der Klasse
}

In diesem Beispiel gehören die Klassen Kunde und Lieferant zum Paket lager-
verwaltung. Keine der beiden Klassen ist public. Dies bedeutet, dass beide
Klassen nur interne Hilfsklassen im Paket lagerverwaltung sind und von Klassen
in anderen Paketen nicht genutzt werden können. Sie können nur von Klassen des
Pakets lagerverwaltung verwendet werden.

Enthält eine Quellcode-Datei keine public Klasse, so kann der Da-
teiname beliebig sein, vorausgesetzt, der Dateiname ist syntaktisch
zulässig.

Ein Paket selbst kann wiederum Pakete enthalten. Zum Beispiel könnte es ein Paket
betriebsverwaltung geben, das die Pakete lagerverwaltung, personal-
verwaltung und finanzverwaltung enthält. Die Deklaration des Paketes la-
gerverwaltung, die als erste Codezeile in jeder Datei stehen muss, die zu diesem
Paket gehört, sieht dann folgendermaßen aus:

package betriebsverwaltung.lagerverwaltung;

Auf diese Art und Weise können beliebig tiefe Pakethierarchien aufgebaut werden.

Pakete 447

12.4 Benutzung von Paketen

Sind die Klassen A und B einem Paket namens paket zugeordnet, so sind diese
Klassen Komponenten des Pakets paket.

Genauso wie die Komponenten von Klassen – die Datenfelder und
Methoden – mit Hilfe des Punktoperators angesprochen werden kön-
nen, können auch die Komponenten von Paketen, also die Klassen –
bzw. Schnittstellen oder Unterpakete – mit Hilfe des Punktoperators
angesprochen werden.

Soll aus einer Klasse C heraus, die nicht Bestandteil des Pakets paket ist, die Klas-
se A des Pakets paket angesprochen werden, so erfolgt dies mit paket.A. In fol-
gendem Beispiel wird in einer Klasse des Pakets kreiseckpaket die Klasse Eck
aus dem Paket eckpaket und die Klasse Kreis aus dem Paket kreispaket ver-
wendet.

// Datei: Kreiseck.java
package kreiseckpaket;

public class Kreiseck
{
 eckpaket.Eck eckRef = new eckpaket.Eck();
 kreispaket.Kreis kreisRef = new kreispaket.Kreis();
}

Die import-Vereinbarung

Stellt man alle Klassen zu Paketen zusammen, so findet man es bald lästig, die
Paketnamen gefolgt von Punktoperator und Klassennamen niederzuschreiben. Um
diese unliebsame Schreibarbeit einzusparen, wird die import-Vereinbarung benutzt.
Die import-Vereinbarung ermöglicht es, dass auf eine Klasse oder eine Schnitt-
stelle in einem anderen Paket, die den Zugriffsmodifikator public besitzt, direkt
über ihren Namen zugegriffen werden kann, ohne dass diesem Namen die Paket-
struktur getrennt durch einen Punkt vorangestellt werden muss.

Mit public deklarierte Klassen können mittels der import-Verein-
barung in anderen Paketen sichtbar gemacht werden.

Die import-Vereinbarung muss hinter der package-Deklaration,
aber vor dem Rest des Programms stehen.

Es können beliebig viele import-Vereinbarungen aufeinanderfolgen. Das oben ge-
zeigte Beispiel der Datei Kreiseck.java wird nun mit Hilfe der import-Verein-
barung realisiert:

448 Kapitel 12

// Datei: Kreiseck.java
package kreiseckpaket;

import kreispaket.*;
import eckpaket.*;

public class Kreiseck
{
 Eck eckRef = new Eck();
 Kreis kreisRef = new Kreis();
}

Mit

import kreispaket.*;100

werden alle public-Klassen und public-Schnittstellen des Pakets kreispaket
importiert. Unterpakete, die in diesem Paket enthalten sind, werden nicht impor-
tiert. Soll nur eine Klasse oder nur eine Schnittstelle importiert werden, so wird der
entsprechende Name hinter dem Punkt angegeben, wie z. B.

import kreispaket.Kreis;

Fallen bei Verwendung von mehreren import-Vereinbarungen jedoch zwei Namen
zusammen, so muss stets der voll qualifizierte Name angegeben werden, um eine
Eindeutigkeit herzustellen.

Ein qualifizierter Name bezeichnet den Namen einer Klasse, der die
Klasse durch Angabe der Paketstruktur gefolgt von einem Punkt und
dem eigentlichen Klassennamen identifiziert.

Natürlich muss es auch eine Möglichkeit geben, die Klassen von Unterpaketen zu
importieren. Dies ist einfach durch die Anwendung des Punktoperators für das ent-
sprechende Unterpaket möglich. Mit

import betriebsverwaltung.lagerverwaltung.*;

werden alle public-Klassen und public-Schnittstellen, die sich im Unterpaket la-
gerverwaltung befinden, importiert.

Richtet man eine Unterpaketstruktur ein, so spiegelt sich diese sowohl
in der Paketdeklaration als auch in der import-Vereinbarung wider.
Will eine Client-Klasse beispielsweise eine Klasse oder Schnittstelle
aus dem Paket mit der Paketdeklaration package betriebs-
verwaltung.lagerverwaltung verwenden, so muss dafür die
import-Vereinbarung import betriebsverwaltung.lagerver-
waltung als Gegenstück in der Client-Klasse angeschrieben werden.

100 Das Sternchen * stellt eine so genannte Wildcard dar. An die Stelle der Wildcard kann jeder belie-

bige Bezeichner treten.

Pakete 449

Die import-Vereinbarung ist für den Programmablauf nicht unbedingt nötig, sie
kann dem Programmierer aber viel Schreibarbeit ersparen. Es gibt sogar einen Fall,
bei dem der Compiler die Schreibarbeit für die import-Vereinbarung übernimmt:

Das Paket java.lang aus der Java-API wird automatisch in jede
Quellcode-Datei importiert.

Static Imports

Seit dem JDK 5.0 gibt es zusätzlich die so genannten Static Imports. Bisher war es
nur möglich, public Klassen oder Schnittstellen aus anderen Paketen zu impor-
tieren. Wurden Klassenmethoden oder -variablen aus anderen Klassen benötigt, so
mussten diese Klassen importiert oder die entsprechenden statischen Elemente über
den Klassennamen qualifiziert werden.

Die normale import-Vereinbarung erlaubt es, direkt Klassen oder
Schnittstellen zu verwenden, ohne ihren Namen durch die Angabe des
Paket-Pfades qualifizieren zu müssen.

Oftmals werden Hilfsmethoden als Klassenmethoden von der Klassenbibliothek zur
Verfügung gestellt. So enthält beispielsweise die Java-Klasse java.lang.Math
eine ganze Reihe von Klassenmethoden für die Berechnung mathematischer Funk-
tionen. In der Vergangenheit musste dabei stets der Klassenname mit angegeben
werden, wenn man eine solche Klassenmethode einsetzte. Hierfür ein Beispiel:

class A
{

 double wert = 3.;
 // Berechnung der Quadratwurzel aus 3.
 double quadratWurzelAusWert = Math.sqrt (wert);

}

Dieses Beispiel kann mit Hilfe der static import-Vereinbarung nun so geschrie-
ben werden, dass sqrt() ohne den qualifizierenden Zugriff im Programm verwendet
werden kann:

import static java.lang.Math.sqrt;

class A
{

 double wert = 3.0;
 double quadratWurzelAusWert = sqrt (wert);

}

450 Kapitel 12

Die static import-Vereinbarung erlaubt es, direkt Klassenvariable
oder Klassenmethoden zu verwenden, ohne sie durch die Angabe des
Klassennamens qualifizieren zu müssen.

Das Importieren statischer Klassenelemente geschieht mit folgender
Syntax:

import static paketname.Klassenname.statElement;

oder

import static paketname.Klassenname.*;

Die erste Variante importiert nur ein einzelnes statisches Element der Klasse Klas-
senname. Die zweite Version importiert dagegen alle Klassenmethoden und Klas-
senvariablen der Klasse Klassenname. Anschließend können die statischen Ele-
mente ohne weitere Qualifizierung durch den Klassennamen verwendet werden.

Allerdings sollte man mit dem Gebrauch von Static Imports vorsichtig und sparsam
sein. Werden zu viele statische Elemente importiert, dann lässt sich nach einiger Zeit
nicht mehr nachvollziehen, woher diese Elemente stammen und der Quellcode wird
unleserlich.

12.5 Paketnamen

12.5.1 Paketnamen und Verzeichnisstruktur

Die Paketstruktur in Java wird in die Verzeichnisstruktur des Rechners umgesetzt.
Dabei müssen alle class-Dateien, die zu einem Paket gehören, in einem Ver-
zeichnis liegen, dessen Name identisch mit dem Paketnamen ist.

Im Folgenden wird also davon ausgegangen, dass der Paketnamen mit dem Ver-
zeichnisnamen identisch ist. Da ein Verzeichnisname einen Knoten in einem Pfad
darstellt (siehe Bild 12-3), muss zum Zugriff auf ein Paket der ganze Pfad bekannt
sein. In Java dient dazu der so genannte CLASSPATH. Der CLASSPATH enthält den
Pfad eines Verzeichnisses wie z. B.:

C:\projekte\projekt1\classes (absoluter Pfadname)

Der CLASSPATH ist eine Umgebungsvariable, die dem Compiler und
dem Interpreter sagt, wo diese nach Quellcode- und Bytecode-Da-
teien suchen sollen.

Pakete 451

projekte

projekt1 projekt2

classes doc src

C:\

paket1 paket2

Klasse1 Klasse2 sub1 sub2

Klasse3
Bild 12-3 Verzeichnisstruktur mit Dateien im Dateisystem101

Es ist auch möglich, ohne CLASSPATH zu arbeiten, wenn nur Klassen benutzt wer-
den, die sich in einem Paket-Hierarchiebaum unterhalb des aktuellen Verzeichnisses
befinden. Wenn jedoch mit mehreren Pakethierarchien in unterschiedlichen Ver-
zeichnissen gearbeitet wird, die sich eventuell auch noch wechselseitig benutzen, ist
es erforderlich, den CLASSPATH entweder explizit oder mit Hilfe von Parametern
beim Aufruf der Werkzeuge zu setzen (siehe Kap. 3.5.1).

Wird beispielsweise der CLASSPATH auf C:\projekte\projekt1\classes ge-
setzt, so wird nach Klassen in den Paketen unterhalb dieses Verzeichnisses gesucht.
Soll folglich aus einem beliebigen Verzeichnis heraus – beispielsweise aus dem
Verzeichnis C:\test – die Klasse Klasse1 (siehe Bild 12-3) vom Interpreter
gestartet werden (Voraussetzung ist natürlich, dass Klasse1 eine main()-Methode
enthält), so geschieht dies mit dem Aufruf:

java paket1.Klasse1

Der Weg, den der Interpreter gehen muss, um zur Klasse zu finden, wird durch zwei
Teile bestimmt:

C:\projekte\projekt1\classes\paket1

 CLASSPATH Paketnamen

Fehlt einer der Teile, kann der Interpreter bzw. der Compiler die Klasse nicht finden.
Beachten Sie bitte, dass paket1 im Betriebssystem ebenfalls ein Verzeichnis dar-
stellt. Dieses Verzeichnis ist im Kontext der Klasse Klasse1 mit der Semantik "Pa-
ket" belegt.

Um eine Klasse, die zu einem Paket gehört, zu kompilieren, ist leider eine andere
Notation als beim Aufruf des Interpreters notwendig. Ist in obigem Beispiel das aktu-

101 Verzeichnisse sind abgerundet, Dateien rechteckig gezeichnet.

452 Kapitel 12

elle Verzeichnis ein anderes Verzeichnis als das Verzeichnis paket1, so wird der
Compiler mit der Angabe von javac paket1\Klasse1.java aufgerufen. Dann
wird über den CLASSPATH und den Paketnamen paket1 auf Klasse1.java zuge-
griffen. Nur wenn das aktuelle Verzeichnis paket1 selbst ist, kann man die Klasse
Klasse1 auch mit dem Aufruf javac Klasse1.java kompilieren.

Eine Klasse Klasse1 innerhalb eines Paketes paket1 kann kompi-
liert werden durch den Aufruf:

javac paket1\Klasse1.java

Diese Klasse Klasse1 kann gestartet werden durch den Aufruf:

java paket1.Klasse1

Diese beiden Aufrufmöglichkeiten setzen voraus, dass entweder der CLASSPATH auf
das Verzeichnis C:\projekte\projekt1\classes gesetzt ist, oder dass der Auf-
ruf im Verzeichnis C:\projekte\projekt1\classes selbst erfolgt.

Des Weiteren ist zu beachten, dass

• die Verzeichnisnamen den Paketnamen entsprechen,
• Paketnamen konventionsgemäß stets vollständig kleingeschrieben

werden, auch bei zusammengesetzten Namen,
• jedes Unterpaket ein Unterverzeichnis darstellt.

Es gibt noch eine weitere Möglichkeit, den Compiler javac bzw. den Interpreter
java aufzurufen, ohne die Umgebungsvariable CLASSPATH explizit zu setzen. Und
zwar ist für beide Programme die Option classpath definiert. Wird beispielsweise
die obige Verzeichnisstruktur C:\projekte\projekt1\classes zugrunde gelegt,
in der sich das Paket paket1 mit der Datei Klasse1.class befindet, so kann die
Klasse Klasse1 vom Interpreter aus jedem beliebigen Verzeichnis heraus auch
folgendermaßen gestartet werden:

java –classpath C:\projekte\projekt1\classes; paket1.Klasse1

Der vollständige Paketname ist vom CLASSPATH aus anzugeben. Ein vollständiger
Paketname setzt sich aus den einzelnen Paketnamen, die den Verzeichnisnamen
entsprechen, zusammen. Für die Angabe eines vollständigen Paketnamens bei ge-
schachtelten Pakethierarchien werden die Unterpakete von den übergeordneten
Paketen durch Punkte getrennt. Der vollständige Paketnamen des Paketes sub1
ist somit paket1.sub1. Der Zugriff auf eine Klasse muss immer über den vollständi-
gen Paketnamen erfolgen. Auf die Klasse Klasse3 kann entsprechend mit pa-
ket1.sub1.Klasse3 zugegriffen werden.

Für die Bezeichner eines Verzeichnisses oder einer Datei gelten dieselben Ein-
schränkungen wie bei Variablennamen.

Pakete 453

Es ist möglich, im CLASSPATH auch mehrere Suchpfade anzugeben.
Die Suchpfade müssen durch ein Semikolon ; voneinander getrennt
werden. Insbesondere beim Aufruf des Compilers javac oder des In-
terpreters java mit der Option classpath muss der letzte Suchpfad
mit einem Semikolon abschließen. Bei einer import-Vereinbarung
sucht der Compiler nach den Paketen in den Verzeichnissen der ver-
schiedenen Alternativen des CLASSPATH.

So wird beispielsweise bei

CLASSPATH=D:\projekte\projekt1\classes;C:\weitereKlassen;

nach Klassen sowohl in dem Verzeichnis D:\projekte\projekt1\classes, als
auch im Verzeichnis C:\weitereKlassen gesucht. Alle Klassen, die sich im ak-
tuellen Verzeichnis befinden, also in dem Verzeichnis, von dem aus der Compiler
oder Interpreter aufgerufen wird, werden automatisch dem CLASSPATH hinzugefügt.
Das aktuelle Arbeitsverzeichnis wird durch einen Punkt . symbolisiert. Die Angabe
von .. würde für ein übergeordnetes Verzeichnis stehen, ausgehend von der
Position im Verzeichnisbaum, wo der Compiler oder der Interpreter gestartet wird.

Die Klassen der Java Standard Edition sind in speziellen Java-spezifischen Archiv-
dateien enthalten. Diese Dateien besitzen die Endung jar. Die jar-Dateien, welche
die Klassen der Java-Klassenbibliothek der Standard Edition enthalten, sind im Ver-
zeichnis

<JAVA_HOME>\jre\lib

untergebracht, wobei <JAVA_HOME> durch das Installationsverzeichnis des JDK er-
setzt werden muss – beispielsweise durch C:\Programme\Java\jdk1.6.0_21102.
In diesem Verzeichnis befinden sich die Dateien rt.jar, jse.jar und jsse.jar.
Diese drei Dateien enthalten alle Klassen und Schnittstellen der Java Standard
Edition. Wird der Compiler aufgerufen, so gehören diese drei Dateien automatisch
dem Suchpfad an. Das heißt, die darin enthaltenen Klassen und Schnittstellen kön-
nen in selbst geschriebenen Klassen verwendet werden. Sie müssen nur durch
entsprechende import-Vereinbarungen wie z. B.

import java.util.*; // Importiert alle Klassen dieses Pakets

innerhalb der eigenen Klasse bekannt gemacht werden.

Soll eine jar-Datei zum Suchpfad – entweder über die Umgebungsvariable CLASS-
PATH oder über die Option classpath des Compilers javac oder des Interpreters
java – hinzugefügt werden, so muss ihr ganzer Pfad mit angegeben werden. Sollen
z. B. die jar-Dateien a.jar und b.jar im Verzeichnis C:\test zum CLASSPATH
hinzugefügt werden, so muss

CLASSPATH=C:\test\a.jar;C:\test\b.jar;

102 Für Java 7 wird das Installationsverzeichnis entsprechend C:\Programme\Java\jdk1.7.0_xx

heißen. Wobei xx für die aktuelle Update-Version steht.

454 Kapitel 12

angeschrieben werden. Es dürfen also keine Wildcards wie C:\test*.jar ver-
wendet werden. Achten Sie bitte darauf, dass auch hierbei die einzelnen jar-Da-
teien durch ein Semikolon getrennt sind und die letzte jar-Datei ebenfalls mit einem
Semikolon abschließt.

12.5.2 Eindeutige Paketnamen

Möchte man seine Pakete nicht nur selbst verwenden, sondern sie einem größeren
Benutzerkreis zur Verfügung stellen, so sollte man sich um eindeutige Paketnamen
bemühen. Um weltweit eindeutige Paketnamen zu erhalten, macht man sich die In-
ternet-Domain-Namen, die eine weltweite Eindeutigkeit garantieren, zu Nutze. Dies
bedeutet aber nicht, dass es möglich ist, über den Internet-Domain-Namen auf
Klassen zuzugreifen, die auf dem entsprechenden Rechner im Internet liegen. Möch-
te man also für seine Programme eindeutige Paketnamen haben, so sollte man die
folgende Konvention verwenden: Der Internet-Domain-Name ist in umgekehrter
Reihenfolge vor den Rest des Namens zu stellen. Das heißt, aus dem Domain-
Namen sun.com wird der Paket-Name com.sun.

12.5.3 Anonyme Pakete

Wird in einer Übersetzungseinheit – das heißt einer Quellcode-Datei – kein Paket-
name deklariert, so gehört diese Übersetzungseinheit zu einem anonymen oder
unbenannten Paket. Alle Klassen einer solchen Quellcode-Datei gehören also zu
einem anonymen Paket. Alle Dateien, die sich innerhalb desselben Verzeichnisses
befinden und die nicht explizit einem Paket zugeordnet wurden, gehören dann
automatisch zum gleichen anonymen Paket.

Dies ist vor allem bei kleinen Testprogrammen sinnvoll, da man sich dann nicht um
Pakete kümmern muss. Bei größeren Projekten sollte man sich jedoch auf jeden Fall
über die Aufteilung der Anwendung in Pakete Gedanken machen.

12.6 Gültigkeitsbereich von Klassennamen

Das folgende Beispiel demonstriert, dass sich der Gültigkeitsbereich eines Klas-
sennamens auf das ganze Paket erstreckt. Ein eingeführter Klassenname gilt also
automatisch an jeder Stelle in allen Dateien, die zum selben Paket gehören. Die
Klasse Zensur, die am Ende der Datei1.java definiert wird, kann in dieser Datei
bereits vor deren Definition verwendet werden. Ebenso kann sie in der Datei Da-
tei2.java, die zum selben Paket gehört, problemlos benutzt werden.

Beachten Sie, dass keine der Klassen als public deklariert wird. Daher können die
Dateinamen frei gewählt werden. Datei1.java enthält zwei Klassen, die Klasse
Student und die Klasse Zensur, Datei2.java enthält die Klasse Schueler. Die
Klassen Student und Schueler enthalten jeweils eine Methode main() zum
Ausdrucken von Zeugnissen.

Pakete 455

// Datei: Datei1.java

package personen;

class Student
{
 public String name;
 public String vorname;
 public int matrikelnummer;
 public Zensur[] zensuren;

 public Student (String name, String vorname,
 int matrikelnummer, Zensur[] zensuren)
 {
 this.name = name;
 this.vorname = vorname;
 this.matrikelnummer = matrikelnummer;
 this.zensuren = zensuren;
 }

 public void print()
 {
 System.out.println ("Name : " + name);
 System.out.println ("Vorname : " + vorname);
 System.out.println ("Matr. Nr : " + matrikelnummer);

 for (int i = 0; i < zensuren.length; i++)
 {
 System.out.println (zensuren [i].fach +
 " : " + zensuren [i].note);
 }
 }

 public static void main (String[] args)
 {
 Zensur[] z = new Zensur [2];
 z [0] = new Zensur ("Mathe ", 1.2f);
 z [1] = new Zensur ("Java ", 1.0f);
 Student s = new Student ("Heinz", "Becker", 123456, z);

 s.print();
 }
}

class Zensur
{
 public String fach;
 public float note;

 public Zensur (String f, float n)
 {
 fach = f;
 note = n;
 }
}

456 Kapitel 12

Die Ausgabe des Programms ist:

Name : Heinz
Vorname : Becker
Matr. Nr : 123456
Mathe : 1.2
Java : 1.0

// Datei: Datei2.java

package personen;

class Schueler
{
 public String name;
 public String vorname;
 public Zensur[] zensuren;

 public Schueler (String name, String vorname, Zensur[] zensuren)
 {
 this.name = name;
 this.vorname = vorname;
 this.zensuren = zensuren;
 }

 public void print()
 {
 System.out.println ("Name : " + name);
 System.out.println ("Vorname : " + vorname);

 for (int i = 0; i < zensuren.length; i++)
 {
 System.out.println (zensuren [i].fach +
 " : " + zensuren [i].note);
 }
 }

 public static void main (String [] args)
 {
 Zensur[] z = new Zensur [2];
 z[0] = new Zensur ("Mathe ", 1.2f);
 z[1] = new Zensur ("Deutsch ", 2.0f);
 Schueler s = new Schueler ("Brang", "Rainer", z);
 s.print();
 }
}

Die Ausgabe des Programms ist:

Name : Brang
Vorname : Rainer
Mathe : 1.2
Deutsch : 2.0

Pakete 457

Der Gültigkeitsbereich eines Klassennamens erstreckt sich über alle
Dateien eines Pakets. Der Compiler geht in Java mehrfach über den
Quellcode, bis er alle Klassendeklarationen gefunden hat.

12.7 Zugriffsmodifikatoren

Pakete entsprechen Verzeichnissen. Natürlich können Verzeichnisse – und damit die
Pakete – für bestimmte Nutzergruppen durch Mittel des Betriebssystems gesperrt
sein. Im Folgenden wird davon ausgegangen, dass keine Sperrung durch Mittel des
Betriebssystems erfolgt.

Zur Regelung des Zugriffsschutzes in Java gibt es die Zugriffsmodi-
fikatoren (Schlüsselwörter) public, protected und private.

Ohne Zugriffsmodifikator ist der Zugriffsschutz default (friendly).
Beachten Sie, dass default (bzw. friendly) kein Schlüsselwort von
Java ist.

Während für Methoden, Datenfelder und Konstruktoren alle Zugriffsmodifikatoren –
und auch das Weglassen eines Zugriffsmodifikators – erlaubt sind, kommen für
Klassen103 und Schnittstellen nur public oder default in Frage. In den nächsten
Kapiteln werden alle Fälle detailliert diskutiert.

12.7.1 Zugriffsschutz für Klassen und Schnittstellen

Zum Zugriff auf Klassen und Schnittstellen in einem Paket gibt es für
den Zugriffsschutz nur die beiden Möglichkeiten:

• default (friendly)

• oder public.

Eine Klasse oder Schnittstelle in einem Paket ist für Klassen bzw. Schnittstellen aus
anderen Paketen nur sichtbar und kann damit beispielsweise durch import er-
reicht werden – wenn sie mit dem Zugriffsmodifikator public versehen ist. Ist der
Zugriffsschutz einer Klasse oder Schnittstelle default, so ist sie nur für Klassen
bzw. Schnittstellen desselben Paketes sichtbar.

Selbst in Unterpaketen ist eine Klasse oder Schnittstelle, die den Zugriffsschutz
default hat, nicht sichtbar. Das folgende Beispiel demonstriert die Sichtbarkeit von
Klassen in Paketen:

103 Anders sieht es bei Elementklassen, die geschachtelte Klassen (siehe Kap. 15) darstellen, aus.

458 Kapitel 12

// Datei: Artikel.java

package lagerverwaltung;

public class Artikel
{

}

// Diese Klasse hat den Zugriffsschutz default
class Lieferant
{

}

// Datei: Materialabrechnung.java

package abrechnung;

import lagerverwaltung.Artikel;
//import lagerverwaltung.Lieferant; // Fehler, da nicht public

public class Materialabrechnung
{

}

12.7.2 Zugriffsschutz für Methoden und Datenfelder

Für ein Datenfeld und eine Methode einer Klasse gibt es den Zu-
griffsschutz:

• default (friendly),

• public,

• protected

• und private.

Alle Datenfelder und Methoden innerhalb einer Schnittstelle (siehe
Kap. 14) sind dagegen implizit public. Werden sie explizit auf pri-
vate bzw. protected gesetzt, so resultiert ein Kompilierfehler.

Der Zugriffsschutz von Datenfeldern und Methoden wird anhand von Bild 12-4 erläu-
tert. Dabei wird gezeigt werden, dass mit dem Zugriffsmodifikator private ge-
schützte Datenfelder und Methoden einer Klasse den größten Zugriffsschutz besit-
zen, danach folgen default, protected und public. Für die Diskussion wird ange-
nommen, dass die Klasse A public ist, sodass aus anderen Paketen auf sie zuge-
griffen werden kann.

Pakete 459

 Paket x Paket y

B

A
D

C
E

Bild 12-4 Anordnung der Klassen in Paketen

Die Klasse A im Paket y soll Datenfelder oder Methoden haben, die als Diskussions-
grundlage zuerst den Zugriffsschutz private haben sollen, dann default, danach
protected und zum Schluss public.

Unabhängig davon, ob Instanzvariable und Instanzmethoden oder
Klassenvariable und Klassenmethoden betrachtet werden, der Zu-
griffsschutz bleibt der Gleiche, da der Zugriffsschutz in der Sprache
Java klassenbezogen und nicht objektbezogen implementiert ist.

Deshalb wird im weiteren Verlauf nur noch von Datenfeldern und Methoden gespro-
chen.

Im Folgenden werden die vier verschiedenen Möglichkeiten für den Zugriffsschutz
einzeln diskutiert:

Zugriffsmodifikator private

Auf Datenfelder oder Methoden, die mit dem Zugriffsmodifikator private geschützt
sind, kann innerhalb der Klassendefinition, in der sie definiert sind, zugegriffen
werden. Das bedeutet, dass folgender Zugriff erlaubt ist104:

public class Punkt
{
 private int x;

 public void tausche (Punkt p)
 {
 int help = p.x;
 p.x = x;
 x = help;
 }
}

Wird die Paketstruktur aus Bild 12-4 zugrunde gelegt, so kann aus keiner der Klas-
sen B, C, D oder E auf die privaten Datenfelder und Methoden der Klasse A zuge-
griffen werden. Beachten Sie, dass in den folgenden Bildern ein gestrichelter Pfeil
mit einem Blitz einen verwehrten Zugriff symbolisiert.

104 Es gibt auch objektorientierte Programmiersprachen, bei denen der Zugriffsschutz objektbezogen

ist. Dann würde das obige Beispiel nicht funktionieren, da dann jedes einzelne Objekt wirklich nur
auf seine eigenen Datenfelder und Methoden mit der this-Referenz zugreifen kann.

460 Kapitel 12

private

B

A
D

C
E

Paket x Paket y

Bild 12-5 Zugriff auf private Datenfelder und Methoden

Zugriffsschutz default

Auf Datenfelder und Methoden, die den Zugriffsschutz default haben, kann aus Klas-
sen heraus, die im gleichen Paket liegen, zugegriffen werden. Der Zugriffsschutz
gegenüber den mit private geschützten Datenfeldern und Methoden wird aufge-
weicht um die Zugriffsmöglichkeit von allen Klassen im gleichen Paket.

 Paket x Paket y

default

B

A
D

C
E

Bild 12-6 Zugriff auf default Datenfelder und Methoden

Zugriffsmodifikator protected

Auf Datenfelder und Methoden, die den Zugriffsschutz protected haben, besteht
ein erweiterter Zugriff gegenüber Datenfeldern und Methoden mit dem Zugriffsschutz
default. Auf solche Datenfelder und Methoden kann aus allen Klassen im gleichen
Paket zugegriffen werden, und zusätzlich können Subklassen in anderen Paketen
auf die von der Vaterklasse ererbten Datenfelder und Methoden zugreifen. Beding-
ung ist allerdings, dass auf die eigenen ererbten Datenfelder und Methoden
zugegriffen wird und nicht z. B. in der Subklasse E ein neues Objekt der Klasse A
angelegt wird und dann versucht wird, auf die protected Datenfelder und Metho-
den des neu angelegten Objektes zuzugreifen. Definiert die Klasse A z. B. eine
print()-Methode mit dem Zugriffsmodifikator protected, so ist der Aufruf der
Methode print() in den folgenden Anweisungen im Quellcode der Klasse E nicht
zulässig:

A refA = new A();
refA.print();

Innerhalb der Klassendefinition von E kann aber auf die von der Vaterklasse A geerb-
te Methode print() zugegriffen werden. So kann an jeder Stelle im Programmcode
der Klasse E, an der es erlaubt ist, eine Methode aufzurufen, die Anweisung
print(); stehen.

Pakete 461

 Paket x Paket y

B

protected

A
D

C
E

Bild 12-7 Zugriff auf protected Datenfelder und Methoden

Zugriffsmodifikator public

Datenfelder und Methoden, die den Zugriffsmodifikator public besitzen, haben kei-
nen Zugriffsschutz mehr. Auf solche Datenfelder und Methoden kann von allen
Klassen aus zugegriffen werden.

 Paket x Paket y

public

B

A
D

C
E

Bild 12-8 Zugriff auf public Datenfelder und Methoden

Das folgende Bild stellt den Zugriff auf Datenfelder und Methoden in einem Kreis dar:

private

protected default

public

Datenfeld oder
Methode einer

Klasse

 eigene Klasse

eigene Klasse

Klassen im
selben Paket

eigene Klasse
Klassen im
selben Paket

Sohnklassen in
anderen Paketen auf
geerbte Datenfelder
und Methoden

eigene Klasse

Klassen im
selben Paket

Sohnklassen in
anderen Paketen auf
geerbte Datenfelder
und Methoden

Klassen in
anderen Paketen

Bild 12-9 Zugriff auf die Datenfelder und Methoden einer Klasse bzw. eines Objektes

462 Kapitel 12

Die folgende Tabelle fasst den Zugriffsschutz bei den unterschiedlichen Zugriffsmodi-
fikatoren zusammen. Dabei werden die Zugriffsmöglichkeiten der Klassen A, B, C, D
und E aus Bild 12-4 auf Datenfelder und Methoden der Klasse A betrachtet.

 hat Zugriff
 auf

private
Datenfelder und

Methoden

default
Datenfelder und

Methoden

protected
Datenfelder und

Methoden

public
Datenfelder

und Methoden
Klasse A selbst

Ja Ja Ja Ja

Klasse B
gleiches Paket

Nein Ja Ja Ja

Subklasse C
gleiches Paket

Nein Ja Ja Ja

Subklasse E
anderes Paket

Nein Nein Ja/Nein Ja

Klasse D
anderes Paket

Nein Nein Nein Ja

Tabelle 12-1 Zugriff auf Datenfelder und Methoden der Klasse A105

Die Subklasse E hat nur Zugriff auf die geerbten Datenfelder und Methoden der
Klasse A. Wird ein neues Objekt der Klasse A in E angelegt, so darf auf die pro-
tected Datenfelder und Methoden dieses Objektes nicht zugriffen werden. Man
kann es auch einfach aus dem Gesichtspunkt betrachten, dass wenn E die Klasse A
nicht im Sinne einer Vererbungsbeziehung benutzt – und das ist der Fall, wenn ein
neues Objekt von A in E angelegt wird –, dass dann die Klasse E dieselben Zugriffs-
möglichkeiten wie die Klasse D hat.

Bis auf protected ist der Zugriffsschutz gleich, egal ob auf geerbte
Datenfelder und Methoden zugegriffen wird, oder ob in der ent-
sprechenden Klasse ein neues Objekt der Klasse A angelegt wird und
auf dessen Datenfelder und Methoden zugegriffen wird.

12.7.3 Zugriffsschutz für Konstruktoren

Stellt eine Klasse keinen Konstruktor mit dem Zugriffsmodifikator public bereit, son-
dern einen Konstruktor ohne Zugriffsmodifikator, so ist der Konstruktor nur von
Klassen innerhalb des eigenen Pakets aufrufbar. So kann im folgenden Beispiel der
Konstruktor Student (String n, String v, int nummer) nur von Klassen
im Paket hochschule aufgerufen werden:

// Datei: Student.java
package hochschule;
public class Student
{
 private String name;
 private String vorname;
 private int matrikelnummer;

105 Die Klasse A hat natürlich den Zugriffsmodifikator public (public class A{ . . .}),

damit der Zugriff auf die Klasse aus anderen Paketen möglich ist.

Pakete 463

 Student (String n, String v, int nummer)
 {
 name = n;
 vorname = v;
 matrikelnummer = nummer;
 }
}

Mit anderen Worten, hier ist es nur von Klassen innerhalb des Pakets hochschule
aus möglich, Instanzen von der Klasse Student zu schaffen.

Stellt eine Klasse Konstruktoren mit dem Zugriffsmodifikator protected zur Verfü-
gung, so können von allen Klassen aus, die im selben Paket liegen, Objekte erzeugt
werden. Abgeleitete Klassen in anderen Paketen können keine Objekte erzeugen,
können aber den Konstruktor der Vaterklasse mit Hilfe von super() aufrufen.

Werden alle Konstruktoren einer Klasse für private erklärt, so kann von keiner an-
deren Klasse aus ein Objekt dieser Klasse erzeugt werden. Nur innerhalb der Klasse
selbst ist es noch möglich, Objekte dieser Klasse zu erzeugen. Diese Verhaltens-
weise wurde in Kapitel 10.5.2 dazu benutzt, um sicherzustellen, dass nur eine ein-
zige Instanz einer Klasse erzeugt wird. Werden dagegen die Konstruktoren einer
Klasse public gemacht, so kann von allen beliebigen Klassen aus ein Objekt dieser
Klasse erzeugt werden.

Wird überhaupt kein Konstruktor zur Verfügung gestellt, so exi-
stiert der vom Compiler zur Verfügung gestellte voreingestellte
Default-Konstruktor. Dieser Konstruktor hat den Zugriffsschutz der
Klasse. Ist die Klasse public, so ist auch der voreingestellte De-
fault-Konstruktor public. Ist die Klasse default, so ist auch der
voreingestellte Default-Konstruktor default.

12.7.4 Zugriffsmodifikatoren beim Überschreiben von Methoden

Man darf die Zugriffsmodifikatoren einer überschriebenen Methode nicht einschrän-
ken, sondern nur erweitern. Man darf also zum Beispiel eine protected-Methode
als protected oder public redefinieren, eine public-Methode aber nur als
public.

Zugriffsmodifikatoren in der
Superklasse

Zugriffsmodifikatoren in der
Subklasse

private Kein Überschreiben möglich, aber
neue Definition im Sohn.

default default
protected
public

protected protected
public

public public

Tabelle 12-2 Zugriffsmodifikatoren beim Überschreiben von Methoden

464 Kapitel 12

Der Grund für dieses Verhalten ist bereits in Kapitel 11.5.2 angesprochen worden.
Würde man die Zugriffsrechte beim Überschreiben einer Methode einschränken, so
könnte nicht an jeder Stelle, an der ein Vater verlangt wird, ein Sohn stehen – der
Vertrag der Klasse wäre verletzt, da die Vorbedingung verschärft wurde. Bei Metho-
den, die als private deklariert sind, kann kein Überschreiben stattfinden, da sie
zwar vererbt werden, aber im Code, der für den Sohn geschrieben wurde, nicht sicht-
bar sind.

12.8 Übungen

Aufgabe 12.1: Einfache Paketstruktur

Vervollständigen Sie die Klasse Person, die in einem Paket pers liegen soll und die
Klasse Student, die im Paket studi liegen soll. Die Klasse Student soll von der
Klasse Person abgeleitet sein. Vervollständigen Sie die Klasse Test, die je ein Ob-
jekt der Klassen Person und Student erzeugt und die Datenfelder dieser Objekte
ausgibt. Die Klasse Test liegt im aktuellen Arbeitsverzeichnis. Welche Verzeichnisse
müssen Sie einrichten? Wie lauten die Dateinamen Ihrer Programme in den Ver-
zeichnissen?

// Datei: Person.java
.
import java.util.*;

public class Person
{
 private String name;
 private String vorname;

 public Person()
 {
 Scanner eingabe = new Scanner (System.in);
 System.out.print ("Geben Sie den Nachnamen ein: ");
 name = eingabe.next();

 System.out.print ("Geben Sie den Vornamen ein: ");
 vorname = eingabe.next();
 }

 public void print()
 {
 System.out.println ("Nachname: " + name);
 System.out.println ("Vorname: " + vorname);
 }
}

// Datei: Student.java
.
.
import java.util.*;

public class Student
{

Pakete 465

 private String matrikelnummer;

 public Student()
 {
 super();

 Scanner eingabe = new Scanner (System.in);
 System.out.print ("Geben Sie die Matrikelnummer ein: ");
 matrikelnummer = eingabe.next();
 System.out.println();
 }

 public void print()
 {

 System.out.println ("Matrikelnummer: " + matrikelnummer);
 }
}

// Datei: Test.java

.
.
public class Test
{
 public static void main (String args[])
 {
 System.out.println ("Start des Programms");
 System.out.println();
 System.out.println ("Person erzeugen");

 System.out.println();
 System.out.println ("Student erzeugen");

 System.out.println();
 System.out.println ("Ausgabe Person");

 System.out.println();
 System.out.println ("Ausgabe Student");

 }
}

Aufgabe 12.2: Struktur mit Unterpaketen

Die einfache Paketstruktur aus Aufgabe 12.1 soll wie folgt erweitert werden: Erstellen
Sie im Paket pers das Unterpaket prof. Dieses enthält die Klasse Professor,
welche von der Klasse Person abgeleitet wird. Ein Objekt der Klasse Professor
erzeugt dabei eine Instanz der Klasse Student. Erweitern Sie die Klasse Test, um
Ihre neue Klasse Professor zu testen.

// Datei: Professor.java

package;

import java.util.*;

466 Kapitel 12

import;
import;

public class Professor
{
 private String fb;
 private Student stud;

 public Professor()
 {
 super();
 Scanner eingabe = new Scanner (System.in);
 System.out.print ("Geben Sie den Fachbereich ein: ");
 fb = eingabe.next();
 System.out.println();
 System.out.println ("Professor erstellt Student");
 stud = new Student();
 }

 public void print()
 {
 // Ausgabe der geerbten Instanzvariablen

 System.out.println ("Fachbereich: " + fb);
 System.out.println ("Ausgabe des Studenten");

 }
}

Aufgabe 12.3: Messwerte

Es sollen mehrere Klassen geschrieben werden, um Messwerte zu speichern und
auszugeben. Entwickeln Sie die Klassen Messwert, Messreihe und Tempera-
turMessreihe.

Die Klasse Messwert soll folgende Kriterien erfüllen:
• Eine Klassenvariable anzahlMesswerte vom Typ int soll die Anzahl der Mess-

werte festhalten.
• Die Klasse soll die Datenfelder wert vom Typ double, messDatum vom Typ
GregorianCalendar sowie messwertID vom Typ int enthalten.

• Die Klasse soll sich im Paket messdaten befinden.
• Es dürfen nur Klassen im selben Paket auf die Klasse Messwert zugreifen und

sie verwenden.
• Der Konstruktor soll nur für Klassen im Paket messdaten aufrufbar sein. Der Kon-

struktor soll als Übergabeparameter messwert vom Typ double und messDatum
vom Typ GregorianCalendar erwarten.

Folgende Methoden sollen implementiert werden:
• double getWert()

• GregorianCalendar getMessDatum()

• int getMesswertID()

Pakete 467

Die Klasse Messreihe befindet sich ebenfalls im Paket messdaten, soll aber von
Klassen in anderen Paketen verwendet werden können. Die Klasse erhält folgende
Datenfelder und Methoden:
• protected Messwert[] messwerte
 Die Messwerte werden in diesem Array gespeichert.
• public Messreihe (int messwertAnzahl)
 Dem Konstruktor wird die Größe des Messwert-Arrays übergeben.
• public void addMesswert (double messwert,
 GregorianCalendar datum)
 Fügt dem Array ein neues Messwert/Datum-Paar hinzu.
• public double getMesswert (GregorianCalendar datum)
 Ermittelt den Messwert, der zum übergebenen Datum gehört.
• public void print()
 Gibt alle gespeicherten Messwerte auf der Konsole aus.

Die Klasse TemperaturMessreihe wird von der Klasse Messreihe abgeleitet und
befindet sich im Paket temperaturmessung. Sie soll folgende Datenfelder und Me-
thoden erhalten:
• private String temperaturEinheit

Gibt die verwendete Temperaturskala an, z. B. °C.
• public TemperaturMessreihe (int messwertAnzahl,
 String temperaturEinheit)

Der Konstruktor soll die Anzahl der zu speichernden Messwerte und die zu ver-
wendende Temperaturskala entgegennehmen.

• public void print()
Die Methode soll die verwendete Temperaturskala (z. B. °C) und alle gespeicher-
ten Messwerte auf der Konsole ausgeben.

• public static double CelsiusToFahrenheit (double celsiusTemp)
Die Methode konvertiert eine Temperaturangabe von Celsius nach Fahrenheit.

Die entwickelten Klassen können mit folgender Testklasse, die sich im Default-Paket
befindet, getestet werden.

// Datei: TestMesswerte.java

import temperaturmessung.TemperaturMessreihe;
import java.util.GregorianCalendar;

public class TestMesswerte
{
 public static void main (String[] args)
 {
 double fahrenheit;
 TemperaturMessreihe temperaturMessungen =
 new TemperaturMessreihe (5, "°C");

 GregorianCalendar datum1 = new GregorianCalendar (2000,5,10);
 temperaturMessungen.addMesswert (25.3, datum1);

468 Kapitel 12

 GregorianCalendar datum2 = new GregorianCalendar (2001,5,10);
 temperaturMessungen.addMesswert (23.0, datum2);

 GregorianCalendar datum3 = new GregorianCalendar (2002,5,10);
 temperaturMessungen.addMesswert (18.4, datum3);

 GregorianCalendar datum4 = new GregorianCalendar (2003,5,10);
 temperaturMessungen.addMesswert (26.9, datum4);

 GregorianCalendar datum5 = new GregorianCalendar (2004,5,10);
 temperaturMessungen.addMesswert (28.0, datum5);

 fahrenheit = TemperaturMessreihe.CelsiusToFahrenheit (25.0);
 System.out.println("25.0 °C entsprechen " +
 fahrenheit + "° F.");
 System.out.println();
 temperaturMessungen.print();
 }
}

Aufgabe 12.4: Maßeinheiten umrechnen

Entwickeln Sie die drei Klassen Umrechner, Laenge und Temperatur zum Um-
rechnen von Maßeinheiten.

Die Klassen Laenge und Temperatur befinden sich im Unterpaket konstanten
des Pakets umrechnung und beinhalten die für die Umrechnung notwendigen Kon-
stanten.

Die Klasse Laenge enthält folgende Datenfelder:

• public static final float faktorMeilenNachKm
Diese Klassenkonstante enthält den Faktor 1,60934 für die Umrechnung von
Meilen in Kilometer.

• public static final float faktorKmNachMeilen
Diese Klassenkonstante enthält den Faktor 1/1,60934 für die Umrechnung von
Kilometern in Meilen.

Die Klasse Temperatur enthält folgende Datenfelder:

• public static final float faktorFahrenheitNachCelsius
Diese Klassenkonstante enthält den Faktor 5/9, der für die Umrechnung von °F in
°C benötigt wird.

• public static final float summandFahrenheitNachCelsius
Diese Klassenkonstante enthält den Summanden 32, der für die Umrechnung von
°F in °C benötigt wird.

• public static final float faktorCelsiusNachFahrenheit
Diese Klassenkonstante enthält den Faktor 9/5, der für die Umrechnung von °C in
°F benötigt wird.

• public static final float summandCelsiusNachFahrenheit
Diese Klassenkonstante enthält den Summanden 32, der für die Umrechnung von
°C in °F benötigt wird.

Pakete 469

Die Klasse Umrechner befindet sich im Unterpaket tools des Pakets umrechnung
und enthält folgende Klassenmethoden:
• public static float kmNachMeilen (float km)

Die Methode rechnet Längenangaben von Kilometern in Meilen um. Die Umrech-
nungsformel lautet: Meilen = km * (1/1,60934)

• public static float meilenNachKm (float meile)
Die Methode rechnet Längenangaben von Meilen in Kilometer um. Die Umrech-
nungsformel lautet: km = Meilen * 1,60934

• public static float celsiusNachFahrenheit (float celsius)
Die Methode rechnet Temperaturangaben von Celsius in Fahrenheit um. Die Um-
rechnungsformel lautet: °F = (°C * 9/5) + 32

• public static float fahrenheitNachCelsius (float fahrenheit)
Die Methode rechnet Temperaturangaben von Fahrenheit in Celsius um. Die Um-
rechnungsformel lautet: °C = (°F – 32) * (5/9)

Die entwickelten Klassen können mit folgender Testklasse, die sich im Default-Paket
befindet, getestet werden.

// TestEinheitenUmrechner.java

import umrechnung.tools.Umrechner;

public class TestEinheitenUmrechner
{
 public static void main (String [] args)
 {
 float km = 100f;
 float kmInMeilen;
 float meilen = 250.35f;
 float meilenInKm;
 float celsius = 0f;
 float celsiusInFahrenheit;
 float fahrenheit = 85f;
 float fahrenheitInCelsius;

 kmInMeilen = Umrechner.kmNachMeilen (km);
 meilenInKm = Umrechner.meilenNachKm (meilen);
 celsiusInFahrenheit =
 Umrechner.celsiusNachFahrenheit (celsius);
 fahrenheitInCelsius =

 Umrechner.fahrenheitNachCelsius (fahrenheit);

 System.out.println (km + " km entsprechen " +
 kmInMeilen + " Meilen");
 System.out.println (meilen + " Meilen entsprechen " +
 meilenInKm + " km");
 System.out.println (celsius + " °C entsprechen " +
 celsiusInFahrenheit + " °F");
 System.out.println (fahrenheit + " °F entsprechen " +
 fahrenheitInCelsius + " °C");
 }
}

470 Kapitel 12

Aufgabe 12.5: Flughafen-Projekt – Integration von Paketen

Das Programm von Projektaufgabe 11.5 beinhaltet inzwischen 11 Klassen. Um die
Übersichtlichkeit zu verbessern, sollen die Klassen nun in eine sinnvolle Paket-
struktur eingeordnet werden. Ein Vorschlag hierfür wäre:

 Paket: flughafen

Paket: flugzeug

Flugzeug.java
FlugzeugTyp.java
Status.java

Paket: parkstelle

Parkposition.java
Parkstelle.java
SeperateParkposition.java
Werft.java

Bahn.java
Fluggesellschaft.java

Paket: hilfsklassen

Abfrage.java

Client.java
Bild 12-10 Vorschlag für Paketstruktur

Neben der Erstellung einer Paketstruktur soll eine Auswahl von Bahnen und Park-
positionen ermöglicht werden. Der bisherige Programmablauf hat einem Flugzeug
eine beliebige Parkposition und eine beliebige Bahn zugewiesen. Dabei besitzt der
Flughafen 4 Start-/Landebahnen und 10 Parkpositionen. Dem Lotsen soll nun ermög-
licht werden, die Parkposition und auch Start-/Landebahn auszuwählen. Hierzu soll-
ten zwei Arrays parkpositionen und bahnen mit den entsprechenden Größen
angelegt und mit Instanzen der Klasse Parkposition bzw. Instanzen der Klasse
Bahn gefüllt werden. Fügen Sie folgende Methode der Hilfsklasse Abfrage hinzu.
Diese Methode wird Ihnen bei der Eingabe eines Wertebereiches hilfreich sein:

public static int abfrageInt (String frage, int min, int max)
{
 int zahl = abfrageInt (frage);
 if (zahl < min || zahl > max)
 {
 System.out.println ("Bitte eine Zahl im Bereich von " + min +
 " und " + max + " eingeben.");
 zahl = abfrageInt (frage, min, max);
 }
 return zahl;
}

�������	
�	

Ausnahmebehandlung

try

catch

13.1 Das Konzept des Exception Handling
13.2 Implementierung von Exception-Handlern in Java
13.3 Ausnahmen vereinbaren und auswerfen
13.4 Die Exception-Hierarchie
13.5 Ausnahmen behandeln
13.6 Vorteile des Exception-Konzeptes
13.7 Assertions
13.8 Übungen

13 Ausnahmebehandlung

Vor dem Einstieg in das Exception Handling von Java soll in Kapitel 13.1 das Kon-
zept des Exception Handlings unabhängig von einer Programmiersprache vorgestellt
werden.

13.1 Das Konzept des Exception Handling

Während der normalen Abarbeitung einer Methode kann zur Laufzeit ein abnormales
Ereignis auftreten, das die normale Ausführung der Methode unterbricht. Ein solches
abnormales Ereignis ist eine Exception (Ausnahme). Eine Exception kann bei-
spielsweise ein arithmetischer Überlauf, ein Mangel an Speicherplatz, eine Ver-
letzung der Array-Grenzen, etc. darstellen. Eine Exception stellt damit ein Laufzeit-
Ereignis dar, das zum Versagen einer Methode und damit zu einem Laufzeit-Fehler
des Programms führen kann. In vielen Fällen führt das Auslösen einer Exception
tatsächlich zum Versagen einer Methode und stellt dann auch einen Fehler dar. Es
gibt aber auch die Möglichkeit, einen Exception-Handler zu schreiben, in welchem
auf Exceptions, die man vorausgesehen hat, so reagiert wird, dass sich das Pro-
gramm von der Exception "erholt" und fehlerfrei weiterarbeitet.

Der Aufruf einer Methode versagt, wenn eine Exception während
der Abarbeitung der Methode auftritt und sich die Methode nicht
von der Exception erholt. Das Versagen einer Methode bedeutet
für den Aufrufer der Methode ein abnormales Ereignis, d. h. ebenfalls
eine Exception.

Tatsächlich stellt in der Praxis das Versagen einer gerufenen Methode eine der
Hauptquellen für Exceptions dar.

Formal betrachtet tritt in einer Methode eine Exception auf, wenn trotz
erfüllter Vorbedingung die Nachbedingung der Methode verletzt wird.

Ein defensiver Programmierstil gebietet es, auf Ausnahmen vorbereitet zu sein und
zu verhindern, dass sie fehlerhafte Ergebnisse oder Ausfälle nach sich ziehen. Das
erstellte Programm soll stabil sein. Daraus folgt, dass man Programmcode zur Er-
kennung und Behandlung von Exceptions vorsehen muss. Eine häufige Quelle für
Exceptions sind beispielsweise Ein- und Ausgabeoperationen.

Eine der traditionellen Methoden zur Behandlung von Fehlern ist die Rückgabe
eines Fehlercodes durch Funktionen, entweder als direkter Rückgabewert oder
über eine globale Variable. Oftmals wird auch beides gemacht wie z. B. bei UNIX-
Systemaufrufen. Der direkte Rückgabewert (-1 bei UNIX) zeigt an, dass etwas schief
gelaufen ist, und eine globale Variable (UNIX: errno) enthält den genauen Fehler-
code. Eine globale Variable ist dann notwendig, wenn der Rückgabewert einer Funk-
tion keine Lücken aufweist, die man zur Fehlersignalisierung nutzen kann. Dies gilt

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_13,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Ausnahmebehandlung 473

z. B. für viele mathematische Funktionen. Der zurückgelieferte Fehlercode muss
nach jedem Aufruf geprüft werden. Diese Maßnahmen sind sehr aufwändig und
resultieren nicht selten in Code, der nicht mehr sonderlich leicht zu lesen ist.

Ziel des Exception Handling ist es, normalen und fehlerbehandeln-
den Code übersichtlich zu trennen und Ausnahmesituationen sicher
zu behandeln.

Verarbeitungsblock

if (error)

TRUE FALSE

Error Handling Verarbeitungs-
block

if (error)

TRUE FALSE

Verarb.-
block

Error
Handling

....

Verarbeitung

Exception Handling

Klassisches Programm Java Programm

Bild 13-1 Klassische Fehlerbehandlung und Exception Handling in Java

Ein weiteres Ziel des Exception Handling ist, bei gewissen Ausnahmen eine Ausein-
andersetzung des Programms mit dem Fehler zu erzwingen. Es darf nicht sein, dass
man in Folgeprobleme hineinläuft, weil man eine Ausnahme nicht behandelt hat.

Das Konzept, zwischen so genannten Checked Exceptions und Un-
checked Exceptions zu unterscheiden, hat das Ziel, dass vom Com-
piler geprüft wird, ob der Programmierer alle zu berücksichtigenden
Ausnahmen (Checked Exceptions) tatsächlich behandelt hat. Ist dies
nicht der Fall, so wird das Programm vom Compiler nicht übersetzt
und der Programmierer muss nachbessern, indem er die Checked
Exception auch einer Fehlerbehandlung unterzieht. Es wird also schon
zur Übersetzungszeit und nicht erst zur Laufzeit durch den Compiler
überprüft, ob das Programm für eine Checked Exception die verlangte
Fehlerbehandlung durchführt.

Auch im Zusammenhang mit Bibliotheken, die ja eine immer größere Rolle in der
Programmierung spielen, lassen sich Ausnahmen elegant einsetzen: Der Ersteller
einer Bibliothek weiß sehr genau, wie er Ausnahmen entdecken kann. Er kann
jedoch schwerlich eine optimale Lösung für die Behandlung dieser Ausnahmen in
allen Anwendungen, die auf der Bibliothek aufsetzen, implementieren. Der Anwen-
dungsprogrammierer steht vor dem umgekehrten Problem. Er weiß zwar, wie er
mit den Ausnahmen umzugehen hat, aber da er die Implementierung der Biblio-
thek in der Regel nicht kennt und nach dem Prinzip des Information Hiding auch gar

474 Kapitel 13

nicht kennen soll, kann er sie – wenn überhaupt – nur unter Mühen entdecken. Auch
hier bietet das Konzept des Exception Handling eine leistungsfähige Lösung. Es ist
möglich, Exceptions zu "werfen". So kann ein Bibliotheksprogramm Exceptions dem
Anwendungsprogramm, das die Bibliothek benutzt, "zuwerfen" und dieses kann dann
gezielt reagieren.

Exceptions ermöglichen einer Bibliothek, Ausnahmezustände in ein-
facher Weise an das aufrufende Programm zu melden und gegebe-
nenfalls Daten über die näheren Begleitumstände zu liefern.

Eine Exception kann man als ein durch eine Datenstruktur reprä-
sentiertes Ereignis auffassen. Tritt der Ausnahmezustand ein, so
wird er mit Hilfe der Datenstruktur der Exception gemeldet.

Dabei gilt jedoch, dass Exceptions nur synchron als Resultat von Anweisungen im
Programm auftreten. Sie sind also nicht mit Interrupts oder anderen asynchronen
Ereignissen zu verwechseln!

13.2 Implementierung von Exception-Handlern in Java

Das Exception Handling wird in Java durch eine try-Anweisung
realisiert. Eine try-Anweisung muss einen try-Block und kann ein
oder mehrere catch-Konstrukte und ein finally-Konstrukt enthal-
ten. Ist mindestens ein catch-Konstrukt da, so kann das finally-
Konstrukt entfallen. Ist kein catch-Konstrukt vorhanden, so ist das
finally-Konstrukt erforderlich.

Mit Hilfe von try wird ein Block aus beliebigen Anweisungen des normalen Pro-
gramms gekennzeichnet, deren Ausführung "versucht" werden soll (try-Block),
wobei aber Exceptions auftreten können, die eine normale Ausführung verhindern.
Eventuell auftretende Exceptions können danach mit Hilfe von catch "gefangen",
d. h. behandelt werden.

Eine try-Anweisung hat die folgende Struktur:

try
{ // try-Block. Das ist der
 // normale Code, in dem
} // Fehler auftreten können

catch (Exceptiontyp1 name1)
{ // catch-Block 1.
 // Fängt Fehler der
} // Klasse Exceptiontyp1 ab

try-
Konstrukt

catch-
Konstrukt

Ausnahmebehandlung 475

catch (Exceptiontyp2 name2)
{ // catch-Block 2.
 // Fängt Fehler der
} // Klasse Exceptiontyp2 ab

. . . // weitere catch-Konstrukte
 // als Exception-Handler

finally // finally-Konstrukt ist
{ // optional. Wird in jedem
 // Fall durchlaufen, egal ob
} // ein Fehler aufgetreten ist
 // oder nicht.

Wird während der Ausführung eines Programms im try-Block ein Ausnahmezustand
erkannt, kann mit Hilfe von throw eine Exception "geworfen", also eine Ausnahme
ausgelöst werden.

Das Auslösen einer Ausnahme bricht die Anweisungsfolge ab, die gerade ausgeführt
wurde. Die Kontrolle wird an das Laufzeitsystem der virtuellen Maschine übergeben
und das Laufzeitsystem sucht einen Handler für die Ausnahme in der Umgebung des
try-Blocks. Im einfachsten Fall steht der Exception-Handler direkt in Form eines
catch-Konstruktes hinter dem try-Block.

Falls ein Handler gefunden wird, werden die Anweisungen des Hand-
lers als nächstes ausgeführt und das Programm nach den Handlern
fortgesetzt.

Es wird also nicht an die Stelle des Auslösens zurückgekehrt. Falls überhaupt kein
Handler da ist, wird das Programm von der virtuellen Maschine abgebrochen.

Ein Exception-Handler hat das Ziel, eine Exception zu "entschärfen", d. h. eine Me-
thode vom Ausnahmezustand in den Normalzustand zu überführen:

try

ohne
Exception Handler

try

catch
Exception
Handler

Bild 13-2 Entschärfen einer Exception durch einen Exception Handler

finally-
Konstrukt

476 Kapitel 13

Tritt ein Programmfehler in einem try-Block auf, wird eine Instanz
der entsprechenden Exception-Klasse mit throw geworfen und
der gerade ausgeführte try-Block verlassen. Die Generierung eines
Exception-Objektes und die Übergabe mit throw an die virtuelle
Maschine werden als das Auslösen (Werfen) einer Exception be-
zeichnet. Das Exception-Objekt enthält Informationen über den auf-
getretenen Fehler.

catch-Konstrukt

 Exception

 try-Block

Bild 13-3 Auffangen einer im try-Block geworfenen Exception in einem catch-Konstrukt

Das finally-Konstrukt ist – wie schon gesagt – optional. Anweisungen in diesem
Block werden auf jeden Fall ausgeführt, egal ob eine Exception geworfen wurde oder
nicht. Der Block kann also dazu verwendet werden, Aktionen auszuführen, die immer
beim Verlassen des aktuellen try-Blockes erledigt werden müssen, ungeachtet
dessen, ob eine Ausnahme aufgetreten ist oder nicht. So können z. B. Dateien
geschlossen oder Ressourcen freigegeben werden.

Prinzipiell gibt es für eine Methode, die nach dem Willen ihres Ent-
wicklers von ihr ausgelöste Exceptions selbst abfangen soll, nur eine
Möglichkeit:

Sie muss die Exception mit einem try-Block und catch-Konstruk-
t(en) abfangen.

Ausnahmebehandlung 477

 try-Block

catch-Konstrukt

finally-Konstrukt

throw Exception

Bild 13-4 Ablauf einer Fehlerbehandlung unter Einschluss eines finally-Konstruktes

Es ist nicht zwingend erforderlich, dass Exceptions direkt nach dem
try-Block in einem catch-Konstrukt abgefangen werden. Gefordert
wird in Java nur, dass, wenn Anweisungen in einen try-Block ein-
geschlossen werden, nach einem try-Block mindestens ein fi-
nally-Konstrukt folgt. Es können dem try-Block jedoch beliebig vie-
le catch-Blöcke folgen.

Bild 13-5 zeigt, wie eine nicht abgefangene Exception an den Aufrufer – bis hin zur
virtuellen Maschine – propagiert wird:

Exception wird geworfen

main()

m1()

virtuelle
Maschine

m2()

Aufruf

Aufruf

Rückgabe einer Exception

Rückgabe einer Exception

Rückgabe einer Exception

Bild 13-5 Propagieren einer nicht abgefangenen Exception

Eine Methode muss Exceptions, die sie auslöst, nicht selber abfan-
gen. Dies kann auch in einer sie aufrufenden Methode erfolgen. Man
sagt, Exceptions werden propagiert. Mit anderen Worten, nicht be-
handelte Exceptions werden an den jeweiligen Aufrufer der Methode
weitergereicht.

478 Kapitel 13

Die aufgerufene Methode kann die in ihr aufgetretene Exception an den Aufrufer
weiterleiten, wenn sie diese nicht erfolgreich behandeln kann. Sie kann aber auch im
Rahmen der Behandlung der aufgetretenen Exception eine andere Exception erzeu-
gen und diese an den Aufrufer weiterleiten106.

Fängt eine Methode Exceptions nicht selbst ab, sondern leitet sie an
ihren Aufrufer weiter, so muss die Exception in der Schnittstellen-
beschreibung der Methode durch das Schlüsselwort throws ange-
geben werden. Ansonsten resultiert ein Kompilierfehler.

13.3 Ausnahmen vereinbaren und auswerfen

Bei der Ausnahmebehandlung kann der objektorientierte Ansatz konsequent einge-
setzt werden. Eine Ausnahme wird in Java wie in C++ durch ein Objekt repräsentiert.
Tritt eine Ausnahme ein, so wird das entsprechende Objekt erzeugt.

In Java haben alle Exceptions eine gemeinsame Basisklasse. Dies ist
die Klasse Throwable aus dem Paket java.lang.

Ausnahmen können mit Hilfe der Anweisung throw an beliebiger Stelle in einem
try-Block ausgelöst oder "ausgeworfen" werden. Die throw-Anweisung akzeptiert
jede Referenz, die auf ein Objekt vom Typ Throwable zeigt. Damit können natürlich
alle Objekte eines Subtyps von Throwable mit throw geworfen werden107.

Eine Ausnahme-Klasse unterscheidet sich nicht von einer "normalen"
Klasse, außer dass sie von Throwable abgeleitet ist. Die besondere
Bedeutung erhält sie durch die Verwendung in throw-Anweisungen
und in catch-Konstrukten.

Haben Ausnahmen ganz bestimmte spezifische Eigenschaften, die im Klassenbaum
der Exceptions noch nicht vertreten sind, so wird man eine spezielle Klasse verein-
baren. Da Exceptions nichts anderes als Klassen108 sind, leitet man sich für seine
Bedürfnisse einfach eine Klasse von der Klasse Exception oder einer ihrer Sub-
klassen ab. Dadurch können die Exceptions unterschieden und modifizierte Fehler-
meldungen angegeben werden. Bei Bedarf kann man auch Datenfelder und Metho-
den hinzufügen.

Das folgende Beispiel zeigt, wie man eine selbst definierte Exception generieren,
auswerfen und wieder fangen kann.

106 Siehe Kap. 13.5.3.
107 Ein Anwendungsprogrammierer wirft in der Regel ein Objekt vom Typ Exception oder eines

Subtyps von Exception.
108 Siehe Kap. 13.4.

Ausnahmebehandlung 479

// Datei: MyClass.java

class MyException extends Exception
{
 public MyException()
 {
 // Aufruf des Konstruktors der Klasse Exception.
 // Ihm wird ein String mit dem Fehlertext übergeben und
 // in einem von Throwable geerbten Datenfeld gespeichert.
 super ("Fehler ist aufgetreten!");
 }
}

public class MyClass
{
 public static void main (String[] args)
 {
 // Dieser try-Block ist untypisch, da in ihm nur eine
 // Exception zu Demonstrationszwecken geworfen wird.
 try
 {
 MyException ex = new MyException();
 throw ex;
 // Anweisungen unterhalb einer throw-Anweisung in einem
 // try-Block werden nie abgearbeitet.
 }
 catch (MyException e)
 {
 System.out.println (e.getMessage());
 }
 }
}

Die Ausgabe des Programms ist:

Fehler ist aufgetreten!

In konkreten Programmen muss eine Fehlermeldung natürlich aussagekräftig sein.
Eine Fehlermeldung muss immer die Stelle, an welcher der Fehler aufgetreten ist,
und die Fehlerursache enthalten. Jede Exception ist von einem bestimmten Typ.

Zur Erstellung einer eigenen Exception wird im Beispiel die Klasse MyException
von der Klasse Exception abgeleitet. Im parameterlosen Konstruktor der Klasse
MyException wird mit super() der Konstruktor der Klasse Exception aufgeru-
fen. An den Konstruktor von Exception wird ein String übergeben, der den Fehler-
text enthält. Der Fehlertext beschreibt die Exception genauer und kann aus einer Ex-
ception mit der Methode getMessage(), die in der Klasse Throwable definiert ist,
ausgelesen werden. Dieser Fehlertext kann dann im Fehlerfall ausgegeben werden.

Im try-Block in der main()-Methode der Klasse MyClass wird durch new ein
neues Exception-Objekt erzeugt. Dieses wird anschließend mit throw geworfen. Mit
der throw-Anweisung wird der try-Block verlassen. Eine darauf folgende Codezeile

480 Kapitel 13

wird nie erreicht. Die an die virtuelle Maschine übergebene Exception wird dann im
catch-Konstrukt der main()-Methode gefangen und die übergebene Nachricht –
also der Fehlertext – ausgegeben. Der Aufruf des catch-Konstruktes ist dabei
durchaus mit dem Aufruf einer Methode zu vergleichen.

Aufgerufen wird ein catch-Konstrukt nicht vom Programm, sondern
von der Java Virtuellen Maschine. Ein Exception-Objekt wird an die
virtuelle Maschine übergeben. Diese übernimmt die Kontrolle und
sucht das passende catch-Konstrukt und übergibt ihm die Exception.

13.4 Die Exception-Hierarchie

Wie bereits erwähnt, haben alle Exceptions eine gemeinsame Basisklasse, die Klas-
se Throwable. Diese selbst ist von der Klasse Object abgeleitet. Das folgende
Bild zeigt die Exception-Hierarchie:

 Throwable

Error Exception

RuntimeException IllegalAccessException ClassNotFoundException

ArrayIndexOutOfBoundsException StringIndexOutOfBoundsException

NullPointerException IndexOutOfBoundsException

Bild 13-6 Ausschnitt der Klassenhierachie von Throwable

Throwable ist die Basisklasse der beiden Klassenhierachien java.lang.Error
und java.lang.Exception. Spricht man von einer Exception, sind oft beide Hie-
rarchien gemeint.

Die Klasse Error

Ausnahmen der Klasse Error sollten zur Laufzeit eines Java-Programms eigentlich
gar nicht auftreten. Ein Programm sollte in der Regel nicht versuchen, einen solchen
Fehler abzufangen. Denn wenn eine solche Ausnahme auftritt, ist ein schwerwie-
gender Fehler in der virtuellen Maschine aufgetreten, der eigentlich gar nicht auftre-
ten sollte und in der Regel auch nicht während der Laufzeit des Programms behan-
delbar ist, wie z. B. ein Fehler beim dynamischen Binden. Hier soll die virtuelle Ma-
schine das Programm abbrechen. Es kann allerdings auch Fälle geben, wo es Sinn
macht, selbst den Fehler zu behandeln. Hat beispielsweise ein Server-Rechner Pro-
bleme mit dem verfügbaren Speicher und generiert einen OutOfMemoryError, so

Ausnahmebehandlung 481

kann man in einem Exception-Handler beispielsweise die Clients des Servers davon
verständigen, oder eventuell selbst genügend Speicher freigeben, damit die Excep-
tion nicht mehr auftritt.

Die Klasse Exception

Normalerweise lösen Java-Programme Exceptions aus, die von der Klasse Excep-
tion abstammen. Es handelt sich um Exceptions, die der Programmierer zur Lauf-
zeit behandeln kann.

Die Klasse Throwable hat ein Datenfeld vom Typ String zur Be-
schreibung des Fehlers. Der Fehlertext kann dem Konstruktor der
Klasse Exception übergeben werden. Der Empfänger einer Excep-
tion, ein catch-Konstrukt, kann sich den Fehlertext mit Hilfe der Me-
thode getMessage() von Throwable beschaffen.

13.4.1 Checked und Unchecked Exceptions

Weiter wird auch noch unterschieden, ob eine Exception durch den Programmierer
aufgefangen und bearbeitet werden muss oder nicht.

Man spricht von "Checked Exceptions", falls eine Exception vom
Programmierer behandelt werden muss, und dies auch vom Compiler
überprüft (checked) wird.

Wird eine auftretende Exception nicht behandelt, so führt dies zum Programmab-
bruch.

Man spricht von "Unchecked Exceptions" falls eine Exception vom
Programmierer weder abgefangen, noch in der throws-Klausel der
Schnittstelle der Methode angegeben werden muss. Auf Unchecked
Exceptions wird ein Programm vom Compiler nicht überprüft.

Alle Exceptions bis auf diejenigen der Unterbäume RuntimeException und Error
sind "Checked Exceptions", d. h. zu berücksichtigende Ausnahmen.

Unchecked Exceptions Checked Exceptions
RuntimeException
Error

alle anderen

Tabelle 13-1 Checked und Unchecked Exceptions

482 Kapitel 13

Checked Exceptions müssen vom Programmierer entweder in einem
Exception Handler einer Methode behandelt werden oder aber in der
throws-Klausel der Methode, welche die Exception wirft, angegeben
werden, um anzuzeigen, dass sie die entsprechende Exception nach
außen weitergibt.

Die Klasse RuntimeException

Ausnahmen der Klasse RuntimeException oder eines Subtyps treten zur Laufzeit
in der virtuellen Maschine auf. Dies sind aber keine "harten" Fehler der virtuellen
Maschine, sondern Fehler im Programm wie z. B. die Anwendung des Punkt-Opera-
tors auf eine null-Referenz. Dies kann passieren, wenn bei einem Methodenaufruf
a.f(), die Referenz a noch kein Objekt referenziert, sondern eine null-Referenz
darstellt. Eine NullPointerException kann im Prinzip bei jedem Zugriff auf ein
Datenfeld oder eine Methode eines Objektes auftreten. Es wäre überhaupt nicht
praktikabel, solche Fehler in der Anwendung zu behandeln, da es einfach zu viele
Stellen im Programm gibt, wo ein solcher Fehler auftreten kann. Daher wurde bei der
Definition von Java entschieden, dass Ausnahmen der Klasse RuntimeException
von der virtuellen Maschine behandelt werden müssen. Der Programmierer hat die
Möglichkeit, wenn er will, solche Ausnahmen zu behandeln. Der Compiler interessiert
sich aber nicht dafür, ob es der Programmierer tut, da Exceptions der Klasse Run-
timeException – wie schon gesagt – Unchecked Exceptions sind.

13.4.2 Beispiele für Exceptions

Im Folgenden einige Exceptions, die von der Klasse Error abgeleitet sind:

Exception Erklärung
AbstractMethodError Versuch, eine abstrakte Methode aufzurufen
InstantiationError Versuchtes Anlegen einer Instanz einer

abstrakten Klasse oder einer Schnittstelle
OutOfMemoryError Es konnte kein Speicher allokiert werden
StackOverflowError Der Stack ist übergelaufen

Tabelle 13-2 Beispiele für Exceptions vom Typ Error

Einige Exceptions, die von der Klasse Exception abgeleitet sind:

Exception Erklärung
ClassNotFoundException Eine Klasse wurde weder im aktuellen

Verzeichnis noch in dem Verzeichnis,
welches in der Umgebungsvariable
CLASSPATH angegeben ist, gefunden

CloneNotSupportedException Ein Objekt sollte kopiert werden, welches
das Cloning aber nicht unterstützt

IllegalAccessException Ein Objekt hat eine Methode aufgerufen, auf
die es keinen Zugriff hat

Tabelle 13-3 Beispiele für Exceptions vom Typ Exception

Ausnahmebehandlung 483

Einige Exceptions, die von der Klasse RuntimeException abgeleitet sind:

Exception Erklärung
ArithmeticException Ein Integerwert wurde durch Null dividiert
ArrayIndexOutOfBoundsException Auf ein Feld mit ungültigem Index wurde

zugegriffen
ClassCastException Cast wegen fehlender Typverträglichkeit

nicht möglich
NullPointerException Versuchter Zugriff auf ein Datenfeld oder

eine Methode über die null-Referenz

Tabelle 13-4 Beispiele für Exceptions vom Typ RuntimeException

Werden zusätzliche Pakete benutzt, so können weitere Exceptions hinzukommen. Im
Paket java.io werden z. B. Objekte vom Typ IOException benutzt, um Fehler
bei der Ein- und Ausgabe anzuzeigen.

13.5 Ausnahmen behandeln

Ein try-Block kennzeichnet eine Anweisungsfolge, innerhalb derer Exceptions aus-
gelöst werden können. Vorgänge, die Exceptions auslösen können und behandelt
werden sollen, müssen grundsätzlich in einem try-Block stehen.

Der try-Block bedeutet:

Es wird versucht, den Code in den geschweiften Klammern auszu-
führen. Wenn Exceptions geworfen werden, hat sich der Programmie-
rer im Falle von Checked Exceptions um die Behandlung zu kümmern.

Eine Exception kann in einem catch-Konstrukt, das dem try-Block
folgt, behandelt oder an die aufrufende Methode zur Behandlung wei-
tergereicht werden.

Unmittelbar hinter dem try-Block können ein oder mehrere Exception-Handler in
Form von catch-Konstrukten folgen. Ein catch-Konstrukt besteht aus dem
Schlüsselwort catch, gefolgt von einen formalen Parameter und dem Typ der zu
behandelnden Exception in runden Klammern und einem anschließenden Codeblock
zur Realisierung der Ausnahmebehandlung (z. B. Fehlermeldung ausgeben und für
den Fehlerfall vorgesehene Default-Werte setzen, die ein Weiterarbeiten ermög-
lichen, oder einen Programmabbruch einleiten z. B. durch Aufruf der Methode Sys-
tem.exit(1)109).

Existieren mehrere Handler, dann müssen diese unmittelbar aufeinander folgen.
Normaler Code zwischen den Handlern ist nicht erlaubt! Existiert kein Exception-
Handler in der Methode, kann die weitergereichte Exception in der aufrufenden
Methode oder deren Aufrufer usw. gefangen werden.

109 Die Klasse System ist im Anhang C beschrieben.

484 Kapitel 13

Hat der Programmierer jedoch keinen Exception-Handler für eine
weitergereichte Checked Exception geschrieben, dann meldet sich
der Compiler mit einer Fehlermeldung. Damit erzwingt der Compiler,
dass eine Checked Exception vom Programmierer behandelt wird.

Wird eine weitergereichte Unchecked Exception vom Programmie-
rer nicht abgefangen, meldet sich das Laufzeitsystem mit einer
Fehlermeldung und bricht das Programm ab.

Die Syntax des Exception Handling erinnert zum einen an die switch-Anweisung,
zum anderen an Methodenaufrufe. Beide Vergleiche haben ihre Berechtigung:

• Der Code innerhalb des try-Blocks liefert ähnlich zu einem switch die Be-
dingung, gemäß derer einer der Handler (oder auch keiner) angesprungen wird.

• Im Unterschied zu switch sind jedoch keine break-Anweisungen zwischen den
Handlern nötig, und wenn im try-Block keine Exception auftritt, werden alle dem
try-Block folgenden Handler übersprungen!

• Die Schnittstelle eines Handlers sieht aus wie die Schnittstelle einer einpara-
metrigen Methode.

13.5.1 Beispiel für das Fangen einer Exception

Am folgenden Beispiel wird das Fangen einer Exception der Klasse ArrayIndex-
OutOfBoundsException, einer Subklasse der Klasse RuntimeException, de-
monstriert. Eine Exception vom Typ ArrayIndexOutOfBoundsException wird
geworfen, wenn die Bereichsgrenzen eines Arrays überschritten werden. Eine Ex-
ception der Klasse RuntimeException oder eines Subtyps gehört zu den Un-
checked Exceptions und muss nicht – aber kann – vom Programmierer abge-
fangen werden.

// Datei: Test.java

public class Test
{
 public static void main (String[] args)
 {
 int[] intarr = new int [4];
 for (int lv = 0; lv < 8; lv++)
 {
 try
 {
 intarr [lv] = lv;
 System.out.println (intarr [lv]);
 }

Ausnahmebehandlung 485

 catch (ArrayIndexOutOfBoundsException e)
 {
 System.out.println ("Array-Index " + lv +
 " ist zu gross!");
 }
 }
 }
}

Die Ausgabe des Programms ist:

0
1
2
3
Array-Index 4 ist zu gross!
Array-Index 5 ist zu gross!
Array-Index 6 ist zu gross!
Array-Index 7 ist zu gross!

Dabei ist zu beachten, dass das Programm nach jeder Exception ganz normal mit
der Abarbeitung der for-Schleife fortfährt.

13.5.2 Reihenfolge der Handler

Die Suche nach dem passenden Handler erfolgt von oben nach unten, d. h. die
Reihenfolge der Handler ist relevant. Der Handler für eine Exception, die im Klas-
senbaum der Exceptions am weitesten oben steht, muss an letzter Stelle stehen.
Dies ist darauf zurückzuführen, dass überall da, wo ein Objekt einer Basisklasse
erwartet wird, stets auch ein Objekt einer Unterklasse verwendet werden kann.

Ein Handler für Exceptions einer Klasse A passt infolge des Polymor-
phie-Konzeptes der Objektorientierung auch auf Exceptions aller von
A abgeleiteten Klassen.

Würde ein Handler mit einem Parameter der Basisklasse also ganz vorne in der Liste
der Handler stehen, so würde er jede Exception des entsprechenden Unterbaums
abfangen und die für die Unterklassen spezialisierten Handler würden überhaupt nie
aufgerufen werden. Also ist eine umgekehrte Anordnung der Handler erforderlich.

Zuerst müssen die Handler für die spezialisiertesten Klassen der
Exception-Hierarchie aufgelistet werden und dann in der Reihen-
folge der zunehmenden Generalisierung die entsprechenden all-
gemeinen Handler.

Hat man also eine Klassenhierarchie für Exceptions definiert, dann muss sich diese
Hierarchie in den Handlern widerspiegeln – allerdings in umgekehrter Reihenfolge.

486 Kapitel 13

Fügt man am Ende der Folge der Handler noch einen Handler für die
Basisklasse ein, ist man auch in Zukunft sicher, dass alle Exceptions
behandelt werden, auch wenn jemand neue Exceptions ableitet.

Die richtige Anordnung der Handler wird vom Compiler überprüft. Der Compiler prüft,
ob alle Handler erreichbar sind. Im folgenden Beispielprogramm wird ein Kompi-
lierungsfehler durch ein nicht erreichbares catch-Konstrukt demonstriert:

// Datei: Catchtest.java

class MyException extends Exception
{
 public MyException()
 {
 super ("Fehler ist aufgetreten!");
 }
}

public class Catchtest
{
 public void testMethode()
 {
 try
 {
 throw new MyException();
 }
 catch (Exception e)
 {
 System.out.println (e.getMessage());
 }
 catch (MyException e)
 {
 System.out.println (e.getMessage());
 }
 }

 public static void main (String[] args)
 {
 Catchtest x = new Catchtest();
 x.testMethode();
 }
}

Die Ausgabe des Programms ist:

Catchtest.java:25: catch not reached.
 catch (MyException e)
 ^
1 error

Ausnahmebehandlung 487

13.5.3 Ausnahmen weiterreichen

Eine Exception gilt als erledigt, sobald ein Handler zu ihrer Bearbeitung gefunden
und aufgerufen wurde.

Stellt sich innerhalb des Handlers (z. B. anhand der in der Exception
übergebenen Informationen oder weil Korrekturmaßnahmen fehlschla-
gen) heraus, dass dieser Handler die Exception nicht behandeln kann,
so kann dieselbe Exception erneut im catch-Block mit throw aus-
geworfen werden. Der Handler kann aber gegebenenfalls auch an-
dere Exceptions auswerfen.

Im Folgenden ein Ausschnitt aus einem Programm, der das erneute Auswerfen einer
Exception zeigt:

try
{
 AException aEx = new AException ("schwerer Fehler");
 throw aEx;
}
catch (AException e)
{
 String message = e.getMessage();
 if (message.equals ("schwerer Fehler"))
 throw e;
}

13.5.4 Schichtenstruktur für das Exception Handling

Jede Gruppe von Handlern ist nur für die Behandlung von Exceptions aus ihrem zu-
geordneten try-Block verantwortlich.

Alle innerhalb von Handlern ausgeworfenen Exceptions werden nach
außen an die nächste umschließende try-Anweisung weitergereicht.
Die try-Anweisungen können also geschachtelt werden.

Dieser Mechanismus gestattet die Implementierung von mehreren Schichten zur
Fehlerbehandlung. Ebenfalls nach außen weitergereicht werden Exceptions, für die
kein Handler existiert. Das folgende Beispiel zeigt geschachtelte try-Anweisungen:

// Datei: Versuch.java

class MyException2 extends Exception
{
 public MyException2()
 {
 super ("Fehler ist aufgetreten!");
 }
}

488 Kapitel 13

public class Versuch
{
 public static void main (String[] args)
 {
 try
 {
 try
 {
 throw new Exception();
 }
 catch (MyException2 e)
 {
 System.out.println ("MyException2 gefangen");
 }
 }
 catch (Exception e2)
 {
 System.out.println ("Exception gefangen");
 }
 }
}

Die Ausgabe des Programms ist:

Exception gefangen

Das folgende Bild zeigt die Anordnung der try-Anweisungen aus dem Beispielpro-
gramm der Klasse Versuch:

 try-Block 1

 catch-Konstrukt 1

try-Block 11

catch-Konstrukt 11
try-Anweisungen

Bild 13-7 Geschachtelte try-Anweisungen

13.5.5 Ausnahmen ankündigen – die throws-Klausel

In Java wird zwingend verlangt, bestimmte Exceptions, die eine Methode auslösen
kann, in die Deklaration der Methode mit Hilfe der throws-Klausel aufzunehmen.
Dabei müssen Checked Exceptions unbedingt angegeben werden, während das

Ausnahmebehandlung 489

bei Unchecked Exceptions nicht erforderlich ist. Dadurch wird dem Aufrufer signali-
siert, welche Ausnahmen von einer Methode ausgelöst bzw. weitergereicht werden.
Dies spielt auch eine Rolle bei Bibliotheken. Ein Programmierer, der Bibliotheken
nutzt, muss wissen, welche Exceptions die Bibliotheksmethoden werfen können.
Seine Aufgabe ist es, die geworfenen Exceptions sinnvoll zu behandeln.

Eine Methode kann nur die Checked Exceptions auslösen, die sie in
der throws-Klausel angegeben hat. Unchecked Exceptions hingegen
kann sie immer werfen.

Soll also die Exception erst außerhalb einer Methode verarbeitet werden, muss die
Methodendeklaration wie folgt erweitert sein:

[Zugriffsmodifikatoren] Rückgabewert Methodenname
([Parameter]) throws Exceptionname1 [,Exceptionname2,]

Beachten Sie, dass throws Exceptionname1 [,Exceptionname2,]
die so genannte throws-Klausel darstellt. Die Methode gibt also eine oder mehrere
Exceptions nach außen weiter.

Durch die throws-Klausel informiert eine Methode den Aufrufer (und
den Compiler) über eine mögliche abnormale Rückkehr aus der Me-
thode.

Diese zusätzliche Information bei der Deklaration dient nicht der Unterscheidung von
Methoden im Sinne einer Überladung!

Die Exception kann also in der aufrufenden Methode, eventuell erst in der main()-
Methode oder überhaupt nicht vom Anwendungsprogramm gefangen werden. Die
Methode pruefeDatum() im nächsten Beispiel behandelt die Exception Parse-
Exception nicht selbst und besitzt deshalb eine throws-Klausel. Die Exception
wird in der aufrufenden Methode – hier in der main()-Methode – behandelt.

// Datei: DatumEingabe.java

import java.util.Date;
import java.text.*;

public class DatumEingabe
{
 public Date pruefeDatum (String datum) throws ParseException
 {
 // Eine auf die Rechnerlokation abgestimmte Instanz der Klasse
 // DateFormat wird erzeugt.
 DateFormat df = DateFormat.getDateInstance();

 // strenge Datumsprüfung einschalten
 df.setLenient (false);

490 Kapitel 13

 // Datum überprüfen und in ein Date-Objekt wandeln.
 // Die Methode parse() wirft eine ParseException, wenn in
 // datum kein gültiges Datum steht.
 Date d = df.parse (datum);
 return d;
 }

 public static void main (String[] args)
 {
 DatumEingabe v = new DatumEingabe();
 String[] testdaten = {"10.10.2006", "10.13.2006"};

 Date datum = null;
 for (int i = 0; i < testdaten.length; i++)
 {
 try
 {
 datum = v.pruefeDatum (testdaten [i]);
 System.out.println ("Eingegebenes Datum ist ok:\n"
 + datum);
 }
 catch (ParseException e)
 {
 System.out.println ("Eingegebenes Datum ist nicht ok:\n"
 + testdaten [i]);
 }
 }
 }
}

Die Ausgabe des Programms ist:

Eingegebenes Datum ist ok:
Tue Oct 10 00:00:00 CEST 2006
Eingegebenes Datum ist nicht ok:
10.13.2006

Für das Überschreiben von Methoden gibt es folgende Einschränkung: Wird eine
Methode einer Basisklasse, die keine Exceptions mit throws weiterreicht, bei einer
Ableitung überschrieben, so kann die überschreibende Methode auch keine Excep-
tions weiterreichen. Die Fehlerbehandlung muss dann in der überschreibenden Me-
thode selbst erfolgen. Verstöße gegen diese Vorschrift verursachen eine ganze
Reihe von Fehlern beim Kompilieren.

13.6 Vorteile des Exception-Konzeptes

Vorteile des Exception Handling sind:

• Eine saubere Trennung des Codes in "normalen" Code und in Fehlerbehand-
lungscode.

• Der Compiler prüft, ob "Checked Exceptions" vom Programmierer abgefangen
werden. Damit werden Nachlässigkeiten beim Programmieren bereits zur Kom-
pilierzeit und nicht erst zur Laufzeit entdeckt.

Ausnahmebehandlung 491

• Das Propagieren einer Exception erlaubt, diese auch in einem umfassenden
Block oder einer aufrufenden Methode zu behandeln.

• Da Exception-Klassen in einem Klassenbaum angeordnet sind, können – je nach
Bedarf – spezialisierte Handler oder generalisierte Handler geschrieben wer-
den.

13.7 Assertions

Mit Exceptions können auftretende Fehler während des Programmablaufs abge-
fangen und gegebenenfalls behandelt werden. Mit Assertions110 besteht hingegen
die Möglichkeit, zur Laufzeit eines Programms Bedingungen zu überprüfen. So kann
beispielsweise geprüft werden, ob ein berechneter Wert innerhalb eines bestimmten
Wertebereichs liegt, ob eine Variable nur bestimmte Werte annimmt oder ob ein
bestimmter Zweig im Kontrollfluss nie durchlaufen wird. Dafür werden im Folgenden
noch Programmbeispiele angegeben. Mit diesem Konzept können somit beim De-
buggen die Ursachen von aufgetretenen Exceptions untersucht und beseitigt werden.

13.7.1 Notation von Assertions

Assertions werden umgesetzt, indem zur Laufzeit des Programms Boolesche Aus-
drücke ausgewertet werden. Die Syntax in Java für Assertions kennt zwei Ausprä-
gungen:

assert Ausdruck1; /* erste Variante */

oder

assert Ausdruck1 : Ausdruck2; /* zweite Variante */

In der ersten Variante der assert-Anweisung wird der Boolesche Ausdruck Aus-
druck1 ausgewertet. Ergibt Ausdruck1 den Wert true, d. h. die zu überprüfende
Eigenschaft ist richtig, so wird die nächste Anweisung nach der Assertion ausgeführt.
Ergibt der Boolesche Ausdruck den Wert false, dann wirft die assert-Anweisung
einen AssertionError. Die Klasse AssertionError ist von der Klasse Error
abgeleitet. Da Objekte der Klasse Error oder einer ihrer Subklassen – wie zuvor er-
wähnt – nicht vom Programmierer behandelt werden, wird die Ausführung des Pro-
gramms abgebrochen. Bei der zweiten Variante der assert-Anweisung wird eben-
falls der Boolesche Ausdruck Ausdruck1 ausgewertet. Ergibt die Auswertung true,
so wird die Ausführung wiederum nach der Assertion fortgesetzt. Ist Ausdruck1
allerdings false, dann wird Ausdruck2 ausgewertet. Der Rückgabewert von Aus-
druck2 wird dem Konstruktor des AssertionError-Objektes übergeben, um die
fehlgeschlagene Assertion genauer zu beschreiben und den Entwickler bei der Feh-
lersuche zu unterstützen.

Assertions können beim Programmstart sowohl aktiviert (enabled) als auch deakti-
viert (disabled) werden. Eine Aktivierung der Assertions erlaubt die Auswertung der
oben genannten Ausdrücke, während eine Deaktivierung zu einem verbesserten

110 Engl. für Aussage, Behauptung.

492 Kapitel 13

Laufzeitverhalten führt. Standardmäßig sind Assertions beim Programmstart deakti-
viert und müssen explizit eingeschaltet werden.

13.7.2 Anwendungsbeispiele

Es gibt verschiedene Situationen, in denen Assertions verwendet werden können,
beispielsweise zur Überprüfung von:

• Invarianten von Klassen,
• Kontrollflüssen,
• Vor- und Nachbedingungen von Methoden

Beispiel 1: Überprüfung auf das Einhalten definierter diskreter Werte

Wird vorausgesetzt, dass eine Variable nur einige bestimmte Werte annehmen kann,
so kann dies mit einer Assertion überprüft werden:

int zahl;
.
switch (zahl)
{
 case 1:
 break;
 case 2:
 break;
 case 3:
 break;
 default: assert false;
}
.

Es wird erwartet, dass die Variable zahl keinen anderen Wert als 1, 2 oder 3 an-
nimmt. Sollte dies wider Erwarten dennoch geschehen, so wird die Assertion im De-
fault-Zweig fehlschlagen und eine Exception vom Typ AssertionError auslösen.
Auf diese Weise wird erkannt, dass die erwartete Eigenschaft nicht erfüllt wird und
dass der Quellcode überarbeitet werden muss.

Beispiel 2: Überprüfung des Kontrollflusses

Ebenso lässt sich überprüfen, ob eine Stelle im Kontrollfluss erreicht wird, die nie zur
Ausführung kommen sollte.

void tuNichtGut()
{
 for (int i = 0; i <= 9; i++)
 {

 if (i == 10)
 return;
 }
 assert false;
}

Ausnahmebehandlung 493

In diesem Beispiel löst die Assertion einen Fehler aus, wenn die Abbruchbedingung
in der if-Abfrage nicht erfüllt und die return-Anweisung nicht ausgeführt wird.

Beispiel 3: Aktivierung und Deaktivierung von Assertions

Mit Assertions lassen sich auch die Vor- und Nachbedingungen von Methoden und
Klasseninvarianten prüfen (siehe Kap. 11.5). Will man bei einem System im operatio-
nellen Einsatz Vor- und Nachbedingungen verwenden, so müssen Exceptions
eingesetzt werden. Dies hat zwei Gründe:

• Assertions sind deaktivierbar.

• Assertions können nur Exceptions vom Typ AssertionError werfen. Diese sind
für eine Fehleranalyse in Systemen im operationellen Einsatz nicht aussagekräftig
genug.

Assertions können aktiviert oder deaktiviert werden. Hierfür gibt es die Kommando-
zeilenschalter –ea und –da der virtuellen Maschine. Standardmäßig sind Assertions
deaktiviert. Diese Kommandozeilenschalter können mit verschiedenen Parametern
aufgerufen werden:

• ohne Parameter
Es werden die Assertions aller Klassen außer den Systemklassen deaktiviert bzw.
aktiviert.

• Paketname...
Die drei Punkte sind Teil der Syntax und müssen mit angegeben werden. Im
angegebenen Paket und allen darin enthaltenen Unterpaketen werden die
Assertions aktiviert bzw. deaktiviert.

• ...
Die drei Punkte sind Teil der Syntax und müssen angegeben werden. Assertions,
die im anonymen Paket (aktuelles Arbeitsverzeichnis) enthalten sind, werden
aktiviert bzw. deaktiviert.

• Klassenname
Nur in der spezifizierten Klasse werden die Assertions aktiviert bzw. deaktiviert.

Sollen beispielsweise im Paket javabuch.uebungen die Assertions aktiviert wer-
den, so lautet die Kommandozeile:

java –ea : javabuch.uebungen... MyAssertionTest

Sollen allerdings alle Assertions im Paket javabuch.uebungen aktiviert werden mit
Ausnahme der Assertions in der Klasse Test, so lautet der Kommandozeilenaufruf:

java –ea : javabuch.uebungen...
 -da : javabuch.uebungen.Test
 MyAssertionTest

Assertions sind vorrangig ein Mittel zum Testen der eigenen Software. Um das Lauf-
zeitverhalten zu verbessern, sollte ein Programm nach der Testphase mit deaktivier-
ten Assertions ausgeführt werden.

494 Kapitel 13

Beispiel 4: Plausibilitätsprüfungen

Werden in einer Methode Berechnungen durchgeführt, so ist es unter Umständen
sinnvoll, das Ergebnis auf bestimmte Anforderungen zu testen: das Ergebnis muss
beispielsweise positiv sein, ein berechneter Stundenwert muss größer oder gleich 0
und kleiner oder gleich 23 sein, etc. Solche Überprüfungen können entweder direkt in
der assert-Anweisung mit Hilfe eines Ausdrucks erfolgen, oder in einer Methode,
die einen geeigneten Rückgabewert besitzt und von der Assertion aufgerufen wird:

// Datei: AssertionTest.java

public class AssertionTest
{
 public static void main (String[] args)
 {
 int ergebnis = berechne(); // Der Rückgabewert von berechne()
 // soll überprüft werden.
 System.out.println("Das Ergebnis muss größer gleich 0 und " +
 "kleiner als 24 sein.");

 try
 {
 assert testeErgebnis (ergebnis): ergebnis;
 System.out.println ("Das Ergebnis lautet: " + ergebnis);
 }
 catch (AssertionError ae)
 {
 System.err.println("Es ist ein AssertionError aufgetreten:"
 + "Ergebnis = " + ae.getMessage());
 System.exit (1);
 }
 }

 private static int berechne()
 {
 //beliebige Berechnung
 return -1;
 }

 private static boolean testeErgebnis (int erg)
 {
 //Das Ergebnis muss größer gleich 0
 //und kleiner gleich 23 sein
 if ((erg >= 0) && (erg <= 23))
 return true;
 return false;
 }
}

 Die Ausgabe des Programms ist:

Das Ergebnis muss größer gleich 0 und kleiner
als 24 sein.
Es ist ein AssertionError aufgetreten:
Ergebnis = -1

Ausnahmebehandlung 495

Beachten Sie bitte, dass das Programm für die obige Ausgabe folgendermaßen auf-
gerufen wurde:

java -ea AssertionTest

Im vorangegangenen Beispiel wird im Fehlerfall das Ergebnis an den Konstruktor
des AssertionError-Objektes übergeben. Dadurch erfährt der Entwickler nicht
nur, dass die Berechnung fehlschlug, sondern auch, welches Ergebnis den Fehler
verursacht hat. Tritt eine Exception vom Typ AssertionError auf, so kann sie mit
Hilfe eines try-catch-Konstrukts gefangen werden. Wie zuvor schon erwähnt, tritt
eine Exception vom Typ Error – und damit auch vom Typ AssertionError – nur
in schweren Ausnahmesituationen auf, von denen sich ein Programm normalerweise
nicht erholt. Da die Ursache des Fehlers im Exception-Handler nicht behoben wer-
den kann, liegt ein schwerer Fehler vor und das Programm wird im catch-Konstrukt
durch System.exit(1) abgebrochen. Man kann auf das Abfangen der Exception
und das Anfordern des Programmabbruchs verzichten, da das Programm abge-
brochen wird, wenn die virtuelle Maschine keinen Exception-Handler für die aufge-
tretene Ausnahme finden kann. Der Einsatz eines Exception-Handlers hat den Vor-
teil, dass man im Exception-Handler noch Fehlerhinweise ausgeben kann.

13.7.3 Unterschied zwischen Exceptions und Assertions

Ist eine Zusicherung z. B. eine Vorbedingung (siehe Kap. 11.5.1) verletzt, so soll das
Programm abbrechen, da es falsche Werte berechnet. In Java werden Assertions mit
dem Schlüsselwort assert spezifiziert und auf Exceptions abgebildet. Diese dürfen
aber nur zu Zwecken der Fehlerausgabe verwendet werden. Anschließend muss das
Programm beendet werden, da es schlichtweg inkorrekt ist. Generell werden Zu-
sicherungen, d. h. Vorbedingungen und Nachbedingungen von Methoden und Inva-
rianten von Klassen, mit Assertions umgesetzt und nicht mit Exceptions.

Assertions kann man ein- und ausschalten. Im Gegensatz zu Exceptions, die erwar-
tete Fehlersituationen darstellen und typisiert sind (z. B. OutOfMemoryException),
mit denen der Programmierer im Falle von Java entweder nicht fertig werden kann
(Unchecked Exceptions) oder fertig werden kann (Checked Exceptions), handelt es
sich bei Assertions um Fehler, deren Ursache unbekannt ist und die nur durch das
Verletzen von Bedingungen erkannt werden können. Ist beispielsweise eine Plausibi-
lität verletzt, so erkennt man mit Assertions nur das Symptom, nicht aber die Ur-
sache. Natürlich kann man beim Debuggen dann weitere Assertions einbauen, um
einen erkannten Fehler rückwärts im Programm weiter zu verfolgen. Assertions wer-
den während der Testphase eingeschaltet und werden beim Kunden ausgeschaltet,
da sie Performance verbrauchen. Erst im Falle eines Fehlers werden sie zu Debug-
ging-Zwecken beim Kunden eingeschaltet, um beispielsweise zu untersuchen, wel-
che Vor- oder Nachbedingung oder Invariante verletzt wird. Das folgende Beispiel
zeigt die Anwendung von Assertions:

// Datei: AssertionTest2.java

class AssertionTest2
{
 public static void main (String [] args)
 {

496 Kapitel 13

 int y = 11;
 assert (y > 0 && y < 10) :
 "Falscher Übergabeparameter von berechne()";
 System.out.println (berechne (y));
 }

 // Die Vorbedingung von berechne() ist: 0 < x < 10
 static int berechne (int x)
 {
 return x*x*x*x;
 }
}

Mit dem Schalter -ea wird dem Interpreter das Einschalten der Assertions mitgeteilt.
Der Aufruf java -ea AssertionTest2 erzeugt folgende Ausgabe:

Die Ausgabe des Programms ist:

Exception in thread "main" java.lang.AssertionError:
Falscher Übergabeparameter von berechne()
 at AssertionTest.main(AssertionTest2.java:7)

13.8 Übungen

Aufgabe 13.1: Division durch Null

Entwickeln Sie eine Klasse Teilen. Initialisieren Sie in der main()-Methode die
zwei Variablen zaehler und nenner vom Typ int. Der Variablen zaehler wird
eine beliebige ganze Zahl und der Variablen nenner die Zahl 0 zugewiesen. Danach
soll das Ergebnis der Berechnung zaehler/nenner in der Konsole ausgegeben
werden. Fangen Sie die bei der Berechnung entstehende Ausnahme Arithmetic-
Exception in einem try-catch-Block ab. Analysieren Sie die Ausnahme, indem
Sie sich Informationen über die Exception mit Hilfe der Methode printStack-
Trace() in der Konsole ausgeben lassen.

Aufgabe 13.2: Exceptions

Erstellen Sie eine Klasse Bankkonto. Eine Kontoführung soll durch Einzahlungen
und Auszahlungen simuliert werden. Die Klasse Bankkonto besitzt die Methoden:

• public void einzahlen (double betrag)

• public void auszahlen (double betrag)

• public double getKontostand()

Die Methoden einzahlen() und auszahlen() werfen eine Exception vom Typ
TransaktionsException beim Auftreten eines Transaktionsfehlers. Leiten Sie
hierzu die Klasse TransaktionsException von der Klasse Exception ab. Ein
Transaktionsfehler wird durch einen negativen Ein- und Auszahlungsbetrag oder ein
nicht ausreichend großes Guthaben für einen Auszahlungsbetrag verursacht. Die
Methode getKontostand() liefert den aktuellen Kontostand, der durch ein privates

Ausnahmebehandlung 497

Datenfeld vom Typ double realisiert wird. Die Klasse Bankkonto soll mit folgender
Klasse getestet werden:

// Datei: TestBankkonto.java

public class TestBankkonto
{
 public static void main (String[] args)
 {
 Bankkonto konto = new Bankkonto();
 double betrag;
 System.out.println ("Kontostand: " + konto.getKontostand());

 try
 {
 betrag = 123.45;
 System.out.println();
 System.out.println ("Einzahlung: " + betrag);
 konto.einzahlen (betrag);
 System.out.println ("Kontostand: " +
 konto.getKontostand());
 }
 catch (TransaktionsException ex)
 {
 System.out.println (ex.getMessage());
 }

 try
 {
 //Negative Einzahlung
 betrag = -12.45;
 System.out.println();
 System.out.println ("Einzahlung: " + betrag);
 konto.einzahlen (betrag);
 System.out.println ("Kontostand: " +
 konto.getKontostand());
 }
 catch (TransaktionsException ex)
 {
 System.out.println (ex.getMessage());
 }

 try
 {
 //Negative Auszahlung
 betrag = -12.45;
 System.out.println();
 System.out.println ("Auszahlung: " + betrag);
 konto.auszahlen (betrag);
 System.out.println ("Kontostand: " +
 konto.getKontostand());
 }
 catch (TransaktionsException ex)
 {
 System.out.println (ex.getMessage());
 }

498 Kapitel 13

 try
 {
 betrag = 12;
 System.out.println();
 System.out.println ("Auszahlung: " + betrag);
 konto.auszahlen (betrag);
 System.out.println ("Kontostand: " +
 konto.getKontostand());
 }
 catch (TransaktionsException ex)
 {
 System.out.println (ex.getMessage());
 }

 try
 {
 //Konto überziehen
 betrag = 130;
 System.out.println();
 System.out.println ("Auszahlung: " + betrag);
 konto.auszahlen (betrag);
 System.out.println ("Kontostand: " +
 konto.getKontostand());
 }
 catch (TransaktionsException ex)
 {
 System.out.println (ex.getMessage());
 }
 }
}

Aufgabe 13.3: Exceptions

Es soll ein Login-Szenario entwickelt werden. Die Klasse Login besitzt folgende
Instanzvariablen und Methoden:

• private boolean angemeldet;

• public void anmelden (String benutzer, String passwort)

• public void abmelden()
• public void bearbeiten()

Die Methode anmelden() setzt bei erfolgreicher Anmeldung die Instanzvariable
angemeldet auf true und wirft bei fehlschlagender Authentisierung ein Objekt der
Klasse ZugriffUngueltigException, die von der Klasse Exception abgeleitet
wird. Ebenfalls soll, wenn ein nicht angemeldeter Benutzer auf die Methode bear-
beiten() zugreifen möchte, eine Ausnahme vom Typ KeineBerechtigungEx-
ception geworfen werden. Die Methode abmelden() setzt die Instanzvariable an-
gemeldet auf false. Die Methode bearbeiten() gibt eine Meldung auf der
Konsole aus, um einen Arbeitsvorgang zu simulieren. Entwickeln Sie die Klassen
Login, ZugriffUngueltigException, KeineBerechtigungException. Die
entwickelten Klassen sollen mit folgender Testklasse getestet werden:

Ausnahmebehandlung 499

// Datei: Testlogin.java

import java.util.Scanner;

public class TestLogin
{
 public static void main (String[] args)
 {
 Login login = new Login();
 Scanner input = new Scanner (System.in);
 String benutzer = "";
 String passwort = "";

 System.out.print ("Bitte geben Sie den " +
 "Benutzernamen ein:");
 benutzer = input.next();
 System.out.println ("Bitte geben Sie das Passwort ein:");
 passwort = input.next();

 try
 {
 System.out.println ("Sie werden angemeldet ...");
 login.anmelden (benutzer, passwort);
 System.out.println ("Anmeldung erfolgreich!");
 }
 catch (ZugriffUngueltigException ex)
 {
 System.out.println (ex.getMessage());
 }

 try
 {
 System.out.println ("Methode bearbeiten() " +
 "wird aufgerufen ...");
 login.bearbeiten();
 }
 catch (KeineBerechtigungException ex)
 {
 System.out.println (ex.getMessage());
 }

 System.out.println ("Sie werden abgemeldet ...");
 login.abmelden();

 try
 {
 System.out.println ("Methode bearbeiten() " +
 "wird aufgerufen ...");
 login.bearbeiten();
 }
 catch (KeineBerechtigungException ex)
 {
 System.out.println (ex.getMessage());
 }
 }
}

500 Kapitel 13

Aufgabe 13.4: Exception-Handling durch Assertion ersetzen

Aufbauend auf der Übungsaufgabe 13.1 entfernen Sie das Exception-Handling und
ersetzen Sie es durch eine Assertion. Es soll eine Unchecked Exception verhindert
werden, indem der Wert des Nenners auf 0 geprüft wird. Geben sie eine Meldung auf
der Konsole aus, sobald der Nenner 0 ist.

Vergleichen Sie die Ausgabe des Programms aus dieser Aufgabe mit der Ausgabe
des Programms aus Aufgabe 13.1.

Aufgabe 13.5: Aufgabe zu Assertions

Erweitern sie das letzte Beispielprogramm AssertionTest2 aus Kapitel 13.7.3 um
einen Exception-Handler. Im Exception-Handler soll ausgegeben werden, mit wel-
chem falschen aktuellen Parameter die Methode berechne() aufgerufen wurde.
Vergessen Sie aber nicht, mit System.exit(1) das Programm zu verlassen!

// Datei: AssertionTest.java

class AssertionTest
{
 public static void main (String [] args)
 {
 int y = 11;

 assert (y > 0 && y < 10) :
 "Falscher Übergabeparameter von berechne()";
 System.out.println (berechne (y));
 }

 // Die Vorbedingung von berechne() ist: 0 < x < 10
 static int berechne (int x)
 {
 return x*x*x*x;
 }
}

Aufgabe 13.6: Flughafen-Projekt – Integration von Exceptions

Bevor Exceptions in das Flughafen-Projekt integriert werden, soll zuerst noch eine
kleine Weiterentwicklung gemacht werden: Bisher konnte eine Parkstelle und eine
Start-/Landebahn nicht als frei/belegt gekennzeichnet werden. Dies soll nun geändert
werden. Fügen Sie die folgenden beiden abstrakten Methoden der Klasse Park-
stelle hinzu:

public abstract void belegen (Flugzeug flugzeug);
public abstract void freigeben (Flugzeug flugzeug);

Diese Methoden sollen dann in den abgeleiteten Klassen implementiert werden. Da
weder eine Werft noch ein separates Parkfeld als belegt zu kennzeichnen ist, sollen
die Methodenrümpfe der beiden Klassen SeparatesParkfeld und Werft ohne
Funktion – d. h. mit einem leeren Methodenrumpf – implementiert werden. Die
Klasse Parkposition hingegen soll die Referenz auf das Flugzeug beim Aufruf

Ausnahmebehandlung 501

von belegen() intern speichern und bei freigeben() wieder auf null setzen.
Die gleiche Funktionalität soll in der Klasse Bahn implementiert werden. Ändern Sie
dabei die Methoden für die Phasen "Landebahn vergeben", "Parkstelle vergeben"
und "Startbahn vergeben" so ab, dass die Bahn beziehungsweise Parkstelle durch
das Flugzeug belegt wird.

Die bisherigen Phasen für die Landung und den Start sollen um drei Phasen er-
weitert werden. Der Status eines Flugzeugs soll sich dadurch nicht ändern. Die drei
Phasen sind:

• Landebahn freigeben
• Parkstelle freigeben
• Startbahn freigeben

Schreiben Sie die dafür notwendigen Methoden und passen Sie zusätzlich die Klas-
se Client so an, dass diese Methoden während des Lande- bzw. Startvorgangs
aufgerufen werden.

Bislang kann eine Landebahn von zwei verschiedenen Flugzeugen gleichzeitig be-
legt werden. Ein Beispiel hierzu wäre:

Bahn bahn = new Bahn();
bahn.belegen (flugzeug1);
bahn.belegen (flugzeug2);

Dieser und weitere Fehler sollen nun abgefangen werden. Es sollen dabei folgende
zwei Exception-Klassen geschrieben werden:

• BelegungsException
Die Exception BelegungsException soll in den Methoden belegen() der
Klassen Bahn und Parkposition geworfen werden, wenn diese bereits von
einem anderen Flugzeug belegt sind. Beachten Sie dabei, dass die Klasse Park-
position die abstrakte Klasse Parkstelle erweitert, womit diese Klasse auch
angepasst werden muss. Des Weiteren soll diese Exception beim Aufrufen der
Methoden für die Phasen "Landebahn vergeben", "Parkstelle vergeben" und
"Startbahn vergeben" geworfen werden, falls dem Flugzeug bereits eine Lande-
/Startbahn bzw. Parkstelle zugewiesen wurde.

• FreigabeException
Die Exception FreigabeException soll in den Methoden freigeben() der
Klassen Bahn und Parkposition geworfen werden, wenn die Parkposition von
einem anderen Flugzeug belegt ist. Diese Exception soll auch beim Aufrufen der
Methoden für die Phasen "Landebahn freigeben", "Parkstelle freigeben" und
"Startbahn freigeben" geworfen werden, falls dem Flugzeug noch keine Start-
/Landebahn bzw. Parkstelle zugewiesen wurde.

Ändern Sie auch den Client so ab, dass die eventuell geworfenen Exceptions ge-
fangen und verarbeitet werden. Die Verarbeitung könnte hierbei als ein erneuter
Versuch oder auch ein Programmabbruch implementiert sein.

Schnittstellen

14.1 Trennung von Spezifikation und Implementierung
14.2 Ein weiterführendes Beispiel
14.3 Aufbau einer Schnittstelle
14.4 Verwenden von Schnittstellen
14.5 Vergleich Schnittstelle und abstrakte Basisklasse
14.6 Die Schnittstelle Cloneable
14.7 Übungen

14 Schnittstellen

Eine Klasse enthält Methoden und Datenfelder. Methoden bestehen aus Methoden-
köpfen und Methodenrümpfen. Methodenköpfe111 stellen die Schnittstellen eines
Objektes zu seiner Außenwelt dar.

Methodenrumpf

Methodenkopf

Daten

Bild 14-1 Methodenköpfe als Schnittstellen verbergen Methodenrümpfe und Datenfelder

In einer guten Implementierung sind die Daten im Inneren des Objektes verborgen.
Nach außen sind nur die Schnittstellen – also die Methodenköpfe – sichtbar.

Entwirft man komplexe Systeme, so ist ein erster Schritt, diese Systeme in einfa-
chere Teile, die Teilsysteme bzw. Subsysteme zu zerlegen. Die Identifikation eines
Subsystems ist dabei eine schwierige Aufgabe. Als Qualitätsmaß für die Güte des
Entwurfs werden hierbei das Coupling, d. h. die Stärke der Wechselwirkungen zwi-
schen den Subsystemen, und die Cohesion (oder Coherence), d. h. die Stärke der
Abhängigkeiten innerhalb eines Subsystems betrachtet. Ein Entwurf gilt dann als gut,
wenn innerhalb eines Subsystems eine Strong Coherence und zwischen den Sub-
systemen ein Loosely Coupling besteht.

Genügt der Entwurf diesen Anforderungen, so müssen als nächstes die Wechsel-
wirkungen zwischen den Subsystemen "festgezurrt", in anderen Worten in Form von
Schnittstellen definiert werden. Die Implementierung der Subsysteme interessiert
beim Entwickeln nicht und wird verborgen (Information Hiding), d. h. die Schnitt-
stellen stellen eine Abstraktion der Subsysteme dar. Sind die Schnittstellen stabil,
so können sich nun verschiedene Arbeitsgruppen parallel mit dem Entwurf der je-
weiligen Subsysteme befassen. Diese Arbeitsgruppen können vollkommen unab-
hängig voneinander arbeiten, solange sie die Schnittstellen nicht antasten.

111 Hierbei wird vorausgesetzt, dass die Methoden nicht den Zugriffsmodifikator private tragen.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_14,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Schnittstellen 505

14.1 Trennung von Spezifikation und Implementierung

Eine gute Programmiersprache sollte das Programmieren im Großen – sprich den
Entwurf – unterstützen. Java bietet mit dem Sprachmittel interface die Möglich-
keit, den Entwurf zu erleichtern und die Schnittstellen einer Klasse in der Sprache
Java zu formulieren. Die Implementierung stellt dann eine Verfeinerung des Ent-
wurfs dar. Bei stabilen Schnittstellen einer Klasse kann dann deren Implementierung
geändert werden, ohne dass ein Kunden-Programm, das diese Klasse benutzt, ver-
ändert werden muss.

Damit die Sache greifbar wird, sofort ein Beispiel:

// Datei: Punkt.java

interface PunktSchnittstellen
{
 public int getX(); // Eine Methode, um den x-Wert abzuholen
 public void setX (int i);// Eine Methode, um den x-Wert zu setzen
}

public class Punkt implements PunktSchnittstellen
{
 private int x; //x-Koordinate vom Typ int

 public int getX() // Alle Methoden der Schnittstelle
 { // Punktschnittstellen müssen in der
 return x; // Klasse implementiert werden, wenn die
 } // Klasse instantiierbar sein soll.

 public void setX (int i)
 {
 x = i;
 }

 public static void main (String[] args)
 {
 Punkt p = new Punkt(); // Hiermit wird ein Punkt erzeugt
 p.setX (3);

 System.out.println ("Die Koordinate des Punktes p ist: ");
 System.out.println (p.getX());
 }
}

Die Ausgabe des Programms ist:

Die Koordinate des Punktes p ist:
3

Visualisiert werden kann die Verwendung der Schnittstelle PunktSchnittstellen
durch die folgende grafische Notation nach UML:

506 Kapitel 14

Punkt

<<interface>>
PunktSchnittstellen

Bild 14-2 Implementierung der Schnittstelle PunktSchnittstellen

Hierbei symbolisiert der gestrichelte Pfeil von der Klasse Punkt zur Klasse Punkt-
Schnittstellen, dass die Klasse Punkt die Schnittstelle PunktSchnitt-
stellen implementiert. Der gestrichelte Pfeil bedeutet eine Verfeinerung. Mit
anderen Worten, die Schnittstelle PunktSchnittstellen enthält nur die Spezi-
fikation der Methodenköpfe, die Verfeinerung der Methoden – sprich die Implemen-
tierung der Rümpfe – erfolgt in der Klasse Punkt.

Punkt

Punktschnittstellen

Bild 14-3 "Lollipop"-Notation

An Stelle der Notation mit einem Rechteckrahmen kann eine implementierte Schnitt-
stelle auch als "Lollipop" – ein Kreis mit Linie – notiert werden (siehe Bild 14-3). Der
"Lollipop" dient nur zur Darstellung der Nahtstellen und kann nur verwendet werden,
wenn die Schnittstellendefinition an anderer Stelle bereits ersichtlich ist. Diese
Darstellung hat jedoch den Vorteil, dass sie sehr kompakt ist.

Eine Schnittstelle (ein Interface) ist ein Sprachmittel für den Ent-
wurf. Eine Klasse beinhaltet dagegen – sofern sie nicht abstrakt ist –
den Entwurf und die Implementierung, d. h. die Methodenrümpfe.

Es ist auch möglich, dass eine Klasse mehrere Schnittstellen implementiert. Damit
hat man die Möglichkeit, Schnittstellen aufzuteilen und auch "Bibliotheks-Schnitt-
stellen" zu identifizieren, die in mehreren Klassen – ggf. mit verschiedenen Metho-
denrümpfen – implementiert werden können. Alle Schnittstellen, die von einer Klasse
implementiert werden, bilden zusammen die Aufrufschnittstelle der Klasse.

14.2 Ein weiterführendes Beispiel

Es soll folgendes Szenario betrachtet werden: Eine Person ist immer an wichtigen
Ereignissen interessiert. Deshalb implementiert sie eine Schnittstelle Nachrich-
tenEmpfaenger. Nachrichten wiederum können von verschiedenen Quellen er-
zeugt werden, z. B. könnten Objekte wie Radio, Fernseher, Zeitung usw. Informatio-

Schnittstellen 507

nen erzeugen und sie an alle interessierten Benutzer senden. Die Fähigkeit, Nach-
richten zu versenden, lässt sich somit auch in eine Schnittstelle Nachrichten-
Quelle abstrahieren. Alle Klassen, deren Objekte die Fähigkeit erhalten sollen,
Nachrichten zu versenden, implementieren also die Schnittstelle Nachrichten-
Quelle. Jede Person kann sich nun nach Interesse bei den verschiedenen Nach-
richtenquellen anmelden. Erzeugt eine Nachrichtenquelle eine Nachricht, so werden
alle angemeldeten Interessenten benachrichtigt.

Aus dieser Beschreibung ergeben sich folgende Schnittstellen:

// Datei: Nachrichten.java

interface NachrichtenQuelle
{
 public boolean anmelden (NachrichtenEmpfaenger empf);
 public void sendeNachricht (String nachricht);
}

interface NachrichtenEmpfaenger
{
 public void empfangeNachricht (String nachricht);
}

Eine Klasse Radio, Zeitung oder Fernseher könnte z. B. die Schnittstelle Nach-
richtenQuelle implementieren.

<<interface>>

NachrichtenQuelle

anmelden()
sendeNachricht()

Radio Zeitung Fernseher

Bild 14-4 Klassen, welche die Schnittstelle NachrichtenQuelle implementieren

Genauso wie man, um Post zu empfangen, dem Sender seine Adresse mitteilen
muss, müssen auch Objekte, die Nachrichten empfangen wollen, ihre Adresse dem
Sender bekannt geben. Dies geschieht in der Methode anmelden(). Diese Metho-
de hat die Aufgabe, die Adresse (programmtechnisch die Referenz) eines Objektes,
welches das Interface NachrichtenEmpfaenger implementiert, entgegenzuneh-
men, damit bei einer auftretenden Nachricht der Interessent informiert werden kann.
Der Code für eine Nachrichtenquelle Zeitung könnte folgendermaßen aussehen:

// Datei: Zeitung.java

public class Zeitung implements NachrichtenQuelle
{
 private String name;
 private NachrichtenEmpfaenger[] arr;
 private int anzahlEmpfaenger = 0;

508 Kapitel 14

 public Zeitung (String name, int maxAnzahlEmpfaenger)
 {
 this.name = name;
 arr = new NachrichtenEmpfaenger [maxAnzahlEmpfaenger];
 }

 public boolean anmelden (NachrichtenEmpfaenger empf)
 {
 if (anzahlEmpfaenger < arr.length)
 {
 arr [anzahlEmpfaenger++] = empf;
 return true;
 }
 return false;
 }

 public void sendeNachricht (String nachricht)
 {
 // Alle angemeldeten Nachrichtenempfänger
 // werden benachrichtigt
 for (int i = 0; i < anzahlEmpfaenger; i++)
 {
 arr [i].empfangeNachricht (nachricht);
 }
 }
}

Wie in Bild 14-5 gezeigt, soll die Klasse Person die Schnittstelle Nachrichten-
Empfaenger implementieren:

Person

<<interface>>
NachrichtenEmpfaenger

empfangeNachricht()

Bild 14-5 Klasse Person implementiert Schnittstelle NachrichtenEmpfaenger

Hier die Klasse Person:

// Datei: Person.java

public class Person implements NachrichtenEmpfaenger
{
 private String name;
 private String vorname;

Schnittstellen 509

 public Person (String name, String vorname)
 {
 this.name = name;
 this.vorname = vorname;
 }

 public void empfangeNachricht (String nachricht)
 {
 System.out.println ("an " + name + " " + vorname
 + ": " + nachricht);
 }
}

Zum Testen der Klassen Person und Zeitung wird folgendes Programm benutzt:

// Datei: Test.java

public class Test
{
 public static void main (String[] args)
 {
 Person p1 = new Person ("Fischer", "Fritz");
 Person p2 = new Person ("Maier", "Hans");
 Person p3 = new Person ("Kunter", "Max");

 Zeitung z1 = new Zeitung ("-Frankfurter Allgemeine-", 10);
 z1.anmelden (p1);
 z1.anmelden (p2);
 Zeitung z2 = new Zeitung ("-Südkurier-", 10);
 z2.anmelden (p1);
 z2.anmelden (p3);

 System.out.println ("Frankfurter Allgemeine Schlagzeile:");
 z1.sendeNachricht ("Neues Haushaltsloch von 30 Mrd. EURO");
 System.out.println();
 System.out.println ("Südkurier Schlagzeile:");
 z2.sendeNachricht ("Bayern München Deutscher Meister");
 }
}

Die Ausgabe des Programms ist:

Frankfurter Allgemeine Schlagzeile:
an Fischer Fritz: Neues Haushaltsloch von 30 Mrd. EURO
an Maier Hans: Neues Haushaltsloch von 30 Mrd. EURO

Südkurier Schlagzeile:
an Fischer Fritz: Bayern München Deutscher Meister
an Kunter Max: Bayern München Deutscher Meister

Mit dem Aufruf z1.sendeNachricht ("Neues Haushaltsloch von 30 Mrd.
Euro") werden zwei Personen benachrichtigt. Das sind genau die Personen, die
sich mit z1.anmelden (p1) und mit z1.anmelden (p2) als Nachrichtenemp-
fänger angemeldet haben. Das folgende Bild veranschaulicht den Benachrichti-
gungsablauf.

510 Kapitel 14

 z1:Zeitung

sendeNachricht()

Array vom Typ
Nachrichten-
Empfaenger

sendeNachricht()
p1:Person

empfangeNachricht()

p2:Person

empfangeNachricht()

Bild 14-6 Nachrichtenquelle Zeitung benachrichtigt die registrierten Nachrichtenempfänger

Zusätzlich ist zu beachten, dass in der Deklaration der Methode anmelden() als
formaler Übergabeparameter ein Schnittstellentyp angegeben wird. Als aktueller
Übergabeparameter wird allerdings eine Referenz auf ein Objekt der Klasse Per-
son übergeben. Dies funktioniert, da die Klasse Person die Schnittstelle Nach-
richtenEmpfaenger implementiert und bei der Parameterübergabe ein Up-Cast
in den Schnittstellentyp erfolgt.

Wird als formaler Übergabeparameter ein Schnittstellentyp ange-
geben, so kann eine Referenz auf ein Objekt, dessen Klasse diese
Schnittstelle implementiert, als aktueller Parameter übergeben
werden. Referenzen auf Objekte eines anderen Typs werden vom
Compiler abgelehnt.

14.3 Aufbau einer Schnittstelle

Eine Schnittstellendefinition besteht ähnlich wie eine Klassendefinition aus zwei
Teilen:

• der Schnittstellendeklaration
• und dem Schnittstellenkörper mit Konstantendefinitionen und Methodendeklaratio-

nen.

Das folgende Beispiel demonstriert die Definition einer Schnittstelle:

public interface NachrichtenQuelle2 Schnittstellendeklaration
{
 public static final int SPORT = 0;
 public static final int POLITIK = 1;
 public static final int KULTUR = 2;
 public static final int ANZEIGEN = 3; Schnittstellen-
 public static final int GESAMT = 4; körper

 public boolean anmelden
 (NachrichtenEmpfaenger empf, int typ);
 public void sendeNachricht (String nachricht);
}

Schnittstellen 511

Die Schnittstellendeklaration

Die Schnittstellendeklaration setzt sich aus drei Elementen zusammen:

• einem optionalen Zugriffsmodifikator public112. Wird public nicht angegeben,
so wird der Zugriffsschutz default verwendet,

• dem Schlüsselwort interface und dem Schnittstellennamen,

• optional dem Schlüsselwort extends und durch Kommata getrennte Schnitt-
stellen, von denen abgeleitet wird.

public optional
interface Schnittstellenname zwingend erforderlich
extends S1, S2, . . . , Sn optional ableiten von anderen

Schnittstellen S1 bis Sn

Tabelle 14-1 Elemente einer Schnittstellendeklaration

Der Zugriffsmodifikator public sorgt dafür, dass die Schnittstelle nicht nur im eige-
nen Paket, sondern in allen Paketen sichtbar ist.

Mit public deklarierte Schnittstellen können – genauso wie Klas-
sen – mittels der import-Vereinbarung in anderen Paketen sichtbar
gemacht werden. Schnittstellen, die nicht mit public deklariert sind,
sind default und damit nur im eigenen Paket sichtbar.

Ist eine Schnittstelle mit public deklariert, so darf in derselben Quellcode-Datei kei-
ne weitere Klasse oder Schnittstelle stehen, die auch public ist. Hier gelten die
gleichen Konventionen wie bei Klassen.

Schnittstellen können mit extends von anderen Schnittstellen ab-
geleitet werden. Mit anderen Worten, es ist möglich, eigene Schnitt-
stellenhierarchien aufzubauen.

Klassen können dagegen mit extends nicht von Schnittstellen ab-
geleitet werden. Sie können jedoch beliebig viele Schnittstellen mit
implements implementieren.

Der Schnittstellenkörper

Der Schnittstellenkörper enthält:

• Konstantendefinitionen
• und Methodendeklarationen.

112 Bei der Programmierung mit geschachtelten Klassen (siehe Kap. 15) sind auch die Zugriffsmodi-

fikatoren private und protected für Schnittstellen möglich.

512 Kapitel 14

Alle in der Schnittstelle aufgeführten Methoden sind automatisch public und
abstract. Somit enthält eine Schnittstelle auch keine Methodenimplementierung,
da abstrakte Methoden keinen Methodenrumpf besitzen können.

Bei der Methodendeklaration ist die explizite Angabe von public und
abstract optional. Fehlen diese Schlüsselwörter, so werden sie
automatisch vom Compiler eingefügt. Methoden in Schnittstellen be-
sitzen – da sie abstract sind – keinen Methodenrumpf.

Versucht man, den Zugriffsmodifikator einer Schnittstellenmethode z. B. auf pri-
vate zu setzen, bringt der Compiler eine Fehlermeldung. Es macht ebenso keinen
Sinn, eine Schnittstellenmethode als final zu deklarieren, da als final deklarierte
Methoden bekanntlich nicht mehr überschrieben und damit auch nicht implementiert
werden können. Dies wird ebenfalls vom Compiler überprüft.

Zur Anschauung einige korrekte und falsche Methodendeklarationen:

public interface NachrichtenQuelle3
{
 // Explizit public abstract
 public abstract boolean anmelden (NachrichtenEmpfaenger empf);

 // Explizit public, implizit abstract
 public void sendeNachricht (String nachricht);

 // Auch möglich: Implizit public abstract
 // void sendeNachricht (String nachricht);

 // Nicht möglich
 // private sendeNachricht (String nachricht);
}

Konstanten in Schnittstellen werden in der Regel als Übergabeparameter für eine
Schnittstellenmethode verwendet. Im oben angeführten Beispiel der Schnittstelle
NachrichtenQuelle2 sind die Konstanten SPORT, POLITIK, KULTUR, ANZEIGEN
und GESAMT definiert und werden als Übergabeparameter für die Methode anmel-
den() verwendet. Damit kann ein NachrichtenEmpfaenger beim Anmelden an-
geben, welchen Nachrichtentyp er empfangen möchte.

Bezüglich der Angabe der Modifikatoren public, static und final bei den Kon-
stantendefinitionen besteht vollkommene Freiheit. Es können alle angegeben wer-
den, es können aber auch alle weggelassen werden. Die nicht angegebenen Modifi-
katoren werden dann durch den Compiler hinzugefügt. Wird jedoch versucht, explizit
den Zugriffsmodifikator private oder protected zu setzen, so bringt der Compiler
eine Fehlermeldung. Ob nun die Angabe public static final gemacht wird
oder nicht, alle Konstanten einer Schnittstelle müssen initialisiert werden. Das folgen-
de Beispiel zeigt verschiedene zulässige und nicht zulässige Varianten von Zugriffs-
modifikatoren bei der Konstantendefinition:

Schnittstellen 513

public interface NachrichtenQuelle4
{
 public static final int SPORT = 0;
 int POLITIK = 1; // ist public static final
 public int KULTUR = 2;
 public int ANZEIGEN = 3;
 public int GESAMT = 4;
 public int ZUFALL = (int) (Math.random() * 5);
 // private int REGIONALES = 5; Fehler, da kein Zugriff möglich
 // int SONSTIGES; Fehler, da Konstante initialisiert werden muss

 public boolean anmelden (NachrichtenEmpfaenger empf, int typ);
 public void sendeNachricht (String nachricht);
}

Jede Konstantendefinition in einer Schnittstelle muss einen Initiali-
sierungsausdruck besitzen.

Der Initialisierungsausdruck muss dabei nicht konstant sein, sondern kann – wie
im obigen Beispiel zu sehen ist – sogar einen Funktionsaufruf wie z. B. Math.ran-
dom() enthalten.

14.4 Verwenden von Schnittstellen

Bei der Verwendung von Schnittstellen gibt es einige Besonderheiten zu beachten,
welche in diesem Kapitel betrachtet werden sollen.

14.4.1 Implementieren einer Schnittstelle

Eine Schnittstelle kann durch Angabe des Schlüsselwortes implements und des
Schnittstellennamens von einer Klasse implementiert werden. Durch

class B extends A implements I1, I2

deklariert eine Klasse B, dass sie ein Subtyp der Klasse A ist und zusätzlich die
Schnittstellen I1 und I2 implementiert.

Eine Klasse gibt mit dem Schlüsselwort implements an, welche
Schnittstellen sie implementiert.

Implementiert eine Klasse eine Schnittstelle, so muss sie alle
Methoden der Schnittstelle implementieren, wenn sie instantiiert
werden soll – d. h. wenn von ihr Objekte geschaffen werden sollen.
Ansonsten muss die Klasse als abstrakt deklariert werden und ist
nicht instantiierbar.

514 Kapitel 14

Implementiert die Klasse Zeitung aus Kapitel 14.2 nur die abstrakte Methode
anmelden() aus der Schnittstelle NachrichtenQuelle und die Methode sende-
Nachricht() nicht, so ist die Klasse Zeitung mit dem Schlüsselwort abstract
zu kennzeichnen. Abstrakte Klassen können nicht instantiiert werden.

Eine Klasse, die eine Schnittstelle implementiert, erbt die in der Schnittstelle enthal-
tenen Konstanten und abstrakten Methoden. Es kann durch Schnittstellen keine
Funktionalität geerbt werden, da Schnittstellen keine Methodenimplementierung
beinhalten.

Ein Programmierer hat bei der Implementierung einer Schnittstellen-
methode darauf zu achten, dass er den Vertrag der Methode erfüllt.

14.4.2 Schnittstellen als Datentyp

Einer Referenz vom Typ einer Schnittstelle kann als Wert eine Referenz auf ein
Objekt zugewiesen werden, dessen Klasse die Schnittstelle implementiert. Hierzu
soll das Beispiel aus Kapitel 14.2 nochmals betrachtet werden. Die Klasse Person
implementiert die Schnittstelle NachrichtenEmpfaenger. Es kann also beim Anle-
gen von Objekten der Klasse Person anstatt

Person p1 = new Person ("Fischer", "Fritz");
NachrichtenEmpfaenger p1 = new Person ("Fischer", "Fritz");

geschrieben werden.

Eine Schnittstelle ist ein Referenztyp. Von ihm können Referenz-
variablen gebildet werden, die auf Objekte zeigen, deren Klassen
die Schnittstelle implementieren. Es ist damit auch möglich, Arrays
von Schnittstellentypen anzulegen und diese Arrays mit Referenzen
auf Objekte zu füllen, deren Klassen die Schnittstelle implementieren.

Das folgende Beispiel zeigt erneut die Testklasse aus Kapitel 14.2 mit der gleichen
Funktionalität wie dort, hier jedoch in der Ausprägung, dass Arrays von Schnittstellen
verwendet werden.

// Datei: Test2.java

public class Test2
{
 public static void main (String[] args)
 {
 NachrichtenEmpfaenger[] senke = new NachrichtenEmpfaenger [3];
 senke [0] = new Person ("Fischer", "Fritz");
 senke [1] = new Person ("Maier", "Hans");
 senke [2] = new Person ("Kunter", "Max");

Vorsicht!

Schnittstellen 515

 NachrichtenQuelle[] quelle = new NachrichtenQuelle[2];
 quelle [0] = new Zeitung ("-Frankfurter Allgemeine-", 10);
 quelle [0].anmelden (senke [0]);
 quelle [0].anmelden (senke [1]);
 quelle [1] = new Zeitung ("-Südkurier-", 10);
 quelle [1].anmelden (senke [0]);
 quelle [1].anmelden (senke [2]);

 System.out.println ("Frankfurter Allgemeine Schlagzeile:");
 quelle [0].sendeNachricht ("Neues Haushaltsloch " +
 "von 30 Mrd. EURO");
 System.out.println();
 System.out.println ("Südkurier Schlagzeile:");
 quelle [1].sendeNachricht("Bayern München Deutscher Meister");
 }
}

Die Ausgabe des Programms ist:

Frankfurter Allgemeine Schlagzeile:
an Fischer Fritz: Neues Haushaltsloch von 30 Mrd. EURO
an Maier Hans: Neues Haushaltsloch von 30 Mrd. EURO

Südkurier Schlagzeile:
an Fischer Fritz: Bayern München Deutscher Meister
an Kunter Max: Bayern München Deutscher Meister

Man beachte, dass mit der Programmzeile

NachrichtenEmpfaenger[] senke = new NachrichtenEmpfaenger [3];

ein Array von Referenzen vom Typ einer Schnittstelle angelegt wird (siehe Bild 14-7),
wobei diese Referenzen auf Instanzen zeigen können, deren Klassen die Schnitt-
stelle NachrichtenEmpfaenger implementieren.

 senke[2] senke[1] senke[0]

 senke

null null null

Bild 14-7 Array von Referenzen des Schnittstellentyps NachrichtenEmpfaenger

Da die Klasse Person die Schnittstelle NachrichtenEmpfaenger implementiert,
können Referenzen auf Instanzen der Klasse Person den Komponenten des
Schnittstellen-Arrays senke als Elemente zugewiesen werden. Nach den folgenden
Anweisungen ist das Array gefüllt:

senke [0] = new Person ("Fischer", "Fritz");
senke [1] = new Person ("Maier", "Hans");
senke [2] = new Person ("Kunter", "Max");

516 Kapitel 14

 senke[2] senke[1] senke[0]

 senke

:Person :Person :Person

Bild 14-8 Referenzen im Array zeigen auf konkrete Objekte

14.4.3 Typsicherheit von Schnittstellen

Bisher wurde es immer als großer Vorteil angesehen, dass einer Methode, die als
formalen Übergabeparameter eine Referenz vom Typ Object hat, ein Objekt einer
beliebigen Klasse übergeben werden kann. Dies funktioniert deshalb, weil die ge-
meinsame Basisklasse aller Klassen in Java die Klasse Object ist. Genau diese
Vorgehensweise kann unter Umständen zu Laufzeitfehlern führen. Betrachtet werden
soll hierzu die bekannte Methode anmelden() aus der Schnittstelle Nachrichten-
Quelle. Diese Methode hat einen Übergabeparameter des Schnittstellentyps Nach-
richtenEmpfaenger:

interface NachrichtenQuelle
{
 public boolean anmelden (NachrichtenEmpfaenger empf);
 public void sendeNachricht (String nachricht);
}

An dieser Stelle könnte man auch einen Übergabeparameter vom Typ Object ver-
wenden, wie es im folgenden Beispiel gemacht wurde:

interface NachrichtenQuelle
{
 public boolean anmelden (Object empf);
 public void sendeNachricht (String nachricht);
}

Die Implementierung der Methode anmelden() könnte dann wie folgt aussehen:

public boolean anmelden (Object empf)
{
 if (anzahlEmpfaenger < arr.length)
 {
 // Jetzt muss beim Zuweisen der übergebenen Referenz an das
 // Array arr vom Typ NachrichtenEmpfaenger ein expliziter Cast
 // durchgeführt werden.
 arr [anzahlEmpfaenger ++] = (NachrichtenEmpfaenger) empf;
 return true;
 }
 return false;
}

Schnittstellen 517

Von der Funktionalität her betrachtet, ist es egal, welche Variante verwendet wird –
beide funktionieren gleich gut. Aber man sollte auch daran denken, dass man der jet-
zigen Methode anmelden() nicht mehr ansieht, dass es für den Übergabeparame-
ter zwingend erforderlich ist, die Schnittstelle NachrichtenEmpfaenger zu im-
plementieren. Wird eine Referenz auf ein anderes beliebiges Objekt übergeben,
dessen Klasse diese Schnittstelle nicht implementiert, so kann dies erst zur Laufzeit
festgestellt werden, wenn die Typumwandlung von Object nach Nachrichten-
Empfaenger fehlschlägt und eine ClassCastExcpetion geworfen wird. Dies ist
sehr nachteilig, da der Compiler keine Möglichkeit hat, diesen Fehler aufzudecken.
Wird dagegen der Schnittstellentyp als Übergabeparameter angegeben, so können
nur Referenzen auf Objekte übergeben werden, deren Klassen auch tatsächlich
diese Schnittstelle implementieren. Werden andere Parameter übergeben, so meldet
schon der Compiler einen Fehler.

Deshalb gilt stets: Wenn bei einem Referenztyp als Übergabeparameter nicht jede
beliebige Referenz übergeben werden kann, so ist davon abzusehen, den Re-
ferenztyp Object als Übergabeparameter zu verwenden.

Schnittstellen bieten ein elegantes Mittel zur Prüfung, ob der Anwen-
der den richtigen Typ übergeben hat. Deshalb sollte bei Übergabepa-
rametern stets geprüft werden, ob durch Einsatz eines Schnittstellen-
typs eine höhere Typsicherheit erreicht werden kann.

14.4.4 Implementieren von mehreren Schnittstellen

Eine Klasse kann nicht nur eine, sondern beliebig viele Schnittstellen implemen-
tieren. Syntaktisch gibt die Klasse dies mit dem Schlüsselwort implements an, ge-
folgt von einer Liste von gültigen Schnittstellennamen, die durch Kommata getrennt
sind. Im folgenden Beispiel ist eine Klasse Vermittler aufgeführt, die sowohl die
Schnittstelle NachrichtenQuelle als auch die Schnittstelle Nachrichten-
Empfaenger implementiert. Bild 14-9 zeigt dies grafisch.

Vermittler

<<interface>>
NachrichtenQuelle

anmelden()
sendeNachricht()

<<interface>>
NachrichtenEmpfaenger

empfangeNachricht()

Bild 14-9 Die Klasse Vermittler implementiert zwei Schnittstellen

518 Kapitel 14

// Datei: Vermittler.java

public class Vermittler implements NachrichtenEmpfaenger,
 NachrichtenQuelle
{
 private NachrichtenEmpfaenger[] arr;
 private int anzahlEmpfaenger = 0;

 public Vermittler (int maxAnzahlEmpfaenger)
 {
 arr = new NachrichtenEmpfaenger [maxAnzahlEmpfaenger];
 }

 public boolean anmelden (NachrichtenEmpfaenger empf)
 {
 if (anzahlEmpfaenger < arr.length)
 {
 arr [anzahlEmpfaenger++] = empf;
 return true;
 }
 return false;
 }

 public void sendeNachricht (String nachricht)
 {
 // Alle angemeldeten Nachrichtenempfänger
 // werden benachrichtigt
 for (int i = 0; i < anzahlEmpfaenger; i++)
 {
 arr [i].empfangeNachricht (nachricht);
 }
 }

 public void empfangeNachricht (String nachricht)
 {
 sendeNachricht (nachricht);
 }
}

Ein Objekt der Klasse Vermittler kann sich nun bei einem Objekt der Klasse
Zeitung als NachrichtenEmpfaenger über dessen Methode anmelden()
registrieren lassen. Objekte der Klasse Person können sich wiederum bei einem
Objekt der Klasse Vermittler – mit Hilfe der Instanzmethode anmelden() der
Klasse Vermittler – registrieren und erhalten somit automatisch alle Nachrichten
von allen Zeitungen. Damit muss sich eine Person nicht mehr bei allen Zeitungen
einzeln anmelden, sondern gibt die Adresse nur einmal dem Vermittler bekannt, der
alle Nachrichten von jeder Zeitung weiterleitet. Sicherlich ist dies nicht eine allzu
realistische Variante, denn da nun alle Personen alle Zeitungsnachrichten erhalten,
werden diese bald merken, dass sie zwar hervorragend informiert werden, aber dass
Zeitungen eben auch Geld kosten. Es ist hierzu folgende Variante denkbar: Das
Objekt der Klasse Vermittler bietet eine Anmeldeschnittstelle, die es ermöglicht,
den Typ der Zeitung, die man abonnieren möchte, mit anzugeben. Damit hat jede
Person die Möglichkeit, sich über das Objekt der Klasse Vermittler gezielt bei
einer oder mehreren Zeitungen anzumelden. In dem vorliegenden Beispiel wird aber

Schnittstellen 519

aus Aufwandsgründen nur die vereinfachte Variante betrachtet, in der eine Person,
die sich über das Objekt vom Typ Vermittler anmeldet, alle Nachrichten aller Zei-
tungen erhält. Die folgende Testklasse veranschaulicht diese Variante:

// Datei: VermittlerTest.java

public class VermittlerTest
{
 public static void main (String[] args)
 {
 NachrichtenQuelle z1 =
 new Zeitung ("-Frankfurter Allgemeine-", 3);
 NachrichtenQuelle z2 = new Zeitung ("-Südkurier-", 3);
 Vermittler mittler = new Vermittler (3);

 // Vermittler tritt in Gestalt des Nachrichtenempfängers auf
 z1.anmelden (mittler);
 z2.anmelden (mittler);

 // Vermittler tritt in der Gestalt der NachrichtenQuelle auf
 mittler.anmelden (new Person ("Fischer", "Fritz"));
 mittler.anmelden (new Person ("Maier", "Hans"));
 mittler.anmelden (new Person ("Kunter", "Max"));

 System.out.println ("Frankfurter Allgemeine Schlagzeile:");
 z1.sendeNachricht ("Neues Haushaltsloch von 30 Mrd. EURO");
 System.out.println ();
 System.out.println ("Südkurier Schlagzeile:");
 z2.sendeNachricht ("Bayern München Deutscher Meister");
 }
}

Die Ausgabe des Programms ist:

Frankfurter Allgemeine Schlagzeile:
an Fischer Fritz: Neues Haushaltsloch von 30 Mrd. EURO
an Maier Hans: Neues Haushaltsloch von 30 Mrd. EURO
an Kunter Max: Neues Haushaltsloch von 30 Mrd. EURO

Südkurier Schlagzeile:
an Fischer Fritz: Bayern München Deutscher Meister
an Maier Hans: Bayern München Deutscher Meister
an Kunter Max: Bayern München Deutscher Meister

Falls es noch nicht aufgefallen ist, unsere Objekte haben das Reden untereinan-
der gelernt. Einer Zeitung wird eine neue Nachricht zum Versenden gegeben, und
diese schickt die Nachricht weiter an die angemeldeten Vermittler. Dabei weiß die
Zeitung nichts davon, wie ein Vermittler mit der Nachricht weiter umgeht. Ein Ver-
mittler benachrichtigt daraufhin alle ihm bekannten Nachrichtenempfänger. Überlässt
man den Personen das Anmelden selbst, indem man z. B. im Konstruktor der Klasse
Person die Anmeldung an einen übergebenen Vermittler vornimmt, so reden unsere
Objekte in beiden Richtungen miteinander, wie im Bild 14-10 zu sehen ist:

520 Kapitel 14

z1:Zeitung

z2:Zeitung

:Person

:Person

:Person

anmelden()

sendeNachricht()

sendeNachricht()

anmelden()

anmelden()

mittler:Vermittler
anmelden()

anmelden()

empfange-
Nachricht()

empfangeNachricht()

empfangeNachricht()

Nachrichtenquelle Nachrichtenquelle
und

Nachrichtensenke

Nachrichtensenke

Bild 14-10 Nachrichtenempfänger und Nachrichtenquellen reden miteinander

Ein Objekt der Klasse Vermittler tritt in zwei Gestalten auf:

• als NachrichtenEmpfaenger

• und als NachrichtenQuelle.

Durch die Implementierung einer Schnittstelle erhält ein Objekt die Möglichkeit, sich
zusätzlich wie ein spezieller Schnittstellentyp zu verhalten. Es wird also ein zusätz-
liches Verhalten bzw. eine zusätzliche Aufrufschnittstelle implementiert. Jedes
Objekt, dessen Klasse eine Schnittstelle implementiert, kann sich auch wie ein Typ
der implementierten Schnittstelle verhalten.

Mit dem Schlüsselwort implements können mehrere Schnittstellen
in einer Klasse implementiert werden. Dabei werden die Namen der
zu implementierenden Schnittstellen durch Kommata getrennt hinter
implements aufgeführt. Damit erhalten Objekte einer Klasse, die
mehrere Schnittstellen implementiert, die Fähigkeit, in der Gestalt von
mehreren Typen aufzutreten. Die Instanz kann als Referenztyp der
Klasse oder als Referenztyp jeder implementierten Schnittstelle
auftreten.

Folgende Probleme können beim gleichzeitigen Implementieren von mehreren
Schnittstellen auftreten:

Die zu implementierenden Schnittstellen:

• beinhalten Methoden mit gleicher Signatur und gleichem Rückgabewert, in ande-
ren Worten, mit demselben Methodenkopf.

• beinhalten Konstanten mit demselben Namen.

Schnittstellen 521

• enthalten Methoden, die sich nur darin unterscheiden, dass sie unterschiedliche
Exceptions werfen.

• beinhalten Methoden, die bis auf den Rückgabewert gleich sind.

Die soeben genannten Problemfälle werden im Folgenden diskutiert:

• Zwei zu implementierende Schnittstellen haben die exakt gleiche Methode

In diesem Fall wird die Methode nur ein einziges Mal in der Klasse implementiert.
Sie kann nicht für jede Schnittstelle getrennt implementiert werden. Auch die
Verträge der beiden Methoden müssen übereinstimmen.

• Zwei zu implementierende Schnittstellen haben Konstanten mit exakt dem-

selben Namen

Das folgende Beispiel zeigt einen solchen Fall. Die Konstante VAR1 ist sowohl in
der Schnittstelle Schnitt1 als auch in der Schnittstelle Schnitt2 und zusätzlich
noch in der Klasse KonstantenTest vorhanden:

// Datei: KonstantenTest.java

interface Schnitt1
{
 public static final int VAR1 = 1;
 public static final int VAR2 = 2;
}

interface Schnitt2
{
 public static final int VAR1 = 3;
 public static final int VAR3 = 4;
}

public class KonstantenTest implements Schnitt1, Schnitt2
{
 private static final int VAR1 = 9;
 public static void main (String[] args)
 {
 System.out.println (VAR1); // VAR1 der Klasse KonstantenTest
 System.out.println (VAR2);
 System.out.println (VAR3);
 System.out.println (Schnitt1.VAR1);
 System.out.println (Schnitt2.VAR1);
 }
}

Die Ausgabe des Programms ist:

9
2
4
1
3

522 Kapitel 14

Auf die doppelt vorhandenen Schnittstellenkonstanten kann nur über die Angabe
des Schnittstellennamens, z. B. Schnitt1.VAR1, zugegriffen werden.

Existieren Konstanten mit demselben Namen in verschiedenen
Schnittstellen oder sind sie von Datenfeldern der Klasse verdeckt,
so müssen diese Konstanten über den qualifizierten Namen mit
Angabe des Schnittstellennamens angesprochen werden.

• Zwei zu implementierende Schnittstellen haben zwei Methoden, die bis auf

die Exceptions in der throws-Klausel identisch sind

Im folgenden Beispiel werden zwei Client-Programme Client1 und Client2
gezeigt, wobei Client1 mit Referenzen auf Objekte vom Typ Eins und Client2
mit Referenzen auf Objekte vom Typ Zwei arbeitet. In den Schnittstellen Eins
und Zwei soll jeweils eine Methode deklariert sein, die sich nur durch den Typ der
Exception in der throws-Klausel unterscheiden. Das Client-Programm Client1
erwartet Ausnahmen vom Typ Exception und das Client-Programm Client2
erwartet Ausnahmen vom Typ MyException. Solange die beiden Schnittstellen
in getrennten Klassen implementiert werden, gibt es kein Problem.

 Client1

<<interface>>
Eins

ServerA

Deklariert eine
Methode, die eine
Ausnahme vom
Typ Exception
wirft

Client2

<<interface>>
Zwei

ServerB

Deklariert eine
Methode, die eine
Ausnahme vom Typ
MyException wirft

Bild 14-11 Client-Programme Client1 und Client2, die Schnittstellen benutzen

Sollen beide Schnittstellen in einer gemeinsamen Klasse implementiert werden
(siehe Bild 14-12), so ist dies nur dann möglich, wenn die beiden Ausnahmen
zueinander in einer Vererbungshierarchie stehen (siehe Bild 14-13) und wenn die
implementierte Methode nur Ausnahmen vom Typ der Klasse wirft, die in der
Vererbungshierarchie weiter unten steht.

<<interface>>
Eins

<<interface>>
Zwei

Client1 Client2

Server

Bild 14-12 Implementieren der Schnittstellen Eins und Zwei in der Klasse Server

Schnittstellen 523

Das Client-Programm Client1 erwartet Ausnahmen vom Typ Exception und
das Client-Programm Client2 erwartet Ausnahmen vom Typ MyException.
Bekommt das Client-Programm Client1 eine Ausnahme vom Typ MyEx-
ception, so ist dies auch in Ordnung, da ein Sohnobjekt immer an die Stelle des
Vaters treten kann. Bekommt aber das Client-Programm Client2, das ja Aus-
nahmen vom Typ MyException erwartet, nur eine Ausnahme vom Typ Ex-
ception, so kommt es zu einer Fehlersituation, da der Client2 mehr erwartet.

 Exception

MyException

Bild 14-13 Vererbungshierarchie der Ausnahmen Exception und MyException

Wirft damit die Klasse Server eine Ausnahme vom Typ MyException, so sind
beide Client-Programme Client1 und Client2 zufrieden.

Enthalten zwei Schnittstellen Methoden, die sich nur durch den Typ
der Exception in der throws-Klausel unterscheiden, so können die-
se Schnittstellen nur dann von einer Klasse gemeinsam implemen-
tiert werden, wenn die beiden Ausnahmen zueinander in einer Ver-
erbungshierarchie stehen und von der implementierten Methode
nur die Exception geworfen wird, die in der Vererbungshierarchie
weiter unten steht.

Hier nun das Programm:

 // Datei: MyException.java
 class MyException extends Exception
 {
 MyException()
 {
 super ("MyException-Fehler!!");
 }
 }

 Hier die beiden Schnittstellen:

 // Datei: Eins.java
 public interface Eins
 {
 public void methode() throws Exception;
 }

 // Datei: Zwei.java
 public interface Zwei
 {
 public void methode() throws MyException;
 }

524 Kapitel 14

 Hier die Klasse Server:

 // Datei: Server.java

 public class Server implements Eins, Zwei
 {
 // Wirft die Methode methode() eine Exception vom Typ
 // MyException, so sind Client-Programme, welche die
 // Schnittstelle Eins verwenden, als auch Client-Programme,
 // welche die Schnittstelle Zwei verwenden, zufrieden.
 public void methode() throws MyException
 {
 throw new MyException();
 }
 }

Im Folgenden werden die beiden Client-Programme Client1 und Client2 vor-
gestellt:

 // Datei: Client1.java

 class Client1
 {
 public static void main (String[] args)
 {
 // Client1 arbeitet mit einer Referenzvariablen vom Typ
 // Eins. Aus deren Sicht ist die Methode bekannt,
 // die Ausnahmen vom Typ Exception wirft.
 Eins x = new Server();

 try
 {
 x.methode();
 }
 // Client1 ist auch mit Exceptions vom Typ MyException
 // zufrieden.
 catch (Exception e)
 {
 System.out.println (e.getMessage());
 }
 }
 }

 // Datei: Client2.java

 class Client2
 {
 public static void main (String[] args)
 {
 // Client2 arbeitet mit einer Referenzvariablen vom Typ
 // Zwei. Aus deren Sicht wirft die Methode methode() eine
 // Exception vom Typ MyException.
 Zwei x = new Server();

Schnittstellen 525

 try
 {
 x.methode();
 }
 // Client2 arbeitet sowieso mit Exceptions vom Typ
 // MyException. Hier gibt es also auch keine Probleme.
 catch (MyException e)
 {
 System.out.println (e.getMessage());
 }
 }
 }

Die Ausgabe des Programms Client1 ist:

MyException-Fehler!!

Die Ausgabe des Programms Client2 ist:

MyException-Fehler!!

• Zwei zu implementierende Schnittstellen besitzen Methoden, die sich nur in
ihrem Rückgabewert unterscheiden

In diesem Fall können die Schnittstellen nicht gemeinsam implementiert werden,
da die Methoden anhand des Rückgabewertes nicht unterschieden werden kön-
nen (siehe Kap. 9.2.3).

interface ReturnObject
{
 public Object gebeWert();
}

interface ReturnInteger
{
 public Integer gebeWert();
}

class Implementierung implements ReturnObject//, ReturnInteger
{
 // Beide Methoden in der gleichen Klasse zu implementieren
 // funktioniert nicht, da sich die Methoden nur anhand ihres
 // Rückgabetyps unterscheiden und somit dem Compiler keine
 // Möglichkeit zur Differenzierung ermöglichen. Denn in Java
 // ist es nicht erforderlich, den Rückgabewert eines Methoden-
 // aufrufs abzuholen.
 public Object gebeWert()
 {
 return new Object();
 }
 // public Integer gebeWert()
 // {
 // return new Integer();
 // }
}

526 Kapitel 14

14.4.5 Vererbung von Schnittstellen

Einfachvererbung bei Schnittstellen

Schnittstellen besitzen – genauso wie Klassen – die Möglichkeit, mit dem Schlüssel-
wort extends eine schon vorhandene Schnittstelle zu erweitern.

// Datei: Einfach.java

interface NachrichtenQuelle
{
 public int SPORT = 0;
 public int POLITIK = 1;
 public int KULTUR = 2;
 public int ANZEIGEN = 3;
 public int GESAMT = 4;

 public boolean anmelden (NachrichtenEmpfaenger empf, int typ);
 public void sendeNachricht (String nachricht);
}

interface Vermittler extends NachrichtenQuelle
{
 public void empfangeNachricht (String nachricht);
}

Die Schnittstelle Vermittler erweitert die Schnittstelle NachrichtenQuelle um
die Methode empfangeNachricht(). Wie bei der Vererbung von Klassen besitzt
die Schnittstelle Vermittler neben den eigenen Elementen auch die von der
Schnittstelle NachrichtenQuelle ererbten Elemente.

Mehrfachvererbung bei Schnittstellen

Im Gegensatz zur Einfachvererbung von Klassen ist in Java bei Schnittstellen eine
Mehrfachvererbung erlaubt. Damit kann ein Schnittstelle nicht nur eine einzige
Schnittstelle erweitern, sondern mehrere gleichzeitig.

Schnittstellen lassen im Gegensatz zu Klassen Mehrfachvererbung
zu.

// Datei: Mehrfach.java
interface NachrichtenQuelle
{
 public int SPORT = 0;
 public int POLITIK = 1;
 public int KULTUR = 2;
 public int ANZEIGEN = 3;
 public int GESAMT = 4;

 public boolean anmelden (NachrichtenEmpfaenger empf, int typ);
 public void sendeNachricht (String nachricht);
}

Schnittstellen 527

interface NachrichtenEmpfaenger
{
 public void empfangeNachricht (String nachricht);
}

interface Vermittler extends NachrichtenQuelle,NachrichtenEmpfaenger
{
}

Dennoch ist die Mehrfachvererbung bei Schnittstellen von nicht allzu großer Bedeu-
tung – viel wichtiger ist die Möglichkeit, mehrere Schnittstellen gemeinsam in
einer Klasse implementieren zu können. Damit können Instanzen dieser Klassen
sich zusätzlich wie Typen aller implementierten Schnittstellen verhalten. Dies wurde
bereits in Kapitel 14.4.4 gezeigt.

14.5 Vergleich Schnittstelle und abstrakte Basisklasse

Abstrakte Basisklassen und Schnittstellen sind einander ähnlich. Beide sind ein Mittel
zur Abstraktion. Im Folgenden sollen die Übereinstimmungen und Gegensätze auf-
gezeigt werden.

Abstrakte Basisklassen können Variablen, Konstanten, implemen-
tierte und abstrakte Methoden enthalten. Schnittstellen können nur
Konstanten und abstrakte Methoden enthalten.

Für Klassen stellt Java nur den Mechanismus der Einfachvererbung bereit. Es ist
nicht möglich, von mehreren Klassen zu erben:

Basisklasse1

MeineKlasse

Basisklasse2

Nicht möglich

Bild 14-14 Bei Klassen ist keine Mehrfachvererbung erlaubt

Eine Klasse kann aber mehrere Schnittstellen implementieren, wie Bild 14-15 zeigt:

<<interface>>
Schnittstelle1

<<interface>>
Schnittstelle2

möglich

MeineKlasse

Bild 14-15 Eine Klasse kann mehrere Schnittstellen implementieren

528 Kapitel 14

Eine Klasse kann auch eine vorhandene abstrakte Basisklasse erweitern bzw. deren
leere Methodenrümpfe ausprogrammieren und gleichzeitig eine oder mehrere
Schnittstellen implementieren, wie folgendes Bild zeigt:

 Abstrakte
Basisklasse

MeineKlasse

<<interface>>
Schnittstelle1

möglich

… <<interface>>
SchnittstelleN

Bild 14-16 Ableiten von einer Klasse und gleichzeitig mehreren Schnittstellen implementieren

Mit dem Mechanismus der Schnittstelle ist es damit möglich, mehrere Schnittstellen,
die nur abstrakte Methoden und Konstanten enthalten, zu implementieren. Aber es
ist keine Vererbung, sondern eine Verfeinerung im Sinne einer schrittweisen Verfei-
nerung, in deren Rahmen erst die Schnittstelle festgelegt wird und im zweiten Schritt
dann die Implementierung.

Sowohl eine Unterklassenbildung aus einer abstrakten Basisklasse
im Rahmen der Vererbung als auch eine Verfeinerung einer Schnitt-
stelle stellt die Bildung eines Untertypen dar. Ein Objekt einer Klas-
se – die eine Schnittstelle implementiert – ist vom Typ seiner Klasse
und vom Typ der Schnittstelle.

Zwischen Klassen und Schnittstellen gibt es aber einen wichtigen Unterschied: Arbei-
tet man mit Klassen und dem Prinzip der Vererbung, so muss man die zu vererbende
Information in die Wurzel des Klassenbaums bringen, wenn sie über alle Zweige
nach unten vererbt werden soll. Die erbende Klasse und die abstrakte Klasse müs-
sen also verwandt sein.

MeineKlasse2

Generalisierung Spezialisierung

Abstrakte
Basisklasse

MeineKlasse1

Bild 14-17 Vererbungsbaum mit einer abstrakten Basisklasse als Wurzel

Eine Schnittstelle kann von jeder beliebigen Klasse implementiert wer-
den, ohne dass die Schnittstelle in den Klassenbaum eingeordnet wer-
den muss. Die zu implementierende Schnittstelle erfordert keine Ver-
wandtschaft. Sie kann implementiert werden, wo sie gebraucht wird.

Schnittstellen 529

MeineKlasseA11

MeineKlasseA2

MeineKlasseA21

MeineKlasseA

MeineKlasseA1

<<interface>>
Schnittstelle

<<interface>>
Schnittstelle

Bild 14-18 Gemischte Hierarchie mit Klassen und Schnittstellen

Eine implementierte Schnittstelle in einer Vaterklasse wird an abgeleitete Sohn-
klassen weitervererbt. Somit kann sich ein Objekt der Sohnklasse wie ein Objekt der
Vaterklasse verhalten und zusätzlich wie ein Objekt aller in der darüberliegenden
Hierarchie implementierten Schnittstellen. Mit Hilfe der Vererbungshierarchie in Bild
14-19 soll der Typbegriff von Objekten erläutert werden.

<<interface>>
Schnittstelle1

<<interface>>
Schnittstelle2

<<interface>>
Schnittstelle3

Klasse1

Klasse2

Klasse3

Bild 14-19 Klassenhierarchie zur Diskussion des Typbegriffs

Ein Objekt einer Klasse kann in der Gestalt unterschiedlicher Typen auftreten. In der
Tabelle 14-2 ist aufgelistet, von welchem Typ ein Objekt der Klasse Klasse1,
Klasse2 und der Klasse3 ist.

530 Kapitel 14

Objekt der Klasse ist vom Typ
Klasse3 Klasse3, Klasse2, Klasse1, Schnittstelle3,

Schnittstelle2, Schnittstelle1
Klasse2 Klasse2, Klasse1, Schnittstelle3, Schnittstelle2,

Schnittstelle1
Klasse1 Klasse1

Tabelle 14-2 Ein Objekt einer Klasse kann in Gestalt mehrerer Typen auftreten

14.6 Die Schnittstelle Cloneable

Klonen bedeutet nichts anderes, als eine exakte Kopie von etwas schon Existentem
zu erstellen. Wenn ein Objekt geklont wird, erwartet man, dass man eine Referenz
auf ein neues Objekt bekommt, dessen Datenfelder exakt die gleichen Werte haben,
wie die des Objektes, das als Klonvorlage benutzt wurde.

Im Folgenden soll der Unterschied zwischen den beiden Fällen:

• zwei Referenzen zeigen auf das gleiche Objekt,
• die zweite Referenz zeigt auf ein geklontes Objekt des ersten Objektes

erläutert werden. Betrachtet werden soll hierzu das folgende Programm:

// Datei: KopieTest.java

class Kopie
{
 public int x;

 public Kopie (int x)
 {
 this.x = x;
 }

 public void print()
 {
 System.out.println ("x = " + x);
 }
}

public class KopieTest
{
 public static void main (String[] args)
 {
 Kopie ref1 = new Kopie (1);
 Kopie ref2 = ref1;

 System.out.print ("Wert über ref1: ");
 ref1.print();
 System.out.print ("Wert über ref2: ");
 ref2.print();
 ref1.x = 5;
 System.out.print ("Wert über ref1: ");
 ref1.print();

Schnittstellen 531

 System.out.print ("Wert über ref2: ");
 ref2.print();
 }
}

Die Ausgabe des Programms ist:

Wert über ref1: x = 1
Wert über ref2: x = 1
Wert über ref1: x = 5
Wert über ref2: x = 5

Das Ergebnis dürfte nicht verwundern. Da die Referenz ref2 genau auf das gleiche
Objekt zeigt wie die Referenz ref1, wird eine Datenänderung, egal ob sie über die
Referenz ref1 oder ref2 erfolgt, immer am gleichen Objekt vorgenommen. Im
folgenden Bild 14-20 ist dies grafisch zu sehen:

:Kopie

ref1

ref2

Bild 14-20 Zwei Referenzen, die auf das gleiche Objekt zeigen

Wenn ein Objekt geklont bzw. kopiert wird, erhält man zwei Objekte, deren Werte
unabhängig voneinander verändert werden können. Bild 14-21 zeigt diese Situation:

ref1

ref2

:Kopie

x = 1

:Kopie

x = 1

Bild 14-21 Zwei Referenzen, die auf zwei verschiedene Objekte mit gleichem Inhalt zeigen

Das folgende Programm, das gleich unterhalb des Programmcodes erläutert wird,
erzeugt eine exakte Kopie:

// Datei: CloneTest.java

class Kopie2 implements Cloneable
{
 public int x;

 public Kopie2 (int x)
 {
 this.x = x;
 }
 public void print()
 {
 System.out.println ("x = " + x);
 }

532 Kapitel 14

 // Überschreiben der clone()-Methode der Klasse Object
 public Object clone() throws CloneNotSupportedException
 {
 // Mit super.clone() wird die überschriebene clone()-Methode
 // der Klasse Object aufgerufen
 return super.clone();
 }
}

public class CloneTest
{
 public static void main (String[] args)
 throws CloneNotSupportedException
 {
 Kopie2 ref1 = new Kopie2 (1);
 Kopie2 ref2 = (Kopie2) ref1.clone();
 System.out.print ("Wert über ref1: ");
 ref1.print();
 System.out.print ("Wert über ref2: ");
 ref2.print();
 ref1.x = 5;
 System.out.print ("Wert über ref1: ");
 ref1.print();
 System.out.print ("Wert über ref2: ");
 ref2.print();
 }
}

Die Ausgabe des Programms ist:

Wert über ref1: x = 1
Wert über ref2: x = 1
Wert über ref1: x = 5
Wert über ref2: x = 1

Das Ergebnis ist im Gegensatz zu dem vorherigen bemerkenswert. Die einzigen Än-
derungen, die in dem Programm vorgenommen wurden, sind fett hervorgehoben. Die
Klasse Kopie2 implementiert die Schnittstelle Cloneable des Pakets java.lang
und überschreibt die Methode clone() der Klasse Object. Man könnte zunächst
vermuten, dass die Deklaration der clone()-Methode in der Schnittstelle Clone-
able enthalten ist. Dies ist aber nicht der Fall – die Schnittstelle Cloneable hat
einen leeren Schnittstellenrumpf:

package java.lang;

public interface Cloneable
{
}

Was gewinnt aber eine Klasse hinzu, wenn sie eine solche Schnittstelle implemen-
tiert? Die Klasse gibt damit an, dass ihre Objekte kopierbar sein sollen! Ein Über-
schreiben der clone()-Methode ist hierbei aus Gründen der Polymorphie zwingend
erforderlich, auch wenn dies nicht vom Compiler überprüft werden kann, da in der
Schnittstelle Cloneable die Methode clone() nicht enthalten ist. Das Kompilieren

Schnittstellen 533

der Klasse Kopie2 wäre auch möglich, wenn die clone()-Methode der Klasse
Object nicht überschrieben wird.

Da die clone()-Methode der Klasse Object den Zugriffsmodifikator protected
hat, kann diese nur in abgeleiteten Klassen oder in Klassen, die sich im gleichen Pa-
ket befinden, aufgerufen werden. Die Klasse Kopie2 ist implizit von Object abge-
leitet und daher kann die von der Klasse Object geerbte clone()-Methode in ihr
selbst aufgerufen werden. Würde in der Klasse Kopie2 die clone()-Methode der
Klasse Object nicht überschrieben, so würde der Aufruf ref1.clone() in der
main()-Methode der Klasse CloneTest beim Kompilieren folgenden Fehler erzeu-
gen:

CloneTest.java:23: clone() has protected access in java.lang.Object
 Kopie2 ref2 = (Kopie2) ref1.clone();

Liefert der Ausdruck

ref instanceof Cloneable

true zurück, so muss es auch möglich sein, ref.clone() aufzurufen. Dies ist
aber nur dann möglich, wenn die clone()-Methode in der Klasse des Objektes, auf
das ref zeigt, mit dem Zugriffsmodifikator public überschrieben wird.

Dadurch, dass explizit bei einer Klasse angegeben werden muss,
dass diese kopierbar ist, kann verhindert werden, dass Objekte von
Klassen kopiert werden können, für die das gar nicht vorgesehen war,
und für die die Kopierfunktionalität deshalb auch nicht richtig imple-
mentiert worden ist.

Schnittstellen, die gar keine Methoden enthalten, werden auch Marker-Interfaces
genannt.

Das Marker-Entwurfsmuster besteht aus einer leeren Schnittstelle, die
dazu benutzt wird, Klassen zu markieren. Eine Klasse, die ein Marker-
Interface implementiert, gibt bekannt, dass sie von einem bestimmten
Typ ist.

Damit werden Klassen in zwei Mengen aufgeteilt: in diejenigen, welche die Schnitt-
stelle implementieren, und in diejenigen, welche die Schnittstelle nicht implementie-
ren. Mit Hilfe des instanceof-Operators kann geprüft werden, zu welcher der
beiden Mengen ein Objekt gehört. Wichtige Beispiele für Marker-Interfaces sind:
java.lang.Cloneable, java.rmi.Remote und java.io.Serializable.

Die Methode clone() der Klasse Object sieht folgendermaßen aus:

protected Object clone() throws CloneNotSupportedException
{
 //Die Implementierung soll hier nicht betrachtet werden
}

534 Kapitel 14

Die Aufgabe der Methode clone() der Klasse Object besteht darin, eine Eins-zu-
Eins-Kopie des Objektes zu erstellen, für das sie aufgerufen wird. Mit anderen
Worten:

Die Methode clone() erzeugt ein neues Objekt und belegt die Da-
tenfelder mit den exakt gleichen Werten wie das Objekt, für das die
Methode aufgerufen wird. Es wird eine Referenz vom Typ Object auf
das neue Objekt zurückgegeben. Diese muss nur noch in den rich-
tigen Typ gecastet werden.

Alle Objekte besitzen also schon eine Kopierfähigkeit. Ihre Klassen müssen jedoch
das Interface Cloneable implementieren, damit die Methode clone() der Klasse
Object verwendet werden kann.

Ob ein Objekt kopierbar ist oder nicht, kann folgendermaßen überprüft
werden:

if (ref instanceof Cloneable)
{
 // Kopie möglich
}

Im vorliegenden Beispiel war es ausreichend, in der Methode clone() der Klasse
Kopie2 einfach die Methode clone() der Klasse Object aufzurufen. Die
clone()-Methode der Klasse Object erzeugt eine Eins-zu-Eins-Kopie von allen
Datenfeldwerten. Sobald die Datenfelder des Objektes nicht mehr nur aus primitiven
Datentypen bestehen, muss deshalb in der clone()-Methode mehr erfolgen als nur
der Aufruf der clone()-Methode der Basisklasse Object. Denn wenn ein Datenfeld
eine Referenz ist, so wird von der clone()-Methode der Klasse Object nur die
Referenz kopiert und kein neues Objekt angelegt. Es handelt sich um eine so
genannte "flache" Kopie. Das folgende Bild zeigt diese Problematik:

:Kreiseck

 refEck

:Kreiseck

Kopie Kreiseck-Objekt

:Kreis

:Eck

 refKreis

 refEck

 refKreis

Bild 14-22 "flache" Kopie

Wird von einem Kreiseck-Objekt eine Kopie erzeugt, so werden die Werte der
Referenzvarialben refKreis und refEck einfach kopiert. Das heißt es werden
keine neuen Objekte vom Typ Kreis und Eck erzeugt.

Schnittstellen 535

Bei der "tiefen" Kopie hingegen entstehen neue Objekte vom Typ Kreis und Eck,
auf welche dann die Referenzvariablen refKreis und refEck des neuen Objektes
vom Typ Kreiseck zeigen. Die Instanzvariablen der neuen Objekte vom Typ Kreis
und vom Typ Eck werden mit den Werten der kopierten Objekte initialisiert. Bild
14-23 zeigt den Sachverhalt bei einer "tiefen" Kopie.

Kopie Kreiseck-Objekt

:Kreis

:Eck

:Kreis

:Eck

Kopie von
Kreis-Objekt

Kopie von
Eck-Objekt

:Kreiseck :Kreiseck

 refEck

 refKreis

 refEck

 refKreis

Bild 14-23 "tiefe" Kopie

Das unten stehende Beispiel demonstriert die Realisierung einer "tiefen" Kopie. Die
Klasse MyClass enthält eine Referenz auf die Klasse Mini (siehe auch Bild 14-24
und Bild 14-25). Beim Anlegen eines Objektes vom Typ MyClass wird auch die Klas-
se Mini instantiiert. Beim Kopieren über die überschriebene Methode clone() wird
auch das Objekt der Klasse Mini mit kopiert.

Die Datenfelder der Objekte, auf welche die Referenzen orig und kopie zeigen,
können daher völlig unabhängig voneinander verändert werden.

// Datei: Clone2.java

class Mini implements Cloneable
{
 public int x = 1;
 public int y = 1;

 public Object clone() throws CloneNotSupportedException
 {
 return super.clone();
 }
}

class MyClass implements Cloneable
{
 public int var = 1;
 public Mini ref = new Mini();

 public Object clone() throws CloneNotSupportedException
 {
 MyClass tmp = (MyClass) super.clone(); // Flache Kopie
 tmp.ref = (Mini) ref.clone(); // Kopieren des Objektes, auf
 return tmp; // das die Referenz zeigt
 }
}

536 Kapitel 14

public class Clone2
{
 public static void main (String[] args) throws
 CloneNotSupportedException
 {
 MyClass orig = new MyClass();
 MyClass kopie = (MyClass) orig.clone(); // Kopie erstellen
 kopie.var = 2; // Datenfeld der Kopie ändern
 kopie.ref.x = 2; // Datenfeld der Kopie ändern
 System.out.println ("Original:");
 System.out.println ("var = " + orig.var);
 System.out.println ("Mini.x = " + orig.ref.x +
 " Mini.y = " + orig.ref.y);
 System.out.println();
 System.out.println ("Kopie:");
 System.out.println ("var = " + kopie.var);
 System.out.println ("Mini.x = " + kopie.ref.x +
 " Mini.y = " + kopie.ref.y);
 }
}

Die Ausgabe des Programms ist:

Original:
var = 1
Mini.x = 1 Mini.y = 1

Kopie:
var = 2
Mini.x = 2 Mini.y = 1

Die folgenden Bilder zeigen nochmals den Vorgang des Klonens für das obige Pro-
gramm. Das erste Bild zeigt den Zustand der Objekte nach der Programmzeile

MyClass tmp = (MyClass) super.clone();

in der clone()-Methode der Klasse MyClass:

 :MyClass

var = 1

ref

:MyClass

var = 1

ref

:Mini

x = 1
y = 1

orig

tmp

Bild 14-24 Objektzustand nach dem Aufruf super.clone()

Nach der Ausführung der folgenden Codezeile

tmp.ref = (Mini) ref.clone();

Schnittstellen 537

in der clone()-Methode sehen die Verhältnisse folgendermaßen aus:

 :MyClass

var = 1

ref

:MyClass

var = 1

ref

:Mini

x = 1
y = 1

orig

tmp :Mini

x = 1
y = 1

Bild 14-25 Objektzustände nach Aufruf der clone()-Methode der Klasse Mini

14.7 Übungen

Aufgabe 14.1: Testschnittstelle für die Klasse Person

Implementieren Sie in der Klasse Person das Interface Testschnittstelle:

// Datei: Testschnittstelle.java

public interface Testschnittstelle
{
 public void print();
}

Die Methode print() soll die Werte aller Datenfelder eines Objektes ausgeben.

// Datei: Person.java

import java.util.Scanner;

public class Person
{
 private String name;
 private String vorname;

 public Person()
 {
 Scanner eingabe = new Scanner (System.in);

 try
 {
 System.out.print ("\nGeben Sie den Nachnamen ein: ");
 name = eingabe.nextLine();

 System.out.print ("\nGeben Sie den Vornamen ein: ");
 vorname = eingabe.nextLine();
 }

538 Kapitel 14

 catch (Exception e)
 {
 System.out.println ("Eingabefehler");
 System.exit (1);
 }
 }

}

Verwenden Sie zum Testen die Klasse TestPerson:

// Datei: TestPerson.java

public class TestPerson
{
 public static void main (String [] args)
 {
 Person refPerson = new Person();
 refPerson.print();
 }
}

Aufgabe 14.2: Implementieren von mehreren Schnittstellen

Die Klasse Laserdrucker soll die Schnittstelle Drucker, die Klasse Faxgeraet
die Schnittstelle Fax und die Klasse Kombigeraet soll die beiden Schnittstellen Fax
und Drucker implementieren. Die Schnittstellen Fax und Drucker sind gegeben
durch:

// Datei: Fax.java

public interface Fax
{
 String faxsimulation = ;
 public void senden (String sendeRef);
}

// Datei: Drucker.java

public interface Drucker
{
 String drucksimulation = ;
 public void drucken (String druckRef);
}

Drucker
<<interface>>

Fax

<<interface>>

Laserdrucker FaxgeraetKombigeraet

Bild 14-26 Klassendiagramm mit Schnittstellen Drucker und Fax

Schnittstellen 539

Schreiben Sie die Klassen Laserdrucker, Faxgeraet und Kombigeraet so,
dass die Klasse TestGeraete

// Datei: TestGeraete.java

public class TestGeraete
{
 public static void main (String[] args)
 {
 Laserdrucker l1 = new Laserdrucker();
 Laserdrucker l2 = new Laserdrucker();
 Faxgeraet f1 = new Faxgeraet();
 Faxgeraet f2 = new Faxgeraet();
 Kombigeraet k1 = new Kombigeraet();
 Kombigeraet k2 = new Kombigeraet();

 f1.senden ("Dies ist ein Test");
 f2.senden ("Dies ist ein Test");
 l1.drucken ("Dies ist ein Test");
 l2.drucken ("Dies ist ein Test");
 k1.senden ("Dies ist ein Test");
 k2.senden ("Dies ist ein Test");
 k1.drucken ("Dies ist ein Test");
 k2.drucken ("Dies ist ein Test");
 }
}

die folgende Ausgabe erzeugt:

Absender ist: Fax1

Das Senden wird simuliert
Dies ist ein Test

Absender ist: Fax2

Das Senden wird simuliert
Dies ist ein Test

Drucker Laser1 meldet sich

Das Drucken wird simuliert
Dies ist ein Test

Drucker Laser2 meldet sich

Das Drucken wird simuliert
Dies ist ein Test

Absender ist: Kombigerät1

Das Senden wird simuliert
Dies ist ein Test

Absender ist: Kombigerät2

540 Kapitel 14

Das Senden wird simuliert
Dies ist ein Test

Kombigerät Kombigerät1 meldet sich

Das Drucken wird simuliert
Dies ist ein Test

Kombigerät Kombigerät2 meldet sich

Das Drucken wird simuliert
Dies ist ein Test

Aufgabe 14.3: Vererbung und Schnittstellen

Der folgende Java-Code ist zu analysieren. Anschließend sind die folgenden beiden
Aufgaben zu lösen.

// Datei: Adressierbar.java
public interface Adressierbar
{
 public void setEmpfaenger (String[] adresse);
 public String[] getEmpfaenger();
}

// Datei: Versendbar.java
public interface Versendbar extends Adressierbar
{
 public void setAbsender (String[] absender);
 public String[] getAbsender();
 public int getGewicht();
}

// Datei: Postamt.java
public class Postamt
{

}

// Datei: Sendung.java
public class Sendung
{

}

// Datei: Start.java

public class Start
{
 public static void main (String[] args)
 {
 int gewicht = 80;
 String[] an = {"Thomas Vollmer",
 "Flandernstrasse 101", "73730 Esslingen"};
 String[] von = {"Bernhard Hirschmann",
 "Hölderlinweg 161", "73728 Esslingen"};

Schnittstellen 541

 Sendung brief = new Sendung (an, von, gewicht);
 Postamt post = new Postamt();
 post.versende (brief);
 }
}

a) Implementieren Sie die versende()-Methode der Klasse Postamt. Es soll ein

Übergabeparameter vom Typ Versendbar entgegengenommen werden. Außer-
dem soll folgende Bildschirmausgabe erfolgen:

Sendung wurde entgegengenommen und wird jetzt versandt.
Absender: Bernhard Hirschmann Hölderlinweg 161 73728 Esslingen
Empfänger: Thomas Vollmer Flandernstrasse 101 73730 Esslingen

b) Schreiben Sie eine gültige Implementierung der Klasse Sendung, welche die

Schnittstelle Versendbar implementiert, sodass ein Objekt der Klasse Sendung
von der Methode versenden() der Klasse Postamt verarbeitet werden kann.

Aufgabe 14.4: Schnittstelle Musikinstrument

Schreiben Sie die Schnittstelle Musikinstrument mit der Methode spieleIn-
strument(). Implementieren Sie diese Schnittstelle in den beiden Klassen Trom-
mel und Trompete. Das Musikinstrument soll hierbei beim Spielen eine entspre-
chende Ausgabe auf dem Bildschirm machen. So soll z. B. eine Trommel am Bild-
schirm "Trommel, Trommel" ausgeben. Zum Testen der Klassen soll die Methode
main() in der Klasse Musikantenstadl mehrere Musikinstrumente erzeugen und
abspielen.

Aufgabe 14.5: Bildschirmschoner

Die unten abgedruckte Klasse BildschirmschonerTest simuliert einen einfachen
Bildschirmschoner, indem sie mehrere Objekte geometrischer Figuren erzeugt und
deren Größe und Position verändert. In diesem Beispiel verwendet die Klasse Bild-
schirmschonerTest die zwei Klassen Kreis und Quadrat. Damit auch andere
geometrische Figuren in den Bildschirmschoner integriert werden können, werden
zwei Schnittstellen verwendet, die von den verschiedenen Klassen zu implementie-
ren sind.

Die Schnittstelle Position enthält die Methode

verschiebe (float x, float y),

um die Position einer Figur zu ändern. Sie verändert die Position eines Körpers da-
durch, dass sie die übergebenen Parameter zu den aktuellen Koordinaten hinzu-
addiert.

Die Schnittstelle Groesse enthält die Methode

aendereGroesse (float faktor),

um die Größe einer Figur ändern zu können. Die Methode aendereGroesse() soll
eine Exception bei negativem Parameter werfen. Sie kann die Größe verändern, in

542 Kapitel 14

dem sie den Radius des Kreises mit einem Faktor multipliziert, der als Parameter
übergeben wird.

Die Klasse Kreis implementiert beide Schnittstellen. Zusätzlich enthält die Klasse
Kreis ein Datenfeld radius vom Typ float sowie zwei float-Datenfelder, um
den Mittelpunkt des Kreises zu definieren (alternativ können Sie für den Mittelpunkt
auch die Klasse Punkt aus früheren Übungen verwenden). Die Klasse Quadrat im-
plementiert nur die Schnittstelle Position. Außerdem enthält die Klasse Quadrat
ein Datenfeld seitenlaenge vom Typ float und zwei float-Datenfelder, um die
linke obere Ecke des Quadrats zu bestimmen. Auch hier können Sie alternativ die
Klasse Punkt wieder verwenden. Bei jeder Änderung der Größe oder der Position
einer geometrischen Figur soll ein entsprechender Text auf der Konsole ausgegeben
werden. Eine grafische Ausgabe der geometrischen Figuren ist in dieser Aufgabe
nicht beabsichtigt.

Verwenden Sie bitte folgende Testklasse:

// Datei: BildschirmschonerTest.java

import java.util.Random;

public class BildschirmschonerTest
{
 public static void main (String [] args)
 {
 Random random = new Random();

 for (int i = 0; i <= 10; i++)
 {
 Object koerper;

 if (random.nextBoolean())
 {
 koerper = new Kreis (2.0f);
 }
 else
 {
 koerper = new Quadrat (3.0f);
 }

 if (koerper instanceof Position)
 {
 Position position = (Position) koerper;
 position.verschiebe (random.nextFloat(),
 random.nextFloat());
 }

 if (koerper instanceof Groesse)
 {
 Groesse groesse = (Groesse) koerper;

 try
 {
 groesse.aendereGroesse (random.nextFloat()-0.5f);
 }

Schnittstellen 543

 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 }
 }
}

Aufgabe 14.6: Schnittstelle Cloneable

Die Übungsaufgabe 14.2 soll erweitert werden, damit Faxgeraet, Kombigeraet
und Laserdrucker geklont werden können. Dazu müssen die Klassen die Schnitt-
stelle Cloneable implementieren und um die Methode clone() erweitert werden.
Innerhalb der clone()-Methode muss die Instanzvariable geraeteId neu gesetzt
werden und die Anzahl der Geräte muss erhöht werden.

Die Geräte Kombigeraet und Laserdrucker sollen um das Datenfeld anzahl-
Druckpapier des Typs int erweitert werden. Die Anzahl der Druckpapiere sollte
beim Konstruktoraufruf mitgegeben werden. Bei jedem Druck muss anzahlDruck-
papier um eine Seite dekrementiert werden. Beim Druck muss nicht geprüft wer-
den, ob noch Papier vorhanden ist.

Prüfen Sie anhand folgender Testklasse die Funktion Ihrer Anpassungen:

// Datei: TestGeraete.java

public class TestGeraete
{
 public static void main (String[] args)
 throws CloneNotSupportedException
 {
 Laserdrucker l1 = new Laserdrucker(120);
 Laserdrucker l2 = l1.clone();

 l1.drucken ("Dies ist ein Test");
 l1.drucken ("Dies ist ein Test");

 // Das geklonte Objekt besitzt vor dem folgenden
 // Druckvorgang weiterhin 120 Druckpapiere und ist somit
 // keine Referenz auf den ersten Laserdrucker.
 l2.drucken ("Dies ist ein Test");
 }
}

Aufgabe 14.7: Flughafen-Projekt – Simulator und Schnittstellen

Innerhalb dieser Projektaufgabe soll die bisherige Anwendung um einen Flugzeug-
simulator erweitert werden. Dieser hat die Aufgabe, den Landeanflug und den Start-
vorgang eines Flugzeugs zu simulieren, indem er den Statuswechsel des Flugzeugs
anfordert.

544 Kapitel 14

Der Status eines Flugzeugs soll nun nicht mehr in den Methoden für die einzelnen
Lande-/Startphasen gesetzt werden, sondern zentral über eine neue Methode. Diese
Methode hat den folgenden Methodenkopf:

void aktualisiereStatus() throws StatusUngueltigException

Die Methode ermittelt als Erstes bei jedem Aufruf den nächsten Status, überprüft
dann, ob dieser gesetzt werden kann, und setzt – wenn möglich – den neuen Status.
Ist der neue Status nicht möglich, soll eine Exception vom Typ StatusUngueltig-
Exception geworfen werden. So muss z. B. verhindert werden, dass das Flugzeug
den Landeanflug einleitet, bevor diesem eine Landebahn zugewiesen wurde.

Schreiben Sie als nächstes die Klasse FlugzeugSimulator. Bei dieser Klasse soll
das zu simulierende Flugzeug über eine Methode angemeldet werden. Zusätzlich
erhält die Klasse FlugzeugSimulator eine Methode aktualisiereStatus(),
welche bei jedem Aufruf die gleichnamige Methode aktualisiereStatus() des
zu simulierenden Flugzeugs aufruft. Beachten Sie dabei, dass der Flugzeugsimulator
derzeit nur ein einziges Flugzeug simulieren soll. Schreiben Sie auch die Klasse
StatusUngueltigException und testen Sie Ihre Änderungen, indem Sie die
Klasse Client anpassen.

Der Flugzeugsimulator soll nun zusätzlich bei Statusänderung des simulierten Flug-
zeuges angemeldete Interessenten über die Statusänderung benachrichtigen. Ein
solches Konzept wurde schon in Kapitel 14.2 vorgestellt und soll nun in ähnlicher
Form implementiert werden. Ein Interessent – also Nachrichtenempfänger – muss
folgendes Interface implementieren:

public interface FlugzeugListener
{
 public void meldeStatusAenderung (Flugzeug flugzeug);
}

Um Benachrichtigungen zu empfangen, muss sich der Nachrichtenempfänger bei
dem Flugzeugsimulator anmelden. Das Anmelden geschieht über die folgende Me-
thode:

public void setFlugzeugListener (FlugzeugListener flugzeugListener)
{
 this.flugzeugListener = flugzeugListener;
}

Schreiben Sie eine Klasse, welche die Schnittstelle FlugzeugListener implemen-
tiert und bei jeder Statusänderung die Methode print() der Klasse Flugzeug auf-
ruft. Melden Sie ein Objekt dieser Klasse beim Flugzeugsimulator an und testen Sie
Ihre Anwendung.

Geschachtelte Klassen

15.1 Elementklassen
15.2 Lokale Klassen
15.3 Anonyme Klassen
15.4 Statisch geschachtelte Klassen und Schnittstellen
15.5 Realisierung von geschachtelten Klassen
15.6 Übungen

15 Geschachtelte Klassen

Geschachtelte Klassen werden in Java dazu eingesetzt, um Typen, die für die Imple-
mentierung einer Klasse benötigt werden, zu verbergen.

Mit geschachtelten Klassen können Typen gebildet werden, die nur für
die Implementierung innerhalb einer Klasse benötigt werden. In den
Aufrufschnittstellen nach außen sind diese Typen nicht sichtbar und
können damit bei Bedarf problemlos geändert werden.

Für geschachtelte Klassen sind auch die Begriffe innere Klasse, eingebettete
Klasse, nested class bekannt.

Es gibt verschiedene Arten von geschachtelten Klassen:

• die Elementklasse (gekapselt als ein Element in einer äußeren
Klasse),

• die lokale Klasse (gekapselt in einem Block),
• die lokale Klasse (gekapselt in einem Block) ohne Namen als so

genannte anonyme Klasse
• und die statisch geschachtelte Klasse.

Bild 15-1 zeigt, wie man sich die unterschiedlichen Arten von geschachtelten Klassen
bildlich vorstellen kann. Links ist ein Objekt einer Elementklasse zu sehen, das
innerhalb eines Objektes der umschließenden Klasse lebt. In der Mitte ist ein Objekt
einer lokalen bzw. anonymen Klasse zu sehen, das innerhalb einer Instanzmetho-
de eines Objektes der umschließenden Klasse lebt. Das Objekt der dargestellten
anonymen bzw. lokalen Klasse lebt damit nur während der Abarbeitung der Instanz-
methode. Rechts im Bild ist ein Objekt einer lokalen bzw. anonymen Klasse zu se-
hen, das während der Ausführung einer Klassenmethode lebt.

Objekt einer Elementklasse lebt
in einem umschließenden Objekt.

Objekt einer lokalen bzw. anony-
men Klasse lebt in einer Instanz-
methode des umschließenden
Objektes.

Outer

private static int i;

static void methode1()
{

}
static void methode2()
{

}

Objekt einer lokalen bzw. anony-
men Klasse lebt in einer Klassen-
methode der umschließenden
Klasse.

Bild 15-1 Innere Objekte "leben" in äußeren Objekten

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_15,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Geschachtelte Klassen 547

Eine statisch geschachtelte Klasse113 wird ebenfalls innerhalb einer umschließen-
den Klasse definiert, wie Bild 15-2 zeigt. Statisch geschachtelte Klassen werden
jedoch vom Compiler in zwei nebeneinander stehende Klassen umgesetzt. Diese
Klassen sind voneinander unabhängig bis auf den gemeinsamen Namensraum.

class Outer
{

 static class Inner
 {

 }
}

Compiler

Outer

Outer.Inner

Definition

Bild 15-2 Umsetzung einer statisch geschachtelten Klasse durch den Compiler.

Elementklassen, lokale Klassen, anonyme Klassen und statisch geschachtelte Klas-
sen sind grundlegend verschieden. Für alle gemeinsam gilt jedoch:

Eine geschachtelte Klasse wird innerhalb einer umschließenden
Klasse definiert.

In den folgenden Unterkapiteln werden die unterschiedlichen Arten von geschachtel-
ten Klassen ausführlich vorgestellt.

15.1 Elementklassen

Eine Elementklasse ist – wie der Name schon sagt – ein Element einer Klasse. Da-
mit ist der Zugriffsschutz gleich wie bei den schon bekannten Elementen einer Klas-
se, den Datenfeldern und Methoden. Genauso wie man auf Instanzmethoden und
Instanzvariablen nur über die Referenz auf ein Objekt zugreifen kann, kann man
auch auf Objekte von Elementklassen nicht direkt zugreifen. Objekte von Element-
klassen werden immer über das umschließende Objekt angesprochen.

Als Zugriffsschutz für eine Elementklasse existieren dieselben Mög-
lichkeiten wie für Methoden und Datenfelder:

• private,

• protected,

• public
• und default.

Bei äußeren Klassen gibt es jedoch nur den Zugriffsschutz public
und default.

113 Java kennt nicht nur statisch geschachtelte Klassen, sondern auch statisch geschachtelte

Schnittstellen (siehe Kap. 15.4).

548 Kapitel 15

äußere Klasse

Datenfelder

Methoden

innere Klasse

Datenfelder

Methoden

Bild 15-3 Geschachtelte Klasse als Element einer äußeren Klasse

Elementklassen können nur existieren, wenn auch ein Objekt der um-
schließenden Klasse existiert.

Die Möglichkeit einer Instantiierung einer Elementklasse ist also an die Existenz
eines Objektes der umschließenden Klasse gebunden. Daraus folgt, dass nur über
ein Objekt einer umschließenden Klasse ein Objekt einer Elementklasse erzeugt
werden kann.

Eine Methode eines Elementobjektes kann auf alle Datenfelder und
Methoden – selbstverständlich auch auf private – des Objektes zugrei-
fen, von dem es eine Komponente ist. Genauso kann eine Methode
eines Objektes einer äußeren Klasse auf jede Methode und jedes
Datenfeld eines erzeugten Objektes einer Elementklasse zugreifen.

Innere und äußere Klasse sind also vollkommen gleichberechtigt und genießen keine
speziellen Privilegien bezüglich des gegenseitigen Zugriffs.

Bild 15-4 Wechselseitiger Zugriff zwischen Objekten der inneren und äußeren Klasse

Geschachtelte Klassen 549

Hier ein Beispiel für die Syntax einer Elementklasse:

public class AeussereKlasse
{

 class ElementKlasse
 {

 }
}

Welcher Zugriffsmodifikator für eine Elementklasse verwendet wird, hängt davon ab,
ob sie nur innerhalb der äußeren Klasse sichtbar sein soll (private), innerhalb
eines Paketes (default bzw. protected), innerhalb einer Sohnklasse eines anderen
Paketes (protected) oder ob sie auch für Klassen anderer Pakete sichtbar sein soll
(public). Wird eine Schnittstelle als Element einer Klasse definiert, so können
entsprechend wie bei Elementklassen die Zugriffsmodifikatoren private, default,
protected und public verwendet werden.

Die Sichtbarkeit ändert allerdings nichts an der Tatsache, dass ein Objekt einer
inneren Klasse nur mit Hilfe eines Objektes einer äußeren Klasse erzeugt werden
kann. Ist die Elementklasse und die äußere Klasse z. B. public, so kann von jeder
beliebigen Stelle eines Programms ein Objekt einer Elementklasse mit der folgenden
Anweisung erzeugt werden:

AuessereKlasse ref = new AuessereKlasse();
AuessereKlasse.ElementKlasse elem = ref.new ElementKlasse();

Die Notation erscheint zuerst ein bisschen seltsam – was sie wohl auch ist – doch
mit zunehmendem Verständnis gewöhnt man sich schnell daran. Dass die Element-
klasse nur über den Namensraum der umschließenden Klasse – also mit der Punkt-
notation AuessereKlasse.ElementKlasse – angesprochen werden kann, klingt
logisch. Dagegen tut man sich wesentlich schwerer damit, dass mit ref.new Ele-
mentKlasse() ein Objekt der Elementklasse erzeugt wird.

Der Compiler macht daraus jedoch Folgendes, was wiederum verständlicher wirkt:

new AuessereKlasse.ElementKlasse (ref);

Wie aus der soeben gezeigten internen Darstellung des Compilers ersichtlich ist,
muss jede Elementklasse automatisch einen Konstruktor besitzen, der für den Pro-
grammierer unsichtbar als ersten Parameter die Referenz ref auf ein Objekt der um-
schließenden Klasse entgegennimmt. Diese Referenz wird in einem für den Pro-
grammierer ebenfalls unsichtbaren, privaten Datenfeld des erzeugten Objektes der
Elementklasse abgespeichert. Diese Referenz gewährleistet damit den Zugriff auf
die Datenfelder und Methoden des umschließenden Objektes vom Objekt der
Elementklasse aus.

550 Kapitel 15

Objekt der
äußeren Klasse

Datenfelder

Heap

Objekt der
inneren Klasse

versteckte
Referenz

Datenfelder

Bild 15-5 Zugriff eines Objektes einer inneren Klasse auf sein zugehöriges äußeres Objekt

Im folgenden Beispiel wird die Klasse Viewer1 dazu benutzt, um Bilder anzuzeigen.
Da nur bestimmte Formate unterstützt werden, benutzt die Klasse Viewer1 eine
Elementklasse Typen, um abzuprüfen, welche Bildformate erlaubt sind. Dabei wird
im Konstruktor des Viewers mit Hilfe eines Objektes der Klasse Typen abgeprüft, ob
das Bild angezeigt werden kann. Es ist sinnvoll, die Klasse Typen als eine innere
Klasse zu entwerfen, da sie als eigene Klasse außerhalb der Klasse Viewer1 kei-
nen Sinn macht.

// Datei: Viewer1.java

public class Viewer1 // äussere Klasse
{
 private String typ;
 private String dateiname;

 // Konstruktor der äußeren Klasse
 public Viewer1 (String dateiname, String typ)
 {
 Typen refTyp = new Typen(); // Objekt der inneren
 // Klasse erzeugen
 this.typ = typ;
 this.dateiname = dateiname;

 if (refTyp.testTyp (typ)) // Methode für Objekt der
 { // Elementklasse
 System.out.println ("Bild " + dateiname
 + " kann angezeigt werden!");
 show(); // Bild anzeigen
 }
 else
 System.out.println ("Es werden nur die Formate: "
 + refTyp + " unterstützt.");
 }

Geschachtelte Klassen 551

 public void show() // Methode der äußeren
 { // Klasse
 //Bild am Bildschirm anzeigen
 }

 private class Typen // innere Klasse
 {
 private String typ1 = "gif";
 private String typ2 = "jpg";
 private String typ3 = "bmp";

 public boolean testTyp (String typ)
 {
 if (typ1.equals (typ) || typ2.equals (typ)
 || typ3.equals (typ))
 return true;
 return false;
 }

 public String toString()
 {
 return typ1 + " " + typ2 + " " + typ3;
 }
 }
}

// Datei: TestViewer.java

public class TestViewer
{
 public static void main (String[] args)
 {
 Viewer1 bild1 = new Viewer1 ("C:\\verz\\Bild.jpg", "jpg");
 Viewer1 bild2 = new Viewer1 ("C:\\verz\\Bild.cpg", "cpg");
 }
}

Die Ausgabe des Programmes TestViewer.java ist:

Bild C:\verz\Bild.jpg kann angezeigt werden!
Es werden nur die Formate: gif jpg bmp unterstützt.

Zu beachten ist bei dem obigen Programm, dass

• in der Elementklasse die Methode toString(), die von der Klasse Object
ererbt ist, überschrieben wird. Die Methode toString() wird automatisch aufge-
rufen, wenn die Stringrepräsentation für ein Objekt angefordert wird.

• die Codezeile Typen refTyp = new Typen() eine Kurzschreibweise für die
Codezeile Viewer1.Typen refTyp = this.new Typen()114 ist. Die Kurz-
schreibweise ist selbstverständlich aber nur innerhalb der äußeren Klasse erlaubt,
weil nur dort der Elementname Typen bekannt ist. Im Konstruktor der äußeren
Klasse wird also ein Objekt der Elementklasse erzeugt.

114 Hierbei ist this eine Referenz auf das umschließende Objekt der Elementklasse.

552 Kapitel 15

• der Compiler bei der Kompilierung der Klasse Viewer1 zwei .class-Dateien ge-
neriert, nämlich die Dateien Viewer1.class und Viewer1$Typen.class.

Einschränkungen für Elementklassen

• Elementklassen dürfen keine Klassenvariablen, Klassenmethoden oder statische
Klassen beinhalten. Klassenvariablen und Klassenmethoden sind nur bei einer
statischen geschachtelten Klasse erlaubt.

• Elementklassen dürfen nicht den gleichen Namen wie eine umschließende Klasse
besitzen.

15.2 Lokale Klassen

Innerhalb eines jeden Blockes (siehe Kap. 9.1.1) können Deklarationsanweisungen
zwischen normalen Anweisungen stehen. Eine Deklarationsanweisung kann eine
Definition einer Variablen, aber auch die Definition eines neuen Datentyps – sprich
einer neuen Klasse – darstellen.

Lokale Klassen115 werden im Rahmen einer Deklarationsanweisung definiert. Ihr Gül-
tigkeitsbereich und ihre Sichtbarkeit erstreckt sich auf den umfassenden Block (ty-
pischerweise eine Methode). Im weiteren Verlauf werden lokale Klassen innerhalb
von Instanzmethoden und lokale Klassen innerhalb von Klassenmethoden
unterschieden.

 Methodenkopf
 {

 Deklarations-
 anweisung

 Anweisung

 Deklarations-
 anweisung

 Anweisung
 }

Äußere Klasse

Methode 2

Methode 1

Methode n

Datenfelder

Lokale Klasse

Datenfelder

Methoden

Bild 15-6 Eine lokale Klasse ist nur in ihrem umfassenden Block sichtbar.

Für lokale Klassen in Instanzmethoden gilt:

Da jede Instanzmethode auf die Datenfelder und Methoden ihres Objektes zugreifen
kann, besteht auch für jedes Objekt einer lokalen Klasse – das sich innerhalb

115 Lokale Schnittstellen gibt es nicht.

Geschachtelte Klassen 553

einer Instanzmethode befindet – die Möglichkeit, auf die Instanzvariablen und In-
stanzmethoden ihres umschließenden Objektes zuzugreifen. Da jede Instanzmetho-
de auch auf die Klassenvariablen und Klassenmethoden der zugehörigen Klasse zu-
greifen kann, hat jedes Objekt einer lokalen Klasse – das sich innerhalb einer In-
stanzmethode befindet – auch die Möglichkeit, auf die Klassenvariablen und Klas-
senmethoden der umschließenden Klasse zuzugreifen.

Für lokale Klassen in Klassenmethoden gilt:

Da jede Klassenmethode auf die Klassenvariablen und Klassenmethoden der eige-
nen Klasse zugreifen kann, besteht auch für jedes Objekt einer lokalen Klasse –
das sich innerhalb einer Klassenmethode befindet – die Möglichkeit, auf die
Klassenvariablen und Klassenmethoden der umschließenden Klasse zuzugreifen.

Lokale Klassen können innerhalb eines Blockes definiert werden. Es
gibt lokale Klassen somit in Instanzmethoden und in Klassenmetho-
den. Lokale Klassen sind nur in dem umschließenden Block sichtbar.

Objekt einer lokalen Klasse lebt in einer In-
stanzmethode des umschließenden Objektes.

Objekt einer lokalen Klasse lebt in einer Klas-
senmethode der umschließenden Klasse.

Outer

private static int i;

static void methode1()
{

}
static void methode2()
{

}

Bild 15-7 Lokale Klassen "leben" in Instanzmethoden und Klassenmethoden

Das folgende Beispiel zeigt eine lokale Klasse Inner, die in ihrem Konstruktor auf
ein Datenfeld der umschließenden Klasse zugreift.

// Datei: Outer.java

public class Outer
{
 private int x;

 public void methode()
 {
 class Inner
 {
 Inner()
 {
 // Zugriff auf Datenfeld der umschliessenden Klasse
 System.out.println ("Wert des Datenfeldes x: " + x);
 }
 }

554 Kapitel 15

 // Erzeugung eines Objektes der lokalen Klasse
 new Inner();
 }

 public static void main (String[] args)
 {
 Outer ref = new Outer();
 ref.methode();
 }
}

Die Ausgabe des Programmes ist:

Wert des Datenfeldes x: 0

Man beachte, dass für lokale Klassen kein Zugriffsmodifikator verge-
ben werden kann. Dies würde auch keinen Sinn machen, da die Klas-
se sowieso nur innerhalb des Blockes gültig ist, in dem sie definiert
wurde.

Ein Objekt einer lokalen Klasse kann aber nicht nur auf alle Datenfelder und Metho-
den des umschließenden Objektes zugreifen, sondern auch auf alle als final de-
klarierten lokalen Variablen und Übergabeparameter der Methode, in der sich das
Objekt befindet. Für alle mit final deklarierten lokalen Variablen, die von der loka-
len Klasse benutzt werden, erstellt der Compiler für die lokale Klasse eine lokale Ko-
pie in Form einer privaten Instanzvariablen.

Lokale Klassen können – unabhängig davon, ob sie nun innerhalb
einer Instanzmethode oder einer Klassenmethode definiert werden –
auf alle lokalen finalen Variablen innerhalb der umschließenden Me-
thode zugreifen. Einzige Voraussetzung ist, dass die lokale finale Va-
riable vor der lokalen Klasse definiert wird.

Das folgende Beispielprogramm zeigt, wie ein Objekt einer lokalen Klasse auf lokale
Variable der umschließenden Methode zugreift.

// Datei: Outer1.java

public class Outer1
{
 public void methode (final int y)
 {
 final int x = 1;
 class Inner
 {
 Inner()
 {
 // Zugriff auf lokale finale Variable x
 System.out.println ("Wert der lokalen finalen"
 + " Variablen x: " + x);

Geschachtelte Klassen 555

 // Zugriff auf einen finalen Übergabeparameter
 System.out.println ("Wert des Übergabeparameters y: "
 + y);
 }
 }
 // Erzeugung eines Objektes der lokalen Klasse
 new Inner();
 }

 public static void main (String[] args)
 {
 Outer1 ref = new Outer1();
 ref.methode (7);
 }
}

Die Ausgabe des Programmes ist:

Wert der lokalen finalen Variablen x: 1
Wert des Übergabeparameters y: 7

Da der Compiler eine Kopie für jede benutzte lokale Variable anlegt, ist es zwingend
erforderlich, dass diese Variablen final sind. Denn die Kopien der benutzten Vari-
ablen werden beim Konstruktoraufruf angelegt und mit den entsprechenden Werten
initialisiert. Da aber gewährleistet sein muss, dass die Kopie sowie die originale
lokale Variable immer die gleichen Werte tragen, müssen sie folglich final sein, um
zu verhindern, dass die Werte verändert werden können.

Lokale Klassen trifft man oft bei der Oberflächenprogrammierung an,
wo diese entweder eine Adapterklasse ableiten oder eine Schnitt-
stelle implementieren.

Diese Adapterklassen und Schnittstellen, von denen die lokalen Klassen ableiten,
bzw. die diese implementieren, sind Klassen bzw. Schnittstellen aus der Java-API.
Diese Klassen und Schnittstellen werden zur Ereignisbehandlung von Oberflächen-
komponenten verwendet.

Da für jede Oberflächenkomponente in der Regel eine eigenständige
Ereignisbehandlung erfolgen muss – diese Behandlung aber nur für
die einzelne Komponente verwendet werden kann – ist es sinnvoll,
diese Ereignisbehandlung in einer lokalen Klasse zu kapseln.

Einschränkungen für lokale Klassen

• Lokale Klassen dürfen wie die Elementklassen keine als static deklarierten Da-
tenfelder, Methoden oder Klassen definieren.

• Lokale Klassen dürfen nicht den gleichen Namen wie die umschließende Klasse
haben.

556 Kapitel 15

• Die lokale Klasse darf in der Klassendeklaration keinen der Modifikatoren pri-
vate, protected, public oder static verwenden. All diese Modifikatoren sind
gebräuchlich für Elemente einer Klasse – eine lokale Klasse ist aber kein Element
einer Klasse.

15.3 Anonyme Klassen

Anonyme Klassen sind lokale Klassen ohne Namen, von denen sofort bei der Klas-
sendefinition ein Objekt erzeugt wird. Da die Klasse keinen Namen trägt, kann man
nur ein einziges Exemplar der Klasse erzeugen. Anonyme Klassen können genauso
wie lokale Klassen innerhalb von Instanzmethoden und Klassenmethoden leben.

Anonyme Klassen werden innerhalb eines Ausdrucks definiert
und instantiiert. Da eine anonyme Klasse keinen Namen hat, können
auch keine Konstruktoren geschrieben werden.

Um Objekte anonymer Klassen initialisieren zu können, wurde in Java 1.1 der nicht
statische Initialisierungsblock eingeführt (siehe Kap. 10.4.3).

Anonyme Klassen werden genau wie lokale Klassen oft von Adapter-
klassen abgeleitet oder implementieren eine Schnittstelle zur Ereignis-
behandlung.

Das folgende Beispiel zeigt das schon bekannte Anwendungsbeispiel eines Viewers,
der Bilder anzeigen soll. Hierbei wird eine anonyme Klasse definiert, die eine Schnitt-
stelle implementiert.

// Datei: Viewer2.java

interface ITypen
{
 public boolean testTyp();
}

public class Viewer2
{
 private String bildTyp;
 private String dateiname;

 // Lokale Variablen einer umschließenden Methode können nur dann
 // in anonymen oder lokalen Klassen verwendet werden, wenn diese
 // final sind.
 public Viewer2 (String dateiname, final String typ)
 {
 bildTyp = typ;
 this.dateiname = dateiname;

 // Erzeugung und Definition der anonymen Klasse, welche die
 // Schnittstelle ITypen implementiert. Dabei wird das

Geschachtelte Klassen 557

 // Schlüsselwort implements nicht verwendet. Die Erläuterung
 // folgt nach dem Beispiel.
 ITypen refTyp = new ITypen()
 {
 private String typ1 = "gif";
 private String typ2 = "jpg";
 private String typ3 = "bmp";

 public boolean testTyp()
 {
 if(typ1.equals (typ) || typ2.equals (typ) ||
 typ3.equals (typ))
 {
 return true;
 }
 return false;
 }

 public String toString()
 {
 return typ1 + " " + typ2 + " " + typ3;
 }
 }; // Ende der anonymen Klasse

 // Zugriff auf die Methode der anonymen Klasse
 if (refTyp.testTyp())
 System.out.println ("Bild " + dateiname +
 " kann angezeigt werden!");
 else
 System.out.println ("Es werden nur die Formate: "
 + refTyp + " unterstützt.");
 }

 public void show()
 {
 //Bild am Bildschirm anzeigen
 }
}

Objekte anonymer Klassen werden durch eine spezielle Variante des new-Opera-
tors erzeugt. Dabei hat die folgende Deklarationsanweisung eine Bedeutung, die
nicht ganz einfach ersichtlich ist.

ITypen refTyp = new ITypen()
{
 //Datenfelder und Methoden der anonymen Klasse
};

Zum Verständnis soll vergleichsweise eine Ersatzdarstellung für diese Deklarations-
anweisung betrachtet werden:

class Viewer2$1 implements ITypen
{
 //Datenfelder und Methoden der Klasse
}
ITypen refTyp = new Viewer2$1();

558 Kapitel 15

Von der Bedeutung her ist die Ersatzdarstellung gleichwertig mit der obigen Deklara-
tionsanweisung. Der Name der anonymen Klasse Viewer2$1 kann allerdings vom
Programmierer nicht verwendet werden. Der Compiler erzeugt für die anonyme
Klasse in der Klasse Viewer2 eine Datei mit dem Namen Viewer2$1.class. Für
jede weitere anonyme Klasse innerhalb der Klasse Viewer2 würde der Compiler
einfach die .class-Dateien weiter durchnummerieren.

Doch nun zurück zu der eigentlichen Bedeutung der Deklarationsanweisung.

Mit dem Ausdruck new ITypen() und den nachfolgenden geschweif-
ten Klammern wird ausgesagt, dass die in den geschweiften Klam-
mern definierte anonyme Klasse die Schnittstelle ITypen implemen-
tiert. Gleichzeitig wird mit dieser Anweisung ein Objekt dieser anony-
men Klasse angelegt und die zurückgegebene Referenz auf die
Schnittstelle ITypen gecastet.

Eine anonyme Klasse kann auch von einer anderen Klasse ableiten. Dies wird in
dem folgenden Codestück gezeigt:

Object ref = new Object()
{
 public String toString()
 {
 return super.toString().toUpperCase();
 }
};

Zum Verständnis soll auch hier die entsprechende Ersatzdarstellung betrachtet
werden. Es soll angenommen werden, dass diese anonyme Klasse in der Klasse
Viewer2 unterhalb der anonymen Klasse vom Typ ITypen definiert wird. In diesem
Fall würde der Compiler eine Klasse mit dem Namen Viewer2$2 generieren:

class Viewer2$2 extends Object
{
 // Überschreiben der toString()-Methode der Klasse Object
 public String toString()
 {
 return super.toString().toUpperCase();
 }
}
Object ref = new Viewer2$2();

Anonyme Klassen implementieren entweder eine Schnittstelle oder
leiten von einer Klasse ab und überschreiben deren Methoden. Es
können nur die Methoden der implementierten Schnittstelle bzw. der
Vaterklasse aufgerufen werden.

Da immer nur die Methoden der Schnittstelle bzw. die Methoden der Basisklasse
einer anonymen Klasse angesprochen werden können, macht es keinen Sinn, zu-
sätzliche Methoden, die public sind, in der anonymen Klasse zu definieren. Diese
zusätzlichen Methoden könnten von außen gar nicht angesprochen werden.

Geschachtelte Klassen 559

Das individuelle Überschreiben von Methoden für eine Aufzählungskonstante bei
Aufzählungstypen wird ebenfalls mit Hilfe einer anonymen Klasse realisiert. Dies soll
an folgendem Beispiel gezeigt werden:

// Datei: AmpelTest.java
enum Ampel
{
 ROT,
 GELB,
 GRUEN
 {
 // Überschreiben der toString()-Methode der Klasse Object
 // für die Aufzählungskonstante GRUEN.
 public String toString()
 {
 return super.toString().toLowerCase();
 }
 };
}

public class AmpelTest
{
 public static void main (String[] args)
 {
 Ampel amp1 = Ampel.ROT;
 Ampel amp2 = Ampel.GELB;
 Ampel amp3 = Ampel.GRUEN;

 System.out.println (amp1);
 System.out.println (amp2);
 System.out.println (amp3);
 }
}

Die Ausgabe des Programmes ist:

ROT
GELB
gruen

Für die Aufzählungskonstante GRUEN wird die toString()-Methode überschrieben.
Beim Aufruf der toString()-Methode für die Aufzählungskonstante GRUEN werden
damit Kleinbuchstaben anstatt Großbuchstaben ausgegeben. Da der Compiler für
jede Aufzahlungskonstante ein Objekt des Aufzählungstyps anlegt, wird im obigen
Programmcode mit

GRUEN
{
 public String toString()
 {
 return super.toString().toLowerCase();
 }
};

560 Kapitel 15

eine anonyme Klasse angelegt, die von der Klasse Ampel ableitet und die Methode
toString() überschreibt. Der Compiler generiert auch eine entsprechende Datei
Ampel$1.class. Die Ersatzdarstellung für die Deklarationsanweisung sieht damit
folgendermaßen aus:

class Ampel$1 extends Ampel
{
 public String toString()
 {
 return super.toString().toLowerCase();
 }
}
public static final Ampel GRUEN = new Ampel$1();

Initialisierung des von der Basisklasse ererbten Anteils in einem Sohnobjekt

Da eine anonyme Klasse keinen Konstruktor besitzt, kann auch nicht mit Hilfe des
Schlüsselwortes super ein Konstruktor mit Parametern in der Basisklasse aufge-
rufen werden. Doch auch hierfür gibt es eine Lösung, die in folgendem Beispiel vor-
gestellt werden soll:

// Datei: Outer2.java
class Basisklasse
{
 private int x;

 public Basisklasse (int x)
 {
 System.out.println ("Wert der Variablen x: " + x);
 }
}

public class Outer2
{
 public Outer2 (int x)
 {
 // Es wird ein Objekt der anonymen Klasse, die von Basisklasse
 // abgeleitet ist, angelegt. Nach der Erzeugung erfolgt ein
 // Cast auf die Basisklasse. x ist der Parameter für den Kon-
 // struktor der Basisklasse.
 Basisklasse refB = new Basisklasse (x)
 {
 // Überschriebene Methoden
 };
 }
 public static void main (String[] args)
 {
 Outer2 out = new Outer2 (10);
 }
}

Die Ausgabe des Programmes ist:

Wert der Variablen x: 10

Geschachtelte Klassen 561

Die Parameter für die Basisklasse werden einfach in die runden Klammern geschrie-
ben. Diese Parameter werden dann an den entsprechenden Konstruktor der Basis-
klasse weitergegeben.

Einschränkungen für anonyme Klassen

• Anonyme Klassen dürfen keine als static deklarierten Datenfelder, Methoden
oder Klassen definieren.

• Anonyme Klassen können keinen Konstruktor haben, da sie auch keinen Namen
tragen.

• Von anonymen Klassen kann nur eine einzige Instanz erzeugt werden. Deshalb
sollte man lokale Klassen oder Elementklassen den anonymen Klassen dort vor-
ziehen, wo man mehrere Instanzen einer inneren Klasse benötigt.

15.4 Statisch geschachtelte Klassen und Schnittstellen

Statisch geschachtelte Klassen und statisch geschachtelte Schnittstellen wer-
den auch als so genannte statische Top-Level-Klassen bzw. statische Top-Level-
Schnittstellen bezeichnet. Auch wenn eine statisch geschachtelte Klasse bis auf
das Schlüsselwort static identisch definiert wird wie eine Elementklasse, so ist
doch gerade dies der entscheidende Unterschied. Bei Elementklassen kennt ein ein-
geschlossenes Objekt sein umgebendes Objekt und umgekehrt. Bei statischen Top-
Level-Klassen gibt es diesen Bezug nicht.

Bei statischen Top-Level-Elementen braucht man kein Objekt einer
äußeren Klasse, um ein Objekt einer inneren Klasse zu erzeugen.

Eine geschachtelte Top-Level-Klasse oder eine geschachtelte Top-Level-Schnitt-
stelle wird definiert als ein Element einer anderen Top-Level-Klasse oder einer ande-
ren Top-Level-Schnittstelle, welches den Modifikator static aufweist.

Das Schlüsselwort static hat zur Konsequenz, dass diese Klasse
bzw. diese Schnittstelle sich vollkommen gleich wie jede andere nor-
male Top-Level-Klasse bzw. jede andere Top-Level-Schnittstelle ver-
hält, mit dem Unterschied, dass die geschachtelte Klasse über den
Namen der umschließenden Klasse angesprochen wird.

So wird eine geschachtelte Top-Level-Klasse z. B. über AeussereKlasse.Inne-
reKlasse aufgerufen. Damit bieten geschachtelte Top-Level-Klassen die Besonder-
heit, dass man zusammengehörige Klassen im Namensraum der umfassenden Klas-
se gruppieren kann und durch den gemeinsamen Namensraum die Zusammenge-
hörigkeit demonstriert wird. Das folgende Beispiel zeigt geschachtelte Top-Level-
Klassen und deren Instantiierung:

// Datei: TopLSchicht1.java

public class TopLSchicht1
{

562 Kapitel 15

 // Datenfelder

 public TopLSchicht1()
 {
 System.out.println ("TopLSchicht1-Konstruktor");
 }

 public static class TopLSchicht2
 {
 // Datenfelder
 public TopLSchicht2()
 {
 System.out.println ("TopLSchicht2-Konstruktor");
 }

 public static class TopLSchicht3
 {
 // Datenfelder
 TopLSchicht3()
 {
 System.out.println ("TopLSchicht3-Konstruktor");
 }
 }
 }
}

// Datei: TestTopLevel.java

public class TestTopLevel
{
 public static void main (String[] args)
 {
 TopLSchicht1 refSchicht1 = new TopLSchicht1();

 TopLSchicht1.TopLSchicht2 refSchicht2
 = new TopLSchicht1.TopLSchicht2();

 TopLSchicht1.TopLSchicht2.TopLSchicht3 refSchicht3
 = new TopLSchicht1.TopLSchicht2.TopLSchicht3();
 }
}

Die Ausgabe des Programmes ist:

TopLSchicht1-Konstruktor
TopLSchicht2-Konstruktor
TopLSchicht3-Konstruktor

Bei geschachtelten Top-Level-Klassen ist das Schlüsselwort static immer explizit
anzugeben. Bei geschachtelten Schnittstellen oder Klassen, die in Schnittstellen ge-
schachtelt werden, kann man das Schlüsselwort static aber auch weglassen, da in
Schnittstellen geschachtelte Klassen oder Schnittstellen implizit als static betrach-
tet werden. Ebenso sind geschachtelte Schnittstellen innerhalb von Klassen implizit
static. Folgendes Beispiel zeigt das Verschachteln von Klassen und Schnittstellen:

Geschachtelte Klassen 563

class AeussereKlasse
{
 static class InnereKlasse
 {

 }
 interface InnereSchnittstelle
 {

 }
}

interface AeussereSchnittstelle
{
 interface InnereSchnittstelle
 {

 }
 class InnereKlasse
 {

 }
}

Normalerweise kann innerhalb einer Schnittstelle keine Methodenimplementierung
erfolgen. Jedoch kann eine statische geschachtelte Klasse ein Teil einer Schnittstelle
sein. Die Regelungen von Schnittstellen werden nicht verletzt, da eine statisch ge-
schachtelte Klasse in einer Schnittstelle selbst eine Top-Level-Klasse darstellt und
nur über den Namensraum mit der Schnittstelle gekoppelt ist. Zu beachten ist, dass
geschachtelte Top-Level-Klassen bzw. Schnittstellen nur innerhalb von Top-Level-
Klassen bzw. -Schnittstellen und nicht in einer sonstigen geschachtelten Klasse (Ele-
mentklasse, lokale Klasse, anonyme Klasse) geschachtelt werden können.

class A
{
 static class B
 {

 }
}

class A
{
 interface B
 {

 }
}

interface A
{
 interface B
 {

 }
}

interface A
{
 class B
 {

 }
}

Bild 15-8 Geschachtelte Top-Level-Klassen und Top-Level-Schnittstellen

564 Kapitel 15

15.5 Realisierung von geschachtelten Klassen

Um das Verständnis für geschachtelte Klassen abzurunden, ist es hilfreich, sich an-
zusehen, wie der Compiler geschachtelte Klassen umsetzt. Ein Werkzeug namens
javap wird mit dem JDK mitgeliefert. Mit Hilfe von javap ist es möglich, eine
.class-Datei zu disassemblieren, das heißt aus Bytecode den Coderahmen des
ursprünglichen Quellcodes herzustellen. Damit hat man die Möglichkeit zu sehen,
wie der Java-Compiler geschachtelte Klassen umsetzt. Der Coderahmen umfasst die
Definition der Klassen mit Datenfeldern und Methodenköpfen. Dabei können die
zusätzlichen Datenfelder und Methoden, die vom Compiler zur Realisierung einer
geschachtelten Klasse hinzufügt werden, sichtbar gemacht werden.

Elementklassen mit Zugriff auf die Datenfelder der umschließenden Klasse

Es soll betrachtet werden, wie es einer Elementklasse ermöglicht wird, auf die Daten-
felder eines äußeren Objektes zuzugreifen:

// Datei: Outer3.java
public class Outer3
{
 private int x = 1;

 public class Inner
 {
 public Inner()
 {
 x = x + 10; // Zugriff auf Datenfeld der äußeren Klasse
 }
 }
}

Wird die Bytecode-Datei Outer3.class disassembliert, so erhält man folgende
Ausgabe116:

// Ausgabe des Disassemblierers bei Eingabe javap -private Outer3
public class Outer3 extends java.lang.Object
{
 private int x;
 public Outer3(); //Default-Konstruktor

 // zusätzliche Methode, um Datenfeld x zu schreiben
 static int access$002 (Outer3, int);117
 // zusätzliche Methode, um Datenfeld x zu lesen
 static int access$000 (Outer3);
}

// Ausgabe des Disassemblierers bei Eingabe
// javap –private Outer3$Inner
public class Outer3$Inner extends java.lang.Object
{
 // Datenfeld, um auf das umschliessende Objekt zuzugreifen
 final Outer3 this$0;

116 Die Kommentare wurden von Hand hinzugefügt.
117 Beachten Sie, dass nur der Typ und nicht der Name des formalen Parameters angegeben wird.

Geschachtelte Klassen 565

 // Konstruktor, dem im ersten Parameter eine Referenz auf das
 // umschliessende Objekt übergeben wird
 public Outer3$Inner (Outer3);
}

Die access()-Methode zum Lesen des Datenfeldes x wird nur dann angelegt, wenn
innerhalb der Elementklasse lesend auf das Datenfeld x zugegriffen wird. Die
access()-Methode zum Schreiben des Datenfeldes x wird nur dann angelegt, wenn
innerhalb der Elementklasse schreibend auf das Datenfeld x zugegriffen wird. Dabei
hat jedes Datenfeld, das von einer Elementklasse benutzt wird, seine eigenen
access()-Methoden. Die private Referenz this$0 in der Elementklasse und der
Typ des formalen Parameters Outer3 im Konstruktor werden immer vom Compiler
ergänzt, unabhängig davon, ob nun auf Datenfelder der umschließenden Klasse zu-
gegriffen wird oder nicht. Damit wird sichergestellt, dass ein Objekt der Element-
klasse nur dann erzeugt werden kann, wenn auch tatsächlich ein umschließendes
Objekt existiert. Denn ein Objekt der Elementklasse Outer3.Inner kann nur mit
Hilfe eines Konstruktors initialisiert werden, dem eine Referenz auf ein Objekt der
umschließenden Klasse übergeben wird.

Lokale Klasse mit Zugriff auf Datenfelder

Eine lokale Klasse kann nur innerhalb eines Blockes instantiiert werden. Ihre Sicht-
barkeit beschränkt sich damit auf den umschließenden Block. Die lokale Klasse hat
wie eine Elementklasse Zugriff auf die Datenfelder der umschließenden Klasse. Da
eine lokale Klasse kein Element einer Klasse mehr ist, kann für sie auch kein Zu-
griffsmodifikator mehr vergeben werden. Im Folgenden wird eine lokale Klasse inner-
halb eines Konstruktors diskutiert.

// Datei: Outer4.java

public class Outer4
{
 private int x;

 public Outer4()
 {
 class Inner
 {
 public Inner()
 {
 // Zugriff auf Datenfeld der äußeren Klasse
 x = 10;
 }
 }
 }
}

Zu beachten ist, dass der .class-Dateiname der lokalen Klasse Inner Outer4-
$1Inner ist. Da innerhalb verschiedener Methoden einer Klasse lokale Klassen mit
gleichem Namen definiert werden können, ist eine Durchnummerierung für lokale
Klassen erforderlich. Hat beispielsweise eine Klasse Outer die Methoden metho-
de1() und methode2(), so kann in jeder dieser Methoden eine lokale Klasse mit
dem Namen Inner definiert werden. Der Compiler würde daraus dann die .class-

566 Kapitel 15

Dateien Outer$1Inner und Outer$2Inner erzeugen. Das folgende Codestück
wird vom Disassemblierer javap generiert, wenn auf der Kommandozeile javap -
private Outer4$1Inner eingegeben wird:

class Outer4$1Inner extends java.lang.Object
{
 final Outer4 this$0;
 Outer4$1Inner (Outer4);
}

Das Ergebnis der Eingabe von javap -private Outer4 ist:

class Outer4 extends java.lang.Object
{
 private int x;
 public Outer4();
 static int access$002(Outer4, int);
}

Da in der lokalen Klasse nur schreibend auf das Datenfeld x der umschließenden
Klasse zugegriffen wird, existiert nur die access()-Methode zum Schreiben des
Datenfeldes x. Das folgende Beispiel zeigt die Zusammenhänge, wenn eine lokale
Klasse innerhalb einer Klassenmethode liegt:

// Datei: Outer5.java

class Outer5
{
 private static int x;

 public static void methode()
 {
 class Inner
 {
 Inner()
 {
 // Zugriff auf Datenfeld der äußeren Klasse
 x = 10;
 }
 }
 }
}

// Eingabe von: javap -private Outer5$1Inner

class Outer5$1Inner extends java.lang.Object
{
 Outer5$1Inner();
}

// Eingabe von: javap -private Outer5

public class Outer5 extends java.lang.Object
{
 private static int x;
 Outer5();

Geschachtelte Klassen 567

 public static void methode();
 static int access$002 (int);
}

Die Referenzen auf ein umschließendes Objekt fallen sowohl bei den access()-
Methoden, als auch beim Konstruktor weg. Dies ist auch logisch, da der Aufruf einer
Klassenmethode ja nicht an die Existenz eines Objektes gekettet ist.

Lokale Klasse mit Zugriff auf lokale Variablen

Auf lokale Variablen eines umschließenden Blockes kann eine lokale Klasse zugrei-
fen, sofern diese final sind. Der Compiler legt für jede finale lokale Variable, die in
einer lokalen Klasse verwendet wird und deren Wert zum Kompilierzeitpunkt nicht
bekannt ist, ein privates Datenfeld in der lokalen Klasse an. Das Datenfeld wird beim
Konstruktoraufruf mit dem Wert der entsprechenden lokalen Variablen initialisiert.
Der Wert wird somit kopiert. Für eine lokale finale Variable, deren Wert zum Kompi-
lierzeitpunkt bekannt ist, wird einfach der Name der Variablen in der lokalen Klasse
durch deren Wert ersetzt.

// Datei: Outer6.java

public class Outer6
{
 private int x;

 public Outer6()
 {
 final int y = Math.abs (-10);
 final int w = 11;
 class Inner
 {
 Inner()
 {
 int lokal = w;
 }

 public void print()
 {
 System.out.println (y);
 }
 }
 }
}

// Eingabe von: javap -private Outer6$1Inner

class Outer6$1Inner extends java.lang.Object
{
 // Kopie der benutzten lokalen Variablen speichern, da zum
 // Kompilierzeitpunkt der Wert noch nicht bekannt ist.
 final int val$y;

 final Outer6 this$0;

568 Kapitel 15

 // Übergabe der lokalen Variablen im Konstruktor und Initiali-
 // sierung von val$Y
 Outer6$1Inner (Outer6, int);

 public void print();
}

Der Code der Klasse Outer6 bleibt unverändert, da auf keine Datenfelder zuge-
griffen wird.

Anonyme Klassen

Anonyme Klassen behandelt der Compiler identisch wie lokale Klassen. Für den
Programmierer ergibt sich lediglich der Unterschied, dass er keinen Konstruktor für
eine anonyme Klasse anlegen kann. Der Compiler jedoch erzeugt einen Konstruktor,
um eine eventuell benötigte Referenz auf die umschließende Klasse bzw. die benö-
tigten lokalen Variablen entgegenzunehmen.

// Datei: Outer7.java

public class Outer7
{
 private int x;

 public Outer7()
 {
 final int y = 10;

 Object obj = new Object()
 {
 // Überschreiben der toString()-Methode der Klasse Object
 public String toString()
 {
 return Integer.toString (x) + Integer.toString (y);
 }
 };
 }
}

// Eingabe von: javap -private Outer7$1

final class Outer7$1 extends java.lang.Object
{
 // Referenz auf umschliessendes Objekt aufnehmen
 final Outer7 this$0;

 // Konstruktor mit einer Referenz auf die umschließende Klasse
 Outer7$1 (Outer7);

 public java.lang.String toString();
}

Geschachtelte Klassen 569

15.6 Übungen

Aufgabe 15.1: Lokale Klasse

Implementieren Sie eine Klasse Email, die folgende Aufgaben erfüllt:

• Die Klasse soll die Instanzvariablen betreff, text, empfaenger und absen-
der vom Typ String enthalten.

• Der Konstruktor soll folgende Übergabeparameter besitzen:
− String empfaenger
− String absender
− String betreff
− String text

Der Konstruktor soll die Attribute mit den entsprechenden Übergabeparametern
initialisieren.

• Schreiben Sie eine Methode senden(), die bei gültigen Mail-Adressen den
Empfänger, den Sender, den Betreff und den Text auf dem Bildschirm ausgibt. Ist
entweder die Mail-Adresse des Absenders oder die Mail-Adresse des Empfängers
ungültig, so soll eine entsprechende Meldung auf dem Bildschirm ausgegeben
werden. Um eine Mail-Adresse auf Gültigkeit zu überprüfen, verwendet die Metho-
de senden() die Methode isValid() der lokalen Klasse InternetMailAdd-
ress.

Die Klasse InternetMailAddress soll als lokale Klasse in der Methode sen-
den() der Klasse Email realisiert werden. Die lokale Klasse besitzt folgende Me-
thode:

private boolean isValid (String address);

Diese Methode überprüft, ob eine übergebene Mail-Adresse gültig ist oder nicht.
Gültige Adressen:

• besitzen genau ein @-Zeichen, das den Namen des Empfängers vom Server
trennt (empfaengername@servername)

• erlauben folgende Zeichen für Empfängername und Server: a-z, A-Z, 0-9, _, .
• erfordern mindestens ein Zeichen für Empfängername bzw. Server
• beginnen mit einem Zeichen, das nicht @ oder * ist

• erlauben das Weglassen von @servername, falls das letzte Zeichen ein '*' ist

Trifft die letzte Regel zu, so wird von der Methode isValid() als Servername für
die Mail-Adresse "it-designers.de" eingetragen. Beispiele:

• Hans.Muster@gmz.de gültig
• Hans.Muster* gültig (wird zu Hans.Muster@it-designers.de)
• @gmz.de ungültig
• Hans.Mustergmz.de ungültig

570 Kapitel 15

Zum Überprüfen der Gültigkeit einer Email-Adresse können Sie reguläre Ausdrücke
in Kombination mit der Methode matches() der Klasse String verwenden. Kon-
sultieren Sie hierzu die Java Dokumentation. Testen Sie Ihre Klasse Email mit fol-
gendem Programm:

// Datei: TestEmail.java

public class TestEmail
{
 public static void main (String[] args)
 {
 Email e1 = new Email ("Klaus.Gross*","Lotte.Klein@gmz.de",
 "Hallo","Hallo Welt");
 e1.senden();
 Email e2 = new Email ("Klaus.Gross*","Lotte.Kleingmz.de",
 "Hallo","Hallo Welt");
 e2.senden();
 }
}

Hier ein Auszug der Programmausgabe:

Mail von: Lotte.Klein@gmz.de
An: Klaus.Gross@it-designers.de
Betreff: Hallo
Text:
Hallo Welt

Die Email konnte nicht verschickt werden!
Die Email-Adresse des Absenders ist ungültig.

Aufgabe 15.2: Anonyme Klasse

Es wird ein Betankungsvorgang simuliert. Dazu werden die Klassen Tank, Tank-
saeule und die Schnittstelle FuellstandSensor benötigt. Die Schnittstelle
FuellstandSensor soll in einer anonymen Klasse implementiert werden.

Die Klasse Tank besitzt folgende Methoden und Instanzvariablen:

• public Tank (int volumen)
• public void anmeldenFuellstandSensor
 (FuellstandSensor fuellstandSensor)

• public int fuellen()

• private int maxVolumen

• private int tankinhalt

• private FuellstandSensor fuellstandSensor

Die Klasse Tanksaeule enthält folgende Methoden und Instanzvariablen:

• public Tanksaeule()

• public void tankstutzenEntnehmen (Tank tank)

Geschachtelte Klassen 571

• public void startTanken()

• private Tank tank

• private boolean stopFuellen

Die Schnittstelle FuellstandSensor soll folgende Methode enthalten:

public void meldeFuellstand (int fuellstand, int maxVolumen)

Der Tankvorgang wird mit dem Entnehmen des Tankstutzens aus der Tanksäule mit
der Methode tankstutzenEntnehmen() eingeleitet. Anschließend beginnt durch
Aufruf der Methode startTanken() das Befüllen. In startTanken() muss zuerst
ein FuellstandSensor mit Hilfe einer anonymen Klasse erzeugt und der Methode
anmeldenFuellstandSensor() übergeben werden. Nach Aufruf der Methode
anmeldenFuellstandSensor() kann der eigentliche Füllvorgang beginnen.
Durch Aufruf der Methode fuellen() wird der Tank jedes Mal um einen Liter
gefüllt. Durch wiederholten Aufruf der Methode fuellen() wird der Tank aufgefüllt,
bis das Maximalvolumen des Tanks erreicht ist. Nach jedem Auffüllen des Tanks um
einen weiteren Liter wird die Methode meldeFuellstand() der anonymen Klasse
– welche die Schnittstelle FuellstandSensor implementiert – aufgerufen. Inner-
halb dieser Methode wird überprüft, ob der Tank vollständig gefüllt wurde. Ist dies der
Fall, so wird der Tankvorgang beendet. Zusätzlich gibt die Methode meldeFuell-
stand() den aktuellen Füllstand auf der Konsole aus.

Testen Sie die entwickelten Klassen mit folgender Klasse:

// Datei: TestTanken.java

public class TestTanken
{
 public static void main (String[] args)
 {
 Tanksaeule tanksaeule = new Tanksaeule();
 Tank tank = new Tank (50);
 tanksaeule.tankstutzenEntnehmen (tank);
 tanksaeule.startTanken();
 }
}

Aufgabe 15.3: Elementklasse

Es soll eine Liste zur Archivierung einer CD-Sammlung entwickelt werden. Hierzu
wird die Klasse CdListe entwickelt. Diese Klasse besitzt folgende Methoden:

• public CdListe (String archivTitel, int maxAnzahl)

• public void cdHinzufuegen (String cdTitel, String kuenstler,
int jahr)

• public void listeAnzeigen()

CDs sollen zum Archiv nur hinzugefügt werden können. Des Weiteren besteht die
Möglichkeit, die gesamte Liste der im Archiv aufgenommenen CDs auf der Konsole
auszugeben.

572 Kapitel 15

Die Klasse CdListe enthält noch eine innere Klasse Cd. Diese innere Klasse Cd ist
als Elementklasse zu realisieren und besitzt die Methoden:

• Cd (String cdTitel, String kuenstler, int jahr)

• public String toString()

Entwickeln Sie die Klasse CdListe. Beim Hinzufügen einer CD soll ein neues Ob-
jekt der inneren Klasse Cd erzeugt und zu der Liste hinzugefügt werden. Die Aus-
gabe der CD-Liste erfolgt unsortiert auf der Konsole durch den Aufruf der Methode
listeAnzeigen().

Die Klasse CdListe könnte mit folgender Klasse getestet werden:

// Datei: TestCdListe.java

public class TestCdListe
{
 public static void main (String[] args)
 {
 CdListe liste = new CdListe ("Klassik", 3);
 liste.listeAnzeigen();

 liste.cdHinzufuegen ("Zauberflöte", "Mozart", 2003);
 liste.cdHinzufuegen ("Nussknacker", "Tschaikowsky", 2001);
 liste.listeAnzeigen();

 liste.cdHinzufuegen ("Für Elise", "Beethoven", 1990);
 liste.listeAnzeigen();
 }
}

Aufgabe 15.4: Statische innere Klasse

Schreiben Sie eine Schnittstelle Obst, welche die Methoden getObstname() und
getAnzahl() deklariert. Weiter soll die Schnittstelle noch eine statische geschach-
telte Klasse Obstmengenausgabe enthalten, welche die statische Methode
print (Obst obst) implementiert. Die Methode print (Obst obst) soll die
Art des Obstes und die Anzahl der entsprechenden Früchte auf der Konsole aus-
geben. Implementieren Sie zusätzlich die Klassen Apfel und Birne, welche jeweils
die Schnittstelle Obst implementieren. Im Konstruktor soll die Anzahl der Birnen oder
Äpfel mit übergeben werden. Testen Sie ihre Klassen mit folgender Testklasse:

// Datei: TestObst.java

public class TestObst
{
 public static void main (String[] args)
 {
 Obst obst1 = new Apfel (9);
 Obst.Obstmengenausgabe.print (obst1);
 Obst obst2 = new Birne (7);
 Obst.Obstmengenausgabe.print (obst2);
 }
}

Geschachtelte Klassen 573

Aufgabe 15.5: Flughafen-Projekt – Aufräumen

Ziel dieser Aufgabe ist, eine neue Klasse Flughafen einzuführen. Diese Klasse
Flughafen soll das Erzeugen und Verwalten aller für den Flughafen notwendigen
Objekte übernehmen. Es folgt die grafische Repräsentation dieser Klasse:

Flughafen

- bahnen : Bahn[]
- parkpositionen : Parkposition[]
- simulator : FlugzeugSimulator
+ Flughafen()
+ aktualisiereStatus()
+ erstelleFluggesellschaft()
+ erstelleFlugzeug()
+ erstelleFlugzeugtyp()
+ getAnzahlBahnen()
+ getAnzahlParkpositionen()
+ getBahn()
+ getParkposition()
+ getSeparateParkposition()
+ getWerft()
+ setFlugzeugListener()

Bild 15-9 Grafische Repräsentation der Klasse Flughafen

Die Klasse Flughafen besitzt die folgenden Datenfelder und Methoden:

• ein Array für die Start- und Landebahnen (Bahn[]), ein Array für die Parkpositio-
nen (Parkposition[]) und eine Referenz auf das Objekt vom Typ FlugSi-
mulator.

• einen Konstruktor, um die drei Referenzen bahnen, parkpositionen und
simulator zu initialisieren.

• die Methode aktualisiereStatus(), welche den Aufruf an den Flugzeug-
simulator durchreicht.

• die Methoden erstelleFluggesellschaft(), erstelleFlugzeug() und
erstelleFlugzeugtyp() zur Erstellung der entsprechenden Objekte.

• die zwei Methoden getAnzahlBahnen() und getAnzahlParkpositionen(),
welche die jeweilige Anzahl zurückgeben.

• die Methoden getBahn(), getParkposition(), getSeparateParkposi-
tion() und getWerft(), um eine Referenz auf das angeforderte Objekt zu er-
halten. Dabei muss den Methoden getBahn() und getParkposition() ein
Index übergeben werden, da es mehrere Bahnen und Parkpositionen gibt.

• die Methode setFlugzeugListener(), um eine Klasse, die eine Schnittstelle
FlugzeugListener implementiert, beim Flugzeugsimulator anzumelden.

Ändern sie die Klasse Client so ab, dass diese mit der neuen Klasse Flughafen
arbeitet. Bitte beachten Sie, dass diese Projektaufgabe keine geschachtelten Klas-
sen enthält.

			

Ein-/Ausgabe und Streams

16.1 Für ganz Eilige ein erstes Beispiel
16.2 Klassifizierung von Streams
16.3 Das Stream-Konzept
16.4 Bytestream-Klassen
16.5 Characterstream-Klassen
16.6 Standardeingabe und Standardausgabe
16.7 Ein- und Ausgabe von Objekten
16.8 Übungen

16 Ein-/Ausgabe und Streams

Programme laufen fast immer nach dem Schema "Eingabe/Verarbeitung/Ausgabe"
ab. Schon daran ist die Wichtigkeit der Ein- und Ausgabe in Programmen zu erken-
nen. Ein gutes Ein- und Ausgabe-System ist für die Akzeptanz einer Programmier-
sprache von großer Bedeutung. Gute Ein- und Ausgabe-Systeme sind jedoch nicht
einfach zu entwerfen, denn es gibt nicht nur sehr viele Datenquellen (Tastatur, Da-
teien, Netzverbindungen), von denen Eingaben gelesen werden und Datensenken
(Bildschirm, Dateien, Netzverbindungen), in welche die Ausgaben geschrieben wer-
den, sondern mit diesen Datenquellen und Datensenken sollen Informationen auch in
verschiedenen Einheiten wie z. B. Byte, Zeichen oder Zeilen ausgetauscht werden.

In Java wird das so genannte Stream-Konzept verwendet, um die komplizierten
Einzelheiten der Kommunikation zu verbergen. Ein Stream ist eine geordnete
Folge von Bytes, ein so genannter Bytestrom. Solche Byteströme sind meist von
unbekannter Länge, d. h. die Anzahl der Bytes, die ein Bytestrom transportieren
wird, ist im Voraus nicht ermittelbar. Für die Umsetzung des Stream-Konzeptes gibt
es in Java die so genannten Stream-Klassen aus dem Paket java.io, welche die
Funktionen für die Ein- und Ausgabe implementieren.

16.1 Für ganz Eilige ein erstes Beispiel

Bevor auf die Einzelheiten des mächtigen Stream-Konzeptes eingegangen wird, soll
hier erst einmal ein Beispiel vorgestellt werden, das zeigt, wie Sie Daten in eine Datei
schreiben und wie Sie Daten aus einer Datei auch wieder einlesen können. In Kapitel
4.8 haben Sie bereits gelernt, wie man von der Tastatur Daten mit Hilfe der Klasse
Scanner einlesen kann und wie man mit der Methode System.out.printf()
Daten formatiert auf dem Bildschirm ausgeben kann. Beide Mechanismen werden
auch in folgendem Beispiel benötigt. Es soll ein Adressbuch entwickelt werden, in
welchem die Anschrift und die Handy-Nummer von Personen abgelegt werden kann.
Für das Beispiel werden die Klassen Person, Addressbuch und Test benötigt. Als
erstes wird die Klasse Person vorgestellt:

// Datei: Person.java

import java.util.*;
import java.io.*;

public class Person
{
 private String name, vorname, str, ort, handy;
 private int hausNr, plz;

 public Person (Scanner in)
 {
 vorname = in.next();
 name = in.next();
 str = in.next();
 hausNr = in.nextInt();
 plz = in.nextInt();

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_16,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Ein-/Ausgabe und Streams 577

 ort = in.next();
 handy = in.next();
 }

 public Person (InputStream in)
 {
 this (new Scanner (in));
 }

 public void ausgeben (PrintStream out)
 {
 out.printf ("%-10s %-10s\n%-12s %-3d\n%-5s %-10s\n%-14s\n",
 vorname, name, str, hausNr, plz, ort, handy);
 }
}

Die Klasse Person hat zwei Konstruktoren. Der eine Konstruktor hat einen formalen
Parameter vom Typ Scanner und der andere einen formalen Parameter vom Typ
InputStream. Ein Objekt vom Typ Scanner kann auf eine beliebige Datenquelle
zeigen und von dort Zeichen einlesen. Eine Datenquelle – die Sie bereits gut kennen
– ist die Tastatur. Genauso gut kann eine Datenquelle aber auch eine Datei auf einer
Festplatte sein.

Von der Tastatur werden Zeichen eingelesen, indem für die Klassenvariable Sys-
tem.in eine read()-Methode aufgerufen wird. Die Klassenvariable System.in ist
vom Typ InputStream. Von einer Datei werden Zeichen mit Hilfe eines Objektes
vom Typ FileInputStream eingelesen. Die Klasse FileInputStream ist hierbei
von der Klasse InputStream abgeleitet. Sowohl beim Einlesen von Zeichen von
der Tastatur als auch beim Einlesen von Zeichen aus einer Datei kommt also ein
Objekt vom Typ InputStream zum Einsatz. Dies bedeutet, dass die beiden Kon-
struktoren in der Klasse Person sowohl von der Tastatur Zeichen einlesen können,
als auch aus einer Datei.

Um Daten auf dem Bildschirm auszugeben, verwenden Sie das Datenfeld out der
Klasse System. Das Datenfeld out ist vom Typ PrintStream – also auch vom Typ
einer Stream-Klasse. Mit Hilfe der Methode ausgeben() der Klasse Person soll es
aber nun möglich sein, sowohl auf den Bildschirm die Daten auszugeben, als auch
die Daten in eine Datei zu schreiben. Das kann nur funktionieren, wenn eine
Referenz vom Typ PrintStream, die als aktueller Parameter der Methode aus-
geben() übergeben wird, das eine Mal auf ein Objekt zeigt, das die Daten auf dem
Bildschirm ausgeben kann und das andere Mal auf ein Objekt zeigt, das die Daten in
eine Datei schreibt.

Als nächstes soll die Klasse Adressbuch betrachtet werden. Die Daten des Adress-
buches – ein Objekt vom Typ der Collection-Klasse ArrayList (siehe Kap. 18) –
werden in einer Datei abgelegt. Von dieser Datei können die bereits im Adressbuch
geführten Personen eingelesen werden (Methode einlesen()), es können neue
Personen in das Adressbuch aufgenommen werden (Methode addAdresse()), das
Adressbuch kann gespeichert werden (Methode speichern()) und das Adress-
buch kann ausgegeben werden (Methode ausgeben()).

578 Kapitel 16

// Datei: Adressbuch.java
import java.util.*;
import java.io.*;

public class Adressbuch
{
 private String dateiname = null;
 private ArrayList<Person> arr = new ArrayList<Person>();

 public Adressbuch (String dateiname) throws IOException
 {
 this.dateiname = dateiname;
 try
 {
 FileInputStream fis = new FileInputStream (dateiname);
 einlesen (fis);
 fis.close();
 }
 catch (FileNotFoundException e)
 {
 System.out.println (dateiname + " wird angelegt!");
 }
 }

 private void einlesen (InputStream in)
 {
 Scanner scan = new Scanner (in);
 // Solange noch weitere Elemente in der Datei sind,
 // werden Adressdaten von Personen eingelesen.
 while (scan.hasNext())
 arr.add (new Person (scan));
 }

 // Methode, um dem Adressbuch einen Eintrag hinzuzufügen.
 public void addAdresse (Person pers)
 {
 arr.add (pers);
 }

 // Methode, um das Addressbuch zu speichern.
 public void speichern() throws IOException
 {
 FileOutputStream out = new FileOutputStream (dateiname);
 PrintStream print = new PrintStream (out);
 ausgeben (print);
 print.close();
 out.close();
 }

 // Adressbuch auf den Bildschirm oder in eine Datei schreiben.
 public void ausgeben (PrintStream out)
 {
 Iterator<Person> e = arr.iterator();
 while (e.hasNext())
 e.next().ausgeben (out);
 }
}

Ein-/Ausgabe und Streams 579

Dem Konstruktor des Adressbuches wird der Dateiname übergeben. Ist die Datei
vorhanden, werden in einem ersten Schritt mit Hilfe eines Objektes der Klasse
FileInputStream – die ja von InputStream abgeleitet ist – alle Adressdaten aus
der Datei mit Hilfe der Methode einlesen() eingelesen und in einem Objekt vom
Typ ArrayList<Person> mit Hilfe der Methode add() abgelegt. Der Methode
addElement() wird eine Referenz auf ein neu angelegtes Objekt vom Typ Person
übergeben, in das bei der Abarbeitung des Konstruktors die Daten eingelesen wer-
den. Die Methode speichern() ruft die Methode ausgeben() auf, die dann die
gesamten Adressdaten mit Hilfe der übergebenen Referenz auf ein Objekt vom Typ
PrintStream in eine Datei schreibt. Wird die Methode ausgeben() mit dem aktu-
ellen Parameter System.out aufgerufen, so werden die Daten anstatt in eine Datei
auf den Bildschirm geschrieben.

Warum das alles so polymorph funktionieren kann, werden Sie im Detail in den fol-
genden Kapiteln lernen. Zum Abschluss dieses Kapitels können Sie noch die folgen-
de Testklasse studieren und eventuell mit diesem Beispiel ein wenig experimen-
tieren.

// Datei: Test.java

import java.io.*;

public class Test
{
 public static void main (String[] args) throws IOException
 {
 Adressbuch buch = new Adressbuch (args[0]);

 System.out.println("Bitte in folgendem Format eingeben:");
 System.out.println("Vorname Nachname Str. Nr. PLZ Ort Handy");

 // Neue Einträge in das Adressbuch aufnehmen
 buch.addAdresse (new Person (System.in));
 buch.addAdresse (new Person (System.in));

 // Adressbuch auf dem Bildschirm ausgeben
 System.out.println ("******** Adressbucheinträge ********");
 buch.ausgeben (System.out);
 buch.speichern();
 }
}

Beim ersten Aufruf des Programms ist noch kein Adressbuch vorhanden. Sie können
aber gleich ihre ersten Adressdaten eingeben. Der Aufruf erfolgte mit:

java Test Adressbuch.txt

Wenn Sie das Programm ein weiteres Mal aufrufen, existiert die Datei Adress-
buch.txt bereits und die dort abgelegten Adressen werden ausgelesen und neue
können hinzugefügt werden.

580 Kapitel 16

Der folgende Dialog wurde geführt:

Adressbuch.txt wird angelegt!
Bitte in folgendem Format eingeben:
Vorname Nachname Str. Nr. PLZ Ort Handy
Anna Klein Mozartstr. 17 72878 Leonberg 0172/7878878
Chris Valentin Enzweg 17 89898 Mainz 0173/6564343
******** Adressbucheinträge ********
Anna Klein
Mozartstr. 17
72878 Leonberg
0172/7878878
Chris Valentin
Enzweg 17
89898 Mainz
0173/6564343

16.2 Klassifizierung von Streams

Die Stream-Klassen, die Java zur Verfügung stellt, befinden sich fast alle im Paket
java.io – einem der größten Pakete der Java-API. Um sich einen Überblick zu
verschaffen, ist es hilfreich, zuallererst eine Klassifizierung der Stream-Klassen
durchzuführen. Stream-Klassen können auf mehrere Arten klassifiziert werden:

• anhand der Klassenhierarchie des Pakets java.io. Dadurch erhält man eine
Aufteilung in Byte- und Characterstream-Klassen.

• nach funktionalen Kriterien. Hierdurch erfolgt eine Aufteilung in Klassen, die

− in Datensenken schreiben, die Sinkstream-Klassen.
− aus Datenquellen lesen, die Springstream-Klassen.
− eine Sink- bzw. Springstream-Klasse benutzen und deren Funktionalität er-

weitern. Dies sind die Processingstream-Klassen.

Ein Bytestrom, der aus einer Datenquelle kommt, wird als Eingabe-
strom bzw. Inputstream bezeichnet. Ein Bytestrom, der in eine Da-
tensenke hineingeht, wird als Ausgabestrom bzw. Outputstream be-
zeichnet.

16.2.1 Datensenken und -quellen

In Java können Datenquellen und Datensenken Dateien, Pipes118, byte-Arrays,
char-Arrays, Strings und Netzverbindungen119 sein. Dabei stellen byte-Arrays,
char-Arrays, Strings und Pipes interne Datenquellen bzw. interne Datensenken
dar, d. h. sie befinden sich innerhalb eines Java-Programms. Dateien und Netzver-

118 Eine Pipe ist in Java ein Mechanismus zur Interprozesskommunikation zwischen Threads (siehe

Kap. 19). Die eine Seite der Pipe wird als Datensenke verwendet – auf dieser Seite kann ein
Programm Bytes in die Pipe hineinschreiben. Die andere Seite der Pipe wird als Datenquelle
verwendet – auf dieser Seite kann ein Programm Bytes aus der Pipe lesen.

119 Netzverbindungen sind in Kap. 24 (Sockets) und in Kap. 25 (RMI) beschrieben.

Ein-/Ausgabe und Streams 581

bindungen sind externe Datenquellen bzw. externe Datensenken, d. h. sie
befinden sich außerhalb eines Java-Programms (siehe Bild 16-1).

Klassen, die einen Bytestrom von einer Datenquelle einlesen können, bezeichnet
man als Eingabestrom-Klassen. Klassen, die einen Bytestrom in eine Datensenke
schreiben können, bezeichnet man als Ausgabestrom-Klassen. Mit der Notation
:Ausgabestrom-Klasse wird ein Objekt der Klasse Ausgabestrom-Klasse dargestellt.
Dabei ist die Klasse Ausgabestrom-Klasse keine existierende Klasse in Java – sie
steht stellvertretend für die später vorgestellten Ausgabestrom-Klassen von Java.

:byte[] :byte[] :Eingabe
strom-
Klasse 01101001

:Ausgabe
strom-
Klasse

:String :String :Eingabe
strom-
Klasse

Datensenken Datenquellen

Ausgabestrom Eingabestrom

01101001

01101001

01101001

:Ausgabe
strom-
Klasse

:Eingabe
strom-
Klasse

Datei Datei 01101001 01101001

:Ausgabe
strom-
Klasse

:char[] :char[] :Eingabe
strom-
Klasse 01101001 01101001

:Ausgabe
strom-
Klasse

:Eingabe
strom-
Klasse 01101001 Pipe 01101001

:Ausgabe
strom-
Klasse

innerhalb des Java-Programms

außerhalb des Java-Programms

Bytestrom Bytestrom

Bild 16-1 Datensenken und Datenquellen

Im Bild sind links Instanzen von Ausgabestrom-Klassen zu sehen, die geordnete
Bytefolgen in interne und externe Datensenken schreiben. Objekte von Ausgabe-
strom-Klassen werden von anderen Objekten des Java-Programms benutzt, um
Daten in Datensenken zu schreiben. Rechts sind die entsprechenden Objekte der
Eingabestrom-Klassen zu sehen, die geordnete Bytefolgen aus internen und exter-
nen Datenquellen lesen. Objekte von Eingabestrom-Klassen werden von anderen
Objekten des Java-Programms benutzt, um Eingaben aus einer Datenquelle zu le-
sen.

582 Kapitel 16

16.2.2 Byte- und Characterstreams

Alle Stream-Klassen des Pakets java.io sind von einer der vier abstrakten Basis-
klassen InputStream, OutputStream, Reader oder Writer abgeleitet.

Klassen, die von InputStream oder OutputStream abgeleitet sind,
nennt man Bytestream-Klassen – sie sind hauptsächlich für die Ver-
arbeitung einzelner Bytes verantwortlich.

Klassen, die von Reader oder Writer abgeleitet sind, nennt man
Characterstream-Klassen. Diese sind für die korrekte Verarbeitung
von Zeichen verantwortlich.

Innerhalb der Byte- und Characterstream-Klassen gibt es die so genannten Input-
stream-Klassen, die Daten lesen, und die so genannten Outputstream-Klassen,
die Daten schreiben. Somit ergibt sich folgende Klassifizierung:

 InputStream

{abstract}
OutputStream

{abstract}
Reader

{abstract}
Writer

{abstract}

... ...
Byte-

Inputstream-
Klassen

... ...
Byte-

Outputstream-
Klassen

... ...
Character-

Inputstream-
Klassen

... ...
Character-

Outputstream-
Klassen

Bytestream-Klassen Characterstream-Klassen
Bild 16-2 Klassifizierung der Stream-Klassen

Bytes und Characters in Java

Objekte von Bytestream-Klassen schreiben und lesen Bytes, also Werte vom Typ
byte. Objekte von Characterstream-Klassen schreiben und lesen Characters,
also Zeichen vom Typ char. Bei den meisten Programmiersprachen wird ein Zei-
chen vom Typ char durch ein Byte dargestellt. In Java werden jedoch Zeichen des
Typs char in der UTF-16 Codierung des Unicodes (siehe Kap. 5.2) gespeichert. Für
jedes Zeichen vom Typ char werden also zwei Bytes benötigt. Hierdurch können in
Java auch Schriftzeichen von Sprachen wie Chinesisch, Arabisch oder Hebräisch
repräsentiert werden.

Java unterstützt seit der Version 1.1 mit den Characterstream-Klassen die Verwen-
dung von Unicode-Zeichen bei der Ein- und Ausgabe. Die bereits von Anfang an
vorhandenen Bytestream-Klassen werden durch die Characterstream-Klassen
erweitert, jedoch auf keinen Fall ersetzt. Bytestream-Klassen werden benötigt, um

Ein-/Ausgabe und Streams 583

auf Dateien auf Speichermedien zuzugreifen, da das Lesen und Schreiben auf Spei-
chermedien byteweise erfolgt.

Objekte der Bytestream-Klassen können selbst auch Daten vom Typ char und
String – also Zeichen – verarbeiten, jedoch geht dabei das jeweils höherwertige
Byte eines jeden Zeichens verloren. Deshalb muss darauf geachtet werden, dass für
die korrekte Ein- und Ausgabe von Zeichen, die für ihre Darstellung mehr als 1 Byte
benötigen, Characterstream-Klassen eingesetzt werden.

16.2.3 Sink-, Spring- und Processingstreams

Durch die Klassifizierung nach funktionalen Kriterien kann die Aufteilung der Byte-
stream- und Characterstream-Klassen noch verfeinert werden. Bytestream-Klassen
und Characterstream-Klassen besitzen jeweils spezielle Klassen, die sich in die
Kategorien Sink-, Spring- und Processingstream einteilen lassen.

Klassifizierung von Stream-Klassen:

• Ein Objekt einer Sinkstream-Klasse kann Daten in eine Datensen-
ke schreiben.

• Ein Objekt einer Springstream-Klasse kann Daten direkt aus einer
Datenquelle lesen.

• Ein Objekt einer Processingstream-Klasse benutzt intern ein Ob-
jekt einer Sinkstream- oder Springstream-Klasse und erweitert de-
ren Funktionalität, zum Beispiel um int-Werte lesen oder gepuf-
fert schreiben zu können.

In den folgenden Kapiteln werden nun alle Stream-Klassen des Paketes java.io
vorgestellt und den inzwischen bekannten Kategorien Sinkstream, Springstream
und Processingstream zugeordnet. In Kapitel 16.4 werden die Bytestream-Klassen
behandelt und danach die Characterstream-Klassen in Kapitel 16.5. Bevor jedoch im
Detail auf die einzelnen Klassen eingegangen wird, erfolgt eine allgemeine Ein-
führung in das Stream-Konzept.

16.3 Das Stream-Konzept

Objekte von Sink- und Springstream-Klassen werden dazu verwendet, um Bytes
oder Zeichen direkt in Datensenken zu schreiben oder direkt aus Datenquellen zu
lesen. Ist eine erweiterte Funktionalität erwünscht, kommen Processingstreams zum
Einsatz. Es sind prinzipiell zwei Möglichkeiten denkbar, wie die Processingstream-
Klassen die Funktionalität von Sink- und Springstream-Klassen erweitern und den
Quellcode dieser Klassen wieder verwenden können:

• durch Vererbung
• oder durch Aggregation.

584 Kapitel 16

In Java hat man sich für die Aggregation entschieden und zwar enthält jede Pro-
cessingstream-Klasse für eine

• Byte-Inputstream-Klasse ein privates Datenfeld vom Typ InputStream,

• Byte-Outputstream-Klasse ein privates Datenfeld vom Typ OutputStream,

• Character-Inputstream-Klasse ein privates Datenfeld vom Typ Reader,

• Character-Outputstream-Klasse ein privates Datenfeld vom Typ Writer.

Jede Processingstream-Klasse ist von einer der Klassen InputStream, Output-
Stream, Reader oder Writer abgeleitet und aggregiert gleichzeitig ein Objekt der
entsprechenden Klasse. Bild 16-3 zeigt dies stellvertretend an einer Processing-
stream-Klasse für Byte-Outputstreams.

 OutputStream
{abstract}

Processing-
stream-Klasse

Bild 16-3 Beziehungen einer Processingstream-Klasse

Ein Objekt einer Processingstream-Klasse, die von OutputStream abgeleitet ist,
aggregiert ein Objekt der Klasse OutputStream. Dies bedeutet, dass eine Pro-
cessingstream-Klasse eine Referenzvariable vom Typ OutputStream als Instanz-
variable hat. Eine Referenz vom Typ OutputStream kann auf ein Objekt zeigen,
dessen Klasse von der abstrakten Klasse OutputStream abgeleitet ist. Die weitere
Betrachtung soll der Einfachheit halber nur am Beispiel der Byte-Outputstream-
Klassen erfolgen. Bild 16-4 zeigt einen Ausschnitt aus der Vererbungshierarchie für
die Byte-Outputstream-Klassen. Die grau hinterlegten Klassen sind Sinkstream-Klas-
sen und die anderen von OutputStream abgeleiteten Klassen sind Processing-
stream-Klassen.

 OutputStream
{abstract}

Object
Output
Stream

Piped
Output
Stream

ByteArray
Output
Stream

Filter
Output
Stream

Data
Output
Stream

Buffered
Output
Stream

Print
Stream

File
Output
Stream

Bild 16-4 Ausschnitt aus der Klassenhierarchie der Byte-Outputstream-Klassen

Ein-/Ausgabe und Streams 585

Alle Processingstream-Klassen, die von OutputStream abgeleitet
sind, besitzen eine Instanzvariable vom Typ OutputStream. Diese
Referenz kann auf jedes Objekt zeigen, dessen Klasse von Output-
Stream abgeleitet ist.

Die Klasse OutputStream definiert nur Methoden, mit denen man Bytes in eine
Datensenke schreiben kann. Die Sinkstream-Klassen implementieren diese Me-
thoden für die verschiedenen Datensenken. Möchte man eine erweiterte Funktio-
nalität haben und möchte beispielsweise Werte elementarer Datentypen schreiben,
so benötigt man eine der Processingstream-Klassen. Die Processingstream-Klasse
DataOutputStream ermöglicht zum Beispiel das Schreiben von Werten elemen-
tarer Datentypen. Die drei Sinkstream-Klassen ByteArrayOutputStream, File-
OutputStream und PipedOutputStream können von einem Objekt der Pro-
cessingstream-Klasse DataOutputStream aggregiert werden, da alle diese Klas-
sen von der Klasse OutputStream abgeleitet sind. Dies ist deshalb möglich, weil
ein Objekt einer Sohnklasse sich immer so verhalten kann wie ein Objekt seiner
Vaterklasse.

Jede Processingstream-Klasse stellt einen Konstruktor mit einem
Übergabeparameter vom Typ OutputStream zur Verfügung. Der
aktuelle Parameter wird dann der privaten Instanzvariablen vom Typ
OutputStream zugewiesen.

Es ist also möglich, jede beliebige Referenz, die auf ein Objekt zeigt, dessen Klasse
von OutputStream abgeleitet ist, als Konstruktorparameter einer Processing-
stream-Klasse zu übergeben. Damit ist die Vorgehensweise für eine Ausgabe mit
erweiterter Funktionalität klar:

Zuerst wird ein Objekt einer Sinkstream-Klasse erzeugt. Dann wird ein
Objekt einer Processingstream-Klasse erzeugt und im Konstruktor-
aufruf wird die Referenz auf das erzeugte Sinkstream-Objekt über-
geben.

Dabei steht Processingstream stellvertretend für eine konkrete Processingstream-
Klasse, z. B. DataOutputStream, und Sinkstream steht stellvertretend für eine kon-
krete Sinkstream-Klasse wie z. B. FileOutputStream.

Hier der Quellcode für die Erzeugung eines Processingstream-Objektes, das ein
Sinkstream-Objekt aggregiert:

OutputStream sink = new Sinkstream-Klasse();
Processingstream-Klasse pro;
pro = new Processingstream-Klasse (sink);

Grafisch lässt sich dies folgendermaßen darstellen:

586 Kapitel 16

Datensenke

:Processing-
stream-Klasse

:Sinkstream-
Klasse

01101001

Bild 16-5 Objekt einer Processingstream-Klasse benutzt ein Objekt einer Sinkstream-Klasse

Im Programm selbst werden nun die komfortablen Methoden der Processing-
stream-Klasse aufgerufen. Diese leiten bei Bedarf die Aufrufe an das aggre-
gierte Sinkstream-Objekt weiter.

Ein Vorteil dieses Konzepts ist, dass nur eine Processingstream-Klasse pro zusätz-
licher Funktionalität geschrieben werden muss und diese Funktionalität zu allen
Sinkstream-Klassen individuell hinzugefügt werden kann.

Eine Konstruktion, die es erlaubt, dass mehrere Klassen, die eine ge-
meinsame Basisklasse besitzen, um eine zusätzliche Funktionalität –
hier die Funktionalität einer Processingstream-Klasse – individuell er-
weitert werden können, ist unter dem Namen Dekorierer als Ent-
wurfsmuster bekannt.

Hätte man, anstatt das Dekorierer-Entwurfsmuster einzusetzen, das mit einer Aggre-
gationsbeziehung zur Basisklasse arbeitet, die zusätzliche Funktionalität über eine
Vererbungsbeziehung realisiert, so müsste für jede unterschiedliche Sinkstream-
Klasse eine extra Processingstream-Klasse geschrieben werden. Die Processing-
stream-Klasse DataOutputStream müsste dann zum Beispiel in drei Varianten
vorliegen – für jede Sinkstream-Klasse genau eine spezifische Unterklasse. Durch
die Anwendung des Dekorierer-Entwurfsmusters bei den Processingstream-Klassen
bleibt die Vererbungshierarchie des Pakets java.io also überschaubar.

Mit diesem Wissen ist nun auch das Beispiel aus Kapitel 16.1 verständlich. In der
Methode speichern() der Klasse Adressbuch wird zuerst ein Objekt der Klasse
FileOutputStream – ein Sinkstream-Objekt – erzeugt und dann wird ein Objekt
der Klasse PrintStream – ein Processingstream-Objekt – erzeugt. Beim Konstruk-
toraufruf für das Processingstream-Objekt wird eine Referenz auf das Sinkstream-
Objekt übergeben. Das heißt, das Objekt vom Typ PrintStream bietet die komfor-
tablen Methoden – wie beispielsweise die Methode printf() – und das Objekt vom
Typ FileOutputStream bietet Methoden an, um einzelne Bytes in eine Datei zu
schreiben. Das Objekt vom Typ PrintStream verwendet damit das Delegations-
prinzip, um Bytes unter Verwendung eines Objektes vom Typ FileOutputStream
in eine Datei zu schreiben.

16.4 Bytestream-Klassen

Bytestream-Klassen arbeiten, wie schon erwähnt, nur mit einzelnen Bytes.

Ein-/Ausgabe und Streams 587

Da externe Datensenken und Datenquellen byteweise arbeiten, sind
grundsätzlich Bytestreams nötig, um in eine externe Datensenke zu
schreiben oder um aus einer externen Datenquelle zu lesen. Deshalb
gibt es bei den Characterstream-Klassen, wie Sie später noch se-
hen werden, auch keine Sink- und Springstream-Klassen, die auf
einer Datei als externe Datensenke bzw. Datenquelle arbeiten.

Geht es um Daten, die mit nur einem Byte repräsentiert werden können, so ist eine
Stream-Klasse, die Bytes verarbeiten kann, ausreichend. Geht es jedoch um Daten,
die durch mehrere Bytes dargestellt werden müssen (short, int, long, float,
double und char), so benötigt man spezielle Processingstream-Klassen, um
diese Daten korrekt in eine Folge von Bytes zu wandeln, die dann von einem Byte-
stream-Objekt verarbeitet werden können. Umgekehrt müssen solche Daten, wenn
sie aus einem Bytestream gelesen werden, von einem Processingstream-Objekt
verarbeitet werden, um die einzelnen Bytes wieder korrekt zusammenzufügen.

16.4.1 Outputstream-Klassen

In Bild 16-4 wurde ein Ausschnitt der Byte-Outputstream-Klassenhierarchie gezeigt.
Da es sich hier um Outputstream-Klassen handelt – also um Klassen, die Daten in
eine Datensenke schreiben – sind in Bild 16-4 keine Springstream-Klassen zu finden.
Die grau hinterlegten Klassen sind die Sinkstream-Klassen und die restlichen von
OutputStream abgeleiteten Klassen sind Processingstream-Klassen.

16.4.1.1 Die Basisklasse OutputStream

Die Methoden der Klasse OutputStream ermöglichen das Schreiben von Bytes in
eine Datensenke. Die abstrakte Klasse OutputStream deklariert die Methoden:

• abstract void write (int b)
• void write (byte[] b)
• void write (byte[] b, int off, int len)
• void flush()
• void close()

Nicht verwirren lassen darf man sich durch die Tatsache, dass die write()-Metho-
de zum Schreiben eines Bytes jedoch einen Übergabeparameter vom Typ int ver-
langt. Dieser write()-Methode wird ein int-Wert im Wertebereich 0 bis 255 über-
geben. Die anderen beiden write()-Methoden ermöglichen das Schreiben von
byte-Arrays und Teilen von byte-Arrays in eine Datensenke. Es fällt auf, dass eine
der drei write()-Methoden abstrakt ist. Alle Subklassen von OutputStream über-
schreiben diese abstrakte write()-Methode. Die Klasse FileOutputStream
überschreibt diese Methode beispielsweise mit einer nativen120 Methode, die ein Byte
in eine Datei schreiben kann. Die anderen beiden write()-Methoden sind schon in
der Klasse OutputStream implementiert und rufen die abstrakte write()-Methode

120 Eine native Methode ist eine Methode, die in einer anderen Sprache als Java implementiert ist.

588 Kapitel 16

in einer Schleife auf, um mehrere Bytes hintereinander auszugeben. Diese wri-
te()-Methoden verlassen sich auf die Unterklassen, die garantieren, dass sie die
abstrakte write()-Methode implementieren, wenn sie nicht auch abstrakt sein
wollen.

In der Klasse OutputStream selbst befindet sich also keine wirkliche
Ausgabefunktionalität. Diese muss von Subklassen wie z. B. File-
OutputStream durch Implementieren der write()-Methode zur
Ausgabe eines Bytes bereitgestellt werden.

Puffert eine Outputstream-Klasse – wie beispielsweise die Processingstream-Klasse
BufferedOutputStream – die zu schreibenden Bytes, so kann die Methode
flush() dafür verwendet werden, alle sich im Puffer befindenden Bytes wirklich in
die Datensenke zu schreiben. Die Methode close()121 schließt den Ausgabestrom.
Nach dem Schließen sollte ein Ausgabestrom nicht mehr verwendet werden.

16.4.1.2 Sinkstream-Klassen

Es existieren die folgenden Sinkstream-Klassen122 für Bytestreams:

• ByteArrayOutputStream

Mit einem Objekt der ByteArrayOutputStream-Klasse kann man Bytes in ein
byte-Array schreiben. Diese Klasse stellt zwei Konstruktoren zur Verfügung,
einen ohne Parameter und einen, der einen int-Wert für die anzulegende Größe
des byte-Arrays entgegennimmt.

• FileOutputStream

Die Bytestream-Klasse FileOutputStream arbeitet direkt auf einer externen
Datensenke. Sie bietet mehrere Konstruktoren an, unter anderem einen, dem als
Parameter der Name der Datei übergeben wird, in die geschrieben werden soll.

• PipedOutputStream

Ein Objekt einer PipedOutputStream-Klasse schreibt Bytes in eine Pipe. Eine
Pipe wiederum wird in Java durch ein byte-Array realisiert.

16.4.1.3 Processingstream-Klassen

Alle Processingstream-Klassen für Byte-Outputstreams aggregieren
ein Objekt vom Typ OutputStream. Deshalb verlangen alle Kon-
struktoren der Processingstream-Klassen als ersten Parameter eine
Referenz auf ein Objekt vom Typ OutputStream.

121 In Java gibt es keine Methode open(), um einen Strom zu öffnen. Ein Strom ist nach der Erzeu-

gung mit dem new-Operator automatisch geöffnet.
122 Sinkstream-Klassen gibt es logischer Weise nur für Outputstreams und nicht für Inputstreams.

Sinkstream bezieht sich immer auf eine Klasse, die etwas in eine Datensenke schreibt.

Ein-/Ausgabe und Streams 589

Die Processingstream-Klasse FilterOutputStream ist eine Klasse, die nur die
Methoden der abstrakten Klasse OutputStream implementiert. Man kann zwar
Exemplare der Klasse FilterOutputStream erzeugen, jedoch stellen diese noch
keine erweiterte Funktionalität im Vergleich zu Objekten der Sinkstream-Klassen zur
Verfügung. Alle Aufrufe, die an ein Objekt einer FilterOutputStream-Klasse ge-
hen, werden direkt an das aggregierte Objekt vom Typ OutputStream weitergeleitet
(delegiert). Die Processingstream-Klassen BufferedOutputStream, DataOut-
putStream und PrintStream leiten von der Klasse FilterOutputStream ab.

Im Folgenden werden einige Processingstream-Klassen vorgestellt und erläutert:

• BufferedOutputStream

Die Klasse BufferedOutputStream hat als Instanzvariable eine Referenz auf
ein byte-Array einer bestimmten Größe. Wird eine write()-Methode für ein
Objekt der Klasse BufferedOutputStream aufgerufen, so wird dieser Aufruf
nicht sofort an das aggregierte Objekt vom Typ OutputStream weitergeleitet,
sondern die zu schreibenden Bytes werden zuerst in das byte-Array geschrieben.
Erst wenn das byte-Array voll ist, wird der Schreibbefehl an das aggregierte
Objekt vom Typ OutputStream weitergeleitet. Durch diese Pufferung ist ein
wesentlich effizienteres Schreiben z. B. in eine Datei zu erreichen, da nicht jedes
einzelne Byte getrennt geschrieben wird, sondern ein ganzes Array – d. h. ein
Puffer – auf einmal.

• DataOutputStream

Ein Objekt der Klasse DataOutputStream kann alle primitiven
Java-Datentypen schreiben, auch diejenigen, die durch zwei oder
mehr Bytes repräsentiert werden.

Dabei müssen einige Dinge beachtet werden – z. B. die Reihenfolge, in der die
Bytes geschrieben werden. Java schreibt Daten grundsätzlich im "big-endian"
Format, d. h. das höherwertige Byte wird zuerst geschrieben.

Die Klasse DataOutputStream kann auch String-Objekte schrei-
ben.

Allerdings kann das String-Objekt nur in reinem Unicode mit der Methode write-
Chars (String data) geschrieben werden. Benutzt man die Methode write-
Bytes (String data), kann einiges schief gehen. Enthält der String Unicode-
Zeichen, die zu ihrer Darstellung das höherwertige Byte mitbenutzen, so geht die
Information, die im höherwertigen Byte steht, einfach verloren. Es wird grund-
sätzlich einfach nur das niederwertige Byte eines jeden Zeichens geschrieben. Bei
der Rekonstruktion erhält man den ursprünglichen String also nicht mehr zurück.

590 Kapitel 16

• PrintStream

Die Klasse PrintStream bietet Methoden zum Schreiben aller
elementaren Datentypen. Dabei wandeln die Schreibmethoden
alle Datentypen in deren Stringrepräsentation und leiten diese an
das aggregierte Objekt vom Typ OutputStream weiter. Diese
Klasse wird zur einfachen Textausgabe benutzt.

Die Standardausgabe benutzt diese Klasse, um die Ausgaben auf dem Bildschirm
zu tätigen. Mit System.out.println() wird die Methode println() eines
Objektes vom Typ PrintStream aufgerufen, auf das die Referenz out zeigt.

• ObjectOutputStream

Die Klasse ObjectOutputStream ist eine Processingstream-Klasse zum Schrei-
ben von Objekten in einen Ausgabestrom (siehe Kap. 16.7).

Das folgende Beispiel zeigt die Verwendung der Processingstream-Klassen Buffe-
redOutputStream und PrintStream. Die Puffergröße des Objektes der Klasse
BufferedOutputStream wird auf 100 Bytes gesetzt. Das Objekt der Klasse
PrintStream benutzt das Objekt der Klasse BufferedOutputStream und dieses
wiederum benutzt die Standardausgabe, um auf den Bildschirm zu schreiben. Die
zweite for-Schleife dient lediglich dazu, den Programmablauf zu verlangsamen, da-
mit am Bildschirm beobachtet werden kann, dass immer mehrere Datensätze auf-
grund der Pufferung gleichzeitig ausgegeben werden.

Hier das Beispielprogramm:

// Datei: Messdaten.java

import java.io.*;

public class Messdaten
{
 public static void main (String[] args) throws IOException
 {
 BufferedOutputStream out =
 new BufferedOutputStream (System.out, 100);
 PrintStream print = new PrintStream (out);
 for (int i = 0; i < 10; i++)
 {
 print.println ("Messwert Nr. " + i
 + " hat den Wert: " + getMesswert());
 for (int j = 0; j < 500000000; j++)
 ;
 }

 // Dafür sorgen, dass der Puffer geleert wird und damit alles
 // ausgegeben wird.
 print.flush(); // den Rest noch ausgeben
 }

Ein-/Ausgabe und Streams 591

 public static double getMesswert()
 {
 return Math.random() * 1000;
 }
}

Der folgende Dialog wurde geführt:

Messwert Nr. 0 hat den Wert: 998.8001676001394
Messwert Nr. 1 hat den Wert: 620.4308663504445
Messwert Nr. 2 hat den Wert: 254.09528643582325
Messwert Nr. 3 hat den Wert: 565.4049915738923
Messwert Nr. 4 hat den Wert: 599.1219468716811
Messwert Nr. 5 hat den Wert: 223.6336443179907
Messwert Nr. 6 hat den Wert: 50.13028255727614
Messwert Nr. 7 hat den Wert: 700.8958107530149
Messwert Nr. 8 hat den Wert: 259.4003857856323
Messwert Nr. 9 hat den Wert: 387.79674635543824

16.4.2 Inputstream-Klassen

Die Byte-Inputstream-Klassen bilden das Gegenstück zu den Byte-Outputstream-
Klassen. Einen Ausschnitt aus der Klassenhierarchie der Byte-Inputstream-Klassen
ist in Bild 16-6 zu sehen.

InputStream

{abstract}

ByteArray
Input

Stream

File
Input

Stream

Filter
Input

Stream

Sequence
Input

Stream

Piped
Input

Stream

Data
Input

Stream

Buffered
Input

Stream

Pushback
Input

Stream

Object
Input

Stream

Bild 16-6 Ausschnitt aus der Klassenhierachie der Byte-Inputstream-Klassen

Bei den Inputstream-Klassen sind keine Sinkstream-Klassen zu finden, da mit Input-
stream-Klassen aus Datenquellen gelesen wird – es sind also nur Springstream-
Klassen vorhanden.

16.4.2.1 Die Basisklasse InputStream

Die abstrakte Klasse InputStream gibt die Aufrufschnittstelle für alle Byte-Input-
stream-Klassen vor. Es werden die folgenden Methoden deklariert:

592 Kapitel 16

• abstract int read()

• int read (byte[] b)
• int read (byte[] b, int off, int len)

• void close()

• long skip (long n)

• int available()

• void mark (int readlimit)

• void reset()
• boolean markSupported()

Die drei read()-Methoden werden zum Lesen von einzelnen Bytes, byte-Arrays
und Teilen von byte-Arrays aus einer Datenquelle verwendet.

Die read()-Methode, die ein einzelnes Byte einliest, ist abstrakt und
muss von Subklassen implementiert werden. Die anderen beiden
read()-Methoden verwenden die abstrakte read()-Methode, um
mehrere Bytes in ein byte-Array einzulesen.

Die Methode close() schließt den Eingabestrom und die Methode skip() über-
liest die angegebene Anzahl von Bytes. Mit der Methode available() kann geprüft
werden, wie viele Bytes zum Einlesen im Eingabestrom bereitstehen. Die drei Metho-
den mark(), markSupported() und reset() stellen eine Art Lesezeichen-Funk-
tionalität bereit. Unterstützt ein Eingabestrom die Lesezeichen-Funktionalität, so gibt
die Methode markSupported() den Wert true zurück. In diesem Fall kann mit
mark() eine beliebige Stelle im Eingabestrom markiert werden, um dann später mit
reset() an diese Stelle zurückspringen zu können.

16.4.2.2 Springstream-Klassen

Es existieren die folgenden Springstream-Klassen für Bytestreams:

• ByteArrayInputStream

Mit einem Objekt der Klasse ByteArrayInputStream kann man Bytes aus
einem byte-Array lesen. Im Konstruktor übergibt man die Datenquelle, von der
gelesen werden soll, nämlich ein Objekt vom Typ byte-Array.

• FileInputStream

Die einzige Bytestream-Klasse im Paket java.io, die direkt auf einer externen
Datenquelle arbeitet, ist die Klasse FileInputStream. Sie bietet mehrere Kon-
struktoren an, unter anderem einen, dem als Parameter direkt der Name der Datei
übergeben wird, aus der gelesen werden soll.

Ein-/Ausgabe und Streams 593

• PipedInputStream

Ein Objekt einer PipedInputStream-Klasse kann nur im Zusammenhang mit
einem Objekt der Klasse PipedOutputStream eingesetzt werden. Ein Piped-
InputStream-Objekt liest aus der Datenquelle, die das Objekt vom Typ Piped-
OutputStream als Datensenke verwendet. Dabei dient als Datenquelle bzw. als
Datensenke ein byte-Array.

16.4.2.3 Processingstream-Klassen

Alle Processingstream-Klassen für Byte-Inputstreams aggregieren ein
Objekt vom Typ InputStream. Der erste Parameter eines Konstruk-
tors dieser Klassen ist deshalb vom Typ InputStream.

Die Processingstream-Klasse FilterInputStream ist eine Klasse, die nur die Me-
thoden der abstrakten Klasse InputStream implementiert. Es gilt für diese Klasse
das Gleiche wie für die entsprechende Klasse FilterOutputStream bei den Out-
putstreams. Bild 16-7 zeigt ein Objekt einer Processingstream-Klasse, das ein Objekt
einer Springstream-Klasse benutzt. Das Objekt der Springstream-Klasse ist damit
das aggregierte Objekt. An dieses Objekt leitet das Objekt der Processingstream-
Klasse die Aufrufe weiter.

Datenquelle 01101001

:Processing-
stream-Klasse

:Springstream-
Klasse

Bild 16-7 Objekt einer Processingstream-Klasse benutzt ein Objekt einer

Springstream-Klasse

Die Processingstream-Klassen für Inputstreams sind zum großen Teil äquivalent zu
den Processingstream-Klassen für Outputstreams. Diese wurden bereits detailliert
vorgestellt. Daher wird hier nur das Wichtigste zusammengefasst:

• Die Klasse BufferedInputStream ermöglicht – mit einer äquivalenten Technik
wie die Klasse BufferedOutputStream – das gepufferte und damit effizientere
Lesen aus einem Eingabestrom.

• Ein Objekt der Klasse DataInputStream kann alle primitiven Java-Datentypen
aus einem Eingabestrom lesen.

• Die Klasse PushbackInputStream stellt Methoden zur Verfügung, mit denen es
möglich ist, Bytes in den Eingabestrom zurückzustellen.

• Die Klasse SequenceInputStream dient zum Verketten von mehreren Eingabe-
strömen. Damit können mehrere Eingabeströme hintereinander gehängt werden
und es kann gelesen werden, als wenn nur ein einziger Eingabestrom vorhanden
wäre.

594 Kapitel 16

• Die Klasse ObjectInputStream ist eine Processingstream-Klasse, die es er-
möglicht, Objekte aus einem Eingabestrom zu lesen. Darauf wird in Kapitel 16.7
genauer eingegangen.

16.4.3 Bytes in Datei schreiben und aus Datei lesen

Im Folgenden soll ein einfaches Beispiel zur Ein- und Ausgabe von einzelnen Bytes
betrachtet werden. Zuerst werden mit Hilfe eines Objektes der Klasse FileOutput-
Stream 10 Bytes in die Datei Bytes.txt geschrieben. Danach werden diese 10
Bytes mit Hilfe eines Objektes der Klasse FileInputStream wieder eingelesen
und zur Kontrolle ausgegeben.

// Datei: EinUndAusgabeVonEinzelnenBytes.java

import java.io.*;

public class EinUndAusgabeVonEinzelnenBytes
{
 public static void main (String[] args) throws IOException
 {
 FileOutputStream fos =
 new FileOutputStream ("Bytes.txt");

 for (int i = 0; i < 10; i++)
 {
 fos.write (i);
 }
 fos.close(); // Schließen des Streams

 FileInputStream fis =
 new FileInputStream ("Bytes.txt");

 for (int i = 0; i < 10; i++)
 {
 System.out.print (fis.read());
 System.out.print (" ");
 }
 fis.close(); // Schließen des Streams
 }
}

Die Ausgabe des Programms ist:

0 1 2 3 4 5 6 7 8 9

Um die Verwendung der Processingstream-Klassen zu verdeutlichen, soll im folgen-
den Beispiel die Klasse BufferedOutputStream verwendet werden. Diese Klasse
erweitert ein Objekt der Klasse FileOutputStream um die Fähigkeit, Daten zu
puffern, bevor diese in die Datei geschrieben werden.

Ein-/Ausgabe und Streams 595

// Datei: GepufferteEinUndAusgabeVonEinzelnenBytes.java

import java.io.*;

public class GepufferteEinUndAusgabeVonEinzelnenBytes
{
 public static void main (String[] args) throws IOException
 {
 FileOutputStream fos = new FileOutputStream ("Bytes.txt");
 BufferedOutputStream bos = new BufferedOutputStream (fos, 5);

 for (int i = 0; i < 10; i++)
 {
 bos.write (i);
 }

 dateiInhaltLesen();
 bos.flush();
 bos.close();
 dateiInhaltLesen();
 }

 private static void dateiInhaltLesen() throws IOException
 {
 FileInputStream fis = new FileInputStream ("Bytes.txt");
 System.out.println();
 int b;

 for (int i = 0; i < 10; i++)
 {
 b = fis.read();

 if (b == -1)
 break;

 System.out.print (b);
 System.out.print (" ");
 }
 fis.close();
 }
}

Die Ausgabe des Programms ist:

0 1 2 3 4
0 1 2 3 4 5 6 7 8 9

In diesem Beispiel werden zuerst 10 Bytes in einen gepufferten Stream geschrieben.
Die Puffergröße wurde beim Aufruf des Konstruktors auf 5 Bytes festgelegt. D. h. der
Inhalt des Puffers wird in die Datei geschrieben, sobald dieser voll ist und ein weite-
res Byte in den Puffer geschrieben werden soll. Nach dem Schreiben der 10 Bytes
wird der Inhalt der Datei ausgegeben, ohne dass der Puffer des Objektes der Klasse
BufferedOutputStream explizit geleert wurde. Es ist zu erwarten, dass zu diesem
Zeitpunkt nur die Bytes 0 bis 4 aus der Datei gelesen werden können, da sich die

596 Kapitel 16

restlichen 5 Bytes noch im Ausgabepuffer befinden und noch gar nicht in der Datei
angekommen sind. Die Ausgabe des Programms bestätigt dies. Nach dem Leeren
des Puffers und dem Schließen des Streams können alle 10 Bytes aus der Datei
gelesen werden.

16.4.4 Byte-Arrays in Dateien schreiben und aus Dateien lesen

Das Schreiben in Dateien und Lesen von byte-Arrays aus Dateien funktioniert im
Prinzip genau gleich wie das Schreiben und Lesen einzelner Bytes. Das folgende
Beispiel veranschaulicht dies:

// Datei: EinUndAusgabeVonByteArrays.java

import java.io.*;

public class EinUndAusgabeVonByteArrays
{
 public static void main (String[] args) throws IOException
 {
 byte[] b = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 byte[] c = new byte [10];

 FileOutputStream fos = new FileOutputStream ("Bytes.txt");
 fos.write (b);
 fos.close();

 FileInputStream fis = new FileInputStream ("Bytes.txt");
 fis.read (c);
 fis.close();

 for (int i = 0; i < 10; i++)
 {
 System.out.print (c [i]);
 System.out.print (" ");
 }
 }
}

Die Ausgabe des Programms ist:

0 1 2 3 4 5 6 7 8 9

Da die Ein- und Ausgabe von byte-Arrays grundsätzlich schneller ist als die Aus-
gabe von einzelnen Bytes, ist es zu empfehlen, wann immer möglich byte-Arrays
anstatt einzelner Bytes zu lesen oder zu schreiben.

16.4.5 Datei-Ein-und -Ausgabe elementarer Datentypen

Bei der Ein- und Ausgabe elementarer Datentypen wie z. B. short, int, float und
double gibt es einiges zu beachten. Da die Ein- und Ausgabe bei Dateien auf der
untersten Ebene nur mit einzelnen Bytes arbeitet, muss bei der Ein- und Ausgabe

Ein-/Ausgabe und Streams 597

von Datentypen, die aus mehreren Bytes bestehen, die Reihenfolge der Bytes
beachtet werden.

Dieser Sachverhalt soll an folgendem Beispiel veranschaulicht werden: Es soll eine
einfache Folge von Bytes, z. B. ein byte-Array mit den vier Bytes 5A, 42, F7 und 1C
in eine Datei geschrieben werden. Dabei gibt es in Bezug auf die Byte-Reihenfolge
nichts weiter zu beachten. Da die Bytes in diesem Fall nicht Teile von Datentypen
sind, die aus mehreren Bytes bestehen, sind sie voneinander unabhängig. Das heißt,
es kann einfach Byte für Byte in die Datei geschrieben werden. Also erst 5A, dann
42, dann F7 und zuletzt 1C.

Wird nun ein int-Wert in die Datei geschrieben, muss man sich auf eine bestimmte
Byte-Reihenfolge einigen. Der int-Wert 447 362 175 besteht beispielsweise aus
den vier Bytes 1A, AA, 34 und 7F. Wird dieser int-Wert nun in eine Datei geschrie-
ben, so kann dies auf zwei grundsätzlich unterschiedliche Arten geschehen:

• Eine Möglichkeit ist, das höherwertigste Byte – also 1A – zuerst zu schreiben,
dann die Bytes AA, 34 und 7F. Diese Reihenfolge wird "Big-Endian" genannt. Java
verwendet ausschließlich diese Byte-Reihenfolge zur Speicherung von Daten im
Hauptspeicher sowie beim Schreiben von Daten in einen Stream.

• Die zweite Möglichkeit ist, das niederwertigste Byte – hier 7F – zuerst zu schrei-
ben und dann die Bytes 34, AA und 1A. Diese Reihenfolge wird "Little-Endian"
genannt. Werden Daten z. B. von einem C-Programm auf einem Rechner mit
Intel-Prozessor in eine Datei geschrieben, so geschieht dies in der "Little-Endian"-
Byte-Reihenfolge.

Adresse A+1

Adresse A

Little-Endian Big-Endian

1A

AA

34

7F

7F

34

AA

1A

Adresse A+2

Adresse A+3

Bild 16-8 Byte-Reihenfolge für Little-Endian und Big-Endian

In Java wird immer die "Big-Endian"-Byte-Reihenfolge verwendet.

Die beiden Klassen DataOutputStream und DataInputStream werden zur Ein-
und Ausgabe elementarer Datentypen benutzt. Sie können auch zur Ein- und Aus-
gabe von Zeichen verwendet werden. Dies ist jedoch nicht zu empfehlen, da diese
Klassen Unicode-Zeichen nicht korrekt verarbeiten. Das folgende Beispiel zeigt, wie
elementare Datentypen in eine Datei geschrieben werden können und aus dieser
auch wieder ausgelesen werden können:

598 Kapitel 16

// Datei: EinUndAusgabeVonDatenPrimitiverTypen.java

import java.io.*;

public class EinUndAusgabeVonDatenPrimitiverTypen
{
 public static void main (String[] args) throws IOException
 {
 FileOutputStream fos = new FileOutputStream ("Daten.txt");
 DataOutputStream dos = new DataOutputStream (fos);
 dos.writeInt (1);
 dos.writeDouble (1.1);
 dos.writeInt (2);
 dos.close();

 FileInputStream fis = new FileInputStream ("Daten.txt");
 DataInputStream dis = new DataInputStream (fis);

 System.out.println (dis.readInt());
 System.out.println (dis.readDouble());
 System.out.println (dis.readInt());
 dis.close();
 }
}

Die Ausgabe des Programms ist:

1
1.1
2

Die im Beispiel generierte Textdatei Daten.txt enthält die geschriebene Infor-
mation als Bytes. Der int-Wert wird zum Beispiel mit 4 Bytes codiert in die Datei
geschrieben. Hierbei spielt es keine Rolle, dass der Wert 1 auch in einem Byte
codiert werden könnte. Das folgende Bild zeigt die beteiligten Stream-Klassen aus
dem Beispielprogramm:

Eingabestrom

Ausgabestrom

01101001

dos:Data-
OutputStream

fos:FileOutput
Stream

dis:Data
InputStream

fis:FileInput
Stream

Daten.txt

01101001

Bild 16-9 Schreiben und Lesen elementarer Datentypen mit Hilfe der Processing-

stream-Klassen DataInputStream und DataOutputStream

Ein-/Ausgabe und Streams 599

16.5 Characterstream-Klassen

Characterstream-Klassen arbeiten mit Zeichen statt nur mit einzelnen Bytes. Da auf
externe Datensenken und Datenquellen – wie oben erwähnt – nur byteweise gear-
beitet werden kann, sind grundsätzlich Bytestreams nötig, um mit externen Da-
tensenken und Datenquellen zu kommunizieren. Aus diesem Grund gibt es auch
keine Characterstream-Klassen, die direkt mit externen Datensenken/-quellen arbei-
ten. Sollen Zeichen in eine externe Datensenke – z. B. eine Datei – geschrieben
oder umgekehrt aus dieser gelesen werden, so müssen so genannte Bridge-Klas-
sen verwendet werden.

Bridge-Klassen können Bytes in Zeichen wandeln und umgekehrt.

Auf die genaue Funktionsweise und die damit zusammenhängende Problematik wird
in Kapitel 16.5.3 genauer eingegangen.

Interne Datensenken und -quellen befinden sich komplett innerhalb eines Java-
Programms und stellen letztendlich char-Arrays dar. Da innerhalb eines Java-Pro-
gramms alles im Unicode-Format verarbeitet wird, muss keine Umsetzung von
Bytes in Zeichen und umgekehrt stattfinden. Die Characterstream-Klassen bieten im
Wesentlichen die gleiche Funktionalität wie die Bytestream-Klassen. Der Unterschied
ist, dass Characterstream-Klassen Zeichen, die aus zwei Bytes bestehen, korrekt
verarbeiten können.

16.5.1 Writer-Klassen

Bild 16-4 zeigt einen Ausschnitt der Klassenhierarchie der Character-Outputstream-
Klassen. Die hier dargestellten Processingstream-Klassen und Sinkstream-Klassen
sind von der abstrakten Klasse Writer abgeleitet. Die grau hinterlegten Klassen
sind die Sinkstream-Klassen und die Klassen BufferedWriter, FilterWriter
und PrintWriter sind die Processingstream-Klassen. Die Klasse Output-
StreamWriter ist eine so genannte Bridge-Klasse (siehe Kap. 16.5.3) und die
Klasse FileWriter eine so genannte Bequemlichkeitsklasse (siehe Kap. 16.5.4).

Piped
Writer

Writer
{abstract}

Buffered
Writer

CharArray
Writer

Filter
Writer

{abstract}

Print
Writer

String
Writer

File
Writer

Output
Stream
Writer

Bild 16-10 Ausschnitt aus der Klassenhierarchie der Character-Outputstream-Klassen

600 Kapitel 16

16.5.1.1 Die Basisklasse Writer

Die abstrakte Klasse Writer deklariert folgende Methoden:

• void write (int c)
• void write (char[] c)
• abstract void write (char[] c, int off, int len)
• void write (String s)
• void write (String s, int off, int len)
• abstract void flush()
• abstract void close()

Wie bei den Bytestreams gibt es auch hier drei grundlegende Ausgabemethoden.
Eine Methode für die Ausgabe eines einzelnen Zeichens und zwei weitere für die
Ausgabe eines Zeichen-Arrays. Ein Unterschied ist aber, dass die Methode zur Aus-
gabe von Zeichen-Arrays abstrakt ist und nicht diejenige für die Ausgabe einzelner
Zeichen, wie es bei den Bytestreams der Fall war. Das Schreiben eines Zeichen-
Arrays muss folglich von den Subklassen von Writer implementiert werden. Die
Ausgabe eines einzelnen Zeichens ist dagegen in der Klasse Writer implementiert.
Alle nicht abstrakten write()-Methoden der Klasse Writer benutzen wiederum
gerade die von den Subklassen zu implementierende abstrakte write()-Methode
für char-Arrays, um Zeichen zu schreiben. Die Methode write (int c) arbeitet
intern beispielsweise folgendermaßen:

public void write (int c) throws IOException
{
 //
 // writeBuffer ist ein char[]-Array
 writeBuffer [0] = (char) c;
 // Ab der Position 0 im char[]-Array 1 Element schreiben
 write (writeBuffer, 0, 1);
}

Weiterhin werden noch zwei Schreibmethoden zum Schreiben von String-Objekten
zur Verfügung gestellt. Die abstrakte Methode flush() wird bei puffernden Streams
zum Schreiben der im Puffer befindlichen Daten in die Datensenke verwendet und
die abstrakte Methode close() schließt einen Ausgabestrom. Die Methoden
flush() und close() sind abstrakt und müssen von den Sinkstream-Klassen
implementiert werden.

16.5.1.2 Sinkstream-Klassen

Als Sinkstream-Klassen für Characterstreams existieren die Klassen CharArray-
Writer, PipedWriter und StringWriter. Dabei benutzt ein Objekt der Klasse
CharArrayWriter ein char-Array als Datensenke und ein Objekt der Klasse
StringWriter ein String-Objekt als Datensenke. Ein Objekt der Klasse Piped-
Writer funktioniert gleich wie ein Objekt der äquivalenten Klasse PipedOutput-
Stream bei den Bytestreams mit dem Unterschied, dass als Datensenke kein byte-
Array, sondern ein char-Array verwendet wird.

Ein-/Ausgabe und Streams 601

16.5.1.3 Processingstream-Klassen

Alle Processingstream-Klassen für Character-Outputstreams aggre-
gieren ein Objekt vom Typ Writer. Deshalb verlangen alle Konstruk-
toren der Processingstream-Klassen als ersten Parameter eine Refe-
renz auf ein Objekt vom Typ Writer.

Im Bild 16-10 fällt auf, dass die Klasse FilterWriter abstrakt ist und im Gegen-
satz zu ihrem Äquivalent FilterOutputStream keine Subklassen hat. Eine solche
"Umorganisation" der Stream-Klassen ist bei den Characterstreams im Vergleich zu
den Bytestreams leider vorzufinden und trägt nicht gerade zur Übersichtlichkeit des
Pakets java.io bei.

Die Klasse FilterWriter kann dazu benutzt werden, Filter-Klassen durch Ablei-
tung selbst zu schreiben. Die Processingstream-Klasse BufferedWriter ist eine
Subklasse von Writer. BufferedWriter und PrintWriter funktionieren analog
zu den Bytestream-Klassen BufferedOutputStream und PrintStream.

16.5.2 Reader-Klassen

Bild 16-11 zeigt einen Ausschnitt der Klassenhierarchie der Character-Inputstream-
Klassen. Die gemeinsame Basisklasse ist die abstrakte Klasse Reader. Die grau
hinterlegten Klassen sind die Springstream-Klassen und die Klassen Buffered-
Reader, LineNumberReader, FilterReader und PushbackReader sind Pro-
cessingstream-Klassen. Die Klasse InputStreamReader ist eine Bridge-Klasse
(siehe Kap. 16.5.3) und die Klasse FileReader ist eine Bequemlichkeits-Klasse
(siehe Kap. 16.5.4).

File
Reader

Piped
Reader

Reader
{abstract}

Buffered
Reader

CharArray
Reader

Filter
Reader

{abstract}

String
Reader

Pushback
Reader

Input
Stream
Reader

Line
Number
Reader

Bild 16-11 Ausschnitt aus der Klassenhierarchie der Character-Inputstream-Klassen

16.5.2.1 Die Basisklasse Reader

Die abstrakte Klasse Reader deklariert folgende Methoden:

• int read()
• int read (char[] c)

602 Kapitel 16

• abstract int read (char[] c, int off, int len)
• boolean ready()
• long skip (long n)
• boolean markSupported()
• void mark (int readAheadLimit)
• void reset()
• abstract void close()

Es existieren drei read()-Methoden zum Lesen eines Zeichens und zum Lesen von
char-Arrays. Dabei ist auch wieder die Methode zum Lesen eines Zeichenarrays
abstrakt und muss von den Subklassen der Klasse Reader (siehe Bild 16-11)
implementiert werden.

Die Methode ready() kann mit der Methode available() der Klasse Input-
Stream verglichen werden. Allerdings lässt sich mit ready() nur ermitteln, ob
Zeichen zum Lesen bereitstehen, aber nicht wie viele. Die Methoden skip(), mark-
Supported(), mark(), reset() und close() haben dieselbe Bedeutung wie bei
der Klasse InputStream.

16.5.2.2 Springstream-Klassen

Als Springstream-Klasse bei den Character-Inputstreams ist die Klasse Char-
ArrayReader zum Lesen von Zeichen aus einem char-Array, die Klasse Piped-
Reader zum Lesen von Zeichen aus einer Pipe und die Klasse StringReader zum
Lesen von Zeichen aus einem String-Objekt zu nennen.

16.5.2.3 Processingstream-Klassen

Als Processingstream-Klasse bei den Character-Inputstreams ist die Klasse
BufferedReader zum gepufferten Lesen von Zeichen, die Klasse FilterReader
(abstrakte Klasse) zur Spezialisierung von Filter-Klassen, die Klasse LineNumber-
Reader zum zeilenweisen Lesen von Zeichen und die Klasse PushbackReader
zum Zurückstellen von Zeichen in den Eingabestrom zu nennen. Weitere Pro-
cessingstream-Klassen sind in der Java-API zu finden.

16.5.3 Bridge-Klassen

Eine Bridge-Klasse wandelt Zeichen in Bytes und umgekehrt. Bridge-Klassen
verbinden damit die Characterstream-Klassen mit den Bytestream-Klassen. Die
Umwandlung erfolgt unter Berücksichtigung eines Character Encodings. Die Bridge-
Klassen OutputStreamWriter und InputStreamReader sind direkte Subklas-
sen von Writer bzw. Reader. Diese Bridge-Klassen werden beim Einlesen von
Zeichen aus einer externen Datenquelle bzw. bei der Ausgabe von Zeichen in eine
externe Datensenke benötigt.

Sollen Zeichen in eine externe Datensenke, z. B. eine Datei, geschrieben werden, so
müssen diese zuerst in Bytes umgewandelt werden, sodass ein Objekt einer Byte-

Ein-/Ausgabe und Streams 603

stream-Klasse diese in eine externe Datensenke schreiben kann. Ebenso können
nur einzelne Bytes aus externen Datenquellen gelesen werden. Stellen diese einen
Zeichenstrom dar, müssen die einzelnen Bytes wieder in Zeichen umgewandelt wer-
den. Diese Umwandlung geschieht unter der Berücksichtigung eines Character En-
codings. Beispiele für Character-Encodings sind: ASCII, Latin-1, Big-5, UTF-8 oder
UTF-16 des Unicodes.

Wird ein Exemplar der Klasse OutputStreamWriter bzw. InputStreamReader
erzeugt, so kann man im Konstruktor ein Character Encoding angeben. Wird der
parameterlose Konstruktor verwendet, so wird das Default Encoding123 der aktuellen
Plattform verwendet.

16.5.4 Bequemlichkeits-Klassen

Die Klasse FileWriter ist keine wirkliche Sinkstream-Klasse, sondern eine Klasse,
die nur so tut, als ob sie eine wäre. Ein Objekt der Klasse FileWriter aggregiert
einfach ein Objekt der Klasse FileOutputStream, wie in Bild 16-12 zu sehen ist.
Die Klasse FileOutputStream ist dabei die eigentliche Sinkstream-Klasse.

Datei 01101001

:File-
Writer

:FileOutput
Stream

Bild 16-12 Ein Objekt der Klasse FileWriter benutzt ein Objekt der Klasse

FileOutputStream, um in eine Datei zu schreiben

Die Klasse FileWriter wird deshalb Bequemlichkeitsklasse genannt, weil sie es
dem Benutzer ermöglicht, Zeichen zu schreiben, die dann mit Hilfe der Klasse File-
OutputStream in einen Bytestrom überführt werden. Hierzu müsste man eigentlich
eine Bridge-Klasse verwenden, die Zeichen in Bytes wandelt. Die Bridge-Klasse
wiederum müsste den Bytestrom an ein Objekt der Klasse FileOutputStream
weiterleiten, um die Bytes in eine Datei zu schreiben. Der Programmierer spart sich
durch die Verwendung der Klasse FileWriter die Benutzung einer Bridge-Klasse,
verliert aber an Flexibilität, da immer ein Default-Encoding verwendet wird, um die
Zeichen zu schreiben.

16.5.5 Ein- und Ausgabe von Zeichenketten

Die folgenden Zeilen erzeugen ein Objekt vom Typ OutputStreamWriter, welches
die ihm übergebene Zeichenkette mit dem Default Encoding in die Datei Text.txt
schreibt:

FileOutputStream fos = new FileOutputStream ("Text.txt");
OutputStreamWriter osw = new OutputStreamWriter (fos);
osw.write ("Sehr geehrter Herr Mustermann");

123 Das Default-Encoding lässt sich mit dem Aufruf System.getProperty ("file.encoding")

ermitteln.

604 Kapitel 16

Soll dagegen ein anderes Character Encoding benutzt werden, so muss dieses im
Konstruktor der Klasse OutputStreamWriter angegeben werden:

OutputStreamWriter osw
 = new OutputStreamWriter (fos, "MacThai");
osw.write ("Sehr geehrter Herr Mustermann");

In diesem Fall wird die Zeichenkette "Sehr geehrter Herr Mustermann" per
"MacThai" Encoding in die Datei geschrieben. Mit "MacThai" werden thailändische
Texte auf einem Apple Computer dargestellt.

Ein OutputStreamWriter erwartet als ersten Konstruktorparameter einen Para-
meter vom Typ OutputStream. Es kann also eine Referenz auf ein Objekt überge-
ben werden, deren Klasse von OutputStream abgeleitet ist. Ein Objekt der Bridge-
Klasse OutputStreamWriter aggregiert ein Objekt vom Typ OutputStream, wie
z. B. ein Objekt vom Typ FileOutputStream:

Datei 01101001

:OutputStream
Writer

:FileOutput
Stream

Bild 16-13 Ein Objekt der Bridge-Klasse OutputStreamWriter aggregiert

ein Objekt der Klasse FileOutputStream

Zur Ausgabe der Zeichenkette im Unicode-Format in der "Little-Endian"-Byte-Reihen-
folge können folgende Anweisungen verwendet werden:

FileOutputStream fos = new FileOutputStream ("Text.txt");
OutputStreamWriter osw
 = new OutputStreamWriter (fos, "UnicodeLittle");
osw.write ("Sehr geehrter Herr Mustermann");

Das folgende Beispielprogramm schreibt die Zeichenkette "Gelb" mit unterschied-
lichen Encodings in Dateien. In die Datei TextUnicodeBig.txt wird in der "Big-
Endian"-Byte-Reihenfolge geschrieben und in die Datei TextUnicodeLittle.txt
wird in der "Little-Endian"-Byte-Reihenfolge geschrieben. Anschließend wird der In-
halt der beiden Dateien byteweise ausgelesen und ausgegeben, um die unterschied-
lichen Encodings sichtbar zu machen.

// Datei: AusgabeVonZeichenketten.java

import java.io.*;

public class AusgabeVonZeichenketten
{
 public static void main (String[] args) throws IOException
 {
 String s = "Gelb";
 FileOutputStream fos;
 OutputStreamWriter osw;

Ein-/Ausgabe und Streams 605

 fos = new FileOutputStream ("TextUnicodeBig.txt");
 osw = new OutputStreamWriter (fos, "UnicodeBig");
 osw.write (s);
 osw.close();

 fos = new FileOutputStream ("TextUnicodeLittle.txt");
 osw = new OutputStreamWriter (fos, "UnicodeLittle");
 osw.write (s);
 osw.close();

 dateiInhaltLesen ("TextUnicodeBig.txt");
 dateiInhaltLesen ("TextUnicodeLittle.txt");
 }

 private static void dateiInhaltLesen (String d)
 throws IOException
 {
 FileInputStream fis = new FileInputStream (d);
 System.out.println();
 int b = 0;

 while (true)
 {
 b = fis.read();

 if (b == -1)
 break;
 System.out.print (b);
 System.out.print (" ");
 }
 fis.close();
 }
}

Die Ausgabe des Programms ist:

254 255 0 71 0 101 0 108 0 98
255 254 71 0 101 0 108 0 98 0

Um beim Einlesen von Unicode-Zeichen zwischen den beiden Byte-Reihenfolgen
"Little-Endian" und "Big-Endian" unterscheiden zu können, werden die Bytes FE
(254) und FF (255) als erste zwei Bytes in eine Datei geschrieben. Wird beim Ein-
lesen zuerst das Byte FE (254) und dann FF (255) gelesen, so werden die nach-
folgenden Bytes entsprechend der "Big-Endian"-Byte-Reihenfolge interpretiert – wird
erst FF (255) und dann FE (254) gelesen, so werden die nachfolgenden Zeichen ent-
sprechend der "Little-Endian"-Byte-Reihenfolge interpretiert. Die Ausgabe des Pro-
gramms zeigt in der ersten Zeile die Zeichenkette "Gelb", codiert im "Big-Endian"
Unicode-Format. Die zweite Zeile repräsentiert die Zeichenkette "Gelb" im "Little-
Endian" Unicode-Format. Die Zeichenkette "Gelb" entspricht den vier ASCII-Werten
71, 101, 108 und 98.

606 Kapitel 16

16.6 Standardeingabe und Standardausgabe

Die Standardeingabe bzw. die Standardausgabe verwenden beide einen Bytestream,
um Daten auf dem Bildschirm auszugeben bzw. um Daten von der Tastatur ein-
zulesen. Die Standardausgabe verwendet ein Objekt vom Typ PrintStream und
die Standardeingabe verwendet ein Objekt vom Typ InputStream. Über die Refe-
renz out können alle Methoden, welche die Klasse PrintStream zur Verfügung
stellt, aufgerufen werden – genauso können über die Referenz in alle Methoden,
welche die Klasse InputStream zur Verfügung stellt, aufgerufen werden. Die
Referenzen out und in sind dabei Klassenvariablen der Klasse System (siehe
Anhang C).

Die Klasse PrintStream implementiert insbesondere Methoden zur
Textausgabe. Hierzu benutzt sie überladene Varianten der Methoden
print() und println(). So gibt es die Methoden print() und
println() z. B. mit einem Übergabeparameter vom Typ int, long,
float, double, String oder sogar Object.

Dabei werden alle Daten in deren Stringrepräsentation ausgegeben. Das heißt, wenn
ein int-Wert 2 ausgegeben wird, werden nicht die vier Bytes 00 00 00 02 ausge-
geben, sondern das Zeichen '2'.

Wird der Methode print() bzw. println() eine Referenz als Über-
gabeparameter übergeben, so wird der String ausgegeben, den die
toString()-Methode des referenzierten Objektes zurückgibt oder
der String "null", wenn die Referenz die null-Referenz ist.

Die Methoden der Klasse InputStream, die mit der Referenz in der Klasse Sys-
tem zum Einlesen von der Tastatur benutzt werden können, sind ausführlich in
Kapitel 16.4.2.1 erläutert.

16.6.1 Formatierte Ausgabe

In Kapitel 4.8 wurde bereits die Methode printf() der Klasse System vorgestellt.
Die Methode printf() ermöglicht eine formatierte Ausgabe auf dem Bildschirm.
Diese Art der formatierten Ausgabe wird auch durch die Methode format() der
Klasse java.lang.Formatter und durch die Methode format() der Klasse
String bereitgestellt.

Die im Formatstring angegebenen Formatelemente von printf() folgen einem all-
gemeinen Aufbau. Elemente in eckigen Klammern [] sind dabei optional:

%[Parameterindex$][Steuerzeichen][Feldbreite][.Genauigkeit]Umwandlungszeichen

Im einfachsten Fall ist einem auszugebenden Parameter genau ein Formatelement
zugeordnet, wobei die Reihenfolge der Formatelemente identisch zur Reihenfolge
der Parameter in der Parameterliste ist. Mit Hilfe des Parameterindex kann die Aus-

Ein-/Ausgabe und Streams 607

gabereihenfolge der Parameter von der Reihenfolge der Parameter in der Parame-
terliste abweichen, wie in den folgenden Beispielen gezeigt wird:

// Ausgabe entsprechend der Reihenfolge der Parameter.
System.out.printf ("%d %d %n", 3, 4);

// Erst wird der zweite Parameter ausgegeben, dann der erste.
System.out.printf ("%2$d %1$d %n", 3, 4);

// Es wird zweimal der zweite Parameter ausgegeben. Der erste Para-
// meter wird nicht ausgegeben.
System.out.printf ("%2$d %2$d %n", 3, 4);

Die Ausgabe dieses Programmausschnitts ist:

3 4
4 3
4 4

Steuerzeichen (auch flags genannt) sind zusätzliche Formatangaben, mit denen die
formatierte Ausgabe erweitert werden kann. Beispielsweise kann mit '-' die Aus-
richtung der Ausgabe linksbündig erfolgen oder bei der Formatierung von Zahlen mit
dem Steuerzeichen '+' stets das Vorzeichen mit ausgegeben werden.

Durch die Angabe der Feldbreite kann die minimale Anzahl auszugebender Zeichen
festgelegt werden. Wird für den Wert des Parameters weniger Platz benötigt, so
werden Leerzeichen vorangestellt. Das Feld für die Genauigkeit legt in der Regel die
Breite der Ausgabe, d. h. die maximale Anzahl an Zeichen für die Ausgabe des Para-
meters, fest. Wird für den Wert des Parameters mehr Platz benötigt, so werden in
der Ausgabe die Zeichen abgeschnitten, welche die maximale Anzahl übersteigen.
Bei Gleitkommazahlen bezieht sich die Genauigkeit auf die Anzahl der Stellen hinter
dem Komma. Die Umwandlungszeichen bestimmen das eigentliche Format der
Ausgabe und sind vom Typ des Parameters abhängig. Es werden Parameter aller
numerischen Typen wie int, byte, long, Integer, Double, Float, usw. unter-
stützt, sowie verschiedene Bibliotheksklassen wie Calendar und Date. Zudem gibt
es Umwandlungszeichen, die generell auf Datentypen angewendet werden können.
Dies sind z. B. 's' oder 'S' welche die Methode toString() des angegebenen
Parameters benutzen.

Bei Formatelementen für die Ausgabe von Datum und Zeit entfällt die Option Genau-
igkeit, allerdings benötigen sie für alle Umwandlungszeichen das Präfix 't' (klein
geschrieben) oder 'T' (groß geschrieben). Das groß geschriebene T bewirkt dabei
die Ausgabe in Großbuchstaben. Hier ein Beispiel für das Umwandlungszeichen bei
der Datumsformatierung:

// Ein Calendar-Objekt mit dem Datum 31.12.2009 anlegen
Calendar calendar = new GregorianCalendar(2009, 11, 31);

// Den Monat in normaler Schreibweise ausgeben
System.out.printf("%tB %n", calendar);

// Den Monat in Großbuchstaben ausgeben
System.out.printf("%TB %n", calendar);

608 Kapitel 16

Die Ausgabe dieses Programmausschnitts ist:

Dezember
DEZEMBER

Die nachfolgende Tabelle enthält die wichtigsten Umwandlungszeichen:

Umwand-
lungs-
zeichen

Typ des Parameters Ausgabe

c,C Zeichen Ein einzelnes Zeichen (auch aus einer Zahl)
s,S Generell Darstellung als Zeichenkette
d Ganzzahl Dezimale Darstellung
o Ganzzahl Oktale Darstellung (zur Basis 8)
x,X Ganzzahl Hexadezimale Darstellung (zur Basis 16)
f Gleitkommazahl Dezimale Darstellung
e,E Gleitkommazahl Darstellung als Exponentialzahl
t,T Datum/Zeit Präfix für alle Datum- und Zeitausgaben
H Zeit Stunden der 24 Stunden Uhr: 00 - 24
I Zeit Stunden der 12 Stunden Uhr: 01 - 12
M Zeit Minuten: 00 - 59
S Zeit Sekunden: 00 - 59
B Datum Monatsname "Januar", "Februar", etc.
b Datum Monatsname abgekürzt zu "Jan", "Feb", etc.
Y Datum Jahreszahl im vierstelligem Format wie z. B. "2005"
n - Zeilenumbruch

Tabelle 16-1 Die wichtigsten Umwandlungszeichen für printf() und format()

Die Umwandlungszeichen, die auch in Großbuchstaben angeben werden können,
bewirken, dass die jeweilige Ausgabe in Großbuchstaben umgewandelt wird. Für
eine ausführliche Aufstellung aller unterstützten Formatelemente wird auf die Doku-
mentation der Java-API für die Klasse java.util.Formatter verwiesen.

16.6.2 Die Methode format()

Mit Hilfe der Methode format() der Klasse String kann eine formatierte Ausgabe
in eine Stringvariable erfolgen. Die Formatelemente von format() stimmen mit den-
jenigen von printf() überein und sind auszugsweise in Tabelle 16-1 dargestellt.

Im Folgenden wird gezeigt, wie mit der Methode format() eine Stringvariable
konstruiert wird:

// Das aktuelle Datum wird mit der Klasse Calendar bestimmt
Calendar calendar = Calendar.getInstance();

// Mit dem Parameterindex 1$ wird auf denselben Parameter
// mehrfach zugegriffen. Hier wird der aktuelle Tag, der Monat
// und das Jahr aus dem Objekt calendar hintereinander in
// einen String geschrieben.
String s = String.format ("%1$td %1$tB %1$tY", calendar);

Ein-/Ausgabe und Streams 609

Das folgende Programm zeigt die Anwendung von format() und printf():

// Datei: FormatTest.java

import java.util.Calendar;

public class FormatTest
{
 // Klassenmethode zur formatierten Ausgabe von Datum und Zeit
 public static void main (String[] args)
 {
 // Das aktuelle Datum wird mit Hilfe der Klasse Calendar
 // bestimmt.
 Calendar calendar = Calendar.getInstance();

 // Mit dem Parameterindex 1$ wird auf denselben Parameter
 // mehrfach zugegriffen.
 String datum = String.format ("%1$td %1$tB %1$tY", calendar);
 String zeit = String.format ("Uhrzeit: %1$tH:%1tM", calendar);

 // Die Reihenfolge der Parameter kann durch die
 // Parameterindices verändert werden. Hier wird an erster
 // Stelle das Datum ausgegeben.
 System.out.printf ("Heute ist der %2$s %n%1$s", zeit, datum);
 }
}

Die Ausgabe des Programms ist:

Heute ist der 26 Januar 2005
Uhrzeit: 10:49

16.7 Ein- und Ausgabe von Objekten

In Java kann man nicht nur Werte elementarer Datentypen in eine Datensenke
schreiben und aus einer Datenquelle lesen, sondern ganze Objekte. Werden die
Werte der Datenfelder eines Objektes in einen Bytestrom überführt, der sich
wieder rekonstruieren lässt, so spricht man von Objektserialisierung. Dieser Me-
chanismus wird im folgenden Kapitel erläutert.

16.7.1 Objektserialisierung

Mittels der Objektserialisierung können Objekte genauso wie elementare Datentypen
in einen Bytestrom geschrieben werden. Ebenso ist es möglich, aus einem Byte-
strom, der aus einer Datenquelle kommt, die Datenfelder eines Objektes wieder ein-
zulesen.

610 Kapitel 16

Für die Überführung der Datenfelder eines Objektes in einen Byte-
strom ist die Klasse ObjectOutputStream zuständig. Für die Re-
konstruktion der Datenfelder eines Objektes beim Lesen aus einem
Bytestrom, der aus einer Datenquelle kommt, ist die Klasse Object-
InputStream zuständig.

Datei

Objekt fließt als Bytestrom
in die Datensenke

:Person

name = "Heinz"
vorname = "Fritz"
alter = 10

i ... H e n z ... F r i ...

Bild 16-14 Serialisierung eines Objektes

Die Klasse ObjectOutputStream stellt Schreibmethoden für alle elementaren Da-
tentypen zur Verfügung. Beispielsweise die Methode writeDouble(), die einen
double-Wert in den Ausgabestrom schreibt, oder die Methode writeInt(), die
einen int-Wert in den Ausgabestrom schreibt. Außer den Schreibmethoden für die
elementaren Datentypen existiert auch eine Methode writeObject(), die eine
Referenz auf ein Objekt als Parameter übergeben bekommt und die Datenfelder
dieses Objektes in den Ausgabestrom schreibt:

public writeObject (Object data) throws IOException

Entsprechend existieren in der Klasse ObjectInputStream Lesemethoden für
elementare Datentypen und die Methode readObject(), um die Datenfelder eines
Objektes aus einem Bytestrom auszulesen:

public final Object readObject() throws OptionalDataException,
 ClassNotFoundException,
 IOException

Wird die Methode writeObject() aufgerufen, so wird das Objekt, auf das die
übergebene Referenz zeigt, daraufhin überprüft, ob dessen Klasse die Schnittstelle
Serializable implementiert. Die Schnittstelle Serializable kennzeichnet ein
Objekt als serialisierbar. Implementiert die Klasse des zu serialisierenden Objektes
die Schnittstelle Serializable nicht, so wird eine Exception vom Typ NotSe-
rializableException geworfen.

Die Schnittstelle Serializable dient als Kennzeichnung, dass
ein Objekt einer Klasse serialisierbar ist. Die Schnittstelle selbst de-
klariert keine Methoden.

Das folgende Beispiel zeigt, wie die Datenfelder eines Objektes in eine Datei ge-
schrieben und wieder eingelesen werden.

Ein-/Ausgabe und Streams 611

// Datei: Serial.java
import java.io.*;

class Person implements Serializable
{
 private String name;
 private String vorname;
 private int alter;

 public Person (String name, String vorname, int alter)
 {
 this.name = name;
 this.vorname = vorname;
 this.alter = alter;
 }

 public void print()
 {
 System.out.println ("Name: " + name);
 System.out.println ("Vorname: " + vorname);
 System.out.println ("Alter: " + alter);
 }
}

public class Serial
{
 public static void main (String[] args) throws Exception
 {
 // Datei text.txt zum Schreiben öffnen.
 ObjectOutputStream out =
 new ObjectOutputStream (new FileOutputStream ("text.txt"));
 Person pers1 = new Person ("Weiss", "Renate", 12);
 Person pers2 = new Person ("Maier", "Anja", 13);

 // Ein paar primitive Datentypen in die Datei schreiben.
 out.writeInt (1);
 out.writeDouble (1.2);
 // Objekte pers1 und pers2 in die Datei schreiben.
 out.writeObject (pers1);
 out.writeObject (pers2);
 out.close();

 // Datei text.txt zum Lesen öffnen.
 ObjectInputStream in =
 new ObjectInputStream (new FileInputStream ("text.txt"));

 // Datentypen wieder einlesen und ausgeben.
 System.out.println (in.readInt());
 System.out.println (in.readDouble());
 // Die Methode readObject() gibt eine Referenz vom Typ Object
 // zurück. Es muss ein expliziter Cast erfolgen, damit die
 // Methode print() der Klasse Person aufgerufen werden kann.
 ((Person) in.readObject()).print();
 ((Person) in.readObject()).print();
 in.close();
 }
}

612 Kapitel 16

Die Ausgabe des Programms ist:

1
1.2
Name: Weiss
Vorname: Renate
Alter: 12
Name: Maier
Vorname: Anja
Alter: 13

Das Ganze funktioniert problemlos – und dazu muss recht wenig Aufwand betrieben
werden. Es darf lediglich nicht vergessen werden, dass die Klasse der zu seriali-
sierenden Objekte die Schnittstelle Serializable implementieren muss. Wobei
dies, da Serializable keine Methoden deklariert, nur in der Klassendeklaration
mit implements Serializable angegeben werden muss. Wird die Angabe im-
plements Serializable im Beispiel bei der Klasse Person weggelassen, so
wird beim Ausführen des Programms folgende Meldung ausgegeben:

java.io.NotSerializableException: Person

Bei der Serialisierung eines Objektes laufen folgende Schritte ab:

• Überprüfen, ob das zu serialisierende Objekt die Schnittstelle Serializable
implementiert. Ist das nicht der Fall, wird eine Exception vom Typ NotSe-
rializableException geworfen.

• Ein eindeutiger Identifikator der Klasse wird codiert in den Bytestrom geschrieben.

• Die Instanzvariablen werden der Reihe nach durch die entsprechende Methode
der Klasse ObjectOutputStream in den Ausgabestrom geschrieben. Ist ein Da-
tenfeld wiederum eine Referenz, so setzt sich dieser Mechanismus rekursiv beim
ersten Schritt fort.

Bei der Rekonstruktion eines Objektes aus einem Eingabestrom werden folgende
Schritte durchlaufen:

• Rekonstruktion der Klasse des Objektes.

• Laden der Klasse, wenn diese noch nicht in der virtuellen Maschine vorhanden ist.
Kann die Klasse vom Klassenlader nicht gefunden werden, wird eine Exception
vom Typ ClassNotFoundException geworfen. Für das zu rekonstruierende
Objekt wird Speicher angelegt und die Instanzvariablen werden mit den Default-
Werten belegt.

• Es werden alle Instanzvariablen der Reihe nach mit der entsprechenden Methode
der Klasse ObjectInputStream eingelesen. Ist ein Datenfeld wiederum eine
Referenz, so setzt sich der Vorgang rekursiv beim ersten Schritt fort.

Ein-/Ausgabe und Streams 613

16.7.2 Strom-eindeutige Bezeichner

Zu jeder Klasse, deren Objekte (de-)serialisiert werden sollen, berechnet die JVM
einen eindeutigen Identifikator, die so genannte serialVersionUID. An Hand die-
ser ID erkennt die JVM, ob sie für das serialisierte Objekt die passende Klasse
geladen hat. Dazu vergleicht sie die ID aus dem Eingabestrom mit der ID der gela-
denen Klasse. Schlägt der Vergleich fehl, wird eine InvalidClassException ge-
worfen.

Hat man in einem verteilten System eine Klasse, welche Serializable implemen-
tiert, erst einmal verbreitet, ist man für immer an die ursprüngliche Implementierung
der Klasse gebunden. Jede Änderung und Erweiterung führt dazu, dass sich die
serialVersionUID ändert. Wird also die interne Implementierung einer Klasse
geändert, kann man mit dieser Klasse keine Objekte mehr einlesen, die mit der
Vorgängerversion dieser Klasse geschrieben wurden. Daher wird eine Nutzung der
Standardform der Serialisierung nicht empfohlen, da die physische Repräsentation
der Klasse in der serialVersionUID codiert wird.

Umgehen kann man die Problematik, in dem man die serialVersionUID für eine
Klasse selbst festlegt. Dies geht ganz einfach, indem man eine private Klassen-
variable jeder serialisierbaren Klasse hinzufügt:

private static final long serialVersionUID = zufallsLongZahl;

Welcher Wert hier eingetragen wird ist prinzipiell nicht von Bedeutung, doch sollte er
für diese Klasse eindeutig sein. Üblicherweise lässt man sich den Wert für die Klasse
durch das Programm serialver errechnen. Das Programm serialver liegt im
gleichen Verzeichnis wie der Compiler javac und der Interpreter java. Der Zugriffs-
modifikator sollte immer private sein, da abgeleitete Klassen nicht dieselbe se-
rialVersionUID haben dürfen. Das heißt, in jeder Subklasse ist eine neue ein-
deutige serialVersionUID festzulegen.

Einige Entwicklungsumgebungen bemerken das Fehlen des Datenfeldes serial-
VersionUID in einer Klasse vom Typ Serializable und geben eine Warnung
aus.

16.7.3 Das Schlüsselwort transient

In Kapitel 16.7.1 wurde automatisch jede Instanzvariable eines Objektes in den Aus-
gabestrom geschrieben bzw. aus einem Eingabestrom rekonstruiert. Es kann aber
auch durchaus vorkommen, dass es Instanzvariable gibt, die nicht serialisiert werden
sollen. Zum Beispiel kann es aus Sicherheitsgründen erforderlich sein, dass ein
Passwort nicht in einer Datei abgespeichert werden soll. Manchmal werden auch
Instanzvariable angelegt, die nur temporäre Werte annehmen. Speichert eine In-
stanzvariable zum Beispiel, ob der rechte Mausknopf gedrückt ist oder nicht, so kann
eine solche Information für eine persistente (dauerhafte) Speicherung uninteressant
sein.

614 Kapitel 16

Die Serialisierung von Instanzvariablen kann unterdrückt werden,
indem das Schlüsselwort transient bei der Deklaration der In-
stanzvariablen angegeben wird.

Das folgende Beispiel zeigt, wie verhindert wird, dass das Datenfeld alter einer
Klasse Person serialisiert wird.

public class Person implements Serializable
{
 private String name;
 private String vorname;
 private transient int alter;

}

Wird nun ein Objekt der Klasse Person mit dem Aufruf der Methode write-
Object() in einen Ausgabestrom geschrieben, so werden nur die beiden Daten-
felder name und vorname serialisiert. Genauso wird bei der Rekonstruktion das
Datenfeld alter nicht berücksichtigt.

16.7.4 Die Schnittstelle Externalizable

Die Objektserialisierung durch die Implementierung der Schnittstelle Serializable
ist sehr komfortabel. Möchte man jedoch Einfluss auf die Serialisierung nehmen, so
kann dies mit Hilfe der Schnittstelle Serializable nicht erfolgen. Zum Beispiel
kann eine Abänderung des Formates, in dem die Objekte in den Ausgabestrom
geschrieben werden, von Interesse sein. Für solche Fälle existiert die Schnittstelle
Externalizable. Die Schnittstelle Externalizable ist von Serializable
abgeleitet und erweitert diese um die folgenden beiden Methoden:

public abstract void writeExternal (ObjectOutput out)
 throws IOException
public abstract void readExternal (ObjectInput in)
 throws IOException,
 ClassNotFoundException

Um nun Einfluss auf die Serialisierung eines Objektes zu nehmen, muss in dem zu
serialisierenden Objekt die Schnittstelle Externalizable implementiert werden.
Das folgende Beispiel macht genau das Gleiche wie das vorangehende Beispiel,
benutzt aber die Schnittstelle Externalizable.

// Datei: Serial2.java

import java.io.*;

class Person2 implements Externalizable
{
 private String name;
 private String vorname;
 private int alter;

Ein-/Ausgabe und Streams 615

 private static final long serialVersionUID = 1234;

 public Person2()
 {
 System.out.println ("Hallo, hier im Default Konstruktor");
 }

 public Person2 (String name, String vorname, int alter)
 {
 this.name = name;
 this.vorname = vorname;
 this.alter = alter;
 }

 public void print()
 {
 System.out.println ("Name: " + name);
 System.out.println ("Vorname: " + vorname);
 System.out.println ("Alter: " + alter);
 }

 public void writeExternal (ObjectOutput out) throws IOException
 {
 System.out.println ("Explizites Schreiben!");
 out.writeObject (name);
 out.writeObject (vorname);
 out.writeInt (alter);
 }

 public void readExternal (ObjectInput in) throws IOException,
 ClassNotFoundException
 {
 System.out.println ("Explizites Lesen!");
 name = (String) in.readObject();
 vorname = (String) in.readObject();
 alter = in.readInt();
 }
}

public class Serial2
{
 public static void main (String[] args) throws Exception
 {
 ObjectOutputStream out =
 new ObjectOutputStream (new FileOutputStream ("text.txt"));
 Person2 pers1 = new Person2 ("Mustermann", "Heinz", 45);
 Person2 pers2 = new Person2 ("Heinzelmann", "Max", 30);

 // Ein paar primitive Datentypen in die Datei schreiben.
 out.writeInt (1);
 out.writeDouble (1.2);
 // Objekte pers1 und pers2 in die Datei schreiben.
 out.writeObject (pers1);
 out.writeObject (pers2);
 out.close();

616 Kapitel 16

 ObjectInputStream in =
 new ObjectInputStream (new FileInputStream ("text.txt"));

 // Datentypen wieder einlesen und ausgeben.
 System.out.println (in.readInt());
 System.out.println (in.readDouble());
 ((Person2) in.readObject()).print();
 ((Person2) in.readObject()).print();
 in.close();
 }
}

Die Ausgabe des Programms ist:

Explizites Schreiben!
Explizites Schreiben!
1
1.2
Hallo, hier im Default Konstruktor
Explizites Lesen!
Name: Mustermann
Vorname: Heinz
Alter: 45
Hallo, hier im Default Konstruktor
Explizites Lesen!
Name: Heinzelmann
Vorname: Max
Alter: 30

Im Programm wird der Methode writeObject() eine Referenz vom Typ Person
übergeben. Die Methode writeObject() schaut nun nach, ob die Referenz auf ein
Objekt zeigt, das vom Typ Externalizable oder vom Typ Serializable ist. Ist
das Objekt vom Typ Externalizable – wie im Falle der Klasse Person – wird die
Methode writeExternal() aufgerufen. Wird ein Objekt mit readObject() ein-
gelesen, so wird ebenfalls nachgeschaut, ob die Klasse des zu rekonstruierenden
Objektes die Schnittstelle Externalizable oder Serializable implementiert.
Implementiert die Klasse die Schnittstelle Externalizable, so wird die Methode
readExternal() aufgerufen.

Zusätzlich zur Implementierung der Schnittstelle Externalizable wurde noch ein
selbst geschriebener Default-Konstruktor eingeführt. Dieser wird bei der Rekonstruk-
tion der Objekte aufgerufen. Nach dem Aufruf des Default-Konstruktors wird die
Methode readExternal() aufgerufen. Ist kein Default-Konstruktor mehr vorhan-
den, weil er zum Beispiel durch einen Konstruktor mit Parametern überschrieben
wurde, so wird zur Laufzeit folgende Fehlermeldung ausgegeben:

java.lang.NoSuchMethodError

Ein-/Ausgabe und Streams 617

16.8 Übungen

Aufgabe 16.1: Streams

a) Schreiben Sie eine Java-Anwendung, die eine Text-Datei mit Hilfe der Klasse
FileReader einliest und auf dem Bildschirm ausgibt. Der Name der auszuge-
benden Datei soll als Parameter an die Anwendung übergeben werden. Kann die
Datei nicht geöffnet bzw. gelesen werden, so soll eine Fehlermeldung ausgegeben
werden.

b) Erweitern Sie die Java-Anwendung, indem Sie die Zeilen einer Textdatei in umge-
kehrter Reihenfolge (die letzte Zeile der Datei zuerst) auf dem Bildschirm aus-
geben. Sie können zur Implementierung die Klassen java.lang.String und
java.lang.StringBuilder verwenden.

Aufgabe 16.2: Einmaleins

a) Schreiben Sie ein Programm, das die Zahlen des kleinen Einmaleins berechnet

und in der Textdatei einmaleins.txt ablegt. Die Zahlen sollen jeweils durch
einen Tabulator voneinander getrennt werden.

Die Textdatei einmaleins.txt sollte folgenden Inhalt haben:

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

b) Erweitern Sie das Programm so, dass die Größe der berechneten Tabelle durch

den Benutzer angegeben werden kann. Die Größe soll als Parameter beim Pro-
grammaufruf übergeben werden, wie in folgendem Beispielaufruf:

java Einmaleins 100

Aufgabe 16.3: Filter

a) Machen Sie sich die Arbeitsweise der Klasse Filter klar und testen Sie diese

mit einer beliebigen Textdatei.

Aufruf: java Filter <Suchmuster> <Dateiname>

// Datei: Filter.java

import java.io.*;

618 Kapitel 16

public class Filter
{
 public static void main (String args[])
 {
 if (args.length != 2)
 {
 System.err.println ("Bitte 2 Parameter: ");
 System.err.println ("<Suchmuster> <Dateiname>");
 System.exit (1);
 }

 String patt = args [0];
 String fileIn = args [1];

 try
 {
 LineNumberReader reader = new LineNumberReader
 (new FileReader (fileIn));
 String str;

 while ((str = reader.readLine()) != null)
 {
 if (str.indexOf (patt) != -1)
 {
 int ln = reader.getLineNumber();
 System.out.println (fileIn + "[" + ln + "]: " + str);
 }
 }
 reader.close();
 }
 catch (IOException e)
 {
 System.err.println ("IO-Fehler beim Filtern");
 e.printStackTrace();
 }
 }
}

b) Modifizieren Sie die Klasse Filter so, dass die Ausgabe nicht auf dem Bild-

schirm erscheint, sondern in eine Datei geschrieben wird. Der Name der Datei, in
die geschrieben werden soll, wird als dritter Parameter beim Programmaufruf
übergeben.

Aufgabe 16.4: Umleiten

Schreiben Sie ein Programm, welches den Fehler-Stream in die Datei error.log
umleitet. Testen Sie das Programm, indem Sie mehrere Textzeilen auf der Standard-
ausgabe und in den Fehler-Stream ausgeben.

Aufgabe 16.5: Ein- und Ausgabe

a) Schreiben Sie ein Programm, welches Zufallszahlen vom Typ int in eine Datei

schreibt.

Ein-/Ausgabe und Streams 619

b) Schreiben Sie ein weiteres Programm, welches diese Zahlen aus der Datei einliest
und die Anzahl sowie die Summe und den Durchschnitt der Zahlen berechnet und
auf dem Bildschirm ausgibt.

Aufgabe 16.6: Formatierte Datumsausgabe

Der internationale Standard ISO 8601124 spezifiziert die Ausgabe von Datum und
Zeit. Datums-Ausgaben erfolgen nach Notation JJJJ-MM-TT, wobei J für Jahr, M für
Monat und T für Tag steht. Zeit-Ausgaben erfolgen nach der Notation hh:mm:ss,
wobei h für Stunde (00-24), m für Minute und s für Sekunde steht.

Schreiben Sie ein Programm, welches das aktuelle Datum und die Uhrzeit nach dem
Standard der ISO 8601 ausgibt und zur Ausgabe die format()-Methode der Klasse
String verwendet.

Aufgabe 16.7: Objektserialisierung

Es soll die Klasse BenutzerLogin geschrieben werden. Diese Klasse kapselt einen
Login mit den Attributen name vom Typ String, passwort vom Typ String und
online vom Typ boolean und besitzt folgende Methoden:

• einen Konstruktor, der es ermöglicht, den Namen und das Passwort für den neu
erzeugten Login zu setzen.

• anmelden (String password) zum Vergleichen der Passwörter und zum Set-
zen von online auf true, falls die Passwörter gleich sind.

• print() zur Ausgabe des Benutzernamens und der Information, ob der Benutzer
online ist.

a) Implementieren Sie die Klasse BenutzerLogin.

b) Erzeugen Sie ein Objekt der Klasse BenutzerLogin und melden Sie sich bei
diesem Objekt an. Überprüfen Sie hierbei, ob der Anmeldevorgang erfolgreich
war, indem Sie die Methode print() vor und nach dem Anmelden aufrufen.

c) Speichern Sie das Objekt mit Hilfe der Objektserialisierung (ObjectOutput-
Stream) in einer Datei. Beachten Sie hierbei, dass die Variable online nicht
serialisiert (transient) werden soll.

d) Stellen Sie das Objekt mit Hilfe der Klasse ObjectInputStream wieder her und
überprüfen Sie, ob der Benutzer immer noch angemeldet ist, indem Sie die Metho-
de print() des neu erzeugten Objektes aufrufen.

e) Schreiben Sie das Programm um, damit statt Serializable die Schnittstelle
Externalizable verwendet wird. Passen Sie das Programm der neuen Schnitt-
stelle an und beachten Sie, dass weiterhin die bisherige Funktionalität erhalten
bleiben soll.

124 Weitere Informationen zur ISO 8601 sind zu finden unter: http://de.wikipedia.org/wiki/ISO_8601.

620 Kapitel 16

Aufgabe 16.8: Flughafen-Projekt – Singelton / Laden und Speichern

Die Klasse Flughafen soll nun so erweitert werden, dass sie das Singleton-Pattern
implementiert. Das Singleton-Pattern wird in Kapitel 10.5.2 erklärt. Verändern Sie die
Klasse Client so, dass der Zugriff auf den Flughafen nur noch über das Singleton-
Pattern geschieht.

Die im Flughafensystem gehaltenen Informationen sollen nun beim Beenden des
Programms gespeichert und beim erneuten Starten des Programms wiederherge-
stellt werden. Hierzu soll die Methode, welche für das Singleton-Pattern eingeführt
wurde, erweitert werden. Diese Methode soll dabei folgendermaßen vorgehen: Exi-
stiert noch keine Instanz, wird erst versucht, eine Instanz durch Objektserialisierung
aus der gespeicherten Datei wiederherzustellen, schlägt dies fehl, so wird eine neue
Instanz der Klasse Flughafen mit new erzeugt. Es muss noch eine weitere sta-
tische Methode implementiert werden, welche die Instanz der Klasse Flughafen vor
Programmende mit Hilfe der Objektserialisierung in eine Datei speichert. Diese Me-
thode muss manuell vor Programmende aufgerufen werden.

Generizität

17.1 Generische Klassen
17.2 Eigenständig generische Methoden

17.3 Bounded Typ-Parameter und Wildcards
17.4 Generische Schnittstellen
17.5 Die Klasse Class<T>
17.6 Generizität und Polymorphie
17.7 Übungen

17 Generizität

Seit dem JDK 5.0 wird die Definition generischer Klassen, generischer Schnittstellen
und generischer Methoden von Java unterstützt.

Generisch bedeutet in diesem Zusammenhang, dass Klassen, Schnitt-
stellen und Methoden Parameter verwenden, welche einen Typ dar-
stellen.

Dieses Konzept dient der Typsicherheit, wie im Folgenden noch gezeigt wird.

Die Generizität erlaubt es, die Definition von Klassen, Methoden und Schnittstellen
mit Hilfe von einem oder mehreren formalen Typ-Parametern durchzuführen. Da-
durch werden parametrisierbare Elemente geschaffen, die im Programm mit konkre-
ten Datentypen als aktuellen Parametern aufgerufen werden können. Dies sieht man
am besten an einem Beispiel. Definiert man eine Klasse Punkt mit einem formalen
Typ-Parameter T

public class Punkt <T>
{
 private T x;
 private T y;

 public Punkt (T x, T y)
 {
 this.x = x;
 this.y = y;
 }
 // weitere Elemente der Klasse Punkt
}

so kann man beispielsweise Punkte mit Koordinaten vom Typ Integer oder
Double anlegen durch:

// Aktueller Typ-Parameter Integer tritt an die Stelle von T
Punkt<Integer> intPunkt = new Punkt<Integer> (1, 2);

bzw.

// Aktueller Typ-Parameter Double tritt an die Stelle von T
Punkt<Double> doublePunkt = new Punkt<Double> (1.0, 2.0);

Eine Klasse mit formalem Typ-Parameter stellt eine generische Klas-
se dar. Der formale Typ-Parameter ist ein symbolischer Name, der
wie ein normaler Bezeichner in Java aufgebaut ist und eingeschlossen
in spitzen Klammern nach dem Klassennamen angegeben werden
muss.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_17,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Generizität 623

Die Klasse Punkt<T> stellt eine generische Klasse mit dem formalen
Typ-Parameter T dar. Die Entscheidung über den konkreten zu ver-
wendenden Typ – hier Integer und Double – findet erst bei der Nut-
zung der generischen Klasse statt.

Generische Klassen bringen einen großen Vorteil bei den so genannten Collections
oder Container-Klassen (siehe Kap. 18), da es nicht mehr erforderlich ist, dass die
Collections aus Referenzen auf Objekte der Klasse Object aufgebaut sind. In eine
Collection, die Elemente vom Typ Object enthält, können bekanntermaßen Objekte
jeder beliebigen Klasse eingefügt werden, da jede Klasse von der Klasse Object
abgeleitet ist. Werden die Collections als generische Datentypen definiert, so kann
man Collections für bestimmte Typen erzeugen und man merkt bereits beim Kompi-
lieren, ob versucht wird, eine Referenz auf ein Objekt eines falschen Typs in der
Collection abzulegen. Dadurch werden Laufzeitfehler vermieden. Während bis ein-
schließlich JDK 1.4 alle Collection-Klassen auf der Klasse Object basierten, sind
seit dem JDK 5.0 alle Collection-Klassen generisch.

Mit der Generizität von Klassen, Schnittstellen und Methoden werden
die folgenden Ziele verfolgt:

• Höhere Typsicherheit: Erkennen von Typ-Umwandlungsfehlern zur
Kompilierzeit statt zur Laufzeit.

• Wiederverwendbarkeit von Quellcode.
• Vermeiden des expliziten Casts beim Auslesen aus einer Collection

aus Elementen vom Typ Object.

Kapitel 17.1 zeigt, wie man generische Klassen in Java definiert und wo die entschei-
denden Unterschiede zu herkömmlichen Klassen liegen. Kapitel 17.2 befasst sich mit
der Definition eigenständig generischer Methoden und Kapitel 17.3 zeigt die Verwen-
dung so genannter Wildcards. Nach der Definition generischer Schnittstellen in Ka-
pitel 17.4 wird in Kapitel 17.5 die generische Klasse Class<T> vorgestellt. In den
soeben erwähnten Kapiteln werden insbesondere auch die Grenzen der generischen
Klassen betrachtet. Hierbei könnte der Eindruck entstehen, generische Klassen wä-
ren der Mühe nicht wert. Es soll daher nochmals darauf hingewiesen werden, dass
die Vorteile der Generizität erst bei den Collection-Klassen, die Zusammenstellungen
von Referenzen auf Objekte sind, voll zum Tragen kommen.

Zum Schluss wird in Kapitel 17.6 über den Zusammenhang von Generizität und Poly-
morphie reflektiert. Dieses "Theorie"-Kapitel kann beim ersten Lesen des Buches
übersprungen werden.

17.1 Generische Klassen

Am Beispiel der Klasse Punkt wird gezeigt, wie generische Klassen implementiert
werden können. Angenommen, die Klasse Punkt sei nicht generisch, dann könnte
ihre Definition wie folgt aussehen:

624 Kapitel 17

public class Punkt
{
 private Integer x;
 private Integer y;

 public Punkt (Integer x, Integer y)
 {
 this.x = x;
 this.y = y;
 }
 // weitere Elemente der Klasse Punkt
}

Nachteilig an dieser Definition ist, dass hiermit die Koordinaten eines Punktes immer
vom Typ Integer sein müssen. Will man vielleicht die Genauigkeit der Koordinaten
eines Punktes erhöhen – etwa durch die Verwendung von Gleitkommawerten – so
müsste dafür eine eigene Klasse – beispielsweise PunktDouble – definiert werden.
Der ersten Klasse würde man dann vermutlich zur Differenzierung den Namen
PunktInteger geben.

Eleganter lässt sich dieses Problem durch die Verwendung von generischen Klas-
sen lösen. Sie werden mit einem so genannten formalen Typ-Parameter deklariert,
der in spitzen Klammern <> direkt hinter dem Klassennamen angegeben wird:

public class Punkt<T>

Der Typ-Parameter T wird nun als Stellvertreter innerhalb der Klassendefinition ver-
wendet. Dort, wo bei der herkömmlichen Definition der Klasse Punkt der Datentyp
Integer verwendet wurde – beispielsweise bei der Definition der Instanzvariablen x
und y – wird nun der formale Typ-Parameter T eingesetzt:

public class Punkt<T>
{
 private T x:
 private T y;

 public Punkt (T x, T y)
 {
 this.x = x;
 this.y = y;
 }
 // weitere Elemente der Klasse Punkt<T>
}

Der formale Typ-Parameter T in der Klassendeklaration wird auch
zur Definition der Datenfelder der generischen Klasse verwendet. Ge-
nauso tritt er als Typ für formale Parameter und Rückgabewerte von
Methoden auf. Damit können Klassen unabhängig von einem spe-
ziellen Typ generisch definiert werden. Der formale Typ-Parameter
wird bei der Verwendung der Klasse dann durch den gewünschten
konkreten Datentyp ersetzt.

Generizität 625

Bei der Verwendung einer generischen Klasse wird der formale Typ-Parameter durch
einen aktuellen Typ-Parameter ersetzt. Aktuelle Typ-Parameter für die generische
Klasse Punkt<T> sind beispielsweise Integer, Float oder Double. So wird ein
Punkt mit den Koordinaten (1, 2), dessen Koordinaten vom Typ Integer sein sollen,
folgendermaßen erzeugt:

Punkt<Integer> intPunkt = new Punkt<Integer> (1, 2);

Werden die formalen Typ-Parameter durch aktuelle Typ-Parameter er-
setzt, so handelt es sich um eine konkrete Ausprägung einer generi-
schen Klasse, in anderen Worten um eine aktuell parametrisierte
Klasse.

Zu beachten ist, dass das Anlegen der Referenzvariablen intPunkt für die aktuell
parametrisierte Klasse Punkt<Integer> erfolgt. Weiterhin erfolgt der Aufruf des
new-Operators und des Konstruktors ebenfalls unter Angabe des aktuellen Typ-Para-
meters.

Mit Java 7 wird die Schreibweise bei der Erzeugung von generischen
Typen vereinfacht. Die Angabe des aktuellen Typ-Parameters kann
für den Aufruf des new-Operators und des Konstruktors weggelassen
werden:

Punkt<Integer> intPunkt = new Punkt<> (1, 2);

Ab Java 7 ist damit folgendes Beispiel korrekt: Einer Instanzvariablen vom Typ
Punkt<Integer> wird im Konstruktor mit new Punkt<> (x, y) eine Referenz
auf ein Objekt vom Typ Punkt<Integer> zugewiesen, ohne den aktuellen Typ-Pa-
rameter Integer für den Aufruf des new-Operators und des Konstruktors anzuge-
ben:

class PunktBehaelter
{
 private Punkt<Integer> intPunkt;

 public PunktBehaelter (int x, int y)
 {
 this.intPunkt = new Punkt<> (x, y);
 }

 public void setPunkt (Punkt<Integer> intPunkt)
 {
 this.intPunkt = intPunkt;
 }

 public Punkt getPunkt()
 {
 return intPunkt;
 }
 // weitere Elemente der Klasse PunktBehaelter
}

626 Kapitel 17

Entsprechend kann die vereinfachte Schreibweise auch beim Aufruf der Methode
setPunkt() der Klasse PunktBehaelter wie folgt eingesetzt werden:

PunktBehaelter behaelter = new PunktBehaelter (1, 2);
behaelter.setPunkt (new Punkt<> (3, 4));

Bei einem expliziten Cast muss jedoch stets der vollständige Typ inklusive eines ak-
tuellen Typ-Parameters angegeben werden, wie in folgendem Beispiel:

Punkt<Integer> punkt = (Punkt<Integer>) behaelter.getPunkt();

Nach diesem kleinen Exkurs zu Java 7 kehren wir wieder zurück zur generischen
Klasse Punkt<T>. In den bisherigen Beispielen wurde als aktueller Typ-Parameter
für die generische Klasse Punkt<T> der Typ Integer eingesetzt. Benötigt man
Punkte mit einer höheren Präzision, deren Punkt-Koordinaten Gleitkommazahlen
darstellen, so verwendet man die aktuell parametrisierte Klasse Punkt<Double>:

Punkt<Double> doublePunkt = new Punkt<Double> (1.0, 2.0);

Der Compiler erzeugt bei der Übersetzung einer generischen Klasse
nur eine einzige Bytecode-Datei, unabhängig davon, wie viele aktuell
parametrisierte Klassen der generischen Klasse verwendet werden.
Für die generische Klasse Punkt<T> erzeugt der Compiler die Datei
Punkt.class.

Der Bytecode einer generischen Klasse wird von allen aktuell parametrisierten Klas-
sen gemeinsam benutzt. Dies wird auch als Code Sharing bezeichnet.

Der formale Typ-Parameter – beispielsweise T bei der Klasse Punkt<T> – wird bei
der Verwendung der generischen Klasse durch einen aktuellen Typ-Parameter –
z. B. Integer bei Punkt<Integer> ersetzt.

Weiterhin tritt der formale Typ-Parameter bei der Deklaration der Instanzmethoden
einer generischen Klasse in Erscheinung. Beispielsweise wird innerhalb der generi-
schen Klasse Punkt<T> die Methode zum Abholen der x-Koordinate wie folgt defi-
niert:

public T getX()
{
 return x; // x ist vom Typ T
}

Der formale Typ-Parameter ersetzt immer dort einen konkreten Datentyp innerhalb
einer Klassendefinition, wo man Generizität erreichen möchte.

17.1.1 Die generische Klasse Punkt<T>

Im Folgenden nun die generische Klasse Punkt<T> als Ganzes:

Generizität 627

// Datei: Punkt.java

public class Punkt<T>
{
 // Ein Punkt hat 2 Koordinaten vom Typ T
 private T x;
 private T y;

 // Der Konstruktor erwartet 2 Parameter vom Typ T
 public Punkt (T x, T y)
 {
 this.x = x;
 this.y = y;
 }

 // get- und set-Methoden für die Koordinaten
 public T getX()
 {
 return x;
 }

 public T getY()
 {
 return y;
 }

 public void setX (T x)
 {
 this.x = x;
 }

 public void setY (T y)
 {
 this.y = y;
 }

 public String toString()
 {
 return ("x = " + x + ", y = " + y);
 }
}

Zum Testen dient die Klasse PunktTest. Sie erzeugt Objekte der aktuell parametri-
sierten Klassen Punkt<Integer> und Punkt<Double> und gibt anschließend die
Koordinaten der beiden Punkte aus:

// Datei: PunktTest.java

public class PunktTest
{
 public static void main (String[] args)
 {
 Punkt<Integer> intPunkt = new Punkt<Integer> (1, 2);
 Punkt<Double> doublePunkt = new Punkt<Double> (1.0, 2.0);
 System.out.print ("Punkt<T> mit aktuellem Parameter");
 System.out.println (" Integer: " + intPunkt);

628 Kapitel 17

 System.out.print ("Punkt<T> mit aktuellem Parameter");
 System.out.println (" Double: " + doublePunkt);
 }
}

Die Ausgabe des Programms ist:

Punkt<T> mit aktuellem Parameter Integer: x = 1, y = 2
Punkt<T> mit aktuellem Parameter Double : x = 1.0, y = 2.0

17.1.2 Repräsentation aktuell parametrisierter Klassen

Wie bereits erwähnt, wird vom Compiler aus der generischen Klasse Punkt<T> der
Bytecode für nur eine einzige Klasse erstellt. Diese Klasse enthält anstelle des
formalen Typ-Parameters T den Typ Object. Aus diesem Grund können auch als
aktuelle Typ-Parameter nur Datentypen verwendet werden, die von der Basisklasse
Object ableiten, d. h. einfache Datentypen dürfen nicht verwendet werden. Die ge-
nerische Klasse Punkt<T> kann dann mit Datentypen wie Integer, Float oder
Number arbeiten.

Der aktuelle Typ-Parameter muss ein Referenztyp sein. Damit ist es in
Java nicht möglich, generische Klassen zu schreiben, die als aktuellen
Typ-Parameter einen einfachen Typ wie int, float oder double
akzeptieren.

Bild 17-1 zeigt, wie durch Verwendung der generischen Klasse Punkt<T> mit
verschiedenen aktuellen Typ-Parametern die aktuell parametrisierten Klassen
Punkt<Integer>, Punkt<Float> und Punkt<Number> entstehen. Der Compiler
ersetzt beim Übersetzen dieses Beispiels den formalen Typ-Parameter T durch
den Typ Object und lässt im Klassennamen den Typ-Parameter weg.

Die generische Klasse Punkt<T> nimmt je nach aktuellem Typ-Para-
meter eine verschiedene Gestalt an. Sie ist also polymorph. Bitte be-
achten Sie, dass die aktuell parametrisierten Klassen auf einer
Ebene stehen und dass zwischen ihnen keine Vererbungsbezie-
hung besteht.

Bitte beachten Sie in Bild 17-1, dass der Compiler mit der so genannten Type Era-
sure125-Technik beim Kompilieren quasi den formalen Typ-Parameter T "ausradiert".
Anstatt des formalen Typ-Parameters T – als Typ für Datenfelder, formale Parameter
und Rückgabewerte – wird die Klasse Object eingesetzt. Mit der Type Erasure-
Technik wird also genau eine class-Datei erzeugt, ungeachtet dessen, wie viele
konkrete Ausprägungen durch eine Substitution mit aktuellen Typ-Parametern davon
erzeugt werden. Der Compiler-generierte sharable Bytecode wird auch Raw Type
genannt.

125 Engl. für Typ-Auslöschung (siehe [26]).

Vorsicht!

Generizität 629

Verwenden des
sharable Bytecodes

Quellcode

Compiler-generierter
sharable Bytecode

Kompilieren

Punkt<T>

T x
T y

Punkt (T x, T y)

Punkt

Object x
Object y

Punkt (Object x,
 Object y)

:Punkt<Integer>

Object x
Object y

Punkt (Object x,
 Object y)

Objekt der aktuell
parametrisierten Klasse
Punkt<Integer>

:Punkt<Number>

Object x
Object y

Punkt (Object x,
 Object y)

Objekt der aktuell
parametrisierten Klasse
Punkt<Number>

:Punkt<Float>

Object x
Object y

Punkt (Object x,
 Object y)

Objekt der aktuell
parametrisierten Klasse
Punkt<Float>

Bild 17-1 Objekte der aktuell parametrisierten Klassen Punkt<Integer>

Punkt<Float> und Punkt<Number>

Besonderes Augenmerk soll in Bild 17-1 auf die Instanz der aktuell parametrisierten
Klasse Punkt<Number> gelegt werden. Bekanntermaßen ist die Klasse Number
abstrakt. Es können von ihr also keine Instanzen mit Hilfe des new-Operators erzeugt
werden. Trotzdem ist die Codezeile

Punkt<Number> punkt = new Punkt<Number> (1, 2);

vollkommen korrekt, da eine Instanz der aktuell parametrisierten Klasse Punkt-
<Number> und keine Instanz der Klasse Number angelegt wird. Es tritt damit le-
diglich der aktuelle Typ-Parameter Number an die Stelle des formalen Typ-Para-
meters T. Beim Konstruktoraufruf für die aktuell parametrisierte Klasse Punkt<Num-
ber> werden Referenzen auf Objekte vom Typ Number erwartet. Der Compiler
übersetzt

new Punkt<Number> (1, 2);

mit Hilfe des Auto-Boxing zu

new Punkt<Number> (Integer.valueOf (1), Integer.valueOf (2));

Da Objekte vom Typ Integer auch automatisch vom Typ Number sind, ist der
Aufruf vollkommen korrekt.

630 Kapitel 17

Durch das Type Erasure werden beim Übersetzen einer generischen
Klasse alle Vorkommen des formalen Typ-Parameters T im Rumpf der
Klasse durch den Typ Object ersetzt. So wird für die Klasse

class GenKlasse<T>
{
 T ref;
}

folgender Bytecode erzeugt:

class GenKlasse
{
 Object ref;
}

Bild 17-2 visualisiert das Speicherabbild für ein Objekt vom Typ Punkt<Number>,
das einmal mit Werten vom Typ int und einmal mit Werten vom Typ double ge-
mäß den folgenden Anweisungen initialisiert wird:

Punkt<Number> intPunkt = new Punkt<Number> (1, 2);
Punkt<Number> doublePunkt = new Punkt<Number> (1.0, 2.0);

:Integer
:Punkt<Number>

Object x
Object y

:Integer

:Double
:Punkt<Number>

Object x
Object y

:Double

Bild 17-2 Repräsentation einer Instanz vom Typ Punkt<Number> im Falle von
Initialisierungsparametern vom Typ int und vom Typ double

Im Folgenden soll nicht eine Instanz vom Typ Punkt<Number>, sondern eine In-
stanz vom Typ Punkt<Integer> betrachtet werden. Der Codeausschnitt

Punkt<Integer> ref = new Punkt<Integer> (1, 2);

zeigt, wie ein Objekt der aktuell parametrisierten Klasse Punkt<Integer> angelegt
und die Referenz darauf der Referenzvariablen ref zugewiesen wird. Über ref
können nun wie gewohnt Methodenaufrufe für die aktuell parametrisierte Klasse
Punkt<Integer> erfolgen. Das Besondere daran ist nun, dass beim Abholen des
Rückgabewertes kein expliziter Cast durchgeführt werden muss. Dies zeigt das fol-
gende Beispiel:

Integer i = ref.getX(); // OK!

Auf den ersten Blick erscheint dieser Umstand nicht intuitiv, weil beim Übersetzen
der generischen Klasse Punkt<T> alle Vorkommen des formalen Typ-Parameters T
durch Object ersetzt wurden. Somit erzeugt der Compiler für die in der generischen
Klasse Punkt<T> definierte Methode

public T getX() { }

Generizität 631

Bytecode für

public Object getX() { }

Also müsste der Programmierer beim Aufruf der Methode getX() eigentlich einen
expliziten Cast durchführen – hier auf Integer. Dies ist allerdings nicht erforderlich,
da der Compiler bei der Übersetzung der Zeile

Integer i = ref.getX();

den expliziten Cast selbst einfügt:

Integer i = (Integer) ref.getX();

Die Methode getX() gibt also nach wie vor eine Referenz vom Typ Object zurück.
Diese Referenz wird aber – unsichtbar für den Programmierer – vom Compiler auf
den entsprechenden Typ – hier also Integer – gecastet.

17.1.3 Klassen mit mehreren formalen Typ-Parametern

Die bisher gezeigten Beispiele weisen alle nur einen einzigen formalen Typ-Parame-
ter auf. Eine generische Klasse kann aber mehrere formale Typ-Parameter besitzen.
Die allgemeine Notation generischer Klassen ist:

modifieropt class GenerischeKlasse<T1, . . . , TN>
 (extends BasisKlasse)opt
 (implements I1, . . . , IN)opt

Das tiefgestellte opt gibt an, welche Elemente bei der Klassendefinition optional sind.
Beachten Sie, dass modifier einen Stellvertreter für die möglichen Zugriffsmodifi-
katoren public, protected und private und die weiteren zulässigen Modifika-
toren abstract und final darstellt.

Die Liste mit den formalen Typ-Parametern in den spitzen Klammern, welche direkt
nach dem Klassennamen angeschrieben wird, ist auch unter dem Namen Typ-Para-
meter-Sektion bekannt. Es ist somit möglich, eine generische Klasse mit beliebig
vielen formalen Typ-Parametern zu versehen, beispielsweise:

class GenerischeKlasse<A, B, C>
{
 A a;
 B b;
 C c;
 // Weitere Verwendung der formalen Typ-Parameter
}

Beim Übersetzen der generischen Klasse GenerischeKlasse<A, B, C> werden
dann durch das Type Erasure – wie bei einer generischen Klasse mit nur einem for-
malen Typ-Parameter auch – alle Vorkommen der formalen Typ-Parameter – hier A,
B und C – durch den Typ Object ersetzt. Wird nun eine generische Klasse mit drei
formalen Typ-Parametern verwendet

632 Kapitel 17

GenerischeKlasse<Integer, Double, Float> ref =
 new GenerischeKlasse<Integer, Double, Float>();

so muss jeder formale Typ-Parameter durch einen aktuellen Typ-Parameter ersetzt
werden.

17.1.4 Subtyping und generische Klassen

Aktuell parametrisierte Klassen desselben generischen Typs stehen in keiner Verer-
bungsbeziehung. Dies soll an den aktuell parametrisierten Klassen Punkt<Number>
und Punkt<Integer> diskutiert werden. Obwohl die Klassen Integer und Float
von der Klasse Number abgeleitet sind, wie in Bild 17-3 gezeigt, kann eine Referenz
vom Typ Punkt<Number> nicht auf ein Objekt der aktuell parametrisierten Klasse
Punkt<Integer> zeigen, da beide Klassen sich auf derselben Hierarchiestufe
befinden.

Number

Integer

Float

Bild 17-3 Integer und Float als Subtypen von Number

Sowohl die Klasse Punkt<Number> als auch die Klasse Punkt<Integer> stellen
aktuell parametrisierte Klassen des generischen Typs Punkt<T> dar.

Ist vom Typ
GenKlasse<K1>

Ist vom Typ
GenKlasse<K2>

Kann an die Stelle
treten von

K1

K2

Bild 17-4 Für Objekte verschiedener aktuell parametrisierter Klassen gibt es kein Sub-

stitutionsprinzip, da ihre Klassen nicht in einer Vererbungsbeziehung stehen

Generizität 633

Sie werden erzeugt, indem der aktuelle Typ-Parameter – hier Integer oder Num-
ber – an die Stelle des formalen Typ-Parameters – hier T – tritt. Dass die aktuell pa-
rametrisierten Klassen Punkt<Number> und Punkt<Integer> zueinander keine
Vererbungsbeziehungen haben und dadurch eine Referenz vom Typ Punkt<Num-
ber> nicht auf ein Objekt vom Typ Punkt<Integer> zeigen kann (siehe auch Bild
17-4), wird im folgenden Beispiel demonstriert, wobei zu Beginn des Beispiels ab-
sichtlich von dem Trugschluss ausgegangen wird, die aktuell parametrisierte Klasse
Punkt<Integer> stünde mit der aktuell parametrisierten Klasse Punkt<Number>
in einer Vererbungsbeziehung. Basierend auf dieser falschen Annahme wird dann
anhand des Beispiels gezeigt, dass diese Annahme unhaltbar ist.

Und nun als Gedankenexperiment ein Beispiel auf Basis des soeben erwähnten
Trugschlusses, dass der Typ Punkt<Integer> mit dem Typ Punkt<Number> in
einer Vererbungsbeziehung stehen würde. Die dazu verwendete generische Klasse
Punkt<T> ist in Kapitel 17.1.1 dokumentiert. Durch das Liskov Substitution Principle
kann ein Objekt einer abgeleiteten Klasse stets an die Stelle eines Objektes einer
Basisklasse treten, solange die Verträge nicht verletzt werden. Die Basisklasse von
Integer und Double ist die Klasse Number. Somit ist die Zuweisung

Number number = new Double (1);

gültig und der Compiler übersetzt diese Anweisung ohne Probleme. Auch die
folgende Anweisung ist gültig:

Punkt<Integer> intPunkt = new Punkt<Integer>(1, 2);

Die nächste Anweisung

Punkt<Number> numberPunkt = intPunkt;

ist jedoch falsch, da das Liskov Substitution Principle nur im Falle der Vererbung gilt.
Eine Referenz vom Typ einer Basisklasse kann stets auf ein Objekt einer ab-
geleiteten Klasse zeigen, solange die Verträge nicht gebrochen werden. Der Typ
Punkt<Integer> ist jedoch nicht von Punkt<Number> abgeleitet. Daher kann die
Referenz numberPunkt nicht auf ein Objekt vom Typ Punkt<Integer> zeigen.

Der Compiler weiß das auch und lehnt die Übersetzung ab. Im Folgenden soll nun
als Gedankenexperiment angenommen werden, der Compiler würde die letzte Zeile
übersetzen. Es sollen nun die beiden folgenden Anweisungen abgearbeitet werden,
die zweifellos korrekt sind:

Number number = new Double (10);
numberPunkt.setX (number);

Es wird hier eine Referenzvariable vom Typ Number angelegt, die auf ein Objekt
vom Typ Double zeigt, was nach dem Liskov Substitution Principle erlaubt ist. Über
die Referenzvariable numberPunkt wird dann die Methode setX() der aktuell
parametrisierten Klasse Punkt<Number> aufgerufen und ihr die Referenz auf ein
Objekt vom Typ Double übergeben.

634 Kapitel 17

numberPunkt zeigt aber in unserem Gedankenexperiment auf ein Objekt vom Typ
Punkt<Integer>. Dies hätte nun zur Folge, dass über den Methodenaufruf
setX() der Instanzvariablen x vom Typ Integer eine Referenz auf ein Objekt vom
Typ Double zugewiesen würde, was natürlich nicht möglich ist, weil Integer und
Double auf derselben Stufe der Vererbungshierarchie stehen und insbesondere
Double kein Subtyp von Integer ist. Aber soweit kommt es nicht, da der Compiler
die Regeln kennt. Diese lauten:

Angenommen, die Klasse K1 ist die Basisklasse für eine Klasse K2
und GenKlasse stellt die Definition einer generischen Klasse dar.
Dann gilt nicht, dass GenKlasse<K2> einen Subtyp von GenKlas-
se<K1> darstellt!

17.1.5 Einschränkungen bei generischen Klassen

Es gibt einige wichtige Einschränkungen bei der Verwendung eines formalen Typ-
Parameters:

• Ein formaler Typ-Parameter einer Klasse darf nicht bei der Definition von
Klassenvariablen und -methoden verwendet werden.

• Von einem formalen Typ-Parameter kann kein Objekt – beispielsweise mit new
T – angelegt werden.

• Ein formaler Typ-Parameter darf nicht in Verbindung mit dem instanceof-
Operator verwendet werden. Eine Typ-Prüfung ref instanceof T ist generell
nicht zulässig.

• Eine Referenzvariable auf ein Array, das Referenzen auf Objekte aktuell para-
metrisierter Klassen enthalten soll, darf nur unter Verwendung der Unbounded
Wildcard ?126 angelegt werden.

• Auch das Anlegen eines Array-Objektes unter Verwendung eines aktuellen oder
formalen Typ-Parameters ist unzulässig und es muss wiederum die Unbounded
Wildcard ? eingesetzt werden. Ein korrektes Array ist beispielsweise:
Punkt<?>[] arr = new Punkt<?>[10];

Der Compiler wird Verstöße gegen diese Einschränkungen mit einem Übersetzungs-
fehler bemängeln und der Programmierer muss entsprechend nachbessern.

Die Einschränkung, dass der formale Typ-Parameter nicht bei der Deklaration von
Klassenvariablen verwendet werden darf, kann einfach nachvollzogen werden: Der
Bytecode einer generischen Klasse existiert in einer einzigen Ausprägung. Es kön-
nen aber beliebig viele aktuell parametrisierte Klassen desselben generischen Typs
erzeugt werden.

Eine Klassenvariable kann dann nicht gleichzeitig mehrere Typen re-
präsentieren, deshalb kann ein formaler Typ-Parameter nicht zur De-
finition von Klassenvariablen verwendet werden.

126 Siehe Kap. 17.3.2.

Generizität 635

17.1.6 Generische Klassen und Vererbungsbeziehungen

Generische Klassen können – wie herkömmliche Klassen auch – Teil einer Verer-
bungshierarchie sein. Dies bedeutet, dass eine generische Klasse eine andere gene-
rische Klasse oder eine herkömmliche Klasse erweitern kann. Oder aber eine ge-
nerische Klasse ist die Vaterklasse einer herkömmlichen Klasse. Diese drei Fälle
werden in den folgenden Kapiteln näher betrachtet.

17.1.6.1 Generische Klasse leitet von generischer Klasse ab

Leitet eine generische Klasse von einer anderen generischen Klasse ab, so muss
der formale Typ-Parameter der Klasse, von der abgeleitet wird, entweder durch den
formalen Typ-Parameter der abgeleiteten Klasse oder durch einen aktuellen Typ-Pa-
rameter ersetzt werden. Hier zunächst die erste Möglichkeit, dass der formale Typ-
Parameter der Klasse, von der abgeleitet wird, durch den formalen Typ-Parameter
der abgeleiteten Klasse ersetzt wird:

public class B<T> extends A<T>

In diesem Fall ist der formale Typ-Parameter T der Klasse B der aktuelle Typ-Para-
meter der Klasse A. Wird nun die Klasse B mit einem aktuellen Parameter Aktu-
ellerParameter instantiiert, so werden auch alle Vorkommen des formalen Typ-
Parameters innerhalb der Klassendefinition von Klasse A durch Aktueller-
Parameter ersetzt.

Und nun die zweite Möglichkeit in einem Beispiel:

public class B<T> extends A<KonkreteKlasse>

Eine Definition in dieser Form hat zur Konsequenz, dass alle Vorkommen eines für
die Klasse A definierten formalen Typ-Parameters beim Ableiten durch den Typ Kon-
kreteKlasse ersetzt werden. Wird die Klasse B mit einem aktuellen Typ-Parameter
AktuellerParameter instantiiert:

B<AktuellerParameter> b = new B<AktuellerParameter>();

so wird der formale Typ-Parameter T nur in der Klassendefinition der Klasse B durch
AktuellerParameter ersetzt, nicht aber in der Klassendefinition der Klasse A,
weil dort der formale Typ-Parameter schon durch KonkreteKlasse zum Zeitpunkt
des Ableitens – genauer gesagt zum Zeitpunkt des Übersetzens der Klasse B –
ersetzt wurde.

Das folgende Beispielprogramm veranschaulicht beide Fälle:

// Datei: AbleitenTest1.java
class GenKlasseA<T>
{
 public void methodeA (T t)
 {
 System.out.println ("methodeA() gerufen mit " + t);
 }
}

636 Kapitel 17

// GenKlasseB leitet ab von der aktuell parametrisierten
// Klasse GenKlasse<Integer>. Die Methode methodeA() der
// Klasse GenKlasseA kann somit nur mit Referenzen auf Objekte
// vom Typ Integer aufgerufen werden.
class GenKlasseB<T> extends GenKlasseA<Integer>
{
 public void methodeB (T t)
 {
 System.out.println ("methodeB() gerufen mit " + t);
 }
}

// GenKlasseC leitet ebenfalls von der generischen Klasse
// GenKlasseA ab, aber ersetzt deren formalen Typ-Parameter T
// durch ihren formalen Typ-Parameter S.
class GenKlasseC<S> extends GenKlasseA<S>
{
 public void methodeC (S s)
 {
 System.out.println ("methodeC() gerufen mit " + s);
 }
}

public class AbleitenTest1
{
 public static void main (String[] args)
 {
 GenKlasseB<Double> ref1 = new GenKlasseB<Double>();

 // Die Methode methodeB() kann somit nur mit Referenzen auf
 // Double-Objekte aufgerufen werden.
 ref1.methodeB (4.9);

 // Die Methode methodeA() kann nur mit Referenzen auf Objekte
 // vom Typ Integer aufgerufen werden, weil beim Ableiten von
 // der Klasse GenKlasseA deren formaler Typ-Parameter durch
 // Integer ersetzt wurde.
 ref1.methodeA (3);

 // Die Referenz ref1 vom Typ GenKlasseB<Double> kann einer
 // Referenzvariablen ref2 vom Typ GenKlasseA<Integer>
 // zugewiesen werden. GenKlasseA<Integer> ist dabei der
 // Basistyp von GenKlasseB<Double>.
 GenKlasseA<Integer> ref2 = (GenKlasseA<Integer>) ref1;
 ref2.methodeA (5);

 // Instantiierung der Klasse GenKlasseC mit aktuellem Typ-
 // Parameter vom Typ String. Die zurückgelieferte Referenz
 // wird einer Referenzvariablen vom Typ GenKlasseA<String>
 // zugewiesen.
 GenKlasseA<String> ref3 = new GenKlasseC<String>();
 ref3.methodeA ("String");

 GenKlasseC<String> ref4 = (GenKlasseC<String>) ref3;
 ref4.methodeC ("String");
 }
}

Generizität 637

Die Ausgabe des Programms ist:

methodeB() gerufen mit 4.9
methodeA() gerufen mit 3
methodeA() gerufen mit 5
methodeA() gerufen mit String
methodeC() gerufen mit String

17.1.6.2 Generische Klasse erweitert herkömmliche Klasse

Im Gegensatz zur vorherigen Möglichkeit, bei der eine generische Klasse von einer
anderen generischen Klasse abgeleitet wurde, wird nun der Fall betrachtet, bei dem
eine generische Klasse von einer nicht generischen Klasse abgeleitet wird:

class GenKlasse<T> extends EinfacheKlasse

Der Umstand, dass eine generische Klasse von einer nicht-generischen Klasse ab-
geleitet wird, hat keinen Einfluss auf den Code der einfachen Klasse. Die generische
Klasse GenKlasse<T> erbt hier nur die nicht generischen Eigenschaften wie Daten-
felder und Methoden der herkömmlichen Klasse EinfacheKlasse. Hierzu ein Bei-
spiel:

// Datei: AbleitenTest2.java

class EinfacheKlasse
{
 private String s = "Ich bin ein String";

 public void methodeA()
 {
 System.out.println ("Wert des Datenfeldes" +
 " in EinfacheKlasse: " + s);
 }
}

class GenKlasse<T> extends EinfacheKlasse
{
 private T t;

 public GenKlasse(T t)
 {
 this.t = t;
 }

 public void methodeB()
 {
 System.out.println ("Wert des Datenfeldes" +
 " in GenKlasse: " + t);
 }
}

public class AbleitenTest2
{
 public static void main (String[] args)
 {
 GenKlasse<Integer> ref = new GenKlasse<Integer> (4);

638 Kapitel 17

 ref.methodeB();
 ref.methodeA();
 }
}

Die Ausgabe des Programms ist:

Wert des Datenfeldes in GenKlasse: 4
Wert des Datenfeldes in EinfacheKlasse: Ich bin ein String

17.1.6.3 Herkömmliche Klasse leitet ab von generischer Klasse

Der dritte Fall beschreibt das Ableiten einer nicht-generischen von einer generischen
Klasse. Dies kann nur geschehen, wenn beim Ableiten der formale Typ-Parameter
der generischen Klasse durch einen aktuellen Typ-Parameter ersetzt wird:

class EinfacheKlasse2 extends GenKlasse<Integer>

Denn aus Sicht der herkömmlichen – also der abgeleiteten – Klasse ist der formale
Typ-Parameter der generischen Klasse nicht bekannt und kann somit zur Instanti-
ierungszeit nicht durch einen aktuellen Typ-Parameter ersetzt werden. Diese Erset-
zung muss also wiederum bei der Ableitung stattfinden. Das folgende Beispiel zeigt
den Zusammenhang. Bitte beachten Sie, dass in der Methode main() der Klasse
AbleitenTest3 die Referenzvariable refGenUniversal vom Typ GenKlas-
se<T> mit ? als aktuellen Typ-Parameter angelegt wird. ? ist hierbei eine so genann-
te Wildcard und verleiht der Referenzvariable die Eigenschaft, dass in ihr Referenzen
auf Objekte beliebiger aktuell parametrisierter Klassen des generischen Typs Gen-
Klasse<T> abgespeichert werden können. Diese und andere Wildcards werden in
Kapitel 17.3 ausführlich besprochen. Nun aber zum angekündigten Beispiel:

// Datei: AbleitenTest3.java

class GenKlasse<T>
{
 private T t;

 public GenKlasse(T t)
 {
 this.t = t;
 }

 public void methodeA()
 {
 System.out.println ("Wert des Datenfeldes" +
 " in GenKlasse: " + t);
 }
}

class EinfacheKlasse2 extends GenKlasse<Integer>
{
 private String s = "Ich bin ein String";

Generizität 639

 public EinfacheKlasse2()
 {
 super (2);
 }

 public void methodeB()
 {
 System.out.println ("Wert des Datenfeldes" +
 " in EinfacheKlasse2: " + s);
 }
}

public class AbleitenTest3
{
 public static void main (String[] args)
 {
 // Die Klasse EinfacheKlasse2 kann nun ganz normal verwendet
 // und instantiiert werden. Es sind keine generischen
 // Eigenschaften mehr vorhanden.
 EinfacheKlasse2 refEinfach = new EinfacheKlasse2();
 refEinfach.methodeA();
 refEinfach.methodeB();

 // Wird die Referenz auf den Typ der Basisklasse gecastet, so
 // muss die Referenzvariable mit dem aktuellen Parameter
 // angelegt werden, mit dem die generische Klasse aktuell
 // parametrisiert wurde - in diesem Fall also Integer.
 GenKlasse<Integer> refGenInteger = refEinfach;
 refGenInteger.methodeA();

 // Oder es muss die Wildcard ? eingesetzt werden.
 GenKlasse<?> refGenUniversal = refEinfach;
 refGenUniversal.methodeA();
 }
}

Die Ausgabe des Programms ist:

Wert des Datenfeldes in GenKlasse: 2
Wert des Datenfeldes in EinfacheKlasse2: Ich bin ein String
Wert des Datenfeldes in GenKlasse: 2
Wert des Datenfeldes in GenKlasse: 2

17.2 Eigenständig generische Methoden

Eigenständig generische Methoden sind Methoden mit formalen Typ-Parametern,
wobei die Klasse, welche die Methode enthält, nicht generisch ist.

Klassenmethoden, Instanzmethoden und Konstruktoren können als
eigenständige generische Methoden in einer Klasse existieren, ohne
dass die Klasse selbst generisch ist.

640 Kapitel 17

Eigenständig generische Methoden können auch innerhalb eines Auf-
zählungstyps definiert werden. Ein Aufzählungstyp selbst kann jedoch
nicht generisch sein.

"Normale" generische Methoden wurden bereits bei der Klasse Punkt<T> in Kapitel
17.1.1 behandelt. Bei eigenständig generischen Methoden erfolgt die Deklaration
einer Klasse ohne einen formalen Typ-Parameter. Somit ist innerhalb des Klassen-
rumpfes kein formaler Typ-Parameter bekannt.

Bei der Deklaration eigenständig generischer Methoden steht die
Typ-Parameter-Sektion direkt vor dem Rückgabewert der Methode
bzw. direkt vor dem Klassennamen des Konstruktors, womit die dort
aufgeführten formalen Typ-Parameter für diese Methode bzw. den
Konstruktor bekannt gemacht werden.

Die allgemeine Notation einer generischen Instanz- oder Klassenmethode lautet:

modifieropt <T1, . . . , TN>
 returnTyp methodenName (Parameterlisteopt) throws-Klauselopt

bzw. für die Deklaration von Konstruktoren:

modifieropt <T1, . . . , TN>
 Klassenname (Parameterlisteopt) throws-Klauselopt

Das tiefgestellte opt gibt wiederum an, welche Elemente bei der Deklaration einer ge-
nerischen Methode optional sind. modifier steht stellvertretend für die gültigen Zu-
griffsmodifikatoren public, protected oder private. Bei der Deklaration gene-
rischer Instanz- oder Klassenmethoden steht modifier auch zusätzlich für die mög-
lichen Modifikatoren static, final und abstract.

Die Gültigkeit der durch die Typ-Parameter-Sektion bekannt gemach-
ten formalen Typ-Parameter bezieht sich nicht wie bei einer generi-
schen Klasse auf die gesamte Klasse, sondern nur auf die entspre-
chende Methode.

Das folgende Beispiel definiert die gewöhnliche Klasse EinfacheKlasse. In ihr ist
eine gewöhnliche Methode einfacheMethode() und eine eigenständig generische
Methode generischeMethode() definiert. Die eigenständig generische Methode
kann als Übergabeparameter eine Referenz auf ein Objekt eines beliebigen Typs
haben. Weiterhin besitzt diese Klasse einen eigenständig generischen Konstruktor,
der ebenfalls als Übergabeparameter eine Referenz auf ein Objekt eines beliebigen
Typs hat:

// Datei: EinfacheKlasse.java

public class EinfacheKlasse
{

Generizität 641

 private Integer datenfeld;

 // Eigenständig generischer Konstruktor.
 public <T> EinfacheKlasse (T parameter)
 {
 System.out.println ("Konstruktor: " + parameter);
 }

 // Herkömmliche Methode
 public void einfacheMethode (String s)
 {
 System.out.println ("Einfache Methode: " + s);
 }

 // Eigenständig generische Methode
 public <T> void generischeMethode (T para)
 {
 System.out.println ("Generische Methode: " + para);
 }

 public static void main (String[] args)
 {
 String stringRef = new String ("Ich bin ein String.");
 EinfacheKlasse ref = new EinfacheKlasse (stringRef);

 // Die herkömmliche Methode kann als aktuellen Parameter
 // nur Referenzen auf Objekte vom Typ String haben
 ref.einfacheMethode (stringRef);

 // Die generische Methode kann beispielsweise mit Referenzen
 // auf Objekte vom Typ String aufgerufen werden
 ref.generischeMethode (stringRef);

 // Oder die generische Methode wird mit Referenzen auf Objekte
 // von beliebigem Typ – hier z. B. Double - aufgerufen
 Double doubleRef = new Double (10.0);
 ref.generischeMethode (doubleRef);

 // Der Konstruktor kann auch mit einer Referenz auf ein
 // Objekt vom Typ java.util.Date aufgerufen werden.
 new EinfacheKlasse (new java.util.Date());
 }
}

Die Ausgabe des Programms ist:

Konstruktor: Ich bin ein String.
Einfache Methode: Ich bin ein String.
Generische Methode: Ich bin ein String.
Generische Methode: 10.0
Konstruktor: Mon Sep 18 16:30:48 CEST 2006

Üblicherweise setzt man jedoch eigenständig generische Methoden bei Hilfsklassen
ein, um ein und dieselbe Methode für verschiedene Typ-Parameter zu verwenden.
Mit anderen Worten, ein Algorithmus soll unabhängig vom Datentyp der Objekte
sein, auf denen er ausgeführt wird. Es soll hierzu nun die Klasse PunktUtils be-

642 Kapitel 17

trachtet werden. Diese Klasse definiert eine generische Klassenmethode tau-
sche(), mit deren Hilfe die Koordinaten zweier Punkte vertauscht werden können.
Es wird die Definition der Klasse Punkt<T> aus Kapitel 17.1.1 zugrunde gelegt:

// Datei: PunktUtils.java

class PunktUtils
{
 public static <T> void tausche (Punkt<T> p1, Punkt<T> p2)
 {
 T x = p1.getX();
 T y = p1.getY();
 p1.setX (p2.getX());
 p1.setY (p2.getY());
 p2.setX (x);
 p2.setY (y);
 }
}

Die Klasse TestPunkt2 legt zwei Objekte vom Typ Punkt<Float> an und übergibt
die Referenzen auf diese Objekte an die Methode tausche() der Klasse Punkt-
Utils. Danach werden zwei Objekte vom Typ Punkt<Integer> angelegt, deren
Referenzen ebenfalls an die Methode tausche() übergeben werden:

// Datei: TestPunkt2.java

public class TestPunkt2
{
 public static void main (String[] args)
 {
 Punkt<Float> floatPunkt1 = new Punkt<Float> (7.0f, 3.2f);
 Punkt<Float> floatPunkt2 = new Punkt<Float> (4.0f, 2.0f);

 System.out.println ("Erzeugte Float-Punkte:");
 System.out.println (floatPunkt1);
 System.out.println (floatPunkt2);

 // Vertauschen der Punkt-Koordinaten
 PunktUtils.tausche (floatPunkt1, floatPunkt2);
 System.out.println ("Nach dem Vertauschen:");
 System.out.println (floatPunkt1);
 System.out.println (floatPunkt2);
 Punkt<Integer> intPunkt1 = new Punkt<Integer> (4,2);
 Punkt<Integer> intPunkt2 = new Punkt<Integer> (1,9);

 System.out.println ("\nErzeugte Integer-Punkte:");
 System.out.println (intPunkt1);
 System.out.println (intPunkt2);

 // Vertauschen der Punkt-Koordinaten
 PunktUtils.tausche (intPunkt1, intPunkt2);
 System.out.println ("Nach dem Vertauschen:");
 System.out.println (intPunkt1);
 System.out.println (intPunkt2);
 }
}

Generizität 643

Hier die Ausgabe des Programms:

Erzeugte Float-Punkte:
x = 7.0, y = 3.2
x = 4.0, y = 2.0
Nach dem Vertauschen:
x = 4.0, y = 2.0
x = 7.0, y = 3.2

Erzeugte Integer-Punkte:
x = 4, y = 2
x = 1, y = 9
Nach dem Vertauschen:
x = 1, y = 9
x = 4, y = 2

Der Versuch, die Methode tausche() mit Referenzen auf Objekte von verschiede-
nem Typ aufzurufen, wird vom Compiler mit einer Fehlermeldung abgelehnt. Das hat
einen einfachen Grund:

Ein Typ-Parameter T steht für genau einen Typ. Genau ein Typ be-
deutet, dass T nicht gleichzeitig zwei oder mehr Typen repräsentieren
kann.

Daher ist der Aufruf von

PunktUtils.tausche (intPunkt1, floatPunkt1);

nicht zulässig, weil der formale Typ-Parameter T der Klasse Punkt<T> hier gleich-
zeitig den Typ Integer und den Typ Float repräsentieren soll, was nicht geht!

Eigenständig generische Methoden mit einem formalen Typ-Para-
meter T können mit unterschiedlichen Datentypen aktuell parametri-
siert werden, wodurch eine mehrfache Implementierung der Methode
entfällt.

17.3 Bounded Typ-Parameter und Wildcards

Ein Typ-Parameter kann eingeschränkt werden durch den Einsatz eines so genann-
ten Bounded Typ-Parameters T extends UpperBound (siehe Kap. 17.3.1) oder
durch den Einsatz einer Wildcard. Es werden drei Arten von Wildcards unter-
schieden: die Unbounded Wildcard ? (siehe Kap. 17.3.2), die Upper Bound Wildcard
? extends UpperBound (siehe Kap. 17.3.3) und die Lower Bound Wildcard ?
super LowerBound (siehe Kap. 17.3.4).

644 Kapitel 17

17.3.1 Der Bounded Typ-Parameter

Die Klasse Punkt<T> kann mit jedem beliebigen Typ-Parameter aktuell parametri-
siert werden, also auch mit den Datentypen Object oder String. Das Anlegen
eines Objektes wie im folgenden Beispiel:

Punkt<String> quatsch = new Punkt<String>("eins", "zweidrei");

ist syntaktisch völlig korrekt, aber verfehlt den Sinn der Klasse Punkt<T>. Die Koor-
dinaten eines Punktes sollen stets numerisch sein. Das obige Beispiel könnte da-
durch verbessert werden, indem man erzwingt, dass der formale Typ-Parameter nur
durch Referenztypen ersetzt werden kann, die Zahlen repräsentieren. Dies wird
dadurch erreicht, indem als formaler Typ-Parameter ein Bounded Typ-Parameter T
extends UpperBound verwendet wird:

public class Punkt<T extends Number>
{
 // hier ändert sich nichts
}

Damit können nur noch Punkte angelegt werden, deren Koordinaten durch Objekte
der Klasse Number oder deren Subklassen repräsentiert werden. Das Anlegen eines
Objektes vom Typ Punkt<String> ist damit nicht mehr möglich und wird durch den
Compiler unterbunden.

Bei der Angabe eines Bounded Typ-Parameters für einen formalen
Typ-Parameter ersetzt der Compiler mit Hilfe der Type Erasure-Tech-
nik den formalen Typ-Parameter T durch den Typ, der mittels des
Bounded Typ-Parameters angegeben wird. So werden bei der Über-
setzung der Klasse

class Punkt<T extends Number>

alle Vorkommen von T durch Number ersetzt.

Die generische Klasse Punkt<T extends Number> darf also nur mit dem Typ
Number oder einem von Number abgeleiteten Typ aktuell parametrisiert werden. Das
Bild 17-5 zeigt einen Ausschnitt aus der Klassenhierarchie der Klasse Number:

Object

Number String

Integer Double.

Bild 17-5 Ausschnitt aus der Klassenhierarchie der Klasse Number

Generizität 645

Mit einem Bounded Typ-Parameter kann der zulässige Wertebereich
von Typ-Parametern auf einen Teilbaum einer Klassenhierarchie ein-
geschränkt werden.

Das folgende Beispiel zeigt die Verwendung des Bounded Typ-Parameters. Die
Klasse Punkt2 kann nun nur noch mit Parametern vom Typ Number oder dessen
Subtypen aktuell parametrisiert werden:

// Datei: Punkt2.java

public class Punkt2<T extends Number>
{
 // Ein Punkt hat 2 Koordinaten vom Typ T
 private T x;
 private T y;

 // Der Konstruktor erwartet 2 Parameter vom Typ T
 public Punkt2 (T x, T y)
 {
 this.x = x;
 this.y = y;
 }

 // get- und set-Methoden für die Koordinaten
 public T getX()
 {
 return x;
 }

 public T getY()
 {
 return y;
 }

 public void setX (T x)
 {
 this.x = x;
 }

 public void setY (T y)
 {
 this.y = y;
 }

 public String toString()
 {
 return ("x = " + x + ", y = " + y);
 }
}

Die Klasse TestPunkt4 legt nun Objekte der aktuell parametrisierten Klassen
Punkt2<Integer>, Punkt2<Double> und Punkt2<Number> an:

646 Kapitel 17

// Datei: TestPunkt4.java

public class TestPunkt4
{
 public static void main (String[] args)
 {
 Punkt2<Integer> ip = new Punkt2<Integer> (4, 2);
 System.out.println (ip);

 Punkt2<Double> dp = new Punkt2<Double> (1.0, 2.0);
 System.out.println (dp);

 Punkt2<Number> np = new Punkt2<Number> (5, 6);
 System.out.println (np);
 }
}

Die Ausgabe des Programms ist:

x = 4, y = 2
x = 1.0, y = 2.0
x = 5, y = 6

Obwohl die Klasse Number abstrakt ist, kann ein Objekt vom Typ Punkt2<Number>
angelegt werden. Dies funktioniert aber nur deshalb, weil der Compiler die überge-
benen int-Werte beim Konstruktoraufruf automatisch in ein Objekt vom Typ Inte-
ger verpackt. Der Versuch, ein Objekt vom Typ Punkt2<Object> anzulegen, wird
vom Compiler allerdings abgelehnt, da die aktuellen Typ-Parameter vom Typ Num-
ber sein müssen.

Anbei noch ein Hinweis zu den Grenzen generischer Klassen: In der Klasse
Punkt2<T extends Number> ist es nach wie vor nicht möglich, eine Methode
verschiebe() zu implementieren:

public T verschiebe (T deltaX, T deltaY)
{
 x = x + deltaX;
 y = y + deltaY;
}

Durch die Type Erasure-Technik wird bei Einsatz des Bounded Typ-Parameters T
extends Number zwar der formale Typparameter T durch den Typ Number ersetzt,
aber auch für den Typ Number ist der +-Operator nicht definiert.

17.3.2 Die Unbounded Wildcard ?

In den Kapiteln 17.1 und 17.1.4 wurde gezeigt, dass es für aktuell parametrisierte
Klassen keine Vererbungshierarchie gibt, auch wenn zwischen den aktuellen Para-
metern eine Vererbungsbeziehung besteht. Als Beispiel hierfür sei nochmals die Ver-
erbungsbeziehung zwischen Number und Integer genannt. Obwohl Integer von
Number ableitet, ist der Typ Punkt<Number> nicht der Basistyp von Punkt<In-

Generizität 647

teger>. Damit kann eine Referenzvariable vom Typ Punkt<Number> nicht auf ein
Objekt vom Typ Punkt<Integer> zeigen.

Um eine Referenzvariable definieren zu können, die auf Objekte belie-
biger aktuell parametrisierter Klassen eines generischen Typs zeigen
kann, wurde die Wildcard ? eingeführt.

Die Referenzvariable

Punkt<?> ref;

kann auf Objekte aktuell parametrisierter Klassen des generischen Typs Punkt<T>
zeigen. Das ? wird auch als Unbounded127 Wildcard bezeichnet, weil es keine Ein-
schränkungen gibt, durch welchen konkreten Typ die Wildcard ? ersetzt werden
kann.

Die Wildcard ? steht im Gegensatz zu einem formalen Typ-Parameter
T nicht stellvertretend für genau einen Typ, sondern für alle möglichen
Typen. So kann eine Referenzvariable vom Typ Punkt<?> auf Ob-
jekte aller aktuell parametrisierten Klassen des generischen Typs
Punkt<T> zeigen.

Hier ein Beispiel:

Punkt<?> ref = new Punkt<Integer> (1, 2);
ref = new Punkt<Double> (2.0, 7.0);

Es ist nicht erlaubt, die Wildcard ? in der Typ-Parameter-Sektion einer
generischen Klasse, Schnittstelle oder Methode anzugeben. Die Wild-
card ? darf nur beim Anlegen einer Referenzvariablen oder beim
Anlegen eines Arrays aus Referenzen auf Objekte generischer
Typen verwendet werden.

Im folgenden Beispielprogramm TestPunkt3 wird die Verwendung der Unbounded
Wildcard ? gezeigt. Es wird dort ein Array-Objekt vom Typ Punkt<?> angelegt, in
dem Referenzen auf Objekte aktuell parametrisierter Klassen des generischen Typs
Punkt<T> hinterlegt werden können, wobei der formale Typ-Parameter T bei der
Erzeugung der Objekte durch beliebige aktuelle Typ-Parameter ersetzt wird. Danach
werden die im Array enthaltenen Referenzen in einer for-Schleife ausgelesen und
einer Referenzvariablen vom Typ Punkt<?> zugewiesen. Es wird wiederum die De-
finition der Klasse Punkt<T> aus Kapitel 17.1 zugrunde gelegt. Hier das Programm:

// Datei: TestPunkt3.java

public class TestPunkt3
{

127 Engl. für unbegrenzt.

Vorsicht!

648 Kapitel 17

 public static void main (String[] args)
 {
 // Anlegen dreier Punkt<T>-Objekte, je eines mit dem
 // aktuellen Parameter Integer, Double und Float.
 Punkt<Integer> ip = new Punkt<Integer> (4, 2);
 Punkt<Double> dp = new Punkt<Double> (1.0, 2.0);
 Punkt<Float> fp = new Punkt<Float> (7.0f, 3.2f);

 // Anlegen eines Arrays aus Referenzen auf Objekte vom Typ
 // Punkt<?>. Die Verwendung der Wildcard ist dabei zwingend
 // vorgeschrieben.
 Punkt<?>[] arr = new Punkt<?> [3];

 // Füllen des Arrays
 arr [0] = ip;
 arr [1] = dp;
 arr [2] = fp;

 System.out.println ("\nInhalt des Arrays ist:");
 for (Punkt<?> element : arr)
 {
 System.out.println (element);
 }
 }
}

Hier die Ausgabe des Programms:

Inhalt des Arrays ist:
x = 4, y = 2
x = 1.0, y = 2.0
x = 7.0, y = 3.2

Das Beispiel verdeutlicht zudem die in Kapitel 17.1.5 aufgeführte Restriktion für das
Anlegen von Arrays generischer Typen. Diese Einschränkung besagt, dass beim An-
legen eines Arrays weder ein formaler noch ein aktueller Typ-Parameter vorkommen
darf. So ist z. B. die folgende Anweisung falsch:

Punkt<Integer>[] fehler = new Punkt<Integer>[3]; // Fehler!

Beim Erzeugen eines Arrays, das Referenzen auf Objekte aktuell
parametrisierter Klassen eines generischen Typs enthalten soll, muss
der Typ-Parameter durch die Unbounded Wildcard ? ersetzt werden:

Punkt<?>[] richtig = new Punkt<?> [3]; // OK!

17.3.3 Die Upper Bound Wildcard

Die Upper Bound Wildcard ? extends UpperBound. stellt sicher, dass nur Klas-
sen einer Klassenhierarchie als Typ-Parameter verwendet werden können, die von
einer bestimmten Klasse abgeleitet sind.

Generizität 649

Die Verwendung einer Upper Bound Wildcard soll mit Hilfe der Klasse Hilfsklasse
und einer Klassenmethode methode() erklärt werden. Die Klassenmethode me-
thode() hat einen formalen Übergabeparameter vom Typ der generischen Klasse
GenKlasse<T> aus den vorhergehenden Kapiteln. Ferner soll die Klassenhierarchie
aus Bild 17-6 als Betrachtungsgrundlage dienen. Der Typ-Parameter T kann nun mit
Hilfe der Upper Bound Wildcard auf Subtypen der Klasse A einschränkt werden:

public class Hilfsklasse
{
 public static void methode (GenKlasse<? extends A> ref)
 {
 // Nicht im Fokus.
 }
}

Die Klassenmethode methode() akzeptiert damit Referenzen auf Objekte vom Typ
GenKlasse<T>, wobei für den formalen Typ-Parameter T entweder der Typ A oder
Subtypen von A erlaubt sind. Es werden also Referenzen auf Objekte vom Typ der
grau hinterlegten Klassen aus Bild 17-6 akzeptiert.

Object

A D

B C.

Bild 17-6 Klassenhierarchie der erlaubten Typen

Die Upper Bound Wildcard <? extends UpperBound> legt eine
obere Schranke für einen formalen Typ-Parameter fest.

17.3.4 Die Lower Bound Wildcard

Die Lower Bound128 Wildcard ? super LowerBound kann nur in Zusammenhang
mit der Unbounded Wildcard ? eingesetzt werden. Sie dient dazu, den Wertebereich
von zulässigen aktuellen Typ-Parametern in der Klassenhierarchie nach unten einzu-
schränken. Das folgende Beispiel verdeutlicht den Zusammenhang.

128 Engl. für untere Grenze.

650 Kapitel 17

Es soll die Definition einer generischen Klasse GenKlasse<T> betrachtet werden:

public class GenKlasse<T>
{
 // Nicht von Interesse
}

Weiterhin seien die gewöhnlichen Klassen A, B, C und D definiert, wobei die Verer-
bungshierarchie aus Bild 17-7 zugrunde gelegt wird.

Object

A D

B C.

Bild 17-7 Zugrunde gelegte Klassenhierarchie

In einer weiteren Klasse Hilfsklasse sei nun eine Klassenmethode methode()
definiert, die einen formalen Übergabeparameter vom Typ der generischen Klasse
GenKlasse<T> hat:

public class Hilfsklasse
{
 public static void methode (GenKlasse<? super C> ref)
 {
 // Nicht von Interesse
 }
}

Als aktuelle Parameter der Methode methode() kommen nur Referenzen vom Typ
GenKlasse<Parameter> in Frage, wobei der aktuelle Typ-Parameter Parameter
vom Typ C oder einem Supertyp von C ist. Somit können nur die in Bild 17-7 grau
eingefärbten Typen – also C, A und Object – als aktueller Typ-Parameter verwendet
werden. Bei allen anderen Typen gibt der Compiler eine Fehlermeldung aus.

Die Lower Bound Wildcard <? super C> deckt die Klasse C und alle
Klassen ab, von denen C direkt oder indirekt abgeleitet ist. Es wird
damit eine untere Schranke für den Wertebereich eines formalen Typ-
Parameters definiert.

Generizität 651

Im Folgenden einige zulässige und unzulässige Aufrufe von methode():

Hilfsklasse.methode (new GenKlasse<C>()); // OK!
Hilfsklasse.methode (new GenKlasse<A>()); // OK!
Hilfsklasse.methode (new GenKlasse<D>()); // Fehler!
Hilfsklasse.methode (new GenKlasse<Object>()); // OK!
Hilfsklasse.methode (new GenKlasse()); // Fehler!

Die Lower Bound Wildcard darf nicht in der Typparameter-Sektion
einer generischen Klasse verwendet werden.

Es ist deshalb unzulässig eine generische Klasse wie folgt zu definieren:

public class GenKlasse<? super C>
{

}

Die Lower Bound Wildcard darf deshalb wie die Unbounded Wildcard nur bei der
Definition von Referenzvariablen verwendet werden.

17.4 Generische Schnittstellen

Genauso wie Klassen können auch Schnittstellen generisch sein. Eine allgemeingül-
tige Notation für die Definition generischer Schnittstellen lautet:

interface GenerischeSchnittstelle<T1, . . . , TN>
 (extends I1, . . . , IN)opt

Beispielsweise ist die Schnittstelle GenSchnittstelle generisch:

// Datei: GenSchnittstelle.java

public interface GenSchnittstelle<T>
{
 public void methode1 (T param);
 public void methode2();
}

Wie zu erkennen ist, wird der formale Typ-Parameter T innerhalb der generischen
Schnittstelle genauso verwendet wie innerhalb einer Klassendefinition.

Implementiert nun eine Klasse eine generische Schnittstelle, so gibt es dafür zwei
Möglichkeiten:

• Die Klasse implementiert die Schnittstelle, wobei die in der Typ-Parameter-Sektion
der Schnittstelle definierten formalen Typ-Parameter durch aktuelle Typ-Parame-
ter ersetzt werden müssen. Damit werden auch die formalen Typ-Parameter in
den Methodenköpfen der Schnittstelle durch die aktuellen Typ-Parameter ersetzt.

652 Kapitel 17

• Die zweite Möglichkeit besteht darin, die Schnittstelle zu implementieren, aber
ohne die formalen Typ-Parameter durch aktuelle Typ-Parameter zu ersetzen. Da-
mit behalten die Methodenköpfe der Schnittstelle ihre formalen Typ-Parameter bei
und die Klasse, welche die Schnittstelle implementiert, wird automatisch gene-
risch. Daher muss die Klasse den formalen Typ-Parameter in ihrer Typ-Parame-
ter-Sektion dem Compiler bekannt machen.

Beide Möglichkeiten werden im Folgenden genauer betrachtet.

17.4.1 Mit Ersetzung der formalen Typ-Parameter

In diesem Fall müssen alle formalen Typ-Parameter, welche für die Schnittstelle de-
finiert sind, durch aktuelle Typ-Parameter ersetzt werden. Betrachten wir hierfür das
Beispiel der oben deklarierten Schnittstelle GenSchnittstelle<T> mit einem for-
malen Typ-Parameter T. Eine Klasse Test implementiert nun diese Schnittstelle mit
dem aktuellen Typ-Parameter Integer, indem in der Klassendeklaration der Zusatz

implements GenSchnittstelle<Integer>

angefügt wird. Die Klasse muss nun alle Methodenköpfe, welche die Schnittstelle
enthält – hier also den Methodenkopf von methode1() – mit dem aktuellen Typ-
Parameter Integer implementieren:

// Datei: Test.java

public class Test implements GenSchnittstelle<Integer>
{
 private Integer ref;

 public Test (Integer i)
 {
 ref = i;
 }

 public void methode1 (Integer param)
 {
 System.out.println ("Aufruf von methode1() mit: " + param);
 }

 public void methode2()
 {
 System.out.println ("Inhalt von ref: " + ref);
 }

 public static void main (String[] args)
 {
 // Die Klasse Test wird wie eine
 // herkömmliche Java-Klasse instantiiert.
 Test test = new Test (5);

 test.methode1 (new Integer (1));
 test.methode2();

Generizität 653

 // Es besteht auch die Möglichkeit, eine Referenz-
 // variable vom Typ GenSchnittstelle<Integer> anzulegen
 // und dieser eine Referenz vom Typ Test zuzuweisen.
 GenSchnittstelle<Integer> ref = new Test (1);
 ref.methode1 (new Integer (5));
 }
}

Die Ausgabe des Programms ist:

Aufruf von methode1() mit: 1
Inhalt von ref: 5
Aufruf von methode1() mit: 5

Wie dem obigen Beispiel zu entnehmen ist, wird die Klasse Test wie eine herkömm-
liche Klasse behandelt. Das liegt daran, dass sie keine generische, sondern eine mit
dem Typ-Parameter Integer aktuell parametrisierte Schnittstelle implementiert.

Implementiert eine Klasse eine generische Schnittstelle und ersetzt
bei der Implementierung alle in der Typ-Parameter-Sektion der
Schnittstelle auftretenden formalen Typ-Parameter durch aktuelle Typ-
Parameter, so besitzt die Klasse keine generischen Eigenschaften
mehr.

17.4.2 Ohne Ersetzung der formalen Typ-Parameter

Implementiert eine Klasse eine generische Schnittstelle, ohne dass die formalen Typ-
Parameter durch aktuelle Typ-Parameter ersetzt werden, so wird die Klasse selbst
generisch. Mit anderen Worten, die Klasse implementiert alle Methoden, welche die
generische Schnittstelle deklariert, und verwendet bei der Implementierung den
formalen Typ-Parameter. Der Compiler erzwingt, dass die Klasse, welche die ge-
nerische Schnittstelle ohne die Ersetzung des formalen Typ-Parameters implemen-
tiert, selbst generisch wird und in ihrer Typ-Parameter-Sektion den verwendeten for-
malen Typ-Parameter bekannt macht. Der Methodenkopf der zu implementierenden
Methode muss mit der Deklaration in der Schnittstelle übereinstimmen. Innerhalb des
Klassenrumpfes können außerdem die in der Typ-Parameter-Sektion deklarierten
formalen Typ-Parameter nach Belieben verwendet werden.

Im Folgenden wird das obige Beispiel modifiziert. Die Klasse Test2 implementiert
nun die generische Schnittstelle GenSchnittstelle<T>, ohne jedoch den forma-
len Typ-Parameter T durch einen aktuellen Typ-Parameter zu ersetzen. Dadurch wird
die Klasse Test2 selbst generisch und innerhalb ihres Klassenrumpfes kann der for-
male Typ-Parameter T – dieser wird ja durch ihre Typ-Parameter-Sektion bekannt
gemacht – beliebig verwendet werden:

// Datei: Test2.java

// Die Klasse Test2 macht durch ihre Typ-Parameter-Sektion den
// formalen Typ-Parameter T dem Compiler bekannt.
public class Test2<T> implements GenSchnittstelle<T>
{

654 Kapitel 17

 // Definition einer generischen Referenzvariablen
 private T formalTypRef;

 public Test2 (T t)
 {
 formalTypRef = t;
 }

 public void methode1 (T param)
 {
 System.out.println ("Aufruf von methode1() mit: " + param);
 }

 public void methode2()
 {
 System.out.println ("Inhalt von formalTypRef: "
 + formalTypRef);
 }

 public static void main (String[] args)
 {
 // Instantiierung mit aktuellem Typ-Parameter Integer
 Test2<Integer> testRef1 = new Test2<Integer> (5);
 testRef1.methode1 (new Integer (1));
 testRef1.methode2();
 // Instantiierung mit aktuellem Typ-Parameter String
 Test2<String> testRef2 =
 new Test2<String> ("String-Objekt");
 testRef2.methode1 ("Ich bin ein String.");
 testRef2.methode2();
 }
}

Die Ausgabe des Programms ist:

Aufruf von methode1() mit: 1
Inhalt von formalTypRef: 5
Aufruf von methode1() mit: Ich bin ein String.
Inhalt von formalTypRef: String-Objekt

17.4.3 Schnittstellen und Bounds

Im Kapitel 17.3.1 wurde der Bounded Typ-Parameter T extends UpperBound ein-
geführt. Dabei wurde der Platzhalter UpperBound durch eine konkrete Klasse er-
setzt, um den Gültigkeitsbereich eines formalen Typ-Parameters T nach oben zu be-
schränken. Wird eine generische Klasse beispielsweise mit folgender Typ-Parame-
ter-Sektion deklariert:

public class GenKlasse<T extends Number>

so kann die Klasse GenKlasse nur mit dem aktuellen Typ-Parameter vom Typ Num-
ber oder dessen Subklassen aktuell parametrisiert werden. Die Klasse Number stellt
damit die obere Schranke des Gültigkeitsbereiches des formalen Typ-Parameters T
dar. Die Klasse Number ist damit die Upper Bound des Typ-Parameters T.

Generizität 655

Die Definition der Bound für formale Typ-Parameter kann nun um die Verwendung
von generischen Schnittstellen erweitert werden. In den bisherigen Beispielen wurde
dabei die Upper Bound nur durch eine Klasse repräsentiert, so z. B.

T extends Number // Number ist die Upper Bound

Man sagt auch, dass der formale Typ-Parameter T an die Klasse Number gebunden
ist. Dies bedeutet, dass als aktueller Typ-Parameter nur die Klasse Number selbst
oder eine von Number abgeleitete Klasse eingesetzt werden kann. Ein formaler Typ-
Parameter kann zusätzlich an beliebig viele Schnittstellen-Typen gebunden werden:

Eine Bound kann aus einer Klasse Klasse und beliebig vielen
Schnittstellen I1 bis IN bestehen. Die Verknüpfung der einzelnen
Bounds findet über den logischen UND-Operator & statt. Die Dekla-
ration einer solchen Bound für einen formalen Typ-Parameter T lautet
dann:

T extends Klasse & I1 & I2 & . . . & IN

Diese Notation hat zur Konsequenz, dass der aktuelle Typ-Parameter,
der den formalen Typ-Parameter T ersetzt,

• von der Klasse Klasse ableiten muss

• und ferner alle Schnittstellen I1 bis IN implementieren muss,

damit der Compiler die Ersetzung des formalen Typ-Parameters durch
den aktuellen Typ-Parameter zulässt.

Es darf nur eine einzige Klasse bei der Upper Bound angegeben werden. Dies er-
scheint auch logisch, denn sonst müsste eine Klasse, welche an die Stelle des for-
malen Typ-Parameters treten soll, von mehr als einer Klasse ableiten. Und bekann-
termaßen wird Mehrfachvererbung – also das Ableiten von mehr als einer Klasse – in
Java nicht unterstützt. Dahingegen ist die Anzahl der Schnittstellen, welche die
Bound bilden, nicht begrenzt, weil eine Klasse eine beliebige Anzahl von Schnitt-
stellen implementieren kann.

Es ist nicht zwingend notwendig, dass die Bound durch eine Klasse
und eine beliebige Anzahl von Schnittstellen gebildet wird. Sie kann
auch nur aus Schnittstellen bestehen. Dabei muss bei einer Bound
stets das Schlüsselwort extends verwendet werden. Angenommen,
I1 und I2 sind zwei Schnittstellen und Klasse eine Klasse, dann
sind folgende Bounds gültig:

• T extends Klasse

• T extends I1 bzw. T extends I2

• T extends I1 & I2

• T extends Klasse & I1 bzw. T extends Klasse & I2

• T extends Klasse & I1 & I2

656 Kapitel 17

Das folgende Beispiel soll den Zusammenhang nochmals verdeutlichen. Es sind dort
die beiden Schnittstellen I1 und I2 und die vier Klassen A, B, C und D definiert. Es
wird die in Bild 17-8 gezeigte Hierarchie zugrunde gelegt.

A

I1

I2

B D C

<<interface>> <<interface>>

Bild 17-8 Zugrunde gelegte Vererbungs- und Realisierungsbeziehungen

Weiterhin existiert eine generische Klasse UpperBound, die einen formalen Typ-Pa-
rameter T mit der Bound

T extends A & I1 & I2

besitzt. In der Testklasse UpperBoundTest werden dann die möglichen Instantiie-
rungsversuche der Klasse UpperBound durchgespielt, um zu erläutern, wie sich die
für den Typ-Parameter T definierte Upper Bound auf die Instantiierung auswirkt:

// Datei: UpperBoundTest.java

interface I1 {}

interface I2 {}

class A {}

class B extends A {}

class C implements I1, I2 {}

class D extends B implements I1, I2 {}

class UpperBound<T extends A & I1 & I2>
{
 public UpperBound (T param)
 {
 // Die Methode getClass() ist in der Klasse Object definiert
 // und gibt eine Referenz auf ein Objekt vom Typ Class<T>
 // zurück. Über dieses Objekt kann mit Hilfe der Methode
 // getName() der Klassenname des Objektes erfragt werden.
 String name = param.getClass().getName();
 System.out.println ("Mit aktuellem Typ-Parameter " + name +
 " instantiiert!");
 }
}

Generizität 657

public class UpperBoundTest
{
 public static void main (String[] args)
 {
 // Klasse A implementiert nicht die Schnittstellen I1 und I2
 // new UpperBound<A> (new A());

 // Klasse B leitet von A ab, implementiert
 // aber nicht die geforderten Schnittstellen
 // new UpperBound (new B());

 // Klasse C implementiert die Schnittstellen
 // leitet aber nicht von A ab.
 // new UpperBound<C> (new C());

 // Die Klasse D leitet direkt von der Klasse B und damit
 // indirekt von der Klasse A ab. Sie implementiert zusätzlich
 // die geforderten Schnittstellen I1 und I1.
 new UpperBound<D> (new D());
 }
}

Die Ausgabe des Programms ist:

Mit aktuellem Typ-Parameter D instantiiert!

Durch das Type Erasure werden beim Übersetzen einer generischen
Klasse die formalen Typ-Parameter, die eine Upper Bound besitzen,
durch den ersten Typ der Upper Bound ersetzt. So werden bei

class GenKlasse<T extends Klasse & I1>

alle Vorkommen von T durch Klasse und bei

class GenKlasse<T extends I1 & I2>

alle Vorkommen von T durch I1 ersetzt.

17.4.4 Vererbungsbeziehung zwischen generischen Schnittstellen

Generische Schnittstellen können – wie herkömmliche Schnittstellen auch – Verer-
bungshierarchien aufbauen. Dabei gelten die gleichen Regeln, wie sie schon bei der
Beschreibung von Vererbungsbeziehungen bei generischen Klassen aufgestellt wur-
den (siehe Kap. 17.1.6). Es werden somit nur die Kernpunkte aufgelistet, die beim
Aufbau von Vererbungshierarchien bei generischen Schnittstellen zu beachten sind:

• Wird eine generische Schnittstelle von einer anderen generischen Schnittstelle
abgeleitet, so muss der formale Typ-Parameter der Schnittstelle, von der abge-
leitet wird, entweder durch einen aktuellen Typ-Parameter

 GenInterface2<T> extends GenInterface1<AktuellerTyp>

658 Kapitel 17

 oder durch den formalen Typ-Parameter der abgeleiteten Schnittstelle

 GenInterface2<T> extends GenInterface1<T>

 ersetzt werden.

• Im Folgenden wird der Fall betrachtet, dass eine generische Schnittstelle von
einer nicht generischen Schnittstelle ableitet:

 interface I1
 {
 public void methode1();
 }

 interface I2<T> extends I1
 {
 public void methode2 (T t);
 }

Eine Klasse, welche die Schnittstelle I2 implementiert, muss dann eine Implemen-
tierung der Methoden methode1() und methode2() bereitstellen. Der formale
Typ-Parameter der generischen Schnittstelle I2 kann bei der Implementierung
durch einen aktuellen (siehe Kap. 17.4.1) oder einen formalen Typ-Parameter (sie-
he Kap. 17.4.2) ersetzt werden.

• Leitet eine herkömmliche Schnittstelle von einer generischen Schnittstelle ab, so
muss bei der Ableitung der formale Typ-Parameter durch einen aktuellen Typ-
Parameter ersetzt werden:

 interface I2 extends I1<KonkreteKlasse>
 {
 // Hier nicht interessant
 }

 Die generischen Eigenschaften der Schnittstelle I1 gehen auch hier verloren.

Wie auch bei der Ableitung von generischen Klassen muss bei der Ersetzung der for-
malen Typ-Parameter auf die Bounds – das heißt auf die für die aktuellen Typ-Para-
meter definierten Schranken – geachtet werden. Die Ersetzung der formalen Typ-
Parameter durch aktuelle Typ-Parameter muss somit natürlich innerhalb der zuläs-
sigen Schranken erfolgen.

17.4.5 Die generische Schnittstelle Comparable

Als Beispiel für eine generische Schnittstelle aus der Java-Klassenbibliothek soll die
Schnittstelle Comparable<T> aus dem Paket java.lang betrachtet werden. Diese
Schnittstelle kann von allen Klassen implementiert werden und ermöglicht dann,
dass Arrays, bestehend aus Referenzen auf Objekte dieser Klassen, durch die Klas-
senmethode

public static void sort (Object[] a)

Generizität 659

der Klasse Arrays aus dem Paket java.util sortiert werden können. Die Im-
plementierung der generischen Schnittstelle Comparable<T> stellt sicher, dass alle
Objekte eine bestimmte Vergleichsoperation unterstützen. Die generische Schnitt-
stelle Comparable<T> hat den folgenden Aufbau:

public interface Comparable<T>
{
 public int compareTo (T o);
}

Sortieren setzt voraus, dass Elemente, die sortiert werden sollen, ein Merkmal ha-
ben, für das eine Ordnung besteht. Eine Ordnung liegt dann vor, wenn für ein Merk-
mal die Vergleichsoperationen ==, !=, <, <=, >= und > existieren. Bei Objekten geht
es letztendlich immer darum, wie Objekte miteinander verglichen werden und welche
Datenfelder für eine größer-, kleiner- und gleich-Entscheidung herangezogen werden
müssen. Werden Strings miteinander verglichen, so wird zumeist ein lexikalischer
Vergleich herangezogen, sollen jedoch beliebige Objekte miteinander verglichen
werden, so stellt sich die Frage, nach welchen Datenfeldern die Objekte zu ver-
gleichen sind.

Die Schnittstelle Comparable<T> wird bereits von allen Wrapper-Klassen wie Byte,
Character, Double, Integer usw. implementiert. Damit können also Arrays aus
Referenzen auf Objekte dieser Klassen schon automatisch mit der oben genannten
sort()-Methode sortiert werden. Hierzu ein Beispielprogramm zur Sortierung eines
Integer-Arrays:

// Datei: IntegerSort.java

import java.util.Arrays;

public class IntegerSort
{
 public static void main (String[] args)
 {
 Integer[] arr = new Integer [4];
 arr [0] = new Integer (7);
 arr [1] = new Integer (3);
 arr [2] = new Integer (5);
 arr [3] = new Integer (1);

 System.out.println ("Vor Sortierung:");
 System.out.println (arr [0] + "\n" + arr [1] + "\n" + arr [2]
 + "\n" + arr [3]);

 Arrays.sort (arr);

 System.out.println ("Nach Sortierung:");
 System.out.println (arr [0] + "\n" + arr [1] + "\n" + arr [2]
 + "\n" + arr [3]);
 }
}

660 Kapitel 17

Die Ausgabe des Programms ist:

Vor Sortierung:
7
3
5
1
Nach Sortierung:
1
3
5
7

Damit die Methode sort() der Klasse Arrays ein übergebenes Array sortieren
kann, muss das Array als Elemente Referenzen auf Objekte enthalten, deren Klas-
sen die Schnittstelle Comparable<T> implementieren. Wie schon erwähnt, imple-
mentiert die Klasse Integer die Schnittstelle Comparable<T>. Die Deklaration der
Klasse Integer hat folgendes Aussehen:

public final class Integer extends Number
 implements Comparable<Integer>

Dadurch, dass die Schnittstelle Comparable mit dem aktuellen Typ-Parameter
Integer implementiert wird, kann zur Übersetzungszeit vom Compiler sichergestellt
werden, dass die Implementierung der Methode compareTo() für die Klasse Inte-
ger auch nur Objekte vom Typ Integer vergleichen kann. Der folgende Codeaus-
schnitt zeigt die Implementierung der Methode compareTo() für die Klasse Inte-
ger:

public int compareTo (Integer anotherInteger)
{
 int thisVal = this.value;
 int anotherVal = anotherInteger.value;
 return (thisVal < anotherVal ? -1 :
 (thisVal == anotherVal ? 0 : 1));
}

Die Methode public int compareTo (Integer o) hat die Aufgabe, das aktu-
elle Objekt, für das die Methode aufgerufen wird, mit dem Objekt, dessen Referenz
übergeben wurde, zu vergleichen. Dabei sind folgende Rückgabewerte zu erwarten:

• Ist das Objekt, dessen compareTo()-Methode aufgerufen wird, kleiner als das
übergebene, so wird –1 zurückgegeben.

• Ist das Objekt, dessen compareTo()-Methode aufgerufen wird, gleich mit dem
übergebenen, so wird 0 zurückgegeben.

• Ist das Objekt, dessen compareTo()-Methode aufgerufen wird, größer als das
übergebene, so wird 1 zurückgegeben.

Generizität 661

Sollen nun Objekte selbst geschriebener Klassen von der sort()-
Methode der Klasse Arrays sortiert werden, so müssen sie lediglich
die Schnittstelle Comparable<T> implementieren und in der Methode
compareTo() die entsprechenden Rückgabewerte liefern.

Dies soll an nachfolgendem Beispiel gezeigt werden. Die Klasse Artikel hat die
Datenfelder artNr und name. Die Instanzen der Klasse Artikel sollen nach dem
Datenfeld name sortiert werden, wobei Groß- und Kleinschreibung zu ignorieren ist.
Damit ein Array von Artikeln sortiert werden kann, muss lediglich die Klasse Ar-
tikel die Schnittstelle Comparable<Artikel> implementieren, wie im folgenden
Programm zu sehen ist.

// Datei: Vergleich.java

import java.util.*;

class Artikel implements Comparable<Artikel>
{
 private String artNr;
 private String name;

 public Artikel (String artNr, String name)
 {
 this.artNr = artNr;
 this.name = name;
 }

 public int compareTo (Artikel artikel)
 {
 // Die Methode compareToIgnoreCase() ist in der Klasse
 // String implementiert und liefert den entsprechenden
 // Wert -1, 0, 1 bei Vergleich beider Strings
 return name.compareToIgnoreCase (artikel.name);
 }

 // Überschreiben der toString()-Methode, um die String-
 // repräsentation des Objektes ausgeben zu können.
 public String toString()
 {
 return (artNr + " " + name);
 }
}

public class Vergleich
{
 public static void main (String[] args)
 {
 Artikel[] arr = new Artikel [4];
 arr [0] = new Artikel ("1000", "Mutter 8x10");
 arr [1] = new Artikel ("1001", "Dichtungsring 20x100");
 arr [2] = new Artikel ("1002", "Abstreifring 25x125");
 arr [3] = new Artikel ("1003", "montierbarer Zackenring");

 Arrays.sort (arr);

662 Kapitel 17

 for (Artikel artikel : arr)
 System.out.println (artikel);
 }
}

Die Ausgabe des Programms ist:

1002 Abstreifring 25x125
1001 Dichtungsring 20x100
1003 montierbarer Zackenring
1000 Mutter 8x10

Sollen Objekte der Klasse Artikel nach der Artikelnummer sortiert werden, so ist
die Methode compareTo() entsprechend umzuschreiben. Dabei muss natürlich be-
achtet werden, dass die Artikelnummern numerisch zu sortieren sind.

Zum Abschluss dieses Kapitels soll nochmals ein Hinweis zur Typsicherheit gemacht
werden. Würde in der Methode public static void sort (Object[] a) der
Klasse Arrays kein Object[]-Array als Parameter verlangt, sondern ein Array des
Schnittstellentyps Comparable<T>, so könnten Fehler bezüglich der Übergabe
eines Typs, der die Schnittstelle Comparable<T> gar nicht implementiert, schon zur
Kompilierzeit erkannt werden.

17.5 Die Klasse Class<T>

Im Paket java.lang gibt es eine Klasse mit dem Namen Class<T>. Diese ge-
nerische Klasse ist eine besondere Klasse, denn es existieren zu jedem Java-Pro-
gramm eine Vielzahl von Instanzen dieser Klasse, ohne dass vom Programmierer
davon auch nur eine einzige mit dem new-Operator erzeugt wird. Jedes Mal, wenn
von der virtuellen Maschine eine Klasse geladen wird, – eine Klasse wird immer
dann geladen, wenn sie zum ersten Mal benutzt wird – wird ein Objekt der Klasse
Class<T> angelegt. Ein Objekt dieser Klasse repräsentiert alle Eigenschaften der
entsprechenden Klasse. Mit Hilfe der Klasse Class<T> werden in Java Mechanis-
men wie Reflection (siehe Kap. 31 auf der beiliegenden CD) oder Objektseriali-
sierung (siehe Kap. 16) umgesetzt. Der Programmierer selbst kann kein Objekt der
Klasse Class<T> mit dem new-Operator erzeugen, da die Klasse Class<T> keinen
öffentlichen Konstruktor zur Verfügung stellt.

Jeder Typ in einem Java-Programm wird in der virtuellen Maschine
durch ein Objekt der Klasse Class<T> repräsentiert. Dieses Objekt
repräsentiert alle Eigenschaften des entsprechenden Typs.

Damit existiert für jede benutzte Schnittstelle, für jede benutzte
Klasse, für jedes benutzte Array, für jeden Aufzählungstyp und sogar
für jeden benutzten elementaren Datentyp genau ein Objekt der
Klasse Class<T> in der virtuellen Maschine.

Generizität 663

Ein Objekt der Klasse Class<T>, das einen bestimmten Referenz-Typ repräsentiert,
kann über die Klassenmethode forName() der Klasse Class oder über die Instanz-
methode getClass() eines Objektes abgefragt werden. Die Methode getClass()
ist eine Instanzmethode der Klasse Object und ist damit in jedem Objekt verfügbar.
Das folgende Programm zeigt, wie eine Referenz auf das Class<T>-Objekt der
Klasse Object mit Hilfe der Instanzmethode getClass() erhalten werden kann:

// Datei: Typen.java

public class Typen
{
 public static void main (String[] args)
 {
 Object refObj = new Object();

 // Es muss die Unbounded Wildcard verwendet werden, weil
 // erst zur Laufzeit bekannt ist, von welchem Typ die
 // zurückgelieferte Referenz ist.
 Class<?> refClass = refObj.getClass();

 // Den Namen der Klasse ausgeben
 System.out.println ("Name: " + refClass.getName());
 }
}

Hier die Ausgabe des Programms:

Name: java.lang.Object

17.5.1 Erzeugen eines Objektes mit newInstance()

Über ein Class<T>-Objekt kann auch eine Instanz des Typs erzeugt werden, den
das Class<T>-Objekt repräsentiert. Voraussetzung ist, dass es sich um einen in-
stantiierbaren Typ129 handelt. Das folgende Programm besorgt sich zuerst eine Re-
ferenz auf das Class<T>-Objekt der Klasse Typen2 mit Hilfe der Klassenmethode
forName() der Klasse Class<T> und erzeugt dann durch Aufruf der Methode
newInstance() ein Objekt der Klasse Typen2, ohne den new-Operator zu verwen-
den. Hier das Programm:

// Datei: Typen2.java

interface Schnittstelle
{}

public class Typen2
{
 private int x;

129 Das heißt, es darf sich weder um eine Schnittstelle noch um eine abstrakte Klasse handeln.

664 Kapitel 17

 public Typen2()
 {
 x = 3;
 }

 public static void main (String[] args) throws Exception
 {
 Class<?> typen2ClassRef = Class.forName ("Typen2");

 // Da die Methode newInstance() eine Referenz vom Typ Object
 // zurückgibt, muss auf den Typ Typen2 gecastet werden.
 Typen2 typen2 = (Typen2) typen2ClassRef.newInstance();
 System.out.println ("Wert der Variablen x: " + typen2.x);

 // Eine Referenz auf das Class<T>-Objekt
 // von Schnittstelle wird besorgt.
 Class<?> schnittstelleClassRef =
 Class.forName ("Schnittstelle");

 // Der Versuch, über das referenzierte Class<T>-Objekt
 // eine Instanz vom Schnittstellen-Typ zu erzeugen, wird das
 // Werfen einer Exception vom Typ InstantiationException
 // hervorrufen.
 // Schnittstelle schnittstelle =
 // (Schnittstelle) schnittstelleClassRef.newInstance();
 }
}

Hier die Ausgabe des Programms:

Wert der Variablen x: 3

Wie man an der Ausgabe erkennen kann, wird der selbst geschriebene Default-Kon-
struktor auch hier aufgerufen! Es wird allerdings immer vorausgesetzt, dass ein De-
fault-Konstruktor vorhanden ist, ansonsten wird zur Laufzeit eine Fehlermeldung aus-
gegeben. Dieser Fall kann eintreten, wenn in einer Klasse nur ein Konstruktor mit
Parametern definiert wird, da dann der voreingestellte Default-Konstruktor nicht mehr
vorhanden ist.

Mit den folgenden Anweisungen kann ein Objekt der Klasse Klas-
senname auch ohne den new-Operator geschaffen werden:

Class<?> c = Class.forName ("Klassenname");
Klassenname p2 = (Klassenname) c.newInstance();

17.5.2 Einsatz des Klassenliterals

Die Verwendung des Klassenliterals stellt eine weitere Möglichkeit dar, sich die Re-
ferenz auf ein bestimmtes Class<T>-Objekt zu beschaffen.

Generizität 665

Das Klassenliteral ist ein Ausdruck, der sich aus dem Klassennamen
eines Referenztyps oder dem Namen eines einfachen Datentyps,
gefolgt von einem Punkt . und dem Schlüsselwort class zusammen-
setzt.

Gültige Klassenliterale sind beispielsweise:

• Object.class

• int.class

• double[].class

So liefert das Klassenliteral TypBezeichnung.class eine Referenz auf ein
Class<T>-Objekt zurück, wobei folgende Regeln gelten:

• Stellt TypBezeichnung einen Referenztyp – also eine Klasse, eine Schnittstelle
oder ein Array – dar, so ist die zurückgelieferte Referenz vom Typ Class<TypBe-
zeichnung>.

• Wird mit TypBezeichnung ein einfacher Datentyp – also int, double,
boolean, etc. – bezeichnet, so besitzt die zurückgelieferte Referenz den Typ
Class<Wrapperklassentyp> – also Class<Integer>, Class<Double>,
Class<Boolean>, etc.

Der Compiler wird folgende Klassenliterale nicht akzeptieren und
einen Übersetzungsfehler melden, wenn:

• im Klassenliteral statt des Klassennamens eine Referenzvariable
verwendet wird, beispielsweise primitivRef.class oder klas-
senRef.class.

• das Klassenliteral einen Bezeichner beinhaltet, der einen formalen
Typ-Parameter eines generischen Typs darstellt, beispielsweise
T.class.

Das folgende Beispielprogramm veranschaulicht die Verwendung des Klassenlite-
rals:

// Datei: Klassenliteral.java

public class Klassenliteral<T>
{
 public Klassenliteral (T t)
 {
 Class<?> thisClassRef = this.getClass();

 Class<?> paramClassRef;

 // Das geht nicht
 // paramClassRef = T.class;

Vorsicht!

666 Kapitel 17

 // Aber das ist hingegen möglich
 paramClassRef = t.getClass();

 System.out.println ("Klasse " + thisClassRef.getName() +
 " ist mit \"" + paramClassRef.getName() +
 "\" aktuell parametrisiert worden.");
 System.out.println (
 "Referenzvariable t zeigt auf \"" + t + "\"");
 }

 public static void main (String[] args)
 {
 Class<String> stringRef = String.class;
 System.out.println ("stringRef zeigt auf " + stringRef);

 Class<Integer> intRef = int.class;
 System.out.println ("intRef zeigt auf " + intRef);

 Class<int[]> intArrayRef = int[].class;
 System.out.println ("intArrayRef zeigt auf " + intArrayRef);

 Klassenliteral<String> genObjektRef =
 new Klassenliteral<String> ("Literaltest");

 // Eine gültige Referenzvariable
 Class<Klassenliteral<String>> genClassRef;

 // Die Zusammensetzung eines Klassenliterals
 // aus der Bezeichnung einer Referenzvariablen
 // lässt der Compiler nicht zu
 // genClassRef = genObjektRef.class;
 }
}

Hier die Ausgabe des Programms:

stringRef zeigt auf class java.lang.String
intRef zeigt auf int
intArrayRef zeigt auf class [I
Klasse Klassenliteral ist mit "java.lang.String"
aktuell parametrisiert worden.
Referenzvariable t zeigt auf "Literaltest"

Bitte beachten Sie bei der Ausgabe der Referenzvariablen intArrayRef, dass für
ein Array aus int-Werten ein Objekt vom Typ [I angelegt wird. Dieser außerge-
wöhnliche Klassenname bedeutet, dass durch das Objekt ein Array aus int-Werten
repräsentiert wird.

17.6 Generizität und Polymorphie

Um die Einordnung der generischen Klassen in die verschiedenen Formen der Poly-
morphie zu verdeutlichen, soll das Bild 17-9 betrachtet werden. Es zeigt die ver-
schiedenen Formen der Polymorphie.

Generizität 667

Bei generischen Klassen handelt es sich um eine so genannte Parametrische Po-
lymorphie. Dies bedeutet, dass ein und derselbe Algorithmus auf verschiedene Da-
tentypen angewandt werden kann. Ein Beispiel ist ein Algorithmus zur Ermittlung der
Anzahl der Elemente einer Liste. Dieser Algorithmus ist unabhängig davon, welchen
Typ die Listenelemente haben. Parametrische Polymorphie wird auch Generizität
genannt.

Während man bei der Vererbung durch das Liskov Substitution Prin-
ciple die Möglichkeit hat, einen dynamischen Typ zu variieren, hat
man durch die Generizität die Möglichkeit, statische Typen zu variie-
ren.

Parametrische
Polymorphie

Polymorphie
von Objekten
bei Vererbung

 Überladen Coercion

Polymorphie

Universelle
Polymorphie

Ad-hoc
Polymorphie

Bild 17-9 Formen der Polymorphie

Bei dynamischen Typen wird einer Referenzvariablen vom Typ einer Basisklasse
eine Referenz auf ein Objekt vom Typ einer abgeleiteten Klasse zugewiesen. Von
welchem Typ dieses Objekt ist, steht erst zur Laufzeit fest. Daher spricht man hier
von einem dynamischen Typ.

Bei statischen Datentypen ist der Typ zur Kompilierzeit bekannt und wird einer
Variablen beim Kompilieren zugewiesen. Bei dynamischen Typen ist der Typ erst
zur Laufzeit bekannt und wird einer Variablen zur Laufzeit des Programms durch das
Laufzeitsystem zugewiesen. Während ein "normaler" statischer Datentyp fest vorge-
geben ist wie z. B. der Typ int oder die Klasse Punkt, wird bei einem generischen
Datentyp, der auch ein statischer Datentyp ist, mit einem so genannten formalen
Typ-Parameter gearbeitet, der einen Stellvertreter für einen konkreten Datentyp
darstellt und es erlaubt, einen statischen Datentyp zu variieren.

Polymorphie von Objekten bei Vererbung – in der wissenschaftlichen Literatur oft
als Inklusions-Polymorphie bezeichnet – bedeutet, dass eine Referenz einer Basis-
klasse auf ein Objekt einer Basisklasse oder abgeleiteten Klasse zeigen kann. Nach
dem Liskov Substitution Principle kann ein Objekt einer abgeleiteten Klasse an die
Stelle eines Objektes der Basisklasse treten, wenn es im Falle des Überschreibens
deren Verträge einhält. Liegt kein Überschreiben vor, sondern nur ein Erweitern, so
ist die Ersetzung problemlos, da die Methoden der abgeleiteten Klasse durch das
Casten unsichtbar werden. Wird überschrieben, so werden infolge der dynamischen
Bindung die überschreibenden Instanzmethoden der abgeleiteten Klasse aufgerufen.

668 Kapitel 17

Auch wenn in Java die formalen Typ-Parameter intern auf die Klasse
Object abgebildet werden, so gibt es dennoch einen prinzipiellen
Unterschied zwischen Parametrischer Polymorphie und Inklusions-
Polymorphie:

• Bei der Inklusions-Polymorphie arbeitet der Programmierer in seiner
Anwendung mit Basisklassen und abgeleiteten Klassen.

• Bei der Parametrischen Polymorphie geht es darum, dass ein und
derselbe Algorithmus für verschiedene Datentypen funktioniert, die
nicht unbedingt voneinander abgeleitet sein müssen.

Coercion ist eine automatische Typanpassung, in anderen Worten, eine implizite
Typkonvertierung. Sie findet beispielsweise statt, wenn zwei Werte von verschie-
denem Typ Operanden desselben Operators sind und eine Typkompatibilität besteht.
Andere Beispiele sind implizite Typkonvertierungen beim Zuweisungsoperator, bei
Übergabeparametern und Rückgabewerten von Methoden. Ein einfaches Beispiel ist
die Multiplikation 3 * 2.0, wobei vor der Durchführung der Multiplikation die ganze
Zahl 3 in den Typ double gewandelt wird.

Überladen von Methoden bedeutet, dass die überladenen Methoden denselben
Methodennamen, aber eine unterschiedliche Signatur besitzen. Stimmen die Typen
der aktuellen Parameter nicht genau mit den Typen der formalen Parameter beim
Methodenaufruf überein, so muss entsprechend den Regeln der impliziten Typkon-
vertierung die "ähnlichste" überladene Methode gefunden werden.

17.7 Übungen

Aufgabe 17.1: Kleinteilemagazin

Eine Schlosserei benötigt für die Verwaltung ihrer Kleinteile eine neue Verwaltungs-
software. Es sollen Schrauben, Muttern und Unterlegscheiben katalogisiert werden.
Damit die Entwicklung weniger Zeit beansprucht, ist eine Klassenbibliothek für die
Abbildung der zu verwaltenden Teile von einer Fremdfirma hinzugekauft worden. Die
gekaufte Klassenbibliothek lässt sich folgendermaßen in UML 2.0 abbilden:

Teil

GewindeTeil
Scheibe

Mutter Schraube

{abstract}

{abstract}

Bild 17-10 Abbildung der Klassenbibliothek in UML 2.0

Von der Klassenbibliothek haben Sie auch die Lizenz der Weiterentwicklung und Mo-
difizierung erworben. Das heißt, Ihnen wurde beim Kauf der Quellcode mitgeliefert,

Generizität 669

der abgeändert und an Ihre Ansprüche angepasst werden kann. Die Klassenbib-
liothek ist zunächst nicht generisch, sondern besteht aus herkömmlichen Java-Klas-
sen. Die Information, über welche Datenfelder und Methoden die einzelnen Klassen
der Bibliothek verfügen, müssen Sie sich direkt aus dem Quellcode beschaffen.

Aufgabe 17.1.1: Implementierung der Klasse KleinteileMagazin

Schreiben Sie eine generische Klasse KleinteileMagazin, mit der es möglich ist,
beliebige Kleinteile zu erfassen. Es soll möglich sein, mit einer Instanz einer aktuell
parametrisierten Klasse des generischen Typs KleinteileMagazin beliebig viele
Posten gleichartiger Kleinteile aufzunehmen, z. B. Scheiben von verschiedenem
Durchmesser oder Gewindeteile in verschiedenster Ausführung.

Um dies zu bewerkstelligen, soll die generische Klasse ArrayList<T> der Java-
Klassenbibliothek aus dem Paket java.util verwendet werden. Diese Klasse ist
eine so genannte Container-Klasse (siehe Kap. 18), die es ermöglicht, beliebig viele
Referenzen auf Objekte eines frei wählbaren Typs aufzunehmen. Für die Manipu-
lation und Verwaltung der gespeicherten Referenzen stellt die Klasse Array-
List<T> unter anderem die folgenden Methoden bereit:

• public boolean add (T ref)

Einfügen einer übergebenen Referenz ref vom Typ T in das Container-Objekt.

• public T get (index)

Liefert die Referenz auf das Objekt vom Typ T, das sich an der Stelle index im
Container-Objekt befindet.

• public void set (int index, T obj)

Setzt die Referenz vom Typ T an der Stelle index im Container-Objekt auf die
Referenz, die über obj übergeben wurde.

• public int indexOf (Object obj)

Liefert den Index des ersten Auftauchens des gesuchten Objektes im Container-
Objekt, auf das die Referenzvariable obj zeigt. Die Methode liefert -1 zurück,
falls das gesuchte Objekt nicht im Container-Objekt enthalten ist.

Implementieren Sie die Klasse KleinteileMagazin. Sie soll die folgenden Metho-
den bereitstellen:

• public boolean aufnehmen (T posten)

Es soll geprüft werden, ob der Posten posten vom Typ T in dieser Art und Aus-
führung schon im Magazin enthalten ist. Ist dies der Fall, dann soll die Methode
false zurückliefern, sonst true.

• public boolean einlagern (String bezeichnung,
 String ausfuehrung, int stueckzahl)

670 Kapitel 17

Einlagern von Kleinteilen in das Magazin. Es muss der Posten schon im Magazin
enthalten sein, damit die Kleinteile eingelagert werden können. Ist dies der Fall,
dann soll die Stückzahl erhöht und true zurückgeliefert werden. Ansonsten soll
die Methode den Wert false zurückliefern.

• public boolean entnehmen (String bezeichnung,
 String ausfuehrung, int stueckzahl)

Entnahme von Kleinteilen mit gewünschter Bezeichnung und in entsprechender
Ausführung. Sind weniger Teile als gewünscht vorhanden, so soll nichts entnom-
men und false zurückgeliefert werden.

• public void druckeMagazin()

 Es soll damit der Magazinbestand ausgegeben werden können.

Verwenden Sie für die Implementierung die folgende Vorlage der Klasse Kleintei-
leMagazin in der Datei KleinteileMagazin_Vorlage.java. Alle Stellen in der
Vorlage, an denen Punkte als Platzhalter stehen, müssen entsprechend ersetzt wer-
den. Bevor Sie die Klasse übersetzen können, müssen Sie die Datei entsprechend
umbenennen:

// Datei: KleinteileMagazin_Vorlage.java

package magazin;

import java.util.ArrayList;

// Die benötigten Klassen der hinzu gekauften
// Klassenbibliothek importieren
.

// Die generische Klasse soll Objekte vom Typ Teil verwalten können
public class KleinteileMagazin
{
 // Das ArrayList<T>-Objekt dient als interne Datenstruktur
 private ArrayList<T> magazin;

 public KleinteileMagazin()
 {
 magazin = new ArrayList<T>();
 }

 // Aufnehmen des übergebenen Postens in das Magazin
 public boolean aufnehmen (T posten)
 {
 // Prüfen, ob der Posten mit Bezeichnung
 // und Ausführung schon vorhanden ist
 int index =

 // Ist der Posten schon vorhanden, so soll
 // die Methode false zurückliefern

Generizität 671

 // Aufnehmen des Postens in das Magazin

 }

 // Einlagern des Kleinteils in beschriebener Ausführung
 public boolean einlagern (String bezeichnung,
 String ausfuehrung, int stueckzahl)
 {
 // Ist der Posten verfügbar (Die
 // vorhandene Stückzahl ist egal)?
 int index =
 // Wenn ja, dann die vorhandene Stückzahl
 // des Postens um die übergebene Stückzahl erhöhen
 if (index >= 0)
 {

 }
 // Posten ist nicht vorhanden

 }

 // Entnehmen des gewünschten Kleinteils
 public boolean entnehmen (String bezeichnung,
 String ausfuehrung, int stueckzahl)
 {
 // Ist der gesuchte Posten in
 // ausreichender Stückzahl verfügbar?
 int index =
 // Wenn ja, dann die gewünschte Stückzahl entnehmen
 if (index >= 0)
 {

 }
 // Nicht in ausreichender Stückzahl verfügbar

 }

 // Den Bestand des Magazins ausdrucken
 public void druckeMagazin()
 {

 }

 // Hilfsmethode, die überprüft, ob der Posten in Bezeichnung,
 // Ausführung und gewünschter Stückzahl schon im Magazin
 // vorhanden ist. Sie liefert dann dessen Index im
 // ArrayList<T>-Objekt zurück, sonst -1
 private int istVerfuegbar (String bezeichnung,
 String ausfuehrung, int anzahl)
 {
 // Suchen, bis der Posten in Bezeichnung und
 // Ausführung gefunden wurde. Dann den Index
 // im ArrayList<T>-Objekt zurückliefern.
 for (T posten : magazin)
 {

 }

672 Kapitel 17

 // Nicht verfügbar? -1 zurückliefern.

 }
}

Benutzen Sie zum Testen die Klasse KleinteileMagazinTest:

// Datei: KleinteileMagazinTest.java

package magazin;

import teile.GewindeTeil;
import teile.Mutter;
import teile.Scheibe;
import teile.Schraube;

public class KleinteileMagazinTest
{
 public static void main (String[] args)
 {
 // Anlegen zweier Magazine für Gewindeteile und Scheiben
 KleinteileMagazin<GewindeTeil> gewindeteile =
 new KleinteileMagazin<GewindeTeil>();
 KleinteileMagazin<Scheibe> scheiben =
 new KleinteileMagazin<Scheibe>();

 // Anlegen von Gewindeteilen
 Mutter mutter_m5 = new Mutter (1000, Mutter.NORMAL, 6, 5);
 Mutter mutter_m6 = new Mutter (1000, Mutter.SICHERUNG, 6, 6);
 Schraube schraube_m30 = new Schraube (
 1000, Schraube.EINFACHSCHLITZ, Schraube.LINSENKOPF, 30);
 Schraube schraube_m40 = new Schraube (
 1000, Schraube.KREUZSCHLITZ, Schraube.LINSENKOPF, 40);

 // Gewindeteile aufnehmen
 gewindeteile.aufnehmen (mutter_m5);
 gewindeteile.aufnehmen (mutter_m6);
 gewindeteile.aufnehmen (schraube_m30);
 gewindeteile.aufnehmen (schraube_m40);

 // Gewindeteile-Magazin ausdrucken
 gewindeteile.druckeMagazin();

 // Verschiedenste Gewindeteile entnehmen und wieder einlagern
 gewindeteile.entnehmen (mutter_m5.getBezeichnung(),
 mutter_m5.getAusfuehrung(), 600);
 gewindeteile.entnehmen ("Mutter", Mutter.NORMAL, 500);
 gewindeteile.einlagern ("Mutter", Mutter.SICHERUNG, 4000);

 // Gewindeteile-Magazin ausdrucken
 gewindeteile.druckeMagazin();

 // Scheiben anlegen
 Scheibe scheibe_m5 = new Scheibe (1000, Scheibe.FEDER, 6, 10);
 Scheibe scheibe_m6 =
 new Scheibe (1000, Scheibe.NORMAL, 7, 11);

Generizität 673

 // Scheiben im Scheiben-Magazin aufnehmen
 scheiben.aufnehmen (scheibe_m5);
 scheiben.aufnehmen (scheibe_m6);

 // Scheiben-Magazin ausdrucken
 scheiben.druckeMagazin();
 }
}

Aufgabe 17.1.2: Implementierung der generischen Klassenbibliothek

Die hinzu gekaufte Klassenbibliothek zur Abbildung der Kleinteile soll nun an neue
Anforderungen angepasst werden. Es soll möglich sein, auch Hochpräzisionsteile
abzubilden, deren Abmaße im �m-Bereich angegeben werden müssen. Dazu soll die
Klassenbibliothek in eine generische Bibliothek umgeschrieben werden. Der Benut-
zer soll nun die Möglichkeit haben, beim Anlegen eines Objektes vom Typ Teil –
oder eines Subtyps davon – den Präzisionsgrad des einzulagernden Kleinteils anzu-
geben. Dies soll folgendermaßen aussehen: Ein Kleinteil, dessen Erfassung eine
niedrige Präzision benötigt, soll angelegt werden zu:

Teil<Integer> irgendeinteil = new;

Ein Teil, für dessen Erfassung eine höhere Präzision notwendig ist, wird folgender-
maßen referenziert:

Teil<Float> weiteresTeil = new;

Zusätzlich soll der Klasse Teil ein weiteres Datenfeld

private T toleranz;

hinzugefügt werden. Es muss dann für jedes angelegte Objekt vom Typ Teil die
zulässige Toleranz der Abmaße über den Konstruktor angegeben werden.

Die zuvor implementierte Klasse KleinteileMagazin soll jedoch, abgesehen von
minimalen Änderungen zum Unterbringen der neu eingeführten Generizität, von der
Änderung der Klassenbibliothek nichts merken, das heißt, die Klassenbibliothek zur
Abbildung von Kleinteilen soll nur mit Änderungen für den generischen Parameter
der Klasse KleinteileMagazin komplett ohne Warnungen lauffähig sein. Zum
Testen der neu implementierten Klassenbibliothek verwenden Sie folgende Klasse
KleinteileMagazinTest2:

// Datei: KleinteileMagazinTest2.java

package magazin;

import teile.GewindeTeil;
import teile.Mutter;
import teile.Scheibe;
import teile.Schraube;

public class KleinteileMagazinTest2
{
 public static void main (String[] args)

674 Kapitel 17

 {
 // Anlegen zweier Magazine für Gewindeteile und Scheiben
 KleinteileMagazin<GewindeTeil<?>> gewindeteile =
 new KleinteileMagazin<GewindeTeil<?>> ();
 KleinteileMagazin<Scheibe<Float>> scheiben =
 new KleinteileMagazin<Scheibe<Float>>();

 // Anlegen von Gewindeteilen
 Mutter<Float> mutter_m5 =
 new Mutter<Float> (1000, Mutter.NORMAL, 6, 5f, 0.01f);
 Mutter<Integer> mutter_m60 =
 new Mutter<Integer> (1000, Mutter.NORMAL, 6, 60, 1);
 Schraube<Float> schraube_m3 =
 new Schraube<Float> (1000, Schraube.EINFACHSCHLITZ,
 Schraube.LINSENKOPF, 3f, 0.001f);

 // Gewindeteile aufnehmen
 gewindeteile.aufnehmen (mutter_m5);
 gewindeteile.aufnehmen (mutter_m60);
 gewindeteile.aufnehmen (schraube_m3);

 // Gewindeteile-Magazin ausdrucken
 gewindeteile.druckeMagazin();

 // Scheiben anlegen
 Scheibe<Float> scheibe_m5 =
 new Scheibe<Float>(1000,Scheibe.FEDER, 5.5f, 10.1f, 0.01f);
 Scheibe<Float> scheibe_m2 =
 new Scheibe<Float> (1000, Scheibe.NORMAL, 2.11f,
 3.001f, 0.0001f);

 // Scheiben im Scheiben-Magazin aufnehmen
 scheiben.aufnehmen (scheibe_m5);
 scheiben.aufnehmen (scheibe_m2);

 // Scheiben-Magazin ausdrucken
 scheiben.druckeMagazin();
 }
}

Als Hilfe für die Implementierung können Sie wiederum die Vorlagen-Dateien
Teil_Vorlage.java, GewindeTeil_Vorlage.java, Schraube_Vorlage.ja-
va, Mutter_Vorlage.java und Scheibe_Vorlage.java verwenden. Auch hier
müssen Sie daran denken, die Vorlagen-Dateien entsprechend umzubenennen.

Aufgabe 17.1.3: Anpassen der Klassenbibliothek

Die Schlosserei hat in der Vergangenheit immer wieder schlechte Erfahrungen mit
ansetzendem Rost an den Kleinteilen gemacht. Sie müssen somit Ihre in Aufgabe
17.1.2 erweiterte Klassenbibliothek zur Abbildung von Hochpräzisionsteilen so an-
passen, dass nur noch Objekte vom Typ Teil angelegt werden können, deren Her-
steller mindestens eine 12-monatige Rostfreiheit garantiert. Dieser Zeitraum ist nach
oben hin beliebig anpassbar, indem im Konstruktor der instantiierbaren Kleinteile –
Schraube, Mutter und Scheibe – eine zusätzliche Zahl übergeben wird. Wird ver-
sucht, ein Kleinteil anzulegen, dessen garantierte Rostfreiheit kleiner als 12 Monate

Generizität 675

ist, so soll eine Exception vom Typ RostgarantieNichtErfuelltException ge-
worfen werden.

Um sicherzustellen, dass die angelegten Objekte vom Typ Teil auch wirklich rost-
frei sind, muss von der Klassenbibliothek eine zusätzliche Schnittstelle implementiert
werden:

// Datei Rostfrei.java

public interface Rostfrei
{
 public int gibZeitraumRostfreiheit();
}

Die Methode gibZeitraumRostfreiheit() soll dann so implementiert werden,
dass bei ihrem Aufruf der Zeitraum der garantierten Rostfreiheit zurückgegeben wird.
Die Klasse KleinteileMagazin muss nun so angepasst werden, dass nur noch
Teile aufgenommen werden können, die auch garantiert rostfrei sind. Sinnigerweise
wird dann die Klasse in RostfreieKleinteileMagazin umbenannt.

Zum leichteren Einstieg können Sie wiederum die Vorlagen-Dateien verwenden. Zum
Testen steht Ihnen die Klasse KleinteileMagazinTest3 zur Verfügung:

// Datei: KleinteileMagazinTest3.java

package magazin;
import teile.GewindeTeil;
import teile.Mutter;
import teile.RostgarantieNichtErfuelltException;
import teile.Scheibe;

public class KleinteileMagazinTest3
{
 public static void main (String[] args)
 {
 // Anlegen zweier Magazine für Gewindeteile und Scheiben
 RostfreieKleinteileMagazin<GewindeTeil<Float>> gewindeteile =
 new RostfreieKleinteileMagazin<GewindeTeil<Float>>();
 RostfreieKleinteileMagazin<Scheibe<Float>> scheiben =
 new RostfreieKleinteileMagazin<Scheibe<Float>>();

 try
 {
 // Anlegen einer Mutter mit garantierter
 // Rostfreiheit des Herstellers
 Mutter<Float> mutter_m5 =
 new Mutter<Float> (1000, Mutter.NORMAL, 6, 5f, 0.01f);
 gewindeteile.aufnehmen (mutter_m5);

 // Anlegen einer Mutter mit 18-monatiger Rostfreiheit
 Mutter<Float> mutter_m6 = new Mutter<Float> (
 1000, Mutter.SICHERUNG, 6, 6f, 0.01f, 18);
 gewindeteile.aufnehmen (mutter_m6);

676 Kapitel 17

 // Gewindeteile-Magazin ausdrucken
 gewindeteile.druckeMagazin();

 // Versuch, eine Scheibe mit 11-
 // monatiger Rostfreiheit anzulegen
 Scheibe<Float> scheibe_m5 = new Scheibe<Float> (
 1000, Scheibe.FEDER, 5.5f, 10.1f, 0.01f, 11);
 scheiben.aufnehmen (scheibe_m5);

 scheiben.druckeMagazin();
 }
 catch (RostgarantieNichtErfuelltException e)
 {
 System.out.println(e.getMessage());
 }
 }
}

Aufgabe 17.1.4: Schnittstelle Comparator<T> und Wildcards

Zum leichteren Auffinden von Teilen in einem Magazin, soll eine Möglichkeit geschaf-
fen werden, mit der die Kleinteile der einzelnen Magazine nach ihrer Bezeichnung
und Ausführung sortiert werden können.

Die Utility-Klasse Collections aus der Java-Klassenbibliothek bietet mit der sta-
tischen Methode sort() die Möglichkeit des Sortierens von Listen. In der Klasse
RostfreieKleinteileMagazin soll die Liste vom Typ ArrayList mit Hilfe
dieser Methode sortiert werden. Mit einer Klasse, die die Schnittstelle Compara-
tor<T> implementiert, kann die Sortierreihenfolge für beliebige Klassen definiert
werden.

Zu diesem Zweck soll eine generische Utility-Klasse TeileUtils im Paket utils
geschaffen werden. Diese Klasse soll die Schnittstelle Comparator<T> implemen-
tieren und eine statische, eigenständig generische Methode sortiereMagazin()
bereitstellen. Zur Sortierung der Liste soll die Variante der Methode sort() ver-
wendet werden, die 2 Parameter annimmt.

Der Konstruktor dieser Klasse soll nicht öffentlich sein. Stattdessen soll bei der
Verwendung der Methode sortiereMagazin() eine neue Instanz der Utility-
Klasse erstellt werden.

Der formale Typparameter T dieser Klasse, sowie der eigenständig generischen Me-
thode sortiereMagazin(), soll folgenden Einschränkungen unterliegen: T darf
alle von Teil abgeleiteten Typen darstellen und dieser, von Teil abgeleitete Typ, darf
wiederum mit einem beliebigen Typ parametrisiert worden sein.

Die Methode sortiereMagazin() soll nach ihrem Aufruf die Methode sort() der
Klasse Collections aufrufen. Als erster Parameter soll die übergebene Liste wei-
tergereicht werden, als zweiter Parameter soll eine neue Instanz der zu implementie-
renden Utility-Klasse übergeben werden. Die Methode compare() aus der Schnitt-
stelle Comparator<T> soll, wie beschrieben, lexikografisch zunächst die Bezeich-
nung und im zweiten Schritt die Ausführung der jeweils zu vergleichenden Teile aus-

Generizität 677

werten. Dazu kann die Methode compareToIgnoreCase() der Klasse String he-
rangezogen werden. Der Rückgabewert der Methode compare() soll dabei den Be-
dingungen, die in der Java-Klassenbibliothek-Dokumentation beschrieben sind, ge-
nügen. Die Methode equals() aus der Schnittstelle Comparator<T> muss nicht
implementiert werden.

Zur Implementierung der Klasse TeileUtils muss der folgende Programmcode
ergänzt werden. Bevor Sie die Klasse übersetzen können, müssen Sie die Datei ent-
sprechend umbenennen:

// Datei: TeileUtils_Vorlage.java

package utils;

import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import teile.Teil;

public class TeileUtils<T > implements Comparator<T> {

 private TeileUtils()
 {
 }

 public int compare (T t1, T t2)
 {
 // String-Vergleiche machen und Ergebnis zurückgeben

 }

 public static<T > void sortiereMagazin(List<T> teile)
 {
 // Klassenmethode sort() der Klasse Collections<T> aufrufen

 }
}

Die Klasse RostfreieKleinteileMagazin soll um die Methode sortiereMa-
gazin() erweitert werden:

public void sortiereMagazin()

Diese Methode soll lediglich die Methode sortiereMagazin() der geschaffenen
Utility-Klasse aufrufen und ihr die intern verwendete Liste magazin übergeben.

Es sollen alle Klassen aus der vorherigen Aufgabe verwendet werden. Zum Testen
steht die Klasse KleinteileMagazinTest4 zur Verfügung:

// Datei: KleinteileMagazinTest4.java

package magazin;

import teile.GewindeTeil;
import teile.Mutter;

678 Kapitel 17

import teile.RostgarantieNichtErfuelltException;
import teile.Scheibe;
import teile.Schraube;

public class KleinteileMagazinTest4
{
 public static void main (String[] args)
 {
 // Anlegen zweier Magazine für Gewindeteile und Scheiben
 RostfreieKleinteileMagazin<GewindeTeil<Float>> gewindeteile =
 new RostfreieKleinteileMagazin<GewindeTeil<Float>>();
 RostfreieKleinteileMagazin<Scheibe<Float>> scheiben =
 new RostfreieKleinteileMagazin<Scheibe<Float>>();

 // Hinzufügen der unterschiedlichen Magazine zu einem Array
 RostfreieKleinteileMagazin<?>[] magazine =
 {gewindeteile, scheiben};

 try
 {
 // Anlegen dreier Gewindeteile
 gewindeteile.aufnehmen
 (new Mutter<> (1000, Mutter.NORMAL, 6, 5f, 0.01f));
 gewindeteile.aufnehmen (new Mutter<>
 (1000, Mutter.SICHERUNG, 6, 6f, 0.01f, 18));
 gewindeteile.aufnehmen (new Schraube<>
 (1000, Schraube.SENKKOPF, Schraube.KREUZSCHLITZ,
 6f, 0.01f, 18));

 // Anlegen einer Scheibe
 scheiben.aufnehmen (new Scheibe<>
 (1000, Scheibe.FEDER, 5.5f, 10.1f, 0.01f, 12));

 // Das Magazin gewindeteile sortieren
 gewindeteile.sortiereMagazin();

 // Inhalt der Magazine ausdrucken
 for (RostfreieKleinteileMagazin<?> magazin : magazine)
 {
 System.out.println ("Gebe naechstes Magazin aus:");
 magazin.druckeMagazin();
 }
 }
 catch (RostgarantieNichtErfuelltException e)
 {
 System.out.println(e.getMessage());
 }
 }
}

Aufgabe 17.2: Tanklasterverwaltung – Wildcards

Für eine Tanklasterabfüllanlage soll eine Verwaltung für die, an der Anlage angemel-
deten, Laster implementiert werden. Dazu stehen die Dateien Laster.java und
Tanklaster.java als fertig implementierte Klassen bereit, deren Klassenhierar-
chie die folgende Struktur hat:

Generizität 679

Laster

Tanklaster

Bild 17-11 Klassenhierarchie für die Abfüllanlage

Für diese Klassenhierarchie soll eine Utility-Klasse implementiert werden, die nicht
volle und volle Laster ermitteln kann. Um die Verwaltung der Laster so allgemein wie
möglich zu erlauben, sollen die Methoden der Utility-Klasse gegen die Schnittstelle
Collection<E> aus der Java-Klassenbibliothek programmiert werden. Die Utility-
Klasse soll lediglich die vollen und die nicht vollen Laster in einer Collection ermitteln,
an die Verwaltung zurückgeben und den Inhalt einer Collection auf dem Bildschirm
ausgeben können. Da die Abfüllanlage in Zukunft vielleicht erweitert und noch
andere Tanklasterarten verwaltet werden könnten, sollen die Methoden dieser Utility-
Klasse generisch sein.

Von den Methoden der Schnittstelle Collection<T>, wird in dieser Aufgabe nur die
Methode public boolean add (T obj) benötigt. Diese Methode add() setzt
die Referenz vom Typ T im Container-Objekt auf die Referenz, die über obj
übergeben wurde.

Verwenden Sie für die Implementierung der Utility-Klasse die folgende Vorlage in der
Datei TanklasterUtils_Vorlage.java. Alle Stellen in der Vorlage, an denen
Punkte als Platzhalter stehen, müssen entsprechend ersetzt werden. Bevor Sie die
Klasse übersetzen können, müssen Sie die Datei entsprechend umbenennen:

// Datei: TanklasterUtils_Vorlage.java

import java.util.Collection;

public class TanklasterUtils
{
 // Statische Methode zum Ermitteln aller nicht vollen Laster in
 // einer Collection. Diese Methode soll als ersten Parameter alle
 // von Collection abgeleiteten Typen akzeptieren, die Referenzen
 // auf Tanklaster-Objekte - oder auf Objekte eines Subtyps –
 // enthalten. Als zweiten Parameter sollen alle von Collection
 // abgeleiteten Typen akzeptiert werden, die Referenzen auf
 // Tanklaster-Objekte – oder auf Objekte eines Basistyps –
 // enthalten.
 public static <T Collection< >,
 R Collection< >>
 void ermittleNichtVolleLaster
 (T alleLaster, R NichtVolleLaster)
 {
 // Collection der Tanklaster nach nicht vollen Lastern
 // durchsuchen.
 for (Tanklaster l : alleLaster)
 {

680 Kapitel 17

 // Prüfe, ob Tanklaster nicht voll.
 if (.)
 {
 // Gefundenen Laster zur Collection hinzufügen.

 }
 }
 }

 // Statische Methode zum Ermitteln aller vollen Laster in einer
 // Collection.
 // Alle Einschränkungen für Typen, die von der Methode
 // ermittleNichtVolleLaster() akzeptiert werden, gelten auch für
 // diese Methode.
 public static <T Collection< >,
 R Collection< >>
 void ermittleVolleLaster (T alleLaster, R volleLaster)
 {
 // Collection der Tanklaster wird durchsucht nach vollen
 // Lastern
 for (Tanklaster l : alleLaster)
 {
 // Prüfe, ob Laster voll.
 if (.)
 {
 // Gefundenen Laster zur Collection hinzufügen

 }
 }
 }

 // Statische Methode, um alle Tanklaster in einer Collection
 // auf dem Bildschirm auszugeben. Diese Methode soll als ersten
 // Parameter alle von Collection abgeleiteten Typen akzeptieren,
 // die Referenzen auf Tanklaster-Objekte – oder auf Objekte
 // eines Subtyps - enthalten.
 public static <T Collection< >>
 void printLasterFuellstand (T laster)
 {
 for (Tanklaster l : laster)
 {
 l.print();
 System.out.println ("-----------");
 }
 }
}

Zum Testen steht Ihnen die Klasse TanklasterTest zur Verfügung:

// Datei: TanklasterTest.java

import java.util.ArrayList;
import java.util.Arrays;

public class TanklasterTest
{

Generizität 681

 public static void main (String[] args)
 {
 Tanklaster[] lasterArr = new Tanklaster[3];

 // Anlegen dreier neuer Tanklaster
 lasterArr[0] =
 new Tanklaster ("Maimler - Tankstelle Lara", 25000d, 1.5d);
 lasterArr[1] =
 new Tanklaster ("Nam - Tankstelle Muschel", 25000d, 1.7d);
 lasterArr[2] =
 new Tanklaster ("WV - Tankstelle Osse", 2500d, 1.7d);

 // Unterschiedliches Befüllen der angelegten Laster
 lasterArr[0].befuelle (lasterArr[0].getMaxFuellmenge());
 lasterArr[1].befuelle (50000d);
 lasterArr[2].befuelle (1000d);

 // Anlegen einer neuen, leeren Ergebnis-Collection
 ArrayList<Tanklaster> list = new ArrayList<Tanklaster>();

 System.out.println ("Nicht volle Laster:\n");
 // Befüllen der Ergebnis-Collection mit nicht vollen Lastern
 TanklasterUtils.ermittleNichtVolleLaster
 (Arrays.asList (lasterArr), list);
 // Ausgeben der Collection auf dem Schirm
 TanklasterUtils.printLasterFuellstand (list);

 // Säubern der Ergebnis-Collection, um sie wiederzuverwenden
 list.clear();

 System.out.println ("\nVolle Laster:\n");
 // Befüllen der Ergebnis-Collection mit vollen Lastern
 TanklasterUtils.ermittleVolleLaster
 (Arrays.asList (lasterArr), list);
 // Ausgeben der Collection auf dem Schirm
 TanklasterUtils.printLasterFuellstand (list);
 }
}

Collections

D
A

A

R

K

S

C
U

18.1 Überblick über die Collection-API
18.2 Iterieren über Collections
18.3 Listen
18.4 Warteschlangen
18.5 Mengen
18.6 Verzeichnisse
18.7 Besonderheiten bei der Anwendung von Collections
18.8 Übungen

18 Collections

Collections sind – wie der Name schon andeutet – Zusammenstellungen von Da-
ten, genauer gesagt von Objekten. Die Verwaltung und Bearbeitung von Daten ist
eine elementare Aufgabe von Programmen. Zur Verwaltung dieser Daten im Arbeits-
speicher werden bei der Programmierung strukturierte Datentypen eingesetzt, wel-
che die einzelnen Datenelemente enthalten. Die einfachste dieser Datenstrukturen
ist das bekannte Array. Daneben kennt man jedoch in der Informatik noch eine Reihe
weiterer Datenstrukturen mit unterschiedlichen Eigenschaften.

Während jedoch Arrays fester Bestandteil der Sprachdefinition von Java und auch
der meisten anderen Programmiersprachen sind, ist dies für andere Datenstrukturen
nicht der Fall. Um diese nicht trotzdem immer wieder neu selbst programmieren zu
müssen, gibt es für viele Programmiersprachen zusätzliche Bibliotheken, in denen
die wichtigsten Datenstrukturen implementiert sind. So gab es bereits in den 80er
Jahren in der Programmiersprache Smalltalk spezielle Collection-Klassen mit jeweils
spezifischen Fähigkeiten.

Für Collections ist in anderen Programmiersprachen wie z. B. C++ auch der Begriff
Container gebräuchlich. Ein Container ist dabei nach dem Duden ein Großbe-
hälter. Eine Collection in Java ist ein solcher Großbehälter. Eine Collection ist ein
Behälter, in den man Referenzen auf Objekte hineinlegen, bei Bedarf darauf zu-
greifen und wieder herausholen kann. Dabei gibt es jedoch einen wichtigen Unter-
schied – in Java kann man beliebig viele Objekte130 in einen Container legen, wobei
ein Container der realen Welt von Anfang an durch sein Volumen beschränkt ist.

Klassen für Datenstrukturen mit speziellen Fähigkeiten nennt man in
Java Collections. Der Begriff Container hat in Java eine abweichen-
de Bedeutung im Zusammenhang mit der Oberflächenprogrammie-
rung. Als Container bezeichnet man dort einen Bereich in einem Fen-
ster, der Komponenten als Bausteine enthalten kann.

Die Verwaltung von Daten mit Hilfe von Arrays ist gewissen Einschränkungen unter-
worfen, die durch Collections beseitigt werden sollen. So liegen Typ und Anzahl der
Daten bei einem Array stets fest, der Zugriff ist nur über den Index möglich und ein
Einfügen in der Mitte ist nur durch Umkopieren von Elementen möglich. Die Flexi-
bilität wird dadurch spürbar eingeschränkt. Die Effizienz hingegen wird erhöht, da
man z. B. die Speicheradresse eines Elements aufgrund der festen Größe beim Zu-
griff direkt aus dem Index berechnen kann.

Ein Array ist wegen seiner festen Länge jedoch nicht die geeignete Lösung, wenn
man zum Zeitpunkt der Programmerstellung nicht weiß, wie viele Objekte man über-
haupt in seinem Programm halten möchte. Stellen Sie sich hierfür vor, dass Sie ein
elektronisches Telefonbuch als Java-Anwendung schreiben wollen. Woher sollen Sie
nun wissen, wie viele Telefonnummern Sie in Zukunft eintragen werden?

130 Die letztendliche Größe eines Containers ist durch den Speicher, den die virtuelle Maschine dem

Programm zur Verfügung stellt, natürlich auch begrenzt.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_18,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Collections 685

Natürlich können Sie nun auf die Idee kommen und eine eigene Klasse Dyna-
mischesArray schreiben. Ein solches dynamisches Array legt ein neues, größeres
Array an, wenn der Platz im alten Array nicht mehr reicht, kopiert die Elemente des
alten Arrays in das neue und hat damit wieder Platz zum Speichern geschaffen.

Damit man solche Klassen zum Speichern und Auffinden von Objekten nicht immer
wieder selbst neu schreiben muss, werden im Paket java.util Collection-Klassen
für nahezu alle denkbaren Anwendungen zur Verfügung gestellt. Die Mächtigkeit
dieser universell verwendbaren Klassen wurde durch die Einführung der Generizität
mit dem JDK 5.0 nochmals gesteigert.

Alle Klassen und Schnittstellen des Collection-Frameworks sind seit
dem JDK 5.0 generisch.

18.1 Überblick über die Collection-API

In diesem Abschnitt soll ein Überblick über die in der Java-Klassenbibliothek ver-
fügbaren Collections und ihre grundsätzlichen Design-Prinzipien gegeben werden.
Das Paket java.util enthält 4 verschiedene Familien von Collections:

• Listen (Lists)
• Warteschlangen (Queues)
• Mengen (Sets)
• Verzeichnisse (Maps)

Listen sind geordnete Collections, auf welche wie auf Arrays an beliebiger Stelle
über numerische Indizes zugegriffen werden kann. Im Unterschied zu Arrays können
Elemente an beliebiger Stelle eingefügt werden.

Eine Queue ist im Grund nichts anderes als eine Liste, die streng nach dem FIFO-
Prinzip (FIFO = First In First Out) abgearbeitet wird, d. h. ein Zugriff ist nicht wahlfrei
sondern nur am Anfang und am Ende der Liste möglich.

Eine Menge oder ein Set ist eine ungeordnete Menge von Objekten, wobei jedes nur
einmal vorkommen darf. Der Zugriff beschränkt sich bei diesen Collections im We-
sentlichen darauf, Objekte hinzuzufügen oder zu entfernen bzw. zu prüfen, ob ein
Objekt enthalten ist oder nicht.

Bei Verzeichnissen (Maps) wird statt über einen numerischen Index über ein ein-
deutiges Schlüsselobjekt auf Werte zugegriffen. In einer Map werden also Schlüs-
sel-Wert-Paare repräsentiert. Dies kommt durch die alternative Bezeichnung Dictio-
nary gut zum Ausdruck. Da der Zugriff in der Regel nur über den Schlüssel erfolgt,
muss der Wert also nicht eindeutig sein. Der Typ ist für Schlüssel und Wert beliebig.
Die Reihenfolge des Einfügens von Elementen in eine Map spielt keine Rolle, da
diese im Gegensatz zu einer Liste ungeordnet ist.

686 Kapitel 18

Basis jeder dieser Familien ist eine Schnittstelle sowie eine abstrakte Basisklasse,
welche diese Schnittstelle implementiert und als Basis für konkrete Collection-Klas-
sen dient. Diese Aufteilung zwischen der Schnittstelle und der Implementierung hat
folgenden Hintergrund: Die Schnittstelle definiert, was man mit der Collection ma-
chen kann. Sie legt also die funktionalen Eigenschaften fest. Die dahinter liegende
Implementierung bestimmt weitere nicht-funktionale Eigenschaften wie z. B. die
Geschwindigkeit, mit der auf Daten zugegriffen werden kann. Funktionale Eigen-
schaften einer Collection sind:

• geordnet/ungeordnet
• sortiert/unsortiert
• sequenziell/wahlfrei

Von einer geordneten Collection spricht man, wenn die Elemente in derselben Rei-
henfolge abgespeichert werden, in der sie eingefügt wurden. Sie sind zu unterschei-
den von den sortierten Collections, die ihren Inhalt nach einer Ordnungsrelation
speichern. Beispiele für geordnete Collections sind z. B. ein Stack oder eine Queue,
sortierte Collections können Bäume oder Listen sein.

Weiterhin kann man genau wie bei Dateien unterscheiden zwischen sequenziellen
Collections und Collections mit wahlfreiem Zugriff. Die meisten Collections sind se-
quenziell (Liste, Baum) – bei manchen kann sogar nur auf bestimmte Elemente zu-
gegriffen werden (Stack, Queue). Nur Arrays, Maps und Sets bieten voll wahlfreien
Zugriff.

Um flexibel zu sein, stehen in Java zu jeder Art von Collection-Schnittstelle verschie-
dene Klassen als Implementierung zur Verfügung. Die Kunst bei der Programmie-
rung besteht darin, für jedes Problem zuerst anhand der geforderten Funktionalität
die richtige Schnittstelle und dann dazu gemäß der Leistungsanforderungen die rich-
tige Klasse auszuwählen. Fehlentscheidungen sind dabei natürlich möglich, müssen
jedoch bei richtiger Umsetzung nicht endgültig sein. Der Trick besteht darin, stets
"gegen die Schnittstelle" zu programmieren, d. h. alle Variablen, Parameter und
Rückgabewerte stets mit Hilfe des Schnittstellentyps zu vereinbaren. An diesen kann
dann ein beliebiger Implementierungstyp zugewiesen werden. Stellt sich später he-
raus, dass dieser zunächst falsch gewählt wurde, muss nur die Definition des ent-
sprechenden Objektes angepasst werden.

Die Collection-Schnittstellen sind das Herzstück des Frameworks. Ihre
Hauptaufgabe besteht darin, es dem Programmierer zu ermöglichen,
flexibel mit unterschiedlichen Implementierungen einer bestimmten Art
von Collections zu arbeiten.

Das folgende Beispiel demonstriert den flexiblen Austausch einer Collection-Klasse
gegen eine andere:

// Datei: Lotto.java

import java.util.*;

public class Lotto
{

Collections 687

 public static Collection<Integer> tippen()
 {
 // Lottozahlen-Liste mit Einschränkung auf Ganzzahlen
 Collection<Integer> lottotipp = new ArrayList<Integer>();

 while (lottotipp.size() < 6)
 {
 lottotipp.add ((int)(Math.random() * 49 + 1));
 }
 return lottotipp;
 }

 public static void main (String[] args)
 {
 Collection<Integer> zahlen = tippen();
 System.out.println ("Ihr Tipp: " + zahlen);
 }
}

Die Ausgabe des Programms ist:

Ihr Tipp: [36, 10, 20, 8, 36, 22]

Dieses Programm erzeugt Tippvorschläge für die Lottozahlen. Allerdings kann es da-
bei gelegentlich vorkommen, dass Zahlen mehrfach vorkommen. Dies kann durch
Ersetzen der ersten Anweisung in der tippen()-Methode durch die folgende An-
weisung behoben werden:

Collection<Integer> lottotipp = new TreeSet<Integer>();

Ein Objekt der aktuell parametrisierten Klasse TreeSet<Integer> fügt vorhandene
Zahlen nicht erneut ein und erzwingt so weitere Schleifendurchläufe zur Generierung
anderer Zahlen. Weitere Änderungen sind nicht notwendig, da sowohl die zuerst
verwendete Klasse ArrayList als auch die später eingesetzte Klasse TreeSet die
Schnittstelle Collection<E> implementieren.

Bild 18-1 zeigt alle Collection-Schnittstellen im Überblick. Die dargestellten Schnitt-
stellen131 sind im Folgenden kurz beschrieben:

• Iterable: Die Schnittstelle Iterable<E> ist eine Schnittstelle für alle Klassen,
über die man iterieren132 können soll. Collections sind dafür ein typisches Beispiel.
Trotzdem ist diese Schnittstelle nicht Bestandteil von java.util sondern von
java.lang, da sie noch eine besondere Bedeutung im Zusammenhang mit der
neuen Variante der erweiterten for-Schleife zur Iteration über Elemente einer Da-
tenstruktur hat, d. h. sie ist Bestandteil des Sprachkerns und erlaubt die Imple-
mentierung von eigenen Klassen, die mit der erweiterten for-Schleife funktionie-
ren sollen.

131 Seit JDK 5.0 gibt es weitere Collections unter java.util.concurrent.
132 Iterieren bedeutet, es wird schrittweise auf jedes Objekt zugegriffen, das von der Collection aus

referenziert wird.

688 Kapitel 18

• Collection: Die Schnittstelle Collection<E> bildet die Wurzel der Schnittstellen
des Collection Frameworks. Das JDK bietet keine direkte Implementation der
Collection<T>-Schnittstelle, jedoch Implementationen für alle abgeleiteten
Schnittstellen. Mit Ausnahme der Assoziativen Arrays wie z. B. HashMap<K,V>
implementieren alle Collections die Schnittstelle Collection<E>.

• List: Die Schnittstelle List<E> bildet die Basis für Listen, nicht jedoch für
Queues. Konkrete Implementierungen beider Schnittstellen haben zwar einen
ähnlichen internen Aufbau, die beiden Schnittstellen selbst stehen jedoch neben-
einander, da sich ihre Grundoperationen (Einfügen am Ende und Zugreifen am
Anfang bzw. Einfügen und Zugreifen an beliebiger Stelle) voneinander unter-
scheiden.

• Queue: Die Schnittstelle Queue<E> definiert Eigenschaften einer Warteschlange.
Da eine Queue im Grunde genommen nichts anderes als eine Liste ist, die nach
dem FIFO-Prinzip (FIFO = First In First Out) abgearbeitet wird, implementieren
manche Klassen, die diese Schnittstelle implementieren, auch die Schnittstelle
List<E>.

• Set: Die Schnittstelle Set<E> definiert Eigenschaften, die einer mathematischen
Menge ähneln. Eine solche Menge besteht aus einer Ansammlung von Objekten
und kann wie eine mathematische Menge keine Duplikate enthalten. Wie in der
Mathematik kann sehr einfach getestet werden, ob ein Element in einer Menge
schon enthalten ist. Es stehen jedoch keine Methoden für weitere Mengenope-
rationen wie Schnitt, Differenz oder Vereinigung von Mengen zur Verfügung.

• Map: Die Schnittstelle Map<K,V> definiert Eigenschaften von assoziativen Arrays,
die Schlüssel(wörter) auf Werte abbildet. Damit das funktioniert, darf jeder
Schlüssel nur einmal vorkommen, Werte hingegen auch mehrfach. Zu beachten
ist, dass die Schnittstelle Map<K,V> nicht von der Schnittstelle Collection<E>
abgeleitet ist! Der Grund hierfür ist, dass beim Einfügen von Elementen in eine
Map stets zwei Elemente auf einmal eingefügt werden und zwar Schlüssel und
Wert, worauf die Schnittstelle Collection<E> nicht vorbereitet ist.

<<interface>>
java.util.Collection

<<interface>>
java.lang.Iterable

<<interface>>
Queue

<<interface>>
SortedMap

<<interface>>
List

<<interface>>
Set

<<interface>>
SortedSet

<<interface>>
BlockingQueue

<<interface>>
java.util.Map

Bild 18-1 Collection-Schnittstellen in java.util

Collections 689

Die Implementierungsstrategie und die Anwendung der zugehörigen Klassen, sowie
die gezeigten Spezialisierungen der Schnittstellen Set<E>, Queue<E>, List<E>
und Map<K,V> werden in den nachfolgenden Kapiteln genauer beschrieben. Tabelle
18-1 zeigt eine Übersicht der dabei behandelten Collection-Klassen und deren
Eigenschaften.

Organisation

Freiheit
beim Zugriff

Mechanismus
beim Zugriff

Duplikate
zugelassen

Besondere
Eigenschaften

L
is

te
n

ArrayList geordnet wahlfrei über Index ja schneller
Zugriff

LinkedList geordnet wahlfrei über Index ja schnelles
Einfügen

Vector geordnet wahlfrei über Index ja synchronisiert

Stack geordnet sequenziell letztes
Element ja LIFO

Q
u

eu
es

LinkedList geordnet sequenziell nächstes
Element ja -

PriorityQueue sortiert sequenziell nächstes
Element ja -

S
et

s

HashSet ungeordnet wahlfrei einfacher Test nein schneller
Zugriff

TreeSet sortiert wahlfrei einfacher Test nein -

M
ap

s HashMap ungeordnet wahlfrei über
Schlüssel

Schlüssel nein
Werte ja

schneller
Zugriff

TreeMap sortiert wahlfrei über
Schlüssel

Schlüssel nein
Werte ja -

Tabelle 18-1 Übersicht über konkrete Collection-Klassen im Paket java.util

Speziell für Aufzählungstypen wurden mit JDK 5.0 die speziellen Collection-Klassen
EnumSet<E extends Enum<E>> und EnumMap<K extends Enum<K>,V> einge-
führt, welche intern eine optimierte Darstellung für eine noch schnellere Verarbeitung
verwenden.

Gemeinsame Eigenschaften von Collections

Allen Collections gemeinsam ist die Fähigkeit, beliebige Objekte verwalten zu kön-
nen und bei Bedarf automatisch zu wachsen. Mit Hilfe der in Kapitel 17 vorgestellten
Generizität in Java ist es außerdem möglich, eine Collection auf einen bestimmten
Inhaltstyp festzulegen, um so einerseits die Typsicherheit zu garantieren (beim Einfü-
gen wird auf den richtigen Typ der Objekte überprüft) und andererseits Laufzeitfehler
– beispielsweise das Auftreten von Exceptions vom Typ ClassCastException –
zu vermeiden.

Die Schnittstelle Collection<E> legt die gemeinsamen Eigenschaften aller Col-
lections (außer Maps) fest und ist daher sehr allgemein gehalten. Die wichtigsten
Methoden sind:

690 Kapitel 18

• public boolean add (E ref)
Hinzufügen von Referenzen auf Objekte vom Typ E zu der Collection.

• public boolean remove (E ref)
Entfernen der Referenz ref vom Typ E aus der Collection.

• public int size()
Liefert die Anzahl der in der Collection enthaltenen Referenzen zurück.

• public boolean isEmpty()
Liefert true zurück, wenn in der Collection keine Referenz hinterlegt ist, sonst
false.

• public void clear()
Entfernt alle Referenzen aus der Collection.

• public boolean contains (E ref)
Liefert true zurück, wenn die Collection eine Referenz enthält, die auf dasselbe
Objekt zeigt, wie die übergebene Referenz ref vom Typ E.

• public E[] toArray()
Liefert ein Array zurück, das alle in der Collection gespeicherten Referenzen vom
Typ E enthält.

Die Übergabeparameter der Methoden add() und remove() waren bis zum JDK
1.4 vom Typ Object. Damit konnte ihnen eine Referenz auf ein beliebiges Objekt
übergeben werden. Oftmals will man aber nur Objekte eines bestimmten Typs ver-
walten. In diesem Fall kann der Typparameter E verwendet werden, um den Ele-
menttyp der Collection bei der Instantiierung an eine bestimmte Klasse wie z. B. die
Klasse String zu binden, wie das folgende Beispiel zeigt:

Collection<String> coll = new ArrayList<String>();

Gibt man keinen Typ an, wird zur Kompatibilität wie bisher die Klasse Object ver-
wendet (dies entspricht der Schreibweise Collection<Object>). Allerdings gene-
riert der Compiler in diesem Fall bei der Übersetzung die Warnung

Note: <Dateiname>.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

da er nun keine Prüfungen mehr einfügen kann und der Programmierer beim Ein-
fügen selbst auf Konsistenz achten und beim Zugriff auf die einzelnen Elemente eine
cast-Operation verwenden muss, die zu einer ClassCastException führen kann.

Dank Autoboxing kann man übrigens auch primitive Datentypen sehr einfach in
Collections speichern, z. B.:

Collection<Integer> c = new ArrayList<Integer>();
c.add (5); // wird automatisch eingepackt
// ...
int i = c.get (0) // wird automatisch ausgepackt

Dadurch sind die Collections seit JDK 5.0 auch in der Handhabung mindestens so
gut wie Arrays und bieten dabei die gewohnte Flexibilität und Leistungsfähigkeit.

Collections 691

18.2 Iterieren über Collections

Neben den verschiedenen Möglichkeiten auf einzelne Elemente zuzugreifen, bieten
Collections die Möglichkeit, alle ihre Elemente in einer Schleife zu bearbeiten. Der
Schlüssel dazu sind so genannte Iteratoren.

Iteratoren stellen ein universelles Prinzip dar, welches es erlaubt, auf
die Collection zuzugreifen, ohne den speziellen Typ der Collection zu
kennen. Ein Iterator erlaubt es, über alle Elemente der Collection zu
laufen, sowie festzustellen, ob noch ein weiteres Element in der
Collection ist.

Damit funktioniert das Bearbeiten einer Collection ähnlich wie bei Arrays:

// Datei: IterationAlt.java

import java.util.*;

public class IterationAlt
{
 public static void main (String[] args)
 {
 // Array definieren
 int[] arr = {1, 2, 3, 4, 5};

 // Collection anlegen
 List<Integer> coll = new ArrayList<Integer>();

 // Schleife, um Arrayelemente in Collection zu kopieren
 for (int i = 0; i < arr.length; ++i)
 {
 coll.add (arr [i]); // Auto-Boxing
 }

 // Iterator erzeugen
 Iterator<Integer> iter = coll.iterator();

 // Schleife, um Elemente der Collection auszugeben
 while (iter.hasNext()) // weitere Elemente?
 {
 Integer value = iter.next(); // Zugriff über Iterator
 System.out.println ("Inhalt: " + value); // Auto-Unboxing
 }
 }
}

Die Ausgabe des Programms ist:

Inhalt: 1
Inhalt: 2
Inhalt: 3
Inhalt: 4
Inhalt: 5

692 Kapitel 18

Der Laufvariablen eines Arrays entspricht bei einer Collection der Iterator iter.
Dieser stellt gewissermaßen einen "Zeiger" dar, der über die Elemente der Collection
gleitet und die jeweils aktuelle Position markiert. Als Abbruchbedingung dient der
Rückgabewert der Methode hasNext(), der anzeigt, ob noch weitere Elemente
vorhanden sind. Zum Zugriff wird an Stelle des Array-Index die Methode next()
verwendet. Sie liefert das aktuelle Element zurück und stellt gleichzeitig den Iterator
auf das nächste Element.

Die Methoden hasNext() und next() des Iterators sind in der Schnittstelle Ite-
rator<E> deklariert. Jede Collection-Klasse hat ihre eigene Iterator-Klasse, welche
diese Schnittstelle implementiert. Diese hat die Aufgabe, die Implementierungsdetails
der Collection zu verbergen und dem Benutzer der Collection eine standardisierte
Schnittstelle zum Zugriff auf Elemente zur Verfügung zu stellen. Der Aufruf der in
Collection definierten Methode iterator() liefert dabei stets eine Referenz auf
ein Objekt zurück, welches die Schittstelle Iterator<E> implementiert. Die eigent-
liche Iterator-Klasse wird nie sichtbar, da auch hier stets "gegen die Schnittstelle"
programmiert wird.

Manche Collections gestatten auch das Einfügen oder Löschen von Elementen über
einen speziellen Iterator. Dazu liefern sie über eine eigene Methode eine Referenz
auf ein Objekt zurück, welches eine Schnittstelle implementiert, die von der Schnitt-
stelle Iterator<E> erbt (d. h. sie erweitert). Als Beispiel sei die Methode list-
Iterator() im Interface List<E> genannt, die eine Referenz vom Typ List-
Iterator<E> zurückliefert.

Seit dem JDK 5.0 kann über Collections – wie bei Arrays – mit der erweiterten for-
Schleife iteriert werden. Mit anderen Worten, man kann schreiben:

public void ausgabe (Collection<String> c)
{
 for (String element : c)
 {
 System.out.println (element);
 }
}

Die erweiterte for-Schleife verwendet dabei – für den Programmierer unsichtbar –
ebenfalls einen Iterator. Dazu hier das vollständige Beispiel:

// Datei: IterationNeu.java

import java.util.*;

public class IterationNeu
{
 public static void main (String[] args)
 {
 // Array definieren
 int[] arr = {1, 2, 3, 4, 5 };

 // Collection anlegen
 List<Integer> coll = new ArrayList<Integer>();

Collections 693

 // Schleife, um Arrayelemente in Collection zu kopieren
 for (int i = 0; i < arr.length; ++i)
 {
 coll.add (arr [i]); // Auto-Boxing
 }

 // Verwenden der erweiterten for-Schleife, um auf
 // alle Elemente in der Collection zuzugreifen
 for (Integer inhalt : coll)
 {
 System.out.println ("Inhalt: " + inhalt); // Auto-Unboxing
 }
 }
}

Die Ausgabe des Programms ist:

Inhalt: 1
Inhalt: 2
Inhalt: 3
Inhalt: 4
Inhalt: 5

Das ist zwar einfacher zu schreiben, aber schwerer zu verstehen, da man nicht mehr
sieht, was passiert. Der Iterator tritt nun nämlich gar nicht mehr in Erscheinung – er
wird im Verborgenen verwendet. Für Aufgabenstellungen, bei denen man direkt auf
den Iterator zugreifen muss, wie z. B. um Elemente einzufügen oder zu entfernen, ist
auch weiterhin die in der Klasse IterationAlt vorgestellte ausführliche Schreib-
weise notwendig.

Da die Bearbeitung einer Collection durch einen Iterator (ob sichtbar
oder unsichtbar) in optimierter Weise erfolgt, darf die Collection da-
bei – wenn überhaupt – nur durch den Iterator selbst verändert wer-
den. Sonst wird eine Exception vom Typ ConcurrentModifica-
tionException geworfen.

18.3 Listen

Als Listen werden die Klassen bezeichnet, welche die Schnittstelle List<E> imple-
mentieren. Dies sind die Klassen ArrayList<E>, Vector<E>, LinkedList<E>
und Stack<E>, die in der Vererbungshierarchie in Bild 18-2 grau hinterlegt zu sehen
sind. Die beiden in Bild 18-2 dargestellten abstrakten Klassen AbstractList<E>
und AbstractSequentialList<E> dienen als Basis der konkreten Listen und
implementieren die Schnittstelle List<E>. Diese wiederum legt die grundlegenden
Methoden fest, die alle Listen-Klassen implementieren. Die wichtigsten davon sind:

• public E get (int index)
Wahlfreier lesender Zugriff auf ein Element der Liste

• public E set (int index, E element)
Wahlfreier schreibender Zugriff auf ein Element der Liste

694 Kapitel 18

• public void add (int index, E element)
Fügt ein Element ein und verschiebt dabei die Nachfolger.

• public Element remove (int index)
Entfernt das Element und lässt die Nachfolger nachrücken.

• public List<E> sublist (int fromIndex, int toIndex)
Erzeugt eine Teilliste mit den Elementen von fromIndex bis toIndex.

ArrayList

Object

Vector AbstractSequentialList
{abstract}

AbstractCollection
{abstract}

Stack LinkedList

AbstractList
{abstract}

Collection

List

Bild 18-2 Klassenhierarchie für Listen

Der Unterschied zwischen den vier konkreten Klassen für Listen besteht darin, wie
sie diese Funktionalität realisieren, d. h. insbesondere wie Listenelemente gespei-
chert werden. Die Klassen ArrayList, Vector und Stack verwenden dazu intern
ein Array, das wachsen kann. Dies wird durch internes Umkopieren der Elemente
des Arrays in ein größeres Array ermöglicht. Die Klasse LinkedList hingegen
bildet stattdessen eine dynamische Kette aus Objekten (siehe Kap. 18.3.2).

Listen sind geordnet und erlauben wie Arrays einen wahlfreien Zugriff auf ihre
Elemente über einen numerischen Index. Darüber hinaus bieten Instanzen dieser
Klassen die Möglichkeit, Referenzen auf neue Elemente an beliebiger Stelle inner-
halb der Liste einzufügen, ohne dass eine dort schon vorhandene Referenz über-
schrieben wird.

Collections 695

refC

an Position 3
einfügen

0

1

2

3

4

5

refA

refD

refB

refZ

refY

refX

Liste vor Einfügen

0

1

2

3

4

5

6

refA

refD

refB

refC

refZ

refY

refX

Liste nach Einfügen
Bild 18-3 In Listen können Objektreferenzen an beliebiger Stelle eingefügt werden

Umgekehrt ist es möglich, eine Objektreferenz an beliebiger Stelle wieder aus der
Collection zu entfernen, ohne dass eine Lücke entsteht.

18.3.1 Array-ähnliche Listen

Die Klassen ArrayList<E> und Vector<E> sind sich sehr ähnlich bis auf den
Unterschied, dass die Methoden der Klasse Vector<E> synchronisiert sind und die
Methoden der Klasse ArrayList<E> nicht. Da dies nur im Zusammenhang mit
Threads eine Rolle spielt (siehe Kap. 18.7.1), wird im Folgenden nur die Klasse
ArrayList<E> an einem einfachen Beispiel vorgestellt. Das Beispiel funktioniert
aber auch, wenn Sie die ArrayList<E> durch eine Instanz der Klasse Vector<E>
oder der im nächsten Abschnitt vorgestellten Klasse LinkedList<E> ersetzen, da
nur über die Schnittstelle gearbeitet wird.

// Datei: ListBeispiel.java

import java.util.*;

public class ListBeispiel
{
 public static void main (String[] args)
 {
 // Liste erzeugen und fünf Elemente anhängen
 List<String> liste = new ArrayList<String>();
 liste.add ("Frieder");
 liste.add ("Marie");
 liste.add ("Laura");
 liste.add ("Uli");
 liste.add ("Steven");
 System.out.println (liste);

 // Referenz auf ein String-Objekt mit dem Inhalt
 // Karl an Position 2 einfügen
 liste.add (2, "Karl");
 System.out.println (liste);

 // Die Referenz an Position 3 entfernen
 liste.remove (3);
 System.out.println (liste);

696 Kapitel 18

 // Die Referenz entfernen, die auf ein Objekt mit
 // dem Inhalt "Karl" zeigt (das betroffene Objekt
 // wird intern mit Hilfe der equals()-Methode gesucht).
 liste.remove ("Karl");
 System.out.println (liste);
 }
}

Die Ausgabe des Programms ist:

[Frieder, Marie, Laura, Uli, Steven]
[Frieder, Marie, Karl, Laura, Uli, Steven]
[Frieder, Marie, Karl, Uli, Steven]
[Frieder, Marie, Uli, Steven]

Die Methode add() fügt die übergebene Referenz immer an das Ende der beste-
henden Liste an. Wie zu sehen ist, kann in die Liste aber auch an beliebiger Stelle
eine Referenz eingefügt werden, ohne dass ein vorhandenes Element an dieser
Position überschrieben wird.

Bei der Ausgabe des Inhaltes der Collection über die Referenz liste wird durch die
Methode println() automatisch die toString()-Methode der entsprechenden
Listenklasse aufgerufen. Diese ruft dann ihrerseits die toString()-Methoden aller
in der Collection enthaltenen Referenzen auf.

18.3.2 Verkettete Listen

Eine verkettete Liste verkettet Objekte über Referenzen. Ein Listenelement besteht
also aus den Nutzinformationen und aus einer Referenz, die auf das nächste (ein-
fach verkette Liste) oder das nächste und das vorherige (doppelt verkettete Liste)
Element zeigen kann, um die Verkettung zu realisieren. Eine doppelte Verkettung
macht zwar mehr Aufwand, gestattet es aber dafür, die Liste in beiden Richtungen zu
durchlaufen (traversieren). Bild 18-4 zeigt eine einfach verkettete Liste zur Spei-
cherung von Personen.

 :Person

:Person

:Person

null Referenz auf

Listenanfang

Nutz-
daten

Nutz-
daten

Nutz-
daten

Bild 18-4 Verkettung von Personen-Objekten in einer einfach verketteten Liste

Eine verkettete Liste besteht also aus

• einer Referenz, die auf den Listenanfang zeigt,
• sowie Referenzen zur Verkettung der einzelnen Elemente
• und Nutzdaten.

Collections 697

In der Liste in Bild 18-4 ist die Referenz zur Verkettung und die Nutzinformationen in
einem einzigen Objekt untergebracht. Dies hat den Nachteil, dass in allen Klassen,
deren Objekte in einer Liste gespeichert werden sollen, die Referenz für die Ver-
kettung vorhanden sein muss. Sollen beispielsweise Objekte vom Typ Punkt ver-
kettet werden, so muss zuerst die Klasse Punkt um eine Referenz zur Verkettung
von Punkt-Objekten erweitert werden.

Besser wäre eine Liste, in der beliebige Objekte gespeichert werden können. Dazu
muss die Verkettungsinformation von den Nutzinformationen getrennt werden. Eine
universelle verkettete Liste, die für beliebige Objekte eingesetzt werden kann, ver-
wendet dazu als Verkettungselemente so genannte Knoten (Nodes), an die ein
beliebiges Objekt angehängt werden kann. Bild 18-5 zeigt eine verkettete Liste mit
drei Knoten. Jeder Knoten besitzt zwei Referenzen. Die eine Referenz ist selbst wie-
der vom Typ Knoten<E> und zeigt auf den direkten Nachfolger-Knoten, also auf ein
weiteres Objekt vom Typ Knoten<E>. Die andere Referenz zeigt auf ein Objekt vom
Typ E, also auf den generischen Typ, für den die Klasse Knoten<E> instantiiert wird.
Dadurch, dass die Klasse Knoten<E> generisch ist, können Objekte von beliebigem
Typ referenziert werden. Diese Objekte vom Typ E stellen die eigentlichen Nutzdaten
eines Listenelementes dar.

Wird die Klasse Knoten<E> beispielsweise mit dem aktuellen Typ-Parameter
Integer instantiiert:

Knoten<Integer> knoten = new Knoten<Integer> (1);

so zeigt die "Nutzdaten-Referenz" auf ein Objekt vom Typ Integer.

 :Knoten

:E :E

:Knoten

:Knoten

null Referenz auf
Listenanfang

:E
Nutz-
daten

Bild 18-5 Universell verwendbare verkettete Liste

Das folgende Beispiel zeigt zur Verdeutlichung des Prinzips die Implementierung
einer eigenen Klasse zur Realisierung einer verketteten Liste. Die Klasse Ver-
ketteteListe<E> hat die vier Methoden add(), firstElement(), nextEle-
ment() und remove(). Um die Verkettung herzustellen, wird eine generische Klas-
se mit dem Namen Knoten<E> verwendet. Zum Bearbeiten der Liste wird ein einfa-
cher Iterator verwendet, der in der Klasse ListenIterator<E> realisiert ist:

698 Kapitel 18

// Datei: Knoten.java

public class Knoten<E>
{
 // Referenz auf nächsten Knoten
 public Knoten<E> next = null;
 // Die Referenz vom Typ E zeigt auf
 // die eigentlichen Nutzdaten
 public E data;

 public Knoten (E data)
 {
 // Neuen Knoten initialisieren
 this.data = data;
 }
}

Die Klasse ListenIterator<E> ist ebenfalls generisch, weil sie mit Referenzen
auf Objekte der generischen Klasse Knoten<E> arbeitet:

// Datei: ListenIterator.java

public class ListenIterator<E>
{
 private Knoten<E> position;

 public ListenIterator (Knoten<E> startPosition)
 {
 position = startPosition;
 }

 public boolean hatNoch()
 {
 return (position != null);
 }

 public E zugriffUndWeiter()
 {
 if (position != null)
 {
 E data = position.data;
 position = position.next;
 return data;
 }
 return null;
 }
}

Die generische Klasse VerketteteListe<E> kann mit beliebigen aktuellen Typ-
Parametern instantiiert werden. Somit kann ein Objekt dieser Klasse dann Referen-
zen auf Objekte des entsprechenden Typs aufnehmen:

// Datei: VerketteteListe.java

public class VerketteteListe<E>
{

Collections 699

 // Referenz auf den Listenanfang
 private Knoten<E> anfang = null;
 private int anzahl = 0;

 // Füge eine Referenz an das Ende der Liste an
 public void add (E o)
 {
 anzahl++;

 // Neuen Knoten erzeugen.
 Knoten<E> knoten = new Knoten<E> (o);

 // Ist das der erste Knoten?
 if (anfang == null)
 {
 anfang = knoten; // Anfang = Erster Knoten
 return; // fertig!
 }

 // Hilfsreferenz
 Knoten<E> aktuell = anfang;

 // "Vorspulen" zum Listenende
 while (aktuell.next != null)
 {
 aktuell = aktuell.next;
 }

 // Neuen Knoten anhängen
 aktuell.next = knoten;
 }

 // Entfernt eine Referenz aus der Liste
 public boolean remove (E o)
 {
 // Wenn Liste leer, sofort fertig
 if (anfang == null)
 {
 return false;
 }

 // Element suchen und löschen. Dabei muss der Vorgänger
 // nachgezogen werden, um die Lücke schließen zu können.
 Knoten<E> aktuell = anfang; // Wir sind am Anfang...
 Knoten<E> vorher = null; // und haben noch keinen Vorgänger

 // Solange das Listenende nicht erreicht ist . . .
 while (aktuell != null)
 {
 // Objekt gefunden?
 if (o.equals (aktuell.data))
 {
 anzahl--;

 // War es das erste Objekt?
 if (vorher == null)
 {

700 Kapitel 18

 // Erstes Element löschen:
 // Anfang = Zweites Element (= Nachfolger vom Anfang)
 anfang = aktuell.next;
 }
 else
 {
 // Aktuelles Element ausklinken:
 // Vorgänger mit Nachfolger verbinden
 vorher.next = aktuell.next;
 }
 return true;
 }
 // Weitersuchen
 vorher = aktuell; // Vorgänger nachziehen
 aktuell = aktuell.next; // Position weiterschalten
 }
 // Element wird nicht von der Liste referenziert
 return false;
 }

 // Liefere die Anzahl der Elemente zurück
 public int size()
 {
 return anzahl;
 }

 public ListenIterator<E> iterator()
 {
 return new ListenIterator<E> (anfang);
 }

 public String toString()
 {
 StringBuilder str = new StringBuilder();
 str.append ('[');
 ListenIterator<E> iter = iterator();
 while (iter.hatNoch())
 {
 str.append (iter.zugriffUndWeiter());
 if (iter.hatNoch()) str.append (',');
 }
 str.append (']');
 return str.toString();
 }
}

Damit die Funktionsweise verstanden werden kann, wird ein kleines Testprogramm
geschrieben und die Liste für die eingefügten Elemente in Bild 18-6 grafisch dar-
gestellt. Zuerst das Testprogramm:

// Datei: VerketteteListeTest.java

public class VerketteteListeTest
{
 public static void main (String[] args)
 {

Collections 701

 VerketteteListe<Integer> liste =
 new VerketteteListe<Integer>();

 liste.add (1);
 liste.add (2);
 liste.add (3);
 liste.add (4);
 liste.add (5);

 System.out.println ("Anzahl = " + liste.size());
 System.out.println (liste);

 liste.remove (5);
 liste.remove (3);
 liste.remove (1);

 // Der Versuch, ein nicht vorhandenes Element
 // zu entfernen, hat keine Auswirkung
 liste.remove (22);
 System.out.println ("Anzahl = " + liste.size());
 System.out.println (liste);
 }
}

Die Ausgabe des Programms ist:

Anzahl = 5
[1,2,3,4,5]
Anzahl = 2
[2,4]

Nach dem Aufbau und Entfernen der drei Objekte sieht die verkettete Liste so aus:

 :VerketteteListe

anfang

anzahl

:Knoten

next

data

:Integer

2

:Integer

4

:Knoten

next

data

null

Bild 18-6 Verkettete Liste mit 2 Elementen

Neben der Arbeitsweise einer verketteten Liste zeigt das Beispielprogramm auch die
prinzipielle Funktion eines Iterators. Dieser nutzt die Kenntnis der internen Implemen-
tierung der Liste zur Erfüllung seiner Funktion, zeigt dies aber nicht nach außen.
Allerdings implementieren die beiden Klassen nicht die entsprechenden Schnitt-
stellen List<E> und Iterator<E>. Java stellt jedoch im Paket java.util eine
Klasse LinkedList<E> mit entsprechendem Iterator zur Verfügung.

702 Kapitel 18

18.3.3 Stapel

Ein Stapelspeicher oder Stack ist eine Collection, die wie eine Ablage funktioniert –
das Schriftstück, das man zuletzt in die Ablage hineinlegt, wird auch wieder als
erstes herausgeholt. Auf einen Stack kann man Objekte also nur "oben" drauflegen
und sie auch nur von "oben" wieder wegnehmen. Es besteht keine Möglichkeit, ein
Element aus der Mitte zu entnehmen oder ein Element in die Mitte einzufügen. Damit
handelt es sich quasi um eine Liste, von der man nur den Anfang sieht. Dies erklärt
die Implementierung der Klasse Stack<E> als Unterklasse der Klasse Vector<E>.

Den Arbeitsmechanismus eines Stapels bezeichnet man auch als
"last-in, first-out"-Prinzip (LIFO). Im Unterschied dazu arbeiten Warte-
schlangen nach dem Prinzip "first-in, first-out" (FIFO).

Bild 18-7 zeigt, wie mit einer Methode push() ein Element auf einen Stack gelegt
wird und wie mit einer Methode pop() das oberste Element vom Stack wieder
entnommen wird.

Element A

Element B

Element C

Element A

Element B

Element C

Element D

Element A

Element B

Element C

Element D

push

Stack vor push Stack nach push Stack nach pop

Element D

pop

Bild 18-7 Methoden push() und pop()

Ein Stack kann aus Variablen einfacher Datentypen aufgebaut werden – oder im
Falle von Klassen aus Referenzen auf Objekte. Sind die Referenzen, die auf einem
Stack gespeichert werden, vom Typ Object, so kann jede beliebige Referenz auf
dem Stack abgelegt werden. Die folgende Auflistung zeigt die Methodenköpfe der
Klasse Stack<E>:

• public boolean empty()
Gibt true zurück, wenn der Stack leer ist, ansonsten false.

• public E push (E item)
Legt die übergebene Referenz item oben auf dem Stack ab.

Collections 703

• public E pop()
Gibt eine Referenz auf das Objekt zurück, das ganz oben auf dem Stack liegt und
entfernt die oberste Referenz vom Stack.

• public E peek()
Gibt eine Referenz auf das Objekt zurück, das ganz oben auf dem Stack liegt,
ohne die Referenz vom Stack zu entfernen.

• public int search (Object o)
Sucht mit Hilfe der Methode equals() im Stack eine Referenz, die auf ein Objekt
zeigt, das den gleichen Inhalt hat wie das Objekt, auf das die Referenz o zeigt.
search() gibt die Position der Objektreferenz auf dem Stack zurück, wenn die
Suche erfolgreich war oder -1, wenn die Referenz auf das gesuchte Objekt auf
dem Stack nicht gefunden wurde.

Das folgende Beispiel zeigt die Verwendung der Methoden push(), pop() und
empty(). Es werden Referenzen auf Objekte der Klasse String auf dem Stack
stapel abgelegt:

// Datei: StackBeispiel.java

import java.util.Stack;

public class StackBeispiel
{
 public static void main (String[] args)
 {
 // Neuen Stack für Strings erzeugen
 Stack<String> stapel = new Stack<String>();

 // Strings auf den Stapel legen
 stapel.push ("1. Objekt");
 stapel.push ("2. Objekt");
 stapel.push ("3. Objekt");

 // Oberstes Element ausgeben
 System.out.println (stapel.peek() + " liegt oben");

 // Alle Elemente entfernen und ausgeben
 while (!stapel.empty())
 {
 System.out.println (stapel.pop() + " wird entfernt");
 }
 System.out.println ("Stack ist jetzt wieder leer!");
 }
}

Die Ausgabe des Programms ist:

3. Objekt liegt oben
3. Objekt wird entfernt
2. Objekt wird entfernt
1. Objekt wird entfernt
Stack ist jetzt wieder leer!

704 Kapitel 18

Kennzeichnend ist, dass die Ausgabe in umgekehrter Reihenfolge zur Eingabe er-
folgt: Die Referenz, die als letztes eingefügt wurde – hier die Referenz auf das
String-Objekt mit dem Inhalt "3. Objekt" – (last-in), wird als erstes ausgegeben
(first-out).

18.3.4 Laufzeiteigenschaften von Listen

Die unterschiedlichen Implementierungen von Listen haben unterschiedliche Lauf-
zeiteigenschaften. Diese sollen mit dem folgenden Programm gezeigt werden:

// Datei: ListenAnalyse.java
import java.util.*;

public class ListenAnalyse
{
 public static void main (String[] args)
 {
 // Erster Schritt: Listentyp auswählen
 int auswahl = 0;
 try
 {
 Scanner eingabe = new Scanner (System.in);
 System.out.println ("Welcher Listentyp?");
 System.out.println ("1 - ArrayList<E>");
 System.out.println ("2 - LinkedList<E>");
 System.out.print ("Auswahl: ");
 auswahl = eingabe.nextInt ();
 }
 catch (Exception ex)
 {
 System.out.println ("Fehlerhafte Eingabe!");
 System.exit (1);
 }

 // Zweiter Schritt: Liste initialisieren
 String name = null;
 List<Integer> list = null;
 switch (auswahl)
 {
 case 1:
 name = "ArrayList<E>";
 list = new ArrayList<Integer>();
 break;
 case 2:
 name = "LinkedList<E>";
 list = new LinkedList<Integer>();
 break;
 default:
 System.out.println ("Keine gültige Auswahl getroffen!");
 System.exit (1);
 }

 // Dritter Schritt: Messungen machen
 int anzahl = 50000;
 long t0 = System.currentTimeMillis();

Collections 705

 // Liste erzeugen
 for (int i = 0; i < anzahl; ++i)
 {
 list.add (i);
 }
 long t1 = System.currentTimeMillis();

 // Vorne weitere Elemente rein
 ListIterator<Integer> iter = list.listIterator();
 long t2 = System.currentTimeMillis();
 for (int i = 0; i < anzahl; ++i)
 {
 iter.add (i);
 }
 long t3 = System.currentTimeMillis();

 // 10000 Mal auf das mittlere Element zugreifen
 int mitte = anzahl / 2;
 long t4 = System.currentTimeMillis();
 for (int i = 0; i < 10000; ++i)
 {
 int value = list.get (mitte);
 }
 long t5 = System.currentTimeMillis();

 // Vierter Schritt: Ergebnisse ausgeben
 System.out.println ("Ergebnisse mit " + name + ":");
 System.out.println ("Elemente direkt erzeugen : " +
 (t1 - t0) + " ms");
 System.out.println ("Elemente mit Iterator erzeugen : " +
 (t3 - t2) + " ms");
 System.out.println ("Zugriff auf mittleres Element : " +
 (t5 - t4) + " ms");
 }
}

Die Ausgabe des Programms für ArrayList<E> ist:

Welcher Listentyp?
1 - ArrayList<E>
2 - LinkedList<E>
Auswahl: 1
Ergebnisse mit ArrayList<E>:
Elemente direkt erzeugen : 31 ms
Elemente mit Iterator erzeugen : 3969 ms
Zugriff auf mittleres Element : 0 ms

Die Ausgabe des Programms für LinkedList<E> ist:

Welcher Listentyp?
1 - ArrayList<E>
2 - LinkedList<E>
Auswahl: 2
Ergebnisse mit LinkedList<E>:
Elemente direkt erzeugen : 46 ms
Elemente mit Iterator erzeugen : 16 ms
Zugriff auf mittleres Element : 7953 ms

706 Kapitel 18

Listen vom Typ ArrayList<E> sind offenbar schnell beim Anhängen von Ele-
menten, aber langsam beim Einfügen. Das liegt daran, dass hier alle nachfolgenden
Elemente verschoben werden müssen. Dafür sind sie sehr schnell beim Zugriff.
Listen vom Typ LinkedList<E> sind dagegen gleichermaßen schnell beim An-
hängen und Einfügen. Dafür sind sie langsam beim (wahlfreien) Zugriff, weil immer
erst von Element zu Element bis zur richtigen Position gelaufen werden muss. Das
Geheimnis zum effizienten Einsatz einer Collection vom Typ LinkedList<E> ist der
Iterator. Aufeinanderfolgende Zugriffe und Einfügeoperationen gehen mit seiner Hilfe
sehr schnell. Beim ersten Zugriff/Einfügen bzw. bei Verwendung der Methoden
get() und add() von LinkedList<E> muss jedoch immer die Liste bis zum ge-
wünschten Element durchlaufen werden.

18.3.5 Sortieren von Listen

In den bisher gezeigten Beispielen erfolgte die Ausgabe der Objekte aus einer
Collection immer in unsortierter Reihenfolge. Dieser Umstand ist beispielsweise für
die Ausgabe von Namen aus einer Teilnehmerliste nicht wünschenswert, da diese
schnell unübersichtlich werden würde. In diesem Abschnitt soll deshalb die Ausgabe
einer Collection in sortierter Reihenfolge erläutert werden. Für die Ausgabe einer
Collection in sortierter Reihenfolge bietet das Collection Framework zwei verschie-
dene Implementierungsmöglichkeiten.

Die erste Möglichkeit mit Hilfe der Schnittstelle Comparable<T> (siehe Kap. 17.4.5)
besteht darin, die Objekte der Collection nach ihrer natürlichen Ordnung zu sortieren,
um sie anschließend auszugeben. Ein Beispiel hierfür finden Sie in Kapitel 18.6.2.

Die zweite Möglichkeit besteht darin, die Collection nach beliebigen Sortierkriterien
sortieren zu lassen. Hierfür wird ein externes Vergleichsobjekt benötigt, welches die
Schnittstelle Comparator<T> implementiert und die Reihenfolge für die zu sortie-
renden Objekte festlegt. Die Schnittstelle Comparator<T> definiert die Methode

public int compare (T o1, T o2),

welche im externen Vergleichsobjekt implementiert werden muss, damit die entspre-
chenden Sortierregeln implementiert werden können. Damit die Objekte nach der
gewünschten Reihenfolge sortiert werden können, müssen die verschiedenen Ver-
gleichsoperationen folgende Werte als Rückgabewert liefern:

• o1 < o2 einen negativen Wert

• o1 = o2 null

• o1 > o2 einen positiven Wert

Das Sortieren selbst erfolgt nach Aufruf der generischen Methode

Collections.sort (List<T> list, Comparator<? super T> comp)

der Hilfsklasse Collections. Bitte beachten Sie, dass der formale Typ-Parameter
T der Klasse Comparator<T> hier durch den gleichen Typ oder einen Supertyp des
aktuellen Typ-Parameters ersetzt werden muss, mit dem die Klasse List<T> in-
stantiiert wurde. Während der Parameter list eine Referenz auf ein Objekt vom

Collections 707

Typ List<Integer> erwartet, so muss die Referenz für den Parameter comp auf
ein Objekt vom Typ Comparator<Integer> oder Comparator<Number> zeigen.

Intern ruft die Methode sort() die Methode compare() des Vergleichobjektes
comp für alle Elemente der Liste list auf, um die Objekte zu sortieren. Sie verwen-
det für die Sortierung einen modifizierten Merge-Sort-Algorithmus, welcher bei n zu
sortierenden Elementen eine Laufzeit von n*log(n) aufweist. Empirische Untersu-
chungen zeigten, dass der Merge-Sort-Algorithmus annähernd gleich schnell sortiert
wie ein hoch optimierter Quicksort-Algorithmus. Der Quicksort-Algorithmus hat je-
doch den Nachteil, dass dieser nicht stabil133 arbeitet.

Die Klasse Collections stellt neben der Methode sort() noch weitere nützliche
Methoden zur Bearbeitung von Collections bereit und ist auf jeden Fall einen Blick in
die API-Dokumentation wert.

Als geordnet bezeichnet man eine Collection, deren Elemente in der-
selben Reihenfolge entnommen werden, in der sie eingefügt werden.
Diese Eigenschaft ist z. B. für die im nächsten Abschnitt beschriebe-
nen Warteschlangen wichtig. Im Gegensatz nennt man eine Collection
sortiert, wenn ihre Elemente entsprechend eines festen Sortierkrite-
riums (Ordnungsrelation) entnommen werden – unabhängig von der
Reihenfolge beim Einfügen. Die Implementierungen von Listen in Java
sind geordnet und lassen sich nur durch expliziten Aufruf sortieren.

Der wesentliche Unterschied zwischen beiden Varianten besteht darin, dass die in
der Schnittstelle Comparable<T> definierte Methode

public int compareTo (T o)

nur eine Referenz auf ein Objekt als Parameter erwartet, wohingegen die Methode

public int compare (T o1, T o2),

welche in der Schnittstelle Comparator<T> definiert ist, zwei Referenzen auf Objek-
te als Parameter erwartet. Der Grund für die unterschiedliche Anzahl von erwarteten
Parametern liegt in der Art und Weise, wie die Objekte miteinander verglichen wer-
den. Ein Objekt einer Klasse, welche die Schnittstelle Comparable<T> implemen-
tiert, vergleicht sich selbst mit anderen Objekten, wohingegen ein Objekt einer Klas-
se, welche die Schnittstelle Comparator<T> implementiert, die beiden übergebenen
Referenzen miteinander vergleicht.

Die Methode sort() in der Klasse Collections ist ein Beispiel für
einen generischen Algorithmus. Er funktioniert unabhängig vom Typ
der zu sortierenden Objekte, da er sich auf eine – ebenfalls generi-
sche – Vergleichsoperation stützt.

133 Stabil arbeiten bedeutet, dass bereits sortierte Elemente bei der Sortierung ihre Ausgangsreihen-

folge behalten. Diese Reihenfolgesicherung ist für manche Anwendungen wichtig und spart ggf.
außerdem Rechenzeit.

708 Kapitel 18

Beim Sortieren von String-Objekten nach ihrer natürlichen Ordnung ist zu beach-
ten, dass bei diesem Verfahren die Sortierung nach der so genannten lexikografi-
schen Ordnung erfolgt. Dies bedeutet, dass Buchstaben nach ihrer zugehörigen Ko-
dierung (Hexadezimalwert) sortiert werden. Dadurch werden Umlaute oder Sonder-
zeichen sowie Groß- und Kleinschreibung nicht hinreichend berücksichtigt.

Diese Reihenfolge ist nicht immer erwünscht. So sortiert beispielsweise das deut-
sche Wörterbuch die Umlaute ’Ä’, ’Ö’ ‚’Ü’ wie ’A’, ’O’, ’U’ und behandelt die Groß- und
Kleinschreibung gleich. Eine mögliche Implementierung, die nach den Regeln des
deutschen Wörterbuchs sortiert, wird im unten stehenden Beispiel gezeigt. Die
Gleichbehandlung der Groß- und Kleinschreibung wird hier durch die Methode com-
pareToIgnoreCase (String str) erreicht und die Umlaute und Sonderzeichen
werden mit Hilfe der Methode replace (char old, char new) ersetzt.

// Datei: Student.java

public class Student
{
 private int matrikelnummer;
 private String nachname;
 private String vorname;

 public Student (String n, String v, int mnr)
 {
 nachname = n;
 vorname = v;
 matrikelnummer = mnr;
 }

 public int getMatrikelnummer()
 {
 return matrikelnummer;
 }

 public String getNachname()
 {
 return nachname;
 }

 public String getVorname()
 {
 return vorname;
 }
}

// Datei: NachnameVergleicher.java

import java.util.Comparator;

public class NachnameVergleicher implements Comparator<Student>
{
 // Implementierung der Methode compare()
 // aus der Schnittstelle Comparator<T>
 public int compare (Student o1, Student o2)
 {

Collections 709

 String student1 = nameAufbereiten (o1.getNachname());
 String student2 = nameAufbereiten (o2.getNachname());

 // compareToIgnoreCase ignoriert Groß- und Kleinschreibung
 return student1.compareToIgnoreCase (student2);
 }

 private String nameAufbereiten (String name)
 {
 // Umlaute im String ersetzen
 name = name.replace ('ä', 'a');
 name = name.replace ('ö', 'o');
 name = name.replace ('ü', 'u');
 name = name.replace ('ß', 's');
 return name;
 }
}

// Datei: MatrikelnummerVergleicher.java

import java.util.Comparator;

public class MatrikelnummerVergleicher
 implements Comparator<Student>
{
 // Implementierung der Methode compare()
 // aus der Schnittstelle Comparator<T>
 public int compare (Student o1, Student o2)
 {
 int mat1 = o1.getMatrikelnummer();
 int mat2 = o2.getMatrikelnummer();

 if (mat1 < mat2)
 {
 return -1;
 }

 if (mat1 == mat2)
 {
 return 0;
 }

 return 1;
 }
}

// Datei: StudentenSortierer.java

import java.util.*;

public class StudentenSortierer
{
 public static void main (String[] args)
 {
 List<Student> liste = new ArrayList<Student>();
 liste.add (new Student ("Mayer", "Martin", 123478));
 liste.add (new Student ("Hauser", "Ingo", 12346));

710 Kapitel 18

 liste.add (new Student ("Munk", "Tilo", 123477));
 liste.add (new Student ("Meier", "Frank", 123456));

 print ("Liste unsortiert:\n", liste);

 // Die Studenten werden nach ihrer Matrikelnummer sortiert
 Collections.sort (liste, new MatrikelnummerVergleicher());
 print ("Liste sortiert nach Matrikelnummern:\n", liste);

 // Die Studenten werden nach ihrem Nachnamen sortiert
 Collections.sort (liste, new NachnameVergleicher());
 print ("Liste sortiert nach Nachnamen:\n", liste);
 }

 public static void print (String titel, List<Student> studenten)
 {
 System.out.println ("-------------------------------");
 System.out.println (titel);
 for (Student studi : studenten)
 {
 System.out.println (studi.getMatrikelnummer() + "\t" +
 studi.getNachname() + "\t" +
 studi.getVorname());
 }
 }
}

Die Ausgabe des Programms ist:

Liste unsortiert:

123478 Mayer Martin
12346 Hauser Ingo
123477 Munk Tilo
123456 Meier Frank

Liste sortiert nach Matrikelnummern:

12346 Hauser Ingo
123456 Meier Frank
123477 Munk Tilo
123478 Mayer Martin

Liste sortiert nach Nachnamen:

12346 Hauser Ingo
123478 Mayer Martin
123456 Meier Frank
123477 Munk Tilo

18.4 Warteschlangen

Warteschlangen oder Queues werden immer dann verwendet, wenn das FIFO-
Prinzip für Nachrichten umgesetzt werden muss. Ein Beispiel für eine Warteschlange

Collections 711

ist die Klasse LinkedList<E>, die neben der Schnittstelle List<E> auch die
Schnittstelle Queue<E> implementiert. In der Praxis kann es bei der Abarbeitung
einer Warteschlange vorkommen, dass wichtige Aufgaben (z. B. Alarmnachrichten)
bevorzugt werden müssen. In diesen Fällen werden den Elementen einer Warte-
schlange Prioritäten zugeordnet und die Warteschlange gemäß diesen Prioritäten
sortiert. Innerhalb jeder Prioritätsstufe gilt dabei jedoch weiterhin das FIFO-Prinzip.

Beim Nachrichtenaustausch zwischen verschiedenen Threads (siehe Kap. 19) kann
es vorkommen, dass die Warteschlange gerade dann voll ist, wenn der Sender eine
Nachricht verschicken möchte oder dass gerade dann keine Nachricht vorliegt, wenn
der Empfänger eine Nachricht abholen möchte. In diesem Fall möchte man in der
Regel nicht abbrechen, sondern warten (blockieren), bis wieder Platz in der Warte-
schlange ist – bzw. bis wieder Nachrichten vorliegen.

Das Collection Framework von Java bietet Klassen für einfache Warteschlangen und
für Warteschlangen mit Priorisierung, Blockierung oder mit beidem. Bild 18-8 zeigt
eine exemplarische Übersicht der Schnittstellen und Klassen für Queues.

Object

<<interface>>
BlockingQueueAbstractQueue

<<interface>>
Collection

PriorityQueue
Linked

BlockingQueue
LinkedListPriority

BlockingQueue

AbstractQueue

Abstract
Collection

<<interface>>
Queue

Bild 18-8 Übersicht exemplarischer Queues aus java.util und java.util.concurrent

In Bild 18-8 fällt auf, dass für die Schnittstelle BlockingQueue<E> (leider) keine
zugehörige abstrakte Basisklasse – beispielsweise AbstractBlockingQueue<E>
– existiert, welche diese Schnittstelle implementiert. Daher erben die zugehörigen
konkreten Klassen wie PriorityQueue alle "nur" von AbstractQueue<E> und
müssen die Schnittstelle explizit implementieren. Da blockierende Queues nur bei

712 Kapitel 18

nebenläufigen Programmen benötigt werden, sind sie in einem eigenen Unterpaket
java.util.concurrent untergebracht.

Die folgenden Kapitel beschreiben die dargestellten Klassen im Detail. Es sei jedoch
darauf hingewiesen, dass es für Anwendungen mit mehreren Threads noch weitere
spezialisierte Queues gibt.

18.4.1 Einfache Warteschlangen

Einfache Warteschlangen implementieren die Schnittstelle Queue<E>. Diese besteht
aus folgenden Methodenköpfen:

• boolean offer (E o)
Fügt das übergebene Objekt – wenn möglich – in die Warteschlange ein. Ist dies
nicht möglich, da die Warteschlange voll ist, wird false zurückgeliefert.

• E peek()
Liefert das nächste Element in der Warteschlange zurück, entfernt es aber nicht.
Wenn die Warteschlange leer ist, wird null zurückgeliefert.

 • E poll()
Entfernt das nächste Element in der Warteschlange und liefert es zurück. Wenn
die Warteschlange leer ist, wird null zurückgeliefert.

• E element()
Liefert das nächste Element in der Warteschlange zurück, entfernt es aber nicht.
Wenn die Warteschlange leer ist, wird eine Exception vom Typ NoSuchElement-
Exception geworfen.

• E remove()
Entfernt das nächste Element in der Warteschlange und liefert es zurück. Wenn
die Warteschlange leer ist, wird eine Exception vom Typ NoSuchElementEx-
ception geworfen.

Das folgende Beispiel zeigt eine einfache Warteschlange für Nachrichten. Dazu wird
zunächst eine Hilfsklasse Nachricht zur Darstellung der Nachrichten implemen-
tiert:

// Datei: Nachricht.java

public class Nachricht implements Comparable<Nachricht>
{
 final int prioritaet; // Priorität der Nachricht
 final String inhalt; // Inhalt der Nachricht

 public Nachricht (int prioritaet, String inhalt) // Konstruktor
 {
 this.prioritaet = prioritaet;
 this.inhalt = inhalt;
 }

 public int compareTo (Nachricht other)
 {
 if (this.prioritaet < other.prioritaet)
 return -1;

Collections 713

 if (this.prioritaet > other.prioritaet)
 return +1;
 return 0;
 }

 public int getPrioritaet() // Priorität der Nachricht liefern
 {
 return prioritaet;
 }

 public String getInhalt() // Inhalt der Nachricht liefern
 {
 return inhalt;
 }

 public String toString()
 {
 return inhalt + " (Prio: " + prioritaet + ")";
 }
}

Das Testprogramm verwendet als Queue ein Objekt der Klasse LinkedList<E>134:

//Datei: NachrichtenWarteschlange.java

import java.util.*;

public class NachrichtenWarteschlange
{
 public static void main (String[] args)
 {
 Queue<Nachricht> warteschlange = new LinkedList<Nachricht>();

 warteschlange.offer (
 new Nachricht (5, "Damenbekleidung im ersten Stock"));
 warteschlange.offer (
 new Nachricht (1, "Feuer im dritten Stock"));
 warteschlange.offer (
 new Nachricht (5, "Herrenbekleidung im zweiten Stock"));
 warteschlange.offer (
 new Nachricht (1, "Wassereinbruch im Keller"));

 while (!warteschlange.isEmpty())
 {
 System.out.println (warteschlange.remove());
 }
 }
}

Betrachtet man die Schleife zur Ausgabe der Nachrichten, so fällt die Methode
isEmpty() ins Auge. Die Methode isEmpty() ist nicht Bestandteil der Klasse

134 Die Schnittstellen List<E> und Queue<E> stehen zwar auf derselben Stufe der Vererbungs-

hierarchie – beide Schnittstellen leiten direkt von Collection<T> ab. Die Klasse Linked-
List<E> implementiert jedoch beide Schnittstellen.

714 Kapitel 18

Queue<E>, sondern wird bereits in der Schnittstelle Collection<E> deklariert und
steht damit allen Collections zur Verfügung.

Die Ausgabe des Programms ist:

Damenbekleidung im ersten Stock (Prio: 5)
Feuer im dritten Stock (Prio: 1)
Herrenbekleidung im zweiten Stock (Prio: 5)
Wassereinbruch im Keller (Prio: 1)

Es werden also alle Nachrichten ungeachtet ihrer Priorität in derselben Reihenfolge
ausgegeben, wie sie der Warteschlange hinzugefügt wurden.

18.4.2 Priorisierte Warteschlangen

Klassen für priorisierte Queues erben von der Klasse AbstractQueue<E> und im-
plementieren die Schnittstelle Queue<E>. Allerdings beachten sie beim Einfügen von
Elementen das Ordnungskriterium der Warteschlange. Dieses kann wie beim Sor-
tieren von Listen entweder über die natürliche Ordnung der Elemente (Schnittstelle
Comparable<E>) oder durch ein spezielles Vergleichsobjekt (Klasse Compara-
tor<E>) definiert werden.

Im nachfolgenden Beispiel wird erneut die Nachrichtenklasse aus dem vorherge-
henden Abschnitt verwendet. Diese implementiert die Schnittstelle Comparable<E>
und erlaubt somit den Vergleich von Nachrichten über deren Priorität:

// Datei: PriorisierteNachrichtenWarteschlange.java

import java.util.Queue;
import java.util.PriorityQueue;

public class PriorisierteNachrichtenWarteschlange
{
 public static void main (String[] args)
 {
 Queue<Nachricht> warteschlange =
 new PriorityQueue<Nachricht>();

 warteschlange.offer (
 new Nachricht (5, "Damenbekleidung im ersten Stock"));
 warteschlange.offer (
 new Nachricht (1, "Feuer im dritten Stock"));
 warteschlange.offer (
 new Nachricht (5, "Herrenbekleidung im zweiten Stock"));
 warteschlange.offer (
 new Nachricht (1, "Wassereinbruch im Keller"));

 while (!warteschlange.isEmpty())
 {
 System.out.println (warteschlange.remove());
 }
 }
}

Collections 715

Die Ausgabe des Programms ist:

Feuer im dritten Stock (Prio: 1)
Wassereinbruch im Keller (Prio: 1)
Herrenbekleidung im zweiten Stock (Prio: 5)
Damenbekleidung im ersten Stock (Prio: 5)

Wie man sieht, haben die Nachrichten mit höherer Priorität (kleinere Zahl) Vorrang.
Jedoch wird innerhalb einer Prioritätsstufe die Einfügereihenfolge nicht eingehalten.

18.4.3 Blockierende Warteschlangen

Blockierende Queues dienen immer dann als Puffer, wenn der Produzent und der
Konsument die Inhalte unabhängig voneinander bearbeiten. Dann kann es nämlich
vorkommen, dass der Produzent nicht schnell genug produziert (Queue läuft leer)
oder der Konsument nicht schnell genug konsumiert (Queue läuft voll). Für diese
beiden Fälle bietet eine blockierende Queue die Möglichkeit zu warten. Dafür werden
in der Schnittstelle BlockingQueue<E> folgende zusätzliche Methoden eingeführt:

• boolean offer (E o, long timeout, TimeUnit unit)
Fügt das übergebene Objekt – wenn möglich – in die Warteschlange ein. Ist die
Warteschlange voll, wird zunächst gewartet, ob innerhalb der angegebenen War-
tezeit – hier timeout – wieder Platz in der Warteschlange frei wird. Ist nach der
Wartezeit die Warteschlange jedoch immer noch voll, wird wie bisher false zu-
rückgeliefert.

• E poll (long timeout, TimeUnit unit)
Entfernt das nächste Element in der Warteschlange und liefert es zurück. Wenn
die Warteschlange leer ist, wird zunächst gewartet, ob innerhalb der angegebenen
Wartezeit ein Element verfügbar wird. Ist die Warteschlange nach der Wartezeit
immer noch leer, wird null zurückgeliefert.

• void put (E o)
Fügt die übergebene Referenz auf das Objekt – wenn möglich – in die Warte-
schlange ein. Ist die Warteschlange voll, wird auf unbestimmte Zeit gewartet (blo-
ckierender Aufruf), bis wieder Platz in der Warteschlange ist.

• E take()
Entfernt das nächste Element in der Warteschlange und liefert es zurück. Wenn
die Warteschlange leer ist, wird auf unbestimmte Zeit gewartet (blockierender Auf-
ruf), bis wieder ein Element verfügbar ist.

• int remainingCapacity()
Liefert die Anzahl der Elemente zurück, die noch in die Warteschlange passen.
Wenn es keine Limitierung gibt, wird Integer.MAX_VALUE zurückgeliefert.

Bei der Verwendung einer blockierenden Warteschlange kann also entschieden wer-
den, ob:

• gar nicht gewartet,
• nur eine bestimmte Zeit gewartet
• oder auf unbestimmte Zeit gewartet werden soll.

716 Kapitel 18

Wenn nicht gewartet werden soll, können die Methoden offer() und poll() aus
der Schnittstelle Queue<E> verwendet werden. Um den blockierenden Aufruf zu
realisieren, sind diese beiden Methoden in der Schnittstelle BlockingQueue<E>
überladen worden. Als Parameter erwarten dort die neuen Methoden offer() und
poll() einen long-Wert timeout, der die maximale Wartezeit des Aufrufs angibt.
Die Angabe des Timeouts erfolgt durch getrennte Angabe einer Zahl für die
Wartezeit und der zugehörigen Einheit in Form einer der folgenden Konstanten aus
dem neuen Aufzählungstyp TimeUnit: NANOSECONDS, MICROSECONDS, MILLI-
SECONDS, SECONDS. Dabei ist zu beachten, dass die Angabe der Einheit nur den
Wunsch des Programmierers ausdrückt. Wenn die darunterliegende Implementie-
rung nicht in der Lage ist, die Wartezeit entsprechend genau zu messen, kann die
tatsächliche Wartezeit vom angegebenen Timeout abweichen. Die beiden neuen
Methoden put() und take() warten auf unbestimmte Zeit. In Kapitel 19.3.3 wird je-
doch gezeigt, dass ein Wartezustand von außen unterbrochen werden kann.

Das folgende Beispiel zeigt die Anwendung einer blockierenden Queue. Da ein
Programm nicht "auf sich selber warten kann", werden in dem Beispiel der Produzent
und der Konsument als so genannte Threads realisiert. Dadurch laufen beide quasi
als zwei "Programme im Programm" parallel ab. Wie dies genau funktioniert, wird in
Kapitel 19 ausführlich erklärt. Die Hilfsklasse Timer dient dabei dazu, den zeitlichen
Ablauf darstellen zu können.

Das folgende Testprogramm verwendet als Queue ein Objekt der Klasse Linked-
BlockingQueue<E>:

// Datei: Timer.java

public class Timer
{
 long basis;
 boolean isRunning = false;

 public void start()
 {
 basis = System.currentTimeMillis();
 isRunning = true;
 }

 public long read() throws IllegalStateException
 {
 if (isRunning)
 {
 long current = System.currentTimeMillis();
 return current - basis;
 }

 throw new IllegalStateException ("Timer is not running");
 }

 public long stop()
 {
 isRunning = false;
 return read();
 }

Collections 717

 public boolean isRunning()
 {
 return isRunning;
 }
}

// Datei: Sendung.java

public class Sendung
{
 final Nachricht nachricht; // zu sendendende Nachricht
 final int pause; // Pause nach der Sendung in ms
 public Sendung (Nachricht nachricht, int pause)
 {
 this.nachricht = nachricht;
 this.pause = pause;
 }
}

// Datei: Produzent.java

import java.util.concurrent.TimeUnit;
import java.util.concurrent.BlockingQueue;

public class Produzent implements Runnable
{
 private Timer timer;
 private BlockingQueue<Nachricht> queue;
 private Sendung[] sendeplan;

 public Produzent (Timer timer, BlockingQueue<Nachricht> queue,
 Sendung[] sendeplan)
 {
 this.timer = timer;
 this.queue = queue;
 this.sendeplan = sendeplan;
 }

 public void run()
 {
 try
 {
 for (Sendung sendung : sendeplan)
 {
 Nachricht n = sendung.nachricht;
 System.out.printf ("%05d -->P\n", timer.read());
 queue.put (n);
 System.out.printf ("%05d P--> %s\n", timer.read(), n);
 TimeUnit.SECONDS.sleep (sendung.pause);
 }
 }
 catch (InterruptedException ex)
 {
 System.out.println ("Produzent wurde unterbrochen");
 }
 }
}

718 Kapitel 18

// Datei: Konsument.java

import java.util.concurrent.TimeUnit;
import java.util.concurrent.BlockingQueue;

public class Konsument implements Runnable
{
 private Timer timer;
 private BlockingQueue<Nachricht> queue;
 private int delay;
 public Konsument (Timer timer, BlockingQueue<Nachricht> queue,
 int delay)
 {
 this.timer = timer;
 this.queue = queue;
 this.delay = delay;
 }

 public void run()
 {
 try
 {
 Nachricht n;
 do
 {
 TimeUnit.SECONDS.sleep (delay);
 System.out.printf ("%05d -->K\n", timer.read());
 n = queue.take();
 System.out.printf ("%05d K--> %s\n", timer.read(), n);
 }
 while (!n.getInhalt().equals ("ENDE"));
 }
 catch (InterruptedException ex)
 {
 System.out.println ("Konsument wurde unterbrochen");
 }
 }
}

// Datei: BlockierendeWarteschlange.java

import java.util.concurrent.*;

public class BlockierendeWarteschlange
{
 //Timing für Produzent: 0-->1-->2-->3-[block]->5-->28-->29--|
 //Timing für Konsument: 5-->10-->15-->20-->25-[block]->28-->33--|

 public static void main (String[] args)
 {
 final Sendung[] sendeplan = {
 new Sendung (new Nachricht (5, "Nachricht 1"), 1),
 new Sendung (new Nachricht (1, "Nachricht 2"), 1),
 new Sendung (new Nachricht (5, "Nachricht 3"), 1),
 new Sendung (new Nachricht (5, "Nachricht 4"), 23),
 new Sendung (new Nachricht (1, "Nachricht 5"), 1),
 new Sendung (new Nachricht (5, "ENDE"), 1) };

Collections 719

 BlockingQueue<Nachricht> queue =
 new LinkedBlockingQueue<Nachricht>(3);

 Timer timer = new Timer();
 Produzent p = new Produzent (timer, queue, sendeplan);
 Konsument k = new Konsument (timer, queue, 5);

 Thread pt = new Thread (p); // Thread für Produzent anlegen
 Thread kt = new Thread (k); // Thread für Konsument anlegen
 timer.start(); // Timer starten
 pt.start(); // Produzent starten
 kt.start(); // Konsument starten

 // Hier endet die main-Methode(), das Programm läuft aber
 // weiter bis der Produzent und der Konsument fertig sind
 }
}

Die Ausgabe des Programms ist:

00000 -->P
00010 P--> Nachricht 1 (5)
01011 -->P
01011 P--> Nachricht 2 (1)
02012 -->P
02012 P--> Nachricht 3 (5)
03014 -->P
05017 -->K
05017 P--> Nachricht 4 (5)
05017 K--> Nachricht 1 (5)
10024 -->K
10024 K--> Nachricht 2 (1)
15031 -->K
15031 K--> Nachricht 3 (5)
20038 -->K
20038 K--> Nachricht 4 (5)
25046 -->K
28020 -->P
28020 K--> Nachricht 5 (1)
28020 P--> Nachricht 5 (1)
29021 -->P
29021 P--> ENDE (5)
33027 -->K
33027 K--> ENDE (5)

Bitte beachten Sie, dass in der Ausgabe das P eine Aktion des Produzenten und das
K eine Aktion des Konsumenten anzeigt. Weiterhin zeigt die erste Spalte die Zeit in
Millisekunden an. Ausgaben der Form "-->X" zeigen einen Zugriffsversuch auf die
Queue, Ausgaben der Form "X-->" deren Ergebnis. Die verwendete Queue hat
eine Kapazität von 3 Nachrichten. Der Produzent sendet Nachrichten gemäß Sende-
plan, der Konsument liest alle 5 s eine Nachricht.

Wie die Ausgabe des Programms zeigt, schreibt der Produzent zunächst 3 Nach-
richten und muss dann warten, bis der Konsument die erste Nachricht ausgelesen
hat. Anschließend liest der Konsument die weiteren Nachrichten aus und muss dann

720 Kapitel 18

warten, bis der Produzent wieder eine Nachricht in die Queue geschrieben hat.
Dabei wird zunächst der Eindruck vermittelt, dass die Nachricht gelesen wird, bevor
sie geschrieben wird (K kommt vor P). Dies kann natürlich nicht sein und liegt nur
daran, dass Produzent und Konsument ja unabhängig voneinander ablaufen. Die
Ausgabe erfolgt ja nach dem eigentlichen Zugriff auf die Queue und wie es scheint,
kommt die Ausgabe von K in diesem Fall eben schneller zum Zug.

18.4.4 Blockierende Queues mit Priorität

Auch bei blockierenden Warteschlangen ist es möglich, Nachrichten zu priorisieren.
Die entsprechende Funktionalität wird in der Klasse PriorityBlockingQueue<E>
zur Verfügung gestellt. Wie schon bei der Klasse PriorityQueue<E> kann auch
hier entweder die natürliche Ordnung der Elemente oder ein externes Vergleichs-
objekt verwendet werden. Um die Funktionsweise einer PriorityBlocking-
Queue<E> zu zeigen, kann im vorhergehenden Beispiel in der Klasse Blockieren-
deWarteschlange anstatt des Objektes vom Typ LinkedBlockingQueue<Nach-
richt> ein Objekt vom Typ PriorityBlockingQueue<Nachricht> angelegt
werden. In diesem Fall erhält man folgende Ausgabe:

Die Ausgabe des geänderten Programms ist:

00000 -->P
00020 P--> Nachricht 1 (5)
01032 -->P
01032 P--> Nachricht 2 (1)
02033 -->P
02033 P--> Nachricht 3 (5)
03035 -->P
03035 P--> Nachricht 4 (5)
05038 -->K
05038 K--> Nachricht 2 (1)
10045 -->K
10045 K--> Nachricht 4 (5)
15052 -->K
15052 K--> Nachricht 3 (5)
20059 -->K
20059 K--> Nachricht 1 (5)
25066 -->K
26038 -->P
26038 K--> Nachricht 5 (1)
26038 P--> Nachricht 5 (1)
27039 -->P
27039 P--> ENDE (5)
31045 -->K
31045 K--> ENDE (5)

Der zeitliche Ablauf hat sich nicht groß verändert, aber wie man sieht, wird nun die
Nachricht mit dem Inhalt "Nachricht 2" vom Konsumenten vorgezogen, da sie
eine höhere Priorität hat als die Nachricht mit dem Inhalt "Nachricht 1". Ebenfalls
erkennbar ist, dass durch die Priorisierung die ursprüngliche Ordnung zerstört wird,
d. h. Nachrichten gleicher Priorität werden nicht in der Reihenfolge ausgelesen, in
der sie eingefügt wurden.

Collections 721

18.5 Mengen

Eine Liste kann beliebige Duplikate von Elementen enthalten. So ist es prinzipiell
möglich, in eine verkettete Liste zwei Referenzen auf dasselbe Objekt einzufügen
oder zwei Referenzen auf Objekte mit gleichem Inhalt. Dies ist unter Umständen je-
doch unerwünscht. Daher gibt es auch Collections, die das Einfügen von gleichen
Elementen automatisch verhindern. Dies sind diejenigen Collections, welche die
Schnittstelle Set<E> implementieren.

In einem Set kann es keine Duplikate geben.

Ein Set entspricht einer Menge von Elementen, wobei jedes Element nur einfach auf-
treten kann. Da Mengen ungeordnet sind, gibt es keine direkte Möglichkeit, auf ein
bestimmtes Element zuzugreifen. Mit Hilfe der contains()-Methode kann aber
sehr leicht getestet werden, ob ein Objekt in der Menge enthalten ist:

boolean contains (Object o)

Diejenigen Klassen, welche die Schnittstelle Set<E> implementieren, sind – wie in
Bild 18-9 zu sehen – die Klassen HashSet<E>, EnumSet<E extends Enum<E>>
und TreeSet<E>. Dabei dienen die Klassen HashSet<E> und TreeSet<E> zur
Verwaltung beliebiger Objekte während EnumSet eine besonders effiziente Imple-
mentierung für Aufzählungstypen darstellt.

 HashSet EnumSet TreeSet

AbstractSet
{abstract}

AbstractCollection
{abstract}

Object

SortedSet

Set

Collection

Bild 18-9 Klassenhierachie für Collections vom Typ Set in java.util

Um sicherzustellen, dass man nicht zweimal eine Referenz auf dasselbe Objekt ein-
gefügt, wird vor dem Einfügen einer Referenz deren equals()-Methode aufgerufen
und mit jeder im Set schon enthaltenen Referenz verglichen. Damit wird überprüft, ob
eine Referenz auf das Objekt, auf das die neu einzufügende Referenz zeigt, schon in
der Menge enthalten ist. Beim Einfügen wird also die einzufügende Referenz mit

722 Kapitel 18

jeder in der Menge bereits vorhandenen Referenz durch Aufruf der equals()-Me-
thode verglichen.

Dieser Test ist jedoch nicht "idiotensicher" – wird ein Objekt in einem Set nach dem
Einfügen verändert, kann dadurch nachträglich inhaltliche Gleichheit zwischen zuvor
verschiedenen Elementen entstehen. Da dies ein Set nicht kontrollieren kann, ist bei
inhaltlicher Gleichheit das Verhalten des Sets nicht mehr garantiert.

18.5.1 Mengen mit Hashing

Die Klasse HashSet<E> verwendet zur Speicherung von Objektreferenzen eine be-
sondere Technik: das so genannte Hashing (auch Streuspeicher-Verfahren ge-
nannt). Bei diesem Verfahren wird jedem Objekt eine Zahl, der so genannte Hash-
Code, zugeordnet. Dieser dient als Index in einer Tabelle, in der die Objekte gespei-
chert werden.

Für die Berechnung von Hash-Codes werden Hash-Funktionen verwendet. Dies sind
mathematische Funktionen, die sich dadurch auszeichnen, dass sie sich schnell
berechnen lassen und einen breit gestreuten Wertebereich haben. Ihr Ziel ist es,
einem Objekt einen möglichst eindeutigen Kennwert zuzuordnen. Dabei führt eine
kleine Änderung der Ausgangsdaten oft zu einem völlig anderen Hash-Code. Damit
können die Objekte möglichst gut verteilt werden. Ein bestimmtes Objekt erhält stets
denselben Hash-Code. Es ist jedoch möglich, dass zwei unterschiedliche Objekte
denselben Hash-Code erhalten, d. h. Hash-Funktionen sind i.d.R. nicht umkehrbar.

Um später zu prüfen, ob ein Objekt in der Tabelle enthalten ist, wird der Tabellen-
index jedes Mal erneut aus dem Hash-Code berechnet. Durch den so möglichen
direkten Tabellenzugriff lässt sich ein Objekt sehr viel schneller wieder finden als
durch sequenzielles Suchen.

In der Praxis ist die Tabelle in der Regel kleiner als der Wertebereich der Hash-
Funktion. Daher müssen die Hash-Codes mit Hilfe des Restwert-Operators % auf die
tatsächliche Tabellengröße abgebildet werden. Daneben kann es vorkommen, dass
zwei verschiedene Objekte den gleichen Hash-Code haben bzw. dass ihr Hash-Code
durch die Berechnung des Restwertes mit Hilfe des Restwert-Operators % auf den
gleichen Index abgebildet wird. Darum werden in der Tabelle nicht einzelne Objekte,
sondern Listen von Objekten (sog. Eimer, engl. Buckets) mit dem gleichen Hash-
Code gespeichert. Für die Suche spielt das keine große Rolle, da diese Listen in der
Regel sehr klein und schnell zu durchsuchen sind. Bild 18-10 illustriert das Suchen
nach dem Hash-Verfahren.

Beim Zugriff wird also zunächst in der Methode hashCode() der Hash-Code be-
rechnet, mit dem Restwert-Operator auf die Tabellengröße angepasst, um die rich-
tige Liste zu finden und anschließend mit Hilfe der equals()-Methode nach dem
richtigen Objekt gesucht. Dies muss nicht das ursprünglich eingefügte Objekt sein,
da die equals()-Methode lediglich auf inhaltliche Gleichheit prüft (nur ihre Basis-
implementierung in der Klasse Object prüft auf Identität).

Collections 723

Bereits in der Liste gespeicherte Objekte,
die den gleichen Hash-Code haben,
mit equals() vergleichen.

Einstieg in die Tabelle der Listen
mit der Abbildung des Hash-Codes
auf die Größe der Tabelle, d. h. mit
hashCode() % table.length

Objekt zum Einfügen oder Vergleichen

Bild 18-10 Hash-Verfahren (Streuspeicher-Verfahren)

Die Methoden hashCode() und equals() sind in der Klasse Object definiert und
daher für alle Objekte vorhanden. Wenn man eine der beiden genannten Methoden
in einer eigenen Klasse überschreiben will, muss immer auch die jeweils andere Me-
thode überschrieben werden, damit das oben gezeigte Verfahren weiterhin funk-
tioniert. Dabei sind die folgenden Regeln zu beachten:

• Ergibt der Vergleich zweier Referenzen mit Hilfe der equals()-Methode den
Wert true – zeigen beide Referenzen also auf dasselbe Objekt – so muss der
Aufruf der hashCode()-Methode auf beiden Referenzen das gleiche Ergebnis
liefern.

• Liefert der Vergleich der Referenzen mittels equals() den Wert false, so kann
der Aufruf der Methode hashCode() auf beiden Referenzen das gleiche Ergeb-
nis liefern, muss aber nicht.

• Wird die hashCode()-Methode auf einer Referenz mehrmals aufgerufen, dann
muss stets dasselbe Ergebnis zurückgeliefert werden – es sei denn, an dem
Objekt, auf das die Referenz zeigt, haben sich Eigenschaften verändert, die in der
Methode equals() verwendet werden.

Eine einfache Möglichkeit, diese Regeln einzuhalten, wird in der dritten Regel ange-
deutet. Sie besteht darin, beide Methoden auf denselben Objekteigenschaften aufzu-
bauen. Dies soll am Beispiel der Klasse Person gezeigt werden. So ziehen beide
Methoden hashCode() und equals() jeweils die Instanzvariablen vorname und
nachname in ihre Berechnungen mit ein. Das hat zur Konsequenz, dass beispiels-
weise der Hash-Code eines Objektes vom Typ Person ein anderer ist, wenn die
Zeichenkette, auf welche die Referenzvariable vorname zeigt, eine andere ist. Da-
hingegen ist es für die Berechnung des Hash-Codes unerheblich, welches Alter die
Person hat. Ob die Person 10 Jahre alt ist oder 60 – es bleibt stets dieselbe Person.
Deswegen wird die Instanzvariable alter nicht mit in die Berechnung des Hash-
Codes einbezogen:

724 Kapitel 18

// Datei: PersonTest.java

class Person
{
 public String vorname;
 public String nachname;
 public int alter;

 public Person (String v, String n, int a)
 {
 vorname = v;
 nachname = n;
 alter = a;
 }

 public boolean equals (Object o)
 {
 if (o instanceof Person)
 {
 Person other = (Person) o;
 return (this.vorname.equals (other.vorname)
 && this.nachname.equals (other.nachname));
 }
 return false;
 }

 public int hashCode()
 {
 // Aufruf der Methode hashCode() der Klasse String
 return vorname.hashCode() + nachname.hashCode();
 }
}

public class PersonTest
{
 public static void main (String[] args)
 {
 Person peter = new Person ("Peter", "Mueller", 10);
 Person klaus = new Person ("Georg", "Schmidt", 10);

 System.out.print ("Sind Peter und Klaus" +
 " dieselben Personen?: ");
 System.out.println (peter.equals (klaus));
 System.out.println ("Peter nach 50 Jahren ...");
 peter.alter += 50;
 System.out.print ("Ist Peter denn der alte" +
 " Peter geblieben?: ");
 System.out.println (peter.equals (peter));
 }
}

Die Ausgabe des geänderten Programms ist:

Sind Peter und Klaus dieselben Personen?: false
Peter nach 50 Jahren ...
Ist Peter denn der alte Peter geblieben?: true

Collections 725

Zwei Personen gelten demnach als gleich, wenn sie den gleichen Vornamen und den
gleichen Nachnamen haben. In diesem Fall besitzen sie auch immer denselben
Hash-Code. Ändert sich der Vorname oder der Nachname, ist die Gleichheit nicht
gegeben und auch der Hash-Code ist ein anderer. Ob sich das Alter ändert, ist egal.

Zu beachten ist, dass die Änderung des Hash-Codes bei Verlust der Gleichheit zwar
bzgl. der Verteilung der Objekte in der Tabelle und damit für die Zugriffsgeschwin-
digkeit ideal, jedoch nicht zwingend ist. Also noch einmal: gleiche Objekte müssen
den gleichen Hash-Code haben, damit das Verfahren funktioniert, verschiedene
Objekte dürfen gleiche Hash-Codes haben – und das Verfahren funktioniert trotz-
dem. Das folgende Beispiel zeigt die Verwendung der Klasse HashSet<E>:

// Datei: HashSetTest.java

import java.util.*;

public class HashSetTest
{
 public static void main (String[] args)
 {
 Set<String> anmeldungen = new HashSet<String>();
 anmeldungen.add ("Anja");
 anmeldungen.add ("Karl");
 anmeldungen.add ("Katharina");
 anmeldungen.add ("Anja"); // Wird kein zweites Mal eingefügt

 for (String name : anmeldungen)
 {
 System.out.println (name);
 }
 }
}

Die Ausgabe des Programms ist:

Anja
Katharina
Karl

Zu beachten ist in der Ausgabe, dass die Ausgabe-Reihenfolge nicht die Einfüge-
Reihenfolge ist. Die Klasse HashSet<E> speichert – aufgrund der Einfügestrategie
mittels Hash-Code – die Referenzen nicht in der Reihenfolge des Einfügens ab.

Collections, die ein Hash-Verfahren verwenden, sind also sehr schnell beim Einfügen
und bei der Suche von Elementen. Dies wird mit einem größeren Speicherplatz-
bedarf erkauft.

18.5.2 Mengen mit Bäumen

Bei der Klasse TreeSet<E> gibt es zwei wichtige Unterschiede zur Klasse Hash-
Set<E>: Zum einen implementiert sie die Schnittstelle SortedSet<E> und zum
anderen wird zur Speicherung der Elemente – dem Namen entsprechend – ein
Baum verwendet. Bei einem Baum kann ähnlich wie bei einer verketteten Liste in

726 Kapitel 18

jedem Knoten eine Referenz auf ein Objekt gespeichert werden. Im Unterschied zu
einer verketteten Liste haben die Knoten eines Baumes jedoch mehrere Nachfolger.
Es gibt eine Vielzahl von unterschiedlichen Bäumen, bei denen die Knoten eine
unterschiedliche Anzahl von Nachfolgern mit verschiedener Bedeutung haben135.

Eine einfache Variante ist ein binärer Baum, bei dem jeder Knoten zwei Nachfolger
hat. Dabei kann z. B. der linke Nachfolger auf einen Teilbaum verweisen, der nur
Elemente enthält, die kleiner sind als das Element des aktuellen Knotens, und der
rechte solche, die größer sind (diese Sortierung ist aus Sicht des Anwenders sozu-
sagen ein angenehmer Nebeneffekt). In einem solchen Baum kann sehr schnell ge-
sucht werden indem man bei der Suche in jedem Knoten "richtig abbiegt" und damit
eine große Zahl von Elementen auf einmal eliminieren kann136. So garantiert die
Klasse TreeSet<E> für das Einfügen, Entfernen und Suchen von Elementen ein
logarithmisches Verhalten. Sind n Elemente in einem Objekt der Klasse Tree-
Set<E> enthalten, so beträgt die Anzahl der Schritte, um ein Element einzufügen, zu
löschen oder zu suchen maximal log(n), da man für einen binären Baum mit n
Elementen maximal log(n)/log(2) Ebenen mit je 1, 2, 4, …, 2n-1 Elementen braucht!
Die Zugriffszeit ist also nicht (quasi)konstant wie bei der Klasse HashSet<E>, aber
immer noch ziemlich schnell.

A

H

B

E D

C

G F

Bild 18-11 Darstellung einer Baumstruktur

In Bild 18-11 wird ein Baum durch einen Graph aus Knoten und Kanten dargestellt.
Der oberste Knoten – in obigem Beispiel der Knoten A – heißt Wurzel. Die Knoten B,
C, G sind innere Knoten. Die terminalen Knoten D, E, F und H heißen Blätter des
Baumes.

Durch die Implementierung der Schnittstelle SortedSet<E> garantiert die Klasse
TreeSet<E>, dass sie die Elemente in sortierter Reihenfolge abspeichert. Dazu gibt
es wie beim Sortieren von Listen zwei Möglichkeiten: Entweder die Klassen der
Objekte, deren Referenzen eingefügt werden sollen, implementieren die Schnittstelle
Comparable<E>, oder es wird ein separates Vergleichsobjekt benötigt.

Das folgende Beispiel zeigt, wie Referenzen auf String-Objekte in ein Objekt der
Klasse TreeSet<E> eingefügt und wieder ausgelesen werden (die Klasse String
implementiert die Schnittstelle Comparable<E>). Dazu wurde lediglich im vorher-
gehenden Beispiel die Zeile mit der Erzeugung des Set-Objektes verändert.

135 Siehe [16].
136 Voraussetzung dafür ist jedoch, dass der Baum gleichmäßig besetzt ist.

Collections 727

// Datei: TreeSetTest.java

import java.util.*;

public class TreeSetTest
{
 public static void main (String[] args)
 {
 Set<String> anmeldungen = new TreeSet<String>();
 anmeldungen.add ("Anja");
 anmeldungen.add ("Karl");
 anmeldungen.add ("Katharina");
 anmeldungen.add ("Anja"); // Wird kein zweites Mal eingefügt
 for (String name : anmeldungen)
 {
 System.out.println (name);
 }
 }
}

Die Ausgabe des Programms ist:

Anja
Karl
Katharina

Zu beachten ist, dass es nicht möglich ist, zwei Elemente mit gleichem Inhalt doppelt
einzufügen und dass die Ausgabe tatsächlich sortiert erfolgt.

18.5.3 Mengen für Aufzählungstypen

Die Klasse EnumSet<E extends Enum<E>> wurde eingeführt, um Elemente von
Aufzählungstypen effizient verwalten zu können. Sie verwendet dazu eine optimierte
interne Darstellung.

Das folgende Beispielprogramm zeigt die Anwendung der Klasse EnumSet<E ex-
tends Enum<E>> und ihre Effizienz gegenüber der Verwendung der Klasse Hash-
Set<E>. Bitte beachten Sie, dass ein Objekt der Klasse EnumSet<E extends
Enum<E>> nur über den Aufruf so genannter statischer Factory-Methoden erzeugt
werden kann. Im unten dargestellten Beispiel wird die Methode noneOf() der Klas-
se EnumSet<E extends Enum<E>> verwendet, um ein Objekt dieser Klasse zu
erzeugen. Das erzeugte Objekt enthält keine Elemente und kann nur Referenzen auf
Objekte des durch den aktuellen Typ-Parameter spezifizierten Typs aufnehmen –
hier also des Aufzählungstyps Zutaten.

// Datei: EnumSetTest.java

import java.util.*;

enum Zutaten
{
 EIER, MEHL, BUTTER;
}

728 Kapitel 18

public class EnumSetTest
{
 public static void main (String[] args)
 {
 // Factory-Methode aufrufen zum Erzeugen eines
 // Objektes vom Typ EnumSet, das keine Elemente enthält
 Set<Zutaten> s1 = EnumSet.noneOf (Zutaten.class);
 // Normalen Konstruktor aufrufen für HashSet
 Set<Zutaten> s2 = new HashSet<Zutaten>();

 long t1 = System.currentTimeMillis();
 for (int i = 0; i < 1000000; i++)
 {
 s1.add (Zutaten.MEHL);
 s1.remove (Zutaten.MEHL);
 }
 long t2 = System.currentTimeMillis();

 System.out.println
 ("*** Testen der Klasse EnumSet<E extends Enum<E>> ***");
 System.out.println ("1000000 Mal add() und remove()" +
 " aufgerufen in: " + (t2-t1) + " ms");
 t1 = System.currentTimeMillis();
 for (int i=0; i<1000000; ++i)
 {
 s2.add (Zutaten.MEHL);
 s2.remove (Zutaten.MEHL);
 }
 t2 = System.currentTimeMillis();

 System.out.println ("");
 System.out.println ("*** Testen der Klasse HashSet<E> ***");
 System.out.println ("1000000 Mal add() und remove()" +
 " aufgerufen in: " + (t2-t1) + " ms");

 }
}

Die Ausgabe des Programms ist:

*** Testen der Klasse EnumSet<E extends Enum<E>> ***
1000000 Mal add() und remove() aufgerufen in: 125 ms

*** Testen der Klasse HashSet<E> ***
1000000 Mal add() und remove() aufgerufen in: 234 ms

Betrachtet man das Ergebnis hinsichtlich des Laufzeitverhaltens, so bietet die Klasse
EnumSet<E extends Enum<E>> eindeutig klare Vorteile beim Umgang mit Auf-
zählungstypen.

18.6 Verzeichnisse

Eine Map – mit anderen Worten ein Verzeichnis – ist wie ein Wörterbuch aufgebaut,
d. h. man hat im Prinzip eine Tabelle mit zwei Spalten. In der ersten Spalte steht das

Collections 729

Wort, dessen Bedeutung man sucht, und in der zweiten Spalte steht die Bedeutung
des gesuchten Wortes. Der Zugriff auf die in der Menge enthaltenen Elemente – die
Werte – funktioniert prinzipiell wie bei einem Array. Jedoch werden für den Zugriff auf
ein bestimmtes Element Referenztypen als so genannte Schlüssel verwendet,
anstatt mit numerischen Indizes zu arbeiten – diese müssen vom Typ int sein. Weil
also zwischen einem Schlüssel und einem Wert damit eine Verknüpfung hergestellt
wird, werden Maps gelegentlich auch als assoziative Arrays bezeichnet.

Bei einer Map wird sowohl der Schlüssel, nach dem eine Map durchsucht wird, als
auch die Bedeutung des Schlüssels durch ein Objekt repräsentiert. Das bedeutet,
dass man mit einer Map beliebige Objekte miteinander in Beziehung setzen kann
(engl. to map = zuordnen). Daher werden sie auch als Assoziativspeicher bezeich-
net. Die wichtigsten Methoden einer Map sind:

• V put (K key, V value)
Erzeugt eine Verknüpfung zwischen dem angegebenen Schlüssel und Wert.

• V get (Object key)
Liefert den Wert zum angegebenen Schlüssel zurück. Ist der Schlüssel mit keinem
Wert verknüpft, wird null zurückgeliefert.

• boolean containsKey (Object key)
Prüft, ob die Map den referenzierten Schlüssel enthält.

• boolean containsValue (Object value)
Prüft, ob die Map einen oder mehrere Schlüssel enthält, die mit dem durch die
Referenzvariable value referenzierten Objekt verknüpft sind.

• Set<K> keySet()
Liefert einen Set mit den Schlüsseln der Map zurück.

• Collection<V> values()
Liefert eine Collection mit den Werten in der Map zurück.

Dabei repräsentieren K und V die generischen Typen für die Schlüssel bzw. Werte in
der Map137. Diese werden bei der Definition einer Map wie folgt angegeben:

Map<String, Integer> map = new HashMap<String, Integer>();

In dieser Map werden Schlüssel aus Zeichenketten auf Zahlen abgebildet. Dies kann
z. B. verwendet werden, um die Häufigkeit von Wörtern in einem Text zu zählen.

Im Umgang mit Duplikaten verhalten sich Maps ähnlich wie Sets: Sie verhindern das
Vorhandensein von gleichen Schlüsseln, lassen aber gleiche Werte zu. Man kann
also nicht zweimal den gleichen Schlüssel verwenden, aber sehr wohl zweimal den
gleichen Wert mit unterschiedlichem Schlüssel einfügen. Will man beim Zugriff nicht
das Originalobjekt als Schlüssel verwenden, sondern auch einen "Zweitschlüssel"
benutzen können, muss die Klasse der Objekte, die als Schlüssel verwendet werden,
die equals()-Methode aus der Klasse Object überschreiben.

Das folgende Bild zeigt die im Paket java.util verfügbaren Maps. Dabei fällt auf,
dass Maps anders als alle anderen Collections die Schnittstelle Collection<E>

137 Interessanterweise werden diese nicht in allen Signaturen verwendet. Zugreifen und testen kann

man mit beliebigen Objekten, da die Methoden equals() und hashCode() immer definiert sind.

730 Kapitel 18

nicht implementieren! Mit Hilfe der Methoden keySet() und values() kann aber
trotzdem über eine Map iteriert werden.

Properties WeakHash
Map

Object

HashMap

AbstractMap
{abstract} Hashtable

Map

SortedMap

TreeMap

Dictionary
{abstract}

EnumMap

Bild 18-12 Klassenhierarchie für Map-Collections in java.util

Die Klassen Dictionary<K,V>, Hashtable<K,V> und Properties sind
Collection-Klassen, die schon in der JDK-Version 1.1 vorhanden waren. Die Klasse
Hashtable<K,V> wurde mit der Einführung der neuen Collection-Klassen in der
JDK-Version 1.2 so umgeschrieben, dass sie die Schnittstelle Map<K,V> imple-
mentiert. Die Klasse Hashtable<K,V> hat quasi die gleiche Funktionalität wie die
Klasse HashMap<K,V>, ist aber synchronisiert, d. h. für den Zugriff von mehreren
Threads geeignet (vgl. ArrayList<E> und Vector<E>).

Mit Hilfe der Klasse Properties kann man Schlüssel-Wert-Paare in einen Ausga-
bestrom schreiben und diese von einem Eingabestrom wieder einlesen. Damit ist es
auf elegante Art und Weise möglich, z. B. Dateien mit Einstellungen für ein
Programm zu laden und abzuspeichern. Ansonsten verhält sich diese Klasse jedoch
wie die anderen Maps und wird daher nicht weiter behandelt.

18.6.1 Verzeichnisse mit Hashing

Die Klasse HashMap<K,V> verwendet den Hash-Code des Schlüssels, um die
Position zu ermitteln, an welcher Stelle ein Schlüssel-Wert-Paar in der Collection
abgelegt wird. Das Verfahren entspricht dabei dem in der Klasse HashSet<K,V>
implementierten Verfahren, jedoch mit dem Unterschied, dass zu dem Schlüssel
noch ein zusätzlicher Wert gespeichert wird138.

Es können beliebige Objekte als Schlüssel verwendet werden, aller-
dings müssen die Klassen der Schlüssel-Objekte ggf. die Methoden
equals() und hashCode() implementieren.

138 Eine HashMap<K,V> ist sozusagen ein HashSet<K,V>, die Referenzen auf Objekte speichert,

welche ein Paar aus Schlüssel und Wert repräsentieren und deren equals()-Methode die
equals()-Methoden der Schlüssel verwendet.

Collections 731

Das folgende Beispiel zeigt die Verwendung dieser Klasse zur Speicherung von
Telefonnummern. Dabei kann jedem Namen nur eine Nummer zugeordnet werden.
Andererseits kann aber dieselbe Nummer mit mehreren Namen verknüpft sein:

// Datei: TelefonbuchBeispiel.java

import java.util.*;

public class TelefonbuchBeispiel
{
 public static void main (String[] args)
 {
 // Map zur Zuordnung von Namen zu Telefonnummern
 Map<String, String> telefonbuch =
 new HashMap<String, String>();

 telefonbuch.put ("Armin", "0711-123456");
 telefonbuch.put ("Klaus", "0711-654321");
 telefonbuch.put ("Peter", "0711-123456"); // wohnt bei Armin

 // Ausgabe der Telefonnummer von Klaus
 System.out.print ("Nummer von Klaus:\t");
 System.out.println (telefonbuch.get ("Klaus"));

 // Diese Nummer ist leider nicht bekannt
 System.out.print ("Nummer von Silvia:\t");
 System.out.println (telefonbuch.get ("Silvia"));

 // Ausgabe aller Nummern
 System.out.println ("\nAlle Nummern:");
 System.out.println ("-------------");
 Set<String> namen = telefonbuch.keySet();
 for (String name : namen)
 {
 System.out.print ("Nummer von " + name + ":\t");
 System.out.println (telefonbuch.get (name));
 }
 }
}

Die Ausgabe des Programms ist:

Nummer von Klaus: 0711-654321
Nummer von Silvia: null

Alle Nummern:

Nummer von Klaus: 0711-654321
Nummer von Peter: 0711-123456
Nummer von Armin: 0711-123456

Bei der Ausgabe der gesamten Map ist zu beachten, dass die Ausgabe der Tele-
fonnummern nicht nach den Namen – also den Schlüsseln – sortiert erfolgt. Eine sor-
tierte Map wird im nächsten Kapitel vorgestellt.

732 Kapitel 18

18.6.2 Verzeichnisse mit Bäumen

Die Klasse TreeMap<K,V> implementiert die Schnittstelle SortedMap<K,V>. Ele-
mente, die in ein Objekt der Klasse TreeMap<K,V> eingefügt werden, werden gleich
sortiert eingefügt. Die Organisationsstruktur ist ein Baum – wie bei der Klasse
TreeSet<K,V>. Die Voraussetzungen für die Sortierung sind ebenfalls gleich. Im
folgenden Beispiel wurde die vorher verwendete HashMap<K,V> durch eine Tree-
Map<K,V> ersetzt. Der Rest des Programms ist unverändert.

// Datei: TelefonbuchBeispiel2.java

import java.util.*;

public class TelefonbuchBeispiel2
{
 public static void main (String[] args)
 {
 // Map zur Zuordnung von Namen zu Telefonnummern
 Map<String, String> telefonbuch =
 new TreeMap<String, String>();

 telefonbuch.put ("Armin", "0711-123456");
 telefonbuch.put ("Klaus", "0711-654321");
 telefonbuch.put ("Peter", "0711-123456"); // wohnt bei Armin

 // Ausgabe der Telefonnummer von Klaus
 System.out.print ("Nummer von Klaus:\t");
 System.out.println (telefonbuch.get ("Klaus"));

 // Diese Nummer ist leider nicht bekannt
 System.out.print ("Nummer von Silvia:\t");
 System.out.println (telefonbuch.get ("Silvia"));

 // Ausgabe aller Nummern
 System.out.println ("\nAlle Nummern:");
 System.out.println ("-------------");
 Set<String> namen = telefonbuch.keySet();
 for (String name : namen)
 {
 System.out.print ("Nummer von " + name + ":\t");
 System.out.println (telefonbuch.get (name));
 }
 }
}

Die Ausgabe des Programms ist:

Nummer von Klaus: 0711-654321
Nummer von Silvia: null

Alle Nummern:

Nummer von Armin: 0711-123456
Nummer von Klaus: 0711-654321
Nummer von Peter: 0711-123456

Collections 733

Kleine Änderung, große Wirkung: Die Ausgabe der Telefonnummern erfolgt nun
nach Namen sortiert.

18.6.3 Maps für Aufzählungstypen

Die Klasse EnumMap<K extends Enum<K>,V> wurde ähnlich wie die Klasse
EnumSet<E extends Enum<E>> eingeführt, um Maps mit Aufzählungstypen als
Schlüsseln effizient implementieren zu können. In Anlehnung an das Beispiel zur
Klasse EnumSet<E extends Enum<E>> kann man mit ihrer Hilfe auf effiziente
Weise speichern, wer für welche Zutaten zuständig ist und gleichzeitig sicherstellen,
dass nichts doppelt eingekauft wird:

// Datei: EnumMapBeispiel.java

import java.util.*;

enum Zutaten
{
 EIER, MEHL, BUTTER;
}

public class EnumMapBeispiel
{
 public static void main (String[] args)
 {
 Map<Zutaten,String> werKauftWas =
 new EnumMap<Zutaten, String> (Zutaten.class);
 werKauftWas.put (Zutaten.EIER, "Paul");
 werKauftWas.put (Zutaten.MEHL, "Sabine");
 werKauftWas.put (Zutaten.BUTTER, "Markus");

 // Paul kann doch zuhause bleiben
 werKauftWas.put (Zutaten.EIER, "Regina");
 for (Zutaten z : werKauftWas.keySet())
 {
 System.out.println(werKauftWas.get(z) + " kauft " + z);
 }
 }
}

Die Ausgabe des Programms ist:

Regina kauft EIER
Sabine kauft MEHL
Markus kauft BUTTER

18.6.4 Verzeichnisse mit schwachen Referenzen

Die Klasse WeakHashMap<K,V> unterscheidet sich in der Verwendung im Wesentli-
chen nicht von der Klasse HashMap<K,V>. Beide Klassen arbeiten mit Schüssel-
Wert-Paaren und implementieren die Schnittstelle Map<K,V>. Die Klasse Weak-
HashMap<K,V> verwendet jedoch zur Speicherung der Schlüsselobjekte schwache
Referenzen – implementiert in der Klasse java.lang.ref.WeakReference<T> –,

734 Kapitel 18

was dem Garbage Collector beispielsweise bei Speichermangel das Entfernen des
Schlüssel-Wertobjektes erlaubt, sofern keine weiteren starken Referenzen auf
das Schlüsselobjekt verweisen139. Durch diese Art der Speicherung ermöglicht die
Klasse WeakHashMap<K,V> dem Programmierer auf einfache Weise, einen Cache
zu implementieren, in dem Objekte genau solange gespeichert werden, wie sie an
anderer Stelle im Programm benötigt werden, ohne den Garbage Collector bei seiner
Arbeit zu behindern.

18.7 Besonderheiten bei der Anwendung von Collections

Nachfolgend werden Besonderheiten bei der Anwendung von Collections behandelt.

18.7.1 Bearbeiten von Collections mit mehreren Threads

Ein Programm mit mehreren Threads (engl. Faden oder salopp übersetzt: Hand-
lungsstrang) enthält quasi mehrere parallele "Programme im Programm". Wenn so
ein Programm Collections verwendet, muss sichergestellt werden, dass nicht ein
Thread eine Collection verändert, während ein anderer Thread diese gerade mit
einem Iterator bearbeitet. Ansonsten wären Inkonsistenzen die Folge, angezeigt
durch eine Exception vom Typ ConcurrentModificationException. Klassen,
die sich selbst vor Inkonsistenzen durch mehrere Threads schützen, nennt man
"thread-safe" bzw. nach dem dazu verwendeten Mechanismus in Java "synchro-
nized". Mit der Klasse Vector<T> und der Klasse Hashtable<K,V> kennen Sie
schon Collections, auf die diese Eigenschaft zutrifft. Um andere Collections ggf. auch
nachträglich "abzuhärten", existieren in der Klasse Collections Methoden, die für
Vertreter aller Collection-Familien eine synchronisierte Kopie erzeugen.

Außerdem wurden mit JDK 5.0 im Paket java.util.concurrent einige neue
Collections speziell für Programme mit mehreren Threads eingeführt. Queues z. B.
haben den Vorteil, dass sie sich sehr gut für parallele Lese- und Schreiboperationen
eignen, und somit performanter als z. B. Listen sind. Daneben wurden einige der
"alten" Collections im Detail angepasst. Die besonderen Eigenschaften der neuen
Collections sind in der folgenden Tabelle nochmals zusammengefasst.

Collection-Klasse thread-safe concurrent blocking bounded
CopyOnWriteArrayList X - - -
CopyOnWriteSet X - - -
ConcurrentHashMap X X - -
ConcurrentLinkedQueue X X - -
SynchronousQueue X - X X
DelayQueue X - X -
PriorityBlockingQueue X - X -
ArrayBlockingQueue X - X X
LinkedBlockingQueue X - X optional
java.util.LinkedList - - - -
java.util.PriorityQueue - - - -

Tabelle 18-2 Zusammenfassung besonderer Eigenschaften von Collections

139 Dies kann eine lokale Variable oder eine Instanzvariable bzw. Klassenvariable sein.

Collections 735

Die Bedeutung der in der Tabelle verwendeten Begriffe ist wie folgt:

• Der Begriff thread-safe bedeutet, dass eine Klasse allgemein für die Benutzung
mit mehreren Threads abgesichert ist.

• Der Begriff concurrent bedeutet nebenläufig und signalisiert, dass in der Klasse –
wenn möglich – Algorithmen verwendet werden, die einen Zugriff ohne Wartezeit
ermöglichen (wait-free-Algorithmen). Es wird auch der Begriff "sharable Collection"
verwendet.

• Der Begriff blocking bezeichnet eine Collection, die einen Thread solange
blockiert, bis die Bedingung zur Ausführung einer Methode erfüllt ist.

• Der Begriff bounded bezeichnet eine Collection mit begrenzter Kapazität.

18.7.2 Standardalgorithmen für Collections

Bei der Verwendung von Collections kommen bestimmte Aufgaben wie z. B. das
Sortieren der referenzierten Objekte nach einem bestimmten Kriterium immer wieder
vor. Die in Abschnitt 18.3.5 vorgestellte Hilfsklasse Collections bietet neben dem
Sortieren eine ganze Reihe weiterer generischer und effizient implementierter
Standardalgorithmen zur Bearbeitung von Collections. Die folgende Liste zeigt einige
wichtige Beispiele:

• static <T> void sort (List<T> list, Comparator<? super T> c)
Sortiert eine Liste mit Elementen der Klasse T mit Hilfe eines Komparators, der
Elemente der Klasse T oder einer Oberklasse vergleichen kann.

• static <T> int binarySearch (List<? extends T> list, T key,
 Comparator<? super T> c)

Durchsucht eine mit Hilfe eines Komparators für die Klasse T oder einer Ober-
klasse sortierte Liste mit Elementen der Klasse T nach einem Schlüsselelement
der Klasse T und liefert dessen Index zurück.

• static void shuffle (List<?> list)
Vertauscht die in der Liste enthaltenen Referenzen, sodass sie sich in einer zu-
fälligen Reihenfolge befinden.

• static void rotate (List<?> list, int distance)
Rotiert die in der Liste enthaltenen Elemente um die angegebene Distanz. Rotiert
man beispielsweise die Liste [1, 2, 3, 4] um 2 Stellen, so ergibt sich [3, 4, 1, 2].

• static void reverse (List<?> list)
Kehrt die Reihenfolge einer Liste mit beliebigen Elementen um. Aus der Liste mit
den Elementen [4, 2, 7, 1] wird so die Liste [1, 7, 2, 4].

• static boolean disjoint (Collection<?> c1, Collection<?> c2)
Prüft, ob die beiden angegebenen Collections mit beliebigen Elementen keine ge-
meinsamen Elemente haben.

• static int frequency (Collection<?> c, Object o)
Zählt, wie viele Referenzen in der Liste enthalten sind, die auf das Objekt o zei-
gen.

736 Kapitel 18

• static <T> boolean replaceAll (List<T> list, T oldVal,
 T newVal)

Ersetzt in einer Liste mit Referenzen vom Typ T alle Referenzen, die gleich old-
Val sind, durch newVal. Zum Vergleich wird die equals()-Methode verwendet.

• static <T> Collection<T>
 synchronizedCollection (Collection<T> c)

Liefert eine Collection zurück, die für die Bearbeitung mit mehreren Threads ge-
eignet ist und einen synchronisierten Zugriff sicherstellt. Diese Methode existiert in
weiteren Ausprägungen auch für die Typen Map, List, Set, SortedMap und
SortedSet.

18.8 Übungen

Aufgabe 18.1: Verbesserung der verketteten Liste

Im Kapitel 18.3.2 wird eine verkettete Liste in der Klasse VerketteListe<E> imple-
mentiert. Diese Klasse hat ein schlechtes Laufzeitverhalten beim Anfügen von neuen
Elementen, da jedes Mal bis zur letzten Position "gespult" werden muss. Ergänzen
Sie die Klasse um ein privates Datenfeld zur Speicherung der letzten Position und
ändern sie die Methoden zum Einfügen und Löschen von Elementen entsprechend
ab. Nennen Sie die neue Klasse VerketteteListeOptimiert<E>.

Aufgabe 18.2: Verwendung der LinkedList der Java-API

Um die verkettete Liste aus Kapitel 18.3.2 zu testen, wird das folgende Testpro-
gramm verwendet:

// Datei: VerketteteListeTest.java

public class VerketteteListeTest
{
 public static void main (String[] args)
 {
 VerketteteListeOptimiert<Integer> liste =
 new VerketteteListeOptimiert<Integer>();
 liste.add (1);
 liste.add (2);
 liste.add (3);
 liste.add (4);
 liste.add (5);

 System.out.println ("Anzahl=" + liste.size());
 System.out.println (liste);

 liste.remove (5);
 liste.remove (2);
 liste.remove (3);

 System.out.println ("Anzahl=" + liste.size());
 System.out.println (liste);
 }
}

Collections 737

Schreiben Sie dieses Programm so um, dass anstelle der eigenen verketteten Liste
die Klasse LinkedList aus der Java-API verwendet wird. Beachten Sie dabei, dass
die Methode remove() der Klasse LinkedList überladen ist und durch Auto-
boxing Probleme auftreten können.

Aufgabe 18.3: Verwendung von Schnittstellen der Java-API

Wie muss man das Programm aus der vorherigen Aufgabe verändern, damit das
Problem mit der überladenen Methode remove() in Verbindung mit der Klasse
LinkedList nicht auftritt und die Klasse LinkedList an sich austauschbar wird?
Es sollte möglich sein, Parameter vom Datentyp int direkt ohne manuelles Boxing
der Methode remove() zu übergeben und mit Hilfe dieser Methode Objekte vom
Typ Integer zu entfernen anstatt von Objekten mit einem bestimmten Index.

Aufgabe 18.4: Queues und Sets

In dieser Aufgabe soll ein Bürgeramt mit Schaltern und einer Warteschlange für an-
stehende Bürger simuliert werden. Schreiben Sie hierzu als erstes eine Klasse
Buerger. Die Klasse Buerger soll die zwei Instanzvariablen name und anliegen
vom Typ String besitzen. Für beide Variablen sollen get- und set-Methoden be-
reitgestellt werden. Über einen Konstruktor mit Parametern sollen die Instanzvariab-
len gesetzt werden können.

Schreiben Sie eine Klasse Schalter, die folgende Instanzvariablen und Methoden
besitzt:

• die Instanzvariable buerger vom Typ Buerger.

• die Instanzvariable schalterNummer vom Typ int.
• einen Konstruktor, mit dessen Hilfe die Schalternummer übergeben und gesetzt

werden kann.
• eine Instanzmethode istFrei(), die prüft, ob ein Bürger dem Objekt der Klasse
Schalter zugewiesen wurde. Die Methode istFrei() soll einen Rückgabewert
vom Typ boolean liefern.

• eine Instanzmethode buergerAnSchalter() mit einem formalen Übergabepa-
rameter vom Typ Buerger, die prüft, ob der Schalter frei ist. Ist der Schalter nicht
frei, so soll eine Exception vom Typ IllegalArgumentException geworfen
werden. Wenn der Schalter frei ist, soll die übergebene Referenz auf das Objekt
vom Typ Buerger der Instanzvariablen buerger zugewiesen werden. Anschlie-
ßend soll die Methode ausgeben, an welchem Schalter der Bürger bedient wird.

• eine Instanzmethode buergerSchalterFertig(), die als erstes prüft, ob der
Schalter belegt ist. Ist der Schalter belegt, soll ausgegeben werden, an welchem
Schalter der Bürger bedient wurde. Danach soll der Schalter als frei markiert wer-
den.

Schreiben Sie eine Klasse Buergeramt, die folgende Instanzvariablen und Metho-
den besitzt:

• die Instanzvariable buergerSchlange vom Typ Queue zum Speichern von Bür-
gern in einer Warteschlange. Achten Sie auf einen geeigneten Einsatz der Gene-

738 Kapitel 18

rizität. Die Instanzvariable buergerSchlange soll auf eine Collection vom Typ
LinkedList zeigen.

• die Instanzvariable schalterListe vom Typ Set zum Speichern der geöffneten
Schalter beim Bürgeramt. Achten Sie auf einen geeigneten Einsatz der Generizi-
tät. Die Instanzvariable schalterListe soll auf eine Collection vom Typ Hash-
Set zeigen.

• einen Konstruktor, dem die Anzahl der geöffneten Schalter übergeben wird. Der
Konstruktor soll die entsprechende Anzahl an Schaltern erzeugen und diese in der
Schalterliste ablegen.

• eine Instanzmethode buergerEinreihen() mit einem formalen Übergabepara-
meter vom Typ Buerger.

• eine Instanzmethode getNaechsterBuerger(), der eine Referenz auf den
vorne anstehenden Bürger in der Warteschlange zurückgibt.

• eine Instanzmethode nochBuergerInSchlange(), die einen Rückgabewert
vom Typ boolean liefert, um anzuzeigen, ob noch Bürger in der Warteschlange
stehen.

• eine Instanzmethode getFreierSchalter(), welche die Schalterliste nach
freien Schaltern durchsucht und eine Referenz auf den gefundenen freien Schalter
zurückgibt. Ist kein Schalter frei, wird null zurückgegeben.

• eine Instanzmethode buergerBedienen(), die solange es noch freie Schalter
gibt und noch Bürger in der Warteschlange stehen, einem freien Schalter einen
Bürger aus der Warteschlange zuweist.

• eine Instanzmethode alleSchalterFertig(), die alle belegten Schalter im
Bürgeramt mit Hilfe der Methode buergerSchalterFertig() der Klasse
Schalter wieder freigibt.

In der main()-Methode der Klasse Buergeramt soll nun ein Objekt der Klasse
Buergeramt mit 3 Schaltern angelegt werden. Es sollen 5 Bürger in die Warte-
schlange eingereiht werden. Mit Hilfe der Methoden buergerBedienen() und
alleSchalterFertig() der Klasse Buergeramt sollen nach und nach alle Bür-
ger in der Schlange bedient werden.

Aufgabe 18.5: Maps

In einer Map sollen Adressen von Studenten gespeichert werden. Als Schlüssel zum
Auffinden eines Studenten soll dessen Matrikelnummer verwendet werden. Schrei-
ben Sie eine Klasse StudentenAdresse, welche die Adressen der Studenten ent-
hält. Schreiben Sie weiterhin eine Klasse StudentenVerwaltung, welche Referen-
zen auf Objekte vom Typ StudentenAdresse in einem Objekt vom Typ Hash-
Map<K,V> ablegt und wieder ausliest. Die Matrikelnummer – also der Schlüssel –
soll durch den Datentyp Integer repräsentiert werden.

Um die Klasse HashMap<K,V> austauschbar zu machen, soll immer gegen die
Schnittstelle Map programmiert werden. Schreiben Sie eine Methode test(), in der
3 Studenten in die Map eingetragen werden, und geben Sie eine der Adressen
wieder aus.

Collections 739

Aufgabe 18.6: Wildcards und Bounded-Wildcards

Schreiben Sie eine abstrakte Klasse Getriebe. Diese soll die abstrakten Methoden
hochschalten() und herunterschalten() besitzen. Schreiben Sie zwei weite-
re Klassen AutomatikGetriebe und ManuellesGetriebe, die von Getriebe
abgeleitet sind und diese Methoden so implementieren, dass jeweils eine Meldung
ausgegeben wird.

Schreiben Sie eine Klasse Pruefstand mit einer Methode testAll(). Diese soll
Collections von Getrieben akzeptieren, in denen beliebige Mischungen von automati-
schen und manuellen Getrieben vorkommen. Innerhalb der Methode sollen die Me-
thoden zum Hoch- und Herunterschalten jeweils einmal aufgerufen werden. Erstellen
Sie noch zwei Klassen ManuellesGetriebeFertigung und AutomatischesGe-
triebeFertigung, die jeweils eine Methode fertigePalette() besitzen, die
eine typisierte Collection mit 5 Getrieben des jeweiligen Typs herstellen.

Schreiben Sie eine Testklasse GetriebeTest, die beide Fertigungen und einen
Prüfstand instantiiert und die Collections der Fertigungen nach Typ getrennt an den
Prüfstand übergibt. Nutzen Sie für die Implementierung der Klassen und Methoden
die Möglichkeiten der Generizität.

Als Erweiterung können Sie die Fertigungs-Klassen so ergänzen, dass die Ferti-
gungen bereitgestellte Collections, die mit dem Typ Getriebe parametrisiert sind,
befüllen.

Aufgabe 18.7: Flughafenprojekt – ArrayList

Bisher wurden die bereits eingegebenen Fluggesellschaften, Flugzeugtypen und die
Flugzeuge nicht im System zur erneuten Verwendung gehalten. Dies soll nun geän-
dert werden. Hierzu soll die Klasse Flughafen um die drei Instanzvariablen vom
Typ ArrayList flugzeuge, flugzeugtypen und fluggesellschaften erwei-
tert werden. Auch soll der Flugzeugsimulator so abgeändert werden, dass er nicht
nur ein Flugzeug, sondern beliebig viele gleichzeitig verwalten kann. Zusätzlich soll
dem Benutzer die Möglichkeit gegeben werden, entweder einen bereits eingege-
benen Flugzeugtyp bzw. eine bereits eingegebene Fluggesellschaft auszuwählen
oder einen neuen Flugzeugtyp bzw. eine neue Fluggesellschaft einzugeben.

Threads

Arbeitsvermittlung

Schnittstelle
Arbeiter-Typ 1

Arbeiter-Typ 2

Arbeiter-Typ 3

Typ 1

Typ 2

Typ 3

19.1 Zustände und Zustandsübergänge von Betriebssystem-
Prozessen

19.2 Zustände und Zustandsübergänge von Threads
19.3 Programmierung von Threads
19.4 Scheduling von Threads
19.5 Zugriff auf gemeinsame Ressourcen
19.6 Daemon-Threads
19.7 Übungen

19 Threads

Bei vielen Anwendungen ist es wünschenswert, dass verschiedene Abläufe für
einen Benutzer parallel ablaufen. So möchte z. B. ein Nutzer eine Datei aus dem
Internet laden, während er einen Text in einem Fenster des Bildschirms schreibt. Er
wäre überhaupt nicht zufrieden, wenn er während des Ladevorgangs jegliche Aktivi-
tät einstellen und untätig auf den Abschluss des Ladens warten müsste.

Hätte man mehrere physikalische Prozessoren, so könnte man Programme, die nicht
voneinander abhängig sind, tatsächlich unabhängig auf verschiedenen Prozessoren
ablaufen lassen. Da das Laden einer beliebigen Datei und das Schreiben eines
Textes nichts miteinander zu tun hat – es sei denn der Inhalt der geladenen Datei
soll in den Text übernommen werden – wäre in obigem Beispiel eine parallele Abar-
beitung auf einem Mehrprozessorsystem tatsächlich hilfreich.

Mehrprozessorsysteme sind auf jeden Fall nützlich bei allen Anwendungen, die
nebenläufig (concurrent) sind, d. h. die unabhängig voneinander ausgeführt wer-
den können.

Prozesskonzept

Hat man nur einen einzigen Prozessor, so kann tatsächlich zu einem Zeitpunkt nur
ein Programm den Prozessor besitzen, d. h. verschiedene Programme können nur
nacheinander auf dem Prozessor ablaufen. Bis in die sechziger Jahre waren die
Betriebssysteme von Rechnern so genannte batch-Betriebssysteme, bei denen ein
Programm, das den Prozessor besaß, komplett ablaufen musste, und erst dann
konnte das nächste Programm den Prozessor erhalten. Deshalb war an ein interak-
tives Arbeiten mehrerer Anwender mit dem Rechner nicht zu denken. Der Pro-
grammablauf war tatsächlich sequenziell (siehe Bild 19-1).

Bild 19-1 Abarbeitung von Programmen bei einem batch-Betriebssystem

Das Konzept eines Betriebssystem-Prozesses erbrachte den Durchbruch und er-
möglichte es, dass mehrere Nutzer gleichzeitig arbeiten konnten. Ein Betriebs-
system-Prozess ist hierbei definiert als "ein Programm in Ausführung oder als ein
Programm, das laufen möchte"140. Die einfache Idee war, ein Programm unterbrech-
bar zu machen, das heißt, es sollte möglich sein, zur Laufzeit des Prozesses dem
Prozess die Ressource (das Betriebsmittel) Prozessor zu entziehen, für eine kurze
Zeit dann einem anderen Prozess den Prozessor zu geben und so abwechselnd
nach einer gewissen Strategie verschiedene Prozesse zu bedienen. Findet der
Wechsel zwischen den Prozessen nur schnell genug statt, so merkt ein Beobachter
eines Prozesses gar nicht, dass diesem Prozess momentan der Prozessor gar nicht
gehört. Für einen Beobachter sieht es so aus, als würden alle Prozesse quasi

140 Wobei bei dieser Definition vorausgesetzt ist, dass ein solches Programm selbst nur sequenzielle

Abläufe enthält.

Programm C Programm B Programm A Prozessor

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_19,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Threads 743

parallel ablaufen. So gut sich diese Idee anhört, so aufwendig ist sie in der Praxis
umzusetzen, denn:

Ein Prozess darf ja gar nicht merken, dass er unterbrochen worden ist.
Wird ihm der Prozessor wieder zugeteilt, so muss der Prozess in ge-
nau derselben Weise weiterarbeiten, wie wenn er die ganze Zeit den
Prozessor besessen hätte.

Betriebssystem-Prozesse sind also in erster Linie ein Mittel zur Strukturierung von
nebenläufigen Programmsystemen. Dabei kann man sich einen jeden Prozess als
einen virtuellen Prozessor vorstellen.

Prozesse können also

•••• parallel von mehreren Prozessoren
•••• oder in einer Folge sequenziell von einem Prozessor (quasi-pa-

rallel) ausgeführt werden.

Letztendlich ermöglicht ein Betriebssystem, welches ein Prozesskonzept unterstützt
und Betriebssystem-Prozesse als so genannte virtuelle Betriebsmittel141 zur
Verfügung stellt, ein Multiplexen des Prozessors. Nach einer gewissen vorgegebe-
nen Strategie erhalten die Prozesse abwechselnd den Prozessor, wobei sie, wenn
sie den Prozessor wieder erhalten, nahtlos so weiterlaufen, als hätten sie den Pro-
zessor nie abgegeben.

Die ersten Betriebssysteme, die ein Prozesskonzept unterstützten, waren die Zeit-
scheiben-Betriebssysteme (Time-Sharing-Betriebssysteme), bei denen jeder Prozess
abwechselnd vom Scheduler142 eine bestimmte Zeitscheibe (Time Slice) lang den
Prozessor zur Verfügung gestellt bekommt.

C B A C B A C B A Prozessor

abwechselnd gleich lange Zeitscheiben für jeden Prozess

Zeitscheibe

Bild 19-2 Abarbeitung der Prozesse A, B und C bei einem Time-Sharing-Betriebssystem

Erhält ein Prozess zum ersten Mal eine Zeitscheibe, so beginnt er zu laufen. Ist das
Ende der Zeitscheibe erreicht, so wird ihm der Prozessor entzogen (preemptive
scheduling143). Erhält er die nächste Zeitscheibe, so arbeitet er exakt an der Stelle
weiter, an der er unterbrochen worden ist. Dies muss das Betriebssystem bewerk-
stelligen.

141 Virtuell im Gegensatz zu dem physikalischen Betriebsmittel Prozessor.
142 Der Scheduler ist eine Komponente des Betriebssystems, die den Prozessor nach einer vorgege-

benen Strategie wie z. B. dem Zeitscheibenverfahren vergibt.
143 Preemptive Scheduling bedeutet Scheduling durch Entzug des Prozessors. Ein paralleler Pro-

zess kann nicht mitbestimmen, wann ihm der Prozessor entzogen wird, sondern das Betriebs-
system ist in der Lage, den Prozessor gezielt nach einer Strategie dem Prozess zu entziehen.

744 Kapitel 19

Ein jeder Betriebssystem-Prozess hat seinen eigenen Prozesskontext. Zu einem
Prozesskontext eines in einer klassischen Programmiersprache wie C geschrie-
benen Programms gehört selbstverständlich der eigentliche Programmtext (Pro-
grammcode) mit Daten, Stack und Heap

Code

Daten

Stack

Heap

Bild 19-3 Segmente eines ablauffähigen C-Programms

sowie die Prozessumgebung beispielsweise mit:

•••• Registerinhalten wie dem Stackpointer (zeigt auf die Spitze des Stacks), dem Be-
fehlszeiger (zeigt auf die als nächste abzuarbeitende Anweisung) oder temporären
Daten,

•••• geöffneten Dateien,
•••• sowie weiteren Informationen, die zur Ausführung des Programms benötigt wer-

den.

Will das Betriebssystem einen Betriebssystem-Prozess vom Prozessor nehmen und
dem Prozessor einen anderen Betriebssystem-Prozess zuweisen, so findet ein so
genannter Kontextwechsel statt. Hierbei muss der Kontext des alten Betriebs-
system-Prozesses komplett gerettet werden, damit bei einer erneuten Vergabe des
Prozessors an den alten Prozess sein gesamter Kontext in identischer Form wieder
hergestellt werden kann – so als hätte der Prozess nie den Prozessor abgeben
müssen. Wegen des hohen Aufwands für den Kontextwechsel wird ein Betriebs-
system-Prozess auch als schwergewichtiger Prozess bezeichnet.

Zugriffe auf Betriebsmittel

All das, was ein Prozess zum Laufen braucht, wird als Betriebs-
mittel bezeichnet. Betriebsmittel können z. B. der Prozessor oder ein
I/O-Kanal eines Programms zu einer Datei auf der Festplatte sein.

Hierbei sind I/O-Kanäle144 Eingabe- bzw. Ausgabeströme. Eingabeströme können
beispielsweise von der Tastatur oder der Platte kommen, Ausgabeströme auf den
Bildschirm oder die Platte gehen.

144 I/O ist die Abkürzung für Input/Output.

Threads 745

Betriebsmittel können exklusiv benutzbar sein, aber dennoch zeitlich aufteilbar,
wie der Prozessor. Betriebsmittel können räumlich aufteilbar sein wie z. B. die Fest-
platte oder der Arbeitsspeicher. Betriebsmittel können auch nur exklusiv benutzbar
und nicht aufteilbar sein wie z. B. ein Drucker.

Bei einem Drucker macht es keinen Sinn, dass er von mehreren Prozessen parallel
benutzt wird. Wird von verschiedenen Prozessen abwechselnd das Papier des
Druckers beschrieben, so entsteht keine sinnvolle Ausgabe. Der Drucker muss ex-
klusiv benutzt werden. Das gleiche Problem eines exklusiven Zugriffs gibt es auch
bei globalen Daten, auf die von mehreren Prozessen zugegriffen werden kann, aber
auch bei Zugriffen auf Funktionen145. Eine weitere Problemstellung kann sein, dass
Prozesse eine Aufgabe gemeinsam bearbeiten und dass dabei eine definierte Rei-
henfolge der Prozesse zwingend notwendig ist, wie beispielsweise Einlese-Pro-
zess, Verarbeitungs-Prozess, Ausgabe-Prozess. In all diesen Fällen eines exklusiven
Zugriffs oder einer definierten Reihenfolge müssen Prozesse synchronisiert werden.

Synchronisation von Teilfolgen von Anweisungen

Ein Prozess selbst besteht aus einem zeitlich geordneten Ablauf von Teilfolgen von
Anweisungen. Probleme zwischen verschiedenen Prozessen kann es nur geben,
wenn Teilfolgen auf exklusiv genutzte Betriebsmittel wie globale Variablen zugreifen
wollen oder wenn Teilfolgen in bestimmten zeitlichen Reihenfolgen ausgeführt wer-
den müssen.

Eine Synchronisation dient zur Sicherstellung von zeitlichen Bezie-
hungen zwischen Teilfolgen verschiedener Prozesse.

Bei der Kooperation [15] wird eine definierte Reihenfolge von Teilfolgen verschie-
dener Prozesse erzwungen. Beim wechselseitigen Ausschluss kann die Reihen-
folge von Teilfolgen verschiedener Prozesse beliebig sein, nur dürfen sie nicht
gleichzeitig vorkommen, d. h. sie schließen sich wechselseitig aus.

Teilfolgen, die sich wechselseitig ausschließen, heißen kritische Be-
reiche (kritische Abschnitte, critical sections). Kritische Abschnitte
sind kritisch in dem Sinn, dass gleichzeitig nur ein einziger Prozess
einen kritischen Abschnitt bearbeiten kann.

Dabei muss ein Prozess, der einen kritischen Abschnitt betritt, diesen auch voll-
kommen abarbeiten. Erst dann darf ein anderer Prozess einen kritischen Abschnitt
betreten. Die einfachste Möglichkeit, den wechselseitigen Ausschluss von kritischen
Abschnitten auf einem Einprozessor-Rechner zu realisieren, ist, den kritischen Ab-
schnitt ununterbrechbar zu machen. Dies hat natürlich zur Konsequenz, dass wäh-
rend der Abarbeitung des kritischen Abschnitts alle anderen Prozesse warten müs-
sen. Dieses Mittel ist nur für kurze und erprobte Betriebssystemroutinen denkbar, ist
aber ansonsten nicht brauchbar. So könnte ein unwichtiger Prozess einen wich-

145 Es sei denn, diese werden reentrant geschrieben und legen die Zwischenergebnisse eines jeden

Prozesses in einen eigenen Speicherbereich ab.

746 Kapitel 19

tigeren Prozess oder eine fehlerhafte Routine in einer Endlos-Schleife das ganze
System blockieren.

Schwergewichtige und leichtgewichtige Prozesse

Ein klassischer Betriebssystem-Prozess stellt eine Einheit sowohl für das Memo-
ry Management als auch für das Scheduling dar. Einem Betriebssystem-Prozess
wird vom Memory Management zur gegebenen Zeit ein Platz im Arbeitsspeicher zu-
geordnet. Der Scheduler gewährt einem Betriebssystem-Prozess Rechenzeit. Bei
modernen Betriebssystemen gibt es außer Prozessen auch Threads. Ein Thread146
ist nur eine Einheit für das Scheduling, d. h. innerhalb eines Betriebssystem-Pro-
zesses können mehrere Threads laufen. Während dem Betriebssystem-Prozess der
Speicher zugeordnet ist und ein Kontextwechsel – ein anderer Betriebssystem-Pro-
zess erhält die CPU – mit Aufwand beim Memory Management verbunden ist, ist ein
Wechsel eines Threads auf der CPU nicht mit der Verwaltung des Speichers ge-
koppelt. Daher wird ein Betriebssystem-Prozess auch als ein schwergewichtiger
Prozess (heavyweight process) und ein Thread als ein leichtgewichtiger Prozess
(lightweight process) bezeichnet.

Die Idee war also, innerhalb eines Betriebssystem-Prozesses diese neuartigen
Prozesse – Threads genannt – einzuführen, die quasi parallel ablaufen können. So
können solche Threads beispielsweise in einem Server-Betriebssystem-Prozess ver-
schiedene Nutzeranfragen quasi parallel abarbeiten (Multithreading). Damit diese
Threads unabhängig voneinander arbeiten können, braucht man für jeden Thread
nur noch einen Befehlszeiger, einen eigenen Stack für die Speicherung der lokalen
Variablen sowie der Übergabeparameter und des Befehlszeigers zum Rücksprung
bei Funktionsaufrufen, um Funktionen unabhängig von anderen Threads aufrufen zu
können und einen Satz von Prozessorregistern. Alle anderen Informationen wer-
den geteilt, insbesondere Programmcode, Programmdaten und Dateiinformatio-
nen. Diese stellen gemeinsame Daten für alle Threads dar.

Da Threads ein Sprachmittel von Java sind, muss es möglich sein, Threads zu unter-
stützen, ganz unabhängig davon, ob das jeweilige Betriebssystem nur ein Betriebs-
system-Prozesskonzept oder auch ein Threadkonzept unterstützt. Wie die Java
Virtuelle Maschine die Threads in Zusammenarbeit mit dem jeweiligen Betriebssys-
tem verwaltet, bleibt dem Anwender verborgen147.

Die Java Virtuelle Maschine selbst läuft in einem Betriebssystem-
Prozess ab, d. h. sollen mehrere Java-Programme in getrennten Be-
triebssystem-Prozessen ablaufen, so hat jeder Prozess seine eigene
virtuelle Maschine.

Es ist nicht möglich, eine gemeinsame virtuelle Maschine für getrennte Betriebssys-
tem-Prozesse ablaufen zu lassen.

146 Das Wort Thread steht im Englischen für Faden. Hierbei ist der Ablauffaden des Programmcodes

gemeint, sprich der Kontrollfluss.
147 Unterstützt das Betriebssystem kein Threadkonzept, so erfolgt die Threadverwaltung allein durch

die virtuelle Maschine. Man spricht dann von „green threads“ [14]. Hat das Betriebssystem die
Fähigkeit der Threadverwaltung, so spricht man bei den Java-Threads von „native threads“.

Threads 747

Thread1 Thread2

Thread3

Multithreaded
Betriebssystem-Prozess 3

Betriebssystem-
Prozess 1

Betriebssystem-
Prozess 2

Bild 19-4 Threads und Prozesse

Threads teilen sich, da sie im selben Betriebssystem-Prozess ab-
laufen:

• den Heap für die Ablage von Objekten,
• Code und Klassenvariablen in der Method-Area
• und I/O-Kanäle.

Ein Thread selbst hat:

• einen eigenen Befehlszähler,
• einen eigenen Registersatz
• und einen eigenen Stack zur Ablage der lokalen Daten, der Über-

gabeparameter und des Befehlszeigers zum Rücksprung bei Me-
thodenaufrufen.

19.1 Zustände und Zustandsübergänge von Betriebs-

system-Prozessen

Prozesse haben Zustände. Der Zustand eines Prozesses hängt davon ab, welche
Betriebsmittel er momentan besitzt. In Bild 19-5 wird ein vereinfachtes Zustands-
übergangsdiagramm für Betriebssystem-Prozesse vorgestellt. Jeder Kreis stellt
einen Zustand eines Betriebssystem-Prozesses dar. Die Pfeile kennzeichnen die
Übergänge zwischen den Zuständen. Es gibt folgende Zustände und Zustands-
übergänge in Bild 19-5:

• Hat ein Betriebssystem-Prozess alle Betriebsmittel, die er braucht, um laufen zu
können, bis auf den Prozessor, so ist er im Zustand "ready-to-run".

• Erhält ein Betriebssystem-Prozess vom Scheduler den Prozessor zugeteilt, so
geht er in den Zustand "running" über.

• Macht ein laufender Betriebssystem-Prozess eine I/O-Operation, so verliert er den
Prozessor und geht in den Zustand "blocked" über.

• Ist die I/O-Operation beendet, so geht der Betriebssystem-Prozess in den Zustand
"ready-to-run" über.

748 Kapitel 19

Scheduler
 entzieht den
 Prozessor

Betriebssystem-
Prozess macht

I/O

Scheduler teilt
 Prozessor zu

ready-
to-run

blocked running

I/O fertig

Bild 19-5 Vereinfachtes Zustandsübergangsdiagramm

Nur ein Betriebssystem-Prozess, der alle Betriebsmittel bis auf den Prozessor hat,
das heißt im Zustand "ready-to-run" ist, kann am Wettbewerb um den Prozessor teil-
nehmen.

19.2 Zustände und Zustandsübergänge von Threads

Threads können ähnlich wie Betriebssystem-Prozesse verschiedene Zustände ha-
ben. Zustandsübergänge können erfolgen als Konsequenz von Methodenaufrufen
wie z. B. sleep() aber auch durch Aktionen des Betriebssystems wie z. B. die Zu-
teilung des Prozessors durch den Scheduler.

Bei Threads müssen die folgenden 5 Zustände betrachtet werden:

• new,
• ready-to-run,
• blocked,
• running
• und dead.

Die Zustände "ready-to-run", "blocked" und "running" wurden bereits oben erklärt.
Der Zustand "new" bedeutet, dass der Thread durch den new-Operator generiert
wurde und sich in seinem Anfangszustand befindet. Er ist noch nicht ablauffähig.
Seine Datenfelder und Methoden können jedoch angesprochen werden. In den
Zustand "dead" gelangt ein Thread nach Abarbeitung seines Programmcodes. Im
Zustand "dead" können dann weiterhin die Datenfelder und eigene Methoden – bis
auf die Methode run() – des Threads angesprochen werden. Ein Thread, der ein-
mal den Zustand "dead" erreicht hat, kann jedoch nicht wieder gestartet werden.

Der Übersichtlichkeit halber werden Zustandsübergänge, die aus Methodenaufrufen
resultieren, und Zustandsübergänge, die durch die virtuelle Maschine verursacht
werden, im Folgenden in getrennten Grafiken dargestellt:

Threads 749

• Zustandsübergänge als Folge von Methodenaufrufen

In Bild 19-6 ist zu sehen, welche Zustandsübergänge von Threads explizit durch
Methodenaufrufe hervorgerufen werden können. Es fällt dabei auf, dass es keinen
Pfeil zum Zustand "running" gibt. Dies liegt daran, dass nur die virtuelle Maschine
(genauer gesagt der Scheduler) einen Thread in den Zustand "running" bringen
kann. Ein Thread kann nicht per Methodenaufruf in den Zustand "running" versetzt
werden. Der Zustand "dead" wird in Bild 19-6 gar nicht aufgeführt, da man einen
Thread durch Methodenaufrufe weder in den Zustand "dead" überführen kann,
noch den Zustand "dead" verlassen kann.

notify()

notifyAll()

yield()

sleep()

wait()

join()

start()

ready-
to-run

running

new

interrupt()

blocked

Bild 19-6 Zustandsübergänge148 von Threads als Folge von Methodenaufrufen

Nachfolgend werden die Methoden der Klasse Thread, die einen Zustandsüber-
gang eines Threads bewirken können, genauer erläutert:

− public void start()

Der Aufruf der Methode start() überführt einen Thread vom Zustand "new" in
den Zustand "ready-to-run". Wurde der Thread schon einmal gestartet, so wird
eine IllegalThreadStateException geworfen.

− public static void sleep (long millis)
public static void sleep (long millis, int nanos)

Versetzt den gerade laufenden Thread für mindestens millis msec (bzw.
millis msec und nanos nsec) in den Zustand "blocked". Die Auflösung in
Schritte von 1 ms (bzw. 1 ns) ist dabei jedoch nicht gewährleistet, sondern
hängt vom Betriebssystem ab. Oft wird der Wert entsprechend auf- oder abge-
rundet. Beide sleep()-Methoden können eine Exception vom Typ Interrup-
tedException werfen. Dies tritt genau dann ein, wenn ein Thread, der sich
durch den Aufruf der Methode sleep() im Zustand "blocked" befindet, durch
den Aufruf der Instanzmethode interrupt() in den Zustand "ready-to-run"
überführt wird. Die interrupt()-Methode muss dabei natürlich von einem
anderen gerade laufenden Thread aufgerufen werden.

148 Die Methoden notify(), notifyAll() und wait() sind Methoden der Klasse Object und

dürfen nur in Codeblöcken aufgerufen werden, die als synchronized gekennzeichnet sind. Siehe
hierzu Kap. 19.5.4.3.

750 Kapitel 19

− public static void yield()

Der Aufruf von yield() bricht die Verarbeitung des gerade laufenden Threads
ab und führt diesen wieder in den Zustand "ready-to-run", wo er erneut auf die
Zuteilung von Rechenzeit warten muss. Der Aufruf dieser Methode für einen
Thread im Zustand "running" gibt anderen Threads die Möglichkeit zum Ablauf.

− public final void join()
public final void join (long millis)
public final void join (long millis, int nanos)

Ein Thread kann die Methode join() eines anderen Threads aufrufen. Hierbei
wird der Thread, der die Methode aufruft, in den Zustand "blocked" versetzt, bis
der Thread, dessen join()-Methode aufgerufen wird, beendet ist. Somit kann
gezielt auf das Ende eines Threads gewartet werden. Muss Thread1 z. B. auf
die Beendigung von Thread2 warten, so ruft Thread1 die join()-Methode von
Thread2 auf. Dadurch wird Thread1 solange in den Zustand "blocked" versetzt,
bis Thread2 beendet ist. Wird die Methode join() eines bereits beendeten
Threads aufgerufen, so wird der aufrufende Thread nicht in den Zustand
"blocked" versetzt. Werden die join()-Methoden, welche die Angabe einer
Wartezeit erlauben, verwendet, so wartet der Thread entweder auf das Ab-
laufen der Wartezeit oder auf das tatsächliche Beenden des Threads, dessen
join()-Methode aufgerufen wurde. Die Methode join() kehrt auf jeden Fall
nach dem Ablauf der Wartezeit zurück, auch wenn der Thread noch nicht
beendet ist. Alle drei join()-Methoden können ebenso wie die sleep()-
Methoden eine InterruptedException werfen. Dies tritt genau dann ein,
wenn der durch den Aufruf der join()-Methode wartende Thread durch einen
Aufruf der interrupt()-Methode unterbrochen wird.

− public void interrupt()

Die Methode interrupt(), die zu einem gerade blockierten Thread aufge-
rufen wird, überführt diesen Thread in den Zustand "ready-to-run". Versetzt sich
also ein Thread freiwillig – zum Beispiel durch den Aufruf der Methode
sleep() oder der Methode join() – in den Zustand "blocked", so kann man
diesen Thread wieder vorzeitig aufwecken – das heißt in den Zustand "ready-
to-run" versetzen – indem für diesen Thread die Methode interrupt() aufge-
rufen wird. Damit wird der blockierende Methodenaufruf wie join() oder
sleep() beendet und die Methode run() arbeitet mit dem catch-Konstrukt
hinter der blockierenden Methode weiter.

• Zustandsübergänge durch die virtuelle Maschine

Die Zustandsübergänge in Bild 19-7 werden automatisch von der virtuellen
Maschine aufgrund von bestimmten Ereignissen vollzogen. Der Programmierer
hat nur indirekt Einfluss auf die Zustandsübergänge, z. B. durch Dateizugriff, durch
Setzen von Prioritäten oder durch Beenden der Methode run(). Das Verlassen
des Zustandes "blocked", der durch den Aufruf der Methoden sleep() oder
join() betreten wurde, kann durch den Aufruf der Methode interrupt()
beschleunigt werden.

Threads 751

I/O Zugriff

Erfolgloser Versuch für die Ausführung von
synchronisiertem Code

Methode run()
wurde beendet

Scheduler weist
Prozessor zu

Prozessor wird
entzogen

sleep() beendet

Synchronisierter Code
wird freigegeben

I/O beendet

ready-
to-run

join() beendet

running
blocked

dead

Bild 19-7 Zustandsübergänge149 von Threads verursacht durch die virtuelle Maschine

Befindet sich ein Thread in einem der Zustände "new", "ready-to-run", "blocked" oder
"running", so sagt man, dass der Thread "alive" ist. Durch den Aufruf der Instanz-
methode isAlive() der Klasse Thread kann geprüft werden, ob ein Thread
gerade "alive" ist. Ist der Thread, für den die Methode aufgerufen wird, "alive", so
wird true zurückgegeben, andernfalls false. Dabei ist ein Thread "alive" vom Zeit-
punkt seiner Generierung durch new bis zum endgültigen Erreichen des Zustandes
"dead".

19.3 Programmierung von Threads

Threads lassen sich in Java, da sie bereits im Sprachumfang zur Verfügung gestellt
werden, sehr einfach programmieren, erzeugen und starten.

Es gibt zwei Möglichkeiten, einen Thread zu programmieren:

• durch eine direkte Ableitung von der Klasse Thread
• oder durch die Übergabe eines Objektes, dessen Klasse die

Schnittstelle Runnable implementiert, an ein Objekt der Klasse
Thread.

Die beiden Möglichkeiten werden in Kapitel 19.3.1 und 19.3.2 vorgestellt.

149 Die Synchronisation von Codeblöcken wird in Kap. 19.5.4 erläutert.

752 Kapitel 19

19.3.1 Ableiten von der Klasse Thread

Durch Ableiten von der Klasse java.lang.Thread kann ein eigener
Thread geschrieben werden. Dabei ist die Methode run() der Klasse
java.lang.Thread zu überschreiben. Der in der Methode run()
enthaltene Code wird während des "running"-Zustandes ausgeführt.

Thread

Sohn1 Sohn2

Bild 19-8 Implementieren von Threads durch Ableiten von der Klasse Thread

Erzeugt wird ein Thread mit Hilfe des new-Operators und zum Starten eines Threads
wird seine Methode start() aufgerufen. Diese reserviert die Systemressourcen,
welche notwendig sind, um den Thread zu starten. Außerdem ruft sie die Methode
run() auf. Im Folgenden wird anhand eines Beispiels gezeigt, wie die Klasse eines
Threads durch Ableiten von der Klasse Thread definiert werden kann.

// Datei: Time.java

import java.util.*;

public class Time extends Thread
{
 public void run()
 {
 while (true) // Endlosschleife
 {
 GregorianCalendar d = new GregorianCalendar();

 // Calendar.HOUR_OF_DAY, Calendar.MINUTE und
 // Calendar.SECOND sind Konstanten der Klasse Calendar
 System.out.println (d.get (Calendar.HOUR_OF_DAY) + ":"
 + d.get (Calendar.MINUTE) + ":"
 + d.get (Calendar.SECOND));
 try
 {
 Thread.sleep (100);
 }
 catch (InterruptedException e)
 {
 }
 }
 }
}

Threads 753

// Datei: Uhr.java

public class Uhr
{
 public static void main (String[] args)
 {
 Time t = new Time();
 t.start();
 // Möglichkeit zum Erzeugen und Starten weiterer Threads.
 }
}

Hier die Ausgabe des Programms:

16:28:27
16:28:27
16:28:27
16:28:27
16:28:27
16:28:28
16:28:28
16:28:28
16:28:28

Im obigen Beispiel soll die Klasse Time eine Thread-Klasse sein, von der Threads
erzeugt werden können. Ein solcher Thread wird durch Instantiieren der Klasse Time
erzeugt. Die Klasse Time wird definiert, indem man direkt von der Klasse Thread
ableitet und die run()-Methode überschreibt. In der run()-Methode der Klasse
Time wird ein Objekt der Klasse java.util.GregorianCalendar verwendet. Sie
enthält die aktuellen Datums- und Uhrzeitangaben. Datum und Uhrzeit werden je-
doch nicht fortlaufend aktualisiert. Um die aktuelle Uhrzeit zu erhalten, muss jedes
Mal ein neues Objekt der Klasse GregorianCalendar geschaffen werden.

Besonders einfach lässt sich der Ablauf des Threads und somit die Auswirkungen
der einzelnen Methoden an Hand von Bild 19-6 verfolgen. In der Klasse Uhr wird mit
new ein Objekt der Klasse Time erzeugt und somit ein neuer Thread generiert. Der
Thread befindet sich im Zustand "new". Durch den Aufruf der geerbten Methode
start() wird der Thread gestartet und befindet sich dann im Zustand "ready-to-
run". Die Methode start() ruft die Methode run() auf. Nach der Zuteilung von
Rechenzeit durch den Scheduler und dem Überführen des Threads in den Zustand
"running", kommt der Thread und damit die Methode run() zur Ausführung. In der
Methode run() wird zuerst die aktuelle Uhrzeit auf der Standardausgabe ausgege-
ben. Danach versetzt sich der Thread mit der Methode sleep (100) für mindes-
tens 100 msec in den Zustand "blocked". Nach Ablauf der 100 ms geht der Thread
wieder in den Zustand "ready-to-run" und muss erneut auf die Zuteilung von Pro-
zessorzeit warten. Da sich in der Methode run() eine Endlos-Schleife befindet, wird
die Ausgabe fortgeführt, d. h. der Thread wird nie beendet.

Da die Methode sleep() eine Exception vom Typ InterruptedException wer-
fen kann, benötigt man einen try-Block und ein catch-Konstrukt, um die Ausnahme
abzufangen. Innerhalb des catch-Konstruktes stehen aber keine Anweisungen.

754 Kapitel 19

Dies ist in dem vorliegenden Beispielprogramm auch vollkommen korrekt, da hier nie
der Fall eintreten kann, dass eine solche Exception geworfen wird. Damit die Metho-
de sleep() eine Exception vom Typ InterruptedException wirft, muss die
Methode interrupt() für ein Objekt der Klasse Time aufgerufen werden, welches
zuvor durch Aufruf der Methode sleep() in den Zustand "blocked" versetzt wurde.

19.3.2 Implementieren der Schnittstelle Runnable

Im Kapitel 19.3.1 wurde ein Thread geschrieben durch direktes Ableiten von der
Klasse Thread. Wenn man aber zwingend von einer weiteren Klasse ableiten muss,
ist dieses Vorgehen nicht möglich, da Java keine Mehrfachvererbung unterstützt.

Implementiert man die Schnittstelle Runnable in einer Klasse, die
zum Thread werden soll, so schafft man dadurch die Möglichkeit, dass
diese Klasse von einer anderen Klasse abgeleitet werden kann. Die
Schnittstelle Runnable deklariert nur eine einzige Methode
run().

Ein Thread wird erzeugt, indem man mit dem new-Operator eine Instanz der Klasse
java.lang.Thread generiert und dabei als Übergabeparameter beim Konstruk-
toraufruf eine Referenz auf ein Objekt mitgibt, dessen Klasse die Schnittstelle
Runnable implementiert.

Time

<<interface>>
Runnable

Bild 19-9 Die Klasse Time implementiert das Interface Runnable

Innerhalb der Klasse Thread wird die übergebene Referenz in einem privaten
Datenfeld vom Typ Runnable abgelegt. Das folgende Codestück zeigt einen Aus-
schnitt aus der Implementierung der Klasse Thread:

public Thread
{
 private Runnable target;

 public Thread (Runnable target)
 {

 this.target = target;

 }
}

Threads 755

Dadurch, dass im Konstruktoraufruf der Klasse Thread der formale Parameter vom
Schnittstellentyp Runnable ist, kann der Compiler sicherstellen, dass das Objekt,
auf das die übergebene Referenz zeigt, die run()-Methode implementiert. Das
folgende Beispiel zeigt, wie ein Thread mit Hilfe eines Objektes der Klasse Time1
erzeugt wird. Die Klasse Time1 implementiert dabei das Interface Runnable.

// Datei: Time1.java
import java.util.*;

public class Time1 implements Runnable
{
 public void run()
 {
 while (true) // Endlosschleife
 {
 GregorianCalendar d = new GregorianCalendar();
 System.out.println (d.get (Calendar.HOUR_OF_DAY) + ":"
 + d.get (Calendar.MINUTE) + ":"
 + d.get (Calendar.SECOND));
 try
 {
 // Die Methode sleep() ist eine Klassenmethode der
 // Klasse Thread.
 Thread.sleep (100);
 }
 catch (InterruptedException e)
 {
 }
 }
 }
}

// Datei: Uhr1.java

public class Uhr1
{
 public static void main (String[] args)
 {
 // Die Klasse Time1 implementiert die Schnittstelle Runnable.
 // Eine Referenz auf ein Objekt dieser Klasse kann also als
 // Konstruktorparameter bei der Erzeugung eines Objektes der
 // Klasse Thread verwendet werden.
 Thread timeThread = new Thread (new Time1());
 timeThread.start();
 // Möglichkeit zum Erzeugen und Starten weiterer Threads
 }
}

Mit new Thread (new Time1()); wird ein Objekt der Klasse Thread erzeugt,
wobei die Referenz auf das ebenfalls neu erzeugte Objekt der Klasse Time1 an die
oben erwähnte Instanzvariable target vom Typ Runnable zugewiesen wird. Wird
die start()-Methode des erzeugten Thread-Objektes mit Hilfe der Referenz time-
Thread aufgerufen, so wird von der start()-Methode die ausprogrammierte
run()-Methode der Klasse Time1 aufgerufen.

756 Kapitel 19

19.3.3 Beenden von Threads

Die Beispiele aus den Kapiteln 19.3.1 und 19.3.2 beinhalten noch keine Möglichkeit,
den einmal gestarteten Thread auch wieder zu beenden. Ein Thread wird bekanntlich
beendet, wenn die Abarbeitung der run()-Methode beendet ist. Da aber die Endlos-
Schleife in der run()-Methode der Klasse Time nie aufhört, benötigt man eine Mög-
lichkeit, die Abarbeitung der run()-Methode abzubrechen. Im Folgenden werden
zwei Möglichkeiten vorgestellt, einen einmal gestarteten Thread auch wieder zu be-
enden.

// Datei: Time2.java

import java.util.*;

public class Time2 extends Thread
{
 public void run()
 {
 while (true)
 {
 GregorianCalendar d = new GregorianCalendar();
 System.out.println (d.get (Calendar.HOUR_OF_DAY) + ":"
 + d.get (Calendar.MINUTE) + ":"
 + d.get (Calendar.SECOND));
 try
 {
 Thread.sleep (100);
 }
 catch (InterruptedException e)
 {
 System.out.println ("Interrupted!");
 return;
 }
 }
 }
}

// Datei: Uhr2.java

import java.io.*;

public class Uhr2
{
 public static void main (String[] args) throws IOException
 {
 Time2 t = new Time2();
 t.start();

 // Warten, bis der Benutzer "exit" gefolgt von RETURN eingibt
 while (true)
 {
 BufferedReader reader =
 new BufferedReader (new InputStreamReader (System.in));
 String kommando = reader.readLine();

Threads 757

 if (kommando.equals ("exit"))
 break;
 }
 t.interrupt();
 }
}

An der Implementierung des Threads in der run()-Methode von Time2 hat sich
nicht viel geändert – lediglich im catch-Konstrukt wurde eine Ausgabe und die re-
turn-Anweisung eingefügt. Mit return wird aus der Methode, die das catch-
Konstrukt enthält, zur aufrufenden Methode zurückgesprungen.

Wird die interrupt()-Methode für das Objekt der Klasse Time2 aufgerufen,
während seine run()-Methode abgearbeitet wird, so wird beim nächsten Abarbeiten
der sleep()-Methode eine Exception vom Typ InterruptedException geworfen
und die run()-Methode wird mit return beendet. Genau genommen muss man
zwei Fälle unterscheiden: Befindet sich der Thread durch den Aufruf der Methode
sleep() gerade im Zustand "blocked", während seine interrupt()-Methode auf-
gerufen wird, so wird der Thread in den Zustand "ready-to-run" gebracht und die
Methode sleep() kehrt mit dem Auswerfen einer InterruptedException zu-
rück. Bearbeitet der Thread gerade die Anweisungen vor dem Aufruf der Methode
sleep(), während die interrupt()-Methode für dieses Objekt aufgerufen wird,
so werden alle Anweisungen einschließlich dem Aufruf der sleep()-Methode abge-
arbeitet, wobei die sleep()-Methode sofort wieder durch den Auswurf der In-
terruptedException zurückkehrt.

In der zweiten Möglichkeit, einen Thread zu beenden, wird ein privates Datenfeld
vom Typ boolean benutzt. Das Datenfeld – im unteren Beispiel running genannt –
wird in der Methode beenden() zurückgesetzt, um die while()-Schleife in der
run()-Methode zu beenden:

// Datei: Time3.java

import java.util.*;

public class Time3 extends Thread
{
 private boolean running = true;

 public void run()
 {
 while (running)
 {
 GregorianCalendar d = new GregorianCalendar();
 System.out.println (d.get (Calendar.HOUR_OF_DAY) + ":"
 + d.get (Calendar.MINUTE) + ":"
 + d.get (Calendar.SECOND));
 try
 {
 Thread.sleep (100);
 }

758 Kapitel 19

 catch (InterruptedException e)
 {
 }
 }
 }

 public void beenden()
 {
 running = false;
 }
}

// Datei: Uhr3.java

import java.io.*;

public class Uhr3
{
 public static void main (String[] args) throws IOException
 {
 Time3 t = new Time3();
 t.start();
 // Warten, bis der Benutzer "exit" gefolgt von RETURN eingibt
 while (true)
 {
 BufferedReader reader =
 new BufferedReader (new InputStreamReader (System.in));
 String kommando = reader.readLine();
 if (kommando.equals ("exit"))
 break;
 }
 t.beenden();
 }
}

Beim Testen der Beispiele wird kontinuierlich alle 100 ms eine Ausgabe in das Aus-
gabefenster geschrieben. Die Eingabe der Buchstaben 'e', 'x', 'i' und 't'
gefolgt von einem <RETURN> ist aber trotzdem problemlos möglich, auch wenn die
Buchstaben nicht zusammenhängend im Ausgabefenster gesehen werden können.
Die Ursache dafür ist, dass die Methode main() der Klasse Uhr3 in einem eigenen
Thread parallel zu dem Thread der Klasse Time3 läuft.

Nachdem nun bekannt ist, wie man Threads programmieren, starten und beenden
kann, sei hier noch kurz darauf verwiesen, dass es in der Klassenbibliothek von Java
schon einige typische Thread-Klassen – wie zum Beispiel die Klassen Timer und
TimerTask – im Paket java.util gibt. Es lohnt sich auf jeden Fall, die Einsatz-
möglichkeiten dieser Klassen mit Hilfe der Java-Dokumentation etwas genauer zu
studieren. Nichtsdestotrotz muss man sich auch in den Themen der folgenden Kapi-
tel auskennen, um selbst nebenläufige Anwendungen in Java schreiben zu können.

Threads 759

19.4 Scheduling von Threads

Als Scheduling bezeichnet man die Zuteilung von Rechenzeit auf einem Prozessor
durch ein Betriebssystem oder durch eine Laufzeitumgebung. Die Implementierung
der Java Virtuellen Maschine beim Scheduling von Threads wird von Sun Micro-
systems nicht genau spezifiziert. Die Implementierung ist abhängig vom Betriebs-
system oder von der virtuellen Maschine.

Der Java-Run-Time-Scheduler ist prioritätengesteuert. Er weist Threads im Zustand
"ready-to-run" Prozessorzeit zu und entzieht sie ihnen wieder. In der Spezifikation
der Java Virtuellen Maschine wird nur verlangt, dass Threads mit höherer Priorität im
Schnitt mehr Rechenzeit erhalten sollen als Threads mit niedriger Priorität. Dies
ermöglicht Freiräume für die Implementierung der virtuellen Maschine, was wiederum
zu Problemen bei der Portierung auf andere Plattformen führen kann.

Besondere Probleme gibt es bei Threads gleicher Priorität. Die Java-Spezifikation
macht keine Aussage darüber, ob bei Threads gleicher Priorität ein preemptive
Scheduling mit Hilfe von Round-Robin150 erfolgen soll oder nicht. Daher findet man
Implementierungen mit und ohne Round-Robin.

In der Praxis spielt es allerdings oft keine Rolle, ob ein Round-Robin implementiert ist
oder nicht. Ist ein Round-Robin nicht implementiert, so kommen bei gleicher Priorität
manche Threads immer dann nicht an die Reihe, wenn andere Threads den Pro-
zessor über Gebühr benutzen. In der Praxis werden jedoch Threads häufig für Ein-
und Ausgaben eingesetzt. Dies bedeutet, dass sie zwischen den Zuständen
"running", "blocked" und "ready-to-run" abwechseln. Das Blockieren bei Ein- und
Ausgabeoperationen ermöglicht es letztendlich anderen Threads, auch den Prozes-
sor zu erhalten.

Der Programmierer kann selbst darauf achten, dass rechenintensive Threads nicht
zu lange den Prozessor benötigen. Hierzu wird empfohlen, bei rechenintensiven
Threads gezielt die yield()-Methode aufzurufen. Durch den Aufruf von
yield() geht der aufrufende Thread selbst in den Zustand "ready-to-run" über und
erlaubt es, dass ein Thread gleicher oder niedrigerer Priorität den Prozessor erhält.
Eine andere Möglichkeit ist, rechenintensive Threads mit einer niedrigeren Priorität
als I/O-intensive Threads zu versehen, da Threads jedes Mal in den Zustand
"blocked" versetzt werden, wenn Ein- und Ausgaben durchgeführt werden. Die I/O-
intensiven Threads bieten damit niederprioren Threads die Möglichkeit zum Laufen.

Prioritäten

Für die Priorität eines Threads gibt es 3 Konstanten in der Klasse Thread:

MAX_PRIORITY = 10
NORM_PRIORITY = 5
MIN_PRIORITY = 1

150 Round-Robin ist ein Zeitscheibenverfahren, bei dem alle Teilnehmer die gleiche Priorität haben

und abwechselnd der Reihe nach drankommen. Das Wort Round-Robin kommt aus dem amerika-
nischen Englisch und bedeutet einen Wettbewerb, bei dem jeder Teilnehmer gegen jeden anderen
Teilnehmer spielt.

760 Kapitel 19

Die Zahlenwerte der Konstanten entsprechen der Gewichtung der Prioritäten. Diese
Konstanten müssen aber für die Angabe der Priorität eines Threads nicht verwendet
werden – es ist durchaus problemlos jede andere ganze Zahl zwischen eins und
zehn möglich. Zu beachten ist, dass bei Applets die höchste Priorität 6 beträgt. Wird
für einen Thread keine Priorität gesetzt, so ist sie in der Regel NORM_PRIORITY.

Die Änderung der Priorität eines Threads und die Abfrage einer gesetzten
Priorität erfolgt mit den Methoden:

• public final void setPriority (int newPriority)

Mit dieser Methode kann die Priorität eines Threads auf den als aktueller Para-
meter übergebenen Wert gesetzt werden.

• public final int getPriority()

Gibt die aktuelle Priorität eines Threads zurück.

19.5 Zugriff auf gemeinsame Ressourcen

Threads innerhalb eines Betriebssystem-Prozesses können wechselseitig auf ihre
Variablen zugreifen. Variablen, die von mehreren Threads als Shared Memory be-
nutzt werden, werden auch als kritische Variablen bezeichnet, weil diese Variablen
durch die Verwendung in mehreren Threads inkonsistent werden können. So kann
beispielsweise ein Thread, der in eine kritische Variable schreibt, den Prozessor ent-
zogen bekommen, ehe er mit dem Schreiben der Daten fertig ist. Der Lese-Thread
beginnt jedoch schon zu lesen und bekommt inkonsistente Daten (Reader/Writer-
Problem). Dies ist ein Beispiel für eine so genannte Race Condition.

Bei einer Race Condition hängt das Ergebnis von der Reihenfolge, in der die
Threads ausgeführt werden, ab. Um deterministische Ergebnisse zu erzielen, ist da-
her eine Synchronisation im Sinne einer definierten Abarbeitungsreihenfolge der
Threads zwingend erforderlich.

Beispiel für eine Race Condition beim Reader/Writer-Problem

Die beiden Threads 1 und 2 greifen auf eine gemeinsam genutzte Variable (ein
Array) zu. Das Array ist damit eine kritische Variable im System.

2

7

35

Zaehler

Wert 1

Wert 2

Wert n-2

1

2

3

...

n-1

Array-Index0

Bild 19-10 Array mit einem Zähler für die benutzten Elemente

Threads 761

Thread 1 schreibt Messdaten in das Array beginnend ab Array-Index 1 und die
Anzahl der Werte in die Variable Zaehler, die im Array an der Position mit Array-
Index 0 steht. Thread 2 liest die Daten aus und quittiert das Auslesen, indem er die
Zählervariable auf 0 setzt. Es kann sein, dass schneller geschrieben als gelesen
wird. Dabei kann Thread 1 neue Werte an die nächsten Positionen in das Array ein-
tragen und muss dann den Zähler entsprechend erhöhen.

Thread1
kritische
Variable Thread2

Zähler lesen

Daten schreiben

Daten lesen

Zähler auf 0 setzen

Threadwechsel

Threadwechsel

Thread2
 aktiv

Thread1
 aktiv

Thread2
 aktiv

Datenverlust

Zähler erhöhen

Zähler lesen

t

Bild 19-11 Sequenzdiagramm zur Darstellung einer Race Condition.

Die Zeitachse t gibt den zeitlichen Verlauf an.

Es kann nun der Fall eintreten, dass Thread 2 gerade, als er das Array gelesen, aber
den Zaehler noch nicht auf 0 gesetzt hat, vom Scheduler den Prozessor entzogen
bekommt. Thread 1 schreibt nun die neuen Daten hinter die bereits gelesenen Daten
und erhöht den Zähler. Wenn nun Thread 2 die Arbeit wieder aufnimmt, setzt er den
Zaehler auf 0, und damit sind die soeben geschriebenen Daten verloren.

19.5.1 Prinzip des wechselseitigen Ausschlusses

Zur Vermeidung von Race Conditions wendet man das Prinzip des wechselseitigen
Ausschlusses (mutual exclusion) an. Dazu führt man kritische Abschnitte ein.

Ein kritischer Abschnitt ist eine Folge von Befehlen, die ein
Thread nacheinander vollständig abarbeiten muss, auch wenn er
vorübergehend die CPU an einen anderen Thread abgibt. Kein an-
derer Thread darf einen kritischen Abschnitt betreten, der auf die glei-
che kritische Variable zugreift, solange der erstgenannte Thread mit
der Abarbeitung der Befehlsfolge noch nicht fertig ist.

In den nächsten beiden Kapiteln wird das Semaphorkonzept und das Monitorkonzept
zuerst in allgemeiner Form vorgestellt, das heißt unabhängig von der Sprache Java.
Beide Konzepte ermöglichen einen wechselseitigen Ausschluss. In Kapitel 19.5.4
wird dann das in Java realisierte Monitorkonzept zur Realisierung eines wechsel-
seitigen Ausschlusses vorgestellt.

762 Kapitel 19

19.5.2 Das Semaphorkonzept

Ein wechselseitiger Ausschluss kann mit Semaphoren151 realisiert werden. Ein
Semaphor hat die folgenden Eigenschaften:

• Ein Semaphor wird repräsentiert durch eine ganzzahlige nichtnegative Variable
verbunden mit einer Warteschlange für Prozesse, die einen der kritischen
Abschnitte, denen dieselbe Semaphorvariable zugeordnet ist, bearbeiten wollen.

• Auf einem Semaphor kann man nur mit den Befehlen wait() und signal()152
arbeiten.

Alle kritischen Abschnitte, die auf die gleiche kritische Variable zugreifen, verwenden
eine gemeinsame Semaphorvariable. Beim Eintritt in einen kritischen Abschnitt ruft
ein Prozess zuerst den Befehl wait() für die entsprechende Semaphorvariable auf.
Beim Verlassen eines kritischen Abschnitts ruft ein Prozess den Befehl signal()
für die Semaphorvariable auf. Die Funktionsweise der Befehle wait() und sig-
nal()153 wird im Folgenden beschrieben:

Der Befehl wait()

Der Befehl wait() wird beim Eintritt in einen kritischen Abschnitt aufgerufen. Wird
z. B. für eine Semaphorvariable mit dem Namen sem der Befehl wait (sem) aufge-
rufen, so wird überprüft, ob die Variable sem gleich 0 ist. Ist die Variable sem gleich
0, so wird der Prozess, der den Befehl wait (sem) aufgerufen hat, in die Warte-
schlange der Semaphorvariablen sem gestellt. Ist die Variable sem größer als 0, so
wird die Semaphorvariable um eins erniedrigt und der wait()-Befehl ist erfolgreich
beendet. Der Prozess darf dann den folgenden kritischen Abschnitt bearbeiten.

Der Befehl signal()

Der Befehl signal() wird beim Verlassen eines kritischen Abschnitts aufgerufen.
Wird z. B. für die Semaphorvariable sem der Befehl signal (sem) aufgerufen, so
wird die Variable um eins erhöht. Zusätzlich wird noch die Warteschlange von sem
überprüft. Warten dort Prozesse, so wird einer dieser Prozesse befreit. Der befreite
Prozess darf dann den kritischen Abschnitt bearbeiten.

Stellen Sie sich eine Datenbank vor, die zur Speicherung von Personaldaten dient.
Jedes Mal wenn eine neue Person erfasst wird, ermittelt der zuständige Schreib-
prozess mit Hilfe der schon bestehenden Personaldaten die nächste freie Personal-
nummer. Ist diese ermittelt, trägt der Prozess die neue Personalnummer mit den
restlichen Personendaten als einen neuen Datensatz in der Datenbank ein. Läuft
dieser ganze Vorgang – Ermittlung der Personalnummer und Eintrag des neuen Da-
tensatzes – ohne Unterbrechung des entsprechenden Prozesses ab, so hat man
keine Inkonsistenzen zu befürchten. Wird der Prozess allerdings nach der Ermittlung
der nächsten freien Personalnummer durch einen anderen Schreibprozess unter-
brochen, der auch einen neuen Datensatz einfügen möchte, kann es zum Daten-

151 Java kennt keine Semaphoren, sondern das Monitorkonzept.
152 Die Befehle wait() und signal() sind hier Befehle in einem Pseudocode.
153 Die Befehle wait() und signal() sind selbst unteilbar. Dies wird üblicherweise mittels

Hardware realisiert.

Threads 763

verlust kommen. Folgendes Szenario zeigt einen solchen Datenverlust:

• Prozess A ermittelt die Nummer 10 als nächste freie Nummer.
• Prozess A wird durch einen Prozess B unterbrochen, der auch einen neuen Da-

tensatz schreiben möchte.
• Prozess B ermittelt ebenfalls die Nummer 10 als nächste freie Nummer.
• Prozess B trägt unter der Nummer 10 seine neuen Daten ein.
• Prozess A wird fortgeführt und schreibt ebenfalls unter der Nummer 10 seine neu-

en Daten. Somit sind die Daten, die Prozess B geschrieben hat, verloren.

Ein solches Problem kann man umgehen, wenn man den gesamten Schreibvorgang
als einen kritischen Abschnitt implementiert. Diesem kritischen Abschnitt wird eine
Semaphorvariable mit dem Namen sem zugeordnet, die den kritischen Abschnitt
überwachen soll. Die Semaphorvariable hat den Anfangswert 1. Der kritische Ab-
schnitt der Schreiboperation kann nun folgendermaßen durch die Semaphorvariable
sem geschützt werden:

wait (sem)
// kritischer Abschnitt beginnt
// ermittle nächste freie Personalnummer
// schreibe alle Datenfelder
// kritischer Abschnitt zu Ende
signal (sem)

Der erste Prozess, der diesen Codeabschnitt abarbeitet, ruft den Befehl wait (sem)
auf. Dieser prüft, ob die Semaphorvariable sem gleich 0 ist. Da sem als Anfangswert
den Wert 1 hat, wird die Variable um eins erniedrigt – also auf 0 gesetzt – und der
Prozess kann den kritischen Abschnitt bearbeiten. Kommt nun ein zweiter Pro-
zess und möchte Daten ebenfalls schreiben, so ruft auch er den wait (sem)-Befehl
auf, die Semaphorvariable sem ist jedoch gleich 0, und deshalb wird dieser Prozess
in die Warteschlange eingereiht. Ist der erste Prozess mit der Abarbeitung des
kritischen Abschnitts fertig, so ruft er den Befehl signal (sem) auf. Dieser er-
höht sem um 1 und befreit den wartenden Prozess aus der Warteschlange.

Dieser setzt nun die Abarbeitung des Befehls wait (sem) dort fort, wo er zuvor
unterbrochen wurde, und erniedrigt die Variable sem um 1, womit er den kritischen
Abschnitt für sich reserviert. Nach der Abarbeitung des kritischen Abschnitts wird
wiederum signal (sem) aufgerufen. Dies hat zur Folge, dass sem wieder auf den
Wert 1 gesetzt wird. Da keine Prozesse in der Warteschlange warten, kann auch
kein Prozess aufgeweckt werden.

19.5.3 Das Monitorkonzept

Eine Lösung mit Semaphoren kann für den Programmierer leicht unübersichtlich wer-
den. Von Hoare wurden 1974 Monitore als ein Synchronisationsmittel, das auf
Semaphoren aufsetzt, diese aber gegenüber dem Programmierer kapselt, vorge-
schlagen. Die Grundidee eines Monitors ist, die Daten, auf denen die kritischen
Abschnitte arbeiten, und die kritischen Abschnitte selbst in einem zentralen Kon-
strukt zusammenzufassen (siehe Bild 19-12). In objektorientierten Programmier-

764 Kapitel 19

sprachen lässt sich ein Monitor als ein Objekt mit speziellen Eigenschaften für die
Methoden realisieren.

Monitor

Daten

read()

write()

critical
section

critical
section

P1P2P3

Bild 19-12 Immer nur ein Prozess kann den Monitor benutzen

Die Funktionalität von Monitoren ist äquivalent zu derjenigen von Semaphoren. Sie
sind jedoch vom Programmierer einfacher zu überschauen, da gemeinsam benutzte
Daten und Zugriffsfunktionen zentral gebündelt an einer Stelle lokalisiert sind und
nicht wie im Falle von Semaphoren getrennt und über mehrere Prozesse verteilt im
Programmcode stehen.

Die grundlegenden Eigenschaften eines Monitors sind:

• Kritische Abschnitte, die auf denselben Daten arbeiten, sind Metho-
den eines Monitors.

• Ein Prozess betritt einen Monitor durch Aufruf einer Methode des
Monitors.

• Nur ein Prozess kann zur selben Zeit den Monitor benutzen.
Jeder andere Prozess, der den Monitor aufruft, wird suspendiert
und muss warten, bis der Monitor verfügbar wird.

Einfache kritische Abschnitte reichen aus für einen wechselseitigen Ausschluss.
Oftmals jedoch ist das Betreten eines kritischen Abschnitts abhängig vom Vorliegen
einer bestimmten Bedingung. So kann etwa ein Erzeuger-Prozess nur dann in einen
Puffer, der eine globale Variable darstellt, schreiben, wenn der Puffer nicht voll ist. Ist
der Puffer voll, so muss der Erzeuger-Prozess mit dem Schreiben warten.

Um einen Monitor praktikabel zu machen, muss also ein Monitor die Möglichkeit
bedingter kritischer Abschnitte (engl. conditional critical sections) bieten, damit
ein Prozess beim Betreten eines kritischen Abschnitts prüfen kann, ob er diesen kriti-
schen Abschnitt ausführen soll oder nicht. Auf Grund einer vorliegenden Bedingung
kann ein Prozess freiwillig die Abarbeitung einer Methode unterbrechen, z. B. wenn
die Bedingung "Daten vorhanden" nicht erfüllt ist. Ein Prozess kann seine Arbeit
unterbrechen, indem er einen wait()-Befehl an den Monitor gibt. Damit wird dieser
Prozess blockiert und der Monitor für einen anderen Prozess freigegeben. Ein
anderer Prozess kann dann den Monitor betreten – z. B. ein Schreibprozess –, die
Bedingung ändern und vor dem Verlassen des kritischen Abschnitts ein Signal mit
dem signal()-Befehl an die Warteschlange der Prozesse senden, die auf die
Erfüllung der Bedingung "Daten vorhanden" warten. Durch das Senden eines sig-

Threads 765

nal()-Befehls wird ein Prozess aus der Warteschlange aufgeweckt und kann die
Bearbeitung fortsetzen.

19.5.4 Mutual exclusion in Java mit dem Monitorkonzept

Ein wechselseitiger Ausschluss wird in Java mit dem Monitorkonzept und nicht mit
Semaphoren realisiert. In Java wird das Monitorkonzept mit Hilfe des Schlüsselwor-
tes synchronized umgesetzt. Das Schlüsselwort synchronized kann als Schlüs-
selwort für Methoden verwendet werden oder einen zu synchronisierenden Block
kennzeichnen. Im Folgenden werden die Möglichkeiten zur Realisierung eines
Monitors vorgestellt:

• Monitor für den gegenseitigen Ausschluss von synchronisierten Klassenmetho-
den einer Klasse.

Werden eine oder mehrere Klassenmethoden mit dem Schlüssel-
wort synchronized versehen, so wird ein Monitor um diese Me-
thoden herumgebaut. Dadurch kann nur ein einziger Thread zu
einer bestimmten Zeit eine der synchronisierten Methoden bear-
beiten.

Der folgende Codeausschnitt zeigt zwei synchronisierte Klassenmethoden:

public class Syn1
{

 public static synchronized void methode1()
 {
 // kritischer Abschnitt
 }
 public static synchronized void methode2()
 {
 // kritischer Abschnitt
 }
}

Es wird für alle synchronisierten Klassenmethoden einer Klasse ein Monitor
angelegt, der den Zugriff auf alle synchronisierten Klassenmethoden dieser Klasse
überwacht. Das folgende Bild zeigt den Sachverhalt:

Monitor

Syn1

methode1()

methode2()

Bild 19-13 Gemeinsamer Monitor für synchronisierte Klassenmethoden einer Klasse

766 Kapitel 19

Zu beachten ist, dass, wenn andere nicht synchronisierte Klassen-
methoden zu der Klasse Syn1 noch vorhanden sind, diese dann
nicht durch den Monitor geschützt sind.

• Monitor für den gegenseitigen Ausschluss der Abarbeitung von synchronisierten

Instanzmethoden zu einem speziellen Objekt.

Werden eine oder mehrere Instanzmethoden einer Klasse mit dem
Schlüsselwort synchronized versehen, so hat jedes Objekt die-
ser Klasse einen eigenen Monitor, der den Zugriff auf die In-
stanzmethoden überwacht.

Der folgende Codeausschnitt zeigt zwei synchronisierte Instanzmethoden:

public class Syn2
{

 public synchronized void methode1()
 {
 // kritischer Abschnitt
 }

 public synchronized void methode2()
 {
 // kritischer Abschnitt
 }
}

Im folgenden Bild sind zwei Instanzen der Klasse Syn2 zu sehen. Jede dieser
Instanzen hat ihren eigenen Monitor für alle synchronisierten Instanzmethoden:

Monitor

:Syn2

methode1()

methode2()

Monitor

:Syn2

methode1()

methode2()

Bild 19-14 Bei synchronisierten Instanzmethoden existiert ein Monitor pro Objekt

Genauso wie bei synchronisierten Klassenmethoden gilt bei synchronisierten In-
stanzmethoden, dass wenn nicht synchronisierte Instanzmethoden existieren,
diese nicht durch den Monitor geschützt sind.

Threads 767

• Monitor für den gegenseitigen Ausschluss von einzelnen synchronisierten
Codeblöcken.

Es ist möglich, Blöcke in unterschiedlichen Methoden und sogar in unterschied-
lichen Klassen gemeinsam zu synchronisieren. Ein Monitor für einen Codeblock
wird in Java durch Aufruf der synchronized-Anweisung mit einer Referenz auf
ein Objekt als Übergabeparameter realisiert. Der folgende Codeausschnitt zeigt
einen synchronisierten Codeblock:

public class Syn2
{
 public void methode1()
 {
 Object schluessel = Schluessel.getSchluessel();

 synchronized (schluessel)
 {
 // kritischer Abschnitt
 }
 }
}

Hierbei ist schluessel eine Referenzvariable auf ein Objekt, das beispielsweise
mit der Klassenmethode getSchluessel() der Klasse Schluessel zur Ver-
fügung gestellt wird.

Die synchronized-Anweisung, um einen Block zu synchronisieren, ist grundver-
schieden zur Verwendung des Schlüsselwortes synchronized, um Instanz- und
Klassenmethoden zu synchronisieren. Dies liegt aber in erster Linie daran, dass
dem Programmierer bei der Synchronisation von Methoden einige Details vorent-
halten bleiben. Bevor darauf jedoch eingegangen wird, soll zuerst eine Erklärung
für die Synchronisation eines Blockes geliefert werden.

Eine synchronized-Anweisung wird mit dem Schlüsselwort syn-
chronized eingeleitet. In den runden Klammern erwartet die syn-
chronized-Anweisung eine Referenz auf ein Objekt. Die nachfol-
genden geschweiften Klammern schließen die Anweisungen eines
kritischen Abschnitts ein.

Um einen Block zu synchronisieren, benötigt man einen Schlüssel (auch Lock
genannt). Als Schlüssel wird in Java ein Objekt verwendet. Dieser Schlüssel
kann zu einer Zeit nur von einer synchronized-Anweisung verwendet werden.
Stellen Sie sich hierzu mehrere synchronisierte Blöcke vor, die alle den gleichen
Schlüssel benutzen – also alle das gleiche Schlüsselobjekt –, um den Zutritt zu
den kritischen Abschnitten zu erlangen. Der Thread, der als erstes den Schlüssel
vom Schlüsselbrett abholt, kann den kritischen Abschnitt somit betreten. Alle an-
deren Threads, die den gleichen Schlüssel benutzen, stellen fest, dass der
Schlüssel gerade nicht am Schlüsselbrett hängt, und deshalb können sie einen
kritischen Abschnitt, der den gleichen Schlüssel benötigt, nicht betreten.

Beispiel für eine
synchronized-Anweisung

768 Kapitel 19

Die Aufgabe des Schlüsselbrettes wird nun von einem Monitor wahrgenommen.
Der Monitor gibt dem ersten Thread, der den Monitor betreten möchte, den
Schlüssel und nimmt dem Thread beim Verlassen des Monitors den Schlüssel
wieder ab. Damit kann der Monitor dem nächsten wartenden Thread, der den
Schlüssel und damit den Zugang zu einem kritischen Abschnitt möchte, den
Schlüssel aushändigen.

Es kann jedes beliebige Objekt als Schlüsselobjekt verwendet werden. Es ist nur
auf eines zu achten: Alle Blöcke, die das gleiche Schlüsselobjekt verwenden,
haben einen gemeinsamen Monitor, der den Zutritt zu allen kritischen Abschnitten
überwacht. Innerhalb eines Objektes können auch synchronisierte Blöcke existie-
ren, die unterschiedliche Schlüsselobjekte verwenden. Dann existieren insgesamt
so viele Monitore, wie unterschiedliche Schlüsselobjekte verwendet werden.

Wird eine synchronized-Anweisung betreten, so wird nachge-
schaut, ob das Schlüsselobjekt, auf das die übergebene Referenz
zeigt, schon bereits von einem anderen Thread als Schlüssel
benutzt wird. Ist dies der Fall, so muss der gerade anfragende
Thread warten, bis das Schlüsselobjekt freigegeben wird.

19.5.4.1 Der versteckte Schlüssel für synchronisierte Methoden

Auch Methoden, die mit dem Schlüsselwort synchronized versehen sind, verwen-
den einen Schlüssel, mit dessen Hilfe ein Monitor einen wechselseitigen Ausschluss
realisiert.

Instanzmethoden

Für synchronisierte Instanzmethoden wird pro Objekt ein Monitor angelegt. Über
die Verwendung der this-Referenz wird als Schlüsselobjekt das Objekt verwendet,
zu dem die Instanzmethode aufgerufen wurde. Der gesamte Rumpf einer synchroni-
sierten Instanzmethode wird in eine synchronized-Anweisung umgesetzt. Als
Parameter wird der synchronized-Anweisung die this-Referenz übergeben. Die
synchronisierte Instanzmethode

public synchronized void methode()
{

}

wird damit umgesetzt in:

public void methode()
{
 synchronized (this)
 {

 }
}

Threads 769

Synchronisierte Instanzmethoden verwenden als Schlüsselobjekt das
Objekt, zu dem die Instanzmethode aufgerufen wurde.

Klassenmethoden

Wie aus Kapitel 17.5 bekannt, wird zu jeder Klasse, die in die virtuelle Maschine
geladen wird, ein Objekt der Klasse Class<T> angelegt. Für jede Klasse existiert
also ein spezielles Objekt der Klasse Class<T>. Werden Klassenmethoden syn-
chronisiert, so wird als Schlüsselobjekt das Objekt der Klasse Class<T> verwendet.

Alle synchronisierten Abschnitte, die das gleiche Schlüsselobjekt als
Schlüssel verwenden, schließen sich gegenseitig aus, da sie einen
gemeinsamen Monitor verwenden. Werden zwei Codeblöcke einer
Klasse mit unterschiedlichen Schlüsselobjekten synchronisiert, so
schließen sich diese Codeblöcke gegenseitig nicht aus, da jeder
Codeblock seinen eigenen Monitor hat.

Zusammenfassend kann gesagt werden: Beim Eintritt in eine mit synchronized
gekennzeichnete Stelle wird geprüft, ob das verwendete Schlüsselobjekt gerade
von einem Thread als Schlüssel benutzt wird. Ist dies nicht der Fall, so kann der
Thread mit Hilfe des Schlüsselobjektes den kritischen Abschnitt betreten. Solange
das Schlüsselobjekt von diesem Thread benutzt wird – das heißt, so lange sich
dieser Thread im kritischen Abschnitt befindet – kann kein anderer Thread einen
kritischen Abschnitt betreten, der das gleiche Schlüsselobjekt verwendet. Verlässt
der Thread den synchronisierten Block, kann das Schlüsselobjekt von dem nächsten
Thread benutzt werden, um den Monitor zu betreten.

Bei synchronisierten

• Instanzmethoden wird als Schlüsselobjekt das eigene Objekt
verwendet.

• Klassenmethoden wird als Schlüsselobjekt das entsprechende
Objekt der Klasse Class<T> verwendet.

• Blöcken wird als Schlüsselobjekt das Objekt verwendet, auf das
die übergebene Referenz zeigt.

19.5.4.2 Synchronisation von Methoden und Blöcken

Am einfachsten ist eine Synchronisation zu erreichen, wenn man kritische Methoden
eines von mehreren Threads besuchten Objektes mit synchronized markiert. Dazu
hier ein Ausschnitt aus einem einfachen Beispiel:

public class Stack
{
 private int[] array;
 private int index = 0;

770 Kapitel 19

 public synchronized void push (int wert)
 {

 }

 public synchronized void pop()
 {

 }
}

Der Monitor legt sich um die beiden Methoden, die mit synchronized gekenn-
zeichnet sind, wie in folgendem Bild zu sehen ist:

Monitor

:Stack

array
index

push()

pop()

Bild 19-15 Synchronisierte Methoden werden von einem Monitor geschützt

Da immer nur ein einziger Thread in den Monitor hineingelassen wird, ist sicher-
gestellt, dass ein kritischer Abschnitt vollständig abgearbeitet wird, bevor der nächste
kritische Abschnitt betreten wird. Wird also die Methode push() von einem Thread
aufgerufen, so sind die Methoden push() und pop() für den Zugriff eines anderen
Threads gesperrt. Hätte die Klasse Stack jedoch noch andere Methoden, die nicht
mit synchronized gekennzeichnet sind, so könnten diese Methoden durchaus von
anderen Threads ausgeführt werden, auch wenn sich ein Thread gerade in einer der
synchronisierten Methoden befindet.

Ein Monitor legt sich nur um die synchronisierten Methoden eines
Objektes. Methoden, die nicht synchronized sind, werden von dem
Monitor nicht geschützt.

Als weitere Möglichkeit können anstatt Klassenmethoden oder Instanzmethoden
auch Blöcke als feinere Einheiten synchronisiert werden. Bei der Synchronisation
von Blöcken wird dem Block eine Referenz auf ein Schlüsselobjekt übergeben. Der
synchronized-Block mit formalem Parameter hat damit die folgende Struktur:

synchronized (Object ref)
{
 // kritische Operationen
}

Threads 771

Die Synchronisation mit Blöcken bietet zwei Vorteile:

• Durch einen Block erhält man eine feinere Granularität beim Syn-
chronisieren. Da hierdurch nicht eine ganze Methode für den Zugriff
durch mehrere Threads gesperrt ist, kann ein anderer Thread
rascher den Monitor betreten.

• Das Schlüsselobjekt, auf das eine Referenz übergeben wird, kann
in Codeblöcken verschiedener Klassen benutzt werden. Somit kann
eine klassenübergreifende Synchronisation von kritischen
Abschnitten erfolgen.

19.5.4.3 Synchronisation mit Reihenfolge

Oft ist es zwingend notwendig, dass bei der Bearbeitung von Daten mit Threads eine
Reihenfolge eingehalten wird. Im folgenden Beispiel soll eine Pipe zum Austausch
von Zeichen zwischen Threads entwickelt werden. Pipes sind Puffer im Arbeitsspei-
cher, die nach dem "first in first out"-Prinzip (FIFO-Prinzip) funktionieren. Das heißt,
es kann nur in der Reihenfolge aus der Pipe gelesen werden, in der auch hineinge-
schrieben wurde. Zum Lesen wird eine Methode read(), zum Schreiben eine
Methode write() implementiert. Wenn die Pipe voll ist, dann soll der schreibende
Thread solange angehalten werden, bis wieder Platz in der Pipe vorhanden ist.
Umgekehrt soll ein Thread, der aus einer leeren Pipe zu lesen versucht, solange in
den Wartezustand versetzt werden, bis wieder Daten vorhanden sind. Um diese
Steuerung zu ermöglichen, werden die von der Klasse Object geerbten Methoden
wait() und notify() verwendet. Bevor auf die Wirkungsweise der Methoden
wait() und notify() eingegangen wird, soll zuerst Schritt für Schritt der Quell-
code für das beschriebene Beispiel entwickelt werden. Der folgende Programmcode
kann noch nicht kompiliert werden.

public class Pipe
{
 private int[] array = new int [10];
 private int index = 0;

 public synchronized void write (int wert)
 {
 if (index == array.length) // Array ist voll, es muss zuerst
 wait(); // wieder ein Element gelesen
 // werden
 // Schreiboperation durchführen
 // Index erhöhen
 if (index == 1) // Einen eventuell wartenden Leser aufwecken,
 notify(); // da ein Element gelesen werden kann.
 }

 public synchronized int read()
 {
 if (index == 0) // Wenn es keine Elemente zu lesen gibt
 wait();
 // Leseoperation durchführen
 // Index erniedrigen
 // Array-Elemente um eine Position nach vorne schieben.

772 Kapitel 19

 if (index == array.length - 1) // Einen eventuell wartenden
 notify(); // Schreiber aufwecken
 // Gelesenen Wert zurückgeben
 }
}

Innerhalb der write()-Methode wird geprüft, ob noch ein Datum in das Array
geschrieben werden kann. Ist das Array schon voll, so versetzt sich der Thread durch
den Aufruf der Methode wait() in den Wartezustand. Dieser Thread verharrt so-
lange im Wartezustand, bis er durch den Methodenaufruf notify() in der Lese-
methode wieder aufgeweckt wird154.

Entsprechend gilt für die read()-Methode:

Es wird geprüft, ob das Array leer ist. Ist das Array leer, so versetzt sich der Thread
durch den Aufruf der Methode wait() in den Wartezustand. Dieser Thread verharrt
solange im Wartezustand, bis er durch den Methodenaufruf notify() in der
Schreibmethode wieder aufgeweckt wird.

Durch den Aufruf von wait() wird der Thread, der eine synchro-
nisierte Methode abarbeitet, in den Zustand "blocked" überführt. Da-
durch wird der Monitor für einen anderen Thread freigegeben.

Durch notify() wird ein Thread, der zuvor durch den Aufruf von
wait() in den Zustand "blocked" gebracht wurde, wieder aufgeweckt.
Der Thread wird "ready-to-run" und hat nun die Chance auf die Zutei-
lung des Monitors.

Die Methoden wait() und notify() sind eng mit den Befehlen wait() und
signal() verwandt, die auf eine Semaphorvariable angewandt werden:

• Genauso wie der wait()-Befehl den aktuellen Prozess in eine Warteschlange
einreiht, die der Semaphorvariablen zugehörig ist – reiht die Methode wait() den
aktuellen Thread in eine dem Schlüsselobjekt zugehörige Warteschlange ein.

• Genauso wie der signal()-Befehl einen Prozess aus der Warteschlange befreit,
die der Semaphorvariablen zugeordnet ist, befreit die notify()-Methode einen
Thread aus der Warteschlange, die dem Schlüsselobjekt zugeordnet ist.

Ein Thread, der durch die notify()-Methode aufgeweckt wird, konkurriert genauso
wie alle anderen Threads, die gerade in den Monitor eintreten wollen, um den Zugriff.

154 Sind mehrere Threads im Wartezustand, so wird nur ein Thread wieder aufgeweckt. Nach welcher

Reihenfolge dies erfolgt, ist nicht spezifiziert. Möchte man alle Threads, die im Wartezustand sind,
aufwecken, kann man die Methode notifyAll() benutzen. Welcher Thread dann allerdings zum
Zuge kommt, entscheidet der Zufall. Alle anderen Threads werden allerdings auch aufgeweckt, um
gleich wieder festzustellen, dass die Bedingung immer noch nicht zutrifft. Diese Vorgehensweise
mag vielleicht ineffizient erscheinen, stellt aber auf der anderen Seite sicher, dass ein Thread nicht
für immer im Wartezustand verharren kann.

Threads 773

Beachten Sie, dass die Instanzmethoden wait() und notify() der Klasse Ob-
ject nur für ein Schlüsselobjekt aufgerufen werden dürfen. Wird eine dieser Metho-
den zu einem Objekt aufgerufen, das gerade nicht als Schlüsselobjekt für einen syn-
chronisierten Abschnitt benutzt wird, so wird eine Exception vom Typ Illegal-
MonitorStateException geworfen. Wird die Blocksynchronisation verwendet, so
muss der Aufruf der Methoden wait() und notify() explizit für ein Schlüssel-
objekt erfolgen. Das vorhergehende Beispiel muss dann folgendermaßen aussehen:

public class Pipe
{
 private int[] array = new int [10];
 private int index = 0;
 private Object key = new Object();

 public void write (int wert)
 {
 synchronized (key)
 {
 if (index == array.length) // Array ist voll, es muss
 key.wait(); // zuerst ein Element gelesen
 // werden
 // Schreiboperation durchführen
 // Index erhöhen
 if (index == 1) // Einen eventuell wartenden
 key.notify(); // Leser aufwecken
 }
 }

 public int read()
 {
 synchronized (key)
 {
 if (index == 0) // Wenn es keine Elemente zu lesen gibt
 key.wait();
 // Leseoperation durchführen
 // Index erniedrigen
 // Array-Elemente um eine Position nach vorne schieben.
 if (index == array.length - 1) // Einen eventuell wartenden
 key.notify(); // Schreiber aufwecken
 }
 }
}

Das folgende Beispiel zeigt die ausprogrammierte Pipe und zwei Threads, die diese
benutzen. Dabei schreibt der Thread Writer die Werte in die Pipe hinein und der
Thread Reader liest die Werte aus der Pipe heraus.

// Datei: Pipe.java

public class Pipe
{
 private int[] array = new int [3];
 private int index = 0;

774 Kapitel 19

 public synchronized void write (int i)
 {
 if (index == array.length) // Falls Array Grenze erreicht,
 { // Thread anhalten
 System.out.println ("Schreibender Thread muss warten");

 try
 {
 this.wait();
 }
 catch (InterruptedException e)
 {
 }
 }

 array [index] = i; // Wert in Array speichern
 index++;

 if (index == 1) // Einen eventuell wartenden
 this.notify(); // Leser aufwecken

 System.out.println ("Geschrieben: " + i);
 }

 public synchronized int read()
 {
 int value;

 if (index == 0) // Falls kein Wert vorhanden,
 { // Thread anhalten
 System.out.println ("Lesender Thread muss warten");

 try
 {
 this.wait();
 }
 catch (InterruptedException e)
 {
 }
 }

 value = array [0]; // Wert auslesen
 index--;

 for (int i = 0; i < index; i++)
 array [i] = array [i + 1];

 if (index == array.length - 1) // Einen eventuell wartenden
 this.notify(); // Schreiber aufwecken

 System.out.println ("Empfangen: " + value);
 return value;
 }
}

Threads 775

// Datei: Writer.java

// Thread, der int-Werte in eine Pipe schreibt
public class Writer extends Thread
{
 private Pipe pipe;
 // Eine gesendete 0 soll das Ende kennzeichnen.
 private int[] sendeArray = {1, 2, 3, 4, 0};

 public Writer (Pipe p)
 {
 pipe = p;
 }

 public void run()
 {
 for (int i = 0; i < sendeArray.length; i++)
 pipe.write (sendeArray [i]);
 }
}

// Datei: Reader.java

// Thread, der int-Werte aus einer Pipe liest
public class Reader extends Thread
{
 private Pipe pipe;

 public Reader (Pipe p)
 {
 pipe = p;
 }

 public void run()
 {
 int empfang;

 while ((empfang = pipe.read()) != 0) // Eine gesendete 0 kenn-
 ; // zeichnet das Ende
 }
}

// Datei: Test1.java

public class Test1
{
 public static void main (String args[])
 {
 Pipe pipe = new Pipe();

 Reader readerThread = new Reader (pipe);
 Writer writerThread = new Writer (pipe);

 readerThread.start();
 writerThread.start();
 }
}

776 Kapitel 19

Hier eine mögliche Ausgabe des Programms:

Lesender Thread muss warten
Geschrieben: 1
Geschrieben: 2
Geschrieben: 3
Schreibender Thread muss warten
Empfangen: 1
Empfangen: 2
Empfangen: 3
Lesender Thread muss warten
Geschrieben: 4
Empfangen: 4
Geschrieben: 0
Empfangen: 0

Die Methode wait(), die einen Thread in den Zustand "blocked" überführen kann,
kann eine Exception vom Typ InterruptedException werfen, die entsprechend
abgefangen werden muss. Diese Exception wird allerdings nur geworfen, wenn ein
Thread, der sich aufgrund der Methode wait() im Zustand "blocked" befindet, durch
den Aufruf der Methode interrupt() unterbrochen wird. Da dies hier nicht der Fall
ist, braucht die Exception nicht weiter behandelt zu werden.

19.5.5 Gefahr durch Deadlocks

Das Prinzip des wechselseitigen Ausschlusses (realisiert durch die Einführung von
Monitoren) löst zwar einerseits das Problem der Race Conditions, eröffnet jedoch
andererseits die Gefahr von möglichen Deadlocks.

Bild 19-16 Deadlocksituation im Straßenverkehr

Das Problem eines Deadlocks gibt es nicht nur in der Softwaretechnik. Die Problem-
stellung kann ebenso in anderen Bereichen auftreten. Das oben stehende Beispiel
aus dem Straßenverkehr soll dies verdeutlichen. Das Bild zeigt eine blockierte
Straßenkreuzung. Die Fahrzeuge aus beiden Fahrtrichtungen blockieren sich
gegenseitig. Die Situation lässt sich nicht mehr auflösen, ohne dass ein Fahrzeug
zurücksetzt und einen Teil der Straße freigibt.

Im folgenden Beispiel wird das bereits bekannte Beispiel mit den Klassen Pipe,
Reader und Writer erweitert, sodass der Lese- und der Schreib-Thread jeweils
Endlos-Schleifen sind. Die umgeschriebenen Klassen Reader1 und Writer1 be-
kommen eine zusätzliche Methode beenden(), die das Beenden des jeweiligen

Threads 777

Threads ermöglicht. Durch die Eingabe der Buchstaben 'e', 'x', 'i' und 't' ge-
folgt von einem <RETURN> kann ein Benutzer die beiden Threads beenden. Um
sicher zu gehen, dass die Threads auch wirklich beendet sind, wird die join()-
Methode verwendet, um auf das Ende der Threads zu warten. Die Klasse Pipe hat
sich nicht verändert und wird deshalb nicht nochmals aufgeführt.

// Datei: Reader1.java

public class Reader1 extends Thread
{
 private Pipe pipe;
 private boolean running = true;

 public Reader1 (Pipe p)
 {
 pipe = p;
 }

 public void run()
 {
 int empfang;
 while (running)
 empfang = pipe.read();
 }

 public void beenden()
 {
 running = false;
 }
}

// Datei: Writer1.java

public class Writer1 extends Thread
{
 private Pipe pipe;
 private boolean running = true;

 public Writer1 (Pipe p)
 {
 pipe = p;
 }

 public void run()
 {
 int i = 0;

 while (running)
 pipe.write (i = ++i % 1000);
 }

 public void beenden()
 {
 running = false;
 }
}

778 Kapitel 19

// Datei: Test2.java

import java.io.*;

public class Test2
{
 public static void main (String args[]) throws IOException,
 InterruptedException
 {
 Pipe pipe = new Pipe();

 Writer1 writerThread = new Writer1 (pipe);
 Reader1 readerThread = new Reader1 (pipe);

 readerThread.start();
 writerThread.start();

 // Warten, bis "exit" gefolgt von RETURN eingegeben wird.
 while (true)
 {
 BufferedReader reader =
 new BufferedReader (new InputStreamReader (System.in));
 String kommando = reader.readLine();
 if (kommando.equals ("exit"))
 break;
 }

 writerThread.beenden();
 writerThread.join();
 System.out.println ("Schreibender Thread ist beendet!");
 readerThread.beenden();
 readerThread.join();
 System.out.println ("Lesender Thread ist beendet!");
 }
}

Hier eine mögliche Ausgabe des Programms:

.
Empfangen: 278
Geschrieben: 279
Empfangen: 279
Schreibender Thread ist beendet!
Lesender Thread muss warten

Nanu, wo ist denn die Ausgabe: Lesender Thread ist beendet!? Diese Aus-
gabe wird nie erscheinen und das Programm wird auch nie beendet werden! Es liegt
hier nämlich ein Deadlock155 vor. Der Grund dafür lautet wie folgt: Der schreibende
Thread wird beendet. Danach versucht der lesende Thread nochmals, ein Datum zu
lesen. Da aber nichts mehr in der Pipe ist, wird der lesende Thread durch den Aufruf
der Methode wait() in den Wartezustand versetzt. Da es keinen schreibenden
Thread mehr gibt, der den lesenden Thread durch den Aufruf der Methode noti-

155 Eventuell muss man das Programm mehrmals laufen lassen, um den Deadlock zu erzeugen.

Threads 779

fy() aufwecken könnte, wird dieser Wartezustand nie mehr aufgehoben. Die Metho-
de join(), die zum lesenden Thread aufgerufen wurde, kehrt nie zurück, da der le-
sende Thread auch nie beendet wird. Somit verharrt der Thread, der von der virtu-
ellen Maschine zum Abarbeiten der main()-Methode gestartet wurde und der lesen-
de Thread für immer im Zustand "blocked".

Was kann nun getan werden, um diesen Deadlock zu vermeiden? Hierzu soll eine
einfache Möglichkeit gezeigt werden! Wenn der schreibende Thread beendet wird,
schickt er noch die Zahl –1, diese interpretiert der lesende Thread als das Ende-
zeichen. Aus der Klasse Test2 muss nur der Aufruf readerThread.beenden()
entfernt werden – sie ist deshalb nicht nochmals aufgeführt.

// Datei: Reader2.java

public class Reader2 extends Thread
{
 private Pipe pipe;

 public Reader2 (Pipe p)
 {
 pipe = p;
 }

 public void run()
 {
 while (pipe.read() != -1)
 ;
 }
}

// Datei: Writer2.java

public class Writer2 extends Thread
{
 private Pipe pipe;
 private boolean running = true;

 public Writer2 (Pipe p)
 {
 pipe = p;
 }

 public void run()
 {
 int i = 0;
 while (running)
 pipe.write (i = ++i % 1000);
 pipe.write (-1);
 }

 public void beenden()
 {
 running = false;
 }
}

780 Kapitel 19

Hier eine mögliche Ausgabe des Programms:

.
Empfangen: 80
Geschrieben: 81
Empfangen: 81
Geschrieben: -1
Schreibender Thread ist beendet!
Empfangen: -1
Lesender Thread ist beendet!

Deadlocks treten meistens an unverhofften Stellen auf! Man muss sehr wachsam
sein, um überhaupt alle möglichen Deadlocksituationen ausfindig zu machen. Ver-
sucht man, sauber mit Threads zu programmieren, das heißt, achtet man darauf,
dass ein Thread auf jeden Fall ordentlich beendet wird und seine allokierten
Ressourcen wieder freigibt, stolpert man automatisch über jede Menge Deadlock-
Situationen!

19.5.6 Sinnvoller Einsatz der Synchronisation

Kandidaten für eine Synchronisation sind grundsätzlich Methoden oder Codeblöcke,
die auf gemeinsamen Daten arbeiten und von unterschiedlichen Threads besucht
werden.

Alle Methoden oder Codeblöcke, die mit den gleichen Instanz- oder
Klassenvariablen arbeiten, können bei gleichzeitigem Aufruf durch
mehrere Threads Probleme verursachen. Deshalb ist hier eine Syn-
chronisation notwendig.

Lokale Variable sind, da jeder Thread einen eigenen Stack besitzt,
nicht gefährdet.

Man sollte sich für jeden einzelnen Fall überlegen, ob eine Synchronisation gerecht-
fertigt ist, denn die Synchronisation von Codeblöcken benötigt Rechenzeit. Werden
wahllos alle Methoden vorsichtshalber synchronisiert, kann es zu Performancepro-
blemen und eventuell zu Deadlocksituationen kommen.

19.5.7 Änderungen bei JDK 5.0

Seit dem JDK 5.0 gibt es noch feinere Möglichkeiten der Synchronisation. Die bereits
vorhandenen und hier dargestellten Mechanismen bilden aber weiterhin die Grund-
funktionalität. Außerdem stellt JDK 5.0 auch Klassen zur Verfügung, die man in der
Vergangenheit selbst schreiben musste, wie z. B. Queues für den Austausch von
Produkten bei einer Producer-Consumer-Anwendung oder Klassen für ein Thread
Pooling.

Threads 781

Beispiele für die Erweiterungen des JDK 5.0 sind:

• explizite Sperren,
• Semaphore,
• ein Framework zur Erzeugung und Kontrolle von Threads,
• die zeitgesteuerte Ausführung von Threads,
• Thread-Pooling,
• Warteschlangen und andere performante, nebenläufig benutzbare Container,
• Klassen für atomare Operationen mit einfachen Datentypen,
• Klassen zur einfachen Synchronisierung mehrerer Threads.

Für das Studium dieser Erweiterungen wird die API-Dokumentation oder das Buch
von Johannes Nowak [19] empfohlen.

19.6 Daemon-Threads

Daemon-Threads sind Threads, die für andere Threads Dienstleistungen erbringen.
Sie haben dabei oft nicht – wie allgemein bei Threads üblich – eine Abbruchbedin-
gung, sondern laufen meist in einer Endlosschleife ab. Diese Eigenschaften könnten
auch von gewöhnlichen Threads übernommen werden, bei Daemon-Threads kommt
jedoch eine weitere Eigenschaft hinzu:

Der Java-Interpreter wird erst beendet, wenn keine Threads mehr ab-
gearbeitet werden. Dies gilt nicht für Daemon-Threads. Sind nur noch
Daemon-Threads in einer virtuellen Maschine vorhanden, gibt es für
die Daemon-Threads, die Dienstleitungen für andere Threads erbring-
en sollen, nichts mehr zu tun. Die virtuelle Maschine wird trotz aktiver
Daemon-Threads beendet.

Ein typischer Daemon-Thread ist der Thread, der für die Garbage Collection der vir-
tuellen Maschine zuständig ist. Er bleibt solange aktiv, bis der letzte nicht Daemon-
Thread beendet wurde.

Jeder Java-Thread kann zum Daemon-Thread werden, indem seine
Instanzmethode setDaemon (true) der Klasse Thread aufgerufen
wird. Ob ein Thread ein Daemon-Thread ist, kann man mit der In-
stanzmethode isDaemon() der Klasse Thread überprüfen.

Eine Änderung eines Threads in einen Daemon-Thread ist nur im Zustand "new"
zulässig. Wird die Methode setDaemon (true) aufgerufen, während der Thread
sich in einem anderen Zustand befindet, wird eine Exception geworfen.

782 Kapitel 19

19.7 Übungen

Aufgabe 19.1: Erzeugen eines Threads

a) Erzeugen eines Threads durch Ableiten von der Klasse Thread

Das nachfolgende Programm ist ein Beispiel dafür, wie man einen eigenen Thread
durch Ableiten von der Klasse Thread erzeugen kann.

Kompilieren und starten Sie das Programm.

// Datei: EigenerThread.java

public class EigenerThread extends Thread
{
 public void run()
 {
 for (int a = 0; a <= 5; a++)
 System.out.println ("Hier EigenerThread > " + a);
 }
}

// Datei: ThreadTest1.java

public class ThreadTest1
{
 public static void main (String [] args)
 {
 EigenerThread meinThread = new EigenerThread();
 System.out.println ("Hier ist main(), ich starte Thread.");
 meinThread.start();
 System.out.println ("Hier ist main(), ich bin fertig.");
 }
}

b) Erzeugen eines Threads mit Hilfe der Schnittstelle Runnable

Ändern Sie die Klasse EigenerThread und ThreadTest1 so ab, dass die Klas-
se EigenerThread nicht von der Klasse Thread abgeleitet wird, sondern die
Schnittstelle Runnable implementiert.

Aufgabe 19.2: Helfen Sie Cowboy Jim

Cowboy Jim hat neuerdings Schwierigkeiten, beim Tabakkauen möglichst cool zu
gehen. Entwerfen Sie die Klassen LaufThread und KauThread als separate
Threads. In der run()-Methode der Klasse LaufThread soll Jim abwechselnd sein
linkes und rechtes Bein benutzen. Geben Sie hierzu abwechselnd "links" bzw.
"rechts" auf dem Bildschirm aus. In der run()-Methode der Klasse KauThread soll
die wiederholte Ausgabe eines einfachen "Schmatz" auf dem Bildschirm erfolgen.

Schreiben Sie eine weitere Klasse CowboyJim, welche die beiden Threads startet.
Starten Sie die Klasse CowboyJim mehrmals und erklären Sie die Ausgabe.

Threads 783

Auf schnellen Rechnern sollten Sie die Schleifen in den run()-Methoden der Klas-
sen LaufThread und KauThread mindestens 1000 mal durchlaufen, damit sich die
Threads gegenseitig unterbrechen. Selbstverständlich kann diese Zahl je nach Hard-
ware-Ausstattung nach oben und unten variieren. Wird die Anzahl der Schleifen-
durchläufe in den Threads zu niedrig gewählt, dann werden die einzelnen Threads
komplett abgearbeitet, bevor zum anderen Thread umgeschaltet wird. Ein "cooles
Gehen beim Tabakkauen" ist damit für Cowboy Jim nicht möglich. Sollte die Textaus-
gabe so gross sein, dass sie trotz Gebrauch der Scrollbalken nicht komplett im Kon-
solenfenster angezeigt werden kann, dann geben Sie das Ergebnis seitenweise aus
oder leiten es in eine Textdatei um. Zum Beispiel in Windows:

java CowboyJim | more

oder

java CowboyJim > cowboyJim.txt

Aufgabe 19.3: Synchronisation

Die Problematik der Synchronisation soll im Folgenden betrachtet werden:

a) Schreiben Sie eine Klasse Zwischenspeicher, die eine Instanzvariable wert

vom Typ int besitzt und diesen über get- und set-Methoden öffentlich zur Ver-
fügung stellt.

b) Schreiben Sie eine Klasse ZahlThread, die einen Thread darstellt. Beim Erzeu-
gen eines Objektes der Klasse ZahlThread wird eine Referenz auf ein Objekt
der Klasse Zwischenspeicher übergeben, die in einem privaten Datenfeld ab-
gespeichert werden soll. Die Methode run() soll einen zufälligen Wert in den Zwi-
schenspeicher schreiben, 2 Sekunden warten, diesen Wert erneut aus dem Zwi-
schenspeicher auslesen und überprüfen, ob der gelesene Wert mit dem geschrie-
benen übereinstimmt. Weichen die beiden Werte voneinander ab, so soll eine Mel-
dung ausgegeben werden.

c) Schreiben Sie eine Klasse ZwischenspeicherTest, die in der main()-Metho-
de eine Instanz der Klasse Zwischenspeicher erzeugt. Erzeugen und starten
Sie dann einen Thread der Klasse ZahlThread. Überprüfen Sie, welcher Wert in
den Zwischenspeicher geschrieben und welcher Wert aus dem Zwischenspeicher
gelesen wird. Fügen Sie hierzu Kontrollausgaben in der Methode run() ein.

d) Erzeugen Sie nun in der Methode main() mindestens einen weiteren Thread. Es
wird zu fehlerhaften Werten kommen. Wie kann dies unterbunden werden? Erwei-
tern Sie Ihr Programm so, dass keine fehlerhaften Werte mehr auftreten.

Aufgabe 19.4: Stack-Zugriff mit mehreren Threads

a) Es soll ein anonymes Paket aus den Dateien

• Test.java,

• Reader.java,

• Writer.java,

• Stack.java

erstellt werden.

784 Kapitel 19

Writer.java
Die Datei Writer.java enthält eine Klasse Writer, die von Thread ableitet.
Der Writer-Thread schreibt insgesamt 100 int-Zahlen auf den Stack.

Reader.java
Die Datei Reader.java enthält eine Klasse Reader, die ebenfalls von Thread
ableitet. Der Reader-Thread liest die int-Zahlen vom Stack ein und gibt sie auf
der Konsole aus.

Test.java
Die Datei Test.java enthält eine Klasse Test, die nur eine Methode main()
zum Testen der anderen Klassen einhüllt. In der Methode main() soll ein Objekt
der Klasse Stack erzeugt werden. Dieses Objekt soll an die zu erzeugenden In-
stanzen der Klassen Writer und Reader übergeben werden. Starten Sie darauf-
hin die beiden Threads Writer und Reader. Warten Sie, bis die beiden Threads
ihre Aufgabe erledigt haben und beenden Sie danach die Anwendung. Die
Threads sollen willkürlich auf den Stack zugreifen. Ist der Stack beim Schreiben
voll, so soll der Writer-Thread warten. Der Reader-Thread liest die Zahlen ein-
zeln vom Stack. Ist der Stack leer, so soll er warten, bis er erneut Werte lesen
kann. Dieser Ablauf soll solange fortgesetzt werden, bis alle 100 Zahlen vom Wri-
ter-Thread auf den Stack geschrieben wurden und vom Reader-Thread ausge-
lesen wurden. Machen Sie den Stack nicht zu gross, damit die Zahlen vom Wri-
ter-Thread nicht auf einmal in den Stack geschrieben werden können.

Stack.java
Zum Schreiben auf den Stack dient die Methode push() und zum Lesen vom
Stack dient die Methoden pop() der Klasse Stack. Synchronisieren Sie die
Methoden des Stacks, sodass es zu keinen Synchronisationsproblemen kommt.

b) Ersetzen Sie Ihre Implementierung des Stacks mit der von Java mitgelieferten

Klasse LinkedBlockingDeque aus dem Paket java.util.concurrent. Pas-
sen Sie Ihre Klassen so an, dass diese Klasse anstatt der Klasse Stack benutzt
wird. Nutzen Sie dabei die Möglichkeiten der generischen Typisierung (Generics)
und programmieren Sie, wo möglich, gegen die Schnittstelle BlockingDeque.

Um einen blockierenden Effekt zu erzielen, darf man die Methoden push() und
pop() der Schnittstelle BlockingQueue nicht verwenden. Verwenden Sie statt-
dessen die Methoden putFirst() statt push() und takeFirst() statt pop().

Aufgabe 19.5: Das Philosophenproblem

Zu den klassischen Synchronisationsproblemen zählt das Problem der speisenden
Philosophen ("Dining Philosophers"). Der Tagesablauf eines Philosophen besteht
abwechselnd aus Nachdenken und Essen. Fünf Philosophen sitzen an einem Tisch.
Jeder Philosoph hat seinen festen Platz am Tisch, vor ihm einen Teller Spaghetti und
zu seiner Linken und Rechten liegt jeweils eine Gabel, die er mit seinen Nachbarn
teilt. Das Problem der Philosophen besteht nun darin, dass sie nur mit zwei Gabeln
essen können. Darüber hinaus darf jeder Philosoph nur die direkt rechts und die
direkt links neben ihm liegenden Gabeln zum Essen benutzen. Das bedeutet, dass
zwei benachbarte Philosophen nicht gleichzeitig essen können.

Threads 785

Ist ein Philosoph fertig mit Essen, legt er die gebrauchten Gabeln zurück und verfällt
in einen unterschiedlich langen Zustand des Philosophierens und Nachdenkens, bis
er wieder Hunger hat.

Bild 19-17 denken, essen, denken, essen, ...

a) Schreiben Sie ein Java-Programm, welches die Aufgabe für den Fall, dass ein

Philosoph gleichzeitig beide Gabeln in die Hand nimmt, löst.
b) Schreiben Sie ein weiteres Java-Programm, welches die Aufgabe für den Fall löst,

dass ein Philosoph immer zuerst die linke Gabel und danach erst die rechte Gabel
in die Hand nimmt. Beachten Sie, dass es hierbei zu so genannten Deadlocks
kommen kann. Zum Beispiel dann, wenn alle die linke Gabel in der Hand halten
und auf die rechte Gabel warten.

Aufgabe 19.6: Flughafen-Projekt – Threads

In der aktuellen Version können Flugzeuge immer nur nacheinander landen und star-
ten. Dies soll nun in einer verbesserten Version parallelisiert werden. Erst dadurch
kann ein Lotse einen Flughafen wirklich effektiv auslasten. Um dies zu erreichen, soll
eine Thread-Klasse geschrieben werden, welche zyklisch die Methode aktuali-
siereStatus() der Klasse Flughafen aufruft.

Applets

HTTP-Server

Java
.class

Dateien

HTML-
Dateien

Netzwerk

HTML-Browser

HTML-Seite

Applet

20.1 Die Seitenbeschreibungssprache HTML
20.2 Das "Hello, world"-Applet
20.3 Der Lebenszyklus eines Applets
20.4 Parameterübernahme aus einer HTML-Seite
20.5 Importieren von Bildern
20.6 Importieren und Abspielen von Audio-Clips
20.7 Übungen

20 Applets

Wie schon der Name "Applets" vermuten lässt, handelt es sich bei Applets um kleine
Applikationen – die Nachsilbe "let" stellt im Englischen die Verkleinerungsform ent-
sprechend dem deutschen "chen" dar156. Im Unterschied zu normalen Java-Appli-
kationen sind Applets in eine HTML-Seite eingebettet. Anstatt von eingebettet
spricht man auch oft von eingebunden. Für das Verständnis ist es jedoch einfacher,
sich vorzustellen, dass innerhalb der HTML-Seite auf ein Applet verwiesen wird, das
sich auf einem HTTP-Server157 befindet. Die HTML-Seite wird in einem ersten
Schritt durch einen Browser von einem HTTP-Server über ein Netzwerk geladen
und dann im Browser-Fenster dargestellt. Ein in der HTML-Seite eingebundenes
Applet wird in einem zweiten Schritt durch den Browser von einem HTTP-Server
geladen. Damit das Applet – was ja ein Java-Programm ist – ausgeführt werden
kann, muss eine Java Virtuelle Maschine innerhalb des Browser gestartet werden.
Sofern auf dem Rechner eine Java-Laufzeitumgebung installiert ist, ist auch auto-
matisch ein so genanntes Java-Plugin installiert. Dieses Java-Plugin ermöglicht
dann das automatische Starten der JVM aus dem Browser heraus, wenn ein Applet
ausgeführt werden soll.

Zur Darstellung des Applet wird innerhalb des Browser-Fensters ein rechteckiger
Bereich zur Verfügung gestellt158:

 HTML-Browser

HTML-Seite

Applet

Bild 20-1 Ein Applet in einer HTML-Seite

Mit Hilfe des Java-Plugins wird es ermöglicht, innerhalb eines Browser
eine Java Virtuelle Maschine zu starten und ein Applet auszuführen.
Das Java-Plugin stellt somit eine Verbindung zwischen einem Web-
Browser und der Java-Plattform auf dem Computer her.

Seit den Versionen des JDK und JRE 1.2 wird bei der Installation dieser Produkte
automatisch auch das Java-Plugin installiert. Es wird jedoch empfohlen, stets die
neuste Java-Laufzeitumgebung zu installieren, damit auch ein aktuelles Java-Plugin
zur Verfügung steht.

156 So ist beispielsweise ein „piglet“ ein „Schweinchen“, d. h. ein kleines Schwein.
157 Ein HTTP-Server ist ein Web-Server, der Dateien im Inter- oder Intranet zur Verfügung stellt. Die

Dateien können vom Server mit dem HTTP-Protokoll angefordert und geladen werden.
158 Die Größe und Position dieses Bereiches innerhalb des Browser-Fensters kann durch den Ent-

wickler der Web-Seite, der das Applet in die Seite einbindet, festgelegt werden. Dazu später mehr.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_20,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Applets 789

Das Java-Plugin der Java-Version 6.0 arbeitet mit allen gängigen
Browsern. Für alle 32- und 64-Bit-Versionen der Windows-Plattformen
ist die Unterstützung der folgenden Browser garantiert:

• Google Chrome 4.0,
• Microsoft Internet Explorer 6.0, 7.x und 8.x,
• Mozilla 1.4.x und 1.7.x,
• Mozilla Firefox 2.0.x, 3.0.x, 3.5.x und 3.6.x.

Auf den 32- und 64-Bit-Versionen der LINUX-Plattformen werden
hingegen folgende Browser unterstützt:

• Mozilla 1.4.x und 1.7.x,
• Mozilla Firefox 2.0.x, 3.0.x, 3.5.x und 3.6.x.

Eine umfassende Übersicht, auf welcher Plattform welcher Browser unterstützt wird,
kann für die Java Version 6 auf der Internetseite

http://www.oracle.com/technetwork/java/javase/index-
137561.html

recherchiert werden. Dort finden sich auch weiterführende Informationen über den
Installationsprozess der Java-Laufzeitumgebungen auf den jeweiligen Plattformen.

Applets sind in der Programmiersprache Java geschriebene Program-
me. Sie können nicht eigenständig als Programm aufgerufen werden,
sondern werden über eine HTML-Seite von einem lokalen Rechner,
vom Internet oder von einem firmeneigenen Intranet geladen und in
einem Browser auf dem lokalen Rechner ausgeführt.

Da in Java alle Programme auf Klassen beruhen, ist auch ein Applet
eine Klasse. Alle Applets haben die Klasse java.applet.Applet
als Vaterklasse.

Applets können in jeder HTML-Seite, die man sich mit einem Browser vom Internet
lädt, enthalten sein. Man hat also praktisch keine Kontrolle, wann ein Applet auf den
eigenen Rechner geladen wird und welche Befehle ausgeführt werden. Dies stellt ein
hohes Sicherheitsrisiko für die Daten des lokalen Rechners dar. Aus diesem Grund
haben Applets in der Regel im Vergleich zu Applikationen eingeschränkte Rechte
beim Zugriff auf die Ressourcen des lokalen Rechners.

20.1 Die Seitenbeschreibungssprache HTML

HTML (HyperText Markup Language) ist eine Seitenbeschreibungssprache, die zur
Darstellung von Web-Seiten im Internet benutzt wird.

790 Kapitel 20

Mit HTML wird der Inhalt, die Struktur und das Format von darzu-
stellenden Texten und Bildern definiert.

20.1.1 HTML-Syntax

Die Syntax der HTML-Sprache ist auf so genannten "Tags" aufgebaut. Mit ihnen wer-
den die Textabschnitte einer HTML-Seite gekennzeichnet und damit die Seite struk-
turiert und den Textabschnitten eine gewünschte Formatierung zugewiesen. Ein
"Tag" ist hier ein Schlüsselwort, das von den Zeichen "<" und ">" eingeschlossen
wird.

Ein Textabschnitt kann z. B. fett oder kursiv formatiert werden. Die Formatierung wird
durch ein Start-Tag eingeleitet und mit einem Ende-Tag beendet. Das Ende-Tag ist
identisch mit dem Start-Tag bis auf einen vorangestellten Schrägstrich "/". Das fol-
gende Beispiel zeigt, wie ein Text fett formatiert werden kann:

 Dies ist ein fett formatierter Text

Dabei steht das B des Tags für das englische Wort "bold" – was auf deutsch fett
heißt. Für einige Tags ist das Ende-Tag nicht notwendig.

Es spielt keine Rolle, ob die Schlüsselwörter groß oder klein geschrieben werden. Im
Folgenden werden die Schlüsselwörter aus Gründen der Übersichtlichkeit groß ge-
schrieben. Von der Tastatur eingegebene Tabulatoren und Zeilenumbrüche bleiben
unberücksichtigt. Tabulatoren und Zeilenumbrüche müssen durch HTML-Befehle
realisiert werden.

Soll ein Kommentar in ein Dokument aufgenommen werden, der im Browser nicht
angezeigt wird, so verwendet man die folgende Anweisung:

<!-- . . . -->

Zwischen <!-- und --> kann jeder beliebige Text stehen, z. B. <!-- mein
erstes HTML-Dokument -->.

20.1.2 Dokumentenstruktur

Jedes HTML-Dokument hat eine festgelegte Struktur, die durch die Tags <HTML>,
<HEAD> und <BODY> bestimmt ist. Die Dokumentenstruktur sieht folgendermaßen
aus:

<HTML>
 <HEAD>

 </HEAD>
 <BODY>

 </BODY>
</HTML>

Applets 791

Das Tag <HEAD> leitet den Dokumenten-Kopf ein. Im Dokumenten-Kopf werden all-
gemeine Angaben zu einem HTML-Dokument gemacht – beispielsweise die Angabe
des Titels eines Dokuments. Das Tag <BODY> leitet den Dokumenten-Rumpf ein,
wobei dieser den gesamten Inhalt des Dokuments enthält.

Die HTML-Tags <HEAD> und <BODY> sind für die Darstellung in einem Browser nicht
unbedingt erforderlich, gehören aber zu einem "ordentlichen" HTML-Dokument.

20.1.2.1 Der Dokumenten-Kopf

Innerhalb des Tags <HEAD> besteht die Möglichkeit, dem Dokument einen Titel zu
geben, der dann von den meisten Browsern in der Fensterleiste angezeigt wird. Sie-
he hierzu das folgende Beispiel:

<!—- Datei: kopf.html -->
<HTML>
 <HEAD>
 <TITLE> Meine erste HTML-Seite </TITLE>
 </HEAD>
 <BODY>
 In der Fensterleiste sehen Sie "Meine erste HTML-Seite" und
 dies hier ist ein ganz normaler Text.
 </BODY>
</HTML>

Nachdem die Datei unter einem eindeutigen Namen mit der Endung html oder htm
gespeichert wurde, kann diese mit einem Browser – beispielsweise dem Internet Ex-
plorer – geöffnet werden (Menü Datei – Öffnen – Durchsuchen – zum Spei-
cherort der Datei wechseln – die Datei auswählen und abschließend auf OK klicken):

Bild 20-2 Ein erstes Beispiel

20.1.2.2 Der Dokumenten-Rumpf

Der Dokumenten-Rumpf enthält den eigentlichen Inhalt des Dokuments und die
HTML-Elemente, die für die Formatierung des Inhalts notwendig sind.

792 Kapitel 20

Überschriften

An den Anfang eines Absatzes kann eine Überschrift gesetzt werden. Hierfür stehen
unter HTML sechs verschiedene Größen zur Verfügung. Sie haben jeweils das
Schlüsselwort <Hn>, wobei n eine Zahl zwischen 1 und 6 ist, welche die Schriftgröße
der Überschrift angibt. <H1>159 ist die größte Überschrift und <H6> die kleinste. Nach
einer Überschrift wird automatisch ein neuer Absatz eingefügt. Für eine bessere
Übersichtlichkeit können in das Dokument horizontale Linien einfügt werden. Hierfür
steht das Tag <HR>160 zur Verfügung. Das folgende Beispiel zeigt Überschriften in
verschiedenen Größen:

<!—- Datei: überschrift.html -->
<HTML>
 <HEAD>
 <TITLE>Verschiedene Überschriften</TITLE>
 </HEAD>
 <BODY>
 <H1>Ich bin die größte Überschrift H1</H1>
 <H2>Ich bin die Überschrift H2</H2>
 <H3>Ich bin die Überschrift H3</H3>
 <H4>Ich bin die Überschrift H4</H4>
 <H5>Ich bin die Überschrift H5</H5>
 <H6>Ich bin die kleinste Überschrift H6.</H6>
 </BODY>
</HTML>

Bild 20-3 Die Überschriften H1 bis H6

159 Das "H" kommt vom englischen Wort "heading", was auf deutsch Überschrift heißt.
160 "HR" ist die Abkürzung der englischen Wörter "horizontal rule". Die deutsche Bedeutung dieser

Wörter ist Querlinie.

Applets 793

Hervorhebungen

Mit der Sprache HTML ist es möglich, einzelne Textstellen besonders hervorzuhe-
ben. Für die Hervorhebung gibt es folgende Tags:

<TT> Schreibmaschinenschrift (TT von tele-type)
 Fettdruck (B von bold)
<I> Kursivschrift (I von italic)
<U> Unterstreichung (U von underline)
 Hervorhebung, meistens Kursivschrift (EM von emphasize)
 Starke Hervorhebung, meistens durch Fettdruck realisiert.
<CODE> Zitate aus Programmquelltexten. Sie werden meistens in Schreibma-

schinenschrift dargestellt.
<SAMP> Beispiel, etwa im Zusammenhang mit Programmein- oder -ausgaben.

Meistens dargestellt in Schreibmaschinenschrift. (SAMP von samples)
<KBD> Tastatureingabe, ähnlich wie <SAMP>. Meistens dargestellt in Schreib-

maschinenschrift. (KBD von keyboard)
<VAR> Platzhaltertext für eine variable Textstelle. Darstellung meist kursiv.
<CITE> Zitatstelle, meist kursiv dargestellt.

Das folgende Beispiel demonstriert Texthervorhebungen:

<!-- Datei: text.html -->
<HTML>
 <HEAD>
 <TITLE>Hervorhebungen</TITLE>
 </HEAD>
 <BODY>
 In einem HTML-Dokument können Sie Textstellen fett oder
 kursiv darstellen.

 Natürlich geht auch beides zusammen.<P>
 Dieser Satz wurde mit STRONG erzeugt.<P>
 <CODE>So sieht die Darstellung eines
 Programmtextes aus</CODE>

 <KBD>und so eine Tastatureingabe im KBD-Stil.</KBD>
 </BODY>
</HTML>

Bild 20-4 Hervorhebungen im Text

794 Kapitel 20

Das Tag <P> kennzeichnet einen Absatzwechsel, d. h. an dieser Stelle endet der
vorherige Absatz und es beginnt der nächste. Ein Absatzwechsel ist immer mit der
Ausgabe einer Leerzeile verbunden. Das Tag
 (BR von break) kennzeichnet
einen einfachen Zeilenumbruch ohne eine zusätzliche Leerzeile.

Listen

In HTML gibt es verschiedene Arten, Listen zu erstellen. Es gibt beispielsweise eine
ungeordnete Liste (unordered list) mit dem Tag und eine geordnete Liste
(ordered list) mit dem Tag . Der Unterschied zwischen geordneter und ungeord-
neter Liste ist die Darstellung. Bei der geordneten Liste werden die Listenelemente
nummeriert, bei der ungeordneten Liste erscheint statt der Nummer ein Aufzählungs-
zeichen.

Die Listenelemente können auch in verschachtelter Form verwendet werden, wie das
nachfolgende Beispiel zeigt. Die einzelnen Elemente jeder Liste werden mit dem Tag
 (list item) gekennzeichnet.

Hier ein Beispiel für eine geordnete Liste:

<!-- Datei: ol.html -->
<HTML>
 <HEAD>
 <TITLE>Eine geordnete Liste</TITLE>
 </HEAD>
 <BODY>
 <H2>Fahrzeuge</H2>

 Straßenfahrzeuge

 Auto
 Zweirad

 Motorrad
 Fahrrad

 Wasserfahrzeuge

 Segelboot
 Ruderboot

 </BODY>
</HTML>

Applets 795

Bild 20-5 Eine geordnete Liste

Ein Beispiel für eine ungeordnete Liste ist:

<!-- Datei: ul.html -->
<HTML>
 <HEAD>
 <TITLE>Eine ungeordnete Liste</TITLE>
 </HEAD>
 <BODY>
 <H2>Fahrzeuge</H2>

 Straßenfahrzeuge

 Auto
 Zweirad

 Motorrad
 Fahrrad

 Wasserfahrzeuge

 Segelboot
 Ruderboot

 </BODY>
</HTML>

796 Kapitel 20

Bild 20-6 Eine ungeordnete Liste

Das ANKER-Element

Mit dem Tag <A> wie "anchor", also Anker, wird die Hypertextfähigkeit161 realisiert.
Ein Dokument kann über das Tag <A> mit einem anderen Dokument verknüpft wer-
den. Genauso kann auf eine Textstelle in dem aktuellen Dokument oder einem ande-
ren Dokument verwiesen werden. Das "Anker"-Tag wird sowohl für die Markierung
einer Textstelle als Sprungziel, als auch für einen Link, mit dessen Hilfe man zu einer
markierten Textstelle im Dokument oder zu einem anderen Dokument springen kann,
genutzt. Die Syntax eines Ankers sieht wie folgt aus:

 ein beliebiges Element, wie Text oder Bild

Die Bedeutung des Tags wird über Attribute gesteuert. Die möglichen Attribute sind:

• HREF: Das Attribut HREF steht für "hyper reference". Damit kann das Ziel, zu dem
gesprungen werden soll, das sich im selben oder einem anderen Dokument befin-
det oder ein anderes Dokument bezeichnet, angegeben werden. Soll beispiels-
weise auf eine Internetseite verwiesen werden, so muss folgendes geschrieben
werden:

 Link

Soll auf einen Anker im selben Dokument verwiesen werden, dann muss das
Attribut folgenden Wert besitzen:

 Link zum Anker

Damit dieser Link innerhalb eines Dokumentes gesetzt werden kann, muss ein
entsprechender Anker mit dem Namen anker definiert sein.

161 In einem Hypertext sind zum eigentlichen Text Metadaten hinzugefügt, die es erlauben, gezielt

durch den Text zu navigieren. So genannte Hyperlinks (oder Links) stellen dabei die Verbindung
zwischen Schlüsselbegriffen her und erlauben ein Springen gemäß der Verbindung.

Applets 797

• NAME: Wird das Attribut NAME verwendet, so definiert man über das Tag <A> einen
Anker mit dem angegebenen Namen. Soll das obige Beispiel des Links zum Anker
mit dem Namen anker innerhalb einer Webseite funktionieren, so muss folgendes
definiert werden:

 An diese Teststelle wird gesprungen

Anstatt ATTRIBUT steht im Falle einer Vereinbarung eines Links HREF und im Falle
der Vereinbarung eines Sprungziels NAME. Anstelle von LABEL muss die Bezeich-
nung des Links bzw. die Bezeichnung des Sprungziels angegeben werden. Bei Ver-
weisen innerhalb eines Dokuments muss vor dem Label das Zeichen ‘#’ angebracht
werden. Das folgende Beispiel zeigt die Vereinbarung eines Links und eines
Sprungziels für einen Sprung innerhalb eines Dokuments und die Vereinbarung
eines Links für den Sprung zu einem anderen Dokument:

<!-- Datei: link.html -->

<HTML>
 <HEAD>
 <TITLE>Verschiedene Anwendungen für den Anker</TITLE>
 </HEAD>
 <BODY>
 Hier ist der Anfang des Dokuments.

 Dazwischen können einige Seiten oder

 ein Link auf die Homepage der Hochschule Esslingen sein.

 http://www.hs-esslingen.de
...

 Und am Ende des Dokuments ist ein Verweis zum
 Anfang zurück.
 </BODY>
</HTML>

Bild 20-7 Das Anker-Element

798 Kapitel 20

Bilder

Mit HTML kann man natürlich auch Bilder einbinden. Für das Einbinden einer Grafik
ist das Tag (von "image") zuständig. Die Quelladresse (URL) des Bildes muss
dem Attribut SRC (von "source") übergeben werden. Weiter kann ein Text dem
Attribut ALT (von "alternative") zugewiesen werden, der dann erscheint, wenn das
Bild nicht zu finden ist oder die Übertragung erfolglos war. Mit dem ALIGN-Attribut
kann man das Bild ausrichten. Dafür gibt es die Werte top, middle und bottom.
Durch das Attribut ISMAP teilt man dem Browser mit, dass es sich bei dem Bild um
eine Imagemap handelt, bei dem ein Teil eines Bildes als Hyperlink wirken kann.
Dabei muss das Bild innerhalb eines Anker-Elements aufgerufen werden. So ist es
möglich, über ein Bild auf eine andere Seite zu springen. Im Folgenden ein Beispiel
für die Einbindung eines Bildes:

<!-- Datei: bild.html -->

<HTML>
 <HEAD>
 <TITLE>Ein Bild</TITLE>
 </HEAD>
 <BODY>
 Natürlich ist es auch möglich, Bilder
 in HTML-Dokumente einzufügen.<P>
 <CENTER></CENTER>
 </BODY>
</HTML>

Bild 20-8 Bild einfügen

Applets 799

Das Tag <CENTER> sorgt dafür, dass das Bild globe.gif zentriert in der Anzeige-
fläche dargestellt wird.

20.1.3 Einbindung eines Applets in eine HTML-Seite

Nun kommen wir der Sache schon näher. Ein Applet wird in eine HTML-Seite eben-
falls mit einem speziellen HTML-Tag, dem so genannten Applet-Tag eingebunden.
Das Tag hat folgende Syntax:

<APPLET
 CODE = "Klassenname"
 WIDTH = Breite
 HEIGHT = Höhe
 [CODEBASE = "Applet URL"]opt
 [ALIGN = "... "]opt
 [ALT = "... "]opt
 [NAME = "..."]opt
 [HSPACE = ...]opt
 [VSPACE = ...]opt >
 [<PARAM NAME = "Parametername" VALUE = "Parameterwert">]opt
</APPLET>

Bitte beachten Sie, dass die in den eckigen Klammern [und] eingeschlossenen
Attribute mit dem tief gestellten opt optionale Attribute sind, die nicht unbedingt ange-
geben werden müssen. Das <APPLET>-Tag benötigt lediglich die Angabe der drei
Attribute CODE, WIDTH und HEIGTH. Somit sieht die einfachste Form des <APPLET>-
Tags folgendermaßen aus:

<APPLET CODE="Klasse.class" WIDTH=200 HEIGHT=200></APPLET>

Das Tag <APPLET> markiert den Anfang der Applet-Deklaration in einer HTML-Seite
und </APPLET> kennzeichnet das Ende der Applet-Deklaration. Das <APPLET>-Tag
hat die folgenden Attribute:

• Das Attribut CODE bezeichnet den Namen der Klasse, die geladen werden soll.
Dabei muss "Klassenname" mit dem tatsächlichen Namen der Klasse überein-
stimmen. Die Dateinamenserweiterung .class ist ebenfalls optional.

• Die Attribute WIDTH und HEIGHT sind wie das Attribut CODE zwingend vorge-
schrieben. Sie geben die Größe des Ein- bzw. Ausgabebereichs eines Applets auf
einer HTML-Seite in Pixeln an.

• Das Attribut CODEBASE gibt den Klassenpfad für das Applet und den von ihm
benutzten Klassen relativ zum Verzeichnis der HTML-Datei – oder als absoluter
Pfad – an. Dieses Attribut kann dann weggelassen werden, wenn sich das Applet
im selben Verzeichnis wie die HTML-Seite befindet.

• Das Attribut ALIGN ermöglicht die Ausrichtung des Applets auf der HTML-Seite.
Hierzu gibt es die Werte TEXTTOP, TOP, ABSMIDDLE, MIDDLE, BASELINE und
ABSBOTTOM.

• Das Attribut ALT gibt einen Text an, der in einem Browser angezeigt wird, der das
<APPLET>-Tag versteht, jedoch das Applet nicht ausführen kann.

800 Kapitel 20

• Das Attribut NAME gibt dem Applet einen Namen innerhalb einer HTML-Seite.
Durch ihn können sich verschiedene Applets auf einer Seite ansprechen und mit-
einander Daten austauschen.

• Die Attribute HSPACE (von horizontal space) und VSPACE (von vertical space)
geben die Anzahl der Pixel an, die am linken und am rechten Rand (HSPACE) bzw.
am oberen und am unteren Rand (VSPACE) des Applets zum Text der HTML-Seite
freigehalten werden sollen.

Zwischen <APPLET> und </APPLET> können beliebig viele <PARAM>-Tags stehen.
Ein <PARAM>-Tag definiert einen Übergabewert, mit dessen Hilfe ein Parameter aus
einer HTML-Seite an ein Applet übergeben werden kann162. Das Attribut NAME kenn-
zeichnet dabei den Namen des Parameters und das Attribut VALUE kennzeichnet
den Wert des Parameters, wie in folgendem Beispiel zu sehen ist:

<APPLET CODE = "Parameter.class" WIDTH = 100 HEIGHT = 150>
 <PARAM NAME = "JavaManuskript" VALUE = "Version 1.1">
</APPLET>

20.2 Das "Hello, world"-Applet

Wie auch schon für die erste Java-Applikation soll es die Aufgabe des ersten Applets
in diesem Buch sein, "Hello, world" auszugeben. Diesmal soll die Ausgabe jedoch
nicht in einer Konsole erfolgen, sondern "Hello, world" soll innerhalb eines Browser
im Zeichenbereich eines Applets ausgegeben werden. Dazu betrachten wir das
folgende Beispiel:

// Datei: HelloWorldApplet.java

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorldApplet extends Applet
{
 private static final long serialVersionUID = 1L;

 public void paint (Graphics g) // g ist eine Referenz auf den
 { // Zeichenbereich des Applets
 g.drawString ("Hello, world", 50, 20);
 }
}

Um nun das Applet testen zu können, muss aus der Quelldatei zuerst eine Java-
Bytecode-Datei – also eine class-Datei – erzeugt werden. Dazu übersetzt man die
Quelldatei einfach mit dem Java-Compiler:

javac HelloWorldApplet.java

Danach muss die erzeugte class-Datei des Applets HelloWorldApplet.class
in eine HTML-Seite mit Hilfe des <APPLET>-Tags eingebunden werden. Dazu soll
das folgende Beispiel betrachtet werden:

162 Siehe Kap. 20.4.

Applets 801

<!-- Datei: HelloWorldAppletSeite.html -->

<HTML>
 <HEAD>
 <TITLE>Hello, world-Applet</TITLE>
 </HEAD>
 <BODY>
 <APPLET CODE="HelloWorldApplet.class"
 WIDTH=200
 HEIGHT=100></APPLET>
 </BODY>
</HTML>

Nun gibt es zwei Möglichkeiten, das Applet zu starten und das Resultat zu betrach-
ten:

� Ausführen eines Applets in einem Browser

Entweder ruft man die erzeugte HTML-Seite – hier die in der Datei HelloWorld-
AppletSeite.html enthaltene Seite – mit einem Browser auf. Das Ergebnis
zeigt das folgende Bild 20-9:

Bild 20-9 Das gestartete Applet HelloWorldApplet in einem Browser

Sollte das Applet nicht angezeigt werden, so müssen sie eventuell
die Sicherheitseinstellungen in ihrem Browser anpassen. Bei man-
chen Browsern – so zum Beispiel im Internet Explorer von Micro-
soft – wird das Laden und Ausführen von Applet-Code standard-
mäßig blockiert!

Wollen sie die Ausführung von Applet-Code auf ihrem Computer
unterbinden, so müssen sie die Einstellungen anschließend wieder
zurücksetzen, da sonst jedes Applet – auch das von fremden Sei-
ten – ohne Nachfrage ausgeführt wird.

Vorsicht!

802 Kapitel 20

� Ausführen eines Applets mit Hilfe des Appletviewers

Für die Entwicklung von Applets kann zum Ausführen und Testen des Codes das
Programm appletviewer.exe des Java Development Kits verwendet werden.
Es zeigt das Applet in einem eigenen Fenster in genau der Weise an, wie es auch
innerhalb eines Browser-Fensters in Erscheinung treten würde.

Das Programm appletviewer.exe ist Bestandteil des JDK und
befindet sich dort im bin-Verzeichnis.

Das Programm appletviewer wird genauso von der Konsole aus aufgerufen,
wie alle anderen Programme des JDKs auch – beispielsweise der Compiler
javac oder der Interpreter java. Mit Hilfe des Appletviewers wird das Applet
dann außerhalb eines Browser gestartet. Die Aufrufsyntax des Programms lautet
wie folgt:

 appletviewer <Name der HTML-Seite mit Applet-Tag>

appletviewer.exe erwartet als Aufrufparameter den Namen der
HTML-Seite, in der das Applet eingebunden ist, und nicht die
class-Datei des Applets. Der Appletviewer interpretiert das in der
HTML-Seite enthaltene <APPLET>-Tag und startet dann das dort
angegebene Applet. Enthält die HTML-Seite kein <APPLET>-Tag,
dann führt der Appletviewer keine Aktion durch und wird sofort
wieder beendet.

Zum Beispiel kann das Applet HelloWorldApplet folgendermaßen mit dem Applet-
viewer gestartet werden:

 appletviewer HelloWorldAppletSeite.html

 Mit diesem Aufruf wird ein Fenster geöffnet, in dem das Applet dargestellt wird:

Bild 20-10 Das HelloWorldApplet im Appletviewer

Alle Applets sind Subklassen der Klasse java.applet.Applet. Deshalb wird auch
im obigen Beispiel die Klasse Applet importiert und das HelloWorldApplet von
ihr abgeleitet.

Applets 803

Die Klasse java.applet.Applet ist – wie in Bild 20-11 zu sehen – ein Container.
Es können somit im Zeichenbereich eines Applets genauso wie in einem Fenster
Komponenten dargestellt werden. Da ein Applet jedoch auch eine Komponente ist,
kann man auch jedes Applet innerhalb eines Containers – z. B. eines Fensters – dar-
stellen. Dieses Vorgehen bietet sich an, wenn man ein Applet testen will, ohne dafür
eine HTML-Seite zu schreiben.

 Object

Component

Container

Panel

Applet

Bild 20-11 Vererbungshierarchie der Klasse Applet

In der Klasse Component und damit auch in allen von Component abgeleiteten
Klassen gibt es eine Methode paint(). Diese Methode wird von der virtuellen Ma-
schine jedesmal aufgerufen, wenn ein Neuzeichnen einer Komponente erforderlich
ist. In der Methode paint() wird dann die Komponente neu gezeichnet. Dies ist
auch bei einem Applet der Fall. Man kann also wie im obigen Beispiel die Methode
paint() überschreiben und in ihr direkt auf die Applet-Oberfläche zeichnen.

Die Methode paint() wird immer dann aufgerufen, wenn der Zei-
chenbereich der Komponente – in unserem Beispiel der Zeichenbe-
reich des Applets – neu dargestellt werden muss. Dies ist beispiels-
weise dann der Fall, wenn dieser Bereich durch ein anderes Fenster
überdeckt wird.

804 Kapitel 20

Zur Demonstration wird das Beispiel des Applets HelloWorldApplet nun so ver-
ändert, dass in der Methode paint() der String "Wird neu gezeichnet" ausge-
geben wird:

public void paint (Graphics g)
{
 System.out.println("Wird neu gezeichnet");
 g.drawString ("Hello, world", 50, 20);
}

Wird die Appletklasse neu übersetzt und der Appletviewer aufgerufen, so wird einmal
der String "Wird neu gezeichnet" ausgegeben. Verschiebt man jetzt das Fenster
des Appletviewers, in dem der Zeichenbereich des Applets dargestellt ist, aus dem
sichtbaren Bereich des Bildschirms, ist zu erkennen, dass der String "Wird neu
gezeichnet" immer wieder ausgegeben wird.

Zum Zugriff auf die Zeichenfläche des Applets wird an die Methode paint() eine
Referenz auf ein Objekt der Klasse java.awt.Graphics übergeben. Dieses
Graphics-Objekt ist eine Referenz auf den Applet-Zeichenbereich in der HTML-
Seite und bietet somit eine Möglichkeit, direkt auf die Oberfläche zuzugreifen. Die
java.awt.Graphics-Klasse bietet viele Methoden zur Ausgabe, wie z. B. zur
Textausgabe oder zum Zeichnen von grafischen Objekten. Eine dieser Methoden ist
die drawString()-Methode zur Ausgabe eines Textes, die auch im Beispiel ver-
wendet wird. Die Methode drawString() ist folgendermaßen definiert:

public abstract void drawString (String str, int x, int y)

Dabei wird im ersten Parameter eine Referenz auf ein String-Objekt übergeben,
dessen Inhalt gezeichnet werden soll. Der zweite Parameter ist die x-Koordinate und
der dritte Parameter die y-Koordinate der linken unteren Ecke des darzustellenden
Textes. Zu beachten ist, dass der Ursprung sich bei jeder Komponente in der linken
oberen Ecke befindet.

X-Achse

Y
-A

chse

0
0

Hello, world

x

y

Bild 20-12 Darstellung eines Textes in einer Komponente

20.3 Der Lebenszyklus eines Applets

Ein Applet wird – wie zuvor schon erwähnt – mit Hilfe des Java-Plugins von einer
virtuellen Maschine innerhalb eines Browser ausgeführt und ist in eine HTML-Seite

Applets 805

eingebettet (siehe Bild 20-13). Wird eine HTML-Seite, die ein Applet enthält, mit Hilfe
eines Browser geöffnet, so wird mit dem HTML-Code auch der Applet-Code auf den
Computer heruntergeladen. Die class-Datei des Applets wird dann in eine virtuelle
Maschine geladen und das Applet innerhalb des Browser-Fensters ausgeführt. Wird
die Seite wieder verlassen, so wird auch die Instanz des Applets zerstört.

HTML-Browser

HTML-Seite

Applet init()

start()

stop()

destroy()

Bild 20-13 Steuerung des Applets durch den Browser

Gesteuert wird ein Applet durch das Java-Plugin, mit anderen Worten, der Lebens-
zyklus eines Applets wird durch den Aufruf von Methoden des Applets durch die
virtuelle Maschine kontrolliert, innerhalb der das Applet ausgeführt wird. In Bild 20-14
wird der Lebenszyklus eines Applets als Zustandsdiagramm dargestellt.

zerstört

ini
t()

initialisiert

sto
p(

)

start()

destroy()
sta

rt(
)

gestoppt

läuft

paint()
Bild 20-14 Lebenszyklus eines Applets innerhalb eines Browser

Die in Java-Applikationen verwendete Methode main() wird hier nicht
benötigt und falls sie doch vorhanden sein sollte, auch nicht berück-
sichtigt.

Die Methoden, die zur Steuerung des Lebenszyklus eines Applets benötigt werden,
stellt die Klasse Applet zur Verfügung. Keine dieser Methoden ist als abstrakt de-
klariert. Dies bedeutet, dass keine der Methoden vom Programmierer überschrieben
werden muss, um eine kompilier- und ablauffähige Applet-Klasse zu entwickeln. Es
müssen nur die Methoden überschrieben werden, deren Implementierung an die in-
dividuellen Bedürfnisse angepasst werden sollen. Im Folgenden werden nun die ein-
zelnen Methoden vorgestellt:

806 Kapitel 20

• init()-Methode

 public void init()
 {

 }

Die init()-Methode wird einmalig nach dem Erzeugen des
Applet-Objektes aufgerufen. Sie dient dazu, das Applet zu
initialisieren und z. B. Parameter aus der HTML-Seite zu über-
nehmen, Schriften auszuwählen oder Bilder zu laden.

• start()-Methode

public void start()
{

}

Nachdem das Applet durch Aufruf der init()-Methode initialisiert
wurde, wird unmittelbar danach die Methode start() aufgerufen.
Sie wird auch dann aufgerufen, wenn die HTML-Seite, in der das
Applet eingebunden ist, erneut besucht wird oder wenn das Applet
in seiner Ausführung reaktiviert werden soll.

Nach dem Starten des Applets durch den Aufruf der Methode start() wird jedes
Mal, wenn ein Neuzeichnen erforderlich ist, die von der Klasse java.awt.Com-
ponent geerbte paint()-Methode aufgerufen, um das Applet neu zu zeichnen.
Die Methode erhält von der im Browser laufenden virtuellen Maschine als
aktuellen Übergabeparameter eine Referenz auf ein Objekt der Klasse Graphics.

• stop()-Methode

public void stop()
{

}

Nachdem das Applet aus dem sichtbaren Bereich gescrollt bzw.
eine neue HTML-Seite geladen wurde, ruft die virtuelle Maschine
die stop()-Methode auf. Hierbei bleibt das Applet geladen und
wird nur in seiner Ausführung angehalten. Werden in einem Applet
Threads verwendet, so sollten diese in der stop()-Methode
angehalten werden, um den Rechner während der Zeit, solange
das Applet nicht angezeigt wird, nicht unnötig zu belasten.

Applets 807

• destroy()-Methode

public void destroy()
{

}

Die destroy()-Methode wird beim Verlassen der HTML-Seite
aufgerufen.

Diese Methode entfernt ein Applet aus dem Speicher. Sollte ein Applet noch aktiv
sein, wird zuvor die stop()-Methode aufgerufen. Durch diese Methode sollten
vom Applet noch belegte Ressourcen freigegeben und nicht beendete Threads
zerstört werden.

Der beschriebene Lebenszyklus eines Applets mit den Zuständen "ini-
tialisiert", "läuft", "gestoppt" und "zerstört" ist von den Browser-Her-
stellern nicht exakt implementiert worden. In den Browsern Microsoft
Internet Explorer und Mozilla Firefox gibt es nur die Zustände "initiali-
siert", "läuft" und "zerstört". Das heißt, beim Ikonifizieren eines Brow-
ser-Fensters, in dem ein Applet geladen ist, wird nicht die stop()-
Methode aufgerufen bzw. beim Wiederherstellen des Fensters erfolgt
kein erneuter Aufruf der start()-Methode.

Es empfiehlt sich daher, ein Applet stets mit verschiedenen Browsern
zu testen, um eventuelle Unterschiede in der Implementierung des
Applets zu berücksichtigen.

Der Appletviewer des JDK ist nach der Sun-Spezifikation implemen-
tiert und stellt alle vier Zustände des Lebenszyklus eines Applets
bereit. Die korrekte Implementierung der Methoden start() und
stop() der eigenen Applet-Klasse können somit mit dessen Hilfe ge-
testet werden.

Der Aufruf der einzelnen Methoden wird im folgenden Beispiel erläutert. Es sei
nochmals angemerkt, dass der korrekte Ablauf des Applets – das heißt, der Aufruf
aller Lebenszyklusmethoden – nur mit Hilfe des Appletviewers nachvollzogen werden
kann:

// Datei: Lebenszyklus.java

import java.applet.*;
import java.awt.*;

public class Lebenszyklus extends Applet
{
 private static final long serialVersionUID = 1L;

808 Kapitel 20

 private int initZaehler = 0;
 private int startZaehler = 0;
 private int stopZaehler = 0;
 private int destroyZaehler = 0;

 public void paint (Graphics g)
 {
 g.drawString ("Lebenszyklus eines Applets:", 0, 10);
 g.drawString ("init-Zähler: " + initZaehler, 0, 30);
 g.drawString ("start-Zähler: " + startZaehler, 0, 50);
 g.drawString ("stop-Zähler: " + stopZaehler, 0, 70);
 g.drawString ("destroy-Zähler: " + destroyZaehler, 0, 90);
 }

 public void init()
 {
 initZaehler++;
 }

 public void start()
 {
 startZaehler++;
 }

 public void stop()
 {
 stopZaehler++;
 }

 public void destroy()
 {
 destroyZaehler++;
 }
}

Wird das Fenster des Appletviewers minimiert – dies erreicht man durch das Klicken
auf das Minus-Zeichen des Appletviewer-Fensters – und durch erneutes Anklicken
des Fenster-Symbols in der Taskleiste wiederhergestellt, so ist zu beobachten, dass
die beiden Zähler startZaehler – inkrementiert in der Methode start() – und
stopZaehler – inkrementiert in der Methode stop() – mit jedem Minimieren-Wie-
derherstellen-Durchlauf kontinuierlich hochgezählt werden. Beim Testen des obigen
Programms mit dem Appletviewer wird somit folgende Ausgabe erzielt:

Bild 20-15 Ausgabe des Lebenszyklus-Applets

Applets 809

20.4 Parameterübernahme aus einer HTML-Seite

In Java-Applikationen können Parameter beim Aufruf über die Kommandozeile mit-
gegeben werden.

Mit Hilfe des HTML-Tags <PARAM> ist es möglich, aus einer HTML-
Seite heraus Parameter an ein Applet zur weiteren Verarbeitung zu
übergeben. Der Wert des Parameters kann mit der getParame-
ter()-Methode der Klasse Applet innerhalb eines Applets abgeholt
werden.

Im folgenden Beispiel ist ein Ausschnitt aus einer HTML-Seite dargestellt, bei dem
ein Parameter mit dem Parameternamen JavaManuskript und dem zugehörigen
Parameterwert Version 1.1 an das Applet übergeben wird.

<APPLET CODE = "Parameter.class"
 WIDTH = 100
 HEIGHT = 150>

<PARAM NAME = "JavaManuskript" VALUE = "Version 1.1">
</APPLET>

Das Auslesen von Parameterwerten aus einer HTML-Seite erfolgt mit
der getParameter()-Methode der Klasse Applet. Zu beachten ist,
dass alle Parameter als String übergeben werden und die Methode
getParameter() eine Referenz auf ein String-Objekt zurückgibt.

Im Folgenden ist ein Java-Applet dargestellt, mit dessen Hilfe der Wert des Para-
meters JavaManuskript aus einer HTML-Seite eingelesen werden kann:

// Datei: ParameterApplet.java

import java.applet.Applet;
import java.awt.Graphics;

public class ParameterApplet extends Applet
{
 private String wert;

 public void init()
 {
 wert = getParameter ("JavaManuskript");
 }

 public void paint (Graphics g)
 {
 g.drawString ("Parameter: JavaManuskript, Wert: "
 + wert, 10, 10);
 }
}

810 Kapitel 20

In diesem Beispiel wird der Wert des Parameters mit dem Namen JavaManuskript
von der HTML-Seite ausgelesen und der Referenz wert vom Typ String zuge-
wiesen.

Die entsprechende HTML-Seite hat folgendes Aussehen:

<!-- Datei: ParameterAppletSeite.html -->
<HTML>
 <HEAD>
 <TITLE>Lebenszyklus eines Applets</TITLE>
 </HEAD>
 <BODY>
 <APPLET CODE="ParameterApplet" WIDTH=400 HEIGHT=100>
 <PARAM name="JavaManuskript" value="Javabuch, 6. Auflage">
 </APPLET>
 </BODY>
</HTML>

Mit Hilfe des <PARAM>-Tags wird der Parameter JavaManuskript an das Applet
ParameterApplet übergeben. Der Wert des Parameters wird auf "Javabuch, 6.
Auflage" gesetzt.

Bild 20-16 Auslesen eines Parameters aus einer HTML-Seite

20.5 Importieren von Bildern

Bilder werden mit Hilfe der getImage()-Methode der Klasse Applet
zur Verwendung in einem Applet geladen.

Im Folgenden ist ein Java-Applet dargestellt, mit dessen Hilfe das Bild globe.gif
für die Verwendung in einem Applet eingelesen und danach auf der Applet-Ober-
fläche dargestellt wird.

Applets 811

// Datei: BildApplet.java

import java.awt.*;
import java.applet.*;

public class BildApplet extends Applet
{
 private static final long serialVersionUID = 1L;
 private Image i;

 // Applet initialisieren
 public void init()
 {
 i = getImage (getCodeBase(), " globe.gif ");
 System.out.println ("Codebase is:" + getCodeBase());
 }

 public void paint (Graphics g)
 {
 g.drawImage (i, 0, 0, getWidth(), getHeight(), this);
 }
}

Im Beispiel wird durch den Aufruf der Methode getImage() das Bild globe.gif in
der Methode init() geladen. Der erste Übergabeparameter der Methode ist das
Verzeichnis, von dem das Bild geladen werden soll. Dieses Verzeichnis wird in Form
einer URL (Quelladresse) übergeben. In diesem Beispiel entspricht die URL dem
Rückgabewert der Methode getCodeBase(). Diese Methode gibt die URL des
Verzeichnisses zurück, von dem das Applet geladen wurde. Das Bild wird hier also
aus dem gleichen Verzeichnis des Rechners geladen, von dem auch das Applet
stammt. Der zweite Übergabeparameter ist der Dateiname des Bildes selbst.

Ein Applet kann normalerweise nur eine Verbindung zu dem Rechner
öffnen, von dem es geladen wurde.

Zum Zeichnen wird in der Methode paint() die Methode drawImage() der Klasse
Graphics verwendet. Der erste Parameter der Methode ist das zu zeichnende Bild.
Der zweite und dritte Parameter sind die x- bzw. y-Koordinaten der oberen linken
Ecke des Bildes relativ zur oberen linken Ecke des Zeichenbereichs des Applets. Die
nächsten beiden Parameter geben die Breite und Höhe des Bildes an. In diesem Fall
wurde mit den Methoden getWidth() und getHeight() der Klasse Applet die
Breite bzw. die Höhe des Zeichenbereichs des Applets an die Methode übergeben.
Dies hat den Effekt, dass das Bild immer genauso groß wie das Applet gezeichnet
wird. Als letzter Parameter wird an die Methode eine Referenz auf ein Objekt über-
geben, dessen Klasse das Interface ImageObserver implementiert. Das Interface
ImageObserver wird von der Klasse Component implementiert – ist also auch in
der Klasse Applet enthalten. Deshalb wird hier beim letzten Parameter einfach die
this-Referenz übergeben. Das Interface ImageObserver enthält eine Methode
imageUpdate(), die von der Methode drawImage() aufgerufen wird. In der
Klasse Component wird bei jedem Aufruf von imageUpdate() ein Neuzeichnen der

812 Kapitel 20

Komponente angefordert, solange das Bild nicht vollständig geladen ist. Es kann also
sein, dass man den Bildaufbau im Applet verfolgen kann.

20.6 Importieren und Abspielen von Audio-Clips

Audio-Clips werden mit Hilfe der getAudioClip()-Methode für die
Verwendung in einem Applet geladen und mit der play()-Methode
der AudioClip-Klasse abgespielt.

Derzeit werden von Java die Audioformate wav, aiff, au, midi und rmf unter-
stützt. Im Folgenden ist ein Applet dargestellt, mit dessen Hilfe der Audio-Clip
Chimes.wav eingelesen und einmalig abgespielt wird:

// Datei: AudioApplet.java

import java.applet.Applet;
import java.applet.AudioClip;

public class AudioApplet extends Applet
{
 private static final long serialVersionUID = 1L;
 private AudioClip a;

 public void init()
 {
 a = getAudioClip (getCodeBase(), "Chimes.wav");
 a.play();
 }
 //
}

Der erste Übergabeparameter der Methode getAudioClip() ist das Verzeichnis,
von dem die Audio-Datei geladen werden soll. Der zweite Übergabeparameter ist der
Dateiname der Audio-Datei selbst. Mit der Methode play() der Klasse AudioClip
kann dann die Audio-Datei abgespielt werden.

20.7 Übungen

Aufgabe 20.1: HelloWorld-Applet

Kompilieren Sie die folgende Klasse HelloWorld:

// Datei: HelloWorld.java

import java.awt.*;
import java.applet.*;

public class HelloWorld extends Applet
{
 private static final long serialVersionUID = 1L;

Applets 813

 public void paint (Graphics g)
 {
 g.drawString ("Hello, World", 50, 20);
 }
}

Bitte setzen Sie die CLASSPATH-Variable so, dass der Pfad zu der .class-Datei
des Applets enthalten ist.

Um das Applet in einem Browser zum Ablaufen zu bringen, wird die folgende Datei
hello.html benötigt. Rufen Sie die Datei hello.html von einem Browser aus
auf, um das Applet ablaufen zu lassen.

<HTML>
 <HEAD><TITLE> Aufgabe 20.1 - Hello, World </TITLE></HEAD>
 <BODY>
 <APPLET code = "HelloWorld.class"
 width = 200
 height = 200>
 </APPLET>
 </BODY>
</HTML>

Aufgabe 20.2: Lebenszyklus eines Applets. Methodenaufrufe zählen

Erweitern Sie das Applet von Aufgabe 20.1, indem Sie die Methoden init(),
start(), stop() und destroy() überschreiben. Führen Sie Variablen ein, die
zählen, wie oft die jeweilige Methode aufgerufen wurde. Als Zähler soll für jede
Methode ein int-Datenfeld bereitgestellt werden. Geben Sie die Inhalte der Variab-
len mit Hilfe der Methode drawString() aus. Ändern Sie den Klassennamen in
"Lebenszyklus" um und speichern Sie Ihr Applet unter diesem Namen ab. Ändern Sie
die HTML-Datei von Aufgabe 20.1 so, dass diese Klasse geladen wird. Speichern
Sie die Datei unter dem Namen lebenszyklus.html. Laden Sie die HTML-Datei
für das Applet "Lebenszyklus" im Appletviewer. Minimieren Sie nun mehrere Male
das Fenster des Appletviewers auf die Taskleiste und stellen sie es wieder her.
Beobachten Sie das Ergebnis der Programmausführung.

Aufgabe 20.3: Parameterübergabe an Applets

Vervollständigen Sie die folgende Datei parameter.html, damit das Applet "Para-
meter" die Daten für Datum, Email und Copyright übernehmen kann.

<HTML>
 <HEAD><TITLE> Aufgabe 20.3 Parameterübergabe </TITLE></HEAD>
 <BODY>
 <APPLET code = "Parameter.class"
 width = 500
 height = 120>

 </APPLET>
 </BODY>
</HTML>

814 Kapitel 20

Vervollständigen Sie das folgende Applet mit Hilfe der Methode getParameter(),
damit die Variablen Datum, Email und Copyright von einer HTML-Seite übernommen
werden können.

// Datei: Parameter.java

import java.applet.*;
import java.awt.*;

public class Parameter extends Applet
{
 private static final long serialVersionUID = 1L;
 // Deklaration der Instanz-Variablen
 private String Datum;
 private String Email;
 private String Copyright;

 public void init()
 {
 /* Parameter einlesen */

 }

 public void paint (Graphics g)
 {
 g.drawString (Copyright + " von " + Email, 100, 25);
 g.drawString (Datum, 100, 45);
 }
}

Aufgabe 20.4: Einfaches Applet

Entwerfen Sie ein Applet, welches zwei int-Werte addiert und das Ergebnis der
Addition ausgibt. Hierzu sollen die int-Werte als Parameter aus der HTML-Seite
übernommen werden. Schreiben Sie hierzu eine Klasse MyApplet2.java, sowie
die HTML-Seite, in die das Applet eingebettet ist. Das Applet soll die aus den Para-
metern entnommenen Werte bei der Initialisierung addieren und in einer internen
Zählervariablen speichern. Bei jedem Aufruf seiner start()-Methode soll dann
dieser Zähler um 1 erhöht und das neue Ergebnis ausgegeben werden. Bevor der
Browser das Applet aus dem Speicher entfernt, soll der Zähler wieder auf 0 zu-
rückgesetzt werden.

Weiter oben im Kapitel wurde bereits darauf hingewiesen, dass sich manche Brow-
ser nicht an die Java-Spezifikation halten. Deshalb sollte diese Aufgabe mit dem Sun
Appletviewer getestet werden. Der Appletviewer befindet sich im Unterverzeichnis
/bin des JDK.

Aufgabe 20.5: Sinus- und Kosinus-Funktion

Die Klasse Graphics bietet neben den Methoden drawString() und draw-
Image() auch die Methode drawLine(). Sie zeichnet eine Linie von einem Punkt
zu einem zweiten Punkt. Dazu benötigt die Methode jeweils die x- und y-Koordinate
der beiden Punkte als Parameter vom Typ int. Nutzen Sie diese Methode zum

Applets 815

Zeichnen einer Sinus- und einer Kosinus-Funktion. Verwenden Sie dazu in einer
for-Schleife zum Durchlaufen der x-Achse die folgenden Funktionen:

int sinus (double x)
{
 return (int) (Math.sin (x/10) * 20 + 50);
}

int cosinus (double x)
{
 return (int) (Math.cos (x/10) * 20 + 150);
}

Aufgabe 20.6: Flughafen-Projekt – Applets

Der Flughafen soll nun mit Hilfe eines Applets eine grafische Ausgabe des Radars
erhalten:

Bild 20-17 Beispielradar

Aufgabe 20.6.1: Einfaches Radar

In einer ersten Version soll der Radarschirm ohne eine Darstellung der Flugzeuge
entwickelt werden. Zum Zeichnen der benötigten Kreise und Striche können die bei-

816 Kapitel 20

den Methoden drawOval() und drawLine() der Klasse Graphics verwendet
werden. Der Radarzeiger soll mittels eines Threads bewegt werden. Eine beispiel-
hafte Anzeige zeigt Bild 20-17.

Aufgabe 20.6.2: Flugzeuge integrieren

In die Radaranzeige sollen nun die Flugzeuge integriert werden. Die Flugzeuge
sollen hierzu den Mittelpunkt des Radars auf einer Kreisbahn mit einem zufällig
gewählten Radius und einer zufälligen Geschwindigkeit umfliegen.

Die Flugzeuge sollen mittels einer neuen Klasse FlugzeugGenerator erzeugt wer-
den. Dies ist deshalb erforderlich, da das Applet ohne eine Methode main() aus-
kommen muss. Diese Klasse FlugzeugGenerator soll als Thread in einer Schleife
jeweils nach einer bestimmten Zeitspanne ein neues Flugzeug generieren. Hierbei
kann die folgende Anweisung behilflich sein:

Thread.sleep (10000 + (int)(10000 * Math.random()));

Aufgabe 20.6.3: Flackern entfernen

Die Ausgabe des Radarschirms flackert stellenweise. Um das Flackern zu vermei-
den, muss die Ausgabe zwischen gepuffert werden. Diese Methode wird "Double-
Buffering" genannt. Als Hilfestellung kann folgender Link im Internet dienen:

http://www.developer.com/java/other/article.php/626541

Beim Double-Buffering werden die Änderungen am Bildschirm nicht nach und nach
geschrieben, sondern erst einmal in einen Puffer. Dieser Puffer wird dann auf einmal
auf den Bildschirm transferiert. Dies sollte das Flackern ausschalten und eine ruhige
Bewegung des Zeigers ermöglichen.

Oberflächen-
programmierung mit Swing

21.1 Architekturmerkmale von Swing
21.2 GUI-Container
21.3 Anordnung von GUI-Komponenten
21.4 Ereignisbehandlung
21.5 Swing-GUI-Komponenten
21.6 Übungen

21 Oberflächenprogrammierung mit Swing

Die in diesem Buch bisher vorgestellten Programme wurden über die Kommandozei-
le bedient. Während das bei kleineren Programmen noch problemlos möglich ist,
wird die Bedienung über die Kommandozeile mit steigender Funktionsvielfalt eines
Programmes immer komplexer. Um die Bedienung zu erleichtern, werden so ge-
nannte grafische Bedienoberflächen eingesetzt.

Der Sinn einer grafischen Bedienoberfläche besteht darin, den Benutzer bei der Be-
dienung einer Anwendung zu unterstützen. Die grafische Oberfläche soll ihm einen
einfachen und komfortablen Zugang zu den Anwendungsfunktionen ermöglichen.
Dabei spielt die Bedienbarkeit und die daraus resultierende Gestaltung grafischer
Oberflächen eine besondere Rolle. Über die Bedienbarkeit einer grafischen Oberflä-
che gibt es bereits umfangreiche Bücher und auch eine ISO-Norm163. Bei umfangrei-
chen Programmen ist es unabdingbar, sich im Vorfeld Gedanken über die Bedienbar-
keit und das daraus folgende Aussehen der grafischen Oberfläche zu machen. Dazu
können beispielsweise Skizzen – so genannte Papier-Prototypen – verwendet wer-
den.

Das vorliegende Kapitel konzentriert sich allerdings auf das Verständnis und die Pro-
grammierung der technischen Aspekte einer grafischen Bedienoberfläche mit Swing.
In diesem Zuge stellt sich natürlich die Frage: "Was ist eigentlich Swing?".

Swing ist eine Klassenbibliothek für die Programmierung von grafi-
schen Bedienoberflächen unter Java.

Swing ist aber nicht die einzige Klassenbibliothek, die Java für die Programmierung
von grafischen Bedienoberflächen zur Verfügung stellt.

Swing ist eine Teilmenge der Java-Foundation-Classes.

Unter dem Begriff der Java-Foundation-Classes (JFC) wird eine Zusammenstellung
von mehreren Klassenbibliotheken verstanden, die folgende Aspekte der Program-
mierung einer grafischen Bedienoberfläche in Java abdecken:

•••• GUI-Komponenten

GUI ist die Abkürzung für "Graphical User Interface". Die grafische Repräsentation
einer GUI-Komponente wird auf dem Bildschirm gezeichnet. Der durch die GUI-
Komponente vereinnahmte Zeichenbereich kann oftmals Benutzereingaben über
Maus oder Tastatur entgegennehmen. Es gibt ganz einfache GUI-Komponenten –
wie beispielsweise ein Textfeld – oder komplexe – wie beispielsweise eine Ta-

163 ISO 9241-110 "Grundsätze der Dialoggestaltung".

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_21,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Oberflächenprogrammierung mit Swing 819

belle. Je nach Art der GUI-Komponente werden spezifische Eigenschaften – wie
Sortieren, Drucken oder Drag and Drop164 – unterstützt.

•••• Pluggable "Look and Feel"

Durch das Pluggable "Look and Feel" erhält man die Möglichkeit, das Aussehen
und das Verhalten der GUI-Komponenten zu verändern. Dies geht sogar während
der Laufzeit. Es existieren verschiedene Arten des "Look and Feel". Manche da-
von sind auf allen unterstützten Plattformen verfügbar. Andere sind nur auf be-
stimmten Plattformen vorhanden. So ist das Windows-"Look and Feel" nur für die
Microsoft Windows-Plattform oder das Macintosh-"Look and Feel" nur für die
Apple Mac OS-Plattform verfügbar.

•••• Accessibility

Accessibility bedeutet ins Deutsche übersetzt "Zugänglichkeit" und meint damit,
dass auf ein Programm möglichst komfortabel und zugeschnitten auf den Anwen-
derkreis zugegriffen werden kann. Um dies zu erreichen, wird die Anbindung von
zusätzlichen Ein- und Ausgabegeräten – außer Bildschirm, Tastatur und Maus – in
die Benutzerschnittstelle ermöglicht. Es können hier z. B. nachträglich Sprachein-
und -ausgaben implementiert werden, die dann auch blinden Anwendern das Be-
nutzen eines Programmes ermöglichen.

•••• Java 2D

Java 2D ist für die Druckausgabe zuständig und ermöglicht das Zeichnen von
geometrischen Primitiven und Diagrammen. Darüber hinaus ist es mittels Java 2D
möglich, eigene Formen oder neue Schriftarten aus Dateien zu erstellen.

•••• Internationalisierung

Der Vorgang der Internationalisierung befasst sich mit der Anpassbarkeit einer
Software an verschiedene länderspezifische Gegebenheiten wie die Sprache oder
die Kultur. Beispielsweise muss berücksichtigt werden, dass ein Text in verschie-
denen Sprachen bzw. Kulturen eine unterschiedliche Länge oder eine andere Le-
serichtung besitzt.

Das hier vorliegende Kapitel befasst sich mit den GUI-Komponenten und dem Plugg-
able "Look and Feel" der JFC. Hierzu werden die Klassenbibliotheken AWT (Abstract
Window Toolkit) – das Paket java.awt – und Swing – das Paket javax.swing –
benötigt165. Die Klassenbibliothek AWT kann hierbei als eine Basis für die Klassen-
bibliothek Swing angesehen werden (siehe Kapitel 21.1.1). Allein der Umfang von
Swing ist so groß, dass komplette Bücher existieren, die sich ausschließlich allein mit
Swing beschäftigen und die mehr Seiten haben als das vorliegende Buch. Dieses
Kapitel konzentriert sich auf die Architekturansätze von Swing und gibt damit das
nötige Hintergrundwissen, um die Swing-Klassenbibliothek zu verstehen und damit
auch anwenden zu können.

164 "Drag and Drop" lässt sich mit "Ziehen und Fallen lassen" übersetzen. Die "Drag and Drop"-

Funktionalität in Java ermöglicht einen Datentransfer zwischen GUI-Komponenten, Java-Pro-
grammen untereinander sowie Java-Programmen und "nativen" Programmen.

165 Pakete in der Java Standard Edition, die mit javax beginnen, bezeichnen ursprünglich optionale
Klassenbibliotheken, die in der Zwischenzeit in die Java Standard Edition integriert wurden.

820 Kapitel 21

21.1 Architekturmerkmale von Swing

In diesem Kapitel werden die essentiellen Architekturmerkmale der Swing-Klassen-
bibliothek erläutert, deren Kenntnis das Erstellen von grafischen Bedienoberflächen
mit Swing erleichtert.

21.1.1 Swing führt "leichtgewichtige" GUI-Komponenten ein

Um zu verstehen, was eine "leichtgewichtige" GUI-Komponente auszeichnet, wird
hier ein kleiner Exkurs zu den "schwergewichtigen" AWT-GUI-Komponenten unter-
nommen. Die Klassenbibliothek AWT stellt GUI-Komponenten zur Verfügung, welche
auf Bibliotheken des jeweiligen Betriebssystems zurückgreifen, um die eingegebene
Information von Maus und Tastatur entgegenzunehmen, sowie die auszugebende
Information auf dem Bildschirm darzustellen. Das Zeichnen einer AWT-GUI-Kompo-
nente – beispielsweise einer Schaltfläche vom Typ java.awt.Button – wird also
durch das zugrundeliegende Betriebssystem und nicht durch die virtuelle Maschine
durchgeführt. Aussehen und Verhalten eines Java-Programmes mit grafischer Be-
dienoberfläche aus AWT-GUI-Komponenten sind damit abhängig vom jeweiligen
Betriebssystem. Um ein Java-Programm mit grafischer Bedienoberfläche aus AWT-
GUI-Komponenten überhaupt problemlos auf unterschiedlichen Plattformen ausfüh-
ren zu können, dürfen damit nur GUI-Komponenten verwendet werden, die auf allen
unterstützten Betriebssystemen zur Verfügung stehen.

AWT-GUI-Komponenten werden aufgrund ihrer Abhängigkeit vom
Betriebssystem als "schwergewichtig" bezeichnet.

Die Abhängigkeit der AWT-GUI-Komponenten vom Betriebssystem in Aussehen und
Verhalten und die Beschränkung auf jene GUI-Komponenten, die auf allen Betriebs-
systemen verfügbar sind, waren die Hauptgründe für die Einführung der Swing-GUI-
Komponenten mit dem JDK 1.2.

Im linken Teil von Bild 21-1 ist die Klassenhierarchie der AWT-GUI-Komponenten
dargestellt. Alle AWT-GUI-Komponenten sind im Paket java.awt zu finden166 und
sind "schwergewichtig". Die Klasse Component bildet die gemeinsame Superklasse
für alle GUI-Komponenten. Die Klasse Container leitet von der Klasse Component
ab und besitzt die Fähigkeit, andere GUI-Komponenten in sich aufzunehmen. Auf die
Fähigkeiten der Klasse Container wird ausführlich in Kapitel 21.2 eingegangen. Im
rechten Teil von Bild 21-1 ist die Klassenhierarchie der Swing-GUI-Komponenten
dargestellt. Alle Swing-GUI-Komponenten befinden sich im Paket javax.swing.

Die Erweiterung der schwergewichtigen AWT-GUI-Komponenten Frame, Dialog,
Applet und Window durch die schwergewichtigen Swing-GUI-Komponenten
JFrame, JDialog, JWindow und JApplet ist in Architekturanpassungen begrün-
det.

166 Eine Ausnahme bildet die Klasse Applet. Die Klasse Applet befindet sich im Paket

java.applet (siehe Bild 21-1).

Oberflächenprogrammierung mit Swing 821

Die Klassen JFrame, JDialog, JWindow und JApplet sind die
"schwergewichtigen" Swing-GUI-Komponenten und sind deshalb
in Aussehen und Verhalten abhängig vom Betriebssystem.

Die Swing-Klassenbibliothek erweitert damit die AWT-GUI-Komponenten sowohl um
"schwergewichtige" als auch um "leichtgewichtige" Swing-GUI-Komponenten.

Swing-GUI-Komponenten
aus dem Paket javax.swing

AWT-GUI-Komponenten
aus dem Paket java.awt

Paket

 java.applet

JFrame

JWindow

JDialog

JApplet

Button

Label

Container Component

Window Frame

Dialog

Panel Applet

JComponent JPanel

JLabel

sc
hw

er
ge

w
ic

ht
ig

e
S

w
in

g-
G

U
I-

K
om

po
ne

nt
en

le
ic

ht
ge

w
ic

ht
ig

e
S

w
in

g-
G

U
I-

K
om

po
ne

nt
en

.

.

leichtgewichtige
GUI-Komponenten

schwergewichtige
GUI-Komponenten

Legende:

Bild 21-1 Leichtgewichtige und schwergewichtige GUI-Komponenten

Alle Klassen, die von der Klasse JComponent ableiten, sind die so genannten
"leichtgewichtigen" Swing-GUI-Komponenten.

"Leichtgewichtige" Swing-GUI-Komponenten werden mit Hilfe der
Java 2D-Klassenbibliothek durch die JVM selbst auf dem Bildschirm
gezeichnet und sind damit in Aussehen und Verhalten unabhängig
vom Betriebssystem.

Im Gegensatz zu den "schwergewichtigen" GUI-Komponenten, die durch das Be-
triebssystem vorgegeben sind und damit weder einfach erweitert, noch an eigene
Bedürfnisse angepasst werden können, ermöglicht das Konzept der "leichtgewich-
tigen" Swing-GUI-Komponenten die Bereitstellung von eigenen neuen und kom-
plexeren GUI-Komponenten ohne die Anpassung aller unterstützter Betriebssys-
teme. Ergänzend kann mit den in Java selbst implementierten Swing-GUI-Kompo-
nenten sichergestellt werden, dass das Aussehen und Verhalten der grafischen Be-
dienoberfläche auf allen Plattformen gleich ist.

822 Kapitel 21

21.1.2 Swing implementiert MVC

MVC (Model-View-Controller) ist ein so genanntes Architekturmuster. Ein Architektur-
muster beschreibt im Generellen eine bewährte Zerlegung eines Systems in Teilsys-
teme und ihr Zusammenwirken. Das Architekturmuster MVC beschreibt im Speziellen
eine bewährte Aufteilung eines Systems mit einer Mensch-Maschine-Schnittstelle
(MMI). Bei einem Informationssystem wird das MMI heute typischerweise durch eine
grafische Bedienoberfläche repräsentiert.

Die Swing-Klassenbibliothek ist eine Implementierung des MVC-Archi-
tekturmusters.

Bevor die Architektur der Swing-Klassenbibliothek studiert werden kann, ist es des-
halb hilfreich, sich in einem ersten Schritt mit dem MVC-Architekturmuster zu befas-
sen.

21.1.2.1 Architekturmuster MVC für grafische Oberflächen

Ein System, das nach dem Architekturmuster MVC entworfen wird, teilt die Imple-
mentierung einer Systemfunktionalität in Model-, View- und Controller-Anteile auf.
Bei einem Informationssystem ist die View mit der Ausgabe auf dem Bildschirm
und der Controller mit der Eingabe über Tastatur oder Maus gleichzusetzen. Das
Model hält auf jeden Fall die Daten, die durch die View gerade zur Anzeige gebracht
werden. Stellt man sich eine Software für eine Online-Buchhandlung vor und be-
trachtet den Anwendungsfall "Warenkorb anzeigen", so wäre die View für die An-
zeige der im Warenkorb enthaltenen Bücher auf dem Bildschirm zuständig, der Con-
troller wäre dafür zuständig, die durch den Anwender durchgeführten Benutzerinter-
aktionen entgegenzunehmen und zu interpretieren, und das Model würde die im Wa-
renkorb enthaltenen Bücher temporär speichern.

Eine mögliche Interaktionsfolge zwischen Model, View und Controller soll anhand der
schematischen Darstellung aus Bild 21-2 erläutert werden.

Model
(Datenhaltung)

View
(Ausgabe)

grafische Bedienoberfläche

1: Eingaben des Benutzers

3: Änderung der Ansicht

2: Änderung der Daten 4: neue Daten vorhanden

5: Anforderung neuer Daten

Controller
(Eingabe)

Bild 21-2 Schematische Darstellung der Zusammenarbeit von Model, View und Controller

Oberflächenprogrammierung mit Swing 823

Der Benutzer interagiert mit der grafischen Bedienoberfläche, indem er beispiels-
weise mit der Maus auf eine Schaltfläche (engl. Button) klickt. Die View – das heißt,
der auf dem Bildschirm sichtbare und aktive Anteil der grafischen Bedienoberfläche –
nimmt das Ereignis entgegen und leitet dieses an den zugehörigen Controller weiter
(1). Der Controller hat die Aufgabe, dieses Ereignis zu interpretieren und entspre-
chend seiner Programmierung zu behandeln. Er veranlasst das Model, seine Daten
zu ändern oder seinen Zustand zu wechseln (2). Eventuell wird auch die View veran-
lasst, ihren Zustand zu verändern (z. B. ein Textfeld auszublenden) (3). Das Model
meldet an die View, dass sich seine Daten geändert haben (4). Die View holt die
neuen Daten vom Model ab und aktualisiert ihre Darstellung (5).

View und Controller kennen damit ihr zugehöriges Model und besitzen zu diesem
eine Abhängigkeitsbeziehung (siehe Bild 21-3). Die View muss die Methoden des
Model kennen, um die darzustellenden Daten abzufragen, und der Controller muss
die Methoden des Model zur Änderung der Daten kennen. Zwischen dem Controller
und der View besteht eine wechselseitige Abhängigkeit, weil die View den Controller
über Eingaben des Benutzers informieren muss und da der Controller den Zustand
einer View bestimmt.

 Controller View

Model

Bild 21-3 Abhängigkeitsbeziehungen zwischen Model, View und Controller

Da in vielen Anwendungen die gleichen Daten unterschiedlich dargestellt werden,
kann es auch mehrere Views pro Model geben (siehe Bild 21-4).

1 10

2 25

3 35

0
5

10
15
20
25
30
35
40

0
5

10
15
20
25
30
35
40

0 1 2 3 4

:View1 :View2 :View3

:Model

Bild 21-4 Daten eines Model in verschiedenen Views dargestellt

824 Kapitel 21

Im Folgenden werden die Aufgaben von Model, View und Controller zusammen-
fassend aufgeführt:

• Das Model hält die für die Anzeige relevanten Daten. Es hat Methoden, mit deren
Hilfe die Daten abgerufen (typischerweise von der View) und geändert werden
können (typischerweise durch den Controller). Das Model bestimmt, welche Daten
geändert werden können und welche Daten zur Ansicht bereitstehen. Für den Zu-
griff auf die Verarbeitungsfunktionen eines Systems (beispielsweise für die Prü-
fung der Verfügbarkeit eines Buches) oder für den Zugriff auf Funktionen zur per-
sistenten Datenspeicherung oder für die Kommunikationen mit Systemanteilen,
die sich auf anderen Rechnern befinden, fungiert das Model oftmals als Schnitt-
stellen-Objekt zu den Verarbeitungs-, Datenhaltungs- und Kommunikationsfunk-
tionen des Systems.

• Eine View dient zur Darstellung der Daten des Model. Verschiedene Views kön-
nen dieselben Daten auf unterschiedliche Weise dem Benutzer präsentieren (sie-
he Bild 21-4). Werden Daten im Model geändert, so werden auch alle Views, die
diese Daten anzeigen, aktualisiert. Außer der Darstellung von Daten enthält eine
View beispielsweise auch Textfelder zur Eingabe von Text oder Schaltflächen zur
Interaktion des Anwenders mit der Anwendung. Eine Eingabe in ein Textfeld oder
das Drücken einer Schaltfläche erzeugt dabei ein Ereignis. Dieses Ereignis wird
von der View nicht selbst interpretiert, sondern wird an den Controller weiterge-
leitet.

• Ein Controller steuert das Model und den Zustand der View als Folge der Ein-
gaben des Bedieners. Ein Controller ruft bestimmte Methoden beim Model auf, um
dessen Zustand entsprechend der Benutzerinteraktion zu ändern. Die Aufgabe
des Controllers ist es dabei, die für das Model empfangenen Ereignisse und die
Dateneingaben des Benutzers in Methodenaufrufe für das Model umzusetzen. Er
interpretiert die Aktionen und entscheidet, welche Methoden des Model aufgerufen
werden sollen. Er fordert es damit auf, eine Änderung seines Zustandes oder
seiner Daten durchzuführen. Des Weiteren kann die durch ein Ereignis ausgelöste
Aktion es erfordern, dass die View angepasst werden muss, weil beispielsweise
Schaltflächen oder Textfelder zu aktivieren oder zu deaktivieren sind. Die Benach-
richtigung einer View wird ebenfalls vom Controller nach der Interpretation eines
Ereignisses vorgenommen.

21.1.2.2 MVC in den Swing-GUI-Komponenten

Nach der allgemeinen Kurzeinführung in das Architekturmuster MVC zeigt dieses
Kapitel anhand von einfachen Beispielen, auf welche Art und Weise sich das MVC-
Architekturmuster in einer jeden Swing-GUI-Komponente wiederfindet. Das erste
Beispiel zeigt ein Hauptfenster (Instanz der Klasse JFrame) und eine Schaltfläche
(Instanz der Klasse JButton). Im ersten Schritt stehen nur die fettgedruckten Pro-
grammcodezeilen im Fokus.

// Datei: View.java

// Swing-GUI-Komponenten befinden sich im Paket javax.swing
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.FlowLayout;

Oberflächenprogrammierung mit Swing 825

public class View
{
 public static void main (String[] args)
 {
 // Hauptfenster erzeugen
 JFrame frame = new JFrame ("Hauptfenster");
 // Schaltfläche erzeugen
 JButton button1 = new JButton ("Schaltfläche1");

 frame.setLayout (new FlowLayout());

 // Schaltfläche dem Hauptfenster hinzufügen.
 frame.add (button1);

 frame.setSize (400, 100);
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

Mit dem Ausführen der Klasse View wird folgendes Fenster auf dem Bildschirm in
der oberen linken Ecke dargestellt:

Bild 21-5 Beispiel eines Hauptfensters mit enthaltener Schaltfläche

Das Zeichnen der GUI-Komponenten auf dem Bildschirm erfolgt für den Program-
mierer – der eine grafische Bedienoberfläche mittels der Swing-Klassenbibliothek
erstellen möchte – vollständig gekapselt. Der Programmierer muss lediglich Objekte
der gewünschten GUI-Komponenten – im Beispiel Objekte der Klassen JFrame und
JButton – mit dem new-Operator erzeugen und die grafische Bedienoberfläche
zusammenstellen. Das Zusammenstellen der grafischen Bedienoberfläche erfolgt im
Beispiel durch Aufruf der Methode add() für das Objekt der Klasse JFrame.

Die Implementierung der View einer Swing-GUI-Komponente ist für
den Programmierer – der die Swing-Klassenbibliothek zum Erstellen
einer grafischen Bedienoberfläche einsetzt – nicht sichtbar.

Der Programmierer sieht lediglich das Ergebnis der Darstellung auf dem Bildschirm.
Nur für den Fall, dass der Programmierer selbst neue Views implementieren möchte,
muss er sich selbst mit dem Zeichnen einer GUI-Komponente auf dem Bildschirm
befassen.

Im obigen Beispiel werden allerdings nicht nur ein Hauptfenster und eine Schalt-
fläche auf dem Bildschirm gezeichnet, sondern sowohl das Hauptfenster als auch die
Schaltfläche besitzen einige vordefinierte Reaktionen auf Benutzerinteraktionen.

826 Kapitel 21

Bevor auf diese eingegangen wird, soll anhand von Bild 21-6 erläutert werden, wie
sich die Titelleiste eines Hauptfensters aufbaut.

Bild 21-6 Erläuterung der Titelleiste eines Hauptfensters

Folgende vordefinierten Reaktionen auf Benutzerinteraktionen sind beispielsweise
für ein Hauptfenster implementiert: Das Hauptfenster kann mit gedrückter linker
Maustaste über der Titelleiste auf dem Bildschirm verschoben werden. Bei einem
Klick auf das kleine Symbol links in der Titelleiste wird das Systemmenü167 einge-
blendet. Wird die Maus über die Schaltflächen "Minimieren", "Maximieren" und
"Schließen" in der rechten oberen Ecke des Hauptfensters bewegt, so wird die ent-
sprechende Schaltfläche hervorgehoben, um dem Benutzer zu signalisieren, dass er
hier eine Aktion durch Drücken der linken Maustaste auslösen kann. Verweilt der
Mauszeiger länger über einer Schaltfläche, wird eine zugehörige Kontexthilfe einge-
blendet. In Bild 21-7 verweilt der Mauszeiger über der Schaltfläche "Minimieren" des
Hauptfensters und der Text "Minimieren" der Kontexthilfe wird angezeigt.

Bild 21-7 Darstellung bei verweilendem Mauszeiger über der Schaltfläche "Minimieren"

Bewegen Sie den Mauszeiger auch einmal über die separat hinzugefügte Schalt-
fläche mit der Bezeichnung "Schaltfläche1" und beobachten Sie, was sich an der
Darstellung verändert. Die Darstellung verändert sich erneut, wenn die linke Maus-
taste über der Schaltfläche gedrückt und wieder losgelassen wird. Die mit der Maus
ausgelösten Ereignisse führen dazu, dass bestimmte Teile der grafischen Oberfläche
neu gezeichnet werden.

Die Swing-Klassenbibliothek stellt für die GUI-Komponenten eine vor-
definierte Controller-Funktionalität zur Verfügung.

167 Über das Systemmenü kann ein Hauptfenster beispielsweise verschoben, verkleinert oder ver-

größert werden.

Titelleiste

Bereich innerhalb der Titelleiste zum Verschieben
des Fensters bei gedrückter linker Maustaste

Symbol zum Aktivieren des Systemmenüs
bei Klick mit einer Maustaste

Schaltflächen
Minimieren, Maximieren, Schließen

Oberflächenprogrammierung mit Swing 827

Neben dieser vordefinierten Controller-Funktionalität können durch den Program-
mierer zusätzliche Controller hinzugefügt werden. Um eine eigene Controller-Funk-
tionalität einer Swing-GUI-Komponente hinzuzufügen, muss der Programmierer sich
überlegen, welche Ereignisse er abfangen möchte. Im nachfolgenden Beispielpro-
gramm soll das Ereignis, das beim Drücken der linken Maustaste über einer Schalt-
fläche ausgelöst wird, abgefangen werden. Hierzu muss man wissen, dass beim
Drücken der linken Maustaste über einer Schaltfläche automatisch ein Objekt vom
Typ ActionEvent erzeugt wird. Möchte man das ausgelöste Ereignis abfangen und
auf das Objekt vom Typ ActionEvent zugreifen, so muss man eine zum ausge-
lösten Ereignis passende Schnittstelle ActionListener implementieren. Sowohl
die Klasse ActionEvent als auch die Schnittstelle ActionListener ist im Paket
java.awt.event untergebracht. Die Schnittstelle ActionListener definiert nur
eine einzige Methode actionPerformed(), die einen Übergabeparameter vom
Typ ActionEvent besitzt. Den Programmcode, den man nun bei der Implemen-
tierung der Schnittstelle ActionListener innerhalb der Methode actionPer-
formed() niederschreibt, repräsentiert dann die selbst geschriebene Controller-
Funktionalität. Im folgenden Beispielprogramm wird die Schnittstelle ActionLis-
tener durch die selbst geschriebene Klasse ButtonController implementiert.
Als selbst geschriebene Controller-Funktionalität soll bei jedem Drücken der Schalt-
fläche ein interner Zähler erhöht werden und der aktuelle Wert des Zählers soll als
Text auf der Schaltfläche zur Anzeige gebracht werden.

Damit überhaupt bekannt ist, dass eine selbst geschriebene Controller-Funktionalität
vorhanden ist, die beim Eintreten eines Ereignisses ausgeführt werden soll, muss ein
Objekt der Klasse ButtonController – in anderen Worten der Ereignis-Interes-
sent – sich bei der entsprechenden Schaltfläche anmelden. Das Anmelden geschieht
im Beispielprogramm durch Aufruf der Methode addActionListener() für die
durch die Referenzvariable button1 referenzierte Schaltfläche. Wird die Schaltflä-
che nun gedrückt, so wird das zugehörige Ereignis an alle angemeldeten Interessen-
ten durch Aufruf der Methode actionPerformed() weitergeleitet. Die erläuterte
Vorgehensweise können Sie nun im Beispielprogramm studieren:

// Datei: ViewController.java

import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.FlowLayout;
import java.awt.event.*;

public class ViewController
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Hauptfenster");
 JButton button1 = new JButton ("Gedrückt: 0");

 // Selbst geschriebener Controller für das Ereignis anmelden,
 // das beim Drücken der Schaltfläche ausgelöst wird.
 button1.addActionListener (new ButtonController());

 frame.setLayout (new FlowLayout());

828 Kapitel 21

 frame.add (button1);

 frame.setSize (400, 100);
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

// Selbst geschriebene Controller-Funktionalität: Möchte man
// Ereignisse abfangen, um darauf individuell zu reagieren,
// so muss man die zum Ereignis passende Listener-Schnittstelle
// implementieren.
class ButtonController implements ActionListener
{
 private int counter = 0;

 // In der Methode actionPerformed() muss nun die gewünschte
 // Reaktion auf das Ereignis implementiert werden.
 public void actionPerformed (ActionEvent action)
 {
 counter++; // internen Zähler erhöhen.

 // Referenz auf die Schaltfläche - durch Aufruf der Methode
 // getSource() zum Übergabeparameter action – besorgen.
 JButton refSource = (JButton) action.getSource();
 // Neuen Text für Schaltfläche setzen.
 refSource.setText ("Gedrückt: " + counter);
 }
}

Bild 21-8 zeigt die grafische Oberfläche des Programmes, nachdem der Benutzer 24-
mal auf die Schaltfläche gedrückt hat.

Bild 21-8 Beispiel mit selbst implementierter Controller-Funktionalität

Die für eine Swing-GUI-Komponente definierten Ereignisse können
vom Programmierer durch die Implementierung spezifischer Con-
troller-Funktionalität abgefangen und verarbeitet werden.

Mit den letzten beiden Beispielen wurde eine Idee vermittelt, in welcher Form sich
View und Controller in den Swing-GUI-Komponenten wiederfinden. Bleibt die Frage
noch offen: "Wo ist das Model einer Swing-GUI-Komponente zu finden?". Ein Model
verwaltet und kapselt die Daten für eine GUI-Komponente. Aber welche Daten
müssen beispielsweise für eine Schaltfläche verwaltet werden? Man könnte vermu-
ten, dass dies der Text ist, welcher auf der Schaltfläche angezeigt wird. Dies ist aber
nicht der Fall. Der angezeigte Text ist Bestandteil der View und wird nicht im Model
gespeichert. Dies macht auch Sinn, da sich beispielsweise der auf der Oberfläche

Oberflächenprogrammierung mit Swing 829

angezeigte Text abhängig von der eingesetzten Sprache ändern kann. Im Model für
eine Schaltfläche wird deren Zustand gespeichert und verwaltet. Abhängig vom
Zustand ändert sich dann die Darstellung und das Verhalten der Schaltfläche auf
dem Bildschirm. Der Zustand "enabled" einer Schaltfläche wird durch das zugehörige
Model (in Java repräsentiert durch die Klasse DefaultButtonModel) gespeichert.
Der Zustand „enabled“ bestimmt, ob die Schaltfläche durch den Anwender auswähl-
bar ist oder nicht. Eine nicht auswählbare Schaltfläche wird nur angezeigt, aber
reagiert nicht auf Benutzerinteraktionen. Dies kann beispielsweise bei Bestellfor-
mularen folgendermaßen genutzt werden: Eine Schaltfläche "Weiter" kann erst dann
gedrückt werden, wenn der Benutzer alle relevanten Informationen eingegeben hat.
Es gibt natürlich noch weitere Zustände einer Schaltfläche wie "pressed" oder "roll-
over"168, die bestimmen, welche Repräsentation der Schaltfläche auf dem Bildschirm
gezeichnet wird und wie sich die Schaltfläche bei Benutzerinteraktionen verhält.

Für eine Schaltfläche wird in Java beim Erzeugen eines Objektes vom Typ JButton
automatisch ein eigenes Model vom Typ DefaultButtonModel angelegt. Die
Klasse DefaultButtonModel implementiert hierbei die Schnittstelle Button-
Model. Das von einer Schaltfläche referenzierte Model kann jedoch vom Pro-
grammierer durch Aufruf der Methode setModel() für eine Schaltfläche geändert
werden. Im folgenden Beispiel sollen zwei Schaltflächen das gleiche Model verwen-
den. Dies wird erreicht, indem von der einen Schaltfläche durch Aufruf der Methode
getModel() eine Referenz auf das angelegte Model abgefragt wird und indem für
die zweite Schaltfläche durch Aufruf der Methode setModel() die Referenz auf das
Model der ersten Schaltfläche übergeben wird.

// Datei: ModelViewController.java

import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.FlowLayout;
import javax.swing.ButtonModel;
import java.awt.event.*;

public class ModelViewController
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Swing-GUI-Komponente JFrame");

 JButton button1 = new JButton ("Gedrückt: 0");
 button1.addActionListener (new ButtonController());
 // Referenz auf das zugehörige Model besorgen.
 ButtonModel model = button1.getModel();

 JButton button2 = new JButton ("Gedrückt: 0");
 button2.addActionListener (new ButtonController());
 // Model von button1 auch für button2 setzen.
 button2.setModel (model);

 frame.setLayout (new FlowLayout());

168 Beim Bewegen und Verweilen des Mauszeigers über einer Schaltfläche – ohne eine Maustaste zu

drücken – wird der Zustand "rollover" eingenommen.

830 Kapitel 21

 frame.add (button1);
 frame.add (button2);

 frame.setSize (400, 100);
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

class ButtonController implements ActionListener
{
 private int counter = 0;

 public void actionPerformed (ActionEvent action)
 {
 counter++;

 // Referenz auf die Schaltfläche - durch Aufruf der Methode
 // getSource() zum Übergabeparameter action – besorgen.
 JButton refSource = (JButton) action.getSource();

 // Neuen Text für Schaltfläche setzen.
 refSource.setText ("Gedrückt: " + counter);
 }
}

Bild 21-9 zeigt die grafische Oberfläche des Programmes beim 7. Drücken der linken
Maustaste über der linken Schaltfläche. Erst wenn die Maustaste losgelassen wird,
wird auf beiden Schaltflächen der Text "Gedrückt: 7" angezeigt.

Bild 21-9 Zwei Schaltflächen, die auf das gleiche Model referenzieren

Es gibt hier zwei interessante Effekte, die Aufschluss über die Kommunikation und
die Bedeutung von Model, View und Controller geben:

• Wenn die linke Schaltfläche gedrückt wird, wird auch automatisch immer gleich-
zeitig die rechte Schaltfläche gedrückt (entsprechend gilt dies auch umgekehrt),
da beide Schaltflächen ein und dasselbe Model benutzen. Das heißt, das Ereignis,
dass die linke Maustaste über einer Schaltfläche gedrückt wird, wird durch einen
vordefinierten Controller entgegengenommen und an das zugeordnete Model
weitergegeben. Das Model ändert daraufhin seinen Zustand nach "pressed" und
benachrichtigt dann alle angemeldeten Views (im Beispiel die Views der beiden
Schaltflächen) über den neuen Zustand. Die beiden Views zeichnen sich dann in
der Repräsentation einer gedrückten Schaltfläche neu.

• Obwohl für beide Schaltflächen ein eigenes Objekt vom Typ ButtonController
angelegt wurde (um den anzeigten Text auf der Schaltfläche nach dem Drücken
zu ändern), wird unabhängig davon, welche Schaltfläche gedrückt wird, die Metho-

Oberflächenprogrammierung mit Swing 831

de actionPerformed() beider selbst implementierten Schaltflächen-Controller
aufgerufen. Dies liegt daran, dass mit dem Loslassen der linken Maustaste über
einer Schaltfläche dieses Ereignis durch einen vordefinierten Controller an das ge-
meinsame Model weitergegeben wird. Im Model wird dann der zugehörige Zu-
stand geändert und daraufhin werden die angemeldeten Interessenten über die
Zustandsänderung benachrichtigt. Angemeldete Interessenten sind sowohl die
beiden Objekte vom Typ ButtonController als auch die zugehörigen Views
der Schaltflächen, die mit dem Loslassen der Maustaste wieder neu gezeichnet
werden.

Ein Model speichert und verwaltet den Zustand einer GUI-Komponen-
te. Mehrere GUI-Komponenten können das gleiche Model verwenden.

Es gibt auch GUI-Komponenten – wie beispielsweise ein statischer Text –, für die es
kein zugehöriges Model gibt, da kein Zustand verwaltet werden muss. Bei komplexen
GUI-Komponenten – wie beispielsweise Tabellen oder Listen – werden auch die
verwalteten Daten – und nicht nur der Zustand – im zugehörigen Model gespeichert.
Ein Model für eine GUI-Komponente kann durch den Programmierer auch selbst
implementiert werden. Für einfache GUI-Komponenten ist dies aber nicht erfor-
derlich.

Zusammenfassend kann über die Implementierung des MVC-Architekturmusters in
der Swing-Klassenbibliothek folgendes festgehalten werden:

Eine GUI-Komponente in Java besitzt

• eine View,
• ein Model, falls ein Zustand oder Daten zu verwalten sind,
• eine beliebige Anzahl von vordefinierten oder selbst geschriebenen

Controllern.

Bevor im nächsten Kapitel auf das Architekturmerkmal Pluggable "Look and Feel"
von Swing eingegangen wird, zum Abschluss dieses Kapitels noch ein paar Anmer-
kungen zu den vorgestellten Beispielprogrammen:

• Die Klasse JFrame ist als Hauptfenster nicht nur eine "schwergewichtige" Swing-
GUI-Komponente, sondern kann auch beliebige andere GUI-Komponenten in sich
aufnehmen. Das zugrundeliegende Prinzip der Schachtelung oder Komposition
wird ausführlich in Kapitel 21.2 vorgestellt.

• Die verwendete Klasse FlowLayout sowie der Aufruf der Methode setLay-
out() für das Hauptfenster beeinflussen die Anordnung von GUI-Komponenten,
die dem Hauptfenster hinzugefügt werden. Die verschiedenen Möglichkeiten, Ein-
fluss auf die Anordnung von GUI-Komponenten zu nehmen, werden in Kapitel
21.3 behandelt.

• Die Implementierung eines Controllers durch die Klasse ButtonController
stellte einen ersten Berührungspunkt mit dem Konzept der Ereignisbehandlung
dar. Die Ereignisbehandlung in Java mit Ereignisquelle, Ereignis und Ereignis-

832 Kapitel 21

senke sowie unterschiedlichen Implementierungsmöglichkeiten werden ausführlich
in Kapitel 21.4 erläutert.

• Alle in Swing verfügbaren GUI-Komponenten lernen Sie anhand eines Lernpro-
grammes in Kapitel 21.5 kennen.

21.1.3 Swing unterstützt ein Pluggable "Look and Feel"

Java-Programme sind auf verschiedenen Plattformen lauffähig. Die Benutzer jeder
Plattform sind ein bestimmtes Aussehen und Verhalten der grafischen Bedienober-
fläche gewohnt. Aus diesem Grund bietet Java mit Swing die Möglichkeit, Aussehen
und Verhalten ("Look and Feel") der grafischen Bedienoberfläche an das zugrunde-
liegende Betriebssystem anzupassen. Auf der anderen Seite bietet Swing aber auch
die Möglichkeit, dass Anwendungen auf verschiedenen Plattformen gleich aussehen
und sich gleich verhalten. Dies bringt den Vorteil der vertrauten Umgebung, falls die
Anwendung auf verschiedenen Plattformen zum Einsatz kommen soll. Somit können
beispielsweise Benutzer einer Plattform ohne eine Umgewöhnung die gleiche An-
wendung auf einer anderen Plattform bedienen. Damit besitzen Java-Programme mit
einer Swing-Oberfläche die Möglichkeit, sich in die gewohnte Umgebung des Benut-
zers einzufügen.

Die Architektureigenschaft eines Pluggable "Look and Feel" der
Swing-GUI-Komponenten ermöglicht die Änderung von Aussehen und
Verhalten der grafischen Bedienoberfläche selbst zur Laufzeit.

Das Pluggable "Look and Feel" ist ein direkter Vorteil aus der Anwendung des MVC-
Architekturmusters. View und Controller einer jeden GUI-Komponente bilden zusam-
men die grafische Bedienoberfläche und sind für das Look (View) und das Feel
(Controller) zuständig. Jeder Typ einer GUI-Komponente besitzt eine individuelle Im-
plementierung von View und Controller(n) für jedes durch Java unterstützte "Look
and Feel". In diesem Kapitel werden die von Java unterschiedenen "Look and Feel"
Cross Platform, System, Synth und Mulitplexing vorgestellt und es wird gezeigt,
wie ein "Look and Feel" beim Start oder zur Laufzeit geändert werden kann.

21.1.3.1 Cross Platform-"Look and Feel"

Möchte man sicherstellen, dass ein erstelltes Programm auf jeder Plattform ein ein-
heitliches "Look and Feel" aufweist, sollte man ein Cross Platform-"Look and Feel"
verwenden. Dieses ist, wie der Name schon sagt, plattformübergreifend verfügbar.

Das Cross Platform-"Look and Feel" wird auf allen unterstützten Platt-
formen angeboten, sieht überall gleich aus und verhält sich überall
gleich.

Java stellt zwei verschiedene Cross Platform-"Look and Feel" zur Verfügung. Die
erste Variante nennt sich Metal. Die zweite – und gleichzeitig neuere – Variante
heißt Nimbus (siehe Bild 21-10).

Oberflächenprogrammierung mit Swing 833

Bild 21-10 Nimbus "Look and Feel" auf Windows Vista

Zurzeit ist Metal noch das Standard Cross Platform-"Look and Feel" der Java
Laufzeitumgebung. Bild 21-11 zeigt das Metal-"Look and Feel" auf a) der Windows-
und b) der Mac-Plattform.

a)

b)

Bild 21-11 Metal-"Look and Feel" auf verschiedenen Plattformen

Beim Vergleich der Bilder sieht man die Gemeinsamkeiten und Unterschiede der dar-
gestellten Beispielanwendung deutlich. Das Hauptfenster – als schwergewichtige
GUI-Komponente – wird Plattform-spezifisch dargestellt. Der Inhalt der Fenster,
welcher von Java selbst gezeichnet wird, unterscheidet sich dann nur noch unwe-
sentlich: Kleinere Größenunterschiede der Schaltfläche bzw. der Schrift sind bedingt
durch die verschiedene Darstellung der Schrift auf den Plattformen.

21.1.3.2 System-"Look and Feel"

Möchte man allerdings, dass die Java-Anwendung der nativen Darstellung des Be-
triebssystems sehr ähnelt, kann man das System-"Look and Feel" der Plattform ver-
wenden. Ein bestimmtes System-"Look and Feel" ist – zum Teil aus lizenzrechtlichen
Gründen – nur auf bestimmten Plattformen verfügbar. Es wird von der plattformspezi-
fischen Laufzeitumgebung bereitgestellt. Tabelle 21-1 stellt die verschiedenen
System-"Look and Feel" inklusiv deren Verfügbarkeit dar:

System-"Look and Feel" Plattform
CDE/Motif Linux und Solaris, ohne GTK+ 2.2 oder höher installiert
GTK+ Linux und Solaris, mit GTK+ 2.2 oder höher installiert
HP HP UX (wird nur vom Hersteller angeboten)
IBM IBM UNIX (wird nur vom Hersteller angeboten)
Mac Apple Mac (wird mit der proprietären JVM angeboten)
Windows Classic Alle Microsoft Windows-Plattformen
Windows Alle Microsoft Windows-Plattformen seit XP

Tabelle 21-1 Verfügbarkeit des System-"Look and Feel" auf Plattformen

21.1.3.3 Synth-"Look and Feel"

Mit dem Synth-"Look and Feel" lassen sich eigene "Look and Feel" erstellen. Das
"Look and Feel" wird komplett über eine XML-Datei (XML steht für Extensible Markup

834 Kapitel 21

Language) konfiguriert, welche beim Start der Anwendung geladen wird. Dadurch
lässt sich auch das "Look and Feel" durch das Austauschen der XML-Datei einfach
verändern, ohne eine einzige Zeile Java-Code geschrieben bzw. verändert zu haben.
Aufgrund der Komplexität der Konfiguration wird in diesem Buch auf das Synth-"Look
and Feel" nicht näher eingegangen.

21.1.3.4 Multiplexing-"Look and Feel"

Das Multiplexing-"Look and Feel" gehört – wie auch das Synth-"Look and Feel" – zu
den komplexen "Look and Feel". Es ermöglicht eine gleichzeitige Nutzung von ver-
schiedenen "Look and Feel". Dadurch könnte man eine Anwendung um eine zusätzli-
che Ausgabeschnittstelle, wie z. B. für Braille169-Lesegeräte, erweitern. Falls dann
ein Braille-Lesegerät angeschlossen ist, wird das zugehörige "Look and Feel" ver-
wendet. Auch das Multiplexing-"Look and Feel" wird in diesem Buch nicht näher be-
handelt.

21.1.3.5 Setzen des "Look and Feel" über die Kommandozeile

Ein "Look and Feel" kann über die Kommandozeile beim Start der Anwendung durch
Setzen des Parameters swing.defaultlaf gesetzt werden. Der folgende Beispiel-
aufruf zeigt, wie das Windows-"Look and Feel" ausgewählt wird. MyApp steht dabei
für den Namen der zu startenden Anwendung:

java -Dswing.defaultlaf=
 com.sun.java.swing.plaf.windows.WindowsLookAndFeel MyApp

Das Ergebnis ist in Bild 21-12 zu sehen. Die Ähnlichkeit mit der betriebssystemeige-
nen Windows XP-Schaltfläche ist sehr groß.

Bild 21-12 Windows-"Look and Feel"

21.1.3.6 Setzen des "Look and Feel" über die Properties-Datei

Der Parameter swing.defaultlaf kann nicht nur über die Kommandozeile, son-
dern auch durch einen Eintrag in der Properties-Datei swing.properties gesetzt
werden. Um ein "Look and Feel" durch Eintrag in der Properties-Datei festzulegen,
wird in der Properties-Datei swing.properties im Verzeichnis <JRE>170/lib für
das gewünschte "Look and Feel" der Parameter swing.defaultlaf entsprechend
gesetzt. Das folgende Beispiel zeigt den Eintrag für die Mac-Plattform:

swing.defaultlaf = javax.swing.plaf.mac.MacLookAndFeel

169 Die Brailleschrift wurde 1825 vom Franzosen Louis Braille entwickelt und wird von stark Sehbehin-

derten und Blinden benutzt.
170 Verzeichnis, in dem die Java Runtime Environment (JRE) installiert ist.

Oberflächenprogrammierung mit Swing 835

Der Effekt für die Anwendung MyApp kann in Bild 21-13 betrachtet werden.

Bild 21-13 Mac-"Look and Feel"

21.1.3.7 Setzen des "Look and Feel" im Java Programm

Da das Setzen des "Look and Feel" mittels Kommandozeile recht aufwändig ist und
das dauerhafte Einstellen des "Look and Feel" in der Properties-Datei auch andere
Java-Anwendungen betreffen kann, wird man das "Look and Feel" meistens direkt
bei der Erstellung der Anwendung im Code festlegen. Die Klasse UIManager aus
dem Paket javax.swing ist für die Verwaltung des "Look and Feel" zuständig. Über
die Klasse UIManager lässt sich das "Look and Feel" durch Aufruf der Klassen-
methode setLookAndFeel() setzen:

UIManager.setLookAndFeel
("com.sun.java.swing.plaf.gtk.GTKLookAndFeel");

Als Parameter wird der Klassenmethode entweder eine Referenz auf ein Objekt vom
Typ LookAndFeel oder der Name des "Look and Feel" als String übergeben. Das
im Beispiel gesetzte GTK+-"Look and Feel" kann in Bild 21-14 betrachtet werden.

Bild 21-14 GTK+-"Look and Feel"

Die folgende Tabelle gibt eine Übersicht der verschiedenen "Look and Feel"-Klassen:

"Look and Feel" "Look and Feel"-Klasse
CDE/Motif com.sun.java.swing.plaf.motif.MotifLookAndFeel
GTK+ com.sun.java.swing.plaf.gtk.GTKLookAndFeel

Metal javax.swing.plaf.metal.MetalLookAndFeel
Mac javax.swing.plaf.mac.MacLookAndFeel
Nimbus com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

Windows com.sun.java.swing.plaf.windows.WindowsLookAndFeel
Windows Classic com.sun.java.swing.plaf.windows.

WindowsClassicLookAndFeel

Tabelle 21-2 Standard-"Look and Feel"

Ab Java 7 wechselt das Nimbus-"Look and Feel" in ein anderes Paket. Aus diesem
Grund wird empfohlen, darauf zu verzichten, den vollständigen Klassennamen direkt
anzugeben. Stattdessen kann man den vollständigen Klassennamen – wie im folgen-
den Beispiel – einfach ermitteln und setzen:

836 Kapitel 21

// Die Methode getInstalledLookAndFeels() liefert eine Liste
// mit den verfügbaren "Look and Feel".
for (LookAndFeelInfo laf : UIManager.getInstalledLookAndFeels())
{
 // Prüfe für jeden Eintrag aus der Liste, ob der Name des
 // "Look and Feel" mit dem gesuchten übereinstimmt
 if ("Nimbus".equals (laf.getName()))
 {
 // Die Methode setLookAndFeel() wirft Exceptions, die in einem
 // vollständigen Programmcode abgefangen werden müssen.
 UIManager.setLookAndFeel (laf.getClassName());
 break; // verlasse die for-Schleife
 }
}

Das folgende Programm zeigt, wie man ein "Look and Feel" im Programmcode
setzen kann, und wie zwischen den auf einer Plattform verfügbaren "Look and Feel"
zur Laufzeit gewechselt werden kann. Beim Start des Programmes wird für jedes auf
der Plattform verfügbare "Look and Feel" eine Schaltfläche wie folgt angelegt: Die auf
einer Plattform verfügbaren "Look and Feel" können mittels der Klassenmethode
getInstalledLookAndFeels() der Klasse UIManager abgefragt werden. Die
Klassenmethode getInstalledLookAndFeels() gibt ein Array vom Typ Look-
AndFeelInfo zurück. Für jedes auf der Plattform verfügbare "Look and Feel" refe-
renziert dieses Array ein zugehöriges Objekt vom Typ LookAndFeelInfo, von dem
durch Aufruf der Methode getName() der Name des "Look and Feel" abgefragt wer-
den kann. Dieser Name wird dann als Bezeichner für die Schaltfläche gesetzt.

Für jede Schaltfläche wird zur Ereignisverarbeitung ein Objekt vom Typ Button-
Controller (selbst geschriebener Controller im Beispielprogramm) angelegt und
durch Aufruf der Methode addActionListener() als Controller für die jeweilige
Schaltfläche registriert. Wird eine Schaltfläche gedrückt, so wird die Methode ac-
tionPerformed() des registrierten Controller-Objektes vom Typ ButtonCon-
troller aufgerufen. Innerhalb der Methode actionPerformed() wird dann durch
Aufruf der Klassenmethode setLookAndFeel() der Klasse UIManager das dem
Namen der Schaltfläche entsprechende "Look and Feel" gesetzt. Nach Änderung des
"Look and Feel" muss die Anzeige der grafischen Bedienoberfläche aktualisiert
werden, damit das neu gesetzte "Look and Feel" auch sichtbar wird. Dies kann durch
Aufruf der Klassenmethode updateComponentTreeUI() der Klasse SwingUti-
lities erreicht werden. Als Parameter wird die Referenz auf das zu aktualisierende
Hauptfenster übergeben. Hier nun das Beispielprogramm:

// Datei: LookAndFeelTest.java

import java.awt.event.*;
import java.awt.FlowLayout;
import javax.swing.*;
import javax.swing.UIManager.*;

public class LookAndFeelTest
{
 public static void main (String[] args)
 {

Oberflächenprogrammierung mit Swing 837

 JFrame frame = new JFrame();
 frame.setLayout (new FlowLayout());

 // Erzeuge für jedes "Look and Feel" eine Schaltfläche,
 // füge diese dem Hauptfenster hinzu und registriere
 // als Controller jeweils ein Objekt vom Typ ButtonController.
 for (LookAndFeelInfo laf:UIManager.getInstalledLookAndFeels())
 {
 // Erzeuge eine Schaltfläche mit Namen des "Look and Feel".
 JButton tempButton = new JButton (laf.getName());
 // Füge die Schaltfläche dem Hauptfenster hinzu.
 frame.add (tempButton);

 // Erzeuge zugehörigen Controller und melde diesen
 // bei der Schaltfläche als Listener an.
 tempButton.addActionListener (
 new ButtonController (frame, laf));
 }

 // Name des "Look and Feel" in die Titelleiste schreiben.
 frame.setTitle ("Pluggable Look and Feel: "
 + UIManager.getLookAndFeel().getName());
 frame.pack();
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

class ButtonController implements ActionListener
{
 private JFrame frame;
 private LookAndFeelInfo laf;

 public ButtonController (JFrame ref, LookAndFeelInfo laf)
 {
 frame = ref;
 this.laf = laf;
 }

 public void actionPerformed (ActionEvent event)
 {
 frame.setTitle ("Pluggable Look and Feel: " + laf.getName());
 try
 {
 // Setze das "Look and Feel".
 UIManager.setLookAndFeel (laf.getClassName());
 }
 catch (Exception ex)
 {
 System.out.println (ex.getMessage());
 }
 // Aktualisiere alle GUI-Komponenten des Hauptfensters.
 SwingUtilities.updateComponentTreeUI (frame);
 // Passe die Größe des Hauptfensters auf den Inhalt an.
 frame.pack();
 }
}

838 Kapitel 21

Bild 21-15 zeigt die grafische Bedienoberfläche des Programmes nach Drücken der
"Windows"-Schaltfläche. Die Darstellung zeigt deshalb das Windows-"Look and
Feel".

Bild 21-15 Auf dem System verfügbare "Look and Feel"

21.2 GUI-Container

Speziellen GUI-Komponenten – den so genannten GUI-Containern – können andere
GUI-Komponenten hinzugefügt werden, um damit eine grafische Bedienoberfläche
aufzubauen.

GUI-Komponenten, denen beliebig viele andere GUI-Komponenten
hinzugefügt werden können, werden als GUI-Container bezeichnet.

Der Begriff GUI-Container wird in diesem Buch anstatt des Begriffes Container ver-
wendet, um eine Doppelbelegung des Begriffes Container zu vermeiden. Bei den
Collections ist ein Container ein Behälter, in den man Referenzen auf Objekte hinein-
legen, bei Bedarf auf diese zugreifen und sie wieder herausholen kann. Bei den
grafischen Bedienoberflächen kann ein GUI-Container als ein Zeichenbereich auf
dem Bildschirm verstanden werden, in den andere GUI-Komponenten hineingelegt
werden können und in ihm angeordnet und angezeigt werden. Die Implementierung
eines GUI-Containers bei den grafischen Bedienoberflächen ist der Implementierung
eines Containers bei den Collections sehr ähnlich: In einen GUI-Container kann man
Referenzen auf Objekte vom Typ Component hineinlegen, bei Bedarf darauf zugrei-
fen und auch wieder herausholen. Die Eigenschaften eines GUI-Containers werden
in der Klasse Container implementiert.

21.2.1 Eigenschaften der Klasse Container

Alle Swing-GUI-Komponenten leiten von der Klasse Container ab. Dies kann in
Bild 21-1 studiert werden.

Ein Objekt der Klasse Container besitzt die besondere Eigenschaft,
beliebig viele Objekte vom Typ Component aufnehmen und verwalten
zu können.

In den bisherigen Beispielprogrammen wurde diese Eigenschaft von der Klasse
JFrame genutzt. Durch Aufruf der Methode add() wurde einem Objekt vom Typ
JFrame eine beliebige Anzahl von Schaltflächen hinzugefügt. Die Methode add() ist
in der Klasse Container implementiert. Wird für ein Objekt vom Typ JFrame die

Oberflächenprogrammierung mit Swing 839

Methode add() aufgerufen, so wird der Programmcode ausgeführt, der in der
Klasse Container für die Methode add() implementiert ist.

Durch Aufruf der Methode add() können einem GUI-Container GUI-
Komponenten hinzugefügt werden.

Wie aber ermöglicht die Klasse Container, dass ihren Objekten – und allen Objek-
ten von abgeleiteten Klassen – beliebige andere GUI-Komponenten hinzugefügt wer-
den können? Diese Frage soll anhand Bild 21-16 erläutert werden:

Component[] arr

add (Component comp)

0 … n Component

Container

Bild 21-16 Beziehungen zwischen der Klasse Container und Component

Die Klasse Container besitzt als Instanzvariable ein Array vom Typ Component171.
In diesem Array können Referenzen auf Objekte vom Typ Component gespeichert
werden. Da alle GUI-Komponenten von der Klasse Component ableiten, können in
der Folge Referenzen auf Objekte vom Typ einer beliebigen GUI-Komponente in die-
sem Array abgelegt werden. Die Methode add() besitzt einen formalen Übergabe-
parameter ebenfalls vom Typ Component. Damit können der Methode add() Refe-
renzen auf Objekte vom Typ Component – das heißt, Referenzen auf Objekte vom
Typ einer beliebigen GUI-Komponente – übergeben werden. Eine der Methode
add() übergebene Referenz vom Typ Component wird dann im Array vom Typ
Component abgelegt.

Die Eigenschaft der Klasse Container, beliebige andere GUI-Kom-
ponenten aufzunehmen, wird durch die Vererbungsbeziehung in
Kombination mit der Aggregationsbeziehung zur Vaterklasse vom
Typ Component erreicht. Dieser spezielle Aufbau einer Klassenbib-
liothek wird durch das Entwurfsmuster Kompositum beschrieben.

Das folgende Beispielprogramm soll die Funktionsweise des Entwurfsmusters Kom-
positum in der Swing-Klassenbibliothek demonstrieren. Einem Hauptfenster (Objekt
vom Typ JFrame) werden 3 weitere Swing-GUI-Komponenten – ein statisches Text-
feld (Objekt vom Typ JLabel), ein einfaches Textfeld (Objekt vom Typ JText-

171 In der Implementierung der Klasse Container wird nicht ein Array vom Typ Component

verwendet, sondern ein Objekt vom Typ ArrayList<Component>.

840 Kapitel 21

field) und eine Schaltfläche (Objekt vom Typ JButton) – mit Hilfe der Methode
add() hinzugefügt.

// Datei: KompositumTest.java

import javax.swing.*;
import java.awt.FlowLayout;

public class KompositumTest
{
 public static void main (String[] args)
 {
 // Für das Objekt vom Typ JFrame wird die Container-Funktio-
 // nalität genutzt.
 JFrame frame = new JFrame ("Hauptfenster");

 JLabel label = new JLabel ("Name:");
 JTextField textfield = new JTextField (20);
 JButton button = new JButton ("Übernehmen");

 frame.setLayout (new FlowLayout());

 // Dem Hauptfenster werden durch Aufruf der Methode add() die
 // anderen GUI-Komponenten hinzugefügt.
 frame.add (label);
 frame.add (textfield);
 frame.add (button);

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible (true);
 }
}

Bild 21-17 Einem GUI-Container können andere GUI-Komponenten hinzugefügt werden

In ein einfaches Textfeld kann der Anwender Text eingeben, der dann durch das Pro-
gramm weiter verarbeitet werden kann. Im gezeigten Programm stand jedoch nur
das Zusammenstellen der grafischen Bedienoberfläche im Vordergrund und nicht die
weitere Verarbeitung, welche durch die Implementierung selbst geschriebener Con-
troller hinzugefügt werden müsste.

Da alle Swing-GUI-Komponenten von der Klasse Container ableiten, besitzen im
Prinzip auch alle Swing-GUI-Komponenten die Eigenschaft, andere Swing-GUI-Kom-
ponenten in sich aufzunehmen. Die konkrete Implementierung der abgeleiteten Klas-
sen entscheidet jedoch darüber, wie und ob diese Funktion genutzt wird.

Oberflächenprogrammierung mit Swing 841

Swing-GUI-Komponenten, welche die Eigenschaft der Klasse Con-
tainer nutzen, sind die so genannten GUI-Container.

Es werden in den nächsten beiden Kapiteln schwergewichtige und leichtgewich-
tige GUI-Container unterschieden.

21.2.2 Schwergewichtige GUI-Container

Die schwergewichtigen GUI-Container sind in der Swing-Klassenbibliothek durch
die schwergewichtigen Swing-GUI-Komponenten (siehe Bild 21-1) implementiert.

Die Klassen JFrame, JDialog, JWindow und JApplet sind die
schwergewichtigen GUI-Container.

Die Klassen JFrame, JDialog und JWindow sind Klassen, die Bildschirmfenster
darstellen. Die Klasse JApplet wird für das Erzeugen von Browser-Applets benötigt.
Die schwergewichtigen GUI-Container werden auch als Hauptfenster bezeichnet.
Ein Hauptfenster umhüllt die grafische Bedienoberfläche der Anwendung und stellt
eine visuelle Grenze zu der grafischen Oberfläche des Betriebssystems und den
Fenstern anderer Anwendungen dar. Ein Hauptfenster interagiert auch mit dem
Window-Manager172 des Betriebssystems, der alle Fenster einer grafischen Ober-
fläche des Betriebssystems verwaltet.

Die schwergewichtigen GUI-Container (Hauptfenster) werden auch als
Top-Level-Container bezeichnet, da sie immer den obersten GUI-
Container einer grafischen Bedienoberfläche in Java darstellen. Ein
Top-Level-Container kann andere GUI-Komponenten in sich aufneh-
men, kann aber selbst von keiner anderen GUI-Komponente aufge-
nommen werden.

In den folgenden Kapiteln werden die in Java verfügbaren Hauptfenster vorgestellt.

21.2.2.1 JFrame

Objekte der Klasse JFrame besitzen einen Rahmen und eine Titelleiste. Zusätzlich
sind optionale Schaltflächen zum Schließen, Minimieren und Maximieren des Fens-
ters an der rechten Seite der Titelleiste sowie ein Systemmenü an der linken Seite
der Titelleiste vorhanden (siehe Bild 21-6). Alle bisherigen Beispielprogramme für
grafische Bedienoberflächen haben als Hauptfenster einen GUI-Container vom Typ
JFrame verwendet.

172 Der Window-Manager ist Teil des Betriebssystems und ist beispielsweise für die Darstellung und

Verwaltung der Fenster zuständig.

842 Kapitel 21

21.2.2.2 JDialog

Im Gegensatz zu Instanzen der Klasse JFrame besitzt ein Objekt der Klasse JDia-
log keine Schaltflächen in der rechten oberen Ecke zum Minimieren und Maximieren
des Dialoges. Das folgende – sehr einfache Beispiel – erzeugt ein Objekt der Klasse
JDialog und zeigt dieses an:

// Datei: DialogTest.java

import javax.swing.*;

public class DialogTest
{
 public static void main (String[] args)
 {
 JDialog dialog = new JDialog();
 dialog.setTitle ("Dialog ohne Vaterfenster");
 dialog.setDefaultCloseOperation (JFrame.DISPOSE_ON_CLOSE);
 dialog.setSize (400, 100);
 dialog.setVisible (true);
 }
}

Wie in Bild 21-18 zu sehen ist, fehlen im Vergleich zu einem Hauptfenster vom Typ
JFrame in der rechten oberen Ecke die Schaltflächen zum Minimieren und Maxi-
mieren.

Bild 21-18 GUI-Container vom Typ JDialog ohne Vaterfenster

Typischerweise ist ein Objekt der Klasse JDialog an ein Vaterfenster gebunden. Mit
dem Schließen des Vaterfensters wird dann auch der dem Vaterfenster zugeordnete
Dialog geschlossen. Als Vaterfenster kommen die schwergewichtigen Swing-GUI-
Container in Frage.

Ein Objekt vom Typ JDialog kann zu seinem Vaterfenster in einer
modalen Beziehung stehen. Bevor der Anwender zum Vaterfenster
zurückkehren kann, muss er erst den Dialog schließen.

Eine modale Beziehung zwischen einem Vaterfenster und einem Dialog bedeutet,
dass der Ablauf des Vaterfensters beim Aufruf des Dialogs angehalten und erst nach
der Abarbeitung des Ablaufs des Dialogs wieder fortgesetzt wird. Ein Dialog mit einer
nicht modalen Beziehung zu einem Vaterfenster hat keinen Einfluss auf dessen
Ablauf.

Oberflächenprogrammierung mit Swing 843

Ein Hauptfenster kann als schwergewichtiger Top-Level-Container
kein anderes Hauptfenster in sich aufnehmen. Es kann aber sehr wohl
eine modale oder nicht modale Beziehung zwischen zwei Hauptfen-
stern bestehen.

Vorsicht!

Modale Dialoge sind dann sinnvoll, wenn der Benutzer im Dialog erst eine Eingabe
abschließen muss, die einen Einfluss auf den Inhalt des Vaterfensters hat. Ein ande-
rer Anwendungsfall für modale Dialoge ist die Führung des Benutzers durch das Pro-
gramm. Auch Nachrichtenboxen mit kleinen Hinweisen für den Benutzer sind in der
Regel modale Dialoge. Der Benutzer muss die Nachricht erst bestätigen, bevor das
Programm wieder auf Benutzereingaben reagiert.

Im folgenden Beispielprogramm bildet ein Objekt vom Typ JFrame das Vaterfenster
für ein Objekt vom Typ JDialog. Das Vaterfenster besitzt eine Schaltfläche "Dialog
anzeigen". Wird diese Schaltfläche gedrückt, so wird der modale Dialog angezeigt.
Das Dialogfenster besitzt eine Schaltfläche "Schließen". Wird diese Schaltfläche
gedrückt, so wird der modale Dialog wieder geschlossen.

// Datei: ModalerDialogTest.java

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class ModalerDialogTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Vaterfenster");
 JButton start = new JButton ("Dialog anzeigen");
 // Controller für die Schaltfläche des Vaterfensters anmelden.
 start.addActionListener (new DialogStartenController (frame));
 frame.setLayout (new FlowLayout());
 frame.add (start);
 frame.setSize (400, 100);
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

class DialogStartenController implements ActionListener
{
 private JFrame parent;

 public DialogStartenController (JFrame parent)
 {
 this.parent = parent;
 }

 // Wird aufgerufen, wenn die Schaltfläche "Dialog anzeigen" im
 // Vaterfenster gedrückt wird.
 public void actionPerformed (ActionEvent action)
 {

844 Kapitel 21

 // Erster Parameter: Referenz auf das Vaterfenster.
 // Zweiter Parameter: In der Titelzeile anzuzeigender Text.
 // Dritter Parameter: Gibt an, ob der Dialog in einer modalen
 // Beziehung zu seinem Vaterfenster stehen soll.
 JDialog dialog = new JDialog (parent, "Modaler Dialog", true);
 JButton close = new JButton ("Schließen");

 // Controller für die Schaltfläche des Dialogfensters setzen.
 close.addActionListener (new DialogBeendenController(dialog));
 dialog.setLayout (new FlowLayout());
 dialog.add (close);
 dialog.setSize (200, 100);
 dialog.setVisible (true);
 }
}

class DialogBeendenController implements ActionListener
{
 private JDialog dialog;
 public DialogBeendenController (JDialog dialog)
 {
 this.dialog = dialog;
 }

 // Wird aufgerufen, wenn die Schaltfläche "Schließen" im Dialog-
 // fenster gedrückt wird.
 public void actionPerformed (ActionEvent action)
 {
 // Dialog unsichtbar machen und zerstören.
 dialog.setVisible (false);
 dialog.dispose();
 }
}

Bild 21-19 zeigt die grafische Bedienoberfläche des Programmes nach dem Drücken
der Schaltfläche "Dialog anzeigen" des Vaterfensters. Erst nach dem Schließen des
Dialogfensters kann das Vaterfenster wieder Benutzereingaben entgegennehmen.

Bild 21-19 Vaterfenster vom Typ JFrame mit modalem Dialogfenster vom Typ JDialog

Die essentiellen Methoden der Klasse JDialog sind denen der Klasse JFrame sehr
ähnlich. Wie im soeben gezeigten Beispielprogramm zu sehen ist, wird das Dialog-
fenster vom Typ JDialog genau gleich wie das Vaterfenster vom Typ JFrame
erstellt und konfiguriert.

Oberflächenprogrammierung mit Swing 845

Ein Hauptfenster vom Typ JFrame und JWindow kann in einer mo-
dalen oder nicht modalen Beziehung zu einem Hauptfenster vom Typ
JDialog stehen. Ein Hauptfenster vom Typ JDialog kann wiederum
selbst als Vaterfenster in einer modalen oder nicht modalen Bezie-
hung zu einem weiteren Objekt vom Typ JDialog stehen.

Damit kann ein Dialogfenster selbst zu einem Vaterfenster für ein weiteres Dialog-
fenster werden. Die Klassenbibliothek von Swing bietet eine Vielzahl von vorgefertig-
ten Dialogen. Diese werden in Kapitel 21.5 mittels eines Lernprogrammes vorgestellt.

21.2.2.3 JWindow

Ein Hauptfenster vom Typ JWindow hat im Vergleich zu einem Hauptfenster vom
Typ JFrame keinen Rahmen und damit auch keine Titelzeile, kein Systemmenü und
keine Schaltflächen zum Minimieren, Maximieren und Schließen des Fensters. Mit
einem Hauptfenster vom Typ JWindow kann der Anwender nicht interagieren. Es
kann beispielsweise weder verschoben, noch kann die Größe geändert werden. Fol-
gende Programmcodezeilen erzeugen das in Bild 21-20 dargestellte Fenster ohne
Interaktionsmöglichkeit für den Anwender.

// Datei: JWindowTest.java

import javax.swing.*;

public class JWindowTest
{
 public static void main (String[] args)
 {
 JWindow window = new JWindow();
 window.setSize (410, 150);
 window.setVisible (true);
 }
}

Bild 21-20 Hauptfenster vom Typ JWindow

Einem Hauptfenster vom Typ JWindow können natürlich – wie den bereits vorge-
stellten Hauptfenstern vom Typ JDialog oder JFrame – andere Swing-GUI-Kompo-
nenten hinzugefügt werden, mit denen der Anwender dann auch interagieren kann.
Ein Beispiel für den Einsatz der Klasse JWindow sind die Startfenster von Program-
men, die beispielsweise eine Grafik mit dem Logo des Herstellers und dem Titel des
Programmes enthalten. Diese Startfenster werden im Englischen als Splashscreen
bezeichnet. Ein Splashscreen wird in Kapitel 21.5 mittels des Lernprogrammes vor-
gestellt.

846 Kapitel 21

21.2.2.4 JApplet

Die Klasse JApplet ist eine Erweiterung der Klasse Applet. Sie wird verwendet,
um mit Swing-GUI-Komponenten eine Applikation zu schreiben, die in einer HTML-
Seite eingebettet wird (siehe Kapitel 20.2). Da die Klasse JApplet für die Erstellung
von grafischen Bedienoberflächen ähnlich funktioniert wie die bereits vorgestellten
Hauptfenster, erfolgt an dieser Stelle keine weitere Vertiefung.

21.2.3 Leichtgewichtige GUI-Container

Schwergewichtige GUI-Container können beliebige leichtgewichtige Swing-GUI-
Komponenten in sich aufnehmen, aber keine schwergewichtigen GUI-Komponenten.
So kann ein Hauptfenster vom Typ JFrame beispielsweise kein anderes Haupt-
fenster vom Typ JFrame, JDialog oder JWindow in sich aufnehmen.

Ein leichtgewichtiger GUI-Container kann keinen schwergewichtigen
GUI-Container in sich aufnehmen. Ein schwergewichtiger GUI-Con-
tainer kann aber eine beliebige Anzahl von leichtgewichtigen GUI-
Containern in sich aufnehmen.

Ein leichtgewichtiger GUI-Container kann selbst wiederum eine be-
liebige Anzahl von leichtgewichtigen GUI-Containern in sich auf-
nehmen. Nur die leichtgewichtigen GUI-Container ermöglichen damit
eine beliebig tiefe Schachtelung.

21.2.3.1 Leichtgewichtige GUI-Container vom Typ JPanel

Die Klasse JPanel implementiert die Funktionalität eines leichtgewichtigen GUI-
Containers. Im Gegensatz zu den schwergewichtigen GUI-Containern ist ein leicht-
gewichtiger GUI-Container vom Typ JPanel unsichtbar. Für einen GUI-Container
vom Typ JPanel wird nichts auf dem Bildschirm gezeichnet. Es werden nur die dem
GUI-Container hinzugefügten GUI-Komponenten gezeichnet – sofern diese nicht
wiederum selbst vom Typ JPanel sind.

Ein leichtgewichtiger GUI-Container vom Typ JPanel kann als un-
sichtbares Gruppierungsobjekt verstanden werden.

Im folgenden Beispiel werden drei leichtgewichtige GUI-Container vom Typ JPanel
verwendet, um eine grafische Bedienoberfläche strukturiert aufzubauen.

// Datei: PanelTest.java
import javax.swing.*;
import java.awt.*;

public class PanelTest
{

Oberflächenprogrammierung mit Swing 847

 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Hauptfenster");
 // 1. leichtgewichtigen GUI-Container erzeugen und befüllen.
 JPanel pane1 = new JPanel();
 pane1.add (new JLabel ("Senden an: "));
 pane1.add (new JTextField (30));

 // 2. leichtgewichtigen GUI-Container erzeugen und befüllen.
 JPanel pane2 = new JPanel();
 pane2.add (new JTextArea (10, 35));

 // 3. leichtgewichtigen GUI-Container erzeugen und befüllen.
 JPanel pane3 = new JPanel();
 pane3.add (new JButton ("Verwerfen"));
 pane3.add (new JButton ("Senden"));

 // GUI-Container und –Komponenten in Hauptfenster legen.
 frame.add (pane1, BorderLayout.NORTH);
 frame.add (pane2, BorderLayout.CENTER);
 frame.add (pane3, BorderLayout.SOUTH);

 frame.pack();
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

Bild 21-21 zeigt die grafische Bedienoberfläche des Programmes. Auch in diesem
Beispiel wurde nur die grafische Bedienoberfläche aufgebaut und keine Controller-
Funktionalität für die Schaltflächen implementiert. Die Strukturierungsaufgabe der
leichtgewichtigen GUI-Container wird unterstützt durch die so genannten Layout-
Manager. Auch die Konstanten NORTH, SOUTH, CENTER der Klasse BorderLayout,
die als zweiter Parameter beim Methodenaufruf add() für das Hauptfenster über-
geben werden, haben keine andere Aufgabe, als festzulegen, in welchem Bereich
des GUI-Containers die hinzugefügte Komponente platziert werden soll. Auf das
Layout-Management wird ausführlich in Kapitel 21.3 eingegangen.

Bild 21-21 Einsatz von leichtgewichtigen "unsichtbaren" GUI-Containern vom Typ JPanel

848 Kapitel 21

Auf den ersten Blick sieht es so aus, als ob die drei leichtgewichtigen GUI-Container
vom Typ JPanel direkt dem schwergewichtigen GUI-Container vom Typ JFrame
hinzugefügt werden. In Wahrheit verwendet aber die Klasse JFrame intern sogar
mehrere leichtgewichtige GUI-Container, um ein Hauptfenster aufzubauen. Diesem
Geheimnis geht das nächste Kapitel auf den Grund.

21.2.3.2 Aufbau der Hauptfenster mittels leichtgewichtiger GUI-Container

Der interne Aufbau der Hauptfenster vom Typ JFrame, JDialog, JWindow und
JApplet wird in diesem Kapitel vorgestellt. Bild 21-22 zeigt – neben der bereits
bekannten Klasse JPanel – die Klassen JRootPane, JLayeredPane, JDesktop-
Pane und JInternalFrame. Die Klassen JRootPane, JLayeredPane und
JPanel sind am internen Aufbau der Hauptfenster beteiligt und werden in diesem
Kapitel erläutert.

Ein schwergewichtiger GUI-Container vom Typ JFrame, JDialog,
JWindow und JApplet verwendet intern mehrere leichtgewichtige
GUI-Container vom Typ JPanel und je ein Objekt der Hilfsklassen
JRootPane und JLayeredPane.

Die Klassen JDesktopPane und JInternalFrame aus Bild 21-22 werden im
nächsten Kapitel vorgestellt.

Leichtgewichtige GUI-Komponenten
aus dem Paket javax.swing

AWT-GUI-Komponenten
aus dem Paket java.awt

Button

Label

Container Component JComponent JPanel

JRootPane

.

JLayeredPane

JInternalFrame

JDesktopPane

.

Bild 21-22 Leichtgewichtige GUI-Container und Hilfsklassen

Die Hauptfenster vom Typ JFrame, JDialog, JWindow und JApplet aggregieren
ein Objekt vom Typ JRootPane. Ein Objekt vom Typ JRootPane – die so genannte
Root-Pane – übernimmt für ein Hauptfenster die Aufgabe, die Fläche innerhalb des
Fensterrahmens zu verwalten. Existiert für ein Hauptfenster kein umschließender
Rahmen – wie bei den Hauptfenstern vom Typ JApplet und JWindow – verwaltet
die Klasse JRootPane die gesamte zur Verfügung gestellte Fläche. Dies wird jedoch
nicht durch eine Root-Pane selbst gemacht, sondern ein Objekt vom Typ
JRootPane erzeugt wiederum ein Objekt vom Typ JPanel – als so genannte
Glass-Pane – und ein Objekt vom Typ JLayeredPane – die so genannte Layered-

Oberflächenprogrammierung mit Swing 849

Pane – um diese Aufgabe zu bewältigen. Die Layered-Pane wiederum erzeugt ein
Objekt vom Typ JPanel – als so genannte Content-Pane – und verwaltet eine
optionale Menüleiste vom Typ JMenuBar. Bild 21-23 zeigt die Objekte, die per
Default beim Erzeugen eines Hauptfensters, angelegt werden.

:JFrame

rootPane

:JRootPane

glassPane

layeredPane :JLayeredPane

menuBar

contentPane

:JPanel

:JPanel

null

Root-Pane Glass-Pane

Layered-Pane

Content-Pane
Bild 21-23 Zusätzlich erzeugte Objekte beim Anlegen eines Hauptfensters

Eine Glass-Pane ist üblicherweise nicht sichtbar. Man kann sich eine Glass-Pane als
eine vollständig durchsichtige Fensterscheibe vorstellen, die über der gesamten
durch die Root-Pane verwalteten Fläche liegt. Mit der Glass-Pane können beispiels-
weise Benutzereingaben abgefangen werden, bevor diese zu den betroffenen darun-
terliegenden GUI-Komponenten weitergeleitet werden. Da der Programmierer übli-
cherweise mit der Glass-Pane nicht in Berührung kommt, wird für weitere Anwen-
dungsbeispiele auf das Java-Tutorial [28] verwiesen.

Eine Layered-Pane ermöglicht einem GUI-Container, GUI-Komponenten in unter-
schiedlichen Ebenen zu platzieren. GUI-Komponenten in einer tieferen Ebene wer-
den dann durch GUI-Komponenten, die in einer höheren Ebene angeordnet sind,
überdeckt.

Eine Layered-Pane bestimmt die Sichtbarkeit von GUI-Kompo-
nenten, die sich in unterschiedlichen Ebenen befinden

Eine "Drag and Drop"-Funktionalität wird beispielsweise in der obersten Ebene imple-
mentiert, da während des Vorgangs des "Ziehens" alle anderen GUI-Komponenten
überdeckt werden. Bei der Verwendung der Hauptfenster muss sich der Program-
mierer allerdings selten um die einzelnen Ebenen kümmern. Weiterführende Bei-
spiele finden Sie hierzu ebenfalls im Java-Tutorial [28]. Das eigentlich Wichtige für
den Programmierer:

Die Content-Pane und – falls vorhanden – die Menüleiste werden in
der untersten Ebene der Layered-Pane platziert.

850 Kapitel 21

Für die Content-Pane wird per Default ein Objekt vom Typ JPanel angelegt. In die-
sen leichtgewichtigen GUI-Container werden alle GUI-Komponenten gelegt, die dem
Hauptfenster hinzugefügt werden.

Beim Aufruf der Methode add() für ein Hauptfenster, wird die der Me-
thode übergebene Referenz auf eine GUI-Komponente der Content-
Pane vom Typ JPanel hinzugefügt.

Soll ein Hauptfenster eine Menüleiste besitzen, so muss der Programmierer ein
Objekt der Klasse JMenuBar anlegen und die Referenz durch Aufruf der Methode
setJMenuBar() an das Hauptfenster übergeben. Das Hauptfenster sorgt dann mit-
tels der Root-Pane dafür, dass diese Referenz in der untersten Ebene der Layered-
Pane platziert wird. Auf die Erstellung von Menüs wird in Kapitel 21.5 eingegangen.

21.2.3.3 Leichtgewichtige GUI-Container vom Typ JInternalFrame

Bisher sind als leichtgewichtige GUI-Container nur Objekte der Klasse JPanel
bekannt. Objekte der Klasse JPanel besitzen die Eigenschaft eines unsichtbaren
Gruppierungsobjektes für leichtgewichtige GUI-Komponenten und können beliebig
tief geschachtelt werden. Objekte der Klasse JInternalFrame können als sicht-
bare Gruppierungsobjekte für leichtgewichtige GUI-Komponenten verstanden wer-
den, die ebenso beliebig tief geschachtelt werden können.

Objekte der Klasse JInternalFrame sind – wie Objekte der Klasse
JPanel – leichtgewichtige GUI-Container.

Die Klasse JInternalFrame bedient sich der Hilfsklasse JDesktopPane, die von
der Klasse JLayeredPane abgeleitet ist (siehe Bild 21-22), um das Konzept eines
leichtgewichtigen internen Fensters umzusetzen. Ein Objekt der Klasse JDesk-
topPane stellt eine virtuelle Desktop-Fläche zur Verfügung.

Eine virtuelle Desktop-Fläche kann eine beliebige Anzahl von internen
Fenstern des Typs JInternalFrame in ihren Ebenen verwalten.

Hierbei wird jeweils ein Fenster vom Typ JInternalFrame in eine Ebene gelegt.
Ein internes Fenster, das eine Ebene höher liegt, wird später gezeichnet, als ein
internes Fenster, das in einer Ebene darunter liegt. Damit wird die Sichtbarkeit der
internen Fenster geregelt und ein Fenster in einer oberen Ebene überdeckt damit
Fenster oder Fensterteile einer tieferen Ebene, sofern sich die Zeichenbereiche
überlappen. Interne Fenster vom Typ JInternalFrame sind den Hauptfenstern
vom Typ JFrame in Aussehen und Verhalten sehr ähnlich. Sobald ein internes
Fenster den Eingabefokus erhält, wird dieses in die oberste Ebene gelegt und alle
anderen internen Fenster "rutschen" eine Ebene nach unten. Dadurch wird sicher-

Oberflächenprogrammierung mit Swing 851

gestellt, dass das interne Fenster mit dem Eingabefokus auf jeden Fall sichtbar ist.
Das folgende Beispielprogramm erstellt eine virtuelle Desktop-Fläche vom Typ
JDesktopPane mit drei internen Fenstern vom Typ JInternalFrame.

// Datei: InternalFrameTest.java

import javax.swing.*;

public class InternalFrameTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Hauptfenster");
 // Virtuelle Desktop-Fläche erzeugen.
 JDesktopPane desktop = new JDesktopPane();

 // Drei interne Fenster erzeugen und der virtuellen Desktop-
 // Fläche hinzufügen.
 for (int i = 1; i <= 3; i++)
 {
 // Die Übergabeparameter vom Typ boolean geben an, dass das
 // interne Fenster verkleinert bzw. vergrößert, geschlossen
 // und maximiert werden kann.
 JInternalFrame internal = new JInternalFrame
 ("Internes Fenster " + i, true, true, true);
 internal.setSize (200, 100);
 internal.setVisible (true);
 desktop.add (internal);
 }
 // Dem Hauptfenster die virtuelle Desktop-Fläche hinzufügen.
 frame.add (desktop);
 frame.setSize (400, 200);
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

Bild 21-24 zeigt die grafische Bedienoberfläche des Programmes. Für das Studium
der verfügbaren Methoden der Klasse JInternalFrame sowie der einzelnen Über-
gabeparameter wird auf die Java-API-Dokumentation verwiesen.

Bild 21-24 Virtueller Desktop mit internen Fenstern innerhalb eines Hauptfensters

852 Kapitel 21

Einem internen Fenster können nun – wie einem Hauptfenster – selbst beliebige
leichtgewichtige GUI-Komponenten hinzugefügt werden.

Aufgrund der Eigenschaft, dass einem internen Fenster mittels einer
virtuellen Desktop-Fläche selbst wiederum interne Fenster hinzugefügt
werden können, ist ein internes Fenster vom Typ JInternalFrame
ein leichtgewichtiger GUI-Container.

Des Weiteren ist interessant zu wissen, dass ein internes Fenster vom Typ JIn-
ternalFrame die Fläche innerhalb des Fensterrahmens mittels eines Objektes vom
Typ JRootPane verwaltet. Der Aufbau eines internen Fensters entspricht damit
exakt dem in Kapitel 21.2.3.2 vorgestellten Aufbau eines Hauptfensters. Das nächste
Kapitel zeigt, wie die leichtgewichtigen GUI-Container bei der Anordnung von
hinzugefügten GUI-Komponenten durch Layout-Manager unterstützt werden.

21.3 Anordnung von GUI-Komponenten

Ein leichtgewichtiger GUI-Container vom Typ JPanel verwendet einen vorein-
gestellten Layout-Manager, um hinzugefügte GUI-Komponenten auf der verfügbaren
Zeichenfläche anzuordnen.

Ein Layout-Manager legt die Anordnung von hinzugefügten GUI-
Komponenten fest und definiert, wie sich die GUI-Komponenten in
Positionierung und Größe verhalten, falls das umschließende Fenster
vergrößert oder verkleinert wird.

In Java existieren mehrere verschiedene Layout-Manager. Die Anordnungs- und Ver-
haltensregeln eines Layout-Managers werden in einer zugehörigen Klasse imple-
mentiert. Ein GUI-Container ruft dann die Anordnungs- und Verhaltensregeln beim
hinterlegten Layout-Manager ab, um hinzugefügte GUI-Komponenten auf der Zei-
chenfläche anzuordnen.

Die häufig eingesetzten Layout-Manager-Klassen sowie die zugehörigen Schnitt-
stellen LayoutManager und LayoutManager2 zeigt Bild 21-25. Die gängigsten
Layout-Manager – wie das Flow-Layout (implementiert in der Klasse FlowLayout)
oder das Border-Layout (implementiert in der Klasse BorderLayout) – sind in der
AWT-Klassenbibliothek eingeordnet.

Bei der Oberflächenprogrammierung mit Swing-GUI-Komponenten
können sowohl Layout-Manager aus der Swing-Klassenbibliothek, als
auch jene aus der AWT-Klassenbibliothek eingesetzt werden.

Oberflächenprogrammierung mit Swing 853

Paket javax.swing Paket java.awt

BorderLayout

GridLayout

FlowLayout
<<interface>>

LayoutManager

BoxLayout

CardLayout

GridBag
Layout

.

<<interface>>
LayoutManager2

Bild 21-25 Layout-Manager in der AWT- und Swing-Klassenbibliothek

Ein jeder GUI-Container verwendet einen voreingestellten Layout-Manager. Möchte
man einen anderen Layout-Manager verwenden, so muss dieser vor dem Hinzu-
fügen von GUI-Komponenten durch Aufruf der setLayout()-Methode gesetzt wer-
den. Die setLayout()-Methode erwartet einen Übergabeparameter vom Typ Lay-
outManager. Da alle Layout-Manager die Schnittstelle LayoutManager implemen-
tieren, kann ein beliebiger Layout-Manager mittels dieser Methode für den GUI-
Container gesetzt werden. In den folgenden Kapiteln werden die in Bild 21-25
dargestellten Layout-Manager vorgestellt.

21.3.1 Layout-Manager Flow-Layout

Als erster Layout-Manager wird das Flow-Layout vorgestellt. Diesem Layout-Mana-
ger sind Sie bereits im ersten Beispiel für grafische Bedienoberflächen in Kapitel
21.1.2 begegnet. Mittels der setLayout()-Methode wurde für das Hauptfenster
vom Typ JFrame ein Flow-Layout gesetzt.

Das Flow-Layout positioniert hinzugefügte GUI-Komponenten in einer Zeile. Ist eine
Zeile voll, so wird eine hinzugefügte GUI-Komponente in einer neuen Zeile positio-
niert. Implementiert ist das Flow-Layout in der Klasse FlowLayout. Neben dem De-
fault-Konstruktor, der in den bisherigen Beispielen stets verwendet wurde, existieren
auch noch weitere Konstruktoren, mit denen beispielsweise die Ausrichtung der GUI-
Komponenten (linksbündig, rechtsbündig oder mittig) sowie ein Abstand zwischen
den hinzugefügten GUI-Komponenten festgelegt werden kann. Für das detaillierte
Studium aller Einstellmöglichkeiten wird auf die Java-API-Dokumentation verwiesen.
Wird der parameterlose Default-Konstruktor verwendet, werden die hinzugefügten
GUI-Komponenten mittig angeordnet und der Abstand zwischen den GUI-Kompo-
nenten beträgt 5 Pixel in allen Richtungen.

854 Kapitel 21

Im folgenden Beispielprogramm wird für ein Hauptfenster vom Typ JFrame ein Flow-
Layout durch Aufruf der setLayout()-Methode gesetzt. Anschließend werden dem
GUI-Container vier Schaltflächen hinzugefügt:

// Datei: FlowLayoutTest.java

import javax.swing.*;
import java.awt.FlowLayout;

public class FlowLayoutTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Layout-Manager: Flow-Layout");

 // Layout-Manager setzen.
 frame.setLayout (new FlowLayout());

 // Die hinzugefügten GUI-Komponenten werden nach den Regeln
 // des Layout-Managers angeordnet.
 frame.add (new JButton ("1"));
 frame.add (new JButton ("2"));
 frame.add (new JButton ("3"));
 frame.add (new JButton ("4"));

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 // Optimale Fenstergröße ermitteln und setzen.
 frame.pack();
 frame.setVisible (true);
 }
}

Bild 21-26 zeigt die grafische Bedienoberfläche des Programmes.

Bild 21-26 Hauptfenster mit Layout-Manager Flow-Layout

Anhand des Beispiels kann nun auch die schon oft verwendete Methode pack()
erläutert werden. Die Methode pack() kann für GUI-Container des Typs JFrame,
JDialog, JWindow und JInternalFrame aufgerufen werden.

Durch Aufruf der Methode pack() berechnet ein GUI-Container unter
Einbindung des gesetzten Layout-Managers und der hinzugefügten
GUI-Komponenten die optimale Fenstergröße.

Bei einer Veränderung der Fenstergröße durch den Anwender ändert sich auch die
Anordnung der GUI-Komponenten innerhalb des Fensters. Bild 21-27 zeigt das

Oberflächenprogrammierung mit Swing 855

Fenster des Programmes, nachdem die Breite des Fensters verkleinert und die Höhe
des Fensters vergrößert wurde.

Bild 21-27 Anordnung der Schaltflächen nach Größenänderung des Hauptfensters

21.3.2 Layout-Manager Grid-Layout

Ein GUI-Container, für den als Layout-Manager ein Grid-Layout gesetzt ist, ordnet
die hinzugefügten GUI-Komponenten in einem Gitter an. Das Grid-Layout wird durch
die Klasse GridLayout implementiert. Die Zeilen- und Spaltenanzahl für das Gitter
kann beim Aufruf des Konstruktors – wie in folgendem Beispiel gezeigt – gesetzt
werden.

// Datei: GridLayoutTest.java

import javax.swing.*;
import java.awt.GridLayout;

public class GridLayoutTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Layout-Manager: Grid-Layout");

 // Layout-Manager setzen. Es wird ein Grid-Layout mit 3 Zeilen
 // (1. Parameter) und 2 Spalten (2. Parameter) verwendet.
 frame.setLayout (new GridLayout (3, 2));

 // Die hinzugefügten GUI-Komponenten werden nach den Regeln
 // des Layout-Managers angeordnet.
 frame.add (new JButton ("Zeile: 1 / Spalte: 1"));
 frame.add (new JButton ("Zeile: 1 / Spalte: 2"));
 frame.add (new JButton ("Zeile: 2 / Spalte: 1"));
 frame.add (new JButton ("Zeile: 2 / Spalte: 2"));
 frame.add (new JButton ("Zeile: 3 / Spalte: 1"));

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 // Optimale Fenstergröße ermitteln und setzen.
 frame.pack();
 frame.setVisible (true);
 }
}

Bild 21-28 zeigt das Hauptfenster des Programmes mit den 5 hinzugefügten Schalt-
flächen, die als Bezeichner die Zeilen- und Spaltenposition tragen:

856 Kapitel 21

Bild 21-28 Hauptfenster mit Layout-Manager Grid-Layout

Beim Hinzufügen von GUI-Komponenten zu einem GUI-Container mit Grid-Layout
gelten folgende Regeln: Die erste hinzugefügte GUI-Komponente wird in der linken
oberen Zelle angeordnet (Zeile 1, Spalte 1). Weitere hinzugefügte GUI-Komponenten
füllen Spalte um Spalte die aktuelle Zeile von links nach rechts auf, und wenn die
Zeile voll ist – das heißt die angegebene Spaltenanzahl erreicht ist – wird in der
nächsten Zeile mit der Spalte 1 begonnen. Werden mehr GUI-Komponenten
hinzugefügt, als durch das Gitter definiert sind – beispielsweise im obigen Programm
7 GUI-Komponenten –, so wird das Gitter um eine Spalte erweitert. Werden weniger
GUI-Komponenten eingefügt, als durch das Gitter aufgenommen werden können –
beispielsweise im obigen Programm 4 GUI-Komponenten –, so wird die nicht be-
nötigte 3. Zeile bei der Anzeige weggelassen.

Die Zellen eines Grid-Layouts besitzen alle die gleiche Größe. Die Größe einer jeden
Zelle richtet sich nach der größten hinzugefügten GUI-Komponente. Wird ein Fenster
mit Grid-Layout vergrößert, so passen sich alle hinzugefügten GUI-Komponenten in
der Größe proportional an.

21.3.3 Layout-Manager Border-Layout

Der Layout-Manager Border-Layout verteilt die einem GUI-Container hinzugefügten
GUI-Komponenten auf die vier Randbereiche (oben, unten, links und rechts), sowie
den Mittelbereich. Der Layout-Manager Border-Layout wird in der Klasse Border-
Layout implementiert. Die Positionierung einer GUI-Komponente wird durch die
Angabe einer Randbedingung beim Aufruf der Methode add() bestimmt, wie
folgendes Beispiel zeigt:

// Datei: BorderLayoutTest.java

import javax.swing.*;
import java.awt.BorderLayout;

public class BorderLayoutTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Layout-Manager: Border-Layout");

 // Für ein Hauptfenster vom Typ JFrame ist der Layout-Manager
 // Border-Layout bereits voreingestellt.
 // Beim Aufruf der Methode add() wird als zweiter Parameter
 // die Randbedingung zur Positionierung übergeben.
 frame.add (new JButton ("OBEN"), BorderLayout.NORTH);
 frame.add (new JButton ("UNTEN"), BorderLayout.SOUTH);
 frame.add (new JButton ("LINKS"), BorderLayout.WEST);

Oberflächenprogrammierung mit Swing 857

 frame.add (new JButton ("RECHTS"), BorderLayout.EAST);
 frame.add (new JButton ("MITTE"), BorderLayout.CENTER);

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 // Optimale Fenstergröße ermitteln und setzen.
 frame.pack();
 frame.setVisible (true);
 }
}

Für ein Hauptfenster vom Typ JFrame, JDialog und JWindow ist als Layout-
Manager per Default bereits ein Border-Layout gesetzt. Deshalb muss nicht zuerst
ein Layout-Manager mit der setLayout()-Methode gesetzt werden. Werden
mehrere GUI-Komponenten durch Angabe der gleichen Randbedingung beim Aufruf
der Methode add() an die gleiche Stelle positioniert, so ist nur die zuletzt eingefügte
sichtbar.

Bild 21-29 zeigt die grafische Bedienoberfläche des Hauptfensters mit den 5 hinzu-
gefügten Schaltflächen. Die Schaltflächen "OBEN" und "UNTEN" nehmen jeweils die
gesamte Fläche ober- beziehungsweise unterhalb der im mittleren Bereich positio-
nierten Schaltflächen ein.

Bild 21-29 Hauptfenster mit Layout-Manager Border-Layout

Wird das in Bild 21-29 dargestellte Hauptfenster vergrößert, so können die Ver-
haltensregeln für ein Border-Layout studiert werden. Bild 21-30 zeigt das vergrößerte
Hauptfenster. Die links und rechts angeordneten GUI-Komponenten behalten ihre
optimale Breite und passen sich in der Höhe an. Die oben und unten angeordneten
GUI-Komponenten behalten ihre optimale Höhe und passen sich in ihrer Breite an.
Schließlich dehnt sich die GUI-Komponente, die mit der Randbedingung Border-
Layout.CENTER mittig angeordnet wird, aus und vereinnahmt die verbleibende Flä-
che.

Bild 21-30 Anordnung der Schaltflächen nach Größenänderung des Hauptfensters

858 Kapitel 21

Wichtig zu wissen ist, dass es bei einem Border-Layout zulässig – und auch durch-
aus üblich – ist, in einzelne Bereiche keine GUI-Komponenten zu legen. Für ein Bor-
der-Layout kann – wie bei einem Flow-Layout – ein Abstand zwischen den hinzuge-
fügten GUI-Komponenten festgelegt werden. Darüber hinaus gibt es noch weitere
Einstellmöglichkeiten, für deren Studium wiederum auf die Java-API-Dokumentation
oder auf das Java-Tutorial [28] verwiesen wird.

21.3.4 Layout-Manager Card-Layout

Ein GUI-Container mit einem Card-Layout (Karten-Layout) lässt sich mit einem Kar-
tenstapel vergleichen. Bei einem Kartenstapel ist immer nur die oberste Karte sicht-
bar. Ein GUI-Container mit Card-Layout zeigt auf Anforderung eine gewünschte Kar-
te (GUI-Komponente) an. Das Card-Layout wird durch die Klasse CardLayout im-
plementiert. Um das Card-Layout vorzustellen, wird ein etwas komplexeres Beispiel
verwendet. In dem Beispiel soll nicht nur das Card-Layout verwendet werden, son-
dern es sollen drei GUI-Container eingesetzt werden. Der erste GUI-Container vom
Typ JFrame arbeitet mit einem Border-Layout, der zweite GUI-Container vom Typ
JPanel verwendet ein Flow-Layout und der dritte GUI-Container ebenfalls vom Typ
JPanel setzt das Card-Layout ein. Die beiden GUI-Container vom Typ JPanel
werden dabei – nach dem Prinzip der Schachtelung – dem Hauptfenster vom Typ
JFrame hinzugefügt.

Der Aufbau von beliebig komplexen grafischen Bedienoberflächen
wird erreicht durch das Prinzip der Schachtelung von GUI-Containern
in Kombination mit der Möglichkeit, für jeden GUI-Container einen
eigenen Layout-Manager zu setzen.

Bild 21-31 zeigt die schematische Darstellung der grafischen Bedienoberfläche des
folgenden Beispielprogrammes.

JLabel

JLabel

JLabel

GUI-Container vom Typ JFrame
mit Border-Layout

BorderLayout.NORTH

BorderLayout.CENTER

GUI-Container vom Typ JPanel mit Flow-Layout

JButton JButton JButton

GUI-Container vom Typ JPanel mit Card-Layout

JLabel

Karte 1
Karte 2

Karte 3

Bild 21-31 Schematische Darstellung der grafischen Bedienoberfläche

Das Beispielprogramm programmiert einen Kartenstapel nach. Für jede Karte auf
dem Stapel gibt es eine zugehörige Schaltfläche vom Typ JButton. Wird die Schalt-
fläche gedrückt, so wird die zugeordnete Karte aus dem Kartenstapel angezeigt.

Oberflächenprogrammierung mit Swing 859

Eine Karte enthält einen statischen Text vom Typ JLabel, der als Bezeichner für
eine Karte dient. Zum Abfangen des Ereignisses beim Drücken einer Schaltfläche
wird wie in vorangegangen Beispielen eine Klasse ButtonController implemen-
tiert.

// Datei: CardLayoutTest.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class CardLayoutTest
{
 public static void main (String[] args)
 {
 // Hauptfenster und zwei JPanel-Container anlegen.
 JFrame frame = new JFrame ("Kartenstapel-Beispiel");
 JPanel pane1 = new JPanel();
 JPanel pane2 = new JPanel();

 ButtonController controller = new ButtonController (pane2);

 // Ersten JPanel-Container befüllen.
 pane1.add (new JLabel("Welche Karte soll angezeigt werden?"));
 for (int i = 1; i <= 3; i++)
 {
 JButton ref = new JButton (new Integer(i).toString());
 ref.addActionListener (controller);
 pane1.add (ref);
 }

 // JPanel-Container dem Hauptfenster hinzufügen.
 frame.add (pane1, BorderLayout.NORTH);

 // Zweiten JPanel-Container konfigurieren und befüllen.
 pane2.setBackground (Color.YELLOW);
 pane2.setLayout (new CardLayout (5, 5));

 // Der zweite Parameter der Methode add() stellt wiederum
 // eine Randbedingung dar. Mit Hilfe des zweiten Parameters
 // kann später die anzuzeigende Karte bestimmt werden.
 pane2.add (new JLabel ("Karte 1"), "1");
 pane2.add (new JLabel ("Karte 2"), "2");
 pane2.add (new JLabel ("Karte 3"), "3");

 // JPanel-Container dem Hauptfenster hinzufügen.
 frame.add (pane2, BorderLayout.CENTER);

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible (true);
 }
}

860 Kapitel 21

class ButtonController implements ActionListener
{
 JPanel ref;

 public ButtonController (JPanel ref)
 {
 this.ref = ref;
 }

 public void actionPerformed (ActionEvent e)
 {
 CardLayout card = (CardLayout) ref.getLayout();

 // Abhängig davon, welche Schaltfläche gedrückt wurde,
 // wird die zugehörige Karte angezeigt.
 card.show (ref, ((JButton) e.getSource()).getText());
 }
}

Bild 21-32 zeigt die grafische Bedienoberfläche des Programmes nach dem Drücken
der zweiten Schaltfläche.

Bild 21-32 Grafische Bedienoberfläche des Kartenstapel-Beispiels

Wird eine GUI-Komponente zu einem GUI-Container mit Card-Layout durch Aufruf
der Methode add() hinzugefügt, kann als zweiter Parameter eine Randbedingung
vom Typ String als Bezeichner übergeben werden. Dieser Bezeichner kann dann
der Methode show() des Layout-Managers vom Typ CardLayout übergeben wer-
den, um gezielt eine spezielle Karte (GUI-Komponente) anzuzeigen. Für einen Lay-
out-Manager vom Typ CardLayout gibt es noch weitere Methoden, mit deren Hilfe
die Anzeige einer gewünschten Karte (GUI-Komponente) gesteuert werden kann.
Hierzu zählen beispielsweise die Methoden next(), previous(), first() und
last(). Für eine detaillierte Beschreibung wird auf die Java-API-Dokumentation
verwiesen.

21.3.5 Layout-Manager GridBag-Layout

Der Layout-Manager GridBag-Layout ist vergleichsweise komplex, wird aber in der
Praxis aufgrund seiner vielfältigen Konfigurationsmöglichkeiten häufig verwendet.
Das GridBag-Layout wird durch die Klasse GridBagLayout implementiert. Durch
diesen Layout-Manager wird ein Gitter mit Zellen unterschiedlicher Größe festgelegt.
Jede GUI-Komponente befindet sich in einer oder mehreren Zellen. Die Positionie-
rung einer GUI-Komponente und weitere Verhaltensmerkmale werden durch eine
Randbedingung, ein Objekt der Klasse GridBagConstraints, festgelegt. Die
Randbedingung wird beim Hinzufügen einer GUI-Komponente zu einem GUI-Con-
tainer beim Aufruf der Methode add() als zweiter Parameter übergeben.

Oberflächenprogrammierung mit Swing 861

Folgende Eigenschaften der Klasse GridBagConstraints bestimmen die Positio-
nierung und das Verhalten einer GUI-Komponente im Gitter:

• Datenfelder gridx und gridy:
Definieren die Position der GUI-Komponente im Gitter. Die Eigenschaft gridy
steht für die Zeile und gridx für die Spalte, wobei die Zählung bei 0 beginnt. Wird
die Eigenschaft nicht gesetzt, so positioniert der Layout-Manager die GUI-Kompo-
nente automatisch direkt im Anschluss an die letzte hinzugefügte GUI-
Komponente. Dies lässt sich auch durch die Angabe der Konstante GridBagCon-
straints.RELATIVE als Position definieren.

• Datenfelder gridheight und gridwidth:
Definieren die Anzahl der Zellen, die eine GUI-Komponente belegen soll. Der
Standardwert ist 1. Die Eigenschaft gridheight steht für die Anzahl der Zeilen,
gridwidth für die Anzahl der Spalten. Mit der Angabe der Konstante GridBag-
Constraints.REMAINDER werden die verbleibenden Zellen bis Ende der Zeile
oder Spalte durch die GUI-Komponente aufgefüllt. Mit der Konstante GridBag-
Constraints.RELATIVE wird angegeben, dass die GUI-Komponente alle Zellen
bis auf die letzte Zelle in der Zeile bzw. Spalte belegt.

• Datenfelder weightx und weighty:
Werden verwendet, um den unverbrauchten Raum in den einzelnen Spalten bzw.
Zeilen bei einer Größenänderung des Containers auf die GUI-Komponenten zu
verteilen. Es können Werte zwischen 0.0 und 1.0 – entspricht von 0% bis 100% –
eingetragen werden. Die Einstellungen funktionieren aber nur in Kombination mit
der Eigenschaft fill. Wird die GUI-Komponente ohne Größenänderungsrichtung
definiert, bleibt der zugewiesene Raum leer.

• Datenfelder ipadx und ipady:
Die beiden Werte werden zur minimalen Größe der GUI-Komponente addiert. Für
die Anzeige errechnen sich die minimale Breite aus der minimalen Breite der GUI-
Komponente und dem Wert von ipadx und die minimale Höhe aus der minimalen
Höhe der GUI-Komponente und dem Wert von ipady.

• Datenfeld fill:
Spezifiziert die Richtung, in die eine GUI-Komponente sich ausbreiten soll, wenn
sie innerhalb ihrer Zelle wachsen kann. Die Eigenschaft fill kann als Werte die
Konstanten HORIZONTAL, VERTIKAL, BOTH und NONE annehmen und damit fest-
legen, dass sich die GUI-Komponente horizontal, vertikal, nach allen Richtungen
oder gar nicht ausdehnt.

• Datenfeld insets:
Definiert die Abstände zwischen dem Zellenrand und der GUI-Komponente. Die
Eigenschaft vom Typ Insets gibt die Abstände in der Reihenfolge oben, links,
unten und rechts an.

• Datenfeld anchor:
Definiert die Ausrichtung einer GUI-Komponente in ihrem Anzeigebereich. Fol-
gende absolute Konstanten können verwendet werden: NORTH, SOUTH, EAST,
WEST, NORTHEAST, SOUTHEAST, SOUTHWEST, NORTHWEST, CENTER oder als re-

862 Kapitel 21

lative Varianten PAGE_START, PAGE_END, LINE_START, LINE_END, FIRST_-
LINE_START, FIRST_LINE_END, LAST_LINE_START, LAST_LINE_END.

Das Setzen der einzelnen Datenfelder zwischen dem Hinzufügen der Komponenten
kann bei größeren Dialogen unübersichtlich werden. Es hilft allerdings, sich eine Vor-
gehensweise zurechtzulegen. Man kann entweder für jede GUI-Komponente ein Ob-
jekt der Klasse GridBagConstraints erzeugen und entsprechend konfigurieren,
oder für alle ähnlichen GUI-Komponenten jeweils ein Objekt erzeugen und wieder-
verwenden. Bei der zweiten Möglichkeit muss man das Objekt nach der letzten Zu-
weisung durch die Methode add() für die nächste GUI-Komponente entsprechend
anpassen.

Bild 21-33 zeigt einen Layout-Prototypen eines Dialogs. Der Dialog bietet drei Text-
felder zum Erfassen von Vor- und Nachnamen und einem Kommentar. Die Schalt-
flächen am unteren Ende des Dialogs dienen zum Abbruch oder der Übernahme der
eingegebenen Daten.

�

1

2

3

4

0 1 2

�

Name:

Vorname:

Kommentar:

Abbrechen Übernehmen

0

Bild 21-33 Layout-Prototyp eines Dialogs

Folgende Eigenschaften des Layouts können festgestellt werden:

• Die drei statischen Texte sind jeweils linksbündig und vertikal mittig in einer eige-
nen Zelle ausgerichtet.

• Die zwei oberen Textfelder erstrecken sich horizontal über zwei Zellen, sind verti-
kal mittig ausgerichtet und beanspruchen jeweils die mittlere und rechte Zelle für
sich.

• Das Kommentar-Textfeld erstreckt sich horizontal über alle drei Zellen und ist viel
höher als andere Zellen.

Das nachfolgende Beispielprogramm erzeugt eine grafische Bedienoberfläche für
den Layout-Prototypen. Das Objekt vom Typ GridBagConstraints wird hierbei für
ähnliche GUI-Komponenten einmal erzeugt und entsprechend konfiguriert. Bei dem
mehrzeiligen Kommentar-Textfeld kommen die Eigenschaften weightx und
weighty zum Einsatz. Sie machen es möglich, dass das mehrzeilige Textfeld höher
gezeichnet wird als die anderen GUI-Komponenten im Dialog.

Oberflächenprogrammierung mit Swing 863

// Datei: GridBagLayoutTest.java

import javax.swing.*;
import java.awt.*;

public class GridBagLayoutTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Layout-Manager: GridBag-Layout");
 // Layout-Manager setzen.
 frame.setLayout (new GridBagLayout());

 GridBagConstraints c;
 // Objekt für Abstände zwischen den GUI-Komponenten.
 Insets set = new Insets (5, 5, 5, 5);

 // Eigenschaften für die Beschriftung "Name:".
 c = new GridBagConstraints();
 c.insets = set; // Abstände setzen.
 c.gridx = 0; // Position auf X-Achse setzen.
 c.gridy = 0; // Position auf Y-Achse setzen.
 // Ausrichtung setzen.
 c.anchor = GridBagConstraints.LINE_START;
 frame.add (new JLabel ("Name: "), c);

 // Eigenschaftsänderung für die Beschriftung "Vorname:".
 c.gridy = 1;
 frame.add (new JLabel ("Vorname: "), c);

 // Eigenschaftsänderung für die Beschriftung "Kommentar:".
 c.gridy = 2;
 frame.add (new JLabel ("Kommentar: "), c);

 // Eigenschaften Textfeld zur Beschriftung "Name:".
 c = new GridBagConstraints();
 c.insets = set;
 c.gridx = 1;
 c.gridy = 0;
 // Setze die Breite der GUI-Komponente.
 c.gridwidth = GridBagConstraints.REMAINDER;
 // Setze die Ausbreitung der GUI-Komponente.
 c.fill = GridBagConstraints.HORIZONTAL;
 // Setze die Ausrichtung.
 c.anchor = GridBagConstraints.LINE_START;
 frame.add (new JTextField (30), c);

 // Eigenschaftsänderung für das Textfeld zur Beschriftung
 // "Vorname:".
 c.gridy = 1;
 frame.add (new JTextField (30), c);

 // Eigenschaften mehrzeiliges Textfeld.
 c = new GridBagConstraints();
 c.insets = set;
 c.gridx = 0;
 c.gridy = 3;

864 Kapitel 21

 // Setze die Breite.
 c.gridwidth = GridBagConstraints.REMAINDER;
 // Setze die Ausbreitung.
 c.fill = GridBagConstraints.BOTH;
 // Setze die Ausrichtung.
 c.anchor = GridBagConstraints.FIRST_LINE_START;
 // Setze Gewichtigkeit bei Größenänderung.
 c.weightx = 1.0;
 c.weighty = 1.0;
 frame.add (new JTextArea (5,5), c);

 // Eigenschaften Schaltfläche "Abbrechen".
 c = new GridBagConstraints();
 c.insets = set;
 c.gridx = 0;
 c.gridy = 4;
 // Setze die Ausrichtung
 c.anchor = GridBagConstraints.LINE_START;
 frame.add (new JButton ("Abbrechen"), c);

 // Eigenschaftsänderung für die Schaltfläche "Übernehmen".
 c.gridx = 1;
 frame.add (new JButton ("Übernehmen"), c);

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible (true);
 }
}

Bild 21-34 zeigt das Fenster des Beispielprogrammes. Eine Ähnlichkeit zum Layout-
Prototyp aus Bild 21-33 ist ersichtlich.

Bild 21-34 Hauptfenster mit Layout-Manager GridBag-Layout

21.3.6 Layout-Manager Box-Layout

Der Layout-Manager Box-Layout wird durch die Klasse BoxLayout implementiert
und befindet sich – im Gegensatz zu den bereits vorgestellten Layout-Managern –
nicht im Paket java.awt, sondern im Paket javax.swing (siehe Bild 21-25).

Oberflächenprogrammierung mit Swing 865

Ein GUI-Container, der als Layout-Manager ein Box-Layout verwendet, ordnet hinzu-
gefügte GUI-Komponenten in einer Reihe an: Entweder horizontal, von links nach
rechts, oder vertikal, von oben nach unten.

Durch die Angabe einer Randbedingung wird die gewünschte Richtung der Reihe an-
gegeben. Folgende Randbedingungen stehen als Konstanten in der Klasse Box-
Layout zur Verfügung:

• Konstante X_AXIS:
Definiert eine waagerecht von links nach rechts verlaufende Reihe.

• Konstante Y_AXIS:
Definiert eine senkrecht von oben nach unten verlaufende Reihe.

• Konstante LINE_AXIS:
Definiert eine waagerecht verlaufende Reihe, welche von der für einen GUI-
Container gesetzten Orientierung abhängig ist.

• Konstante PAGE_AXIS:
Definiert eine senkrecht verlaufende Reihe, welche von der für einen GUI-
Container gesetzten Orientierung abhängig ist.

Im folgenden Beispielprogramm werden 4 Schaltflächen in einem Hauptfenster mit
Hilfe eines Box-Layouts angeordnet. Für die Festlegung der Anordnungsreihenfolge
und der Ausrichtung von hinzugefügten GUI-Komponenten wird die Konstante
LINE_AXIS verwendet. Beim Einsatz der Konstanten LINE_AXIS werden die An-
ordnungsreihenfolge und die Ausrichtung von der für den GUI-Container gesetzten
Orientierung abhängig gemacht. Die Orientierung für einen GUI-Container kann mit
Hilfe der Methode setComponentOrientation() gesetzt werden. Da die GUI-
Komponenten der Content-Pane eines Hauptfensters hinzugefügt werden (siehe
Kapitel 21.2.3.2), wird die Methode setComponentOrientation() entsprechend
für die Content-Pane – und nicht für das Hauptfenster direkt – aufgerufen.

// Datei: BoxLayoutTest.java

import javax.swing.*;
import java.awt.ComponentOrientation;

public class BoxLayoutTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Layout-Manager: Box-Layout");

 frame.getContentPane().setComponentOrientation(
 ComponentOrientation.RIGHT_TO_LEFT);

 // Layout-Manager setzen.
 frame.setLayout (new BoxLayout (frame.getContentPane(),
 BoxLayout.LINE_AXIS));

 // Hinzugefügte GUI-Komponenten werden nach den Regeln des
 // Layout-Managers und der Container-Orientierung angeordnet.
 frame.add (new JButton ("1"));
 frame.add (new JButton ("2"));

866 Kapitel 21

 frame.add (new JButton ("3"));
 frame.add (new JButton ("4"));

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setSize (350,100);
 frame.setVisible (true);
 }
}

Bild 21-35 zeigt das Hauptfenster des Beispielprogrammes mit den 4 hinzugefügten
Schaltflächen:

Bild 21-35 Hauptfenster mit Layout-Manager Box-Layout und Orientierung RIGHT_TO_LEFT

Bei jedem Layout-Manager besteht die Möglichkeit, die Ausrichtung und Anord-
nungsreihenfolge von hinzugefügten GUI-Komponenten durch absolute oder relative
Konstanten zu bestimmen. Bei der Verwendung von absoluten Konstanten – dies
sind beim Layout-Manager Box-Layout die Konstanten X_AXIS und Y_AXIS – legt
der Layout-Manager die Ausrichtung und Anordnungsreihenfolge selbst fest. Bei der
Verwendung von relativen Konstanten – dies sind beim Layout-Manager Box-Layout
die Konstanten LINE_AXIS und PAGE_AXIS ist die Anordnungsreihenfolge und
Ausrichtung abhängig von der für den GUI-Container gesetzten Orientierung. Die
Verwendung von relativen Konstanten in der Kombination mit einer Orientierung für
den GUI-Container bietet den Vorteil, eine grafische Bedienoberfläche – unter
Umständen auch zur Laufzeit – an die Leserichtung einer Sprache anzupassen.

21.3.7 Weitere Layout-Manager

Es gibt noch einige weitere Layout-Manager, die in diesem Buch nicht detailliert be-
schrieben werden. Im Folgenden werden die noch nicht behandelten Layout-Mana-
ger nur kurz vorgestellt und für ein detailliertes Studium wird auf das Java-Tutorial
[28] verwiesen.

Group-Layout
Das Group-Layout definiert jeweils ein Layout für die horizontale und ein Layout für
die vertikale Anordnung der GUI-Komponenten. Dabei können GUI-Komponenten in
eine sequentielle und eine parallele Gruppe gefasst werden.

Null-Layout
Mit dem Null-Layout hat man die Möglichkeit, GUI-Komponenten durch Vorgabe fes-
ter Koordinaten in einem GUI-Container anzuordnen. Diese Möglichkeit nennt man
absolute Positionierung, da für jede GUI-Komponente pixelgenau festgelegt wird, an
welcher Stelle sie zu erscheinen hat. Wird die Größe des umschließenden GUI-Con-
tainers geändert, dann erfolgt keine Verschiebung der GUI-Komponenten wie bei
den anderen Layout-Managern.

Oberflächenprogrammierung mit Swing 867

Durch einen Aufruf von setLayout (null) wird das Null-Layout verwendet. Für je-
de einzelne GUI-Komponente kann die Größe und die Position mit den Methoden
setBounds() und setSize() festgelegt werden.

Overlay-Layout
Das Overlay-Layout ermöglicht das Stapeln bzw. das Übereinanderlegen von GUI-
Komponenten.

Spring-Layout
Für die Programmierung von grafischen Editoren kann das Spring-Layout vorteilhaft
eingesetzt werden. GUI-Komponenten lassen sich damit mit genauen Abstandsanga-
ben zueinander und zum Rand des GUI-Containers positionieren.

Viewport-Layout
Der Layout-Manager Viewport-Layout ist für die Verwaltung von scrollbaren Fen-
sterinhalten gedacht. Ein Viewport repräsentiert hierbei den sichtbaren Bereich eines
scrollbaren Fensters.

21.4 Ereignisbehandlung

Bei der Interaktion des Benutzers mit der grafischen Bedienoberfläche werden Ereig-
nisse ausgelöst. Beispielsweise klickt der Benutzer auf eine Schaltfläche. Anhand
von Bild 21-2 wurde in Kapitel 21.1.2.1 erläutert, wie ein Ereignis entsprechend dem
Architekturmuster MVC an den zugehörigen Controller weitergeleitet werden kann:
Die View – das heißt, der auf dem Bildschirm sichtbare und aktive Anteil der grafi-
schen Bedienoberfläche – soll das Ereignis entgegennehmen und dieses an den
zugehörigen Controller zur Ereignisbehandlung weiterleiten. Die Implementierung
des Architekturmusters MVC in der Swing-Klassenbibliothek kapselt die View einer
Schaltfläche in einem Objekt vom Typ JButton. Entsprechend nimmt ein Objekt
vom Typ JButton das Ereignis "Schaltfläche gedrückt" entgegen und leitet dieses
an den zugehörigen Controller weiter.

Für das Verständnis der Ereignisbehandlung ist es hilfreich, die Begriffe Ereignis-
quelle und Ereignissenke einzuführen. Eine Ereignissenke meldet sich bei einer
Ereignisquelle für spezielle Ereignisse an. Tritt ein Ereignis auf, so wird dies von der
Ereignisquelle an alle für dieses Ereignis angemeldeten Ereignissenken weitergelei-
tet. Die Ereignissenken sind dann für die eigentliche Ereignisverarbeitung zuständig.

Bei einer grafischen Bedienoberfläche repräsentiert ein vordefinierter
oder ein selbst geschriebener Controller eine Ereignissenke und
die GUI-Komponenten repräsentieren die Ereignisquellen.

Es mag ungewöhnlich klingen, dass die GUI-Komponenten – also beispielsweise
Objekte vom Typ JButton – die Ereignisquellen repräsentieren. Intuitiv würde man
wahrscheinlich eher die Eingabegeräte Maus bzw. Tastatur oder gar den Benutzer –
als den eigentlichen Auslöser eines Ereignisses – als Ereignisquelle definieren. Für
den Programmierer einer grafischen Bedienoberfläche in Swing ist aber ausschlag-
gebend, bei welchem Objekt er einen selbst geschriebenen Controller anmelden

868 Kapitel 21

muss, damit bei eintretenden Ereignissen Methoden seines Controllers zur Ereignis-
behandlung aufgerufen werden. Bild 21-36 zeigt in einer schematischen Darstellung
die Zusammenarbeit von Ereignisquelle, Ereignissenke und die Bedeutung eines Er-
eignisobjektes in der "Welt" des Programmierers.

Ereignisquelle

GUI-Komponente

Ereignissenke

Controller

:JButton

addXYZListener()

:XYZListener

callback1()
callback2()

Ereignisobjekt

:EventObject

"Welt" des Programmierers

1: Controller bei GUI-Kompo-
 nente anmelden:
 addXYZListener (this)

2: Benutzer
 "drückt"
 Schaltfläche

3: GUI-Komponente nimmt
 Ereignis entgegen und erzeugt
 zugehöriges Ereignisobjekt:
 new

4: Aufruf der zum Ereignis
 passenden Callback-Methode,
 Übergabe Referenz auf
 Ereignisobjekt als Parameter:
 callback1 (refEvent)

Bild 21-36 Ereignissenke und Ereignisquelle in der "Welt" des Programmierers

Soll auf eine Benutzerinteraktion reagiert werden, so muss ein Controller program-
miert werden, der eine Callback-Schnittstelle implementiert. Die Callback-Schnitt-
stelle muss zu den Ereignissen passen, welche abgefangen und verarbeitet werden
sollen. Eine Callback-Schnittstelle definiert eine oder mehrere Callback-Methoden
und endet immer mit dem Namen Listener. Die Callback-Schnittstelle für eine
Schaltfläche hat beispielsweise den Namen ActionListener und definiert die
Callback-Methode actionPerformed(). Mit der Implementierung der Callback-
Schnittstelle ActionListener und der Callback-Methode actionPerformed()
haben Sie in den bisherigen Beispielprogrammen schon reichlich Erfahrung ge-
sammelt. In Kapitel 21.4.2 werden Sie weitere Callback-Schnittstellen kennenlernen.
Für den Gesamtzusammenhang reicht es vorerst, wenn Sie sich merken:

Einer GUI-Komponente sind Callback-Schnittstellen (mit Namen XYZ-
Listener) zugeordnet, die der Programmierer in einem Controller
implementieren muss, falls er Ereignisse für diese GUI-Komponente
abfangen und verarbeiten möchte.

Die Implementierung einer Callback-Schnittstelle alleine reicht aber noch nicht aus,
um ein Ereignis in einem Controller abzufangen. Damit die GUI-Komponente weiß,
an welche Controller eintretende Ereignisse weitergeleitet werden müssen, muss der
Programmierer seinen Controller bei der GUI-Komponente anmelden (siehe Schritt 1
in Bild 21-36). Dies geschieht durch Aufruf einer Methode addXYZListener() zur
GUI-Komponente und Übergabe einer Referenz auf den Controller, der die Schnitt-
stelle XYZListener implementiert.

Oberflächenprogrammierung mit Swing 869

Ein Controller muss bei der GUI-Komponente angemeldet werden, da-
mit ein eintretendes Ereignis von der GUI-Komponente an den Con-
troller weitergeleitet werden kann.

Für eine GUI-Komponente vom Typ JButton wurde in den Beispielprogrammen zur
Anmeldung eines Controllers die Methode addActionListener() aufgerufen.
Nach der Anmeldung eines passenden Controllers bei einer GUI-Komponente und
der Implementierung einer entsprechenden Ereignisbehandlung in den Callback-Me-
thoden, hat der Programmierer alle notwendigen Schritte durchgeführt, um individuell
auf Benutzerinteraktionen zu reagieren. Drückt der Benutzer nun eine Schaltfläche
auf der grafischen Bedienoberfläche (siehe Schritt 2 in Bild 21-36) wird dieses
Ereignis an das zugehörige Objekt vom Typ JButton weitergeleitet. Das Objekt vom
Typ JButton nimmt das Ereignis entgegen und erzeugt ein passendes Ereignis-
objekt vom Typ EventObject (siehe Schritt 3 in Bild 21-36). Über Ereignisobjekte
werden Sie später in Kapitel 21.4.1 noch mehr erfahren. Eine Referenz auf das Er-
eignisobjekt wird nun durch Aufruf der passenden Callback-Methode an angemeldete
Controller weitergeleitet (siehe Schritt 4 in Bild 21-36).

In den folgenden Kapiteln lernen Sie, welche Ereignisse für welche GUI-Komponen-
ten definiert sind und welche verschiedenen Möglichkeiten existieren, eine Con-
troller-Funktionalität zum Abfangen und zum Verarbeiten von Ereignissen zu imple-
mentieren. Zum Abschluss des Kapitels wird das für die Ereignisbehandlung essen-
tielle Thema Nebenläufigkeit beleuchtet.

21.4.1 Ereignisse

Für jedes Ereignis wird in Java bei dessen Eintreten ein Objekt vom Typ Event-
Object angelegt. Die Klasse EventObject findet sich im Paket java.util und ist
die Basisklasse für Ereignisse in Java. Ein Ereignisobjekt spielt eine wichtige Rolle
für den Informationsaustausch zwischen Ereignisquelle und Ereignissenke.

Benachrichtigt eine Ereignisquelle die angemeldeten Ereignissenken
über ein aufgetretenes Ereignis, so wird eine Referenz auf das zuge-
hörige Ereignisobjekt von der Ereignisquelle an die Ereignissenke wei-
tergereicht.

Ein Ereignisobjekt speichert Informationen zum aufgetretenen Ereignis sowie eine
Referenz auf die Ereignisquelle. Damit die Ereignissenke die Ereignisquelle ermitteln
kann, implementiert die Klasse EventObject eine Methode getSource().

Ein Controller kann durch Aufruf der Methode getSource() zu
einem Ereignisobjekt eine Referenz auf die Ereignisquelle (GUI-Kom-
ponente) erhalten, die das Ereignis ausgelöst hat.

Ein Controller-Objekt kann auch Ereignisse von mehreren GUI-Komponenten ab-
fangen und verarbeiten. Im nachfolgenden Beispielprogramm wird ein Controller-

870 Kapitel 21

Objekt vom Typ ButtonController (selbst implementierter Controller) angelegt
und für zwei Schaltflächen als Ereignissenke angemeldet. Die beiden Schaltflächen
sollen jeweils anzeigen, wie oft sie gedrückt wurden. Erhält nun das Controller-Objekt
ein Ereignis, indem dessen Methode actionPerformed() aufgerufen wird, so ist
es hilfreich, wenn der Controller auf einfache Art und Weise herausfinden kann,
welche Schaltfläche das Ereignis ausgelöst hat und welche Aktion auszuführen ist.
GUI-Komponenten, die Ereignisse vom Typ ActionEvent auslösen können,
implementieren die Methode setActionCommand(). Dieser Methode wird als Para-
meter ein Bezeichner vom Typ String übergeben. Bei der Erzeugung eines Ereig-
nisobjektes vom Typ ActionEvent durch die GUI-Komponente wird dann dieser
Bezeichner vom Typ String im Ereignisobjekt gespeichert. Da ein Ereignisobjekt
als Parameter der Methode actionPerformed() von der Ereignisquelle an den
angemeldeten Controller weitergereicht wird, kann ein Controller durch Aufruf der
Methode getActionCommand() diesen Bezeichner vom Ereignisobjekt abfragen.

// Datei: ActionCommandTest.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ActionCommandTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Ereignisbehandlung");
 frame.setLayout (new FlowLayout());
 ButtonController controller = new ButtonController();

 // Controller für zwei Schaltflächen als Ereignis-Interessent
 // anmelden und für jede Schaltfläche einen eigenen Bezeichner
 // als Action-Command setzen.
 JButton button1 = new JButton ("Gedrückt: 0");
 button1.setActionCommand ("1");
 button1.addActionListener (controller);
 JButton button2 = new JButton ("Gedrückt: 0");
 button2.setActionCommand ("2");
 button2.addActionListener (controller);

 frame.add (button1);
 frame.add (button2);
 frame.pack();
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

class ButtonController implements ActionListener
{
 private int counter1 = 0;
 private int counter2 = 0;

 public void actionPerformed (ActionEvent action)
 {

Oberflächenprogrammierung mit Swing 871

 JButton refSource = (JButton) action.getSource();
 int i = Integer.parseInt(action.getActionCommand());
 if (i == 1)
 refSource.setText ("Gedrückt: " + ++counter1);
 else
 refSource.setText ("Gedrückt: " + ++counter2);
 }
}

Bild 21-37 zeigt die grafische Bedienoberfläche des Programmes, nachdem die linke
Schaltfläche 6-mal und die rechte Schaltfläche 3-mal gedrückt wurde.

Bild 21-37 Ereignisbearbeitung für zwei Schaltflächen in einem gemeinsamen Controller

Auch wenn man dem Ereignisobjekt vom Typ ActionEvent sehr häufig begegnet,
gibt es noch eine Vielzahl von anderen Ereignissen, die durch zugehörige Klassen in
der Java-Klassenbibliothek definiert sind. Bild 21-38 zeigt die Klassenhierarchie der
Ereignisse, die bei der Programmierung von grafischen Bedienoberflächen zum Ein-
satz kommen. Die dargestellten Ereignisklassen, die von der Klasse EventObject
ableiten, finden sich in Unterpaketen der Pakete java.awt und javax.swing.

EventObject

TreeExpansion
Event

TreeModel
Event

TreeSelection
Event

UndoableEdit
Event

DragSource
Event

DropTarget
Event

ListData
Event

Hyperlink
Event

Property
ChangeEvent

ListSelection
Event

DragGesture
Event

PopupMenu
Event

RowSorter
Event

TableColumn
ModelEvent

TableModel
Event

Adjustment
Event

Ancestor
Event

Component
Event

Hierarchy
Event

InputMethod
Event

InternalFrame
Event

Invocation
Event

FlavorEvent MenuEvent

AWTEvent

ChangeEvent

CaretEvent

ActionEvent

ItemEvent

TextEvent

Bild 21-38 Klassenhierarchie der Ereignisse vom Typ EventObject

872 Kapitel 21

Ereignisse werden in so genannte semantische und "Low-Level"-Ereignisse unter-
teilt. Die in Bild 21-38 dargestellten Ereignisklassen repräsentieren semantische Er-
eignisse. Alle Ereignisklassen, die von der Klasse ComponentEvent ableiten, reprä-
sentieren "Low-Level"-Ereignisse und sind in Bild 21-39 dargestellt.

Paint
Event

Component
Event

Focus
Event

Input
Event

Mouse
Event

Key
Event

Container
Event

Windows
Event

MenuKey
Event

MouseWheel
Event

MenuDrag
MouseEvent

Bild 21-39 "Low-Level"-Ereignisse

Während bei den "Low-Level"-Ereignissen für verschiedene Eingabegeräte wie Maus
oder Tastatur eigene Ereignisklassen existieren, abstrahieren die semantischen Er-
eignisse von den eigentlichen Eingabegeräten. Semantische Ereignisse sind – wie
auch der Name schon sagt – an die Semantik der Aktivität gebunden. Eine Schalt-
fläche kann beispielsweise durch eine Taste auf der Tastatur oder durch eine Maus-
taste betätigt werden. Bei den semantischen Ereignissen spielt es damit keine Rolle,
durch welches Eingabegerät die Schaltfläche betätigt worden ist, sondern nur, dass
sie überhaupt betätigt worden ist. Typischerweise werden semantische Ereignisse
bei der Programmierung von grafischen Bedienoberflächen häufiger eingesetzt, da
man unabhängig vom Eingabegerät auf Ereignisse reagieren kann und nicht für je-
des Eingabegerät einen eigenen Controller schreiben muss.

Ein Ereignis vom Typ ActionEvent, das uns schon häufiger begegnet ist, gehört zu
den semantischen Ereignissen. Ein Ereignis vom Typ ActionEvent ist weder an ein
bestimmtes Eingabegerät noch an eine bestimmte GUI-Komponente gebunden. Es
wird also nicht unterschieden, ob eine Schaltfläche beispielsweise über die linke
Maustaste oder die "Enter"-Taste auf der Tastatur betätigt wird. Des Weiteren kann
eine Anwendungsfunktion mittels einer grafischen Bedienoberfläche über verschie-
dene GUI-Komponenten aufgerufen werden. Beispielsweise kann ein und dieselbe
Anwendungsfunktion durch das Auswählen eines Menüeintrags oder durch das
Drücken eine Schaltfläche ausgeführt werden. Jede dieser GUI-Komponenten er-
zeugt hierbei ein Ereignisobjekt vom Typ ActionEvent. Dementsprechend können
auch beide GUI-Komponenten bei Bedarf den gleichen Controller verwenden.

21.4.2 Listener-Schnittstellen und Adapter-Klassen

Im vorangegangen Kapitel lag der Fokus auf den Ereignissen – in diesem Kapitel
liegt der Fokus auf der Implementierung von selbst geschriebenen Controllern. Um
Ereignisse abzufangen und zu verarbeiten, wurden in den bisherigen Beispielpro-
grammen selbst geschriebene Controller implementiert. Ein selbst geschriebener
Controller hat hierzu eine spezielle, dem Ereignistyp entsprechende Callback-

Oberflächenprogrammierung mit Swing 873

Schnittstelle – auch Listener-Schnittstelle genannt – implementiert. Neben der
Möglichkeit, einen Controller durch die Implementierung einer Listener-Schnittstelle
zu schreiben, lernen Sie in diesem Kapitel, wie ein Controller durch Ableiten von
einer so genannten Adapter-Klasse geschrieben werden kann.

21.4.2.1 Listener-Schnittstellen

Damit ein Controller (eine Ereignissenke) bestimmte Ereignisse abfangen kann,
muss dieser eine zum Ereignistyp passende Listener-Schnittstelle implementieren.
Beispielsweise korrespondiert die Listener-Schnittstelle MouseListener zum Ereig-
nis vom Typ MouseEvent. In der Schnittstelle MouseListener sind unter anderen
die Callback-Methoden mousePressed() und mouseReleased() deklariert, die
von einem Controller, der die zugehörigen Ereignisse abfangen möchte, implemen-
tiert werden müssen. Alle Listener-Schnittstellen leiten von der Schnittstelle
java.util.EventListener ab. Die für die Programmierung von grafischen
Bedienoberflächen relevanten Listener-Schnittstellen befinden sich in Unterpaketen
der Pakete java.awt und javax.swing und sind in Bild 21-40 dargestellt.

EventListener

Action
Listener

Adjustment
Listener

Ancestor
Listener

Caret
Listener

Container
Listener

Document
Listener

DragGesture
Listener

Key
Listener

Item
Listener

InternalFrame
Listener

InputMethod
Listener

Hyperlink
Listener

Hierarchy
Listener

DropTarget
Listener

DragSource
MotionListener

DragSource
Listener

Flavor
Listener

ListData
Listener

ListSelection
Listener

MenuDrag
Listener

MenuKey
Listener

MenuListener

Mouse
Listener

MouseWheel
Listener

PopupMenu
Listener

PropertyChange
Listener

RowSet
Listener

TableColumn
ModelListener

WindowState
Listener

Window
Listener

WindowFocus
Listener

VetoableChange
Listener

UndoableEdit
Listener

TreeWill
ExpandListener

TreeSelection
Listener

TreeModel
Listener

TreeExpansion
Listener

TextListener

TableModel
Listener

Hierarchy
BoundsListener

AWTEvent
Listener

CellEditor
Listener

Change
Listener

Component
Listener

Bild 21-40 Listener-Schnittstellen173

173 Das Schlüsselwort <<interface>> wurde in der Darstellung aus Platzgründen weggelassen.

874 Kapitel 21

Das folgende Beispielprogramm zeigt eine grafische Bedienoberfläche mit einer
Schaltfläche, die anzeigt, wie oft diese durch die Maus gedrückt wurde. Zum Ab-
fangen der Maus-Ereignisse für die Schaltfläche wird ein Controller geschrieben, der
die Schnittstelle MouseListener implementiert. Die Schnittstelle MouseListener
deklariert fünf Methoden für die unterschiedlichen Mausereignisse, die eintreten kön-
nen. An dieser Stelle soll nicht jedes Mausereignis und die zugehörige Callback-
Methode in der Listener-Schnittstelle erläutert werden, sondern es soll verdeutlicht
werden, dass ein Controller stets alle Methoden einer Listener-Schnittstelle imple-
mentieren muss, auch wenn nur auf ein einzelnes Ereignis reagiert werden soll. Soll
beim Aufruf einer Callback-Methode nichts getan werden, so erfolgt die Implemen-
tierung durch einen leeren Rumpf. Im Beispielprogramm stellt der Controller nur für
das Ereignis "Maustaste loslassen" eine spezifische Implementierung der zugehöri-
gen Callback-Methode bereit. Für die anderen Callback-Methoden erfolgt die Imple-
mentierung durch einen leeren Rumpf.

// Datei: MouseListenerTest.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class MouseListenerTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Hauptfenster");

 JButton button1 = new JButton ("Gedrückt: 0");
 button1.addMouseListener (new MouseController());

 frame.setLayout (new FlowLayout());
 frame.add (button1);

 frame.setSize (400, 100);
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

class MouseController implements MouseListener
{
 private int counter = 0;

 public void mouseClicked (MouseEvent e)
 {
 }

 public void mouseEntered (MouseEvent e)
 {
 }

 public void mouseExited (MouseEvent e)
 {
 }

Oberflächenprogrammierung mit Swing 875

 public void mousePressed (MouseEvent e)
 {
 }

 public void mouseReleased (MouseEvent e)
 {
 ((JButton)e.getSource()).setText("Gedrückt: " + ++counter);
 }
}

Bild 21-41 zeigt die grafische Bedienoberfläche, nachdem die Maustaste 2-mal über
der Schaltfläche gedrückt und auch wieder losgelassen wurde.

Bild 21-41 Grafische Bedienoberfläche mit Controller-Funktion für Maus-Ereignisse

21.4.2.2 Adapter-Klassen

Bei der Implementierung einer Listener-Schnittstelle muss ein Controller alle in der
Schnittstelle definierten Callback-Methoden – mindestens durch einen leeren
Rumpf – implementieren, auch wenn nur auf ein einzelnes Ereignis reagiert werden
soll. Um den Implementierungsaufwand für den Programmierer möglichst gering zu
halten, existieren die so genannten Adapter-Klassen.

Eine Adapter-Klasse implementiert alle von einer Listener-Schnitt-
stelle vorgegebenen Callback-Methoden mit einem leeren Rumpf.

Ein Controller kann nun – alternativ zur Implementierung einer Listener-Schnitt-
stelle – von der zugehörigen Adapter-Klasse ableiten. Es werden im Controller dann
nur diejenigen Callback-Methoden überschrieben, für die auch tatsächlich eine
Implementierung durch den Controller bereitgestellt wird.

Für Listener-Schnittstellen, die mehr als eine Callback-Methode ent-
halten, wird durch die Java-Klassenbibliothek eine zugehörige Adap-
ter-Klasse bereitgestellt.

Die folgende Tabelle ordnet den Listener-Schnittstellen die entsprechenden Adapter-
Klassen zu. Es ist hierbei durchaus üblich, dass eine Adapter-Klasse mehrere Liste-
ner-Schnittstellen implementiert oder dass eine Listener-Schnittstelle in mehreren
Adapter-Klassen implementiert wird. Der Grund hierfür ist ganz einfach, dass ein
Controller zwar mehrere Listener-Schnittstellen implementieren, aber nur von einer
Adapter-Klasse ableiten kann. Deshalb existieren Adapter-Klassen, die eine unter-
schiedliche Kombination von Listener-Schnittstellen implementieren.

876 Kapitel 21

Listener-Schnittstelle

Adapter-Klasse

ComponentListener ComponentAdapter
ContainerListener ContainerAdapter
DragSourceListener DragSourceAdapter
DragSourceMotionListener DragSourceAdapter
DropTargetListener DropTargetAdapter
FocusListener FocusAdapter
HierarchyBoundsListener HierarchyBoundsAdapter
InternalFrameListener InternalFrameAdapter
KeyListener KeyAdapter
MouseInputListener MouseInputAdapter
MouseListener MouseAdapter

MouseInputAdapter
MouseMotionListener MouseAdapter

MouseInputAdapter
MouseMotionAdapter

MouseWheelListener MouseAdapter
MouseInputAdapter

WindowFocusListener WindowAdapter
WindowListener WindowAdapter
WindowStateListener WindowAdapter

Tabelle 21-3 Adapter-Klassen für die Ereignisverarbeitung

Das vorangegangene Beispiel aus Kapitel 21.4.2.1 kann mit Hilfe einer Adapter-
Klasse wesentlich kompakter formuliert werden. Aussehen und Verhalten beider Pro-
gramme sind identisch.

// Datei: MouseAdapterTest.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class MouseAdapterTest
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Hauptfenster");
 frame.setLayout (new FlowLayout());

 JButton button1 = new JButton ("Gedrückt: 0");
 button1.addMouseListener (new MouseController());
 frame.add (button1);

 frame.setSize (400, 100);
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

Oberflächenprogrammierung mit Swing 877

class MouseController extends MouseAdapter
{
 private int counter = 0;

 // Überschreiben der Methode mouseReleased() der Adapter-Klasse.
 public void mouseReleased (MouseEvent e)
 {
 ((JButton)e.getSource()).setText("Gedrückt: " + ++counter);
 }
}

21.4.3 Implementierungsvarianten der Controller

Neben der Möglichkeit, einen Controller entweder durch die Implementierung einer
Listener-Schnittstelle oder durch das Ableiten von einer Adapter-Klasse zu schrei-
ben, gibt es generell die Möglichkeit, einen Controller entweder in der Form einer ex-
ternen Klasse (siehe Kapitel 21.4.3.1), einer Elementklasse (siehe Kapitel 21.4.3.2)
oder einer anonymen Klasse (siehe Kapitel 21.4.3.3) zu schreiben.

21.4.3.1 Controller als externe Klasse

Die Implementierung eines Controllers durch eine externe Klasse haben Sie bereits
in den bisherigen Beispielprogrammen kennengelernt. Durch die Implementierung
eines Controllers als eigene externe Klasse wird eine Separierung der Darstellung
einer grafischen Bedienoberfläche von der Reaktion auf Benutzereingaben – die oft-
mals eine Interaktion mit den Anwendungsfunktionen erfordert – deutlich zum Aus-
druck gebracht. Durch Speicherung einer selbst implementierten externen Controller-
Klasse in einer eigenen Datei (und eventuell sogar deren Anordnung in einem ande-
ren Paket) kann diese Separierung noch expliziter zum Ausdruck gebracht werden.
Anhand eines Beispielprogrammes soll in diesem Kapitel – und in den folgenden
beiden – gezeigt werden, welche Vor- und Nachteile die unterschiedlichen Imple-
mentierungsvarianten des Controllers mit sich bringen. Alle drei Beispielprogram-
me besitzen eine identische grafische Bedienoberfläche und weisen ein identi-
sches Verhalten auf. Die grafische Bedienoberfläche der drei folgenden Programme
ist in Bild 21-42 zu sehen.

Bild 21-42 Grafische Bedienoberfläche für die folgenden drei Beispielprogramme

Es folgt der Programmcode, der eine Implementierung des Controllers für die beiden
Schaltflächen aus Bild 21-42 in einer externen Klasse zeigt. Die Klasse Dialog-
NameGUI1 hat nur die Aufgabe, die grafische Bedienoberfläche zu erzeugen. Das
Erzeugen der grafischen Bedienoberfläche erfolgt im Konstruktor und nicht wie in
vorangegangenen Beispielen in der Methode main(). Die Erzeugung einer grafi-
schen Bedienoberfläche im Konstruktor oder in einer eigenen Methode (beispiels-

878 Kapitel 21

weise createGUI()) ist bei größeren Programmen flexibler und übersichtlicher. Der
externe Controller ist in der Klasse ButtonController implementiert. Da der
Controller die Aufgabe hat, den Text, den ein Anwender in die Textfelder mit den
Bezeichnern "Vorname:" und "Name:" eingibt, auszulesen bzw. zu löschen, benötigt
der Controller Zugriff auf die beiden Textfelder. Die Referenzen auf die beiden Text-
felder werden dem Controller im Konstruktor übergeben und der Controller speichert
diese Referenzen in privaten Instanzvariablen.

// Datei: DialogNameGUI1.java

import javax.swing.*;
import java.awt.*;

public class DialogNameGUI1
{
 public DialogNameGUI1()
 {
 JFrame frame = new JFrame ("Names-Dialog");
 JPanel pane1 = new JPanel();
 pane1.setLayout (new GridLayout (2, 2, 5, 5));
 JPanel pane2 = new JPanel();
 JTextField name = new JTextField (10);
 JTextField firstName = new JTextField (10);

 ButtonController ref = new ButtonController (name, firstName);

 JButton ok = new JButton ("Übernehmen");
 ok.setActionCommand ("OK");
 ok.addActionListener (ref);

 JButton nok = new JButton ("Löschen");
 nok.setActionCommand ("NOK");
 nok.addActionListener (ref);

 pane1.add (new JLabel (" Vorname:"));
 pane1.add (name);
 pane1.add (new JLabel (" Name:"));
 pane1.add (firstName);
 pane2.add (ok);
 pane2.add (nok);
 frame.add (pane1, BorderLayout.NORTH);
 frame.add (pane2, BorderLayout.SOUTH);

 frame.pack();
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }

 public static void main (String[] args)
 {
 DialogNameGUI1 dialog = new DialogNameGUI1();
 }
}

Oberflächenprogrammierung mit Swing 879

// Datei: ButtonController.java

import javax.swing.*;
import java.awt.event.*;

// Implementierung des Controllers in einer externen Klasse.
public class ButtonController implements ActionListener
{
 private JTextField name;
 private JTextField firstName;

 public ButtonController (JTextField firstName, JTextField name)
 {
 this.firstName = firstName;
 this.name = name;
 }

 public void actionPerformed (ActionEvent action)
 {
 if (action.getActionCommand() == "OK")
 ; //Daten übernehmen und beispielsweise speichern.

 // Löschen der Textfelderinhalte wird immer durchgeführt.
 name.setText ("");
 firstName.setText ("");
 }
}

21.4.3.2 Controller als Elementklasse

Die Implementierung eines Controllers durch eine Elementklasse (für die Erläuterung
einer Elementklasse siehe Kapitel 15.1) bietet den Vorteil, dass eine Elementklasse
Zugriff auf die Elemente der äußeren Klasse hat. Der folgende Programmcode zeigt
die Implementierung des Beispielprogrammes aus dem vorangegangen Kapitel mit
dem Unterschied, dass nun eine Elementklasse – und keine externe Klasse – für den
Controller zum Einsatz kommt. Der wesentliche Unterschied ist, dass im Controller
die Instanzvariablen und der Konstruktor entfallen können, da der Controller als
Elementklasse auf die Instanzvariablen der umschließenden Klasse zugreifen kann.
Die beiden Textfelder, auf die der Controller zugreifen muss, werden deshalb als
Instanzvariablen der umschließenden Klasse angelegt.

// Datei: DialogNameGUI2.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DialogNameGUI2
{
 private JTextField name = new JTextField (10);
 private JTextField firstName = new JTextField (10);

 public DialogNameGUI2()
 {
 JFrame frame = new JFrame ("Names-Dialog");

880 Kapitel 21

 JPanel pane1 = new JPanel();
 pane1.setLayout (new GridLayout (2, 2, 5, 5));
 JPanel pane2 = new JPanel();

 ButtonController ref = new ButtonController();
 JButton ok = new JButton ("Übernehmen");
 ok.setActionCommand ("OK");
 ok.addActionListener (ref);

 JButton nok = new JButton ("Löschen");
 nok.setActionCommand ("NOK");
 nok.addActionListener (ref);

 pane1.add (new JLabel (" Vorname:"));
 pane1.add (name);
 pane1.add (new JLabel (" Name:"));
 pane1.add (firstName);
 pane2.add (ok);
 pane2.add (nok);
 frame.add (pane1, BorderLayout.NORTH);
 frame.add (pane2, BorderLayout.SOUTH);

 frame.pack();
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }

 public static void main (String[] args)
 {
 DialogNameGUI2 dialog = new DialogNameGUI2();
 }

 class ButtonController implements ActionListener
 {
 public void actionPerformed (ActionEvent action)
 {
 if(action.getActionCommand() == "OK")
 ; //Daten übernehmen und beispielsweise speichern.

 // Löschen der Textfelderinhalte wird immer durchgeführt.
 name.setText ("");
 firstName.setText ("");
 }
 }
}

21.4.3.3 Controller als anonyme Klasse

Die Implementierung eines Controllers durch eine anonyme Klasse (für die Erläu-
terung einer anonymen Klasse siehe Kapitel 15.3) ist in vielen Fällen die kompak-
teste Implementierungsvariante. Der folgende Programmcode zeigt die Implementie-
rung des Controllers durch eine anonyme Klasse für das Beispiel aus den vorherigen
Kapiteln. Der wesentliche Unterschied ist, dass die anonyme Klassendefinition direkt
beim Anmelden des Controllers bei den Schaltflächen eingefügt wird. Da ein Con-
troller in der Form einer anonymen Klasse nur als Ereignissenke für genau eine GUI-

Oberflächenprogrammierung mit Swing 881

Komponente dienen kann, muss für jede Schaltfläche ein eigener Controller ge-
schrieben werden.

// Datei: DialogNameGUI3.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DialogNameGUI3
{
 private JTextField name = new JTextField (10);
 private JTextField firstName = new JTextField (10);

 public DialogNameGUI3()
 {
 JFrame frame = new JFrame ("Names-Dialog");
 JPanel pane1 = new JPanel();
 pane1.setLayout (new GridLayout (2, 2, 5, 5));
 JPanel pane2 = new JPanel();

 JButton ok = new JButton ("Übernehmen");
 ok.addActionListener (new ActionListener()
 {
 public void actionPerformed (ActionEvent action)
 {
 // Daten übernehmen und beispielsweise speichern.
 name.setText ("");
 firstName.setText ("");
 }
 });

 JButton nok = new JButton ("Löschen");
 nok.addActionListener (new ActionListener()
 {
 public void actionPerformed (ActionEvent action)
 {
 name.setText ("");
 firstName.setText ("");
 }
 });

 pane1.add (new JLabel (" Vorname:"));
 pane1.add (name);
 pane1.add (new JLabel (" Name:"));
 pane1.add (firstName);
 pane2.add (ok);
 pane2.add (nok);
 frame.add (pane1, BorderLayout.NORTH);
 frame.add (pane2, BorderLayout.SOUTH);

 frame.pack();
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }

882 Kapitel 21

 public static void main (String[] args)
 {
 DialogNameGUI3 dialog = new DialogNameGUI3();
 }
}

Ein Controller in der Form einer anonymen Klasse ist zwar oft die kompakteste
Implementierungsvariante, bringt jedoch auch folgende Einschränkungen mit sich:

• Ein Controller als anonyme Klasse kann entweder nur eine Listener-Schnittstelle
implementieren oder von einer Adapter-Klasse ableiten.

• Von einer anonymen Klasse kann nur ein einziges Objekt erzeugt werden. Die Re-
ferenz auf dieses Objekt kann auch nur an eine einzige GUI-Komponente bei der
Anmeldung des Controllers durch Aufruf der Methode addActionListener()
weitergereicht werden.

21.4.4 Nebenläufigkeit

Die Nebenläufigkeit leistet einen erheblichen Beitrag zu einer komfortablen Hand-
habung einer Anwendung mit grafischer Bedienoberfläche. Als erstes soll deshalb
geklärt werden, was Nebenläufigkeit für eine Anwendung mit grafischer Bedienober-
fläche bedeutet.

Durch die Interaktion eines Benutzers werden für einzelne GUI-Komponenten Ereig-
nisse erzeugt. Ereignisse wie das "Drücken einer Schaltfläche" oder das "Vergrö-
ßern" oder "Verkleinern eines Fensters" werden in eine Warteschlange eingereiht.

Durch den Benutzer ausgelöste Ereignisse werden alle in dieselbe
Warteschlange eingereiht. Für die Abarbeitung der Ereignisse in die-
ser Warteschlange ist ein einziger Thread – der Event-Dispatch-
Thread – zuständig.

Die Warteschlange wird hierbei durch den Event-Dispatch-Thread nach dem Prinzip
"first-in, first-out" (FIFO) bearbeitet. Das bedeutet, dass ein Ereignis, welches als
erstes in die Warteschlange eingereiht wird, auch als erstes aus dieser entnommen
und abgearbeitet wird. Das nächste Ereignis wird erst dann aus der Warteschlange
entnommen, wenn das vorherige komplett fertig abgearbeitet ist.

Da nur ein einziger Thread für die Bearbeitung der Ereignisse vorhanden ist, ist es
essentiell, dass der Programmierer darauf achtet, dass die Bearbeitung eines einzel-
nen Ereignisses nicht zu lange dauert.

Der Programmierer muss darauf achten, dass die Callback-Methoden
in einem selbst geschriebenen Controller entweder schnell abgear-
beitet werden können, oder, dass für zeitintensive Callback-Methoden
ein eigener Thread für die Bearbeitung des Ereignisses erzeugt wird.

Oberflächenprogrammierung mit Swing 883

Eine Missachtung dieser Vorgehensweise führt dazu, dass die grafische Bedienober-
fläche während der Abarbeitung einer zeitintensiven Callback-Methode keine weite-
ren Benutzereingaben entgegennehmen kann.

Bevor in Kapitel 21.4.4.2 gezeigt wird, wie zeitintensive Callback-Methoden in so
genannte Worker-Threads ausgelagert werden, wird im nächsten Kapitel gezeigt, wie
aus Sicht der Nebenläufigkeit eine Swing-Anwendung korrekt zu starten ist.

21.4.4.1 Empfohlener Start einer Swing-Anwendung

Beim Start einer Java-Anwendung wird die main()-Methode abgearbeitet. Derjenige
Thread, welcher die main()-Methode abarbeitet, wird im Kontext einer Swing-An-
wendung Initial-Thread genannt. Der Initial-Thread ist für die Initialisierung der gra-
fischen Bedienoberfläche zuständig.

Insgesamt gibt es damit zwei Threads, die bei der Abarbeitung einer Swing-Anwen-
dung beteiligt sind:

• Der Initial-Thread, der die main()-Methode abarbeitet und die grafische
Bedienoberfläche aufbaut und initialisiert.

• Der Event-Dispatch-Thread, der die durch den Benutzer ausgelösten Ereignisse
abarbeitet.

Das folgende Beispielprogramm besteht aus einer grafischen Bedienoberfläche mit
einer Schaltfläche und einem mehrzeiligen Textfeld. Nachdem die grafische Bedien-
oberfläche aufgebaut und initialisiert wurde, wird als letzte Anweisung in der main()-
Methode der Namen des Threads, der die main()-Methode abarbeitet, in das mehr-
zeilige Textfeld ausgegeben. Wird die Schaltfläche gedrückt, so wird die durch eine
anonyme Klasse implementierte Callback-Methode actionPerformed() aufgeru-
fen. In der Methode actionPerformed() wird ebenfalls der Namen des Threads,
der die Callback-Methode abarbeitet, in das mehrzeilige Textfeld ausgegeben.

// Datei: SwingThreads.java

import javax.swing.*;
import java.awt.FlowLayout;
import java.awt.event.*;

public class SwingThreads
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Threads einer Swing-Anwendung");
 final JTextArea output = new JTextArea (7, 40);
 frame.setLayout (new FlowLayout());

 JButton button = new JButton ("Schaltfläche");
 button.addActionListener (new ActionListener()
 {
 public void actionPerformed (ActionEvent action)
 {

884 Kapitel 21

 // Namen des Threads in das Textfeld schreiben.
 output.append ("\nThread mit Namen \""
 + Thread.currentThread().getName()
 + "\" arbeitet die Callback-Methode ab.");
 }
 });

 frame.add (button);
 frame.add (output);

 frame.pack();
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);

 // Namen des Threads in das Textfeld schreiben.
 output.append ("Thread mit Namen \""
 + Thread.currentThread().getName()
 + "\" arbeitet die main()-Methode ab.");
 }
}

In Bild 21-43 ist die grafische Bedienoberfläche des Programmes zu sehen, nach-
dem die Schaltfläche zweimal gedrückt wurde.

Bild 21-43 Grafische Bedienoberfläche zur Analyse der Threads in Swing

In den bisherigen kleinen Beispielprogrammen erforderten Aufbau und Initialisierung
der grafischen Bedienoberfläche nicht sehr viel Zeit. Prinzipiell ist es aber möglich –
im Besonderen bei einer zeitaufwändigen Initialisierung der grafischen Bedienober-
fläche –, dass der Initial-Thread (mit Namen "main") und der Event-Dispatch-Thread
versuchen, zur selben Zeit auf GUI-Komponenten zuzugreifen. Dies könnte bei-
spielsweise dann passieren, wenn der Benutzer auf eine Schaltfläche drückt (Ereig-
nisbehandlung erfolgt im Event-Dispatch-Thread), bevor der Initial-Thread alle Daten
für eine Tabelle aus einer Datenbank geladen hat. Da die Zugriffe des Initial-Thread
und des Event-Dispatch-Thread nicht synchronisiert erfolgen, kann es damit zu
inkonsistenten Zuständen kommen. Um dies zu vermeiden, wird empfohlen, Aufbau
und Initialisierung einer grafischen Bedienoberfläche durch den Event-Dispatch-
Thread durchführen zu lassen. Genauer gesagt, wird gleich, nachdem der Initial-
Thread die Methode main() aufgerufen hat, die weitere Ausführung des Program-
mes – und damit der Aufbau und die Initialisierung der grafischen Bedienoberfläche –
an den Event-Dispatch-Thread übergeben. Für die Übergabe der weiteren Ausfüh-
rung des Programmes an den Event-Dispatch-Thread kann die Klassenmethode
invokeLater() der Klasse SwingUtilities aus dem Paket javax.swing ver-
wendet werden. Der Methode invokeLater() wird eine Referenz auf ein Objekt

Oberflächenprogrammierung mit Swing 885

vom Typ Runnable übergeben. Für die kompakte Implementierung der einzigen Me-
thode run() der Schnittstelle Runnable wird im folgenden Beispielprogramm eine
anonyme Klasse verwendet. Die Methode run() wird dann durch den Event-Dis-
patch-Thread abgearbeitet, nachdem die Abarbeitung der Methode main() durch
den Initial-Thread beendet ist. Der Aufbau und die Initialisierung der grafischen Be-
dienoberfläche werden in eine Klassenmethode createGUI() ausgelagert. Die Auf-
gabe der Methode run() ist deshalb lediglich, die createGUI()-Methode aufzuru-
fen.

// Datei: SwingThreads2.java

import javax.swing.*;
import java.awt.FlowLayout;
import java.awt.event.*;

public class SwingThreads2
{
 private static JTextArea output = new JTextArea (7, 40);

 public static void main (String[] args)
 {
 // GUI im Event-Dispatch-Thread aufbauen und initialisieren.
 SwingUtilities.invokeLater (new Runnable()
 {
 public void run()
 {
 createGUI();
 }
 });

 // Namen des Threads in das Textfeld schreiben.
 output.append ("Thread mit Namen \""
 + Thread.currentThread().getName()
 + "\" arbeitet die main()-Methode ab.");
 }

 private static void createGUI()
 {
 JFrame frame = new JFrame ("Threads einer Swing-Anwendung");
 frame.setLayout (new FlowLayout());
 JButton button = new JButton ("Schaltfläche");
 button.addActionListener (new ActionListener()
 {
 public void actionPerformed (ActionEvent action)
 {
 // Namen des Threads in das Textfeld schreiben.
 output.append ("\nThread mit Namen \""
 + Thread.currentThread().getName()
 + "\" arbeitet die Callback-Methode ab.");
 }
 });

 frame.add (button);
 frame.add (output);

886 Kapitel 21

 frame.pack();
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);

 // Namen des Threads in das Textfeld schreiben.
 output.append ("\nThread mit Namen \""
 + Thread.currentThread().getName()
 + "\" arbeitet die createGUI()-Methode ab.");
 }
}

In Bild 21-44 ist die grafische Bedienoberfläche des Programmes zu sehen, nach-
dem die Schaltfläche zweimal gedrückt wurde.

Bild 21-44 Abarbeitung der createGUI()-Methode durch den Event-Dispatch-Thread

Die Klasse SwingUtilities bietet auch noch eine Klassenmethode invokeAnd-
Wait() an, der eine Referenz auf ein Objekt vom Typ Runnable übergeben wird.
Bei Einsatz dieser Methode wird zuerst die Methode run() des übergebenen
Objektes durch den Event-Dispatch-Thread abgearbeitet, bevor die Abarbeitung der
main()-Methode durch den Initial-Thread beendet wird. Weitere Informationen
finden Sie hierzu in der Java-API-Dokumentation.

21.4.4.2 Auslagern von zeitintensiven Vorgängen in Worker-Threads

Zeitintensive Vorgänge dürfen – um die grafische Bedienoberfläche für Benutzerein-
gaben nicht zu blockieren – nicht im Event-Dispatch-Thread ausgeführt werden. Das
folgende Beispielprogramm demonstriert, was passiert, wenn in einer Callback-
Methode eine zeitintensive Aufgabe abgearbeitet wird. Die grafische Bedienober-
fläche soll zwei Schaltflächen "Start" und "Stopp" sowie einen statischen Text dar-
stellen. Beim Drücken der Schaltfläche "Start" soll ein Integer-Wert hochgezählt und
jeder angenommene Wert soll angezeigt werden.

// Datei: SwingThreads3.java

import javax.swing.*;
import java.awt.FlowLayout;
import java.awt.event.*;

public class SwingThreads3
{
 public static void main (String[] args)
 {

Oberflächenprogrammierung mit Swing 887

 // GUI im Event-Dispatch-Thread aufbauen und initialisieren.
 SwingUtilities.invokeLater (new Runnable()
 {
 public void run()
 {
 createGUI();
 }
 });
 }

 private static void createGUI()
 {
 JFrame frame = new JFrame ("Ohne Background-Task");
 frame.setLayout (new FlowLayout());

 final JLabel label = new JLabel ("0");
 JButton start = new JButton ("Start");
 start.addActionListener (new ActionListener()
 {
 public void actionPerformed (ActionEvent action)
 {
 int counter = 0;
 while (counter < 100)
 {
 // Zeitintensive Aufgabe simulieren.
 try
 {
 Thread.sleep (100);
 }
 catch (InterruptedException ex)
 {
 }
 label.setText (Integer.toString (++counter));
 }
 }
 });

 JButton stop = new JButton ("Stopp");
 stop.addActionListener (new ActionListener()
 {
 public void actionPerformed (ActionEvent action)
 {
 // Zählen unterbrechen. Nicht ausprogrammiert, da die
 // Stopp-Schaltfläche gar nicht gedrückt werden kann.
 }
 });

 frame.add (start);
 frame.add (stop);
 frame.add (label);

 frame.setSize (400, 100);
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

888 Kapitel 21

Bild 21-45 zeigt die grafische Bedienoberfläche des Programmes nach dem Drücken
der Schaltfläche "Start".

Bild 21-45 Blockierte grafische Oberfläche

Die Schaltfläche "Start" bleibt solange "gedrückt" dargestellt, bis die Callback-Metho-
de actionPerformed() für die Schaltfläche "Start" abgearbeitet ist. Die schritt-
weise angenommenen Werte der Variablen counter werden nicht auf der Ober-
fläche angezeigt, da eine Aktualisierung der Anzeige ebenfalls durch den Event-Dis-
patch-Thread erfolgt und dieser gerade mit dem Hochzählen der Variablen counter
beschäftigt ist. Nachdem das Hochzählen beendet ist, wird der zuletzt angenomme-
ne Wert in der Oberfläche angezeigt. Die Schaltfläche "Stopp" – zum Unterbrechen
des Zählvorgangs – kann während des Zählvorgangs gar nicht gedrückt werden.

Zeitintensive Vorgänge in einer Callback-Methode müssen in einen
separaten Thread ausgelagert werden, damit die grafische Bedien-
oberfläche nicht blockiert wird.

Für die Auslagerung eines zeitintensiven Vorgangs kann ein so genannter Worker-
Thread – oder Background-Thread – eingesetzt werden. Mit der abstrakten Klasse
SwingWorker aus dem Paket javax.swing wird eine Klasse zur Verfügung ge-
stellt, die den Programmierer beim Implementieren eines Worker-Threads unter-
stützt.

Durch Ableiten von der Klasse SwingWorker und durch Implemen-
tieren der abstrakten Methode doInBackground() kann ein eigener
Worker-Thread geschrieben werden. Die Methode doInBack-
ground() wird durch einen eigenen Worker-Thread und nicht durch
den Event-Dispatch-Thread abgearbeitet

Das nächste Beispielprogramm zeigt eine korrekte Implementierung des vorherigen
Programmes. Für die Auslagerung der zeitintensiven Aufgabe (verlangsamter Zähl-
vorgang) wird eine Klasse BackgroundTask implementiert, die von der Klasse
SwingWorker ableitet. Beim Drücken der Schaltfläche "Start" wird nun in der
zugehörigen Callback-Methode actionPerformed() ein Objekt der Klasse Back-
groundTask angelegt und für dieses Objekt die Methode execute() aufgerufen.
Die Methode execute() (implementiert in der Klasse SwingWorker) sorgt dafür,
dass ein neuer Worker-Thread erzeugt wird und dieser die Methode doInBack-
ground() ausgeführt. Im Beispielprogramm kommen noch die Methoden can-
cel(), isCancelled() publish() und process() der Klasse SwingWorker
zum Einsatz. Die Methode cancel() wird beim Drücken der Schaltfläche "Stopp"

Oberflächenprogrammierung mit Swing 889

für den Worker-Thread aufgerufen und führt dazu, dass die Methode doInBack-
ground() die Abarbeitung abbricht. Um zu erkennen, dass die Methode cancel()
aufgerufen wurde, überprüft der Worker-Thread in der Methode doInBack-
ground() bei jedem Schleifendurchlauf durch Aufruf der Methode isCan-
celled(), ob die Ausführung vorzeitig abgebrochen werden soll. Durch Aufruf der
Methode publish() innerhalb der Methode doInBackground() wird ein Zwi-
schenergebnis vom Worker-Thread an den Event-Dispatch-Thread übermittelt. Damit
das Zwischenergebnis vom Event-Dispatch-Thread weiterverarbeitet werden kann,
wird in der Klasse BackgroundTask die Methode process() der Klasse Swing-
Worker überschrieben. Die Methode process() wird regelmäßig durch den Event-
Dispatch-Thread aufgerufen, um vorhandene Zwischenergebnisse entgegenzuneh-
men und weiterzuverarbeiten. Die überschriebene Methode process() gibt den ak-
tuellen Wert des Zählers in der grafischen Bedienoberfläche aus.

// Datei: WorkerThread.java

import javax.swing.*;
import java.awt.FlowLayout;
import java.awt.event.*;
import java.util.*;

public class WorkerThread
{
 private static BackgroundTask worker;

 public static void main (String[] args)
 {
 // GUI im Event-Dispatch-Thread aufbauen und initialisieren.
 SwingUtilities.invokeLater (new Runnable()
 {
 public void run()
 {
 createGUI();
 }
 });
 }

 private static void createGUI()
 {
 JFrame frame = new JFrame ("Einsatz eines Worker-Threads");
 frame.setLayout (new FlowLayout());
 final JLabel label = new JLabel ("0");

 JButton start = new JButton ("Start");
 start.addActionListener (new ActionListener()
 {
 public void actionPerformed (ActionEvent action)
 {
 worker = new BackgroundTask (label);
 worker.execute();
 }
 });

 JButton stop = new JButton ("Stopp");

890 Kapitel 21

 stop.addActionListener (new ActionListener()
 {
 public void actionPerformed (ActionEvent action)
 {
 worker.cancel (true);
 }
 });

 frame.add (start);
 frame.add (stop);
 frame.add (label);

 frame.setSize (400, 100);
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.setVisible (true);
 }
}

class BackgroundTask extends SwingWorker<Integer, Integer>
{
 private JLabel label;

 public BackgroundTask (JLabel label)
 {
 this.label = label;
 }

 public Integer doInBackground()
 {
 int counter = 0;
 while (counter < 100 && !isCancelled())
 {
 // Zeitintensive Aufgabe simulieren.
 try
 {
 Thread.sleep (100);
 }
 catch (InterruptedException ex)
 {
 }
 // Zwischenergebnis bereitstellen.
 publish (++counter);
 }
 return counter;
 }

 // Wird vom Event-Dispatch-Thread aufgerufen.
 protected void process (List<Integer> zwischenergebnisse)
 {
 // Für jedes einzelne Zwischenergebnis aus der Liste.
 for (Integer zwischenergebnis : zwischenergebnisse)
 {
 label.setText (zwischenergebnis.toString());
 }
 }
}

Oberflächenprogrammierung mit Swing 891

Bild 21-46 zeigt die grafische Bedienoberfläche des Programmes. Es gibt zwei er-
hebliche Unterschiede zum vorherigen Programm: Erstens kann beobachtet werden,
wie die Zahl von 1 bis 100 hochgezählt wird, und zweitens kann jederzeit durch
Drücken der Schaltfläche "Stopp" die Ausführung abgebrochen werden.

Bild 21-46 Einsatz eines Worker-Threads für zeitintensive Aufgaben

Generell sollte der Programmierer darauf achten, dass auf GUI-Komponenten nur
durch den Event-Dispatch-Thread zugegriffen wird. Da der Event-Dispatch-Thread
und potentielle Worker-Threads parallel ausgeführt werden, kann es zu inkonsisten-
ten Zuständen in den GUI-Komponenten kommen, falls auch die Worker-Threads auf
die GUI-Komponenten zugreifen. Dies ist auch der Grund dafür, warum im Beispiel-
programm nicht innerhalb der Methode doInBackground() einfach der neue Zäh-
lerwert in das Objekt vom Typ JLabel geschrieben wurde, sondern durch Aufruf der
Methode publish() der Zählerwert geordnet an den Event-Dispatch-Thread über-
geben wurde. Der Event-Dispatch-Thread ruft dann die Methode process() auf,
um den Zählerwert abzuholen und die grafische Bedienoberfläche zu aktualisieren.
Die Klasse SwingWorker stellt auch noch weitere hilfreiche Methoden für eine ge-
ordnete Kommunikation zwischen einem Worker-Thread und dem Event-Dispatch-
Thread bereit. Für das Studium dieser Methoden wird auf die Java-API-Dokumen-
tation verwiesen wird.

21.5 Swing-GUI-Komponenten

Das Handwerkszeug für die Programmierung von grafischen Bedienoberflächen mit
Swing haben Sie sich in den vorangegangen Kapiteln Schritt für Schritt erarbeitet.
Was fehlt, ist ein Überblick über die in der Swing-Klassenbibliothek vordefinierten
Swing-GUI-Komponenten. Diese Lücke soll in diesem Kapitel geschlossen werden.
Mittels eines Lernprogrammes werden Ihnen alle verfügbaren Swing-GUI-Kompo-
nenten vorgestellt. Das Lernprogramm Swing-Lernprogramm.jar finden Sie auf
der dem Buch beigelegten CD. Sie können das Lernprogramm einfach durch Doppel-
klick auf die jar-Datei starten. Nach dem Starten des Lernprogrammes wird Ihnen
die in Bild 21-47 dargestellte grafische Bedienoberfläche angezeigt.

892 Kapitel 21

Bild 21-47 Grafische Bedienoberfläche des Swing-Lernprogrammes

Das Lernprogramm gruppiert die Swing-GUI-Komponenten in verschiedenen Regis-
terkarten. Nach dem Start des Lernprogrammes wird die Registerkarte "Text-Kompo-
nenten" angezeigt. Es existieren weitere Registerkarten für "Schaltflächen", "Listen,
Tabellen und Bäume", "Fortschrittanzeige und Regler", "Fenster", "Layout-Manager",
"Aufteilung", "Menüs" und "Darstellung". Im linken Bereich werden die GUI-Kompo-
nenten der ausgewählten Registerkarte angezeigt. Für jede GUI-Komponente wird
der Name (beispielsweise "Statischer Text"), gefolgt vom zugehörigen Klassenna-
men (beispielsweise JLabel) in Klammern, angezeigt. Dann folgt die grafische Re-
präsentation für die betrachtete GUI-Komponente (beispielsweise Text) und eine
Schaltfläche "Beispiel anzeigen >". Beim Drücken der Schaltfläche werden im rech-
ten Bereich ein erläuternder Text, sowie der Programmcode eines zugehörigen Bei-
spielprogrammes angezeigt. Bild 21-48 zeigt die grafische Bedienoberfläche des
Lernprogrammes, nachdem die Schaltfläche "Beispiel anzeigen >" zur GUI-Kompo-
nente JLabel gedrückt wurde.

Oberflächenprogrammierung mit Swing 893

Bild 21-48 Swing-Lernprogramm mit Detail-Anzeige für die GUI-Komponente JLabel

Bei den meisten GUI-Komponenten kann zwischen einem einfachen und einem kom-
plexeren Beispielprogramm über die Optionsschaltflächen "Einfach" beziehungs-
weise "Komplex" gewählt werden. Wird die Schaltfläche "Programm ausführen" ge-
drückt, so wird der jeweils angezeigte Programmcode ausgeführt. Bild 21-49 zeigt
die grafische Bedienoberfläche, die beim Ausführen des "einfachen" JLabel-Bei-
spiels durch ein separates Fenster angezeigt wird.

Bild 21-49 Grafische Bedienoberfläche für das "einfache" JLabel-Beispiel

Bild 21-50 zeigt die grafische Bedienoberfläche, die beim Ausführen des "komplexen"
JLabel-Beispiels angezeigt wird. Das komplexe Beispiel zeigt im Vergleich zum
einfachen, wie die Ausgabe eines statischen Textes durch ein Bildzeichen (ein so
genanntes Icon) ergänzt werden kann.

894 Kapitel 21

Bild 21-50 Grafische Bedienoberfläche für das "komplexe" JLabel-Beispiel

Falls Sie den angezeigten Programmcode verändern möchten, können Sie diesen
einfach markieren und über die Tastenkombination "Strg + C" kopieren und dann
durch die Tastenkombination "Strg + V" in einen Editor ihrer Wahl einfügen.

Zu welchen GUI-Komponenten und Klassen Beispielprogramme in den Registerkar-
ten enthalten sind, können Sie der folgenden Tabelle entnehmen:

Registerkarte enthält Beispiele für folgende Klassen
Text-Komponenten JLabel, JTextField, JPasswordField,

JFormattedTextField, JTextArea,
JEditorPane.

Schaltflächen JButton, JToggleButton, JCheckBox,
JRadioButton, ButtonGroup.

Listen, Tabellen und Bäume JList, JComboBox, JTable, JTree.
Fortschrittanzeige und Regler JProgressBar, ProgressMonitor, JSlider,

JSpinner.
Fenster JFrame, JDialog, JOptionPane, JFileChooser,

JColorChooser, SplashScreen.
Layout-Manager Null-Layout, FlowLayout, BorderLayout,

GridLayout, GridBagLayout, BoxLayout,
CardLayout.

Aufteilung JTabbedPane, JSplitPane, JScrollPane.
Menüs JMenuBar, JMenu, JMenuItem, JPopupMenu,

JToolBar.
Darstellung JSeparator, JPanel, "Look and Feel".

Tabelle 21-4 Klassen, zu denen Beispielprogramme im Swing-Lernprogramm zu finden sind

Oberflächenprogrammierung mit Swing 895

21.6 Übungen

Aufgabe 21.1: Hello World

a) Es soll eine Klasse erstellt werden, die den String "Hello World" in einem Fen-

ster auf dem Bildschirm darstellt. Schreiben Sie den Gruß in ein Objekt der Klasse
JLabel. Legen Sie die Fenstergröße auf 200 x 100 Pixel fest und achten Sie auf
das korrekte Starten der grafischen Benutzungsoberfläche.

b) Nehmen Sie ihre Lösung von Teilaufgabe a) und erweitern Sie diese um folgende

Punkte:

1. Setzen Sie den Layout-Manager auf das Flow-Layout.
2. Platzieren Sie das Objekt der Klasse JLabel in der Mitte des Fensters.

c) Was geschieht wenn Sie das Fenster mit dem in der Kopfzeile schließen? Wie
können Sie dieses Problem beheben?

Tipp: Schauen Sie in Ihrer Prozesstabelle nach, ob der Prozess der Java Virtu-
ellen Maschine auch wirklich geschlossen wird. Das Nachschauen erfolgt im Falle
von Windows mit dem Taskmanager und im Falle von Unix/Linux mit Hilfe des ps-
Kommandos.

Aufgabe 21.2: Textbetrachter

In dieser Aufgabe soll ein Textbetrachter implementiert werden. Dazu soll auf die
Klasse JFileChooser zurückgegriffen werden, um eine Textdatei auszuwählen.
Die Dateiauswahl soll beim Aufrufen des Programms automatisch gestartet werden.
Es ist deswegen nicht nötig, ein Element in die Oberfläche zu integrieren, um die Da-
teiauswahl erneut aufrufen zu können. Definieren Sie einen Filter für die Klasse
JFileChooser, so dass nur Textdateien (.txt) im Dateisystem ausgewählt werden
können.

Aufgabe 21.3: Look and Feel

Es sollen alle auf dem System verfügbaren Look and Feel angezeigt und ausgewählt
werden können. Dazu sollen zuerst die verfügbaren Look and Feel ermittelt und für
jedes Look and Feel eine eigene Umschaltfläche erzeugt werden. Diese soll mit dem
Namen des Look and Feels beschriftet werden. Durch das Betätigen der Umschalt-
fläche soll das Look and Feel zur Laufzeit umgestellt werden. Hierfür soll die Schnitt-
stelle ActionListener implementiert werden. Damit auch angezeigt wird, welches
Look and Feel ausgewählt ist, sollen alle Umschaltflächen gruppiert sein.

Aufgabe 21.4: Layout-Manager

Es soll eine Login-Oberfläche erstellt werden, die Benutzername und Passwort ent-
gegennimmt. Die Eingabefelder und Schaltflächen sollen wie in Bild 21-51 angeord-
net sein. Verwenden Sie den Layout-Manager GridBagLayout für die Anordnung
der GUI-Komponenten.

896 Kapitel 21

Bild 21-51 Login Oberfläche

Aufgabe 21.5: Taschenrechner

Es soll ein einfacher Taschenrechner mit grafischer Oberfläche programmiert wer-
den, der folgende Anforderungen erfüllt:

• Die Eingabe der Zahlen 0..9 ist nur über die Maus erlaubt.
• Alle reellen Zahlen sind erlaubt.
• Die Rechenoperationen Addition, Subtraktion, Division und Multiplikation sollen

verfügbar sein.
• Eine Löschfunktion zum Zurücksetzen der bisherigen Eingaben und Operationen

(C-Taste).
• Das Ergebnis soll im Anzeigeelement dargestellt werden.
• Ein Übertrag soll möglich sein, d. h. ein bestehendes Ergebnis kann als erster

Operand einer weiteren Rechenoperation verwendet werden: 1+2=3 +5=8.
• Das Anzeigeelement sowie die Eingabeelemente sollen sich in ihrer Größe verän-

dern lassen, sobald das Fenster vergrößert oder verkleinert wird.
• Der Taschenrechner soll durch das in der Titelleiste beendet werden.
• Achten Sie auf die Division durch 0!

Bild 21-52 Taschenrechner

Oberflächenprogrammierung mit Swing 897

Aufgabe 21.6: Maus Ereignisse

Es soll ein Programm erstellt werden, das Maus-Ereignisse über zwei farbigen Felder
als Texte ausgibt. Wie in Bild 21-53 zu sehen, sollen folgende Ereignisse ausge-
geben werden: das Betreten und Verlassen der Felder, das Drücken, Loslassen und
Klicken mit der Maus. Implementieren Sie hierzu die Schnittstelle MouseListener.

Bild 21-53 Ausgabe von Maus Ereignissen

Aufgabe 21.7: Timer

Es soll ein Timer implementiert werden, der eine vorgegebene Zeitspanne herunter
zählt.

a) Starten Sie den Zähler mit festen Werten beim Initialisieren der grafischen Bedien-

oberfläche. Achten Sie darauf, die Oberfläche im Event-Dispatch-Thread zu star-
ten. Verwenden Sie für die Implementierung des Zählers die Klasse SwingWor-
ker.

b) Ergänzen Sie die grafische Oberfläche derart, dass es möglich ist, die Zeit, die der

Timer laufen soll, in Minuten und Sekunden einzugeben. Des Weiteren soll eine
Schaltfläche das Starten des Timers ermöglichen.

Bild 21-54 Timer

898 Kapitel 21

Aufgabe 21.8: Flughafen-Projekt – Swing

In diesem Kapitel wurde das nötige Wissen für die Erstellung einer grafischen Ober-
fläche vermittelt. Dieses Wissen soll nun in die Flughafenaufgabe einfließen.

Aufgabe 21.8.1: Start und Landung

Hierzu soll der bisherige textbasierte Lande- und Startvorgang durch eine einfache
grafische Oberfläche ersetzt werden. Diese Oberfläche soll den Anwender auf ein-
fache Weise durch die notwendigen Schritte eines Start- bzw. Landevorgangs eines
einzelnen Flugzeuges führen. Der Einfachheit halber soll der Lotse weiterhin nur ein
Flugzeug landen lassen können, das er erst wieder starten muss, bevor er das näch-
ste Flugzeug landen lässt. Die Anzeige des Flugzeugstatus über ein Objekt von
FlugzeugListener soll weiterhin unverändert mit der Methode print() auf der
Kommandozeile erfolgen.

Aufgabe 21.8.2: Flughafenübersicht

Die Statusanzeige der einzelnen Flugzeuge soll nun statt auf der Kommandozeile in
einem zusätzlichen Übersichtsfenster dargestellt werden. Dieses Übersichtsfenster
soll ähnlich wie Bild 21-55 aufgebaut sein. Für die tabellarische Darstellung eignet
sich die Klasse JTable.

Bild 21-55 Flughafenübersicht

Aufgabe 21.8.3: Mehrere Flugzeuge kontrollieren

Bisher konnte immer nur ein Flugzeug gleichzeitig vom Lotsen betreut werden. Das
Flughafenprojekt soll nun so erweitert werden, dass ein Lotse beliebig viele Flug-
zeuge gleichzeitig landen und starten kann.

Aufgabe 21.8.4: Ausblick

Gratulation, Sie haben das Projekt bis zum Schluss durchgezogen. Natürlich ist die
Software noch lange nicht fertig. Es kann noch so viel mehr implementiert werden,
um den Komfort zu erhöhen, bzw. die Funktionalität zu erweitern. So wäre es denk-
bar, die einzelnen Flugzeuge bei ihrem Lande- und Startanflug grafisch darzustellen,
oder auch die benötigten Funktionen für die Rolle des Angestellten bereitzustellen.
Es ist Ihnen freigestellt, was Sie nun mit diesem Projekt machen. Auf der CD befindet
sich noch eine weitere Version des Flughafenprojekts, welche um zusätzliche Funkti-
onen erweitert wurde, um Ihnen weitere Möglichkeiten aufzuzeigen.

Servlets

WWW

Servlet

?

22.1 Das Internet und seine Dienste
22.2 Dynamische Erzeugung von Seiteninhalten
22.3 Web-Anwendungen erstellen
22.4 Wichtige Elemente der Servlet-API
22.5 Der Deployment-Deskriptor
22.6 Das Servlet "Forum"

22.7 Übungen

22 Servlets

Mit Servlets kann die Funktionalität eines Web-Servers174 um die Fähigkeit der dy-
namischen Seitengenerierung erweitert werden. Bei der Technik der dynamischen
Seitengenerierung erzeugt ein Programm in Abhängigkeit von Benutzereingaben die
entsprechende Webseite und schickt diese zum Browser175 des Benutzers. Eine be-
reits klassische Technik für die dynamische Seitengenerierung sind CGI-Skripte176,
eine neuere Technik sind in Java geschriebene Servlets.

Servlets sind Java-Klassen, die bei Bedarf in einen für Servlets ausgelegten Web-
Server oder in einen gesonderten Servlet-Container177 geladen und dort ausgeführt
werden können. Servlets besitzen vom Aufbau und der Struktur her einige Gemein-
samkeiten mit einem Applet. Ein Servlet kann als ein serverseitiges Applet ange-
sehen werden, woraus auch die Bezeichnung "Servlet" abgeleitet ist (serverside
applet).

Bevor ab Kapitel 22.2 auf die eigentliche Servlet-Programmierung eingegangen wird,
soll erst eine Vorstellung des Internets und seiner Dienste erfolgen.

22.1 Das Internet und seine Dienste

Das Internet ist ein weltweiter Verbund verschiedenartigster Rechner, die aber ge-
wisse Standards einhalten müssen, damit sie miteinander kommunizieren können.
Die Kommunikation der beteiligten Rechner erfolgt über den Austausch von IP178-
Paketen. Dies setzt voraus, dass jeder dieser Rechner eine eindeutige Internet-
Adresse (IP-Adresse) besitzt.

Oftmals wird das Internet gleichgesetzt mit dem World Wide Web (WWW). Das
WWW ist aber nur einer von mehreren Diensten im Internet. Häufig benutzte Dienste
im Internet sind beispielsweise:

• WWW

Das World Wide Web ist ein Multimedia-Dienst, welcher es einem Anwender
erlaubt, auf einfache Weise mit einem Browser HTML179-Dokumente bestehend
aus Text, Bildern, Videosequenzen und Ton zu laden und zu betrachten. Das
Laden solcher Seiten geschieht über das HTTP180-Protokoll. Von großem Vorteil
ist die Möglichkeit, Dokumente im Web untereinander mit so genannten Hy-
perlinks181 zu verbinden. Über einen solchen Link kann bequem auf ein referen-

174 Ein Web-Server ist ein Server, welcher Webseiten in Form von HTML-Seiten bereitstellt.
175 Zum Beispiel dem Microsoft Internet Explorer oder dem Netscape Navigator.
176 Ein CGI-Skript kann beispielsweise in der Programmiersprache Perl geschrieben werden.
177 Ein Servlet-Container wird auch als Servlet-Engine bezeichnet. Er stellt eine Laufzeitumgebung

für Servlets dar.
178 IP ist das so genannte Internet Protocol. Es gehört zur TCP/IP-Architektur eines Kommunikations-

systems. Ein Kommunikationssystem dient zur Kommunikation zwischen Rechnern.
179 HTML = Hypertext Markup Language.
180 HTTP = Hypertext Transfer Protocol.
181 Als Hyperlink bezeichnet man eine Verbindung zu einer anderen Stelle im Internet oder einer

anderen Stelle in einem HTML-Dokument.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_22,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Servlets 901

ziertes Dokument zugegriffen werden. Die Entwicklung des WWW wird durch das
World Wide Web Consortium (W3C) koordiniert, das auch für die Standardisierung
von HTML zuständig ist.

• FTP

 Das File Transfer Protocol dient zum Übertragen von Dateien.

• E-Mail

Mit E-Mail – zu Deutsch: elektronische Post – ist es möglich, Texte sowie belie-
bige andere Daten zu versenden. Im Gegensatz zum Versenden von herkömm-
lichen Briefen mit der Post geht das Versenden von E-Mails sehr schnell. Eine
Zustellung erfolgt gewöhnlich im Sekunden- bis Minutenbereich.

• Newsgroups

Sie sind vergleichbar mit Schwarzen Brettern, an denen Beiträge zu verschie-
denen Themen zu finden sind. Es können Beiträge in Form von Textnachrichten
veröffentlicht, sowie bereits bestehende Nachrichten kommentiert werden.

• Telnet

Ermöglicht das Einloggen und anschließende Arbeiten auf einem entfernten
Rechner. Dabei läuft auf dem lokalen Rechner nur ein Terminal-Emulationspro-
gramm182, um Eingaben an den entfernten Rechner zu senden und dessen Aus-
gaben anzuzeigen. Alle gestarteten Anwendungsprogramme laufen auf dem ent-
fernten Rechner und verbrauchen dessen Ressourcen wie Arbeitsspeicher und
Prozessorzeit.

Da Servlets ausschließlich in Verbindung mit Web-Servern bzw. webfähigen Appli-
cation-Servern183 ihren Einsatz finden, wird im Folgenden zunächst die Arbeitsweise
eines Anwenders im World Wide Web vorgestellt. Das WWW basiert auf einer
Client/Server-Architektur und der Verwendung von so genannten Thin Clients. Unter
einem Thin Client versteht man beispielsweise einen Browser184, welcher keine An-
wendungslogik enthält und nur die Darstellung der angeforderten Daten übernimmt –
in diesem Fall die Interpretation von HTML-Code. Um ein besseres Verständnis zu
erhalten, werden in Kapitel 22.1.1 Client/Server-Architekturen vorgestellt. Kapitel
22.1.2 zeigt, wie ein Browser über eine so genannte URL185 eine Webseite von
einem Web-Server abrufen kann.

182 Ein Terminal-Emulationsprogramm bietet dem Benutzer auf seinem lokalen Rechner dieselben

Dialoge, als wenn er direkt vor dem Fremdsystem sitzend arbeiten würde.
183 Ein Application-Server ist ein Server-Programm auf einem Computer, welches die Geschäftslogik

einer Anwendung in einem verteilten System enthält.
184 Wird mit einem Browser auf eine AJAX-basierte (Asynchronous JavaScript And XML) Web-2.0-

Anwendung zugegriffen, so fungiert der Browser allerdings nicht mehr als Thin-Client. Das vom
Server zurückgelieferte JavaScript kann dabei einen erheblichen Teil der Anwendungslogik
enthalten.

185 URL = Uniform Resource Locator.

902 Kapitel 22

22.1.1 Client/Server-Architekturen

Client/Server-Architekturen basieren auf Schichtenmodellen. In einem Informations-
system kann man die folgenden Schichten identifizieren (siehe Bild 22-1):

• Darstellungsschicht
• Verarbeitungsschicht
• Datenzwischenpufferungsschicht
• Datenhaltungsschnittstellenschicht

Datenbank

Darstellungsschicht

Verarbeitungsschicht

Datenzwischen-
pufferungsschicht

Datenhaltungsschnitt-
stellenschicht

Bild 22-1 Schichtenmodell eines Informationssystems

Die Darstellungsschicht dient zur Interaktion eines Benutzers mit einer Anwen-
dung, d. h. zur Ein- und Ausgabe. In der Verarbeitungsschicht liegen Klassen, die
aktiv handeln – z. B. Threads. Diese Klassen benutzen passive Objekte, welche für
die Datenhaltung zuständig sind und die dafür benötigten Methoden bereitstellen.
Diese passiven Daten-Objekte liegen in der Datenzwischenpufferungsschicht.
Über die Datenhaltungsschnittstellenschicht kann auf eine Datenbank zugegriffen
werden. Eine Datenbank dient zur dauerhaften (persistenten) Speicherung der Da-
tenfeldwerte der Objekte. Objekte, die im Arbeitsspeicher liegen, sind flüchtige Ob-
jekte. Wird die Versorgungsspannung des Rechners abgestellt, so gehen die Objekte
im Arbeitsspeicher verloren.

In einer gröberen Sichtweise (siehe Bild 22-2) fasst man die Verarbeitungsschicht
und Datenzwischenpufferungsschicht unter dem Namen Anwendungs-Server zu-
sammen. Die Darstellungsschicht entspricht dem Client-Programm und die Daten-
haltungsschnittstellenschicht samt der Datenbank dem Datenbank-Server186.

186 Der Datenbank-Server hält die Daten einer Anwendung.

Servlets 903

Datenbank

Darstellungsschicht

Verarbeitungsschicht

Datenzwischen-
pufferungsschicht

Datenhaltungsschnitt-
stellenschicht

Anwendungs-Server

Client-Programm

Datenbank-Server

Bild 22-2 Client/Server-Architektur eines Informationssystems

Generell gesprochen ist ein Client eine funktionale Einheit eines
Systems, welche die Dienstleistungen von Servern nutzt. Ein Client
ist ein Auftraggeber. Server sind funktionale Einheiten eines Sys-
tems, welche Dienstleistungen den Clients zur Verfügung stellen. Sie
sind dabei die Auftragsnehmer.

Ein Client und ein Server sind zunächst reine Funktionalitäten: Der Server verwaltet
eine Dienstleistung, welche der Client anfordern kann. Die Funktionalität des Servers
hat also die Rolle des Diensterbringers, die Funktionalität des Clients die Rolle des
Dienstnutzers. In Tabelle 22-1 sind die einzelnen Schritte der Client/Server-Inter-
aktion dargestellt:

 Client Server Phase
Schritt 1 Gibt Service-Bereitschaft

bekannt.
Initialisierung der
Client/Server-
Kommunikation Schritt 2 Erkennt, dass es den Server

gibt.

Schritt 3 Formuliert bei Bedarf einen
Auftrag und sendet den
Auftrag an den Server.

 Auftrags-
abwicklung

Schritt 4 Nimmt den Auftrag entgegen
und führt ihn durch. Sendet
das Ergebnis an den Client
zurück.

Schritt 5 Nimmt das Ergebnis in
Empfang und wertet es aus.

Tabelle 22-1 Client/Server-Interaktion

Kann ein Server eine Anfrage nicht beantworten, so kann er in die Rolle eines Clients
schlüpfen und bei einem anderen ihm bekannten Server nachfragen. Die erhaltene
positive oder negative Auskunft gibt er dann – wieder in der Rolle eines Servers – an
seinen Auftraggeber zurück (siehe Bild 22-3).

904 Kapitel 22

Client Server

Auftrag Auftrag

Antwort Antwort
Server/
Client

Bild 22-3 Ein Server kann gleichzeitig Client eines anderen Servers sein.

Der Server bietet also einen Dienst an, der von Clients genutzt wird. Clients und Ser-
ver können auf demselben Rechner oder aber auch auf verschiedenen Rechnern
lokalisiert sein. Ist der Server – als Funktionalität – auf einem eigenen Rechner lokali-
siert, so spricht man von einem Server-Rechner187. Ist die Funktionalität des Clients
auf einem eigenen Rechner lokalisiert, so spricht man von einem Client-Rechner188.

Eine Architektur wie in Bild 22-2 wird als One-Tier-Architektur bezeichnet: Alle drei
Programme – Client, Anwendungs-Server und Datenbank-Server – kommunizieren
miteinander über Schnittstellen, die eine Verteilung dieser Programme auf verschie-
dene Rechner nicht erlauben. Beabsichtigt man, sein Softwaresystem auf verschie-
dene Rechner zu verteilen, so muss man Kommunikationsschichten einführen, die
eine Kommunikation der beiden angrenzenden Schichten auf dem gleichen Rechner
oder rechnerübergreifend erlauben. Beispiele für solche Mechanismen sind RMI
(siehe Kap. 25) oder CORBA189. Mit Hilfe dieser Kommunikationsmechanismen kön-
nen der Client, der Anwendungs- und der Datenbank-Server jeweils auf einem eige-
nen Rechner laufen. Die Architektur eines solchen Systems wird als Three-Tier-
Architektur bezeichnet.

Verarbeitungsschicht

Datenzwischen-
pufferungsschicht

Datenhaltungsschnitt-
stellenschicht

Anwendungs-Server

Client-Programm

Datenbank-Server

Darstellungsschicht

Kommunikationsschicht

Kommunikationsschicht

Kommunikationsschicht

Kommunikationsschicht

Datenbank

Bild 22-4 Three-Tier-Architektur eines Informationssystems

187 In einer weniger präzisen Sprechweise wird statt des Begriffs Server-Rechner auch der Begriff

Server verwendet.
188 Statt des Begriffs Client-Rechner wird oftmals weniger präzise auch der Begriff Client verwendet.
189 CORBA = Common Object Request Broker Architecture.

Servlets 905

Eine solche Architektur findet man nicht nur bei neuen Systemen. Oftmals werden
alte Systeme nur an der Oberfläche modernisiert. So kann man zum Beispiel aus
einem in Java geschriebenen Client auf einen bestehenden, in C++ implementierten
Server zugreifen, der wiederum mit einem in COBOL geschriebenen Datenbank-
Server kommuniziert.

In einer Two-Tier-Architektur ist das System auf zwei Rechner verteilt. Hierbei gibt
es zwei verschiedene Varianten, je nachdem welche Funktionalität der Client-Rech-
ner hat. Bei einer Thin-Client-Architektur liegt auf dem Client-Rechner nur die Dar-
stellungs- und Kommunikationsschicht, bei einer Fat-Client-Architektur läuft auch
die Anwendung auf dem Client-Rechner.

Verarbeitungsschicht

Datenzwischen-
pufferungsschicht

Server-
Rechner

Client-
Rechner Darstellungsschicht

Datenhaltungsschnitt-
stellenschicht

Verarbeitungsschicht

Datenzwischen-
pufferungsschicht

Darstellungsschicht

Datenhaltungsschnitt-
stellenschicht

Client-
Rechner

Server-
Rechner

Fat ClientThin Client

Kommunikationsschicht

Kommunikationsschicht

Kommunikationsschicht

Kommunikationsschicht

Datenbank Datenbank

Bild 22-5 Thin- und Fat-Client in einer Two-Tier-Architektur mit zwei Rechnern

Erstellt man also eine Anwendung in einer Two-Tier-Architektur mit zwei Rech-
nern (siehe Bild 22-5), so wird sie auf einen Client-Rechner und einen Server-
Rechner aufgeteilt:

� Bei der Verwendung eines Thin Client – wie es meist bei der Verwendung eines
Web-Browser der Fall ist – umfasst der Client normalerweise lediglich die Dar-
stellungsschicht und eine Kommunikationsschicht, d. h. er beinhaltet meist keine
Anwendungslogik. Im Server-Rechner sind dann der Anwendungs-Server und der
Datenbank-Server integriert.

� Bei der Verwendung eines Fat Client umfasst der Server-Rechner lediglich den
Datenbank-Server. Die Darstellung und die Verarbeitungslogik liegen hier komplett
auf dem Client-Rechner, welcher sich über einen Zugriff auf den Server-Rechner
nur die von der Anwendung benötigten Daten holt. Die Verarbeitung dieser Daten
findet dann auf dem Client-Rechner statt.

In der Realität sind häufig Mischformen aus Thin und Fat Client anzutreffen. Dabei
findet man sowohl auf dem Client-Rechner als auch auf dem Server-Rechner Teile

906 Kapitel 22

der Verarbeitungslogik190, welche zusammengenommen die Funktionalität der An-
wendung bilden.

 Client-
Rechner

Server-
Rechner

Bild 22-6 Two-Tier Client/Server Architektur mit 2 Rechnern

Bei einer Three-Tier-Architektur nach Bild 22-4, die auf 3 Rechner verteilt werden
soll, wird der Server-Rechner der soeben besprochenen Two-Tier-Architektur (siehe
Bild 22-6) in einen Anwendungs- und einen Datenbank-Server-Rechner (siehe Bild
22-7) aufgeteilt. Der Anwendungs-Server-Rechner enthält die Logik der Anwendung,
nimmt Anfragen des Clients entgegen, verarbeitet die Daten, welche er von einer
Datenbank auf dem Datenbank-Server bezieht und sendet dem Client-Rechner die
entsprechende Antwort. Bei dieser Architektur kommt im Wesentlichen der Thin
Client-Ansatz zum Tragen.

Client-
Rechner

Anwendungs-
Server-
Rechner

Datenbank-
Server-
Rechner

Bild 22-7 Three-Tier Client/Server Architektur mit 3 Rechnern

Für einen Thin Client ist es völlig unerheblich, ob er in einer Two-Tier- oder Three-
Tier-Architektur läuft. Er bezieht seine Daten über eine zum Anwendungs-Server
gleich bleibende Schnittstelle.

22.1.2 Von der URL zur Webseite

Das folgende Szenario lehnt sich an die bereits erläuterte Two-Tier-Architektur an.
Als Ausgangssituation wird ein Benutzer angenommen, der eine Anfrage an den

190 Zum Beispiel bei einer Plausibilitätsprüfung der Eingabe auf dem Client-Rechner oder bei Verwen-

dung der AJAX-Technologie.

Servlets 907

Web-Server der Firma IT-Designers stellen will. Dieser Web-Server wartet auf even-
tuell eintreffende Anfragen. Der Benutzer kann nun durch Eingabe einer URL (siehe
Kap. 24.2.2) – zum Beispiel in der Adressleiste eines Browser – eine Anfrage an den
Server stellen. In Bild 22-8 ist dieser Vorgang schematisch dargestellt.

Dateisystem

Server

Browser
2. HTTP

4. HTTP/HTML Benutzer

1. URL

3. Datei auslesen

5. Anzeigen

Bild 22-8 Anfordern einer Webseite mit statischem Inhalt

Die in die Adress-Leiste des Browser eingegebene URL könnte folgendes Aussehen
haben:

http://www.it-designers.de/index.html

Die einzelnen Elemente dieser URL haben die folgende Bedeutung:

http Das zu verwendende Protokoll.
www Name191 des Web-Server-Rechners der Firma IT-

Designers.
it-designers.de Domäne der Firma IT-Designers. Das Kürzel de steht für

Deutschland.
index.html Name der Datei, deren Inhalt der Server an den Client

senden soll.

Tabelle 22-2 Die Elemente einer URL

Der Client – in diesem Fall der Browser – sendet einen HTTP192-Request an den
Web-Server und fordert den Inhalt der Datei index.html aus dem Dokumenten-
Hauptverzeichnis des Web-Servers an. Ist dort die Datei index.html vorhanden,
so wird sie vom Web-Server zum Browser geschickt und der Benutzer kann den
interpretierten Inhalt dieser Datei – hier die Startseite der Firma IT-Designers – im
Browser-Fenster betrachten. Ist die angeforderte Datei nicht verfügbar, wird im Brow-
ser-Fenster eine Fehlermeldung ausgegeben. Der soeben beschriebene Ablauf ist
ein Beispiel für den Abruf von Webseiten mit statischem, also festem Inhalt – der
Benutzer bekommt eine vorgefertigte Webseite zu sehen.

Was bis jetzt noch nicht erläutert wurde, ist die Umsetzung des angegebenen Web-
Server-Rechner-Namens – hier der Rechner www in der Domäne it-desig-

191 Ein Web-Server-Rechner innerhalb einer Domäne kann einen beliebigen Namen tragen (wie zum

Beispiel computer1). Es hat sich jedoch eingebürgert, einem Web-Server-Rechner den Namen
www zu geben. Innerhalb einer Domäne kann es auch mehrere Web-Server-Rechner geben. In
diesem Fall ist es gebräuchlich, dem zweiten Web-Server-Rechner den Namen www2 zu geben.

192 HTTP steht für Hypertext Transfer Protocol und wird verwendet, um Daten über ein Netzwerk zu
übertragen. Die wohl häufigste Anwendung findet das Protokoll beim Abrufen von Internetseiten
mit einem Browser. Was genau ein Protokoll ist, kann in Kapitel 24.4 recherchiert werden.

908 Kapitel 22

ners.de – in eine IP-Adresse193. Da die Kommunikation im Internet über IP-Adres-
sen geregelt ist, muss für den Web-Server-Rechner-Namen die zugeordnete IP-
Adresse ermittelt werden. Dazu baut der Client zuerst eine Verbindung zu einem
DNS194-Server auf, der die Zuordnung von Web-Server-Rechner-Namen zu IP-
Adresse kennt. Von diesem DNS-Server erhält der Client nun die IP-Adresse der
Firma IT-Designers und kann auf den Server von IT-Designers zugreifen. Ist dem
DNS-Server die angefragte IP-Adresse nicht bekannt, so kann er die Anfrage an
einen ihm übergeordneten DNS-Server weiterleiten.

Ein DNS-Server enthält die Zuordnung von Web-Server-Rechner-Na-
men zu IP-Adressen.

Im obigen Beispiel schickt der Browser nur einen einzigen HTTP-Befehl an den Web-
Server, das GET-Kommando. Weitere Befehle von HTTP sind: POST, HEAD, PUT,
OPTIONS, DELETE und TRACE. Für das Surfen im Web sind die Befehle GET und
POST normalerweise ausreichend. GET wird genutzt für das Anfordern einer Datei
sowie für die Übertragung von Eingabedaten, die in einem Formular eingetragen
wurden. POST dient zur Übertragung von Eingabedaten vom Client zum Web-Ser-
ver. Der Unterschied zwischen GET und POST bei der Übertragung von Eingabeda-
ten eines Formulars wird im Folgenden noch erklärt. Üblicherweise benötigt man die-
se Kommandos jedoch nur bei der Entwicklung von Anwendungen für das Internet.

Mit der bisher vorgestellten Möglichkeit der Nutzung des Internets ist es möglich,
bestehende Dateien von einem Web-Server abzurufen und ihre Inhalte im Browser
anzuzeigen. Solche in fertiger Form vorliegenden Seiten bezeichnet man als stati-
sche Webseiten. Wie jedoch das Beispiel einer Suchmaschine, bei der ein Benutzer
je nach Suchbegriff eine spezifische Antwort erwartet, zeigt, braucht man auf jeden
Fall eine Möglichkeit, Webseiten auf dem Web-Server dynamisch zu generieren.

22.2 Dynamische Erzeugung von Seiteninhalten

Eine dynamische Webseite ist dadurch gekennzeichnet, dass ihr Inhalt in dem
Augenblick festgelegt wird, in dem sie beim Web-Server angefordert wird. Hierbei
nutzt der Web-Server ein Programm, welches Parameter vom Aufrufer entgegen-
nehmen und daraufhin die gewünschte Webseite generieren kann. Für dieses Vor-
gehen bedarf es einer leistungsstarken Schnittstelle zwischen dem Web-Server und
dem Programm, welches die HTTP-Anfrage beantworten soll. Die am häufigsten be-
nutzten Schnittstellen sind:

• CGI

Das Common Gateway Interface stellt eine Schnittstelle für den Datenaustausch
zwischen Web-Server und darauf laufenden Programmen oder Skripten dar. Diese

193 IP Adresse = Internet Protocol Adresse. Zur eindeutigen Identifikation bekommt jeder Rechner im

Internet eine Adresse zugeordnet, ähnlich einer Telefonnummer.
194 DNS = Domain Name Service. Ein DNS-Server nimmt die Umsetzung von Domänennamen in IP-

Adressen vor (siehe Kap. 24.2).

Servlets 909

so genannten CGI-Programme können dabei in einer beliebigen Programmier-
bzw. Skriptsprache verfasst worden sein. Der Aufruf eines CGI-Programms erfolgt
dabei über Anfragen an eine URL, welche dem entsprechenden CGI-Programm
zugeordnet195 ist. Die Ausgaben dieser Programme werden direkt an den Client
weitergeleitet. Die CGI-Schnittstelle wird beispielsweise von den Skriptsprachen
Perl und PHP verwendet.

• Servereigene API

Servereigene oder auch proprietäre Server-APIs sind Schnittstellen wie NSAPI
(Netscape Server API von Netscape) oder ISAPI (Internet Server API von Micro-
soft). Programm-Module auf dem Server-Rechner, welche über solche Schnitt-
stellen mit dem Web-Server kommunizieren, haben den Vorteil, dass sie in Form
einer Shared Library196 innerhalb des Web-Servers ausgeführt werden und somit
sehr performant sind. Das zeitlich teure Erzeugen eines neuen Betriebssystem-
Prozesses – wie es bei CGI der Fall ist – entfällt hiermit. Ein Nachteil hingegen ist
die Beeinflussung des Web-Servers bei Programmfehlern. Da das Programm im
Adressraum des Web-Servers läuft, kann ein Fehler in einem Programm-Modul
den ganzen Server zum Absturz bringen.

• Servlet-API

Bei der Servlet-API handelt es sich um eine serverseitige Programmierschnitt-
stelle für Java. Die Ausgabe einer bearbeiteten Anforderung erfolgt über einen
Stream. Es ist in der Spezifikation nicht festgelegt, ob eine solche serverseitige
Anwendung im gleichen Betriebssystemprozess wie der Web-Server läuft oder
nicht.

22.2.1 Ablaufumgebung von Servlets

Für das Ausführen von Servlets bedarf es eines Servlet-Containers, welcher die
Servlet-API implementiert. Ablaufumgebungen für Servlets können grob in die
folgenden drei Kategorien eingeteilt werden:

• Standalone Servlet-Container

Als Standalone Servlet-Container bezeichnet man einen Server, in welchem die
Unterstützung für die Ausführung von Servlets bereits integriert ist. Vorteilhaft ist,
dass Web-Server und Servlet-Container innerhalb eines einzigen Programms
arbeiten. So bleibt die Administration auf ein Programm beschränkt und es müs-
sen nicht Web-Server und Servlet-Container für eine Zusammenarbeit konfiguriert
werden. Kommt aber eine neue Servlet-Spezifikation heraus, so muss das ganze
Server-Programm ausgetauscht werden.

• In-Process Servlet-Container

Dieser Servlet-Container besteht aus einer Kombination eines Web-Server-Plug-
ins und einer Servlet-Container-Implementierung. Das Plugin öffnet eine JVM

195 Die Zuordnung geschieht z. B. über Einträge in einer Konfigurationsdatei des Web-Servers.
196 Eine Shared Library (Programmbibliothek) ist bereits kompilierter Programmcode, der aber nicht

fester Bestandteil eines Programms (in diesem Fall das eigentliche Serverprogramm) ist, sondern
zur Laufzeit des Programms hinzugelinkt werden kann.

910 Kapitel 22

innerhalb des Adressbereiches des Web-Servers und führt den Servlet-Container
darin aus. Eine an ein Servlet eintreffende Anfrage wird vom Plugin über JNI197 an
den Servlet-Container weitergeleitet und dort bearbeitet. Diese Art von Servlet-
Container bietet eine gute Performance, ist aber in der Skalierbarkeit einge-
schränkt. Ebenso ist die Stabilität des Systems bei Fehlern im Servlet-Container
gefährdet.

• Out-of-Process Servlet-Container

Dieser Servlet-Container besteht aus einer Kombination eines Web-Server-Plug-
ins und einer Java-Container-Implementierung. Im Gegensatz zu In-Process Serv-
let-Containern werden Out-of-Process Servlet-Container in einer JVM außerhalb
des Web-Server-Prozesses ausgeführt. Die Kommunikation von Plugin und Serv-
let-Container erfolgt über IPC-Mechanismen wie zum Beispiel Sockets (siehe Kap.
24). Solch ein Container bietet nicht die gleiche Performance wie ein In-Process
Servlet-Container, ist aber hinsichtlich Stabilität und Skalierbarkeit vorteilhafter.

Servlets benötigen einen Servlet-Container, der die Servlet-API imple-
mentiert.

22.2.2 Der Tomcat Servlet-Container

Der Tomcat Servlet-Container (häufig auch Servlet-Engine genannt) ist die Refe-
renzimplementierung für die Servlet-API von ORACLE. Die Beispiele in diesem
Kapitel wurden daher unter Verwendung des Tomcat Servlet-Containers (Version
6.0.29) und dem Apache Web-Server erstellt und getestet.

Der Tomcat Servlet-Container implementiert die Servlet-API.

Vor der Installation des Apache Web-Servers und des Tomcat Servlet-Containers
soll zunächst deren Arbeitsweise betrachtet werden. Der Ablauf eines Seitenaufrufs
ist in Bild 22-9 als schematische Skizze dargestellt. In dieser Darstellung greift das
Servlet auf ein Database Management System198 und damit auf eine Datenbank zu.
Dies wird in der Realität auch häufig der Fall sein. Um die Beispiele in diesem Kapitel
nicht zu komplex zu gestalten, soll von der Nutzung einer Datenbank abgesehen
werden. Stattdessen werden persistente Daten in einer Datei im Dateisystem abge-
legt und von dort wieder gelesen.

197 Java Native Interface. Unter Verwendung dieser Schnittstelle besteht die Möglichkeit, aus einem

Java-Programm heraus nativen – also in C oder C++ geschriebenen – Code aufzurufen.
198 Ein DBMS (Database Management System) verwaltet die Daten einer Datenbank.

Servlets 911

2. Ausführen
5. Dynamische
HTML-Seite

6. HTTP/HTML

1. HTTP

Browser

Servlet-Container
(z. B. Tomcat)

Ablaufbereite Servlets

3. Anfrage 4. Daten

DBMS

Web-Server
(z. B. Apache)

Bild 22-9 Ablauf bei der dynamischen Seitengenerierung

Die ablaufbereiten Servlets liegen dabei als bereits kompilierte class-Dateien vor.
Um ein Servlet zu installieren, benötigt der Servlet-Container weiterhin einen so ge-
nannten Deployment-Deskriptor199. Dieser Deployment-Deskriptor ist in der Datei
web.xml hinterlegt. Neben den Servlets können weitere Ressourcen wie statische
Dateien (z. B. html- oder jpg-Dateien) in den Generierungsprozess eingebunden
werden. Dabei wird der Zusammenschluss von mehreren Ressourcen zu einer
logischen Einheit zur Erbringung eines gewissen Dienstes als Web-Anwendung
(Web Application) bezeichnet.

 Web-Anwendung

web.xml

.class

.jsp

statische
Dateien

Servlet-
Container

dynamische
HTML-Seite

Bild 22-10 Erzeugen einer dynamischen HTML-Seite aus einer Web-Anwendung

Bild 22-10 zeigt einige der Ressourcen, aus denen eine Web-Anwendung bestehen
kann.

199 Über den Deployment-Deskriptor können diverse Konfigurationseinstellungen – wie z. B. Zugriffs-

rechte, die URL, über die die Web-Anwendung erreichbar sein soll, oder initiale Parameter – fest-
gelegt werden.

912 Kapitel 22

Die Servlet-Spezifikation definiert folgende Ressourcen für eine Web-
Anwendung:

• Ein oder mehrere Servlets (class-Dateien)
• Meta-Informationen, welche die oben genannten Ressouren logisch

zu einer Einheit verbinden (Deployment-Deskriptor in web.xml)
• Statische Dokumente wie HTML-Seiten, Bilder, Video- und Sound-

Dateien
• Hilfsklassen
• Client-seitige Applets, Beans und Klassen
• JavaServer Pages (JSP) (siehe Kapitel 23)

Solch eine Web-Anwendung kann auch zu einem Webarchiv in einer war-Datei
(Web Application Ressources) zusammengefasst werden. Ein Webarchiv stellt dabei
lediglich das gepackte Verzeichnis (inkl. aller Unterverzeichnisse) einer Web-Anwen-
dung dar, die vom Servlet-Container entpackt und ausgeführt werden kann.

22.2.3 Installation des Apache Tomcat Servers

Auf der Tomcat Webseite http://tomcat.apache.org findet man unter dem
Stichwort "Download" lauffähige Standalone-Versionen (also inkl. Apache Web-
Server). Ebenfalls möglich ist ein separates Herunterladen des Apache Web-Servers
und Installieren des Tomcat Servlet-Containers als Out-of-Process oder In-Process-
Plugin200, was aber nur für "große" Server sinnvoll ist und deshalb hier nicht gezeigt
wird. Unter MS Windows ist es am einfachsten, die Windows Service Installer-Ver-
sion herunterzuladen. Beim Installieren empfiehlt es sich, die Standardeinstellungen
zu übernehmen. Zur einfacheren Handhabung sollte der Connector-Port201 den Wert
8080 beibehalten. Für eine Installation unter LINUX muss lediglich die ZIP-Datei
geladen und in ein beliebiges Verzeichnis entpackt werden. Nun muss noch die
Umgebungsvariable JAVA_HOME gesetzt werden. Zur einfacheren Verwendung
empfiehlt es sich zusätzlich die Umgebungsvariable TOMCAT_HOME zu setzen.

Zum Starten von Tomcat ist auf allen Systemen neben dem eigentlichen Server eine
installierte Java-Laufzeitumgebung erforderlich. Da auf dem Tomcat Server später
auch JSPs (siehe Kapitel 23) laufen sollen, reicht bei älteren Tomcat-Versionen
(5.0.x und darunter) das einfache Laufzeitsystem (JRE) nicht aus, da Tomcat hier
noch javac zum Kompilieren der JSPs benötigt. Seit Version 5.5 ist in Tomcat je-
doch ein Compiler integriert, und benötigt daher kein vollständiges JDK mehr.

Nach erfolgreicher Installation von Tomcat und des JDK/JRE, kann Tomcat über
%TOMCAT_HOME%\bin\startup.bat gestartet werden. War die Installation und
das Starten von Tomcat erfolgreich, wird beim Aufruf der URL http://local-
host:8080 die Apache Tomcat Startseite angezeigt. Eine nachträgliche Änderung

200 Die Installation erfolgt mit Hilfe so genannter Connectors.
201 Ein Port ist eine Adresskomponente des TCP (Transmission Control Protocol), welches vom HTTP

genutzt wird. Port 80 ist dabei der Standard-Port für HTTP.

Servlets 913

des Connector-Ports kann in der Datei <TOMCAT_HOME>\conf\server.xml vor-
genommen werden.

Für detaillierte Informationen zur Installation und Administration wird auf die Doku-
mentation unter http://tomcat.apache.org verwiesen.

22.3 Web-Anwendungen erstellen

In diesem Kapitel soll die Erstellung einer Web-Anwendung anhand eines Beispiels
demonstriert werden. Hierzu wird Schritt für Schritt eine lauffähige Web-Anwendung
erstellt, die "Hallo Welt" innerhalb des Browser-Fensters ausgibt. Voraussetzung da-
für ist eine erfolgreiche Installation von Tomcat, wie in Kapitel 22.2.3 beschrieben
wurde.

22.3.1 Verzeichnisstruktur einer Web-Anwendung

Bevor mit dem eigentlichen Erstellen der Web-Anwendung begonnen wird, soll zu-
nächst die generelle Verzeichnisstruktur einer Web-Anwendung betrachtet werden.

Eine Web-Anwendung befindet sich in einem bestimmten Pfad auf dem Server. So
ist ein Ansprechen der Web-Anwendung "Hallo Welt" beispielsweise über die URL
http://127.0.0.1:8080/HalloWelt möglich. Dieser so genannte Kontext-
Pfad sollte sich bei Tomcat im Web-Anwendungsverzeichnis webapps befinden, in
dem alle Web-Anwendungen abgelegt sind. Innerhalb des Kontext-Pfades wird in der
Servlet-Spezifikation eine Verzeichnisstruktur für die Organisation einiger bestimmter
Ressourcen einer Web-Anwendung vorgeschrieben:

• /WEB-INF Dieses Verzeichnis enthält den Deployment-Deskriptor
web.xml. Dieser enthält Informationen über die Web-An-
wendung und beschreibt unter anderem die Beziehungen
zwischen den einzelnen Komponenten.

• /WEB-INF/lib In diesem Verzeichnis werden alle Java Archiv-Dateien
(jar-Dateien), welche für die Web-Anwendung benötigte
Ressourcen enthalten, untergebracht.

• /WEB-INF/classes Hier werden alle Servlets und sonstige Hilfsklassen un-
tergebracht.

Zu beachten ist, dass das WEB-INF-Verzeichnis nicht zum öffentlichen Teil202 des
Kontext-Pfads der Anwendung gehört. Alle in diesem Verzeichnis enthaltenen Datei-
en werden nie direkt an einen Client übertragen. Alle anderen zu einer Web-Anwen-
dung gehörenden Dateien wie HTML-Dokumente, JavaServer Pages, Bilder etc.
können beliebig – auch organisiert durch Verzeichnisse – im Kontext-Pfad unterge-
bracht werden. Das folgende Bild zeigt die Verzeichnisstruktur einer Web-Anwen-
dung:

202 Der öffentliche Teil einer Anwendung beinhaltet die Komponenten, die von außen – also über das

Internet – zugänglich sind und abgerufen werden können. Dies sind beispielsweise die aufrufbaren
Servlets, HTML-Seiten oder Bilder.

914 Kapitel 22

Deployment-Deskriptor web.xml.

benötigte Ressourcen (.jar)

Kontext-Pfad

Weitere Verzeichnisse mit Dateien
(z. B. Bilder)

Servlets und sonstige Hilfsklassen

Web-Anwendungsverzeichnis

Bild 22-11 Verzeichnisstruktur einer Web-Anwendung

Generell ist es üblich, das Projekt nicht direkt im Web-Anwendungsverzeichnis zu
entwickeln, sondern in einem separaten Arbeitsverzeichnis, z. B. C:\work\Hallo-
Welt. Da das hier gezeigte Beispiel lediglich aus einer Quellcode-Datei und dem
Deployment-Deskriptor bestehen wird, entsteht folgender Verzeichnisbaum:

Bild 22-12 Arbeitsverzeichnis der "Hallo Welt"-Web-Anwendung

Hierbei hat man nun die Möglichkeit, die Quelldateien – also die java-Dateien – der
Web-Anwendung im Ordner src abzuspeichern, der ein Unterordner von work ist.

22.3.2 Quelldateien einer Web-Anwendung

Eine Web-Anwendung besteht aus mindestens einem Servlet und dem Deployment-
Deskriptor web.xml. Deshalb soll in dem hier gezeigten Beispiel auf statische
Dateien wie Bilder oder Java-Bibliotheken (.jar) vorerst verzichtet werden. Um
später das Servlet zu erstellen, wird im Verzeichnis src des Arbeitsverzeichnisses
die Datei HalloWeltServlet.java angelegt. Diese Datei enthält den eigentlichen
Quellcode des Servlets. Die genaue Funktionsweise wird in Kapitel 22.4 erklärt. Hier
das Beispiel:

// Datei: HalloWeltServlet.java

import java.io.*;
import javax.servlet.*; //Paket enthält die Klasse GenericServlet

public class HalloWeltServlet extends GenericServlet
{
 public void service (ServletRequest req, ServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType ("text/html");

Servlets 915

 PrintWriter out = res.getWriter();
 out.println ("<HTML><BODY>Hallo Welt</BODY></HTML>");
 }
}

Nun erfolgt noch die Erstellung des Deployment-Deskriptors im Verzeichnis WEB-
INF in der Datei web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>Hallo Welt</display-name>

<description>Hallo Welt als Servlet</description>
 <servlet>
 <servlet-name>HalloWeltServlet</servlet-name>
 <servlet-class>HalloWeltServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name> HalloWeltServlet</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>
</web-app>

Eine Beschreibung der Elemente des Deployment-Deskriptors erfolgt in Kapitel 22.5.

22.3.3 Kompilieren und Deployment einer Web-Anwendung

Ein Servlet kann wie eine ganz normale java-Datei übersetzt werden. Der Aufruf,
mit dem das Servlet HalloWeltServlet übersetzt werden kann, erfolgt aus dem
src-Ordner heraus, der die Quell-Dateien der Web-Anwendung enthält, und lautet:

javac -cp <TOMCAT_HOME>\common\lib\servlet-api.jar
 -d ..\HalloWelt\WEB-INF\classes HalloWeltServlet.java

Beachten Sie, dass <TOMCAT_HOME> vor dem Aufruf durch den Pfad zum Installa-
tionsverzeichnis des Tomcat Web-Servers ersetzt werden muss. Der Schalter d gibt
an, dass die erzeugte class-Datei nicht im aktuellen Arbeitsverzeichnis – also src –
sondern im Ordner classes der Web-Anwendung gespeichert werden soll.

Um eine Web-Anwendung nun aufrufen zu können, muss diese dem Servlet-Con-
tainer erst bekannt gemacht werden. Man spricht hierbei vom Deployment. Dazu
gibt es verschiedene Möglichkeiten:

• Automatisches Deployment beim Start des Servers,
• Nutzung des Managers mit Hilfe einer grafischen Oberfläche im Browser,
• Nutzung des Tomcat-Deployers.

Die wohl einfachste Möglichkeit ist das automatische Deployment beim Start des
Servers. Der Servlet-Container durchsucht beim Start das webapps-Verzeichnis
nach Web-Applikationen und führt für diese automatisch das Deployment durch. Die
Vorgehensweise mag für das hier gezeigte "Hallo Welt"-Beispiel einfach sein, ist in

916 Kapitel 22

der Praxis jedoch wenig praktikabel: Bei jedem Deployment eines neuen oder ge-
änderten Programms müsste der Server neu gestartet werden und wäre für eine
kurze Zeit nicht erreichbar.

Diese Problematik lässt sich mit dem Manager und seiner grafischen Oberfläche
umgehen. Dieser wird mit Tomcat ausgeliefert und ist über die URL http://lo-
calhost:8080/manager/html erreichbar. Die hierzu benötigte Benutzerna-
me/Passwort-Kombination kann entweder bei der Installation von Tomcat oder in der
Datei <TOMCAT_HOME>\conf\tomcat-users.xml angegeben werden. Die Ober-
fläche des Managers ist selbsterklärend: Neben den bereits installierten Web-Anwen-
dungen, deren Beschreibung und deren Status gibt es die Möglichkeit, ein Verzeich-
nis einer Web-Anwendung oder eines Web-Archivs anzugeben und zu deployen.
Achtung: Beim Entfernen (Undeployment) einer Web-Anwendung mit dem Manager
wird das komplette Verzeichnis der Web-Anwendung (Kontext-Pfad) gelöscht! Soll
eine Web-Anwendung nur vorübergehend außer Betrieb genommen werden, so soll-
te dies mit dem Befehl stop geschehen. Dies ist auch einer der Gründe, warum eine
Anwendung nicht im webapps-Verzeichnis entwickelt werden sollte.

Die Web-Anwendung wird nun deployed, indem der gesamte Ordner HalloWelt
aus unserem Arbeitsverzeichnis in das Verzeichnis <TOMCAT_HOME>\webapps
kopiert wird. Damit ist der Deployment-Prozess abgeschlossen und es kann auf die
Web-Anwendung zugegriffen werden.

Alternativ dazu kann ein so genanntes Web-Archiv erstellt und deployed werden.
Ein Web-Archiv ist nichts anderes als ein ZIP-Archiv, das die Endung war trägt. Um
ein solches Web-Archiv zu erstellen, kann das Programm jar verwendet werden,
das ebenfalls zum JDK gehört und somit im Verzeichnis <JAVA_HOME>\bin hinter-
legt ist. Um nun die "HalloWelt"-Web-Anwendung mittels eines Web-Archivs zu de-
ployen, müssen folgende Schritte durchgeführt werden:

• Wechseln ins Arbeitsverzeichnis, z. B. C:\work\HalloWelt. Es befindet sich in
diesem Verzeichnis nur das WEB-INF-Verzeichnis, das den Deployment-Deskrip-
tor web.xml und die class-Datei classes\HalloWeltServlet.class ent-
hält.

• In diesem Verzeichnis wird mit folgendem Aufruf das Web-Archiv Hallo-
Welt.war erzeugt:

 jar -cf HalloWelt.war *

 Beachten Sie, dass der Aufruf von jar von der Kommandozeile aus nur dann

funktioniert, wenn zuvor der Pfad zu den Java-Entwicklungsprogrammen des JDK
zur Umgebungsvariable PATH hinzugefügt wurde. Die Schalter c und f geben an,
dass ein neues Archiv mit dem Namen HalloWelt.war erstellt werden soll. Die
Wildcard * bewirkt, dass der gesamte Inhalt des aktuellen Verzeichnisses dem
Archiv hinzugefügt wird – also der gesamte Ordner WEB-INF.

• Die erstellte Datei HalloWelt.war wird anschließend in das Verzeichnis <TOM-
CAT_HOME>\webapps kopiert, wodurch der Tomcat-Deployer automatisch im
webapps-Verzeichnis die in Bild 22-13 gezeigte Verzeichnisstruktur erstellt.

Servlets 917

Bild 22-13 Verzeichnisstruktur im Ordner webapps nach dem Deployment

Damit ist der Deployment-Prozess abgeschlossen und auf die Web-Anwendung kann
über den Browser zugegriffen werden.

22.3.4 Aufruf einer Web-Anwendung

Nach dem Deployment sind die Servlets unter dem im Deployment-Deskriptor an-
gegebenen Pfad verfügbar. Das hier gezeigte Beispiel kann also über die URL

http://localhost:8080/HalloWelt/servlet

aufgerufen werden. Hierbei haben die einzelnen Elemente der URL die folgende
Bedeutung:

http Das zu verwendende Protokoll.
localhost Name des Web-Server-Rechners mit Servlet-Container. Hier

kann auch die IP-Adresse des Web-Servers stehen oder ein
Domainname.

HalloWelt Dieser Teil der URL entspricht dem Kontext-Pfad der Web-
Anwendung.

servlet Dieser Teil der URL ist im Deployment-Deskriptor (Element
<SERVLET-MAPPING>, Tag <URL-PATTERN>) be-
schrieben.

Tabelle 22-3 Bestandteile der URL

Das Ergebnis des Aufrufs in einem Browser ist in Bild 22-14 dargestellt:

Bild 22-14 Ergebnis des Servlets HalloWeltServlet

918 Kapitel 22

22.4 Wichtige Elemente der Servlet-API

Die Servlet-API ist Bestandteil der Java Enterprise Edition (Java EE). Das bedeutet,
solange sie nicht Bestandteil der Java Base API ist, wird sie von den Herstellern mit
deren Produkten als ein Zusatzpaket ausgeliefert und verfügbar gemacht. Die
Paketnamen für die Servlet-API wurden von ORACLE festgelegt. Sie lauten ja-
vax.servlet und javax.servlet.http für speziell an die Bedürfnisse von
HTTP angepasste Servlets. Die folgenden Kapitel sollen lediglich als kleiner Über-
blick über die Funktionalität der API dienen und sie nicht im Detail erläutern. Für ge-
nauere Informationen kann die Servlet-Spezifikation von ORACLE bzw. die mit den
Servlet-Containern ausgelieferte Dokumentation der API herangezogen werden.

22.4.1 Protokollunabhängige Servlets

Ein Beispiel für ein protokollunabhängiges Servlet ist das bereits bekannte "Hallo
Welt"-Servlet aus Kapitel 22.3. Hier noch einmal der Programmcode:

// Datei: HalloWeltServlet.java

import java.io.*;
import javax.servlet.*; //Paket enthält die Klasse GenericServlet
public class HalloWeltServlet extends GenericServlet
{
 public void service (ServletRequest req, ServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType ("text/html");
 PrintWriter out = res.getWriter();
 out.println ("<HTML><BODY>Hallo Welt</BODY></HTML>");
 }
}

Das Servlet der Klasse HalloWeltServlet wird von der Klasse GenericServlet
aus dem Paket javax.servlet abgeleitet. Die Klasse GenericServlet verkör-
pert ein generisches und protokollunabhängiges Servlet. Die abstrakte Methode
service() der Klasse GenericServlet wird durch den im Beispiel dargestellten
Quellcode überschrieben. Die Methode service() wird bei jeder Anfrage an das
Servlet vom Servlet-Container aufgerufen. Diese Methode stellt die Funktionalität des
Servlets dar. Als Übergabeparameter erhält die Methode service() vom Servlet-
Container jeweils eine Referenz auf ein Objekt vom Typ ServletRequest und auf
ein Objekt vom Typ ServletResponse (siehe Kapitel 22.4.4). Über Methodenauf-
rufe für die Referenzvariable res kann das Servlet gestellte Anfragen beantworten.

Mit der Anweisung:

res.setContentType ("text/html");

wird der Content-Type (oder auch MIME203-Bezeichner genannt) – hier text/html
– als Teil der HTTP-Antwort an den Client gesandt. Anhand dieses Typs wird dem
Browser mitgeteilt, um welche Art von Daten es sich bei dieser Antwort handelt.

203 MIME = Multipurpose Internet Mail Extension. Typangabe der über HTTP übertragenden Daten.

Servlets 919

In diesem Beispiel handelt es sich um eine in HTML codierte Textausgabe. Bei der
Ausgabe etwa eines GIF-Bildes durch das Servlet wäre der Content-Type
image/gif, bei einem Adobe Acrobat PDF-File application/pdf. Der Content-
Type text/html veranlasst den Browser, die empfangenen Daten als HTML-Text
zu interpretieren. Beim Content-Type image/gif wird das den Daten entsprechen-
de Bild dargestellt. Erhält der Browser einen Content-Type, der ihm nicht bekannt ist,
so öffnet er automatisch einen Dialog, um die Daten auf der Festplatte zu speichern.

Die Anweisung:

PrintWriter out = res.getWriter();

bedeutet, dass über die Methode getWriter() der Klasse ServletResponse
eine Referenz auf ein Objekt der Klasse PrintWriter erhalten wird, das der zei-
chenorientierten Textausgabe dient. Diese Referenz wird der Variablen out zuge-
wiesen.

Zu guter Letzt die Anweisung:

out.println ("<HTML><BODY>Hallo Welt</BODY></HTML>");

Durch Aufruf der Methode println() auf der Referenz out kann das Servlet Text-
daten mit Hilfe des Servlet-Containers direkt an den Client schicken. In diesem
Beispiel wird HTML-Code an den Client gesandt.

22.4.2 HTTP Servlet

Wenn Webseiten dynamisch auf dem Server erstellt werden sollen, so geht meist
eine Benutzereingabe in einem Formular in einer dafür vorgesehenen Webseite
voraus. Die Abfrage solcher Benutzereingaben kann in HTML mit Hilfe von so ge-
nannten Forms204 programmiert werden. Um das Handling solcher Szenarien zu
erleichtern, ist die Klasse HttpServlet speziell für die Arbeit mit HTTP ausgelegt.
So ist der Content-Type standardmäßig auf text/html gesetzt und muss bei einer
Rückgabe einer HTML-Seite nicht explizit gesetzt werden. Des Weiteren bietet diese
Klasse für die Bearbeitung eines jeden HTTP-Kommandos eine eigene Methode an.
Die Klasse befindet sich im Paket javax.servlet.http. In Kapitel 22.6 wird die
Nutzung eines HTTP Servlets anhand eines Forums demonstriert.

Die Klasse HttpServlet ist genau wie das zuvor gezeigte Servlet von der Klasse
GenericServlet abgeleitet und implementiert die Methode service(). Fordert
ein Benutzer eine Webseite an, leitet der Servlet-Container die Anforderung an die
Methode service() der Klasse HttpServlet. Die Standard-Implementierung
dieser Methode verteilt die eintreffenden Anfragen an eine dem Typ der Anfrage
entsprechende Methoden:

HTTP-Kommando Servlet-Methode
POST doPost
GET doGet
PUT doPut

204 Forms sind Formulare, welche Eingabefelder für Benutzerabfragen enthalten können.

920 Kapitel 22

DELETE doDelete
TRACE doTrace
OPTIONS doOptions
HEAD doHead

Tabelle 22-4 HTTP-Kommandos mit den entsprechenden Servlet-Methoden

Mindestens eine dieser Methoden muss in der abgeleiteten Servlet-Klasse über-
schrieben werden, wenn das erstellte Servlet sinnvoll eingesetzt werden soll. Da die
Daten des Beispielformulars mit dem HTTP-Kommando GET zum Server übertragen
werden, muss im aufgerufenen Servlet der Klasse Forum die doGet()-Methode
überschrieben werden, um auf einen eintreffenden Request antworten zu können.

22.4.3 Zugriff auf die Anfrage

Der Zugriff auf alle Daten einer Client-Anfrage geschieht über eine vom Servlet-
Container an das Servlet übergebene Referenz auf ein Request-Objekt vom Typ
ServletRequest bzw. HttpServletRequest. So kann im Servlet auf

• Parameter des Clients,
• an den Request gebundene Attribute, welche vom Servlet-Container oder dem

Servlet selbst an den Request gebunden worden sind,
• die Header einer HTTP-Anfrage,
• Pfadinformationen der momentanen Anfrage,
• Cookies der momentanen Anfrage,
• die Attribute einer eventuellen SSL-Verbindung,
• die vom Client für eine Antwort bevorzugte Sprache (vom Client gesendet)

zugegriffen werden.

22.4.4 Antwort auf die Anfrage

Der Servlet-Container übergibt dem Servlet eine Referenz auf das Response-Objekt,
welches vom Typ ServletResponse bzw. HttpServletResponse ist. Nachdem
das Servlet seine Daten in dieses Objekt geschrieben hat, generiert der Servlet-Con-
tainer aus diesem Objekt die entsprechende Antwort und übergibt sie dem Client.

22.4.5 Session-Verwaltung

Die Servlet-API bietet über das Interface HttpSession aus dem Paket ja-
vax.servlet.http die Möglichkeit, eine Sitzung mit dem Client zu erzeugen. Eine
Sitzung erlaubt die Identifizierung eines Benutzers über mehrere Seitenanfragen
hinweg. Dies ist beispielsweise bei einem Webshop mit einem Warenkorb wichtig.
Da HTTP vom Entwurf her ein zustandsloses Protokoll205 ist, man aber bei der Re-
alisierung einer Sitzung Zustandsinformationen zur Verfügung haben muss, kann

205 Eine HTTP-Anfrage kann nicht auf eine vorige HTTP-Anfrage aufbauen, da der Server keine

Zustandsinformationen, also Informationen über einen vorigen Aufruf, hält.

Servlets 921

sich der Servlet-Container einer von drei Möglichkeiten für die Realisierung einer
Sitzung bedienen:

• URL Rewriting

Beim URL Rewriting werden vom Server Daten an einen URL-Pfad angehängt,
welche beim Aufruf durch einen Client als Parameter wieder in der URL mitge-
sendet werden. Um eine korrekte Sitzungsverwaltung mit URL Rewriting zu errei-
chen, muss der Programmierer des Servlets sich darum kümmern, dass jede URL
in einer auszugebenden Webseite codiert wird, z. B. in einem versteckten Feld
eines Formulars. Die Codierung erfolgt über einen Methodenaufruf für eine Refe-
renz vom Typ HttpServletResponse.

Eine durch URL Rewriting codierte URL könnte folgendes Aussehen haben:

http://www.xyz.de/myExamples/servlet/Forum?jsessionid=12345

• Cookies

Der Servlet-Container kann ein Cookie mit einer eindeutigen ID bei einem Client
hinterlegen. Bei nachfolgenden Aufrufen an den Server sendet der Client die
Daten des Cookies mit, anhand derer dann der Server den Client für die Dauer
einer Sitzung identifizieren kann.

• SSL Sessions

Bei Verwendung des Secure Sockets Layers206 – implementiert im HTTPS-Proto-
koll –, kann der Servlet-Container die Daten des dort eingebauten Mechanismus
zur eindeutigen Identifizierung eines Clients über mehrere Aufrufe hinweg benut-
zen, um eine Sitzung mit einem Client festzulegen.

Der Programmierer kommt jedoch bei der Verwendung des Interface HttpSession
nicht direkt mit den eben erwähnten Techniken in Berührung. Diese Schnittstelle
erlaubt einem Servlet

• den Zugriff auf und die Manipulation von Sitzungsdaten wie Session ID, Erzeu-
gungszeitpunkt der Sitzung und den Zeitpunkt des letzten Zugriffs,

• erzeugte Objekte mit Benutzerinformationen an eine Sitzung zu binden und somit
diese Informationen dauerhaft über mehrere Aufrufe des Clients zu halten.

22.4.6 Methoden für den Lebenszyklus

Ein Servlet verfügt über einen wohl definierten Lebenszyklus, welcher dem eines
Applets (siehe Kap. 20) sehr ähnlich ist. Es verfügt wie ein Applet über eine init()-
und eine destroy()-Methode. Die Abarbeitung der Anfragen findet in der für Serv-
lets zentralen Methode service() statt. Die init()-Methode wird vom Servlet-
Container einmalig nach dem Instantiieren des Servlets aufgerufen. Bevor diese
Methode nicht aufgerufen und fehlerfrei abgearbeitet wurde, darf der Servlet-Con-

206 Bei einer Kommunikation über Secure Sockets Layer werden die zu übertragenden Daten von

Client und Server verschlüsselt.

922 Kapitel 22

tainer keine Anfragen an die Service-Methode des Servlets weiterleiten. Im Fehlerfall
wird eine Exception vom Typ UnavailableException oder ServletException
geworfen. Der Servlet-Container kann nach einer fehlgeschlagenen Instantiierung
jederzeit wieder eine neue Instanz erzeugen. Der Zeitpunkt der Instantiierung eines
Servlets hängt von der jeweiligen Implementierung des Servlet-Containers ab. Die
Instantiierung kann beim Starten des Servlet-Containers oder erst beim Eintreffen
einer Anfrage an das Servlet durchgeführt werden. Aber noch bevor ein Servlet in-
stantiiert werden kann, muss die Klasse geladen werden. Dies geschieht über die
normalen Java Klassenlader-Mechanismen von einem lokalen Dateisystem, einem
entfernten Dateisystem oder andere über das Netz erreichbaren Dienste. Nach
erfolgreicher Initialisierung des Servlets werden Anfragen – wie bereits erwähnt – an
die Methode service() geleitet, wo sie entsprechend verarbeitet werden und eine
Antwort für den Client erzeugt wird. Die destroy()-Methode wird vom Servlet-Con-
tainer aufgerufen, bevor die Instanz des Servlets für den Garbage-Collector freigege-
ben wird. Das Entfernen eines Servlets kann aus verschiedenen Gründen gesche-
hen:

• bei einem Shutdown des Servers bzw. des Servlet-Containers,
• aus Gründen der Einsparung von Server-Ressourcen,
• auf ein vom Administrator gegebenes Kommando zum Entladen.

Wurde die Methode destroy() aufgerufen, dürfen an das entsprechende Servlet
keine Anfragen mehr weitergeleitet werden. Die destroy()-Methode wird nicht auf-
gerufen, wenn die Initialisierung des Servlets fehlgeschlagen ist.

Im Folgenden eine kurze Zusammenfassung der von der Servlet-API bereitgestellten
Methoden für den Lebenszyklus:

• init()

Wird nach dem Instantiieren des Servlets aufgerufen. In dieser Methode kann das
Servlet initialisiert werden. Hier sollten zeitintensive Operationen wie zum Beispiel
das Anlegen von Datenbankverbindungen oder das Auslesen von Parametern aus
einer Datei untergebracht werden.

• service()

Wird bei jeder Anfrage eines Clients an das Servlet aufgerufen. Stellt die eigent-
liche Funktionalität des Servlets bereit.

• destroy()

Nach Abarbeitung der destroy()-Methode gibt der Servlet-Container die Refe-
renz auf das Servlet frei und der Speicherplatz der Servlet-Instanz kann vom Gar-
bage-Collector frei gegeben werden. Innerhalb dieser Methode sollten Aufräum-
arbeiten wie z. B. das Schließen von Dateien oder Datenbankverbindungen durch-
geführt werden. Ebenso sollten Daten, welche bei einer erneuten Instantiierung
des Servlets wieder benötigt werden, persistent abgelegt werden.

Servlets 923

22.4.7 Bearbeitung paralleler Anfragen

Die Bearbeitung gleichzeitig eintreffender Anfragen an den Servlet-Container wird
über Threads (siehe Kap. 19) geregelt. Das heißt, für jede eintreffende Anfrage wird
im Servlet-Container ein Thread gestartet, welcher den Request beantwortet. Treffen
mehrere parallele Anfragen für das gleiche Servlet ein, so hat der Programmierer zu
beachten, dass diese für die verschiedenen Anfragen erzeugten Threads alle auf
einer einzigen Instanz des jeweiligen Servlets arbeiten. Das bedeutet, dass bei der
Verwendung von Instanz- oder Klassenvariablen Synchronisationsmechanismen für
einen korrekten Ablauf erforderlich sein können. Will man das parallele Arbeiten
mehrerer Threads in der service()-Methode eines Servlets verhindern, so muss
von der Klasse, die das Servlet realisiert, das Interface javax.servlet.Single-
ThreadModel implementiert werden. Dieses Interface hat keine Methoden und dient
lediglich zur Markierung einer Klasse, stellt aber sicher, dass kein gleichzeitiger
Zugriff mehrerer Threads auf eine Instanz dieser Klasse stattfindet. Parallele Zugriffe
können hier – je nach Servlet-Container207 – ebenfalls über Threads gelöst werden,
mit dem Unterschied, dass jeder Thread eine eigene Instanz der Servlet Klasse
erzeugt und darauf arbeitet. Dies bewahrt den Programmierer jedoch nicht vor der
Synchronisation von gemeinsam genutzten Ressourcen.

22.5 Der Deployment-Deskriptor

Im Deployment-Deskriptor werden die umgebungsspezifischen Parameter einer
Web-Anwendung festgelegt. Der Administrator eines Servers kann so mit Hilfe eines
Deployment-Deskriptors eine Web-Anwendung ohne Eingriffe am Programmcode
konfigurieren.

Im Folgenden werden die wichtigsten Elemente eines Deployment-Deskriptors dar-
gestellt. Eine vollständige Übersicht der im Deployment-Deskriptor möglichen Anga-
ben findet sich in der Servlet-Spezifikation von ORACLE.

Ein Deployment-Deskriptor ist eine in XML geschriebene Datei und beginnt somit mit
der XML-Deklaration. Die XML-Deklaration gibt Auskunft über die XML-Version und
den verwendeten Zeichensatz:

<?xml version="1.0" encoding="UTF-8"?>

Da die Datei einen Deployment-Deskriptor beinhaltet, muss diese der von ORACLE
vorgegebenen Dokumentstruktur folgen. Dies wird durch die Spezifikation des
Dokument-Typs festgelegt:

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

Nun werden die für die Web-Anwendung nötigen Parameter spezifiziert. Das ge-
schieht im Element <web-app>, dem so genannten Wurzelelement, das alle wei-

207 Parallele Anfragen könnten vom Servlet-Container auch serialisiert werden. So würden mehrere

gleichzeitige Anfragen hintereinander und nicht parallel bzw. quasiparallel wie bei der Verwendung
von Threads abgearbeitet.

924 Kapitel 22

teren Elemente beinhaltet. Die wichtigsten dieser Elemente sollen nun kurz vorge-
stellt werden.

Im Element <display-name> kann festgelegt werden, welchen Namen die Web-
Anwendung haben soll. Angezeigt wird dieser Name beispielsweise in der Titelleiste
des Browser und entspricht somit dem <title>-Tag einer HTML-Datei.

Das Element <description> ist von eher geringer Bedeutung: Hier kann eine
Kurzbeschreibung der Anwendung hinterlegt werden. Diese Angabe kann z. B. über
den Tomcat-Manager abgefragt werden.

Die Eigenschaften eines Servlets werden im Tag <servlet> bzw. seiner Unter-
elemente spezifiziert. Im Unterelement <servlet-name> wird ein Name für das
Servlet vergeben. Dieser Name kann frei gewählt werden und dient als Referenz
innerhalb des Deployment-Deskriptors für weitere Eigenschaften des Servlets. Die
Zuordnung des soeben angegebenen Servlet-Namens zu einer Servlet-Klasse erfolgt
mit dem Tag <servlet-class>. Hier ein Beispiel für ein Servlet in der Datei
HalloWeltServlet.class:

<servlet>
 <servlet-name>HalloWeltServlet</servlet-name>
 <servlet-class>HalloWeltServlet</servlet-class>
</servlet>

Im Tag <servlet> können noch weitere Eigenschaften wie Initialisierungsparame-
ter oder notwendige Nutzerrechte zur Ausführung festgelegt werden. Da eine Web-
Anwendung aus mehreren Servlets bestehen kann, kann das Tag <servlet> mehr-
mals in einem Deployment-Deskriptor verwendet werden.

Unter welcher URL ein bestimmtes Servlet erreichbar ist, wird für jedes Servlet ein-
zeln im Tag <servlet-mapping> festgelegt. Die Zuordnung Servlet <-> URL ge-
schieht in den Unterelementen <servlet-name> und <url-pattern>. Unter
<servlet-name> muss der unter <servlet> angegebene Name genutzt werden,
unter <url-pattern> die gewünschte URL. Für das obige Beispiel könnte das fol-
gendermaßen aussehen:

<servlet-mapping>
 <servlet-name>HalloWeltServlet</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
</servlet-mapping>

Ein Deployment-Deskriptor könnte also folgendermaßen aussehen:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>Beispiel</display-name>
 <description>Beschreibung zur Web-Anwendung</description>

Servlets 925

 <servlet>
 <servlet-name>ServletName1</servlet-name>
 <servlet-class>SevletKlasse1</servlet-class>
 </servlet>

 <servlet>
 <servlet-name>ServletName2</servlet-name>
 <servlet-class>SevletKlasse2</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>ServletName1</servlet-name>
 <url-pattern>/ServletURL1</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>ServletName2</servlet-name>
 <url-pattern>/ServletURL2</url-pattern>
 </servlet-mapping>

</web-app>

22.6 Das Servlet "Forum"

Im folgenden Beispiel soll ein kleines Forum entstehen, bei dem der Benutzer seinen
Namen, seine E-Mail Adresse und einen Kommentar in drei dafür vorgesehene Fel-
der eingeben und zum Server schicken kann. Nach dem Abschicken dieser Einträge
werden die Daten vom Server entgegengenommen und der Client erhält als Antwort
eine Liste aller Teilnehmer-Beiträge.

Diese kleine Anwendung wird mit einer statischen HTML-Seite, welche die Felder für
die Benutzereingaben enthält, und einem Servlet für die Speicherung dieses aktu-
ellen Teilnehmer-Beitrages und für die Ausgabe aller gespeicherten Beiträge reali-
siert.

22.6.1 HTML Formular

Hier die HTML-Seite mit dem Formular:

<!- Datei: Forum.html -->
<html>
 <head>
 <title>Kleines Forum</title>
 </head>
 <body>
 <h1>Forum</h1>
 <form action="./servlet/Forum" method="GET">
 Name:

 <input type="TEXT" name="name" size=50 maxlength=80>

 E-Mail:

 <input type="TEXT" name="email" size=50 maxlength=80>

 Beitrag:

 <input type="TEXT" name="beitrag" size=50 maxlength=80>

926 Kapitel 22

 <input type=hidden name="aktion" value="add">

 <input type=submit value="Hinzufügen">

 </form>
 Einträge ansehen
 </body>
</html>

Zunächst die Darstellung dieser HTML-Seite mit dem Microsoft Internet Explorer:

 Bild 22-15 Darstellung des Eingabeformulars des Beispiels

Der Aufbau eines HTML-Dokumentes sowie die Beschreibung und die Verwendung
einiger grundlegender HTML-Tags ist in Kapitel 20.1.1 beschrieben. Der Aufbau und
die Verwendung eines Formulars wie in diesem Beispiel soll im Folgenden beschrie-
ben werden. Das Formular wird eingeleitet durch das Tag:

<form action="./servlet/Forum" method="GET">

Es enthält die beiden Attribute action und method. Der dem Attribut action zuge-
wiesene Wert "./servlet/Forum" gibt das auf dem Server liegende Programm –
in diesem Fall das Servlet mit dem Namen Forum – mit relativer Pfadangabe an,
welches nach dem Absenden des Formulars aufgerufen und ausgeführt werden soll.
Das Absenden von Formularen wird im Folgenden noch behandelt. Der Wert "GET"
des Attributes method hat Auswirkungen auf die Art der Übermittlung der Formular-
daten. Ein anderer möglicher Wert von method ist "POST". Diese Werte haben so-

Servlets 927

wohl auf der Client- als auch auf der Serverseite die im Folgenden beschriebenen
Auswirkungen:

• method="GET"

Bei dieser Art der Datenübergabe werden die zu übermittelnden Daten an die URL
angehängt und dem Server übergeben, was folgendermaßen aussehen könnte:

http://127.0.0.1:8080/Forum/servlet/Forum?name=Georg&email=&b
eitrag=&aktion=add

Diese URL ist in der Adress-Leiste des Browser nach dem Absenden der Formu-
lareinträge zu sehen, wenn im obersten Texteingabefeld des Formulars der Name
"Georg" eingetragen und alle anderen Texteingabefelder leer gelassen wurden.
Dabei wird die eigentliche URL durch das Fragezeichen ? von den zu übergeben-
den Schlüssel-Wert-Paaren getrennt. Diese Schlüssel-Wert-Paare bestehen aus
dem im HTML-Code angegebenen Namen des Eingabefeldes als Schlüssel und
dem in das Eingabefeld eingetragenen Inhalt als Wert. Schlüssel und Wert werden
getrennt durch das Gleichheitszeichen =. Die Trennung der einzelnen Paare findet
durch das Zeichen & statt. Leerzeichen in Eingabefeldern werden vom Browser
durch das Pluszeichen + ersetzt. Werden Zeichen wie z. B. die deutschen Umlau-
te (ä, ö, ü) oder Zeichen mit einer besonderen Bedeutung wie die eben vorge-
stellten Zeichen (+, &, =, ?) in einem Eingabefeld verwendet, so werden diese
Zeichen ersetzt durch %XX wobei für XX die Hex-Darstellung des betreffenden Zei-
chens eingesetzt wird.

Eine Einschränkung von Anfragen mit GET ist die Beschränkung der Länge einer
URL im Browser – es können also nicht beliebig viele Daten übertragen werden.

• method="POST"

Die Datenübergabe mit Post geschieht nicht über die URL. Die Daten werden an
den Rumpf der HTTP-Anfrage angehängt208. Werden sensible Daten wie zum Bei-
spiel ein Passwort oder eine Kreditkartennummer eines Formulars mit der Metho-
de GET übertragen, so kann ein Dritter diese Daten in der Adressleiste des Brow-
ser sehen. Dies ist bei der Methode POST nicht der Fall. Ferner kann eine mit
POST realisierte Anfrage im Gegensatz zu einer GET-Anfrage im Browser nicht als
Lesezeichen (Bookmark) gespeichert und damit auch nicht reproduziert werden.

Im HTML-Dokument folgen nun drei Texteingabefelder mit den Namen name,
email und beitrag:

Name:

<input type="TEXT" name="name" size=50 maxlength=80>

E-Mail:

<input type="TEXT" name="email" size=50 maxlength=80>

Beitrag:

<input type="TEXT" name="beitrag" size=50 maxlength=80>

208 Ein HTTP-Kommando kann aus mehreren Zeilen bestehen. Zuerst kommt das eigentliche Kom-

mando, darauf kann ein Kopf, der so genannte Message-Header, und ein Rumpf (Body) mit den zu
übertragenden Daten folgen.

928 Kapitel 22

Die Namen name, email und beitrag sind wichtig für die spätere Referenzierung
des Inhaltes dieser Textfelder im Servlet. Jedes Eingabefeld hat eine Anzeigelänge
von 50 Zeichen – festgelegt über das Attribut size – und lässt eine maximale Ein-
gabe von 80 Zeichen zu – festgelegt durch das Attribut maxlength. Kommt man bei
der Eingabe über 50 Zeichen hinaus, so wird horizontal gescrollt. Jedem Eingabefeld
ist ein normal darzustellender Text – hier: Name:, E-Mail: und Beitrag: – voran-
gestellt, welcher das Eingabefeld für den Benutzer bezeichnet. Das
-Tag er-
zwingt bei der Ausgabe einen Zeilenumbruch.

Das folgende Feld aktion ist ein verstecktes Feld und ist damit für den Benutzer
nicht sichtbar:

<input type=hidden name="aktion" value="add">

Es dient lediglich für die Auswertung im Servlet und wird bei der noch folgenden
Erläuterung des Servlets näher beschrieben. Je nachdem, ob der Benutzer die
Schaltfläche "Hinzufügen" gedrückt oder den Link "Einträge ansehen" angeklickt hat,
muss das Servlet etwas anderes tun. Das Feld aktion dient zur Fallunterscheidung
der beiden möglichen Benutzereingaben. Der dem Feld aktion über das Attribut
value zugewiesene Wert ist add.

Nun folgt die Definition der Schaltfläche:

<input type=submit value="Hinzufügen">

Beim Betätigen dieser Schaltfläche werden die Formulardaten zum Server gesendet.
Das Senden erfolgt durch die im Attribut method festgelegte Methode. Die Schalt-
fläche trägt die Beschriftung Hinzufügen. Anschließend wird die Formulardefinition
geschlossen:

</form>

Der mit dem Tag <a> eingeleitete Link ist für alle Benutzer des Beispiels gedacht,
welche sich die vorhandenen Beiträge lediglich ansehen möchten, ohne selbst einen
Beitrag zum Forum zu geben:

Einträge ansehen

Bei einem Mausklick auf diesen Link wird das Servlet Forum mit der Variablen
aktion und ihrem Wert show aufgerufen. Auf diese Weise könnten nun mehrere
Aktionen in Form von verschiedenen der Variablen aktion zugewiesenen Werten
definiert werden, welche im Servlet ausgewertet werden können. Der Link ist im
Browser durch den Text Einträge ansehen sichtbar gemacht.

22.6.2 Quellcode des Servlets

Da inzwischen die Aufgabe und Funktionsweise der vorgestellten HTML-Seite geklärt
ist, soll jetzt das zugehörige Servlet Forum betrachtet werden:

Servlets 929

// Datei: Forum.java

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Forum extends HttpServlet
{
 // Datei für die persistente Haltung der Forumsdaten. Sie wird
 // im Installationsverzeichnis des Web-Servers, also unter
 // <TOMCAT_HOME> angelegt.
 File file = new File (".\\forumEntries.dat");

 // Nicht persistenter Speicher für die Forumsdaten zur
 // Laufzeit des Servlets. Erspart den langsamen Zugriff
 // auf die Datei bei jeder Anfrage eines Clients.
 Vector<String> entries = new Vector<String>();

 // Initialisierungsmethode des Servlets. Persistente Daten
 // werden aus einer Datei in den als Variable angelegten, nicht
 // persistenten Speicher vom Typ Vector<String> eingelesen.
 public void init (ServletConfig conf) throws ServletException
 {
 // Aufruf der init()-Methode der Vaterklasse
 super.init (conf);
 try
 {
 // Datei kann nur gelesen werden, wenn sie bereits
 // existiert. Bei der erstmaligen Ausführung des Servlets
 // ist die Datei nicht vorhanden.
 if (file.exists())
 {
 // Anlegen eines Readers für das
 // Einlesen von Daten aus einer Datei
 BufferedReader reader =
 new BufferedReader (new FileReader (file));
 // Lokale Variable für die Zwischenspeicherung einer
 // von der Datei eingelesenen Zeile
 String entry = null;

 // Datei zeilenweise auslesen, bis EOF erreicht.
 // Jede Zeile dem Vector entries hinzufügen.
 while ((entry=reader.readLine()) != null)
 {
 entries.addElement (entry);
 }
 reader.close();
 }
 }
 catch (Exception e)
 {
 // Die Ausgabe erfolgt in der Konsole
 // bzw. im error.log des Servers!
 System.err.println (e.getMessage());
 }
 }

930 Kapitel 22

 // Die destroy()-Methode wird aufgerufen, bevor der Servlet-
 // Container beendet oder das Servlet gestoppt und zerstört wird
 public void destroy()
 {
 try
 {
 // Anlegen eines Writers für die
 // Datenausgabe in eine Datei
 BufferedWriter writer =
 new BufferedWriter (new FileWriter (file));

 // Über alle Einträge des Vectors entries iterieren
 // und zeilenweise in die geöffnete Datei schreiben
 for (String eintrag : entries)
 {
 writer.write (eintrag + "\n");
 }
 writer.flush();
 writer.close();
 }
 catch (Exception e)
 {
 // Die Ausgabe erfolgt in der Konsole
 // bzw. im error.log des Servers!
 System.err.println (e.getMessage());
 }
 }

 // Hier erfolgt die eigentliche Implementierung des Servlet.
 // Die gewünschte Funktionalität - und zwar das Hinzufügen
 // und Abrufen von Einträgen - ist hier implementiert.
 public void doGet (HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 // Wurde vom Benutzer die Schaltfläche des HTML-Formulars
 // betätigt, dann werden die Werte der Eingabefelder ermittelt
 // und im Vector entries abgelegt.
 if (req.getParameter ("aktion").equals ("add"))
 {
 String name = req.getParameter ("name");
 String email = req.getParameter ("email");
 String beitrag = req.getParameter ("beitrag");
 entries.addElement (name + "\t" + email + "\t" + beitrag);
 }

 // Referenz für die folgende Ausgaben an den Client (Browser)
 // in der Variablen out speichern.
 PrintWriter out = res.getWriter();

 // Ausgabe des Starttags für HTML-Dokument und HTML-Körper
 out.println("<HTML><BODY>");

 // Ausgabe der Überschrift
 out.println("<H1>Die aktuellen Beiträge:</H1>");

Servlets 931

 // Ausgabe einer Tabellen mit 3 Spalten und Spaltenbe-
 // schriftung. Das Tag <TR> beginnt in der Tabelle eine neue
 // Zeile. Das Tag <TD> beginnt in einer Zeile einer Tabelle
 // eine neue Spalte.
 out.println ("<TABLE border=1>");
 out.println ("<TR><TD>Name</TD>");
 out.println ("<TD>E-Mail</TD>");
 out.println ("<TD>Beitrag</TD></TR>");

 // Füllen der Tabelle mit den im Vector entries gespeicherten
 // Einträgen.
 for (String eintrag : entries)
 {
 // Anlegen eines StringTokenizers zur Zerlegung der
 // in der Variablen entry eingelesenen Zeile
 StringTokenizer st = new StringTokenizer (eintrag, "\t");

 // Neue Zeile der Tabelle hinzufügen.
 out.println("<TR>");

 // Die einzelnen durch einen Tabulator getrennten Tokens
 // des Strings eintrag jeweils in eine Spalte der
 // angelegten Tabelle schreiben. Ein Token ist ein Wort als
 // Bestandteil eines Zeichenstroms.
 while (st.hasMoreTokens())
 {
 out.println("<TD>");
 out.println(st.nextToken());
 out.println("</TD>");
 }
 out.println("</TR>");
 }
 out.println("</TABLE>");
 out.println("</BODY></HTML>");
 }
}

Die Methode doGet() wird vom Servlet-Container aufgerufen, wenn der Benutzer
die Schaltfläche des Formulars oder den Hyperlink der HTML-Seite anwählt. Gleich
in der ersten Anweisung dieser Methode, der if-Abfrage, wird Bezug auf das ver-
steckte Feld aktion der HTML-Seite genommen. Es wird der Wert dieses Feldes
abgefragt. Wurde die mit "Hinzufügen" beschriftete Schaltfläche des HTML-Formu-
lars betätigt, hat das Feld den Wert "add". In diesem Fall werden die Werte der
Texteingabefelder mit den im HTML-Dokument vergebenen Namen name, email
und beitrag ermittelt und in Variablen vom Typ String festgehalten. Anschlie-
ßend werden die ermittelten Werte getrennt durch einen Tabulator – im Programm-
code dargestellt durch \t – dem Vector entries hinzugefügt. Den Zugriff auf die
vom Client übergebenen Parameter erhält man über den Parameter req, der eine
Referenz auf ein Objekt vom Typ HttpServletRequest darstellt.

Wurde in der HTML-Seite der Link anstelle der Schaltfläche des Formulars gewählt,
so hat das Feld aktion den Wert "show". In diesem Fall wird der Block der if-An-
weisung nicht ausgeführt. Der dem if-Block folgende Code generiert als Antwort auf
die Anfrage dynamisch eine HTML-Seite. Dazu wird über die Referenz des Res-

932 Kapitel 22

ponse-Objektes res eine Referenz auf ein Objekt der Klasse java.io.Print-
Writer angefordert, über welche die Ausgabe des HTML-Codes an den Client mög-
lich ist. Diese Referenz wird in der lokalen Variablen out gespeichert.

Die Ausgabeoperationen über die Variable out vor der folgenden for-Schleife ge-
ben den einleitenden Tag für ein HTML-Dokument und den HTML-Körper aus. Da-
nach wird eine Überschrift mit dem Text "Die aktuellen Beiträge" ausgege-
ben. Anschließend wird eine Tabelle mit einer sichtbaren Umrandung eingeleitet und
es werden drei Spalten mit den Einträgen Name, E-Mail und Beitrag angelegt. Die
diesen Anweisungen folgende for-Schleife sorgt für die Ausgabe der von den Teil-
nehmern des Forums bereits eingegebenen Daten und ist somit für den eigentlich
dynamischen Teil des Servlets verantwortlich. Die Schleife iteriert über alle im Vector
entries vorhandenen Einträge und gibt diese jeweils in einer Spalte der angelegten
Tabelle aus. Dazu wird bei jeder Iteration ein Eintrag des Vectors ausgelesen und in
einer Stringvariablen gespeichert. Dieser String enthält den kompletten Eintrag eines
Benutzers. Dieser String wird mit Hilfe eines Objektes vom Typ StringTokenizer
in die durch Tabulatoren (\t) getrennten Einträge zerlegt. Die erhaltenen Abschnitte
dieser Zerlegung, welche dem Inhalt der Felder name, email und beitrag des
HTML-Formulars bei der Eingabe entsprachen, werden in der while-Schleife jeweils
in eine Spalte der Tabelle geschrieben. Enthält der Vector keine weiteren Einträge,
so werden die Tabelle, der HTML-Körper und das HTML-Dokument mit dem
entsprechenden Tag wieder geschlossen und die doGet()-Methode wird beendet.

22.6.3 Ausgabe

Als Ausgabe des Servlets könnte der Client den folgenden HTML-Code erhalten. In
diesem Szenario haben drei Teilnehmer einen Beitrag dem Forum hinzugefügt:

<HTML>
 <BODY>
 <H1>Die aktuellen Beiträge:</H1>
 <TABLE border=1>
 <TR>
 <TD>Name</TD>
 <TD>E-Mail</TD>
 <TD>Beitrag</TD>
 </TR><TR>
 <TD>Klaus</TD>
 <TD>klaus@it-designers.de</TD>
 <TD>Tolles Forum!</TD>
 </TR><TR>
 <TD>Inge</TD>
 <TD>inge@it-designers.de</TD>
 <TD>Endlich mal was neues!</TD>
 </TR><TR>
 <TD>Richard</TD>
 <TD>richard@it-designers.de</TD>
 <TD>Hallo Leute</TD>
 </TR>
 </TABLE>
 </BODY>
</HTML>

Servlets 933

Für den Browser ändert sich in diesem Szenario gegenüber dem Beispiel mit stati-
schen Webseiten nichts. Er erhält vom Server in beiden Fällen HTML-Code. An-
hand der Ausgabe kann man nicht feststellen, ob dieser Code aus einer Datei ausge-
lesen oder dynamisch generiert wurde.

Interpretiert im Microsoft Internet Explorer hat die Seite folgendes Aussehen:

Bild 22-16 Interpretierte Ausgabe des Servlets Forum

22.7 Übungen

Aufgabe 22.1: Login-Formular

Ein typisches Login-Formular auf Webseiten erfordert vom Benutzer den Benutzer-
namen und das Passwort zur Authentifizierung. Zur Übung soll ein Login-Formular in
den folgenden Aufgaben erstellt werden. Erstellen Sie ein Projekt mit einer von
Servlets unabhängigen Startseite mit dem Dateinamen index.html. Die Startseite
soll folgenden Inhalt aufweisen:

• Eine Überschrift mit dem Tag <H1> und dem Inhalt "Login".

• Die Beschriftung "Benutzername:" und ein Eingabefeld der Länge 20.

• Die Beschriftung "Passwort:" und ein Eingabefeld der Länge 20, das die
Eingabe durch PASSWORD als type verbirgt.

• Eine Schaltfläche mit der Beschriftung Login.

Der Inhalt – bis auf die Titelseite – wird innerhalb eines Formulars verwendet, das bei
einer Bestätigung durch die Schaltfläche Login das Servlet LoginServlet aufruft.

934 Kapitel 22

Der Aufruf soll mit dem GET-Kommando die Eingabedaten an die URL anhängen.
Alle Dokumente sollen den Titel Login verwenden.

Es soll das Servlet LoginServlet erstellt werden, das weiterhin dieselbe Über-
schrift wie die Webseite index.html besitzt und den Text "Sie wurden erfolg-
reich eingeloggt" ausgibt. Überschreiben Sie dazu die abstrakte Methode ser-
vice() der Klasse GenericServlet, von der das Servlet abzuleiten ist.

Aufgabe 22.2: Dynamisches Servlet

Das Servlet LoginServlet wird erweitert, damit Benutzername und Passwort ge-
prüft werden. Dazu kann innerhalb der Methode service() auf den Übergabepara-
meter ServletRequest zugegriffen werden. Dieser lässt über die Methode get-
Parameter() einen Zugriff auf die von der index.html übergebenen Parameter
zu.

Das Login soll nur dann erfolgreich verlaufen, wenn für Benutzername und das Pass-
wort jeweils admin eingegeben wurde. Ansonsten soll der Text "Falsche Zu-
gangsdaten" und ein Link zur Seite index.html mit der Beschriftung "Erneut
versuchen" ausgegeben werden.

Aufgabe 22.3: Session-Verwaltung

Erweitern Sie ihr Servlet aus Aufgabe 22.2 um Sessions, damit bereits authentifi-
zierte Benutzer erkannt werden. Damit Sie eine Session nutzen können, muss die
Klasse LoginServlet von HttpServlet anstatt von GenericServlet ableiten.
Die abstrakte Methode service() muss für die neue Schnittstelle in doGet()
umbenannt und die Parameter müssen angepasst werden.

Um mit einer Session arbeiten zu können, muss man eine Referenz auf ein Objekt
vom Typ HttpSession beschaffen. Dies erreichen Sie mit der Methode get-
Session() des Objektes HttpServletRequest, das die Methode doGet()als
Übergabeparameter erhält. Sobald der Benutzer authentifiziert ist, muss der Session
das Attribut name mit dem Benutzernamen des Benutzers übergeben werden. Dies
erreicht man, indem die Methode setAttribute() des Objektes vom Typ http-
Session verwendet wird. Prüfen Sie bei einem Aufruf des Servlets, ob der Benutzer
bereits authentifiziert ist, indem Sie das Attribut name der Session auf einen vorhan-
denen Inhalt prüfen. Ist der Wert vorhanden, so soll die Prüfung der Benutzerdaten
übersprungen und der Text "Sie wurden bereits als admin authentifi-
ziert." soll ausgegeben werden.

Die Methoden getAttribute() und getParameter() werfen Unchecked Excep-
tions vom Typ NullPointerException. Wenn die Exceptions nicht abgefangen
werden, wird das Servlet bei fehlendem Attribut name und bei fehlenden Parametern
in der URL eine Exception werfen. Daher ist eine Ausnahmebehandlung zu imple-
mentieren.

JavaServer Pages

WWW

HTML

?

Java

23.1 Skriptelemente
23.2 Direktiven
23.3 Aktionen
23.4 Verwendung von JavaBeans
23.5 Tag-Bibliotheken

23.6 Übungen

23 JavaServer Pages

JavaServer Pages (JSP) bieten neben Servlets eine weitere Möglichkeit zur Erzeu-
gung dynamischer Webseiten. Bei JSPs handelt es sich um einen Bestandteil der
Java Enterprise Edition (Java EE)209 von ORACLE. JSPs nutzen Servlets als
zugrunde liegende Technologie, weshalb sich zuerst das Lesen von Kapitel 22
empfiehlt. Hier wird auch die Installation des Apache Tomcat Servers beschrieben,
auf dem die hier gezeigten Beispiele nachvollzogen werden können. Der wesentliche
Unterschied von JSPs gegenüber herkömmlichen Servlets besteht darin, dass Java-
Quellcode direkt in einer HTML-Seite eingebunden werden kann, ähnlich wie bei der
Skriptsprache PHP. Somit können Programmierer leichter dynamische Webseiten
erstellen, als dies mit Servlets der Fall wäre. Da bei Servlets der gesamte HTML-
Code mittels Methodenaufrufen ausgegeben werden muss, geht bei der zu
erzeugenden Webseite schnell die Übersicht verloren. Änderungen am Layout oder
den statischen Inhalten der Seite sind schwerer durchführbar, da der HTML-Code
nicht zusammenhängend oder formatiert angeordnet werden kann.

JSP Servlet

Java

HTML

HTML

Java

Bild 23-1 Servlets und JSP im Vergleich

Aus den JSP-Seiten werden von der JSP-Engine Servlets generiert.
Die Servlets werden dann im Servlet-Container ausgeführt.

Um JavaServer Pages auf einem Web-Server verwenden zu können, wird neben
einem Servlet-Container zusätzlich eine JSP-Engine benötigt.

Die JSP-Engine ist quasi ein "Code-Generator", der in zwei Schritten
aus einer JSP-Seite ein lauffähiges Servlet erzeugt:

� Im ersten Schritt erzeugt die JSP-Engine aus der JSP-Seite eine
Servlet-Quellcode-Datei.

� Im zweiten Schritt wird von der JSP-Engine die generierte
Servlet-Quellcode-Datei durch einen Java-Compiler-Aufruf in eine
ausführbare Bytecode-Datei übersetzt.

Beide entstandenen Dateien – Servlet-Quellcode-Datei und Servlet-
Bytecode-Datei – werden dabei in einem speziellen Arbeitsverzeichnis
des Web-Servers hinterlegt.

209 Java EE erweitert die Java SE (Java Plattform, Standard Edition) speziell für die Entwicklung von

Server-Anwendungen und spezifiziert eine standardisierte Laufzeitumgebung für Server-basierte
und verteilte Anwendungen. Zu den Erweiterungen zählen unter anderem Enterprise JavaBeans
(EJB), Servlets, JSP und die JavaMail API.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_23,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

JavaServer Pages 937

Der Servlet-Container Tomcat enthält solch eine JSP-Engine. In Bild 23-2 ist das
Zusammenwirken der einzelnen Komponenten dargestellt:

3: HTML
[2.2: Invoke]

Browser

Web-Server

4: HTML 1: Anfrage

[2.3: Quellcode]
[2.4: Servlet]

Servlet-Container JSP-Engine

JSP-Seite

2.1: Anfrage

Servlets

Bild 23-2 Komponenten zur Ausführung von JSP-Seiten

Bitte beachten Sie im Bild 23-2, dass die gezeigten Schritte 2.2 bis 2.4 nur unter be-
stimmten Voraussetzungen ausgeführt werden und deswegen als optional markiert
sind. Der Ablauf beim Aufruf einer dynamischen Webseite mit JavaServer Pages ist
folgender:

� Schritt 1: Der Client fordert vom Web-Server eine JSP-Seite an.

� Schritt 2: Die Anfrage wird an den Servlet-Container durchgereicht. Dieser über-
prüft, ob für die angefragte JSP-Seite schon Servlet-Code vorhanden ist. Ist dies
der Fall, so wird das Servlet instantiiert und die Methoden init() und doGet()
bzw. doPost() aufgerufen (weiter bei Schritt 3). Ist jedoch noch kein Servlet-
Code verfügbar, so muss dieser zuerst generiert werden. Dafür beauftragt der
Servlet-Container die JSP-Engine (weiter bei Schritt 2.2).

� optionaler Schritt 2.2: Der Servlet-Container beauftragt die JSP-Engine, für eine
erstmalig angeforderte JSP-Seite Servlet-Code zu generieren.

� optionaler Schritt 2.3: Die JSP-Engine interpretiert den Quellcode der JSP-Seite,
der im Arbeitsverzeichnis hinterlegt ist. Es wird daraus im ersten Schritt eine Serv-
let-Quellcode-Datei – also eine gewöhnliche java-Datei – erzeugt, die im zweiten
Schritt durch einen Compiler-Aufruf in eine Servlet-Bytecode-Datei – also eine
class-Datei – übersetzt wird.

� optionaler Schritt 2.4: Die JSP-Engine meldet dem Servlet-Container die Been-
digung der Code-Generierung, worauf hin der Servlet-Container das Servlet laden
und ausführen kann.

� Schritt 3 und 4: Das Ergebnis des ausgeführten Servlets wird vom Servlet-
Container an den Web-Server geschickt, der den Strom wiederum an den Client
weiterleitet.

938 Kapitel 23

Die unterschiedlichen Formate, die hierbei entstehen, sind in Bild 23-3 dargestellt:

Servlet-
Bytecode
(.class)

Ausführung Übersetzung Generierung

HTML-
Seite

JSP-
Seite
(.jsp)

Servlet-
Quellcode

(.java)

<html>
<body>
3+4 =
<%=3+4%>
</body>
</html>

<html>
<body>
3+4 = 7
</body>
</html>

class{ ...
out.write("<body>");
out.write("3+4 = ");
out.print(3+4);
out.write("</body>");
... }

0101101
0101100
1010101
1001011
0101110
1001010

Bild 23-3 Formate bei der Ausführung einer JSP-Seite

Das Servlet, das aus der JSP-Seite entsteht, wird beim ersten Aufruf der Seite er-
zeugt oder aber nach jeder Änderung, die am Quellcode an der JSP-Seite vorge-
nommen wird. Für den Entwickler bleibt die Generierung der Servlets verborgen. Er
muss sich nur um die Erstellung der JSP-Seiten kümmern. Alles andere übernimmt
der Servlet-Container. Zur Fehlersuche bietet es sich jedoch an, einen Blick in den
generierten Quellcode des Servlets zu werfen, da Syntaxfehler erst beim Kompilieren
sichtbar werden und sich die Fehlermeldungen bzw. die Zeilenangaben des Java-
Compilers meist auf den automatisch erstellten Quellcode des Servlets beziehen.

Der Entwickler benötigt zur Erstellung einer Web-Anwendung keine fundierten Kennt-
nisse über die Servlet-Programmierung. Hierzu wird ihm mit JavaServer Pages eine
komfortable Technologie geliefert, bei der er sich hauptsächlich um die Gestaltung
der Webseiten kümmern kann.

JavaServer Pages stellt dem Entwickler ein Sprachmittel zur Verfü-
gung, mit dem er auf abstrakterer Ebene Web-Anwendungen pro-
grammieren kann, die auf der Servlet-Technologie basieren.

Um eine JSP-Seite zu erstellen, wird eine HTML-Seite mit entsprechenden Anwei-
sungen ergänzt und mit der Dateiendung .jsp versehen.

Diese Datei muss dann in ein beliebiges Verzeichnis im Web-Anwendungsver-
zeichnis des Web-Servers gespeichert werden, um sie für Aufrufe vom Browser aus
zugänglich zu machen.

Eine JSP-Seite kann den gesamten Sprachumfang von HTML-Tags
enthalten.

Die dynamischen Teile der Seite werden jedoch durch JSP-spezifi-
sche Tags realisiert. Diese werden im Folgenden näher erläutert.

JavaServer Pages 939

Die Sprachelemente von JSP unterteilt man dabei in drei Kategorien:

• Skriptelemente,
• Direktiven,
• Aktionen.

23.1 Skriptelemente

Mit den Skriptelementen wird die Programmlogik direkt in die JSP-Seite eingebun-
den. Diese Skriptelemente ermöglichen es, Methoden oder Variablen zu deklarieren,
Ausdrücke auszugeben oder direkt Java-Code in eine Seite einzubetten. Skript-
elemente sind:

• Deklarationen,
• Ausdrücke,
• Skriptlets,
• Kommentare
• und vordefinierte Variablen.

Deklarationen

Bei der Deklaration werden Variablen oder Methoden für das zu erzeugende Servlet
klassenweit gültig definiert. Eine Deklaration wird in die Zeichenfolgen <%! und
%> eingeschlossen. Die Definition einer Methode kann wie folgt geschehen:

<%!
 public int sum (int a, int b)
 {
 return a + b;
 }
%>

Ausdrücke (Expressions)

Mit Ausdrücken können Werte von Variablen oder Rückgabewerte von Methoden
ausgegeben werden. Ein Ausdruck wird in die Zeichenfolgen <%= und %> einge-
schlossen. Das Ergebnis wird dabei in eine Zeichenfolge konvertiert und in den Aus-
gabepuffer geschrieben. Die verwendeten Methoden müssen alle einen Rückgabe-
wert liefern, d. h. es sind keine Methoden erlaubt, die void als Rückgabewert haben.
Mit folgendem Ausdruck wird der Rückgabewert der Methode sum() – aus oben an-
gegebener Deklaration – an der Stelle in die HTML-Ausgabe geschrieben, an der
dieser Ausdruck in der JSP-Seite steht:

<%= sum (3,4) %>

Skriptlets

Anweisungsteile in Java, die genau an der Stelle ausgeführt werden, an der sie in
der Seite stehen, werden als Skriptlets zwischen den Zeichenfolgen <% und %>
eingefasst. Hiermit kann Java-Code in die JSP-Seite eingebunden werden. Folgen-
der Codeabschnitt zeigt solch ein Skriptlet:

940 Kapitel 23

<%
 int x = 0;
 for (int i = 0; i < 5; i++)
 {
 x = sum (x,i);
 }
%>

Kommentare

Innerhalb von Skriptelementen können die üblichen Java-Kommentare verwendet
werden. Diese werden nicht zum Client übermittelt, sind nur für den Entwickler sicht-
bar und werden wie folgt verwendet:

<%
 // Java-Kommentar bis an das Ende der Zeile
 /*
 Java-Kommentar
 über mehrere Zeilen hinweg
 */
%>

Darüber hinaus können Kommentare auch in einer speziellen JSP-Syntax be-
schrieben werden:

<%-- Dies ist ein JSP-Kommentar --%>

Dieser Kommentar ist später im erzeugten HTML-Code ebenfalls nicht mehr zu se-
hen. Es handelt sich um einen versteckten Kommentar, der nur im JSP-Code sicht-
bar ist. Er wird daher auch unsichtbarer Kommentar (hidden comment) genannt.

Kommentare, die nach HTML-Syntax definiert werden, werden zum Client übertra-
gen und sind später im HTML-Code sichtbar. Ein HTML-Kommentar hat die Syntax:

<!-- Dies ist ein HTML-Kommentar -->

Wird JSP-Code in solch einen HTML-Kommentar eingefügt, wird der JSP-Code trotz-
dem ausgeführt.

Vordefinierte Variablen

Die JSP-Spezifikation sieht spezielle vordefinierte Variablen vor, welche der JSP-
Engine implizit bekannt sind. Mit diesen Variablen werden interne Objekte des Serv-
let-Containers referenziert.

Vordefinierte Variablen referenzieren interne Objekte des Servlet-
Containers. Da diese Objekte von vornherein ohne explizite Deklara-
tion in allen JSP-Seiten verfügbar sind, werden sie auch implizite
Objekte genannt.

Mit den vordefinierten Variablen bietet sich dem Entwickler von JSP-Seiten ein ein-
facher Zugriff auf die benötigten Objekte, ohne dass diese Variablen selbst deklariert
oder initialisiert werden müssen. Auf diese Objekte kann mit Hilfe der vordefinierten

JavaServer Pages 941

Variablen in JSP-Skriptelementen direkt zugegriffen werden. Dabei ist der Name der
Variablen gleich dem Namen des Objektes. Folgende Tabelle zeigt die automatisch
in jeder JSP-Seite verfügbaren Objekte:

Objekt Beschreibung
page Die eigene Instanz der JSP-Seite (this)
config Angaben aus der Konfigurationsdatei
request Informationen zur Anfrage an die Seite
response Einstellungen zur Antwort
out Ausgabedatenstrom für die Antwort
session Sitzungsinformationen
application Informationen zur Anwendung
pageContext Angaben zur aktuellen Seite
exception Fehler, der eine Fehlerseite aktiviert hat

Tabelle 23-1 Implizite Objekte

Nachfolgend werden die internen Objekte, ihre Verwendung im Servlet-Container
und die sich daraus ergebenden Anwendungsmöglichkeiten, beschrieben:

• page: Das Objekt page entspricht der Instanz der Servletklasse, die aus der JSP-
Seite generiert wurde. Im Skriptcode kann statt page auch der Ausdruck this
verwendet werden. Das Objekt page stellt eine Implementierung der Schnittstelle
javax.servlet.jsp.HttpJspPage dar. Mit page kann auf die Methoden und
Daten des Servlets zugegriffen werden, welches aus der JSP-Seite generiert wird.
Es findet jedoch eher selten Anwendung.

• config: Mit dem Objekt config, dessen Klasse die Schnittstelle javax.serv-
let.ServletConfig implementiert, ist der Zugriff auf Initialisierungsparameter
des Servlets bzw. der JSP-Seite möglich. Das Servlet bzw. die JSP-Seite wird mit
den im Deployment-Deskriptor210 WEB-INF/web.xml hinterlegten Werten initia-
lisiert. Ein Eintrag im Deployment-Deskriptor könnte für eine JSP-Seite folgender-
maßen aussehen:

...
<servlet>
 <servlet-name>loginPage</servlet-name>
 <jsp-file>/webshop/login.jsp</jsp-file>
 <init-param>
 <param-name>database</param-name>
 <param-value>jdbc:mysql://server/userdb</param-value>
 </init-param>
</servlet>
...

Der Zugriff auf den Parameter erfolgt über das Objekt config:

<% String databaseURL = config.getInitParameter ("database");
...
%>

210 Im Deployment-Deskriptor wird statt dem Element <servlet-class> das Element <jsp-file>

angegeben. Die Initialisierungsparameter werden wie gewohnt im Element <init-param> notiert.
Weitere Details zum Deployment-Deskriptor in Kap. 22.5.

942 Kapitel 23

• request: Das Objekt request repräsentiert die Anfrage an eine JSP-Seite. Hierin
sind alle Informationen der Anfrage an die Seite wie Übergabeparameter oder
Cookies enthalten. Innerhalb der JSP-Seite kann über die Methode getParame-
ter() des impliziten Objektes auf die Übergabeparameter zugegriffen werden,
die beispielsweise aus HTML-Formularfeldern an die Seite gesendet werden (sie-
he Kap. 22.6). Durch folgendes Skriptlet wird der Wert des Übergabeparameters
"name" einer Variablen zugewiesen:

<% String username = request.getParameter ("name");
...
%>

• response: Das Objekt response ist das Äquivalent zu einem request-Objekt –
es enthält allerdings nicht die Übergabeparameter für die JSP-Seite, sondern die
Ausgabeparameter der JSP-Seite, aus denen der Servlet-Container eine HTML-
Seite generiert. Mit den Methoden des Objektes response kann beispielsweise
der MIME-Type211 der Antwort eingestellt oder ein Cookie angefügt werden. In
folgender Codezeile wird die Zeichencodierung der Antwort festgelegt:

<% response.setContentType ("text/html; charset=ISO-8859-4"); %>

Da JSP üblicherweise auf dem Protokoll HTTP aufsetzt, implementiert die zugrun-
de liegende Klasse der Objekte request und response die Schnittstelle Http-
ServletRequest bzw. HttpServletResponse aus dem Paket javax.serv-
let.http. Sollte ein anderes Protokoll verwendet werden, so werden stattdessen
die Schnittstellen ServletRequest und ServletResponse aus dem Paket ja-
vax.servlet implementiert.

• out: Das wohl meistgenutzte implizite Objekt ist der Variablen out zugeordnet. Es
stellt eine Referenz auf den Ausgabestrom des Servlets dar. Über diesen Aus-
gabestrom wird die Antwort auf eine Anfrage an den Browser gesendet. Mit den
Methoden des Objektes out lassen sich beliebige Inhalte ausgeben, die dann
direkt in die HTML-Ausgabe geschrieben werden. Mit der Variablen out wird eine
Instanz der Klasse javax.servlet.jsp.JSPWriter angesprochen, die im
Servlet mit der Methode request.getWriter() ermittelt werden kann. Diese
Variable wird allerdings nur in Skriptlets benötigt, da die Ergebnisse von Aktionen
oder Ausdrücken ohnehin automatisch in den Ausgabestrom geschrieben werden.
Ein Beispiel für die einfache Verwendung dieses Objektes ist:

<% out.print ("<h1>Hallo " + username + "</h1>");
...
%>

• session: Dieses Objekt wird vom Servlet-Container für eine Benutzersitzung212
angelegt. Die zugrunde liegende Klasse implementiert die Schnittstelle Http-
Session. Tomcat verwendet für Benutzersitzungen URL-Rewriting und Cookies
(siehe Kap. 22.4.5). In das Objekt session können für die Benutzersitzung rele-
vante Anwenderdaten als Attribute abgelegt werden. Attribute, die lediglich Refe-

211 MIME = Multipurpose Internet Mail Extension. Gibt den Typ der übertragenden Daten an.
212 Mit Hilfe einer Benutzersitzung kann eine aufgerufene Webseite einem bestimmten Benutzer

zugeordnet werden. So lässt sich beispielsweise ein Web-Shop mit Warenkorb realisieren.

JavaServer Pages 943

renzen auf Objekte darstellen, werden durch den Programmierer angelegt. Im fol-
genden Beispiel wird im Objekt session das Attribut "warenkorb" angelegt und
erhält eine Referenz auf ein Objekt vom Typ ArrayList:

<%
 ArrayList<Waren> waren = new ArrayList<Waren>();
 session.setAttribute ("warenkorb", waren);
%>

So können Attribute durch eine Seite abgespeichert und in einer anderen Seite der
Web-Anwendung vom selben Benutzer wieder ausgelesen werden. Der Zugriff auf
den zuvor abgelegten "warenkorb" wird mit folgendem Code ermöglicht:

<%
 ArrayList<Waren> waren =
 (ArrayList<Waren>) session.getAttribute ("warenkorb");
%>

Die Attribute, die im Objekt session abgelegt werden, sind nur von der jeweiligen
Benutzersitzung (Session) aus sichtbar. Ein Zugriff von anderen Benutzersit-
zungen auf diese Attribute ist nicht möglich.

• application: Im Gegensatz zum Objekt session, das Daten eines einzelnen Be-
nutzers speichert, können in dem impliziten Objekt application Daten für die
ganze Anwendung sichtbar gespeichert werden. Auf Daten, die im Objekt appli-
cation abgespeichert werden, kann von allen JSP-Seiten aus zugegriffen wer-
den. Der Zugriff erfolgt dabei genauso wie bei der Verwendung der Variablen
session. Folgendes Skriptlet speichert das Objekt connection als Attribut unter
dem Namen "dbPool" für die gesamte Anwendung sichtbar:

<% application.setAttribute ("dbPool", connection); %>

Der Zugriff auf das gespeicherte Attribut erfolgt dann mit:

<%
 DataSource conn =
 (DataSource) application.getAttribute ("dbPool");
%>

Des Weiteren stellt das Objekt application eine Schnittstelle zum Servlet-Con-
tainer dar, über die sich Informationen zum Container abrufen lassen oder Ausga-
ben in die Logdateien des Web-Servers geschrieben werden können.

• pageContext: Mit dem Objekt pageContext ist der Zugriff auf alle anderen im-
pliziten Objekte möglich. Dies macht auf den ersten Blick nicht allzu viel Sinn, da
die Objekte ohnehin schon durch die vordefinierten Variablen bekannt sind. Aller-
dings bietet sich damit die Möglichkeit, aus selbstdefinierten Aktionen – den so
genannten Tag-Bibliotheken – über das pageContext-Objekt auf die übrigen in-
ternen Objekte zuzugreifen. Die daraus resultierenden Möglichkeiten werden spä-
ter im Kapitel 23.5 beschrieben. Das Objekt pageContext ist eine Instanz der
Klasse javax.servlet.jsp.PageContext.

944 Kapitel 23

• exception: Das Objekt exception dient der Fehlerbehandlung. Im Unterschied
zu den anderen impliziten Objekten ist dieses Objekt auf JSP-Seiten verfügbar,
die als Fehlerseiten deklariert sind. Die Seitendirektive, mit der eine JSP-Seite als
Fehlerseite gekennzeichnet werden kann, wird später genauer behandelt. Tritt bei
der Ausführung einer JSP-Seite ein Fehler auf, der nicht abgefangen wird, so wird
die Kontrolle an die definierte Fehlerseite abgegeben. Das Objekt exception ist
eine Instanz der Klasse java.lang.Throwable. Über das Objekt exception
lässt sich die Fehlermeldung dann zum Beispiel auf der Fehlerseite ausgeben.
Folgendes Skriptlet schreibt die Exception, sowie die Methoden, welche diese
Exception weitergereicht haben, in den Ausgabedatenstrom:

 <%
 exception.printStackTrace (new java.io.PrintWriter (out));
 %>

23.2 Direktiven

Mit Direktiven (Anweisungen) werden Einstellungen am erzeugten Servlet vorge-
nommen oder Nachrichten an den Container geschickt. Die Direktiven sind in der
gesamten JSP-Seite gültig und werden in die Zeichenfolgen <%@ und %> einge-
fasst. Die JSP-Spezifikation unterscheidet drei verschiedene Arten von Direktiven:

• Seitendirektiven (page),
• Einschließende Direktiven (include),
• Taglib Direktiven (taglib).

23.2.1 Seitendirektive

Mit den Seitendirektiven (page directive) werden bestimmte Eigenschaften der Seite
festgelegt. So kann mit einer Seitendirektive die Weiterleitung an eine bestimmte
Fehlerseite angegeben oder Java-Klassen eingebunden werden. Eine Seitendirek-
tive wird mit der Zeichenfolge <%@, gefolgt von dem Schlüsselwort page eingeleitet,
woraufhin dann mehrere Attribute folgen können. Geschlossen wird die Seitendirek-
tive mit der Zeichenfolge %>. Dies ist im folgenden Beispiel exemplarisch dargestellt:

<%@page attribute="value" %>

Bei Seitendirektiven sind folgende Attribute möglich:

• extends: Mit extends wird die Superklasse für das zu generierende Servlet fest-
gelegt. Wenn von einer selbst geschriebenen Klasse abgeleitet werden soll, so
muss diese Klasse die Schnittstelle javax.servlet.jsp.HttpJspPage imple-
mentieren. Soll die JSP-Seite für ein anderes Protokoll als HTTP verwendet wer-
den, so ist stattdessen die Schnittstelle javax.servlet.jsp.JspPage zu im-
plementieren, die nicht an ein bestimmtes Protokoll gebunden ist. Die Syntax für
eine Seitendirektive ist:

 <%@page extends="package.class" %>

JavaServer Pages 945

• import: Wenn im JSP-Code auf weitere Klassen zugegriffen wird, müssen diese
mit dem Attribut import in die JSP-Seite eingebunden werden. Hierbei kann dem
Attribut eine durch Kommata getrennte Liste von Java-Klassen angegeben wer-
den. Um alle Klassen eines Java-Paketes zu importieren, reicht es, den Paketna-
men gefolgt von einem Sternchen (*) anzugeben. Damit besteht die Möglichkeit, in
einer JSP-Seite beliebige Java-APIs zu verwenden. Die import-Anweisung hat
folgenden Aufbau:

<%@page import="package1.class,package2.*" %>

Folgende Pakete werden bereits automatisch importiert und müssen daher nicht
mehr explizit angegeben werden:

− java.lang
− javax.servlet
− javax.servlet.jsp
− javax.servlet.http

• contentType: Mit dem Attribut contentType wird der MIME-Type und die Zei-
chenkodierung für die Antwort an den Client angegeben. Standardmäßig ist dieses
Attribut auf den folgenden Wert eingestellt:

<%@page contentType="text/html"; charSet="ISO-8859-1" %>

Mit Hilfe der Methode response.setContentType() kann der MIME-Type
auch noch zur Laufzeit verändert werden.

• isThreadSafe: Wenn ein aus der JSP-Seite generiertes Servlet keine parallelen
Zugriffe synchron verarbeiten kann, muss der Wert dieses Attributes auf false
gesetzt werden. Ist der Wert auf false gesetzt, so arbeitet der Container an-
stehende Anfragen nacheinander ab. Dabei wird eine Anfrage von der JSP-Seite
erst komplett abgearbeitet, bevor die nächste Anfrage an die Reihe kommt, was
unter Umständen zu Wartezeiten für den Client führen kann. Wird dagegen der
Wert auf true gesetzt, so wird für jede Anfrage an diese JSP-Seite ein neuer
Thread erstellt und die Anfragen parallel verarbeitet. Der Vorgabewert für dieses
Attribut ist true, was folgender Anweisung entspricht:

<%@page isThreadSafe="true" %>

• session: Soll die JSP-Seite als Teil einer Benutzersitzung (Session) verwendet
werden, so ist dieses Attribut auf true zu setzen. Wird eine als session dekla-
rierte Seite aufgerufen, erzeugt der Container automatisch eine Benutzersitzung,
falls mit dem Benutzer noch keine Sitzung assoziiert ist. Zur Verwaltung der Sit-
zung wird für die JSP-Seiten implizit ein HttpSession-Objekt verwendet. Durch
nachfolgende Anweisung wird die JSP-Seite Teil der Benutzersitzung:

<%@page session="true" %>

946 Kapitel 23

Der Wert ist standardmäßig auf true gesetzt. Wird keine Sitzungsverwaltung be-
nötigt, so sollte zur Verbesserung der Verarbeitungsgeschwindigkeit – und um
dem Anwender Cookies zu ersparen213 – dieses Attribut mit false belegt werden.

• buffer: Mit diesem Attribut kann die Größe des Ausgabepuffers für jede Seite fest-
gelegt werden. Die von der JSP-Seite erzeugte Ausgabe wird erst an den Client
geschickt, sobald der Puffer voll bzw. die Seite fertig generiert ist. Der Standard-
wert ist abhängig vom verwendeten Server und beträgt mindestens 8kByte. Wenn
die Ausgabe nicht gepuffert werden soll, muss dieses Attribut durch nachfolgende
Anweisung auf none gesetzt werden:

 <%@page buffer="none" %>

Der angegebene Wert stellt ein Minimum dar, denn der Container kann den Aus-
gabepuffer aus Gründen der Optimierung vergrößern. Die Pufferung der Ausgabe
ist beispielsweise bei der Weiterleitung (z. B. mit der Aktion <jsp:forward>) not-
wendig. Durch die Zwischenspeicherung kann die Ausgabe der bisherigen Seite
verworfen und durch die Ausgabe einer neuen Seite ersetzt werden.

• autoflush: Die Behandlung des Ausgabepuffers bei einem Überlauf kann mit dem
Attribut autoflush eingestellt werden. Mit true wird der Inhalt des Ausgabe-
puffers automatisch an den Client gesendet, sobald der Puffer voll ist. Mit false
hingegen wird der manuelle Modus gesetzt, bei dem eine Exception geworfen
wird, sobald der Puffer komplett gefüllt ist. Der Vorgabewert ist true:

<%@page autoflush="true" %>

• errorPage: Tritt auf einer Seite ein Fehler auf, z. B. durch eine nicht abgefangene
Exception, wird die Ausgabe der aktuellen Seite gestoppt und automatisch eine
Fehlerseite aufgerufen. Um eine bestimmte Seite für die Fehlerausgabe zu ver-
wenden, wird das Attribut errorPage verwendet. Als Wert für errorPage wird
die URL zur verwendenden Fehlerseite angegeben. Nachfolgende Anweisung legt
die JSP-Seite "error.jsp" als Fehlerseite fest:

<%@page errorPage="error.jsp" %>

• isErrorPage: Dieses Attribut muss in den Standard-Fehlerseiten auf true gesetzt
sein, damit die Seite zur Fehlerbehandlung aufgerufen werden kann. Da die
meisten JSP-Seiten nicht als Fehlerseiten verwendet werden, ist der Vorgabewert
für dieses Attribut erwartungsgemäß false:

<%@page isErrorPage="false" %>

Für die Fehlerausgabe erhält die Fehlerseite das implizite Objekt exception.
Über dieses Objekt können Informationen zum Fehler, der den Aufruf der Fehler-
seite ausgelöst hat, ausgelesen werden. Hierzu existieren folgende Methoden:

− getMessage() liefert eine Beschreibung der Fehlermeldung zurück.

− printStackTrace() schreibt den Inhalt des Programmstacks zum Zeit-
punkt des Auftretens des Fehlers in den Ausgabedatenstrom.

213 Tomcat verwendet für Sitzungen automatisch Cookies und URL-Rewriting, siehe Kapitel 22.4.5.

JavaServer Pages 947

− toString() gibt den Klassennamen der Ausnahme mit Fehlermeldung als
Zeichenkette zurück.

• info: Mit info kann eine Angabe einer Information zu einem Servlet erfolgen. Die
angegebene Zeichenkette ist dann über die Methode getServletInfo() abruf-
bar. Die Angabe der Information erfolgt durch die Anweisung:

<%@page info="Dies ist ein JSP-Beispiel" %>

• language: Über dieses Attribut lässt sich die verwendete Programmiersprache der
JSP-Seite spezifizieren. Allerdings wird normalerweise nur der Standardwert java
genutzt:

<%@page language="java" %>

Möglich sind jedoch auch andere Sprachen, die aber vom eingesetzten Servlet-
Container unterstützt werden müssen.

23.2.2 Einschließende Direktive

Neben der Seitendirektive gibt es noch die einschließende Direktive, mit der Teile
einer JSP-Seite aus einer separaten Datei eingebunden werden können. Die ein-
schließende Direktive wird in die Zeichenfolge <%@include und %> eingeschlossen.
Damit wird die gemeinsame Nutzung dieser Teile durch mehrere JSP-Seiten ermög-
licht. Um den Inhalt einer Datei in eine JSP-Seite einzubinden, wird folgende Anwie-
sung verwendet:

<%@include file="path/file.jsp" %>

Zu beachten ist, dass der Inhalt der Datei genau an der Stelle in die Seite eingefügt
wird, an der die include-Direktive steht. Natürlich muss die zusammengefügte Sei-
te wieder eine gültige JSP-Seite ergeben. Zur dynamischen Zusammensetzung einer
Seite zur Laufzeit muss die Aktion <jsp:include ... />, die später noch erklärt
wird, verwendet werden.

23.2.3 Taglib Direktive

Die Integration von Tag-Bibliotheken (Taglibs) ermöglicht die Erweiterung der JSP-
Standard-Tags durch eigene, benutzerspezifische Tags.

Durch Taglib Direktiven können Tag-Bibliotheken in eine JSP-Seite
eingebunden werden. Mit Tag-Bibliotheken kann der Programmierer
eigene Funktionalität definieren und diese ohne viel Java-Code in eine
JSP-Seite einbinden.

Das Einbinden von Tag-Bibliotheken erfolgt über die Direktive taglib. Durch die
Angabe des Präfixes wird definiert, wie die Tag-Bibliothek in der JSP-Seite ange-
sprochen werden kann. Die taglib-Direktive hat dabei folgenden Aufbau:

<%@taglib uri="/WEB-INF/TaglibDatei.tld" prefix="myTag" %>

948 Kapitel 23

Der Zugriff auf das Tag funktion dieser Bibliothek wird in der Seite folgender-
maßen realisiert:

<myTag:funktion attribute="..." />

Da dieses Thema recht umfangreich ist, wird im Kapitel 23.5 noch genauer darauf
eingegangen.

23.3 Aktionen

Aktionen dienen dazu, JavaServer Pages dynamisch zur Laufzeit zu
verändern oder die Kontrolle von einer Seite an eine andere Seite zu
übergeben.

Zudem wird mit Aktionen die Zusammenarbeit von JSP-Seiten mit JavaBean-Kompo-
nenten (siehe Kap. 30 auf der beiliegenden CD) ermöglicht.

Aktionen werden immer erst zur Laufzeit ausgeführt, Direktiven hinge-
gen bereits zur Kompilierzeit.

Man unterscheidet zwei Arten von Aktionen:

• Standardaktionen,
• benutzerdefinierte Aktionen.

Bei Aktionen wird im Gegensatz zu Direktiven oder Skriptelementen ausschließlich
die XML-basierte Schreibweise verwendet. Eine Aktion wird also durch ein ein-
führendes Tag (hier: <jsp:aktion>) und ein abschließendes Tag (</jsp:ak-
tion>) angegeben:

<jsp:aktion attribute="value"> Rumpf </jsp:aktion>

Wird kein Rumpf benötigt, kann das Tag auch sofort geschlossen werden, indem es
mit /> beendet wird, wie folgendes Beispiel zeigt:

<jsp:aktion attribute="value" />

23.3.1 Standardaktionen

Die folgenden Standardaktionen können in einer JSP-Seite verwendet werden:

• forward: Mit dieser Aktion wird eine Anfrage an eine andere Seite weitergeleitet.
Dabei wird die aufrufende Seite an dieser Stelle komplett verlassen und bis dahin
erzeugte Ausgaben verworfen, soweit der Ausgabepuffer noch nicht geleert
wurde. Die Anfrage wird an die neue Seite weitergeleitet und von dieser abge-

JavaServer Pages 949

arbeitet. Ein Rücksprung zur aufrufenden Seite wie bei einer include-Aktion ist
bei der Aktion forward nicht möglich. Die Syntax der forward-Aktion ist:

<jsp:forward page="path/file.jsp" />

• include: Im Gegensatz zur Direktive include wird bei der Aktion include eine
andere JSP-Seite nicht beim Übersetzen in ein Servlet, sondern erst zur Laufzeit
an die Stelle des Aufrufes eingefügt. Das Attribut flush gibt an, ob der Ausgabe-
puffer der aufrufenden Seite geleert werden soll, bevor die einzubindende Seite
verarbeitet wird. Der Standardwert ist seit JSP 1.2 false.

<jsp:include page="path/file.jsp" flush="false" />

Wird flush="true" angegeben, ist die anschließende Benutzung
von forward nicht mehr möglich und bis dorthin aufgetretene Feh-
lermeldungen werden verworfen.

Anstelle eines festen Pfades kann auch ein Ausdruck angegeben werden:

<jsp:include page="<%= getPage() %>" flush="true" />

In Aktionen können Ausdrücke, wie <%= getPage() %>, generell
zur Definition von Werten verwendet werden.

• param: Die Aktion param ermöglicht es, bei Include- oder Forward-Aktionen wei-
tere Parameter an die aufzurufende Datei direkt als Parameteranhang zu überge-
ben. Sie muss in den Rumpf des Aktions-Tags eingefügt werden, der diese Para-
meter verwenden soll. Im folgenden Beispiel wird die Aktion param verwendet:

<jsp:forward page="path/file.jsp" >
 <jsp:param name="param1" value="xyz" />
 <jsp:param name="param2" value="123" />
</jsp:forward>

Parameter an eine weitere Seite können alternativ direkt in der URL angegeben
werden, wie im folgenden Beispiel gezeigt wird:

<jsp:forward page="path/file.jsp?param1=xyz¶m2=123" />

Es darf allerdings immer nur eine der beiden Möglichkeiten verwendet werden.

• plugin: Durch diese Aktion kann ein Plug-In in eine JSP-Seite eingebunden wer-
den. Nach der JSP 2.0 Spezifikation können lediglich Applets (siehe Kap. 20) und
JavaBeans (siehe Kap. 30 auf der beiliegenden CD) als Plug-In genutzt werden.
Damit der Client ein Applet Plug-In starten kann, wird der beim Client benötigte
HTML-Code automatisch von der JSP-Engine generiert. Das folgende Beispiel
zeigt das Einbinden eines Applets in eine JSP-Seite:

<jsp:plugin type="applet" codebase="plugins"
 code="package.AppletClass.class" />

Vorsicht!

950 Kapitel 23

Um eine JavaBean einzubinden, muss der Wert des Attributs type auf "bean"
gesetzt werden. Mit dem Attribut codebase wird das Verzeichnis auf dem Web-
Server angegeben, in dem sich das Applet bzw. die JavaBean befindet. Die
eigentliche Klasse wird mit code festgelegt. Zur Parameterübergabe kann im
Rumpf des Aktion-Tags plugin mit dem Tag <jsp:params> eine Liste von
Parametern übergeben werden. Die Parameter sind dabei ebenfalls Aktionen und
vom Typ param, wie in folgendem Beispiel dargestellt:

<jsp:plugin type="applet" codebase="plugins"
 code="package.AppletClass.class">
 <jsp:params>
 <jsp:param name="parameter1" value="abc" />
 </jsp:params>
</jsp:plugin>

• fallback: Die Aktion fallback wird verwendet, um innerhalb der Aktion plugin
eine Ausgabe zu ermöglichen, falls ein Fehler auftritt. Ein möglicher Fehler ist,
dass der Client keine Applets akzeptiert und das Applet somit nicht gestartet
werden kann. Hierzu wird die Aktion fallback in den Rumpf der Aktion plugin
eingefügt. Folgender Codeausschnitt zeigt die Verwendung der Aktion fallback:

<jsp:plugin type="applet" codebase="plugins"
 code="package.AppletClass.class">
 <jsp:fallback>
 <p>Applet kann nicht gestartet werden!</p>
 </jsp:fallback>
</jsp:plugin>

• useBean: Um JavaBean-Komponenten in einer JSP-Seite zu verwenden, muss
die Bean mit der Aktion useBean der Seite bekannt gemacht werden. Dabei wird
dieser Bean über das Attribut id ein Name zugewiesen, unter dem diese ange-
sprochen werden kann. Das Attribut class gibt die Java-Klasse der zu verwen-
denden Bean an. Über das Attribut scope kann der Gültigkeitsbereich214 der Bean
festgelegt werden (siehe Kap. 23.4). Eine Bean wird folgendermaßen in eine JSP-
Seite eingebunden:

<jsp:useBean
 id="beanName"
 scope="session"
 class="BeanClass"/>

Wird im Rumpf der Aktion useBean die Aktion setProperty verwendet, so wird
die Bean beim Erzeugen mit diesen Werten initialisiert:

<jsp:useBean id="beanName" scope="session" class="BeanClass">
 <jsp:setProperty name="beanName" property="propertyName"
 value="xyz"/>
</jsp:useBean>

• getProperty: Die Aktion getProperty erlaubt den Zugriff auf die Eigenschaften
einer verwendeten Bean. Um eine Bean eindeutig anzusprechen, muss der Name

214 Der Gültigkeitsbereich einer Bean gibt an, in welchen Objekten des Containers die Bean gesucht

bzw. abgelegt wird.

JavaServer Pages 951

der Bean mit dem Attribut name angegeben werden. Der Name der Bean wurde
zuvor mit der Aktion useBean im Attribut id definiert. Die Eigenschaft (Property)
der Bean, auf die zugegriffen werden soll, wird mit dem Attribut property ange-
geben. Die Verwendung dieser Aktion wird nachfolgend dargestellt:

<jsp:getPropery name="beanName" property="propertyName" />

Das Ergebnis dieser Aktion ist, dass genau an dieser Stelle in der JSP-Seite der
Wert der entsprechenden Eigenschaft der Bean ausgegeben wird. Diese Aktion ist
nur in Verbindung mit useBean möglich.

• setProperty: Um Eigenschaften der verwendeten JavaBean zu setzen, wird die
Aktion setProperty verwendet. Genau wie bei getProperty muss der Name
der Bean und die Eigenschaft mit den Attributen name und property angegeben
werden. Der neue Wert wird mit dem Attribut value übergeben. Diese Aktion hat
folgende Syntax:

<jsp:setProperty
 name="beanName"
 property="propertyName"
 value="123" />

Diese Aktion ist ebenfalls nur in Zusammenhang mit useBean möglich.

23.3.2 Benutzerdefinierte Aktionen

Benutzerdefinierte Aktionen stellen eine flexible Erweiterung zu den JSP-Standard-
Aktionen dar und werden mit Hilfe von Tag-Bibliotheken realisiert. Tag-Bibliotheken
werden später im Kapitel 23.5 ausführlich beschrieben.

23.4 Verwendung von JavaBeans

Mit JavaBeans (siehe Kap. 30 auf der beiliegenden CD), im Folgenden nur noch
Beans genannt, wird in JSP-Seiten der Einsatz von wieder verwendbaren Kom-
ponenten ermöglicht. Bei den von JSPs verwendeten Beans handelt es sich um so
genannte nicht visuelle Beans, die Daten und Funktionalität kapseln können.

Durch die Verwendung von Beans kann mehrfach genutzter Code oder umfang-
reiche Programmlogik aus der JSP-Seite in eine Bean ausgelagert werden. Die Logik
wird somit in einer Komponente gekapselt, die mehrfach eingesetzt werden kann.
Eine Bean kann leicht in einer JSP-Seite eingebunden werden und macht die
bereitgestellte Funktionalität durch JSP-Anweisungen einfach zugänglich. Mit diesem
Verfahren kann HTML von der Programmlogik getrennt werden: Die JSP-Seite bleibt
übersichtlich und kann auch von Web-Designern mit geringen Java-Programmier-
kenntnissen bearbeitet werden.

Zur Laufzeit werden Beans als Objekte im Servlet-Container gehalten und können
von Servlets verwendet werden. Dabei lässt sich der Gültigkeitsbereich der Bean
unterschiedlich festlegen. Eine Bean kann auf Anwendungsebene deklariert werden,
sodass sie gemeinsam von allen Servlets verwendet werden kann und persistent im
Speicher gehalten wird, auch wenn die Servlets entfernt werden. Durch die Definition

952 Kapitel 23

eines anderen Gültigkeitsbereiches kann eine Bean aber auch nur für einen einzigen,
an ein Servlet gerichteten Aufruf verfügbar sein. Der Gültigkeitsbereich wird, wie
bereits im Kapitel Aktionen erwähnt, über das Attribut scope der Aktion useBean
festgelegt. Der Gültigkeitsbereich beeinflusst auch die Lebensdauer einer Bean:

scope Gültigkeitsbereich Lebensdauer
page Nur in der aktuellen

Seite.
Bis die Seite verarbeitet ist.

request In der aktuellen Seite
und allen daraus
aufgerufenen Seiten.

Bis die Anfrage komplett abge-
arbeitet ist.

session Aus allen Seiten einer
Sitzung.

Bis die Sitzung beendet wird.

application Alle Anfragen an die
Web-Anwendung.

Solange die Anwendung ausgeführt
wird.

Tabelle 23-2 Gültigkeitsbereich und Lebensdauer einer Bean

Daraus ergeben sich unterschiedliche Anwendungsmöglichkeiten:

• page Die Bean ist ausschließlich für die aufrufende Seite verfügbar.

• request Die Bean ist für eine Anfrage des Clients verfügbar.

• session Die Bean ist über die gesamte Benutzersitzung verfügbar.

• application Alle Servlets und JSP-Seiten können auf die Bean zugreifen. Sie
bleibt auch nach den bearbeiteten Anfragen im Container aktiv.

Wenn man den Gültigkeitsbereich etwas genauer betrachtet, gibt er an, in welchen
Objekten des Containers die Bean-Objekte gesucht bzw. abgelegt werden. Dabei
werden die Bean-Objekte in Abhängigkeit des scope-Attributs folgenden Container-
Objekten zugeordnet:

scope Variable in JSP Objekt im Container
page pageContext existiert nicht
request request request (in doGet() bzw. doPost()-Methoden)
session session HttpSession s = request.getSession()
application application ServletContext c = getServletContext()

Tabelle 23-3 Zuordnung der Gültigkeitsbereiche zu Container-Objekten

Der Zugriff auf die Bean erfolgt über die Aktionen setProperty und getProperty.
Da nach der Spezifikation für JavaBeans eine Bean immer über get- und set-Metho-
den für ihre Eigenschaften verfügen muss, kann hier unter der Angabe des Namens
der Eigenschaft (Property) direkt auf die Inhalte zugegriffen werden.

Die Anweisung, um auf die Eigenschaft "Name" der Bean zuzugreifen, gestaltet sich
dabei folgendermaßen:

<jsp:getProperty name="myBean" property="Name" />

An der Stelle, an der diese Aktion steht, wird später der Inhalt der Eigenschaft "Na-
me" der verwendeten Bean erscheinen. Über die Aktion setProperty kann dage-
gen eine Eigenschaft (Property) der Bean gesetzt werden. Hierzu wird neben dem

JavaServer Pages 953

Namen der zu setzenden Eigenschaft auch der Wert (value) benötigt. Die Aktion
wird dann wie folgt angegeben:

<jsp:setPropery name="myBean" property="Name" value="Maier" />

Um setProperty oder getProperty verwenden zu können, muss die JavaBean
zuvor mit der Aktion useBean der JSP-Seite bekannt gemacht werden.

Sichern von Formulardaten mit Beans

Für Web-Anwendungen, bei denen der Benutzer benötigte Daten über mehrere
Formularseiten hinweg eingeben kann, bietet sich eine Bean als Datenspeicher
(Data Container) an. Die Benutzerdaten, die in der Session gehalten werden sollen,
können in einer auf die Sitzung begrenzten Bean – einer Bean, die mit scope
session deklariert wurde – abgelegt werden. Die JSP-Spezifikation stellt für die
Übergabe von Formulardaten an eine Bean einen komfortablen Mechanismus bereit.
Werte, die in einer Anfrage (Request) an eine JSP-Seite gesendet werden, können
direkt einer Bean zugewiesen werden, indem der Name des entsprechenden Para-
meters in der Aktion setProperty mit dem Attribut param der set-Methode der
Bean bekannt gegeben wird. Nachfolgendes Beispiel zeigt den Aufbau der Aktion mit
dem Attribut param:

<jsp:setPropery name="mybean" property="Name" param="name" />

Der Name des Parameters entspricht dem Namen des Eingabefeldes im HTML-For-
mular, von dem die Anfrage an die JSP-Seite gestellt wurde. Über das Attribut pa-
ram kann somit direkt auf Werte von übermittelten Eingabefeldern aus HTML-For-
mularen zugegriffen werden. Der Bean wird damit direkt der Übergabeparameter
zugewiesen, der in der Anfrage an die Seite mitgeliefert wurde. Auf diese Weise ent-
fällt zusätzlicher Code, um die übermittelten Parameter auszulesen – somit wird die
Verarbeitung von Parametern stark vereinfacht. Der oben dargestellte Aufruf ent-
spricht in der Funktion genau dem nachfolgenden Aufruf:

<jsp:setProperty name="bean" property="Name"

value="<%= httprequest.getParameter ("name") %>" />

Falls der in der Anfrage enthaltene Parameter genau denselben Namen hat wie die
Eigenschaft der Bean, so kann das Attribut param sogar gänzlich weggelassen
werden. Der Container sucht dann ohnehin nach einem passenden Wert mit dem-
selben Namen und weist diesen der entsprechenden Bean-Eigenschaft zu. Dazu
reicht folgende Codezeile aus:

<jsp:setPropery name="myBean" property="Name" / >

Eine weitere, sehr leistungsstarke Möglichkeit zum Transferieren kompletter Formu-
lardaten in eine Bean, stellt die folgende Anweisung dar:

<jsp:setPropery name="myBean" property="*" />

Wenn mehrere Eigenschaften der Bean dieselben Namen tragen wie die Parameter
der an die JSP-Seite gerichteten Anfrage, dann können diese Bean-Properties auto-
matisch mit den Übergabewerten gefüllt werden. Hierzu wird dem Attribut property
die Wildcard * zugewiesen. Mit dieser Anweisung werden alle Eigenschaften der

954 Kapitel 23

Bean gleichzeitig mit Werten aus der Anfrage gefüllt. Sollte für eine Eigenschaft der
Bean kein gleichnamiger Anfrageparameter existieren, so wird die setProperty-
Anweisung einfach ignoriert.

Damit eine in eine JSP-Seite eingebundene Bean auch wirklich vom Container gela-
den werden kann, muss die zugehörige Klasse im Klassenpfad der Web-Anwendung
liegen. Üblicherweise wird hierzu das Verzeichnis WEB-INF/classes verwendet.
Wird die Bean als Bestandteil eines Paketes verwendet, so ist unterhalb des Ver-
zeichnisses classes eine entsprechende Verzeichnisstruktur zu verwenden. Im
nachfolgenden Beispiel wird die Bean FormBean im selbst angelegten Paket beans
erstellt und in der JSP-Seite showname.jsp verwendet. In der Bean soll ein String
gespeichert werden, der zuvor in einem HTML-Formular eingegeben wurde:

// Datei: FormBean.java

package beans;

public class FormBean
{
 private String vorname;

 // Methode zum Setzen der Eigenschaft vorname
 public void setVorname (String name)
 {
 vorname = name;
 }

 // Methode zum Auslesen der Eigenschaft vorname
 public String getVorname()
 {
 return vorname;
 }
}

Die JSP-Seite showname.jsp sichert die erhaltenen Parameter in der Bean und gibt
danach den Wert der Eigenschaft "vorname" aus:

<%-- Datei: showname.jsp --%>
<jsp:useBean class="beans.FormBean" id="form" scope="session"/>
<jsp:setProperty name="form" property="*"/>
<html>
 <body>
 <%-- Ausgabe der Eigenschaft direkt nach dem Text --%>
 Hallo <jsp:getProperty name="form" property="vorname"/>
 </body>
</html>

Die HTML-Seite form.html enthält ein Formular zur Eingabe des Vornamens, der
als Parameter an die JSP-Seite showname.jsp gesendet wird:

<!-- Datei: form.html -->
<html>
 <body>
 <form action="showname.jsp">
 <input type="text" name="vorname">

JavaServer Pages 955

 <input type="submit">
 </form>
 </body>
</html>

Um das hier gezeigte Beispiel nachzustellen, muss die nachfolgend gezeigte Ver-
zeichnis-Struktur in einem Web-Archiv (siehe Kap.22.3.3) – beispielsweise mit dem
Namen jsp-form.war – hinterlegt werden:

Verzeichnis WEB-INF
 Verzeichnis classes
 Verzeichnis beans
 Datei FormBean.class
Datei showname.jsp
Datei form.html

Wird dieses Web-Archiv im Web-Server deployed, – dafür muss es lediglich in das
Verzeichnis <TOMCAT_HOME>\webapps hineinkopiert werden – erstellt der Deploy-
ment-Manager ebenfalls in diesem Verzeichnis folgende Verzeichnisstruktur:

form.html
showname.jsp

Formbean.class

Bild 23-4 Verzeichnisstruktur der Web-Anwendung zur Formularauswertung

Wie bereits aus Bild 23-4 ersichtlich, muss die Bean bereits in kompilierter Form im
Verzeichnis WEB-INF/classes/beans vorliegen – ein automatisches Kompilieren
durch die JSP-Engine, wie es bei der JSP-Seite showname.jsp der Fall ist, ge-
schieht nicht. Das Schreiben eines Deployment-Deskriptors ist nicht erforderlich.
Nach dem Starten von Tomcat und dem damit verbundenen automatischen De-
ployment wird die HTML-Startseite im Browser folgendermaßen angezeigt:

Bild 23-5 HTML-Startseite mit Eingabeformular

956 Kapitel 23

Die Ausgabe der JSP-Seite:

Bild 23-6 Ausgabe der JSP-Seite

23.5 Tag-Bibliotheken

Durch die Verwendung von Beans in JSP-Seiten kann Programmlogik in einer eigen-
ständigen wieder verwendbaren Komponente gekapselt und sinnvoll vom Programm-
code für die Präsentation getrennt werden. Sollen aber dynamische Darstellungs-
elemente generiert werden, ist das Konzept der eigenständigen Bean-Komponenten
ungünstig. Eine Bean sollte keinen HTML-Code erzeugen, da sie als Komponente
unabhängig von der Web-Anwendung sein soll.

Wenn beispielsweise ein Navigationsbaum und der entsprechende HTML-Code
dynamisch erzeugt werden sollen, muss der Java-Code als Skriptlet direkt in die
JSP-Seite eingefügt werden. Das erschwert die Wartbarkeit der Web-Anwendung
und führt dazu, dass JSP-Seiten schnell unübersichtlich werden. Außerdem ist eine
vernünftige Wiederverwendung des Codes praktisch unmöglich. Das widerspricht
dem eigentlichen Ziel von JSP, nämlich die Darstellung von der Implementierung zu
trennen. Aus diesem Grund wurde mit der JSP Spezifikation 1.1 die Möglichkeit ge-
schaffen, eigene Tags oder so genannte Custom Tags zu entwickeln und sie in ein-
facher Weise in die JSP-Seite einzubinden.

Tag-Bibliotheken garantieren die konsequente Trennung von Dar-
stellung/Präsentation und implementierter Logik. Damit erleichtern sie
die Wiederverwendung des erstellten Codes.

Eigene Tags werden als benutzerdefinierte Aktionen realisiert, weshalb die Begriffe
oft synonym verwendet werden. Diese eigenen Tags werden in Tag-Bibliotheken
(tag libraries oder kurz taglibs) zusammengefasst und bereitgestellt. Das Einbinden
eines eigenen Tags in eine JSP-Seite erfolgt – genau wie bei einer gewöhnlichen
Aktion – in XML-konformer Syntax. Die zu dem eigenen Tag gehörige Funktionalität
wird in einer Java-Klasse ausprogrammiert.

JavaServer Pages 957

Eigene Tags rufen Methoden von selbst geschriebenen Klassen auf.
Diese selbst geschriebenen Klassen werden Tag-Handler genannt.

Damit die JSP-Engine Custom Tags versteht, muss noch eine entsprechende Be-
schreibungsdatei, der so genannte Tag-Library-Descriptor (TLD), angegeben wer-
den.

Eine eigene Tag-Bibliothek besteht aus mindestens einem Tag-Hand-
ler und dem dazugehörigen Tag-Library-Descriptor.

Tag-Bibliotheken können als jar-Datei gepackt und somit problemlos weitergegeben
oder in Web-Anwendungen installiert werden. Die von der Tag-Bibliothek verwen-
deten Klassen können ebenfalls in die jar-Datei eingebunden werden.

Wie in Kapitel 23.2 erwähnt, werden die eigenen Tags über die Direktive taglib in
einer JSP-Seite bekannt gemacht. Der Zugriff auf ein eigenes Tag erfolgt durch den
in der Direktive zugewiesenen Namensraum und dem Namen des zu verwendenden
eigenen Tags. Nachfolgender Codeausschnitt zeigt die Bekanntgabe einer Tag-
Bibliothek und die Verwendung eines darin enthaltenen eigenen Tags:

<%@taglib uri="/WEB-INF/TaglibDatei.tld" prefix="myTag" %>
<myTag:tagName />

Tag-Bibliotheksbeschreibung

Die Informationen zu den eigenen Tags werden in einem so genannten TLD (Tag-
Library-Descriptor) angegeben. Bei dieser Tag-Bibliotheksbeschreibung handelt es
sich um ein XML-Dokument.

Der TLD liegt üblicherweise im WEB-INF-Verzeichnis der Web-An-
wendung.

Das Wurzelelement ist dabei <taglib>, das neben den Angaben zu den einzelnen
eigenen Tags auch allgemeine Informationen beinhaltet. Nachfolgend ist ein Beispiel
für einen TLD aufgelistet, wobei die nichtoptionalen Elemente fett dargestellt sind:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Lib
rary 1.2//EN" "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.1</jsp-version>
 <short-name>jspTest</short-name>
 <uri>http://myserver.com/mytlds/myTaglib.tld</uri>
 <tag>

958 Kapitel 23

 <name>tagTest</name>
 <tag-class>shp.tags.TestTag</tag-class>
 <tei-class>shp.tags.TestTEI</tei-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>fontColor</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
 <tag>
 ...
 </tag>
</taglib>

Mit dem Element <tlib-version> wird eine selbst definierte Versionsnummer für
die eigene Tag-Bibliothek angegeben. Damit kann zwischen verschiedenen Versio-
nen einer weiterentwickelten Tag-Bibliothek unterschieden werden. Dieses Element
muss zwingend angegeben werden. Das optionale Element <jsp-version> gibt
die Version der JSP-Spezifikation an, mit der die Tag-Bibliothek kompatibel ist.

Nicht optional hingegen ist das Element <short-name>, mit dem ein Kürzel ange-
geben wird, um die Tag-Bibliothek eindeutig zu identifizieren. JSP-Entwicklungswerk-
zeuge können beispielsweise dieses Kürzel zur Namensgebung der enthaltenen
eigenen Tags verwenden. Das optionale Element <uri> enthält einen URI215, mit
der diese Tag-Bibliothek eindeutig identifiziert werden kann. Vorzugsweise wird je-
doch die komplette URL216 angegeben, unter der die aktuelle Version dieser Tag-
Bibliothek geladen werden kann.

Die eigentlichen eigenen Tags werden danach in <tag>-Elementen beschrieben, die
mehrere Unterelemente enthalten. Die beiden erforderlichen Unterelemente sind
<name> und <tag-class>, die den Namen des eigenen Tags und die dafür
erstellte Tag-Handler Klasse enthalten. Über den hier angegebenen Namen wird das
eigene Tag dann später in der JSP-Seite angesprochen. Die vier weiteren Unter-
elemente sind hingegen optional. Hierbei handelt es sich um die Elemente <tei-
class>, <body-content>, <info> und <attribute>. Mit <tei-class> wird
eine gegebenenfalls existierende Helferklasse angegeben. Eine Helferklasse wird
benötigt, sobald das eigene Tag eigene Skriptvariablen einführt oder eine erweiterte
Prüfung der Tag-Anweisungen erfolgen soll.

Mit <body-content> wird angegeben, wie der Tag-Handler den Rumpf des eige-
nen Tags in der JSP-Seite verarbeitet. Dabei können folgende Werte angegeben
werden:

• empty Der Rumpf des eigenen Tags muss leer sein.

• JSP Im Rumpf des eigenen Tags werden weitere JSP-Elemente
angegeben.

215 URI = Uniform Ressource Identifier: Zeichenfolge zur Identifizierung einer abstrakten oder physi-

kalischen Ressource, z. B. www.it-designers.de/topitd/top.htm.
216 URL = Uniform Ressource Locator. Enthält neben der URI die Information, wie auf die URI zuge-

griffen werden kann, also z. B. über HTTP: http://www.it-designers.de/topitd/top.htm.

JavaServer Pages 959

• tagdependent Die Angaben im Rumpf werden vom eigenen Tag selbst
interpretiert.

Im Unterelement <info> kann eine kurze Beschreibung des eigenen Tags eingefügt
werden.

Sollen dem eigenen Tag von der JSP-Seite aus Werte übergeben werden, so müs-
sen hierzu <attribute>-Elemente deklariert werden. Das Element <tag> kann
mehrere Elemente vom Typ <attribute> aufnehmen, die als Unterelemente <na-
me>, <required> und <rtexpvalue> enthalten können. Mit <name> wird dabei
der Name des Attributes bestimmt. Dieses Element ist das einzige, das angegeben
werden muss, die beiden anderen sind optional. Das Element <required> legt fest,
ob dieses Attribut zwingend notwendig ist, oder auch weggelassen werden kann und
mit <rtexpvalue> kann eingestellt werden, ob diesem Attribut nur statische Werte
zugewiesen werden können oder auch dynamische. Wird dem Element <rtexp-
value> der Wert false zugewiesen, so können nur statische Werte dem Attribut
übergeben werden. Die Zuweisung eines Wertes zu einem Attribut erfolgt dabei
durch folgende Anweisung:

<myLib:ausgabetest wert="blau" />

Wird dagegen das Element <rtexpvalue> auf true gesetzt, so ist auch die Zuwei-
sung von dynamischen Werten möglich, wie nachfolgend dargestellt:

<myLib:ausgabetest wert="<%= value %>" />

Durch die Verwendung von Attributen kann die Funktionsweise des eigenen Tags
dynamisch angepasst werden, was für die Wiederverwendbarkeit von Tag-Biblio-
theken sehr hilfreich sein kann. Um die Darstellung des im eigenen Tag erzeugten
HTML-Codes zudem möglichst flexibel zu halten, bietet es sich an, Parameter der
verwendeten HTML-Elemente oder Stylesheet-Angaben217 als Attribute zu überge-
ben. Damit lassen sich später Änderungen an der Darstellung leichter umsetzen,
ohne die Tag-Bibliothek verändern zu müssen. In folgender Codezeile wird einem
eigenen Tag die HTML-Formatierung für die Ausgabe als Attribut übergeben:

<myTag:funktion style="font-size:10pt; color:black;" />

Implementieren des Tag-Handlers

Die Java-Klasse, die als Tag-Handler eingesetzt werden soll, muss eine der
Schnittstellen Tag, IterationTag218 oder BodyTag aus dem Paket javax.serv-
let.jsp.tagext implementieren. Ein Tag-Handler kann wie jede andere Java-
Klasse auf beliebige Java-Klassen zugreifen – somit lassen sich komplexe Klassen-
bibliotheken oder bestehende Java-Anwendungen einfach als eigenes Tag in eine
JSP-Seite einbinden.

217 Mit Stylesheets können Formateigenschaften von HTML-Elementen festgelegt werden, z. B. Grö-

ße, Farbe etc.
218 Seit der JSP-Spezifikation 1.1 stehen die Schnittstellen Tag und BodyTag zur Implementierung

eigener Tags zur Verfügung. Die Schnittstelle IterationTag wurde erst mit der JSP-Spezifika-
tion 1.2 eingeführt.

960 Kapitel 23

Die Tag-Schnittstellen bauen aufeinander auf. So ist von der Schnittstelle Tag die
Schnittstelle IterationTag und hiervon wiederum BodyTag abgeleitet. Im Gegen-
satz zur Schnittstelle Tag stellen die Schnittstellen IterationTag und BodyTag
zusätzliche Methoden zur Verarbeitung des Rumpfes (Body) eines eigenen Tags zur
Verfügung. Der Rumpf ist dabei der Bereich zwischen dem einleitenden und dem
abschließenden Element des eigenen Tags. Hier können auch Angaben stehen, die
bei der Ausführung eines eigenen Tags verarbeitet werden können. Im Rumpf eines
eigenen Tags können natürlich auch wiederum (eigene) Tags vorhanden sein. Die
Schnittstelle IterationTag wurde eingeführt, um den Rumpf mehrfach zu verarbei-
ten. BodyTag stellt darüber hinaus Methoden zur Verfügung, mit denen es möglich
wird, den Inhalt des Rumpfes zu verändern.

Die Schnittstellen unterscheiden sich dabei in der Verarbeitung durch die JSP-
Engine. Durch die Verwendung der Schnittstelle Tag lassen sich einfache eigene
Tags erzeugen. Die Schnittstellen IterationTag und BodyTag bieten darüber
hinaus die Möglichkeit, komplexere Tags zu entwickeln.

Zur bequemeren Verwendung der Schnittstellen werden alternativ auch Support-
Klassen angeboten, die bereits eine bestimmte Tag-Schnittstelle implementieren.
Diese Support-Klassen enthalten fertige Muster-Implementierungen für alle in der
Schnittstelle deklarierten Methoden. Es muss nur noch die Methode überschrieben
werden, die für die gewünschte Funktion genutzt werden soll. Hierzu kann ein neuer
Tag-Handler von einer der Support-Klassen TagSupport oder BodyTagSupport
im Paket javax.servlet.jsp.tagext abgeleitet werden. Diese Support-Klassen
sind ähnlich wie die Adapterklassen, die bereits von den Event-Handlern bei Swing
bekannt sind (siehe Kap. 21.4). Im Gegensatz zu den Adapterklassen der Event-
Handler sind bei den Support-Klassen die Methodenrümpfe der implementierten
Schnittstellenmethoden nicht leer, sondern erfüllen die Grundfunktionen, die für die
Verwendung des Tag-Handlers in der JSP-Engine notwendig sind.

Ein Tag-Handler muss eines der Interfaces Tag, BodyTag oder Ite-
rationTag implementieren bzw. von einer der Basisklassen Tag-
Support oder BodyTagSupport ableiten.

Bild 23-7 zeigt die Zusammenhänge beim Einsatz einer Tag-Bibliothek. Die Biblio-
thek wird über die entsprechende Direktive in eine JSP-Seite eingebunden. Der Tag-
Handler myTagA der Tag-Bibliothek ist von der Klasse BodyTagSupport abgeleitet,
myTagB implementiert dagegen die Schnittstelle InterationTag. Zusätzlich besitzt
myTagB Referenzen auf die Klassen ClassX und ClassY.

JavaServer Pages 961

Tag-Bibliothek

Tag-Handler
myTagA

Tag-Handler
myTagB

.

.

.

<<interface>>
Tag

JSP
…
<%@ taglib uri="..." prefix="x"%>
<x:myTagA y="...">
…

TagSupport

ClassY

TLD
...
<tag>
 <name>
 myTagA
 </name>
...
</tag>

ClassX

<<interface>>
BodyTag

<<interface>>
IterationTag

BodyTagSupport

Bild 23-7 Beteiligte Klassen einer Tag-Bibliothek und entsprechende JSP-Seite

Zunächst wird die Implementierung eines einfachen eigenen Tags betrachtet. Hierzu
wird die Schnittstelle Tag implementiert und die darin definierten Methoden aus-
programmiert. Soll das eigene Tag später über Attribute verfügen, so sind im Tag-
Handler hierfür entsprechende set-Methoden einzuführen. Nachfolgend ist der Code
für einen Tag-Handler dargestellt, der die Schnittstelle Tag implementiert:

// Datei: TestTag.java

package shp.tags;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.Tag;

public class TestTag implements Tag
{
 private PageContext pageContext;
 private Tag parent;
 private String fontColor = "red";

 public void setFontColor (String color)
 {
 this.fontColor = color;
 }

962 Kapitel 23

 public int doStartTag() throws JspException
 {
 try
 {
 JspWriter out = pageContext.getOut();
 out.print ("");
 }
 catch (IOException e)
 {
 throw new JspException (e.getMessage());
 }
 return EVAL_BODY_INCLUDE;
 }

 public int doEndTag() throws JspException
 {
 try
 {
 JspWriter out = pageContext.getOut();
 out.print ("");
 }
 catch (IOException e)
 {
 throw new JspException (e.getMessage());
 }
 return EVAL_PAGE;
 }

 public void release()
 {
 this.fontColor = "red";
 }

 public void setPageContext (PageContext pageContext)
 {
 this.pageContext = pageContext;
 }

 public void setParent (Tag parent)
 {
 this.parent = parent;
 }

 public Tag getParent()
 {
 return this.parent;
 }
}

Zur Laufzeit wird in der JSP-Seite ein Objekt des Tag-Handlers erzeugt. Die Metho-
den des Tag-Handlers werden dann nach einer bestimmten Verarbeitungsreihen-
folge aufgerufen und abgearbeitet.

Die Methode doStartTag() beinhaltet die eigentliche Funktionalität. Sie wird bei
der Verarbeitung des öffnenden Tags aufgerufen. Der Rückgabewert dieser Methode
ist ein Integer-Wert, der durch die Klassenvariablen EVAL_BODY_INCLUDE und

JavaServer Pages 963

SKIP_BODY definiert wird. Mit SKIP_BODY wird dem Container angegeben, dass der
Inhalt des Rumpfes ignoriert werden soll. Dagegen führt der Rückgabewert
EVAL_BODY_INCLUDE dazu, dass der Inhalt des Rumpfes verarbeitet wird.

Neben der Methode doStartTag() kann auch innerhalb der Methode doEnd-
Tag() Funktionalität des eigenen Tags implementiert werden. Sie wird bei der Ver-
arbeitung des schließenden Tags aufgerufen. Enthält das Tag keinen Rumpf und
somit auch kein schließendes Tag, wird doEndTag() unmittelbar nach der Methode
doStartTag() aufgerufen. Die Methode doEndTag() muss ebenfalls einen Inte-
ger-Wert zurückliefern, der den Werten der Klassenvariablen SKIP_PAGE oder
EVAL_PAGE entsprechen muss. In Abhängigkeit von diesem Rückgabewert wird die
weitere Verarbeitung der Seite abgebrochen oder normal fortgeführt.

Die Methode setPageContext() wird benötigt, um dem eigenen Tag Zugriff auf
das pageContext-Objekt und damit auf weitere implizite Objekte oder auch Metho-
den, Variablen und Beans der JSP-Seite zu ermöglichen. Auch diese Methode wird
bei der Ausführung des Tag-Handlers automatisch aufgerufen.

Die Methoden setParent() und getParent() werden nur benötigt, falls das eige-
ne Tag innerhalb des Rumpfes eines anderen Tags verwendet wird, also Tags ver-
schachtelt werden. Mit Hilfe dieser Methoden kann auf das übergeordnete Element
des eigenen Tags zugegriffen werden.

Die Methode release() wird nach Abarbeitung der Methode doEndTag() aufge-
rufen. Sie ist notwendig, um gegebenenfalls den Zustand des eigenen Tags zurück-
zusetzen oder auch um verwendete Ressourcen wieder freizugeben. Da die Instanz
des Tag-Handlers eventuell mehrfach verwendet wird, bleibt unter Umständen der
Inhalt von gesetzten Attributen vorhanden. Daher sollte in der release()-Methode
darauf geachtet werden, dass optionale Attribute auf einen sinnvollen Anfangswert
zurückgesetzt werden.

Die Methode setFontColor() gehört nicht zur Schnittstelle Tag. Diese Methode
wird nur dann aufgerufen, wenn das Attribut fontColor, wie im TLD zuvor be-
schrieben, gesetzt ist. Auf diese Weise verknüpft man Tag-Attribute mit den Eigen-
schaften des Tag-Handlers.

Durch die Implementierung der oben genannten Methoden ergibt sich ein Tag-
Handler für eine bestimmte Aktion. Zusammen mit dem zuvor beschriebenen TLD
kann dieses eigene Tag dann in einer JSP-Seite eingesetzt werden:

<%@taglib uri="/WEB-INF/TaglibDatei.tld" prefix="myTag" %>
<myTag:tagTest fontColor="blue" />

Ebenso kann das eigene Tag mit Rumpf angegeben werden:

<myTag:tagTest fontColor="blue">
 <h1>Tag Beispiel</h1>
</myTag:tagTest>

964 Kapitel 23

Da für dieses eigene Tag im Element <bodycontent> der Wert JSP angegeben
wurde, wird nach der Ausgabe des in der Methode doStartTag() erzeugten
HTML-Codes der Text "Tag Beispiel" in blau dargestellt.

Verarbeiten des Rumpfes

Im Unterschied zur einfachen Schnittstelle Tag bietet die Schnittstelle Iteration-
Tag und die darauf aufbauende Schnittstelle BodyTag zusätzliche Methoden zur
Verarbeitung des Rumpf-Inhalts.

Die Schnittstelle IterationTag wurde erst mit der Version 1.2 der JSP-Spezifika-
tion eingeführt. Zuvor war die Schnittstelle BodyTag direkt von Tag abgeleitet.
IterationTag führt die zusätzliche Methode doAfterBody() ein. Diese Methode
wird nach Verarbeitung des Rumpfes aufgerufen und gibt ebenfalls einen ganzzah-
ligen Wert zurück. Hier kann entweder mit SKIP_BODY zur Methode doEndTag()
weitergegangen werden oder mit EVAL_BODY_AGAIN der Rumpf ein weiteres Mal
verarbeitet werden. Mit diesem iterativen Verhalten kann der Rumpf so oft verarbeitet
und gegebenenfalls ausgegeben werden, bis schließlich mit dem Rückgabewert
SKIP_BODY die Verarbeitung abgebrochen wird. Auf diese Weise lassen sich von
einem Tag zum Beispiel dynamisch Tabellen von unterschiedlichem Umfang erzeu-
gen.

Nachfolgender Codeausschnitt zeigt die Methode doAfterBody(), die so oft aufge-
rufen wird, bis die Variable number den Wert 0 erreicht:

public class InterationTest implements IterationTag
{
 //
 public int doAfterBody() throws JspException
 {
 if (number > 0)
 {
 out.print ("
");
 number--;
 return EVAL_BODY_AGAIN;
 }
 return SKIP_BODY;
 }
 //
}

Die von IterationBody abgeleitete Schnittstelle BodyTag enthält die zusätzlichen
Methoden doInitBody() und setBodyContent(), mit welchen der Rumpf des
Tags analysiert und entsprechend dem Ergebnis mehrfach verarbeitet werden kann.
Folgende Abbildung zeigt die Methodenaufrufe bei Abarbeitung eines Tags, dessen
Tag-Handler vom Typ IterationBody ist:

JavaServer Pages 965

void doInitBody()

SKIP_BODY
int doEndBody()

void release()

int doAfterBody()

EVAL_BODY_TAG

setBodyContent()
int doStartTag()

SKIP_BODY

SKIP_PAGE oder
EVAL_PAGE

Bild 23-8 Abarbeitung eines Tags mit Körper

23.6 Übungen

Aufgabe 23.1: Taschenrechner

Schreiben Sie eine Web-Anwendung in JSP, die einen Taschenrechner für die vier
mathematischen Grundrechenarten Addition, Subtraktion, Multiplikation und Division
anbietet. Vom Benutzer wird die Eingabe von zwei Zahlen und eine Bestätigung auf
einer Schaltfläche mit der Beschriftung berechnen erwartet. Daraufhin erhält der
Benutzer eine Auflistung der Ergebnisse der vier Grundrechenarten. Die Ausgabe
der Ergebnisse soll nur erscheinen, wenn der Benutzer beide Zahlen eingegeben
hat.

a) Erstellen Sie für die Ein- und Ausgabe die Datei index.jsp. Deklarieren Sie für

die mathematische Funktionalität die vier Grundrechenarten in der Datei in-
dex.jsp. Die Methoden zur Berechnung der Ergebnisse der einzelnen Operatio-
nen sollen jeweils zwei Parameter vom Typ float erhalten und einen Rückgabe-
wert vom Typ float liefern. Legen Sie ein Formular für die Eingabe der Zahlen
und für die Ausgabe der Ergebnisse an. Auf Ausnahmen ist in diesem Aufgaben-
teil nicht einzugehen.

b) Erweitern Sie die Teilaufgabe a) um eine Fehlerseite, die dem Benutzer sein mög-

liches Fehlverhalten textlich erklärt, sobald eine Exception geworfen wird.

c) Um die Datei index.jsp übersichtlicher zu gestalten, sollen die Methoden für

mathematische Berechnungen in die Klasse Rechner im Packet operationen
ausgelagert werden. Durch die Seitendirektive import soll die Klasse Rechner in
der Datei index.jsp verwendet werden.

966 Kapitel 23

Aufgabe 23.2: Begrüßung eines Benutzers

a) Schreiben Sie eine Web-Anwendung, welche von einem Benutzer das Geschlecht

und den Namen abfragt. Die gesammelten Daten sollen dazu verwenden, nach
der Abfrage den Benutzer mit "Sehr geehrte Frau …" oder "Sehr geehr-
ter Herr …" anzusprechen und ihn auf der Seite willkommen zu heißen. Durch
die Aktion forward soll der Benutzer nach der Eingabe seiner Daten zur Begrü-
ßung weitergeleitet werden. Verwenden Sie für die Datenabfrage den Dateiname
index.jsp und für die Begrüßung willkommen.jsp. Die Datenübergabe soll
mit Parametern in der Aktion forward erfolgen. Bei der Gestaltung der Ober-
fläche haben Sie freie Hand.

b) Durch eine Session sollen Benutzer, die bereits nach ihrem Geschlecht und Na-

men befragt wurden, erkannt werden. Ein bekannter Benutzer soll durch die Aktion
forward zur Begrüßung weitergeleitet werden und nicht erneut nach seinen
Daten gefragt werden.

Aufgabe 23.3: Kugelschreiber-Bestellvorgang mit Beans

Erstellen Sie eine Web-Anwendung, bei der Benutzer über zwei Formularseiten Da-
ten für einen Bestellvorgang eingeben können. Auf der ersten Formularseite mit dem
Dateinamen index.jsp sollen vom Benutzer die Kontaktdaten Geschlecht, Name,
Vorname, Straße, PLZ und Ort abgefragt und über die Schaltfläche mit der Beschrif-
tung weiter bestätigt werden. Auf der zweiten Formularseite mit dem Dateinamen
bestellung.jsp soll der Benutzer zu seiner Bestellung von Kugelschreibern zu
Werbezwecken abgefragt werden. Dazu muss die Anzahl und die Beschriftung der
Kugelschreiber abgefragt werden und die Bestellung über die Schaltfläche mit der
Beschriftung Bestellung abschicken bestätigt werden. Zuletzt soll eine Ausgabe
der Bestelldaten stattfinden.

Die eingegebenen Daten sollen in einer Bean, die mit dem Scope session dekla-
riert wurde, abgelegt werden. Verwenden Sie dieselben Namen für die Eigenschaften
in der Bean und für die Parameter in den Formularseiten. Verwenden Sie auf allen
Formularseiten und für die Ausgabe die Aktion useBean, um die Bean-Komponente
nutzen zu können. Mit der Aktion setProperty können Sie dem Attribut property
den Wert der Wildcard * zuweisen. Durch diese Wildcard können alle Formulardaten
vollständig in die Bean übernommen werden. Zur Ausgabe soll die Aktion getPro-
perty verwendet werden, die aus der Bean die Formulardaten ausliest.

Aufgabe 23.4: Nachrichtenportal

Ziel dieser Übung ist es, ein Nachrichtenportal zu erstellen, das auf eine eigene Tag-
Bibliothek zugreift, um eine gewünschte Anzahl an Schlagzeilen anzuzeigen.

Erstellen Sie eine Klasse Schlagzeilen im Paket tags, welche die Schnittstelle
IterationTag implementiert. Die Klasse soll die privaten Instanzvariablen page-
Context vom Typ PageContext, parent vom Typ Tag, titel vom Typ Array-
List<String>, index vom Typ int und zeilen vom Typ int besitzen. Schrei-
ben Sie eine Methode setZeilen() und vervollständigen Sie die Methoden, die
aus der Schnittstelle IterationTag übernommen wurden. Innerhalb der Methode

JavaServer Pages 967

doStartTag() muss die Instanzvariable index auf 0 gesetzt und die Klassenvari-
able titel mit beliebigen Nachrichten befüllt werden. Die Ausgabe der Schlagzeilen
soll in der Methode doAfterBody() stattfinden. Hier soll geprüft werden, ob index
kleiner als zeilen ist und eine entsprechende Ausgabe der Schlagzeile durchge-
führt werden kann. Achten Sie auf ein korrektes Setzen der Rückgabewerte.

Geben Sie die Informationen des neuen Tags in einer Tag-Bibliotheksbeschreibung
an, die den Dateinamen nachrichtenTaglib.tld trägt und im Verzeichnis WEB-
INF liegt. Innerhalb der Beschreibung kann der Name der Bibliotheksbeschreibung
beliebig und der Name des Tags soll schlagzeilen lauten. Die Klasse für den Tag
muss definiert werden. Innerhalb des Rumpfes dieses Tags sollen JSP-Elemente
erlaubt sein. Das Tag soll das Attribut mit dem Namen zeilen als Pflichtangabe vor-
aussetzen.

Zur Ausgabe soll die Datei index.jsp erstellt werden. Durch die Direktive taglib
in der JSP-Seite soll die Tag-Bibliotheksbeschreibung bekannt gemacht werden.
Verwenden Sie als Präfix titel und zur Ausgabe der Schlagzeilen das folgende
Tag, wobei die Anzahl der Zeilen beliebig anpassbar sein soll:

<titel:schlagzeilen zeilen="3"> </titel:schlagzeilen>

Netzwerkprogrammierung
mit Sockets

24.1 Verteilte Systeme
24.2 Rechnername, URL und IP-Adresse
24.3 Sockets
24.4 Protokolle

24.5 Übungen

24 Netzwerkprogrammierung mit Sockets

Um Ressourcen wie Drucker oder Datenspeicher mehreren Benutzern zugänglich zu
machen, ist es notwendig, die einzelnen Computersysteme durch ein Netz zu verbin-
den. Das weltweit größte und wohl auch wichtigste Netz ist das Internet. Es ermög-
licht beispielsweise seinen Benutzern, weltweit Daten abzurufen oder Informationen
mittels Elektronischer Nachrichten (E-Mails) auszutauschen.

Man spricht von verteilten Systemen, wenn eine Anwendung auf zwei oder mehrere
Rechner verteilt wird. Natürlich müssen dabei die verschiedenen Programme einer
Anwendung miteinander kommunizieren. Diese Kommunikation kann auf verschie-
dene Arten realisiert werden. Eine Möglichkeit ist die Verwendung von Sockets219,
deren Programmierung im Folgenden näher erläutert wird. Sockets können nicht nur
in Java, sondern beispielsweise auch in der Programmiersprache C realisiert wer-
den. Für die Kommunikation zwischen verteilten Programmen stellt Java mit RMI
(Remote Method Invocation) einen Java-spezifischen Kommunikationsmechanis-
mus zur Verfügung, der in Kapitel 25 vorgestellt wird.

24.1 Verteilte Systeme

Oftmals werden Programme aus einem "Guss" geschrieben. Das heißt, die verschie-
denen Module220 einer solchen Anwendung sind eng miteinander verzahnt. Ein sol-
ches Programm wird auch als "monolithisch"221 bezeichnet.

Ein Programm als Anwendung besteht meist aus drei elementaren Schichten. Die
erste Schicht wird durch die Benutzer-Schnittstelle gebildet, die dem Benutzer
beispielsweise über eine grafische Oberfläche die Interaktion mit der Anwendung
ermöglicht. Die zweite Schicht ist die Verarbeitungslogik, welche die eigentlichen
Funktionen der Anwendung enthält. Hier werden Berechnungen durchgeführt und
Daten zur Präsentation vorbereitet. Die dritte Schicht sorgt für die Bereitstellung der
erforderlichen Daten für die Anwendung, die zum Beispiel in einer Datei oder in
einer Datenbank gespeichert sein können. Um bei Bedarf einzelne Systemteile
austauschen zu können, wobei die anderen Systemteile weiter verwendet werden
können sollen, sind feste Schnittstellen zwischen den Systemteilen – den so
genannten Modulen – unabdingbar. Ist dies der Fall, so kann beispielsweise das
DBMS222 oder die grafische Oberfläche ausgetauscht werden, ohne die anderen
Systemteile in ihrer Funktion zu beeinträchtigen.

In Bild 24-1 wird die Entwicklung der modularen Systeme vorgestellt, an deren An-
fang die monolithischen Systeme stehen – in Bild 24-1 links dargestellt. Diese
Systeme vereinen alle drei Schichten in einem alles umfassenden Programm. Dabei
sind zwischen den einzelnen Schichten keine Schnittstellen definiert – der Pro-
grammcode der einzelnen Schichten ist also fest ineinander verwoben, was den
Austausch einer Schicht fast unmöglich macht.

219 Socket (engl.) bedeutet Steckdose beziehungsweise Fassung.
220 Module sind Teile eines Programms.
221 Ein Monolith ist eine Säule aus einem einzigen Steinblock.
222 DBMS = Data Base Management System = Datenbankverwaltungssystem.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_24,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Netzwerkprogrammierung mit Sockets 971

Danach folgt eine Architektur, bei der eine erste Aufteilung der drei Schichten durch
klare Schnittstellen erkennbar ist – in Bild 24-1 in der Mitte dargestellt. Die Schichten
sind innerhalb eines Programms voneinander getrennt, wobei die Kommunikation
zwischen den Schichten – Benutzer-Schnittstelle und Verarbeitungslogik bzw. Ver-
arbeitungslogik und Datenhaltung – ausschließlich über die als Linie dargestellten
Schnittstellen erfolgt. Dadurch kann eine Schicht leicht gegen eine neue ausgewech-
selt werden, solange die Verträge der Schnittstellen eingehalten werden.

Der nächste Schritt in der Entwicklung modularer Systeme wird dann durch die Tren-
nung der einzelnen Schichten in selbständig ablauffähige Programme erbracht – in
Bild 24-1 rechts symbolisiert. Wenn die Schnittstellen zudem netzwerkfähig sind,
dann spricht man auch von Kommunikations-Schnittstellen. Das bedeutet, dass in
den Schnittstellen eine Logik implementiert ist, die es erlaubt, Informationen zwi-
schen voneinander unabhängigen Prozessen auszutauschen. Dadurch wird auch
eine physikalische Trennung der Schichten ermöglicht – z. B. eine Verteilung der
Schichten auf unterschiedliche, durch ein Netzwerk verbundene Rechner.

Computer

Verarbeitungslogik

Benutzer-Schnittstelle

Datenhaltung

Computer

Benutzer-Schnittstelle

Datenhaltung

Computer

Benutzer-Schnittstelle

Datenhaltung

Verarbeitungslogik

Komm.-Schnittstelle

Verarbeitungslogik Verarbeitungslogik

Komm.-Schnittstelle

Komm.-Schnittstelle

Komm.-Schnittstelle

Bild 24-1 Evolution modularer Systeme

Wenn es die Kommunikations-Schnittstellen zwischen den Systemteilen erlauben,
rechnerübergreifend Informationen auszutauschen, so kann eine Anwendung auf
mehrere Rechner verteilt werden. Hierdurch kann eine Erhöhung der Systemleistung
erreicht werden. Dieser Sachverhalt ist in Bild 24-2 dargestellt.

Eine Anwendung auf einem Rechner kann mit einer Anwendung auf einem anderen
Recher nur kommunizieren, wenn beide Rechner mit einem so genannten Kom-
munikationssystem ausgestattet sind.

972 Kapitel 24

Datenbank Server-Rechner

Application Server-Rechner

Client-Rechner

Benutzer-Schnittstelle

Verarbeitungslogik

Komm.-Schnittstelle

Komm.-Schnittstelle

Komm.-Schnittstelle

Daten

Komm.-Schnittstelle
DB

Bild 24-2 Verteiltes System

Ein Kommunikationssystem ist das Verbindungsstück zwischen
einem Anwendungsprogramm und dem "Draht", über den es mit einer
anderen Anwendung kommunizieren soll. Das Kommunikations-
system ermöglicht den Versand und den Empfang von Nachrichten
über ein Netz.

Ein Kommunikationssystem kann nur dann mit einem anderen Kommunikations-
system ohne einen Vermittler reden, wenn beide Kommunikationssysteme gleichartig
sind. Damit erzwingt eine direkte Kommunikation von Rechner zu Rechner eine
Standardisierung. Eine solche Standardisierung hat bereits stattgefunden223.

Der Standard im Internet für das Kommunikationssystem ist die
TCP/IP-Architektur.

Das soeben behandelte Schichtenmodell für Anwendungsprogramme war ein erstes
Beispiel für eine Strukturierung eines großen Softwaresystems. Auch bei Kommuni-
kationssystemen versuchte man, eine interne Strukturierung durchzuführen. Das
Ergebnis der Architekturuntersuchungen für Kommunikationssysteme waren eben-
falls Schichtenmodelle. Das Schichtenmodell der TCP/IP-Architektur ist in Bild 24-3
dargestellt:

223 Während in den Arbeitskreisen der "International Standard Organisation" (ISO) der ISO/OSI-Stan-

dard jahrelang diskutiert wurde, setzte sich in der Praxis die TCP/IP-Architektur durch. Diese Archi-
tektur enthält in der Vermittlungsschicht das Internet Protokoll (IP) und in der Transportschicht das
Transportprotokoll TCP oder UDP.

Netzwerkprogrammierung mit Sockets 973

Schnittstellenschicht

Internetschicht

Transportschicht

Anwendungsschicht

Anwendung 1 Anwendung 2

Kommunikations-
system

"Draht"

Schnittstellenschicht

Internetschicht

Transportschicht

Anwendungsschicht

Bild 24-3 Schichtenmodell

Das Kommunikationssystem der TCP/IP-Architektur enthält 4 Schich-
ten. Die Schnittstellenschicht stellt die physische Verbindung zum
Netz her. Die Internetschicht dient zum Aufbau und Betreiben einer
Kommunikation zwischen Rechnern. Die Transportschicht stellt den
Programmen auf einem Rechner Transportdienste einer bestimmten
Güte wie z. B. Flusskontrolle oder die Segmentierung zu großer
Datenpakete zur Verfügung. Die Anwendungsschicht stellt die Kopp-
lung des Kommunikationssystems zum Anwendungsprogramm, das
sich oberhalb des Kommunikationssystems befindet, zur Verfügung.

In der Anwendungsschicht können sich verschiedene Dienstprogramme für die
Kopplung an eine Anwendung befinden wie z. B. FTP224 zum Austausch von Da-
teien. Je nach Kommunikationsdienst kommt im Internet in der Transportschicht
TCP bzw. UDP zum Einsatz. Die Internetschicht enthält das IP-Protokoll.

Ein Rechner kann verschiedene Adressen aufweisen, je nachdem auf welcher
Schicht man sich befindet. Für die Ankopplung an einen "Draht" hat er eine so ge-
nannte MAC-Adresse225. Diese Adresse adressiert die Schnittstellenschicht. Ein
Rechner, der an verschiedene Teilnetze angekoppelt ist, kann dabei mehrere MAC-
Adressen haben. Mit einer IP-Adresse wird ein Rechner als Ganzes in einem Netz
adressiert. Ein Rechner, der direkt im Internet ansprechbar sein soll, braucht eine
weltweit eindeutige IP-Adresse.

24.2 Rechnername, URL und IP-Adresse

Jeder Rechner, der an das Internet angeschlossen ist, besitzt eine eindeutige
Adresse, die er auf Software-Ebene226 zugewiesen bekommt. Die Zuteilung dieser

224 FTP: File Transfer Protocol. Protokoll zum Austausch von Dateien zwischen Rechnern.
225 MAC = Media Access Control. Die vom Hersteller zugewiesene Adresse der Netzwerkkarte.
226 Wird eine Adresse auf Software-Ebene zugewiesen, so bedeutet dies, dass diese Adresse nicht

fest in ein Programm oder in eine Hardware-Komponente kodiert ist, sondern ausgetauscht und
verändert werden kann. Im Gegensatz dazu gibt es Adressen, die auf Hardware-Ebene fest mit der
Komponente "verdrahtet" sind, wie die in der Netzwerkkarte einkodierte MAC-Adresse.

974 Kapitel 24

Adresse kann statisch oder dynamisch beim Start des Rechners227 erfolgen. Diese
Adresse wird IP-Adresse (Internet-Protokoll-Adresse) genannt. Auch auf der darunter
liegenden Schnittstellenschicht gibt es eine eindeutige Adressierung (MAC-Adresse),
die aber hier nicht näher betrachtet werden soll. Die IP-Adresse besteht aus vier
Oktetten228, welche die Nummer des Teilnetzes und die Nummer des eigentlichen
Rechners enthalten. Die IP-Adresse wird üblicherweise als vierstellige Zahl geschrie-
ben, deren Ziffern mit Punkten getrennt sind (z. B. 192.168.101.3). Da der Mensch
solche Ziffernkombinationen nur schwer im Kopf behalten kann, wurde ein zusätz-
licher Dienst eingerichtet, der es ermöglicht, den Rechnern Namen zuzuweisen. Die-
ser Dienst wird DNS (Domain Name Service) genannt und gehört mit zu den wich-
tigsten Diensten des Internets. Eine Adresse als Namen setzt sich aus dem Namen
der Domäne (z. B. hs-esslingen.de) und dem eigentlichen Rechnernamen (z. B.
www, dem Namen des Web-Servers einer Domäne) zusammen und ist weltweit ein-
deutig.

Damit nun ein Rechner über den Namen eines anderen Rechners dessen IP-
Adresse ermitteln kann, wird er zuerst eine Anfrage an den ihm zugewiesenen Name
Server (DNS-Server), stellen. Der Name Server sucht daraufhin in seiner Datenbank
nach dem Namen. Kann er diesen nicht finden, wird er die Anfrage an den nächst
höheren Name Server weiterleiten. Wird der Name Server fündig, so gibt er die IP-
Adresse zurück. Der Rechner kann nun eine Verbindung aufbauen.

Wird einem Programm, beispielsweise dem Web-Browser, zum Abruf
einer Internetseite, die Adresse eines Servers in Form eines Namens
übergeben – z. B. www.hs-esslingen.de – so muss das Programm
immer zuerst die IP-Adresse des Servers mit Hilfe eines Name Ser-
vers ermitteln, damit die Kommunikation aufgenommen werden kann.
Ist der Dienst des Name Servers nicht verfügbar, so ist die Kommu-
nikation nicht möglich.

1: Anforderung
IP von Computer2?

2: 192.168.1.3

3: Verbindung
zu 192.168.1.3

Name Server

Computer1

Computer2

Bild 24-4 Ermitteln eines Rechnernamens über DNS

227 Zur dynamischen Adresszuteilung dient das Dynamic Host Configuration Protocol (DHCP). Einem

Rechner wird hierbei beim Start dynamisch eine IP-Adresse durch einen DHCP-Server zugewie-
sen.

228 Oktett: Gruppe von genau 8 Bits.

Netzwerkprogrammierung mit Sockets 975

In Bild 24-4 werden die Schritte gezeigt, die eine Anwendung auf dem System Com-
puter1 vollziehen muss, um mit dem System Computer2 zu kommunizieren. Vor-
aussetzung dafür ist, dass Computer1 die IP-Adresse seines für ihn zuständigen
Name Servers kennt, um eine unbekannte IP-Adresse eines anderen Systems – hier
Computer2 – zu erfragen. Als erstes stellt nun Computer1 beim Name Server die
Anfrage "Gib mir die IP-Adresse zu dem Namen Computer2". Der Name Server
sucht darauf hin in seiner Datenbank nach der erfragten IP-Adresse und liefert diese
im zweiten Schritt an Computer1 zurück. Im dritten Schritt schließlich kann Com-
puter1 zu Computer2 eine Verbindung aufbauen.

24.2.1 Die Klasse InetAddress

Um anhand eines Rechnernamens die zugehörige IP-Adresse zu ermitteln, wird die
Java-Klasse InetAddress verwendet. Diese Klasse beinhaltet die Name Server-
Funktionalität und befindet sich im Paket java.net. Um eine Instanz dieser Klasse
zu erzeugen, wird eine der drei folgenden Klassenmethoden von InetAddress
verwendet:

Die Klassenmethode

static InetAddress getByName (String host)

gibt eine Instanz der Klasse InetAddress zurück, in der die Adresse des Rechners
verpackt ist, dessen Name übergeben wird. Der Rückgabewert der Klassenmethode

static InetAddress[] getAllByName (String host)

ist ein Array aller Adressen des Rechners, dessen Name übergeben wird. Die Klas-
senmethode

static InetAddress getLocalHost()

gibt die Adresse des lokalen Rechners zurück. Alle Klassenmethoden werfen die
Checked Exception vom Typ java.net.UnknownHostException. Diese Ausnah-
me wird dann ausgelöst, wenn die IP-Adresse des Hosts nicht ermittelbar ist. Sie
muss immer mit Hilfe eines try/catch-Blocks abgefangen werden.

Auf den zurückgelieferten Referenzen auf Objekte der Klasse InetAddress können
dann Instanzmethoden der Klasse InetAddress aufgerufen werden. Beispielsweise
liefert die Instanzmethode

public String getHostAddress()

die IP-Adresse als Zeichenkette und die Instanzmethode

public String getHostName()

den Rechnernamen – ebenfalls als Zeichenkette – zurück. Mit der Instanzmethode

public boolean isMulticastAddress()

976 Kapitel 24

kann festgestellt werden, ob es sich um eine Multicast-Adresse handelt, also eine
Adresse, die zum Versenden von Daten an eine Gruppe von Rechnern dient. Ein
Multicast wird in Kap. 24.3.3 näher beschrieben.

Das folgende Beispielprogramm zeigt die Anwendung der Klasse InetAddress:

// Datei: NameServerTest.java

import java.net.*;

public class NameServerTest
{
 public static void main (String[] args)
 {
 try
 {
 String host = "www.hs-esslingen.de";
 // Erfragen der IP-Adresse der Fachhochschule Esslingen
 InetAddress adresse = InetAddress.getByName (host);
 System.out.println (host + " hat die IP-Adresse " +
 adresse.getHostAddress());

 host = "www.google.de";
 // Alle IP-Adressen erfragen, unter denen der
 // Server www.google.de erreichbar ist
 InetAddress[] alleAdressen =
 InetAddress.getAllByName (host);
 System.out.println (host + " ist unter folgenden " +
 "IP-Adressen erreichbar:");
 for (InetAddress a : alleAdressen)
 {
 System.out.println ("\t" + a.getHostAddress());
 }

 // Die lokale Adresse nachfragen:
 InetAddress lokaleAdresse = InetAddress.getLocalHost();
 System.out.println (
 "Die IP-Adresse dieses Rechners lautet " +
 lokaleAdresse.getHostAddress());
 }
 catch (UnknownHostException e)
 {
 System.out.print ("Adresse ist nicht ermittelbar: ");
 System.out.println (e.getMessage());
 System.exit (1);
 }
 }
}

 Eine mögliche Ausgabe des Programms ist:

www.hs-esslingen.de hat die IP-Adresse 134.108.34.3
www.google.de ist unter folgenden IP-Adressen erreichbar:
 209.85.129.104
 209.85.129.99
 209.85.129.147
Die IP-Adresse diese Rechners lautet 192.168.0.161

Netzwerkprogrammierung mit Sockets 977

24.2.2 URL

Um Ressourcen in einem Netzwerk zu lokalisieren, wird eine URL (Uniform Resource
Locator) verwendet. So wird zum Beispiel die URL eingesetzt, um eine Webseite im
Browser aufzurufen. Eine URL besteht aus mehreren Bestandteilen:

Protokoll://[Login[:Passwort]@]Rechnername.Domäne[:Port]/Verzeichnis
 /Ressource

Das Protokoll gibt an, wie der Zugriff auf die angeforderte Ressource erfolgt. Als
Protokoll kommen beispielsweise HTTP229 oder FTP230 in Frage. Rechnername und
Domäne spezifizieren den Rechner. Der Login und das Passwort kann optional
angegeben werden. Dies wird zum Beispiel zur Anmeldung an einem FTP-Server
verwendet. Der Port (siehe Kap. 24.3) ist ebenfalls optional und wird angegeben,
falls nicht der für das entsprechende Protokoll bekannte Default-Port verwendet wird.
Am Ende der URL werden das Verzeichnis und der Name der Ressource
angegeben.

Im Folgenden wird der Aufbau einer URL am Beispiel

http://download.oracle.com/javase/6/docs/api/index.html

erklärt. Als Protokoll wird hier HTTP verwendet. Der Name des Computers, auf den
zugegriffen wird, trägt den Namen download und befindet sich in der Domäne
oracle.com. Aus dem Verzeichnis /javase/6/docs/api/ des Web-Servers wird
die Datei index.html angefordert. Ein Port wird hier nicht angegeben, ebenso
wenig wie ein Login oder Passwort.

Zum Einsatz von URLs können in Java zwei Klassen verwendet werden. Die erste
Klasse ist URL, die als Wrapper-Klasse für eine URL fungiert. Die zweite Klasse ist
URLConnection, welche im folgenden Abschnitt noch näher betrachtet wird. Beide
Klassen befinden sich im Paket java.net.

Am folgenden Beispiel URLTest wird die Verwendung der Klasse URL gezeigt:

// Datei: URLTest.java

import java.net.*;

public class URLTest
{
 public static void main (String[] args)
 {
 try
 {
 String urlString =
 "http://download.oracle.com/javase/6/docs/api/index.html";

 // Erzeugen der URL
 URL url = new URL (urlString);

229 HTTP = HyperText Transfer Protocol. Ein Protokoll zum Zugriff auf Daten im World Wide Web.
230 FTP = File Transfer Protocol. Ein Protokoll zum Übertragen von Dateien über das Internet.

978 Kapitel 24

 // Ausgabe der Bestandteile
 System.out.println ("Protokoll: " + url.getProtocol());
 System.out.println ("Rechner: " + url.getHost());
 System.out.println ("Datei: " + url.getFile());
 }
 catch (MalformedURLException e)
 {
 // Der Aufruf des Konstruktors wirft eine Exception,
 // wenn der übergebene String keine gültige
 // URL darstellt.
 System.out.println (e.getMessage());
 }
 }
}

Die Ausgabe des Programms ist:

Protokoll: http
Rechner: download.oracle.com
Datei: /javase/6/docs/api/index.html

Diese Klasse ermöglicht nicht nur den komfortablen Zugriff auf Teile der URL, son-
dern auch auf die hinter der URL stehende Ressource. So kann die Datei durch
Angabe der URL auch direkt geladen werden. Der Zugriff auf die Ressource erfolgt
über einen Datenstrom. Das folgende Beispiel URLTest2 zeigt, wie mit Hilfe der
Klasse URL die Datei index.html vom Server download.oracle.com geladen
werden kann:

// Datei: URLTest2.java

import java.net.*;
import java.io.*;

public class URLTest2
{
 public static void main (String[] args)
 {
 try
 {
 // Anlegen eines Puffers
 byte[] b = new byte [1024];
 String urlString = "http://download.oracle.com/index.html";

 // Verbinden mit der Ressource
 URL url = new URL (urlString);

 // Öffnen eines Datenstroms zum Lesen der Daten
 InputStream stream = url.openStream();

 // Solange vom Stream lesen, bis -1 zurück geliefert wird
 while (stream.read (b) != -1)
 {
 System.out.println (new String (b));
 }
 }

Netzwerkprogrammierung mit Sockets 979

 catch (MalformedURLException e)
 {
 // Der Aufruf des Konstruktors wirft eine Exception, wenn
 // der übergebene String keine gültige URL darstellt
 System.out.println (e.getMessage());
 }
 catch (IOException e)
 {
 // Die Methoden openURLStream() und read() werfen
 // beide eine Exception vom Typ IOException
 System.out.println (e.getMessage());
 }
 }
}

 Die Ausgabe des Programms ist:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>Java Technology</title>
.

24.2.3 URLConnection

Die abstrakte Klasse URLConnection ist die Basisklasse aller Klassen, die eine
Verbindung zu einer Ressource über eine URL aufbauen. Instanzen dieser Klasse
können sowohl lesend, als auch schreibend auf eine Ressource zugreifen. Zuerst
wird auf einem Objekt der Klasse URL die Methode openConnection() aufgerufen.
Dieser Aufruf liefert eine Referenz auf ein Objekt zurück, dessen Klasse die ab-
strakte Klasse URLConnection erweitert. Beispielsweise wird beim Öffnen einer
Verbindung zur URL http://www.hs-esslingen.de ein Objekt der Klasse
HttpURLConnection aus dem Paket sun.net.www.protocol.http und beim
Zugriff auf den FTP-Server der Hochschule in Esslingen ftp://ftp.hs-
esslingen.de ein Objekt der Klasse FtpURLConnection aus dem Paket
sun.net.www.protocol.ftp zurückgeliefert.

Über das nun referenzierte Objekt vom Typ URLConnection können durch Aufrufe
von Instanzmethoden noch weitere Eigenschaften der Verbindung eingestellt werden
wie z. B. den Timeout231 für den Verbindungsaufbau oder den Timeout für einen Le-
sevorgang. Schließlich wird die Verbindung mit der Methode connect() hergestellt.
Der Aufruf bewirkt, dass zu dem Server, der über die URL spezifiziert wird, eine TCP-
Verbindung aufgebaut wird.

231 Mit Timeout wird die Zeitspanne beschrieben, innerhalb derer ein Prozess eine bestimmte Aktion

durchgeführt haben muss. Wird die Aktion nicht innerhalb dieser Zeitspanne zum Abschluss
gebracht – ist der Timeout also abgelaufen – so wird der Vorgang mit einem Fehler abgebrochen.
In Bezug auf die Programmierung von Sockets kann beispielsweise ein Timeout für den Verbin-
dungsaufbau zu einem anderen Rechner eingestellt werden.

980 Kapitel 24

Das folgende Beispiel zeigt, wie die Klasse URLConnection benutzt werden kann.
Es wird zuerst erfragt, von welchem Typ das zurückgelieferte URLConnection-
Objekt ist. Danach wird aus den Kopf-Informationen232 der HTTP-Verbindung ausge-
lesen, welche Version des HTTP-Protokolls verwendet wird und ob die Anfrage an
den HTTP-Server erfolgreich war233. Schließlich wird überprüft, welchen Typ die
abrufbaren Daten besitzen, die über die URL erreichbar sind:

// Datei: URLConnectionTest.java

import java.net.*;
import java.io.*;

public class URLConnectionTest
{
 public static void main (String[] args)
 {
 try
 {
 // Erzeugen einer URL
 URL url = new URL ("http://java.sun.com");

 // Verbindung zur Ressource bereitstellen
 URLConnection connection = url.openConnection();

 System.out.println ("Typ des URLConnection-Objektes:");
 System.out.println (connection.getClass());

 // Verbindung herstellen
 connection.connect();

 // Auslesen der HTTP-Version
 System.out.print ("\nVersion des HTTP-Protokolls: ");
 System.out.println (connection.getHeaderField(0));

 // Typ der abrufbaren Daten erfragen
 System.out.print ("\nTyp der Daten: ");
 System.out.println (connection.getContentType());
 }
 catch (MalformedURLException e)
 {
 // Der Konstruktor wirft eine Exception, wenn der über-
 // gebene String keine gültige URL darstellt.
 System.out.println (e.getMessage());
 }
 catch (IOException e)
 {
 // Die Methoden openURLConnection() und connect()
 // werfen beide Exceptions vom Typ IOException
 System.out.println (e.getMessage());
 }
 }
}

232 Bei HTTP besteht die Nachricht aus einem Kopf, der das Format der Daten beschreibt, und den

eigentlichen Daten.
233 Die Anfrage war erfolgreich, wenn der HTTP-Code 200 zurückgeliefert wird.

Netzwerkprogrammierung mit Sockets 981

Eine mögliche Ausgabe des Programms ist:

Typ des URLConnection-Objektes:
class sun.net.www.protocol.http.HttpURLConnection

Version des HTTP-Protokolls: HTTP/1.1 200 OK

Typ der Daten: text/html;charset=ISO-8859-1

24.3 Sockets

Sockets stellen den Endpunkt in der Kommunikationsverbindung zwischen zwei Pro-
grammen dar. Eine Socket-Verbindung kann man sich als Schlauch vorstellen. Alles
was in die eine Seite hineingeht, kommt auf der anderen Seite in derselben Reihen-
folge wieder heraus. Dass die Reihenfolge der Daten, welche der Empfänger erhält,
identisch ist zu der Reihenfolge, in der die Daten vom Sender abgeschickt wurden,
ist natürlich nicht selbstverständlich und eigentlich auch nicht ganz richtig. Denn die
Daten – beispielsweise eine vom Browser angeforderte Internetseite – werden beim
Versenden in kleine Datenpakete verpackt, und treten dann einzeln und quasi
unabhängig voneinander die Reise durch das Netz zum Client an.

Es kann passieren, dass die Datenpakete über unterschiedliche
"Strecken" zum Client geleitet werden.

Das Bild 24-5 zeigt ein Beispiel, bei dem ein Server einem Client Daten zusendet, die
in drei Pakete verpackt wurden:

Server Client
B

C

A

Weg 1

Weg 2
Bild 24-5 Kommunikation zwischen Client und Server über mehrere Wege

Die Pakete A, B und C haben den Server in dieser Reihenfolge verlassen, d. h., der
Server hat als erstes das Paket A, dann das Paket B und schließlich das Paket C
gesendet. Die Pakete A und C nehmen den Weg 1, das Paket B nimmt den Weg 2
zum Client234. Aufgrund von Überlastungen auf dem Weg 1 – was zu Verzögerungen
in der Weiterleitung von Paketen führt – wird nun jedoch der Fall eintreten, dass das

234 Dass ein Paket einen anderen Weg nimmt als die übrigen Pakete, kann viele Gründe haben. Bei-

spielsweise kann die Verbindung unterbrochen sein oder es wird ein Stau gemeldet und angezeigt,
dass nachfolgende Pakete einen anderen Weg wählen sollen.

982 Kapitel 24

Paket B vor dem Paket A beim Client ankommt, also eigentlich in der falschen Rei-
henfolge. Dieser Umstand ist jedoch nicht weiter tragisch, denn die Reihenfolge der
Pakete wird durch das im Socket des Clients implementierte TCP-Protokoll wieder
hergestellt.

Auf einem Rechner können mehrere Sockets gleichzeitig verwendet
werden. Nur so ist es möglich, mehrere Programme auf einem Rech-
ner auszuführen, die Sockets zur Kommunikation verwenden.

1023

192.168.101.2
Computer 1

1034

1012

192.168.101.1
Computer 2

25

80

21

Port-
nummer

Port-
nummer

Bild 24-6 Socket und Port

So kann zum Beispiel auf einem Rechner ein Web-Server, ein FTP-Server und ein E-
Mail-Server gestartet werden.

Die Unterscheidung der Sockets der einzelnen Programme geschieht
über die Zuweisung einer Nummer, dem so genannten Port (An-
schluss). Der Port ist dabei die Adresse des entsprechenden Kommu-
nikationsdienstes wie z. B. FTP in der Anwendungsschicht.

Ein Dienst auf einem Rechner wird eindeutig durch die IP-Adresse und den Port
bestimmt. Wie in Bild 24-6 zu sehen, besitzen sowohl das Server- als auch das
Client-Programm einen zugewiesenen Port, der auf beiden Seiten nicht der gleiche
sein muss. Server und Client verwenden die Sockets auf unterschiedliche Weise:

Der Port muss auf beiden Seiten nicht derselbe sein.

Server

Das Server-Programm bindet sich an eine Socket-Verbindung, die mit einem lokalen
Port des Server-Rechners verbunden ist.

Netzwerkprogrammierung mit Sockets 983

Client

Das Client-Programm bindet sich an eine Socket-Verbindung, die eine Verbindung
zu einem Port des Server-Rechners aufbaut. Je nach Anforderung an die Netz-
werkkommunikation können unterschiedliche Arten von Sockets verwendet werden.

Zum einen gibt es verbindungsorientierte TCP-Sockets, welche
zuverlässig einen Strom von Daten von einer Seite der Verbindung zur
anderen befördert. Zum anderen gibt es verbindungslose UDP-
Sockets, die einzelne Nachrichten von einem Endpunkt zum anderen
bringen, jedoch ohne die Übertragungssicherheit zu garantieren.

Mit anderen Worten, es ist möglich, dass bei UDP-Sockets Nachrichten verloren
gehen. Ist eine sichere Übertragung erwünscht, so hat eine höhere Schicht für die
Übertragungssicherheit zu sorgen.

24.3.1 TCP in Java

Mit Hilfe von TCP235-Sockets kann eine Verbindung zwischen zwei Programmen –
das heißt zwischen zwei voneinander unabhängigen Prozessen – hergestellt werden.
Die Programme können auf ein und demselben Rechner ausgeführt werden oder
aber die Programme befinden sich auf zwei völlig unterschiedlichen Computern.

Die Ausführung der Programme ist ortstransparent. TCP-Sockets sind
zudem verbindungsorientiert.

Verbindungsorientierte Protokolle haben stets drei Phasen:

� Verbindungsaufbau,
� Datenübertragungsphase,
� Verbindungsabbau.

Es muss also erst eine Verbindung zwischen den Programmen hergestellt werden,
bevor Daten ausgetauscht werden können.

Der Datenaustausch erfolgt zuverlässig, da TCP eine Fehlerbehand-
lung und Flusskontrolle beinhaltet.

Da die Daten für die Übertragung in Datenpakete aufgeteilt werden, besteht keine
Begrenzung für die Menge der zu übertragenen Daten. Soll beispielsweise eine Datei
von einem Rechner zu einem anderen gesendet werden, – etwa bei einem Datei-
download von einem File-Server auf einen Client-Rechner – wobei die Datei eine

235 TCP = Transmission Control Protocol.

984 Kapitel 24

Größe von 10 MB besitzt, so werden aus dem einen großen Datenpaket – die Datei
mit 10 MB Größe – viele kleine Datenpakete erstellt – z. B. Fragmente mit jeweils
einer Größe von 1 MB. Diese kleinen Fragmente werden dann einzeln vom Server
an den Client geschickt, wobei der Client-Socket die einzelnen Teile wieder zu einem
Ganzen zusammensetzt.

Um mittels Sockets eine Kommunikationsverbindung aufzubauen, müssen ver-
schiedene Schritte durchlaufen werden:

� Zuerst erzeugt die Server-Anwendung einen Socket, den so genannten Server-
Socket.

� Dieser Server-Socket bindet sich dann an einen bestimmten Port auf dem
Server-Rechner. Ein Client, der eine Verbindung zu dieser Server-Anwendung
aufbauen will, muss die Adresse des Rechners, auf dem die Server-Anwendung
läuft, und die Nummer des Ports, an den sich der Socket der Server-Anwendung
gebunden hat, kennen.

� Die Client-Anwendung, die nun eine Verbindung zu der Server-Anwendung
aufbauen will, erzeugt ebenfalls einen Socket. Dafür muss sie bei der Erzeugung
des Sockets die Adresse des Server-Rechners und den Port der Server-
Anwendung angeben.

� Nun stellt der Client eine Verbindungs-Anfrage an die Server-Anwendung. Erst
wenn der Server die Verbindung akzeptiert hat, können Server und Client gleich-
berechtigt Daten austauschen.

Damit sich die Anwendungen verstehen, muss ein Protokoll verwendet werden, das
beiden bekannt ist (siehe Kap. 24.4). Durch das gemeinsame Protokoll für die Kom-
munikation "reden Client und Server in derselben Sprache".

Server-
Socket

accept()

write()

read()

Socket()

read()

write()

Warten
auf

Verbindung

Anfrage

Antwort

Verbindungsaufbau

Client

close() close()

Server

Bild 24-7 Ablauf einer TCP-Socket-Kommunikation

Netzwerkprogrammierung mit Sockets 985

In Java werden zur Verwendung von TCP-Sockets zwei Klassen angeboten:

� Klasse ServerSocket

Eine Server-Anwendung benutzt für die Erzeugung ihres Sockets die Klasse
ServerSocket, die alle notwendigen Kommunikationsfunktionen eines Servers
beinhaltet. Beim Durchlaufen des Konstruktors der Klasse ServerSocket wird
die Socket-Verbindung erzeugt, an einen freien Port auf dem Server-Rechner
gebunden und auf "Warten" gesetzt. Es muss lediglich die Methode accept()
aufgerufen werden, um ankommende Verbindungsanforderungen von Clients zu
akzeptieren.

� Klasse Socket

Die Client-Anwendung verwendet die Klasse Socket, die beim Instantiieren
ebenfalls eine Socket-Verbindung erzeugt und im Konstruktor die Verbindung zum
Server aufbaut. Die Verbindungsdaten – also Server-Adresse und Port – müssen
natürlich bekannt sein.

Bei der Verwendung der TCP-Sockets ServerSocket und Socket
erfolgt der Austausch von Daten über Datenströme. Beide Klassen be-
finden sich im Paket java.net.

Das folgende Beispiel zeigt ein einfaches Netzwerk-Programm. Die Client-Anwen-
dung TCPClient schickt eine Nachricht an die Server-Anwendung TCPServer. Der
Server nimmt die angeforderte Verbindung an, empfängt die vom Client gesendeten
Daten und gibt diese anschließend aus. Danach wird die Verbindung zwischen Client
und Server wieder beendet. Im Folgenden wird der Programmcode der Client-An-
wendung dargestellt. Der Client schickt lediglich eine Nachricht an die Server-An-
wendung und wird dann wieder beendet:

// Datei: TCPClient.java

import java.net.*;
import java.io.*;

public class TCPClient
{
 // Port der Serveranwendung
 public static final int SERVER_PORT = 10001;
 // Rechnername des Servers
 public static final String SERVER_HOSTNAME = "localhost";

 public static void main (String[] args)
 {
 try
 {
 // Erzeugen der Socket und Aufbau der Verbindung
 Socket socket = new Socket (
 SERVER_HOSTNAME, SERVER_PORT);

 System.out.println ("Verbunden mit Server: " +
 socket.getRemoteSocketAddress());

986 Kapitel 24

 String nachricht = "Hallo Server";
 System.out.println ("Sende Nachricht \"" +
 nachricht + "\" mit Laenge " +
 nachricht.length());

 // Senden der Nachricht über einen Stream
 socket.getOutputStream().write (nachricht.getBytes());
 // Beenden der Kommunikationsverbindung
 socket.close();
 }
 catch (UnknownHostException e)
 {
 // Wenn Rechnername nicht bekannt ist ...
 System.out.println ("Rechnername unbekannt:\n" +
 e.getMessage());
 }
 catch (IOException e)
 {
 // Wenn die Kommunikation fehlschlägt
 System.out.println ("Fehler während der Kommunikation:\n" +
 e.getMessage());
 }
 }
}

Eine mögliche Ausgabe des Programms ist:

Verbunden mit Server: localhost/127.0.0.1:10001
Sende Nachricht "Hallo Server" mit Laenge 12

Der folgende Quellcode zeigt die Server-Anwendung:

// Datei: TCPServer.java

import java.net.*;
import java.io.*;

public class TCPServer
{
 // Port der Serveranwendung
 public static final int SERVER_PORT = 10001;

 public static void main (String[] args)
 {
 try
 {
 // Erzeugen der Socket/binden an Port/Wartestellung
 ServerSocket socket = new ServerSocket (SERVER_PORT);

 // Ab hier ist der Server "scharf" geschaltet
 // und wartet auf Verbindungen von Clients
 System.out.println ("Warten auf Verbindungen ...");

 // im Aufruf der Methode accept() verharrt die
 // Server-Anwendung solange, bis eine Verbindungs-
 // anforderung eines Client eingegangen ist.

Netzwerkprogrammierung mit Sockets 987

 // Ist dies der Fall, so wird die Anforderung akzeptiert
 Socket client = socket.accept();

 // Ausgabe der Informationen über den Client
 System.out.println ("\nVerbunden mit Rechner: " +
 client.getInetAddress().getHostName()
 + " Port: " +
 client.getPort());

 // Erzeugen eines Puffers
 byte[] b = new byte [128];
 // Datenstrom zum Lesen verwenden
 InputStream stream = client.getInputStream();

 // Sind Daten verfügbar?
 while (stream.available() == 0)
 ;

 // Ankommende Daten lesen und ausgeben
 while (stream.read (b) != -1)
 {
 System.out.println (
 "Nachricht empfangen: " + new String (b));
 }

 // Verbindung beenden
 client.close();
 // Server-Socket schließen
 socket.close();
 System.out.println ("Der Client wurde bedient und " +
 "die Server-Anwendung ist beendet");
 }
 catch (UnknownHostException e)
 {
 // Wenn Rechnername nicht bekannt ist ...
 System.out.println ("Rechnername unbekannt:\n" +
 e.getMessage());
 }
 catch (IOException e)
 {
 // Wenn Kommunikation fehlschlägt ...
 System.out.println ("Fehler während der Kommunikation:\n" +
 e.getMessage());
 }
 }
}

Eine mögliche Ausgabe der Server-Anwendung ist:

Warten auf Verbindungen ...

Verbunden mit Rechner: localhost Port: 1366
Nachricht empfangen: Hallo Server

Der Client wurde bedient und die
Server-Anwendung ist beendet

988 Kapitel 24

Wie sie an der Ausgabe der Server-Anwendung erkennen können, beendet der
Server seine Tätigkeit, nachdem sich ein Client mit diesem verbunden hat und von
ihm bedient wurde. Wenn mehrere Clients gleichzeitig eine Anfrage stellen, wird
somit nur der erste Client bedient und alle nachfolgenden abgewiesen, bis die
Server-Anwendung wieder die Methode accept() aufruft. Dafür muss aber der
Server jedes Mal neu gestartet werden, was ja sehr unpraktisch ist.

Um dies zu verhindern, kann beim Instantiieren der Klasse ServerSocket zusätz-
lich die Länge der Warteschlange für ankommende Verbindungsanforderungen an-
gegeben werden. Weiterhin muss der Server-Code für die Annahme von Verbin-
dungen und das Auslesen der von den Clients gesendeten Daten in eine Endlos-
schleife gesetzt werden. Dadurch werden die nachfolgenden Clients nicht mehr
abgewiesen, jedoch werden sie blockiert, bis die Verbindung durch den Server
akzeptiert wird. Das bedeutet, der Server arbeitet die Verbindungen der Clients der
Reihe nach ab. Er ist dann ein so genannter iterativer Server.

Ein iterativer Server arbeitet in einer Schleife alle gesendeten Daten
sequentiell selbst ab.

Das folgende Beispiel zeigt den Code eines iterativen Servers:

// Datei: IterativerTCPServer.java

import java.net.*;
import java.io.*;

public class IterativerTCPServer
{
 // Port der Serveranwendung
 public static final int SERVER_PORT = 10001;

 public static void main (String[] args)
 {
 try
 {
 // Erzeugen der Socket/Binden an Port/Wartestellung
 // Der Server akzeptiert nun 10 gleichzeitige
 // Verbindungsanfragen
 ServerSocket socket = new ServerSocket (SERVER_PORT, 10);

 while (true)
 {
 // Ab hier ist der Server "scharf" geschaltet
 // und wartet auf Verbindungen von Clients
 System.out.println ("Warten auf Verbindungen ...");

 // im Aufruf der Methode accept() verharrt die
 // Server-Anwendung solange, bis eine Verbindungs-
 // anforderung eines Client eingegangen ist.
 // Ist dies der Fall, so wird die Anforderung akzeptiert
 Socket client = socket.accept();

Netzwerkprogrammierung mit Sockets 989

 // Ausgabe der Informationen über den Client
 System.out.println (
 "\nVerbunden mit Rechner: " +
 client.getInetAddress().getHostName()+ " Port: " +
 client.getPort());

 // Erzeugen eines Puffers
 byte[] b = new byte [128];
 // Datenstrom zum Lesen verwenden
 InputStream stream = client.getInputStream();

 // Sind Daten verfügbar?
 while (stream.available() == 0)
 ;

 // Ankommende Daten lesen und ausgeben
 while (stream.read (b) != -1)
 {
 System.out.println (
 "Nachricht empfangen: " + new String (b));
 }
 // Verbindung zum Client beenden
 client.close();
 System.out.println ("Der Client wurde bedient ...");
 }
 }
 catch (UnknownHostException e)
 {
 // Wenn Rechnername nicht bekannt ist ...
 System.out.println ("Rechnername unbekannt:\n" +
 e.getMessage());
 }
 catch (IOException e)
 {
 // Wenn Kommunikation fehlschlägt ...
 System.out.println ("Fehler während der Kommunikation:\n" +
 e.getMessage());
 }
 }
}

Eine mögliche Ausgabe der Server-Anwendung ist:

Warten auf Verbindungen ...

Verbunden mit Rechner: localhost Port: 1387
Nachricht empfangen: Hallo Server, hier Client1

Der Client wurde bedient ...
Warten auf Verbindungen ...

Verbunden mit Rechner: localhost Port: 1388
Nachricht empfangen: Hallo Server, hier Client2

Der Client wurde bedient ...
Warten auf Verbindungen ...

990 Kapitel 24

Wie an der Ausgabe zu erkennen ist, muss die Server-Anwendung nicht neu gestar-
tet werden, nachdem ein Client bedient wurde. Der Server geht nach der Bedienung
des Clients wieder in Wartestellung und nimmt sofort die nächste Verbindungs-
anfrage entgegen. Trotzdem werden alle Clients in eine Warteschlange gestellt, so-
lange der Server mit der Bedienung eines Clients beschäftigt ist. Dies kann unter
Umständen sehr lästig für einen Client sein. Die Vorstellung, beispielsweise der
1000. Client in der Warteschlange zu sein, ist nicht gerade ermunternd.

Eine mögliche Lösung dieses Problems ist der Einsatz von Threads, um einen
parallelen Server (Multithreading) zu erhalten. Sobald eine Verbindung angefordert
wird, kann diese Anfrage an einen Thread weitergeleitet werden, – einen so genann-
ten WorkerThread – der sie dann bearbeitet. Das nachfolgende Beispiel zeigt dieses
Vorgehen. Nach dem Akzeptieren der Verbindung wird vom Server ein Objekt der
Klasse WorkerThread erzeugt. Dieses Objekt ist dann für die Kommunikation mit
der Client-Anwendung zuständig und bearbeitet dessen Anfragen. Der Server kann
direkt nach der Instantiierung der Klasse WorkerThread erneut auf Verbindungs-
anfragen von Clients warten.

Ein paralleler Server liest nur in einer Schleife aus. Zur Bearbeitung
startet er für jede Nachricht einen eigenen Thread.

Um in diesem Beispiel unterschiedliche Antwortzeiten des WorkerThread zu simu-
lieren, werden durch einen Zufallsgenerator unterschiedliche Wartezeiten erzeugt,
bevor der Server – also der WorkerThread – dem Client eine Antwort sendet. Als
erstes wird der Code des Clients TCPClient2 dargestellt:

// Datei: TCPClient2.java

import java.net.*;
import java.io.*;

public class TCPClient2
{
 // Port der Serveranwendung
 public static final int SERVER_PORT = 10001;

 // Rechnername des Servers
 public static final String SERVER_HOSTNAME = "localhost";

 public static void main (String[] args)
 {
 if (args.length != 1)
 {
 System.out.println (
 "Aufruf: java TCPClient2 <Client-Name>");

 System.exit (1);
 }

Netzwerkprogrammierung mit Sockets 991

 try
 {
 // Erzeugen des Socket und Aufbau der Verbindung
 Socket socket = new Socket (
 SERVER_HOSTNAME, SERVER_PORT);

 System.out.println ("Verbunden mit Server: " +
 socket.getRemoteSocketAddress());

 System.out.println ("Client \"" + args [0] +
 "\" meldet sich am Server an.");

 // Senden der Nachricht über einen Stream
 socket.getOutputStream().write (args [0].getBytes());

 // Puffer erzeugen und auf Begrüßung warten
 byte[] b = new byte [128];

 InputStream stream = socket.getInputStream();

 while (stream.available() == 0)
 ;

 // Begrüßung lesen und ausgeben
 stream.read (b);
 System.out.println (
 "Nachricht vom Server ist: " + new String (b));

 // Beenden der Kommunikationsverbindung
 socket.close();
 }
 catch (UnknownHostException e)
 {
 // Wenn Rechnername nicht bekannt ist ...
 System.out.println ("Rechnername unbekannt:\n" +
 e.getMessage());
 }
 catch (IOException e)
 {
 // Wenn die Kommunikation fehlschlägt
 System.out.println ("Fehler während der Kommunikation:\n" +
 e.getMessage());
 }
 }
}

Der Aufruf der Client-Anwendung erfolgt nun folgendermaßen:

java TCPClient2 <Client-Name>

Es wird somit der Methode main() der Klasse TCPClient2 über das String-Array
args der Name des Clients mitgeteilt. Startet man nun parallel zwei Clients in jeweils
einer eigenen Konsole, so werden folgende Ausgaben erzeugt:

992 Kapitel 24

Eine mögliche Ausgabe des Programms ist:

Verbunden mit Server: localhost/127.0.0.1:10001
Client "Peter Lustig" meldet sich am Server an.
Nachricht vom Server ist: Hallo Peter Lustig

bzw.:

Verbunden mit Server: localhost/127.0.0.1:10001
Client "Batman" meldet sich am Server an.
Nachricht vom Server ist: Hallo Batman

Im Folgenden wird der Code der Server-Anwendung MultiThreadServer vorge-
stellt. Es wird intern die Klasse WorkerThread zur parallelen Bearbeitung von
Client-Anfragen verwendet:

// Datei: MultiThreadServer.java

import java.net.*;
import java.io.*;

public class MultiThreadServer
{
 // Port der Serveranwendung
 public static final int SERVER_PORT = 10001;
 // Name dieses Threads. Es wird dadurch markiert, welche
 // Ausgaben auf der Konsole von diesem Thread stammen.
 private static final String klassenname = "MainThread";

 public static void main (String[] args)
 {
 try
 {
 // Erzeugen des Socket/Binden an Port/Wartestellung
 ServerSocket socket = new ServerSocket (SERVER_PORT);

 while (true)
 {
 // Ab hier ist der Server "scharf" geschaltet
 // und wartet auf Verbindungen von Clients
 print (klassenname + ":\tWarten auf Verbindungen ...");

 // im Aufruf der Methode accept() verharrt die
 // Server-Anwendung solange, bis eine Verbindungs-
 // anforderung eines Client eingegangen ist.
 // Ist dies der Fall, so wird die Anforderung akzeptiert
 Socket client = socket.accept();
 print (klassenname + ":\tVerbunden mit: " +
 client.getInetAddress().getHostName() +
 " Port: " + client.getPort());

 // Thread erzeugen, der Kommunikation
 // mit Client übernimmt
 new WorkerThread (client).start();
 }
 }

Netzwerkprogrammierung mit Sockets 993

 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 // Diese Methode print() dient dazu, dass die beiden Threads
 // MainThread und WorkerThread beim konkurrierenden Zugriff auf
 // die Konsole mit System.out.println() synchronisiert werden.
 public static synchronized void print (String nachricht)
 {
 System.out.println (nachricht);
 }
}

class WorkerThread extends Thread
{
 private Socket client;
 // Name dieses Threads
 private final String klassenname = "WorkerThread";

 public WorkerThread (Socket client)
 {
 this.client = client;
 }

 public void run()
 {
 try
 {
 // Erzeugen eines Puffers und Einlesen des Namens
 byte[] b = new byte[128];
 InputStream input = client.getInputStream();

 // Warten auf Daten
 while (input.available() == 0);

 // Nachricht auslesen
 input.read (b);
 String clientName = new String (b);
 MultiThreadServer.print (
 klassenname + ":\tName empfangen: " + clientName);

 // Zufällige Zeit warten (0-5 sec.)
 sleep ((long) (Math.random() * 5000));

 // Begrüßung senden
 OutputStream output = client.getOutputStream();
 MultiThreadServer.print (
 klassenname + ":\tSende Antwort an Client " +
 clientName);

 byte[] antwort = ("Hallo " + clientName).getBytes();
 output.write (antwort);

 // Verbindung beenden
 client.close();

994 Kapitel 24

 MultiThreadServer.print (
 klassenname + ":\tClient erfolgreich bedient ...");
 }
 catch (Exception e)
 {
 // Wenn ein Fehler auftritt ...
 e.printStackTrace();
 }
 }
}

Eine mögliche Ausgabe des Programms ist:

MainThread: Warten auf Verbindungen ...
MainThread: Verbunden mit: localhost Port: 1521
MainThread: Warten auf Verbindungen ...
WorkerThread: Name empfangen: Batman

WorkerThread: Sende Antwort an Client Batman

WorkerThread: Client erfolgreich bedient ...
MainThread: Verbunden mit: localhost Port: 1522
MainThread: Warten auf Verbindungen ...
WorkerThread: Name empfangen: Peter Lustig

WorkerThread: Sende Antwort an Client Peter Lustig

WorkerThread: Client erfolgreich bedient ...

24.3.2 UDP in Java

Im Gegensatz zu TCP (Transmission Control Protocol) bietet UDP (User Datagram
Protocol) keinen zuverlässigen Austausch von Informationen. Die Daten werden in
einzelnen Paketen versendet. Eine Benachrichtigung, ob ein Paket bei der Gegen-
stelle fehlerfrei angekommen ist, erfolgt nicht. Da es ein verbindungsloses Protokoll
ist, muss vor dem Senden von Daten keine Verbindung durch den Client angefordert
werden.

Der Client versendet seine Daten und hat keine Kontrolle darüber, ob
die Daten vom Server auch zuverlässig empfangen wurden.

Der Vorteil von UDP gegenüber TCP liegt in der Geschwindigkeit des
Datenaustausches und in der Einfachheit der Implementierung.

Um in Java über UDP-Sockets zu kommunizieren, wird eine Instanz der Klasse
DatagramSocket erzeugt. Sowohl die Server- als auch die Client-Anwendung
verwenden diese Klasse. Der Server muss zusätzlich im Konstruktor den Port

Netzwerkprogrammierung mit Sockets 995

angeben, der für die Anwendung verwendet wird. Um Daten zu senden, werden
diese in einer Instanz der Klasse DatagramPacket verpackt.

Da keine Verbindung zum Server aufgebaut wird und somit die So-
cket-Kommunikation zum Senden von Daten an beliebige Rechner
verwendet werden kann, muss ein Datenpaket zusätzlich mit der Ad-
resse und dem Port der Empfängeranwendung ausgestattet werden.

Bild 24-8 zeigt den Ablauf der Kommunikation über UDP-Sockets in Java:

Datagram
Socket()

send()

receive()

Datagram
Socket()

receive()

Warten
auf

Paket

Nachricht

Nachricht

send()

Server

Client

close() close()

Bild 24-8 Ablauf einer UDP-Socket-Kommunikation

Bei der Verwendung von UDP-Sockets wird nicht der Socket-End-
punkt selbst, sondern das Datenpaket mit der IP-Adresse und dem
Port der Empfängeranwendung ausgestattet, da es keine Verbindung
gibt.

Das folgende Beispiel zeigt die Programmierung von UDP-Sockets unter Verwen-
dung der Klasse DatagramSocket. Der Server erzeugt einen UDP-Socket und bin-
det dieses an den von ihm verwendeten Port. Um eine Nachricht empfangen zu kön-
nen, muss die Anwendung zuerst einen Puffer erzeugen. Dies geschieht durch die
Instantiierung eines Byte-Arrays, das als Speicherplatz für ankommende Daten dient.
Das Array wird anschließend in einem Objekt der Klasse DatagramPacket verpackt
und an die Methode receive() übergeben, die dann solange wartet, bis eine
Nachricht eintrifft (blocking receive). Die erhaltenen Daten werden aus dem Paket
extrahiert und zur Anzeige gebracht. Es ist darauf zu achten, dass die Anzahl der
empfangenen Bytes durch Aufruf der Methode getLength() der Klasse Data-
gramPacket ermittelt wird. Der Server generiert daraufhin die Antwort, indem wie-

996 Kapitel 24

derum die Daten im folgenden Beispiel in einem Paket – im Allgemeinen in mehreren
Paketen – abgelegt werden. Da das Paket an die Client-Anwendung zurückgeschickt
werden soll, muss es mit der Adresse und dem Port des Clients versehen werden.
Diese Informationen können aus dem zuvor erhaltenen Paket mit den Methoden
getAddress() bzw. getPort() ausgelesen werden. Im Folgenden der Quellcode
des Servers:

// Datei: UDPServer.java

import java.net.*;
import java.io.*;

public class UDPServer
{
 // Port des Servers
 static final int SERVER_PORT = 10001;

 public static void main (String[] args)
 {
 try
 {
 // Erzeugen der Socket
 DatagramSocket socket = new DatagramSocket (SERVER_PORT);

 while (true)
 {
 // Erzeugen eines Puffers
 byte[] b = new byte [128];
 DatagramPacket packet =
 new DatagramPacket (b, b.length);
 System.out.println ("Warten auf Daten ...");

 // Der Server verharrt in der Methode receive() solange,
 // bis er ein Paket zugesendet bekommt
 socket.receive (packet);

 // Daten aus Paket extrahieren und ausgeben
 String message = new String (packet.getData(),
 0, packet.getLength());
 System.out.println ("Nachricht empfangen: " + message);

 // Begrüßungsnachricht in Paket verpacken
 b = ("Hallo " + message).getBytes();
 System.out.println ("Sende Antwort: " + new String(b));
 // DatagramPaket erzeugen und darin die Antwort an den
 // Sender verpacken. Zudem muss in dem Paket die
 // IP-Adresse und der Port des Empfängers enthalten sein
 DatagramPacket response =
 new DatagramPacket (b, b.length,
 packet.getAddress(),
 packet.getPort());

 // Paket an Client senden
 socket.send (response);
 }
 }

Netzwerkprogrammierung mit Sockets 997

 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Eine mögliche Ausgabe des Programms ist:

Warten auf Daten ...
Nachricht empfangen: Kerstin Morgen
Sende Antwort: Hallo Kerstin Morgen
Warten auf Daten ...

Die Client-Anwendung erzeugt ebenfalls eine Instanz der Klasse DatagramSocket
und sendet dann einen Text, der in einem Objekt der Klasse DatagramPacket ver-
packt wird, an den Server. Daraufhin wartet der Client, bis die Server-Anwendung die
Antwort schickt. Falls das Antwortpaket verloren geht, verharrt der Client in der re-
ceive()-Methode der Klasse DatagramSocket und muss manuell beendet wer-
den. Wird jedoch vor dem Aufruf von receive() mit der Methode setSoTime-
out() der Klasse DatagramSocket ein Timeout gesetzt, so wird von der re-
ceive()-Methode nach Ablauf des Timeouts eine Exception vom Typ Socket-
TimeoutException geworfen.

Im Folgenden nun der Quellcode des Clients:

// Datei: UDPClient.java

import java.net.*;
import java.io.*;

public class UDPClient
{
 // Rechnername des Servers
 static final String SERVER_NAME = "localhost";
 // Port des Servers
 static final int SERVER_PORT = 10001;

 public static void main (String[] args)
 {
 try
 {
 // Erzeugen einer Socket
 DatagramSocket socket = new DatagramSocket();

 // Name in Paket verpacken
 byte[] name = "Kerstin Morgen".getBytes();
 DatagramPacket packet =
 new DatagramPacket (name, name.length,
 InetAddress.getByName (SERVER_NAME), SERVER_PORT);

 // Paket an Server senden
 socket.send (packet);

998 Kapitel 24

 // Puffer für Begrüßungsnachricht erzeugen
 byte[] b = new byte [128];
 packet.setData (b);
 packet.setLength (128);

 socket.setSoTimeout (5000);

 System.out.println
 ("Warten auf eine Antwort vom Server ...");

 // Paket empfangen
 socket.receive (packet);

 // Begrüßung extrahieren und anzeigen
 String message = new String (packet.getData (),
 0, packet.getLength ());
 System.out.println ("Nachricht empfangen: " + message);

 // Socket schliessen
 socket.close();
 }
 catch (SocketTimeoutException e)
 {
 // SocketTimeoutException wird von der Methode
 // receive() geworfen, nachdem mit der Methode
 // setSoTimeout() ein Timeout gesetzt wurde
 System.out.println (e.getMessage());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Eine mögliche Ausgabe des Programms ist:

Warten auf eine Antwort vom Server ...
Nachricht empfangen: Hallo Kerstin Morgen

24.3.3 Multicast in Java

Zuvor wurde die Kommunikation via Sockets als Punkt-zu-Punkt-Verbindung be-
schrieben, was auch als Unicast bezeichnet wird.

Bild 24-9 Unicast

Normalerweise wird diese Art der Kommunikation verwendet, um Daten zwischen
Client und Server – also zwischen genau zwei Komponenten – auszutauschen. In
einzelnen Fällen kann es aber auch nützlich sein, Daten bzw. Anfragen an mehrere

Netzwerkprogrammierung mit Sockets 999

Rechner gleichzeitig senden zu können. Hierzu wird ein Broadcast oder Multicast
benötigt.

Bild 24-10 Multicast

Broadcast bedeutet, dass das gesendete Datenpaket von allen
Rechnern empfangen wird, Multicast hingegen beschränkt sich auf
eine Gruppe von Empfängern.

Eine Gruppe wird durch eine spezielle IP-Adresse spezifiziert. Es handelt sich hierbei
um eine Klasse D-Adresse. IP-Netze werden in verschiedene Netzklassen unterteilt.
Subnetze des Internets werden in die Klassen A, B und C aufgeteilt:

Klasse-A-Netz

Ein Klasse-A-Netz kann bis zu 16.7 Millionen Rechner enthalten. IP-Adressen des
Klasse-A-Netzes umfassen den Bereich 0.x.x.x bis 127.x.x.x.

Klasse-B-Netz

Ein Klasse-B-Netz kann bis zu 65.000 Rechner umfassen. IP-Adressen des Klasse-
B-Netzes umfassen den Bereich 128.0.x.x bis 191.255.x.x.

Klasse-C-Netz

Ein Klasse-C-Netz kann bis zu 254 Rechner umfassen. IP-Adressen des Klasse-C-
Netzes umfassen den Bereich 192.0.0.x bis 223.255.255.x.

Das x in den oben abgedruckten IP-Adressbereichen kann dabei einen Wert
zwischen 0 und 255 annehmen. Meistens werden Klasse-A und Klasse-B Netze in
weitere Subnetze unterteilt.

Klasse D-Adressen liegen im Bereich 224.0.0.0 bis 239.255.255.255 und sind für
einen Multicast reserviert. Der Bereich 224.0.0.0 bis 224.255.255.255 ist reserviert
für den Austausch von Routing-Informationen. Multicast funktioniert auch über die
Grenzen eines Teilnetzes hinweg, soweit die Router diesen Mechanismus unter-
stützen.

Verwendet wird ein Multicast zum Beispiel für firmenweite Updates oder zum Auf-
finden von Server-Anwendungen im Netzwerk (Look-up). Ein Multicast basiert auf
UDP, was die schon zuvor erwähnten Nachteile mit sich bringt. Um einen Multicast

1000 Kapitel 24

zu verwenden, müssen verschiedene Schritte durchlaufen werden. Wie bei der
Verwendung von UDP-Sockets wird die Klasse DatagramPacket zum Versenden
der Daten verwendet.

Der einzige Unterschied zu UDP-Sockets besteht darin, dass der Ser-
ver zusätzlich der Multicast-Gruppe beitreten muss, was durch Aufruf
der Methode joinGroup() erfolgt.

Im Folgenden soll ein einfacher "Look-up"-Mechanismus beschrieben werden. Ein
Client, der einen Dienst sucht, schickt hierzu ein Paket via Multicast ins Netz. Die
Server-Anwendung, die als erste auf dieses Paket antwortet, wird daraufhin zur
weiteren Kommunikation verwendet.

Server

Server

Server

1. request

2. reply

Client

Bild 24-11 "Look-up"-Mechanismus zum Auffinden eines Servers im Netz

Die Server-Anwendung instantiiert die Klasse MulticastSocket, tritt einer Multi-
cast-Gruppe bei (244.5.6.7) und wartet dann, bis eine Nachricht an diese Gruppe
geschickt wird. Aus dem vom Client gesendeten Paket erhält der Server die Adresse
des Clients, an welche er dann eine Antwort schickt. Im Folgenden der Quellcode
des Servers:

// Datei: MulticastServer.java

import java.net.*;
import java.io.*;
public class MulticastServer
{
 // IP-Adresse der Gruppe
 public static final String GRUPPEN_ADRESSE = "224.5.6.7";
 // Port der Gruppe
 public static final int GRUPPEN_PORT = 6789;

 public static void main (String[] args)
 {
 try
 {
 // Erzeugen eines Puffers zum Empfang von Anfragen
 byte[] buffer = new byte[128];

Netzwerkprogrammierung mit Sockets 1001

 DatagramPacket packet =
 new DatagramPacket (buffer, buffer.length);

 InetAddress address =
 InetAddress.getByName (GRUPPEN_ADRESSE);

 // Erzeugen eines Socket
 MulticastSocket socket =
 new MulticastSocket (GRUPPEN_PORT);
 System.out.println ("MulticastSocket erzeugt ...");

 // Beitritt zur Multicast-Gruppe
 socket.joinGroup (address);
 System.out.println ("Der Gruppe beigetreten: " +
 GRUPPEN_ADRESSE + "/" + GRUPPEN_PORT);

 while (true)
 {
 System.out.println ("Warten auf Daten ...");

 // Empfang einer Anfrage
 socket.receive (packet);

 // Extraktion und Ausgabe der Anfrage
 String message = new String (packet.getData(),
 0, packet.getLength());
 System.out.println ("Nachricht empfangen: " +
 message + " von " +
 packet.getAddress ());

 // Beantworten der Anfrage
 message = "Hallo client!";
 DatagramPacket response = new DatagramPacket (
 message.getBytes(), message.length(),
 packet.getAddress(), packet.getPort());

 System.out.println ("Sende Antwort an Client ...");
 socket.send (response);
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Eine mögliche Ausgabe des Programms ist:

MulticastSocket erzeugt ...
Der Gruppe beigetreten: 224.5.6.7/6789
Warten auf Daten ...
Nachricht empfangen: Hallo Server! von /192.168.0.141
Sende Antwort an Client ...
Warten auf Daten ...

1002 Kapitel 24

Die Client-Anwendung schickt eine Anfrage an die Server-Gruppe und wartet da-
raufhin auf eine Antwort. Aus dem vom Server gesendeten Paket erhält der Client die
Adresse des Servers, die dann für eine weitere Kommunikation verwendet werden
kann. Im Folgenden der Quellcode des Clients:

// Datei: MulticastClient.java

import java.net.*;
import java.io.*;

public class MulticastClient
{
 // IP-Adresse der Gruppe
 public static final String GRUPPEN_ADRESSE = "224.5.6.7";
 // Port der Gruppe
 public static final int GRUPPEN_PORT = 6789;

 public static void main (String[] args)
 {
 try
 {
 SocketAddress adresse =
 new InetSocketAddress (GRUPPEN_ADRESSE, GRUPPEN_PORT);
 byte[] message = ("Hallo Server!").getBytes();

 // Verpacken der Anfrage in ein Paket
 DatagramPacket packet =
 new DatagramPacket (message, message.length, adresse);

 // Erzeugen eines Socket und Senden der Anfrage
 MulticastSocket socket = new MulticastSocket();
 socket.send (packet);

 // Erzeugen eines Puffers
 byte[] b = new byte [128];
 packet.setData (b);
 packet.setLength (b.length);

 // Empfang der Antwort
 socket.receive (packet);

 // Extrahieren der Antwort und Ausgabe der Informationen
 String response = new String (packet.getData(),
 0, packet.getLength());

 System.out.println ("Antwort empfangen: " +
 response + " von " +
 packet.getAddress());
 // Schliessen der Socket
 socket.close();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Netzwerkprogrammierung mit Sockets 1003

Eine mögliche Ausgabe des Programms ist:

Antwort empfangen: Hallo client! von /192.168.0.141

Im Gegensatz zur Server-Anwendung muss der Client zum Senden
eines Paketes an eine Multicast-Gruppe nicht dieser Gruppe beitreten,
da es sich um eine so genannte offene Gruppe handelt.

24.4 Protokolle

Ein Protokoll ist ein Standardsatz von Regeln, die bestimmen, wie
Computer miteinander kommunizieren. Protokolle beschreiben sowohl
das zu verwendende Nachrichtenformat, als auch die Reihenfolge, in
der die Nachrichten bestimmter Typen zwischen Computern ausge-
tauscht werden.

Wenn die Client-Anwendung eine größere Menge von Daten sendet, kann die
Server-Anwendung nicht mehr voraussagen, wie viele Bytes ankommen werden. Um
zu garantieren, dass die Server-Anwendung alle Daten liest, die der Client zusendet,
muss dafür ein Protokoll definiert werden. Eine Möglichkeit besteht darin, das Ende
der Daten durch ein bestimmtes Zeichen anzuzeigen, dem so genannten Ende-
Zeichen oder Escape-Zeichen, welches vom Client dann an den Server gesendet
wird, wenn der Client alle Nutzdaten übertragen hat. Der Server überprüft die vom
Client erhaltenen Daten dahingehend, ob der Client das Ende-Zeichen gesendet hat.
Ist dies der Fall, so weiß der Server, dass der Client nun mit der Datenübertragung
fertig ist.

Das definierte Ende-Zeichen darf nicht in den Nutzdaten vorkommen,
da sonst der Server vermutet, dass der Client das Ende-Zeichen
gesendet hat, obwohl das vom Client übertragene Zeichen zu den
Nutzdaten gehörte.

Eine weitere Variante, dem Server mitzuteilen, wie viele Daten vom Client gesendet
werden, besteht darin, dass der Client im Voraus, d. h. im Kopf der Daten, die Anzahl
der zu übertragenen Bytes angibt.

Im folgenden Beispiel wird nun ein Protokoll definiert, bei dem sich der Client und der
Server auf ein Ende-Zeichen einigen. Der Client sendet also als erstes dem Server
das Zeichen zu, das er als Ende-Zeichen gewählt hat. Daraufhin empfängt der
Server so lange Daten vom Client, bis der Server vom Client das Ende-Zeichen
empfangen hat.

1004 Kapitel 24

Im Folgenden wird nun die Server-Anwendung ExtendedTCPServer vorgestellt:

// Datei: ExtendedTCPServer.java

import java.net.*;
import java.io.*;

public class ExtendedTCPServer
{
 // Port des Servers
 public static final int PORT = 10001;
 // Empfangsbuffer-Größe
 private static final int BUFFER_SIZE = 100;

 public static void main (String[] args)
 {
 try
 {
 // Erzeugen der Socket
 ServerSocket socket = new ServerSocket (PORT);

 while (true)
 {
 System.out.println ("Warten auf Verbindungen ...");

 // Verbindung akzeptieren
 Socket client = socket.accept();

 System.out.println ("Verbindung aufgenommen ...");
 InputStream input = client.getInputStream();

 // Warten auf Daten ...
 while (input.available() == 0);

 // Buffer für das Ende-Zeichen
 byte[] escapeZeichen = new byte [1];

 // Als erstes sendet der Client sein Ende-Zeichen
 input.read (escapeZeichen);
 String esc = new String (escapeZeichen);
 System.out.println (esc + " ist das Ende-Zeichen");

 // Erzeugen des Puffers
 byte[] data = null;

 // Lesen der Daten
 while (true)
 {
 data = new byte [BUFFER_SIZE];

 input.read (data);
 String daten = new String (data);
 // Leerzeichen am Anfang und Ende abschneiden
 daten = daten.trim();
 System.out.println ("Empfangene Daten: " + daten);

Netzwerkprogrammierung mit Sockets 1005

 // Enden die Empfangenen Daten mit dem Ende-Zeichen?
 if (daten.endsWith (esc))
 {
 break;
 }
 }
 System.out.println ("Alle Daten vom Client erhalten!");
 client.close();
 }
 }
 catch (Exception e)
 {
 System.out.println (e.getMessage());
 System.exit (1);
 }
 }
}

Die Ausgabe des Programms ist:

Warten auf Verbindungen ...
Verbindung aufgenommen ...
ist das Ende-Zeichen
Empfangene Daten: Hallo Server, hier sind die Daten,

auf die du gewartet hast . . .
1011000001001011000100111000110011001

Empfangene Daten: 0011001001101 Alle Nutzdaten hast du
 erhalten.#
Alle Daten vom Client erhalten!
Warten auf Verbindungen ...

An der Ausgabe der Server-Anwendung ist zu erkennen, dass der Client dem Server
als Erstes das ASCII-Zeichen # als Ende-Zeichen zugesendet hat. Der Server hat
sich intern dieses Zeichen gemerkt und überprüft nun die empfangenen Daten, ob
das Ende-Zeichen enthalten ist. Ist dies der Fall, so beendet der Server die Kom-
munikation mit dem Client – er weiß ja nun, dass der Client alle Nutzdaten gesendet
hat – und geht wieder in Wartestellung.

Im Folgenden soll die Client-Anwendung ExtendedTCPClient betrachtet werden:

// Datei: ExtendedTCPClient.java

import java.net.*;
import java.io.*;

public class ExtendedTCPClient
{
 // Port der Serveranwendung
 public static final int SERVER_PORT = 10001;
 // Rechnername des Servers
 public static final String SERVER_HOSTNAME = "localhost";

 public static void main (String[] args)
 {

1006 Kapitel 24

 if (args.length != 1)
 {
 System.out.println (
 "Aufruf: java TCPClient2 <ESC-Zeichen>");
 System.exit (1);
 }
 if (args [0].length() != 1)
 {
 System.out.println ("Das Escape-Zeichen muss aus" +
 "einem einzelnen Zeichen bestehen.");
 System.exit (1);
 }
 try
 {
 // Erzeugen der Socket und Aufbau der Verbindung
 Socket socket = new Socket (
 SERVER_HOSTNAME, SERVER_PORT);

 System.out.println ("Verbunden mit Server: " +
 socket.getRemoteSocketAddress());

 OutputStream output = socket.getOutputStream();

 // Escape-Zeichen senden, das über
 // die Kommandozeile eingegeben wurde
 output.write (args [0].getBytes());

 // Begrüßeungsnachricht erstellen ...
 String nachricht =
 "Hallo Server, hier sind die Daten,"+
 " auf die du gewartet hast ...";

 // und senden ...
 output.write (nachricht.getBytes());

 byte[] data = new byte [50];

 // Nutzdaten generieren
 for (int i = 0; i < data.length; i++)
 {
 // Zufällig 0 oder 1 generieren
 int rand = (int) (Math.random() * 10);
 data [i] = (rand > 5) ? (byte) '1' : (byte) '0';
 }

 // Nutzdaten senden
 output.write (new String (data).getBytes());

 // Endenachricht senden mit Ende-Zeichen
 nachricht = " Alle Nutzdaten hast du erhalten." + args [0];

 output.write (nachricht.getBytes());
 System.out.println (
 "Fertig mit dem Senden der Nachrichten ...");
 // Beenden der Kommunikationsverbindung
 socket.close();
 }

Netzwerkprogrammierung mit Sockets 1007

 catch (UnknownHostException e)
 {
 // Wenn Rechnername nicht bekannt ist ...
 System.out.println ("Rechnername unbekannt:\n" +
 e.getMessage());
 }
 catch (IOException e)
 {
 // Wenn die Kommunikation fehlschlägt
 System.out.println ("Fehler während der Kommunikation:\n" +
 e.getMessage());
 }
 }
}

Der Aufruf des Clients war:

java ExtendedTCPClient #

Die Ausgabe des Programms ist:

Verbunden mit Server: localhost/127.0.0.1:10001
Fertig mit dem Senden der Nachrichten ...

Der Client-Anwendung wurde beim Aufruf das ASCII-Zeichen # als Ende-Zeichen
übergeben. Dieses Zeichen wird für die Kommunikations-Beendigung benutzt.

Eine andere Möglichkeit, das Ende des Datenstroms anzuzeigen, verwendet HTTP
(HyperText Transfer Protocol). Hier wird im Kopf der Daten die Anzahl der nachfol-
genden Bytes angegeben. Zusätzlich legt dieses Protokoll fest, dass die Client-An-
wendung eine Verbindung aufbaut, eine Anfrage schickt und die Server-Anwendung,
nachdem sie die angeforderten Daten geschickt hat, die Verbindung auch wieder
beendet.

Selbst definierte Protokolle können je nach Anwendung sehr einfach, aber auch sehr
komplex sein. Zum Beispiel wäre es möglich, im Protokoll die auszuführenden Me-
thoden mit den zu übergebenden Parametern anzugeben. Auf diese Weise könnten
direkt Methoden in Objekten auf entfernten Rechnern ausgeführt werden. Diese Art
der Kommunikation wird zum Beispiel von RMI verwendet, das im nächsten Kapitel
näher beschrieben wird.

1008 Kapitel 24

24.5 Übungen

Aufgabe 24.1: Analyse einer Host-Adresse

In dieser Übung schreiben Sie eine Java-Anwendung, die eine Host-Adresse auf
unterschiedliche Arten analysiert.

a) Erstellen Sie die Klasse HostTest mit der Klassenmethode main(). Das Pro-

gramm soll beim Start auf der Konsole einen Parameter übergeben bekommen,
der in der lokalen Variable host vom Typ String gespeichert werden soll. Dieser
Parameter soll den Hostnamen enthalten. Legen Sie im Hauptprogramm ein Array
für Objekte der Klasse InetAddress an und befüllen Sie es mit den IP-Adressen
des Hosts. Geben Sie die Elemente des Arrays auf der Konsole aus.

b) Erweitern Sie die Methode main(), um eine Analyse der Bestandteile der Adres-

se zu ermöglichen. Ergänzen Sie dazu die lokale Variable host so, dass der Wert
dieser Variablen eine URL für das HTTP-Protokoll bildet. Legen Sie die lokale Va-
riable url vom Typ URL an. Verwenden Sie zum Erzeugen eines neuen Objektes
vom Typ URL die zuvor veränderte Variable host als Konstruktorparameter. Ge-
ben Sie mit Hilfe der Methoden, die für Objekte vom Typ URL definiert sind, das
Protokoll, den Rechner und die Datei auf der Konsole aus, auf die die URL ver-
weist.

c) Die Methode main() soll anhand der lokalen Variablen connection vom Typ
URLConnection erweitert werden. Die Variable connection soll auf ein Verbin-
dungsobjekt verweisen, das eine Verbindung zu der in der Variable url gespei-
cherten URL herstellt. Die Variable connection soll dann genutzt werden, um
den Typ des Objektes, den die Variable connection referenziert, die Version des
HTTP-Protokolls und den Typ der Daten auszugeben.

Aufgabe 24.2: Ping Pong

Erstellen Sie eine Anwendung, bei der zwei Clients miteinander über Sockets kom-
munizieren und Tischtennis spielen. Der Ball wird von den zwei Clients nacheinander
geschlagen und dabei von einem Client Ping und vom anderen Client Pong auf der
Konsole ausgegeben. Im zweiten Aufgabenteil sollen die beiden Meldungen nicht
mehr auf den Clients ausgegeben werden, sondern zu einem Server über Sockets
übertragen und dort ausgegeben werden.

24.2.1 Client Ping programmieren

Legen Sie das Paket clients und darin die Klasse ClientPing an.
Folgende konstanten Instanzvariablen soll die Klasse ClientPing haben:

• EIGENER_PORT gibt den Port des Clients an und hat den Wert 10000
vom Typ int,

• GEGENSPIELER_PORT gibt den Port des Gegenspielers an, der den Port
10001 verwendet,

Netzwerkprogrammierung mit Sockets 1009

• SERVER_HOSTNAME gibt den Hostnamen zum Server vom Typ String an
und hat den Wert localhost.

Die Klasse ClientPing muss den Anschlag im Spiel machen, weshalb
beim Starten des Ping-Clients die Ausgabe "Das Spiel beginnt mit
dem Anschlag" erfolgen soll. Innerhalb einer Endlosschleife soll ein So-
cket für die Verbindung zum Gegenspieler erzeugt werden. Daraufhin soll
der Thread des Hauptprogramms für eine Sekunde schlafen gelegt und auf
der Konsole Ping ausgegeben werden. Um dem Gegenspieler zu signali-
sieren, dass ein Ping stattgefunden hat, kann man eine beliebige Nachricht
an ihn schicken und die Socket-Verbindung wieder schließen. Wurde der Ge-
genspieler benachrichtigt, so muss man darauf warten, dass dieser eine
Nachricht zurückschickt, um einen Pong zu signalisieren. Um die Nachricht
zu empfangen, muss ein Objekt vom Typ ServerSocket erzeugt werden.
Dieser Socket muss dann auf eine beliebige Nachricht des Gegenspielers
warten. Der Socket kann geschlossen werden, sobald Daten eingetroffen
sind. Die Endlosschleife kann dann von vorne beginnen.

24.2.2 Client Pong programmieren

Legen Sie im Paket clients die Klasse ClientPong mit folgenden
konstanten Instanzvariablen an:

• EIGENER_PORT gibt den Port des Clients an und hat den Wert 10001
vom Typ int,

• GEGENSPIELER_PORT gibt den Port des Gegenspielers an, der den Port
10000 verwendet,

• SERVER_HOSTNAME gibt den Hostnamen zum Server vom Typ String an
und hat den Wert localhost.

Die Klasse ClientPong wartet auf den Aufschlag des Gegenspielers, wes-
halb beim Starten des Clients die Ausgabe "Warte auf den Aufschlag"
erfolgen soll. Innerhalb einer Endlosschleife wird ein Objekt vom Typ Ser-
verSocket erzeugt, das auf beliebige Daten vom Gegenspieler wartet und
bei einkommenden Daten geschlossen werden kann. Der Client soll sich da-
rauf zum Gegenspieler verbinden. Legen Sie den Thread für eine Sekunde
schlafen und geben Sie in der Konsole Pong aus. Senden Sie dem Gegen-
spieler eine beliebige Nachricht und schließen Sie die Socket-Verbindung,
woraufhin die Endlosschleife von vorne beginnen kann.

Starten Sie ClientPing und ClientPong in eigenen Konsolenfenstern
und beobachten Sie ihren Verlauf der Ausgaben. Um einen korrekten Spiel-
start zu gewährleisten muss ClientPong zuerst gestartet werden und da-
nach ClientPing.

24.2.3 Gemeinsamer Ausgabeserver

Ergänzen Sie das vorherige Programm um einen Server, auf dem die Aus-
gabe der Ballgeräusche Ping und Pong stattfindet.

1010 Kapitel 24

a) Legen Sie das Paket server und darin die Klasse PingPongServer an.
Die Klasse soll die konstanten Instanzvariablen SERVER_PORT vom Typ
int mit dem Wert 10002 und SERVER_HOSTNAME vom Typ String mit
dem Wert localhost besitzen. Das Teilprogramm soll einen ServerSo-
cket mit zwei gleichzeitig möglichen Verbindungsanfragen ermöglichen.
Ankommende Daten sollen entgegengenommen und ausgegeben werden.

b) Passen Sie die Clients an, damit diese für die Ausgabe von Ping und
Pong den PingPongServer nutzen.

c) Führen Sie im Programm aus Teilaufgabe b) die Klasse WorkerThread

ein, die von Thread ableitet. Die Klasse WorkerThread soll im Kon-
struktor eine Referenz auf ein Objekt vom Typ Socket bekommen, diese
Referenz soll in der Instanzvariable client gespeichert werden. Inner-
halb der Methode run() sollen die vom Client ankommenden Daten gele-
sen und ausgegeben werden. Daraufhin kann die Verbindung zum Client
beendet werden.

In der Klasse PingPongServer muss das Objekt vom Typ ServerSo-
cket außerhalb der Endlosschleife initialisiert werden und innerhalb der
Endlosschleife wird nur noch das Socket angenommen und an eine neue
Instanz der Klasse WorkerThread übergeben. Erstellen Sie eine stati-
sche und synchronisierte Methode print(), die einen String als Parame-
ter annimmt und diesen auf der Konsole ausgibt. Die Ausgabe in der Klas-
se WorkerThread soll die Methode print() der Klasse PingPongSer-
ver nutzen, um den konkurrierenden Zugriff auf die Konsole zu synchro-
nisieren.

Aufgabe 24.3: Datenablage auf mehreren Servern

Es soll eine Anwendung mit zwei Servern erstellt werden, die über Sockets Suchan-
fragen beantworten können. Der jeweilige Client verbindet sich zu den Servern und
versendet über UDP Suchanfragen. Bei vorhandenen Dateien antwortet der Server
dem Client.

24.3.1 Unterschiedliche Datenablagen

Legen Sie das Paket datenablage und darin die Klassen Abteilung und
Unternehmen an. In diesen Klassen wird die konstante Klassenvariable
SERVER_PORT vom Typ int und die Klassenvariable daten vom Typ
ArrayList<String> benötigt.

a) In der Klasse Abteilung muss SERVER_PORT mit 10002 initialisiert wer-
den. Die Klasse muss die Liste, auf welche die Klassenvariable daten
zeigt, in der Methode main() mit unterschiedlichen Werten befüllen. In-
nerhalb einer Endlosschleife muss ein Socket vom Typ DatagramSocket
mit dem Parameter SERVER_PORT angelegt werden. Erzeugen Sie einen
Puffer für eingehende Daten, indem Sie ein byte-Array anlegen und es
einem Objekt vom Typ DatagramPacket übergeben. Lassen Sie die
Server auf den angelegten Sockets – mit der Methode receive() – auf

Netzwerkprogrammierung mit Sockets 1011

ein Paket warten. Der Inhalt eines ankommenden Paketes muss mit den
vorhandenen Daten in der Klassenvariable daten verglichen und bei
Übereinstimmung eine Nachricht an den anfragenden Client abgesendet
werden. Die Klasse Abteilung antwortet mit "Datei auf dem Server
der Abteilung". Wenn keine passenden Daten vorhanden sind, braucht
der Server nicht zu antworten.

b) In der Klasse Unternehmen muss SERVER_PORT mit 10001 initialisiert
werden. Diese Klasse soll die Liste, auf welche die Klassenvariable daten
zeigt, in der Methode main() mit Datensätzen befüllen, die sich zu den
Datensätzen der Klasse Abteilung teilweise unterscheiden. Innerhalb
einer Endlosschleife wird das gleiche Verhalten wie in der Klasse Ab-
teilung realisiert. Die Klasse Unternehmen antwortet mit "Datei auf
dem Server des Unternehmens". Wenn keine passenden Daten vor-
handen sind, braucht der Server nicht zu antworten.

24.3.2 Client zur Suchabfrage

Die Klasse Client wird für Suchanfragen angelegt. Sie soll die folgenden
konstanten Klassenvariablen besitzen:

• SERVER_NAMES vom Typ String[]. Diese Klassenvariable soll mit Hilfe
einer Initialisierungsliste mit den Hostnamen der Server initialisiert werden
(in diesem Fall ist es beide Male der String localhost),

• SERVER_PORTS vom Typ int[]. Diese Klassenvarialbe soll mit den
Portnummern der Server (also 10001 und 10002) initialisiert werden,

• SUCHE vom Typ String. Die Klassenvariable SUCHE soll mit einem
beliebigen Suchbegriff initialisiert werden.

Da die Einträge in den Arrays SERVER_NAMES und SERVER_PORTS sich vom
Index her einander entsprechen, kann anhand einer Schleife für jeden Server
im Array SERVER_NAMES der entsprechende Port ermittelt werden. Für die-
sen Zweck soll eine Schleife mit einer Laufvariablen eingesetzt werden. In
dieser Schleife sollen zunächst Objekte der Typen DatagramSocket – für
eine UDP-Verbindung – und DatagramPacket – für UDP-Pakete – verwen-
det werden. Das Objekt vom Typ DatagramPacket wird instantiiert indem
sein Konstruktor als Parameter den Suchbegriff, die Länge des Suchbegriffs,
die Adresse des Servers und den Port annimmt. Dabei können die Adresse
des Servers und der Port ermittelt werden, indem die Laufvariable der umge-
benden Schleife als Index für die zuvor erwähnten Arrays verwendet wird.
Das Paket muss dann über den Socket an den Server gesendet und die
Anwendung auf eine Antwort vorbereitet werden. Dazu muss dem Objekt
vom Typ DatagramPacket über die Methode setData() ein Byte-Array
für die Antwort und über setLength() die Länge des Byte-Arrays überge-
ben werden. Setzen Sie den Timeout des Sockets DatagramSocket mit der
Methode setToTimeout() auf eine Sekunde. Lassen Sie die Anwendung
das Paket mit der Antwort empfangen und geben Sie den Inhalt aus. Für den
Fall, dass ein Timeout eintreffen sollte, muss die SocketTimeoutExcep-

1012 Kapitel 24

tion abgefangen und eine einfache Beschreibung auf der Konsole ausge-
geben werden.

24.3.3 Suche über Multicasting

 In dieser Teilaufgabe sollen für die beiden Server-Klassen Multicast-Sockets
verwendet und im Client die Suchabfrage über Multicast versendet werden.

a) Innerhalb der Endlosschleife in beiden Server-Klassen Abteilung und
Unternehmen muss der zuvor verwendete Socket vom Typ Datagram-
Socket durch den Socket vom Typ MulticastSocket ersetzt werden.
Dieser muss weiterhin mit dem Parameter SERVER_PORT angelegt wer-
den. Dazu kommt, dass die Server mit Hilfe der Methode joinGroup()
der neuen Socket-Klasse einer Multicast-Gruppe beitreten müssen. Die
für diese Aufgabe verwendete Multicast-Gruppe soll die Adresse
225.6.7.8 haben. Es soll dazu zusätzlich eine weitere konstante
Klassenvariable MULTICAST_GROUP vom Typ String in beiden Klassen
definiert werden und mit der Zeichenkette 225.6.7.8 initialisiert werden.
Nach dem Anlegen des Sockets soll diese Variable der Klassenmethode
getByName() der Klasse InetAddress übergeben werden, um den
Namen der Multicast-Gruppe aufzulösen. Die aufgelöste Adresse der
Multicast-Gruppe soll anschließend der Methode joinGroup() der Klas-
se MulticastSocket übergeben werden.

b) Durch die Verwendung von Multicast wird die Schleife in der Client-An-
wendung unnötig und beide Server können unter einer Portnummer lau-
fen. Dazu soll die Klasse Client um die konstanten Klassenvariablen
SERVER_PORT vom Typ int und SERVER_NAME vom Typ String
ergänzt und mit jeweils den Werten 10000 und 225.6.7.8 initialisiert
werden. Die Klassenvariablen SERVER_PORTS und SERVER_NAMES wer-
den nicht mehr benötigt und können daher entfernt werden. Entfernen Sie
die Schleife, die das Array SERVER_NAMES durchläuft. Die Suchanfrage
soll nur zu der Multicast-Adresse SERVER_NAME, sowie dem Port SER-
VER_PORT erfolgen. Durch die entfallene Schleife wird nur die erstankom-
mende Nachricht entgegen genommen. Dieses Verhalten ist in dieser
Übung gewünscht und soll daher nicht geändert werden.

			

Remote Method Invocation

25.1 Die Funktionsweise von RMI
25.2 Entwicklung einer RMI-Anwendung
25.3 Ein einfaches Beispiel
25.4 Object by Value und Object by Reference
25.5 Verwendung der RMI-Codebase
25.6 Häufig auftretende Fehler und deren Behebung

25.7 Übungen

25 Remote Method Invocation

Wie in Kapitel 24 gezeigt, kann die Kommunikation zwischen Anwendungsmodulen
auf verschiedenen Rechnern mit Hilfe von Sockets erfolgen. Für größere Anwen-
dungen kann diese Art des Nachrichtenaustauschs einen relativ großen Implementie-
rungsaufwand bedeuten. Ein weiterer Nachteil besteht darin, dass der Compiler eine
Überprüfung der Aufruf-Schnittstelle nicht durchführen kann, da nur ein Strom von
Bytes übertragen wird. Eine Abhilfe schafft hier RMI (Remote Method Invocation),
das unter Java eine weitere Kommunikationsmöglichkeit zwischen Programmen auf
verschiedenen Rechnern zur Verfügung stellt. RMI weist die folgenden wesentlichen
Eigenschaften auf:

Methodenaufrufe über Rechnergrenzen

Methoden von Objekten können auch aufgerufen werden, wenn sich ein Objekt in
einer anderen virtuellen Maschine oder sogar auf einem anderen Rechner befindet.

Ortstransparenz von Objekten

Bei der Entwicklung eines Systems, das RMI zur Kommunikation verwendet, muss
während der Implementierung keine Rücksicht auf die Verteilung genommen werden.
Der Programmierer sieht keinen wesentlichen Unterschied zwischen einem direkten
Methodenaufruf oder einem Aufruf über RMI.

Mit RMI können Methoden in anderen virtuellen Maschinen aufgerufen
werden.

Object by Reference/Object by Value

RMI bietet die Möglichkeit, ein Objekt auf einen anderen Rechner zu schieben, wo-
durch es möglich wird, Daten und Anwendungslogik in einem Netz auszutauschen.
Es kann auch eine Referenz auf ein Objekt an ein anderes Objekt übergeben wer-
den, wodurch ein Callback236 ermöglicht wird.

Beachten Sie, dass RMI eine Java-spezifische Lösung ist, die nicht
zur Kommunikation mit Programmen verwendet werden kann, die in
anderen Programmiersprachen – wie zum Beispiel in C – geschrieben
wurden.

25.1 Die Funktionsweise von RMI

Java ermöglicht es, Methoden von Objekten aufzurufen, die in derselben virtuellen
Maschine instantiiert wurden. Hierzu wird nur die Referenz auf ein Objekt benötigt.

236 Bei einem Callback-Mechanismus wird an ein Empfänger-Objekt die Referenz des Sender-Objek-

tes übergeben. Damit ist das Empfänger-Objekt in der Lage, sich beim Sender-Objekt zu melden,
d. h. einen Rückruf (Callback) auszuführen.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_25,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Remote Method Invocation 1015

Virtuelle Maschine

Objekt B
Methodenaufruf

Objekt A

Bild 25-1 Lokaler Methodenaufruf

RMI erweitert den lokalen Methodenaufruf dahingehend, dass ein Methodenaufruf
über die Grenze der virtuellen Maschine bzw. über die Rechnergrenze hinweg erfol-
gen kann.

Methodenaufruf

Virtuelle
Maschine

Objekt A

Virtuelle
Maschine

Objekt BRMI

Bild 25-2 Entfernter Methodenaufruf

Das Objekt, in dem über RMI Methoden ausgeführt werden, wird Ser-
ver-Objekt bzw. Remote-Objekt genannt. Das Server-Objekt bietet
hierbei einen Dienst an, der von einem Client genutzt wird.

25.1.1 Die Architektur von RMI

Wie andere Arten der Netzwerk-Kommunikation ist auch die Architektur von RMI in
einem Schichtenmodell aufgebaut. Bild 25-3 zeigt die Architektur von RMI.

Client

Server-Stub
(Proxy)

Remote Ref.-
Schicht

Transport-
schicht

Netzwerkschicht

Server
Methodenaufruf

Remote Ref.-
Schicht

Transport-
schicht

Skeleton

Bild 25-3 Die Architektur von RMI

Beim Aufruf einer Methode eines Remote-Objektes werden mehrere Schichten
durchlaufen. Der Client ruft die Methode, die im Server-Objekt ausgeführt werden
soll, nicht direkt auf diesem Objekt auf, sondern die Methode wird zuerst auf einem

1016 Kapitel 25

Stellvertreter-Objekt (Proxy), dem so genannten Server-Stub aufgerufen. Der Me-
thodenaufruf wird dann über die Remote Reference-Schicht auf der Client-Seite, wo
das Server-Objekt adressiert wird (IP-Adresse und Port des Server-Objektes) und
über die Transportschicht über das Netz geleitet. Auf der Seite des Servers wird der
vom Client getätigte Methodenaufruf über die Transport-Schicht an die Remote Refe-
rence-Schicht weitergeleitet. In der Remote Reference-Schicht des Servers ist die
Logik implementiert, die dafür benötigt wird, einen Methodenaufruf eines Clients an
das Server-Objekt weiterzuleiten. Mit anderen Worten, es gibt keinen Vermittler zwi-
schen der Remote Reference-Schicht und dem eigentlichen Server-Objekt, sondern
in der Remote Reference-Schicht ist eine Referenz auf das Server-Objekt hinterlegt
und es können von dort aus direkt Aufrufe auf diesem Objekt durchgeführt werden.
Ist die Methode abgearbeitet, wird der Rückgabewert über denselben Weg zurück-
transportiert und an den Client übergeben.

Bis zur Java-Version 1.1 befand sich zwischen der Remote Refe-
rence-Schicht und dem Server-Objekt auf der Server-Seite ein so
genannter Skeleton, was wiederum ein Stellvertreter des Server-Ob-
jektes war. Seine Aufgabe bestand darin, den eigentlichen Methoden-
aufruf auf dem Server-Objekt auszuführen.

Da der Client immer die Methoden im lokalen Stellvertreter, dem Ser-
ver-Stub, aufruft, muss der Entwickler eines solchen Systems nichts
über die Netzwerk-Kommunikation selbst wissen.

Damit der lokale Stellvertreter des Server-Objektes dieselben Methoden wie auch
das Server-Objekt selbst enthält, implementieren beide die gleiche Schnittstelle. Die-
se Schnittstelle wird Remote-Schnittstelle genannt und beschreibt die vom Server
im Netz angebotenen Methoden. Bild 25-4 zeigt nochmals den Aufruf einer Methode
des Servers.

Virtuelle
Maschine

Client

Virtuelle
Maschine

Server

Server-Stub
(Proxy)

Bild 25-4 Methodenaufruf im Server

Remote Method Invocation 1017

Der Client-Proxy und das Server-Objekt implementieren dieselbe Re-
mote-Schnittstelle.

Das folgende Kapitel zeigt, wie eine Anwendung unter Verwendung von RMI ent-
wickelt wird.

25.2 Entwicklung einer RMI-Anwendung

Ein Server-Objekt kann Methoden anbieten, die nur lokal, d. h. in derselben virtuellen
Maschine, genutzt werden können, aber auch Methoden, die von jedem entfernten
Client – also remote – aufgerufen werden können. Unbenommen davon ist die Tat-
sache, dass Methoden, die remote aufgerufen werden können, durchaus auch von
Objekten innerhalb derselben Virtuellen Maschine aufrufbar sind.

Dieser Umstand, dass Methoden für einen entfernten Aufruf bereitgestellt werden
müssen, hat zur Konsequenz, dass sich der Entwickler eines RMI-Servers entschei-
den muss, welche der Methoden remote angeboten werden sollen und welche nicht.
Für die lokal angebotenen Methoden kann der Entwickler eine Schnittstelle definie-
ren, – eine so genannte lokale Schnittstelle – was aber nicht zwingend erforderlich
ist. Für die remote anzubietenden Methoden muss jedoch zwingend eine Schnitt-
stelle, die so genannte Remote-Schnittstelle, definiert werden.

Die Remote-Schnittstelle beschreibt das vom Server netzwerkweit an-
gebotene Protokoll. Mit anderen Worten, für alle in einer Remote-
Schnittstelle deklarierten Methoden stellt die Server-Klasse eine
Implementierung bereit und ein Client kann die Methoden über den
Server-Stub als dessen Stellvertreter aufrufen.

25.2.1 Entwicklungsprozess des RMI-Servers

In Bild 25-5 ist der Entwicklungsprozess eines RMI-Servers dargestellt. Es sind somit
folgende Schritte notwendig, um einen lauffähigen Server zu erstellen:

• Im ersten Schritt müssen das Remote-Protokoll und ggf. das lokale Protokoll de-
finiert werden. Diese Protokolle – lokal und remote – resultieren in Java-Schnitt-
stellen, welche dann von der Server-Klasse implementiert werden müssen.

• Der nächste Schritt besteht darin, die Server-Klasse zu schreiben, wobei alle
Schnittstellen des lokalen und Remote-Protokolls implementiert werden müssen.
Der Server stellt damit eine Implementierung des Protokolls bereit.

• Abschließend wird die Server-Klasse mit dem Java-Compiler übersetzt. Resultat
davon ist, dass für die Server-Klasse und für alle Klassen, von der sie abhängt,
eine class-Datei erzeugt wird. Somit werden auch die Quelldateien der Schnitt-
stellen, in denen das lokale und das Remote-Protokoll definiert sind, mit übersetzt.

1018 Kapitel 25

Definition des lokalen Protokolls und der
Remote - Schnittstelle (n) der Server - Klasse

RemoteSchnittstelle2. java

RemoteSchnittstelleN . java

Implementierung des lokalen Protokolls und der
Remote-Schnittstelle(n) in der Server-Klasse

ServerKlasse.java

[Bis JDK 1.1]

ServerKlasse.class

ServerKlasse_Skel.class

[Notwendig bis JDK 1.4]

ServerKlasse_Stub.class

RemoteSchnittstelle1. java

Generierung des Server-Stubs mit rmic

Kompilieren der Server-Klasse mit javac

Bild 25-5 Entwicklung des Servers

Wird ein JDK der Version 5.0 oder höher eingesetzt, so ist man nach der Überset-
zung der Server-Klasse fertig. Der Entwicklungsprozess der Server-Anwendung ist
also identisch zu der Entwicklung einer herkömmlichen Java-Anwendung. Sollen je-
doch von der Server-Anwendung Clients unterstützt werden, für deren Erzeugung
und Ausführung eine JDK-Version kleiner 5.0 eingesetzt wird, so muss der letzte
Schritt des Server-Entwicklungsprozesses ebenfalls durchgeführt werden:

• Mit Hilfe des RMI-Compilers rmic, der ebenfalls im JDK enthalten ist, muss der
Stellvertreter für die Server-Klasse – also die Stub-Klasse – generiert werden. Der
Aufruf von rmic erfolgt dabei auf der class-Datei der Server-Klasse. Die damit
explizit durch den Programmierer generierte Stub-Klasse kapselt dann das Re-
mote-Protokoll, welches ein RMI-Client bis zur JDK-Version 1.4 für die Kommu-
nikation mit einem RMI-Server benötigt. Dabei kümmert sich die Stub-Klasse um
die Kommunikationsprotokolle der tieferen Ebenen wie zum Beispiel TCP/IP, die

Remote Method Invocation 1019

automatisch durch die entsprechenden Klassen der RMI-API eingebunden wer-
den. Wird zudem die JDK-Version 1.1 eingesetzt, so erzeugt der Aufruf von rmic
zusätzlich die bis dahin benötigte Skeleton-Klasse, die als Stellvertreter auf der
Server-Seite benötigt wurde.

Wird der RMI-Compiler ohne Angabe von Optionen aufgerufen, so
wird eine Stub-Klasse generiert, welche das JRMP (Java Remote
Method Protocol) in der Version 1.2 implementiert. Sollen Clients
unterstützt werden, die mit der Protokoll-Version 1.1 arbeiten –
RMI-Clients, welche mit dem JDK 1.1 kompiliert und ausgeführt
werden – so muss beim Aufruf von rmic die Option vcompat an-
gegeben werden. Es wird damit eine Stub-Klasse und eine Skele-
ton-Klasse generiert, sodass Clients beider Protokoll-Versionen –
1.1 und 1.2 – zum Einsatz kommen können.

Der RMI-Compiler generiert aus der Server-Klasse eine temporäre
Quellcode-Datei für die Stub-Klasse mit dem Namen <Server-
ClassName>_Stub.java, die übersetzt und anschließend wieder
gelöscht wird. Wird der RMI-Compiler nun mit der Option keep auf-
gerufen, so wird die autogenerierte Stub-Quellcode-Datei nach dem
Kompilieren nicht gelöscht und es kann daran studiert werden, was
rmic "im Verborgenen" beim Generieren der Stub-Klasse anstellt.

Der zuletzt beschriebene Schritt ist – wie zuvor gesagt – nur notwendig, wenn der
Server auch Clients bedienen soll, die mit einem JDK 1.4 oder niedriger entwickelt
und ausgeführt werden.

Seit der JDK-Version 5.0 werden die Stub-Klassen dynamisch vom
Laufzeitsystem generiert werden.

Versucht ein RMI-Client, der mit einer JDK-Version kleiner 5.0 erstellt
wurde, ein Objekt einer dynamisch generierten Stub-Klasse als Ser-
ver-Stellvertreter zu laden, so resultiert dieses Vorhaben in einer
ClassNotFoundException. Der Grund dafür ist, dass die dyna-
misch generierte Stub-Klasse intern die Klasse RemoteObjectInvo-
cationHandler verwendet, die erst seit der Version 5.0 im JDK ent-
halten ist.

25.2.2 Entwicklungsprozess des RMI-Clients

Die Entwicklung des Clients unterscheidet sich nicht von der Entwicklung einer her-
kömmlichen Java-Anwendung – egal welche JDK-Version verwendet wird. Es müs-
sen somit folgende Schritte durchgeführt werden:

Vorsicht!

1020 Kapitel 25

• Im ersten Schritt wird die Client-Klasse implementiert. Der Client verschafft sich
eine Referenz auf den Server-Stellvertreter. Dabei ist darauf zu achten, dass die
Referenzvariable vom Typ der Remote-Schnittstelle ist.

Implementiert die Server-Klasse die Schnittstelle RemInterface,
wodurch das Remote-Protokoll des RMI-Servers spezifiziert wird,
so muss der Client für die Abspeicherung der Referenz auf das
Stub-Objekt als Server-Stellvertreter eine Referenzvariable vom
Typ der Remote-Schnittstelle – in diesem Fall also vom Typ Rem-
Interface – verwenden.

• Im zweiten Schritt wird der Client – wie ein herkömmliches Java-Programm auch –

mit dem Java-Compiler javac übersetzt. Die daraus generierte class-Datei ist
nun bereit für die Ausführung.

In Bild 25-6 ist der Entwicklungsprozess eines Clients nochmals grafisch dargestellt.

 Implementierung der
Client-Klasse

Kompilieren der
Client-Klasse mit javac

Client-Klasse

1.

2.

Bild 25-6 Entwicklung des Clients

25.2.3 Starten und Ausführen einer RMI-Anwendung

Um eine RMI-Anwendung auszuführen, müssen drei Schritte durchlaufen werden.
Als erstes muss man einen Namensdienst, die so genannte RMI-Registry, starten.
Danach muss sich der RMI-Server an diesem Namensdienst anmelden und das
Server-Objekt darin unter einem festen Namen registrieren. Im letzten Schritt be-
schafft sich ein Client über den Namensdienst eine Referenz auf ein Objekt der Stub-
Klasse und kann auf diesem Server-Stellvertreter-Objekt die Methoden des Servers
aufrufen. Diese drei Schritte werden in den folgenden Kapiteln näher betrachtet.

25.2.3.1 Starten der RMI-Registry

Damit ein RMI-Client mit einer RMI-Server-Anwendung kommunizieren kann, muss
der Client vom Server-Rechner, auf dem die RMI-Server-Anwendung installiert ist,
sich als erstes ein Objekt der Stub-Klasse beschaffen, damit er auf dem Stellver-
treter-Objekt quasi lokal die Methoden des Servers aufrufen kann. Es muss also auf
dem Server-Rechner ein Dienst verfügbar sein, an den sich der Client wenden kann,
um eine Instanz der Stub-Klasse zu erhalten. Dieser Dienst wird von der RMI-Re-
gistry bereitgestellt. Sie wird gestartet, indem in einer Konsole das Programm rmi-
registry aufgerufen wird, das sich im bin-Verzeichnis des JDK befindet. Die

Remote Method Invocation 1021

gestartete RMI-Registry stellt nun einen einfachen Namensdienst bereit, der sowohl
vom Server als auch vom Client über die statischen Methoden der Klasse
java.rmi.Naming in Anspruch genommen werden kann.

25.2.3.2 Binden des Server-Objektes

Die Server-Anwendung bindet nun beim Start eine Instanz des Server-Objektes unter
einen festen Namen – dem so genannten Service-Namen des Servers – an die
RMI-Registry. Mit anderen Worten, die RMI-Registry besitzt nach der Bindung eines
Server-Objektes eine Referenz auf dieses Objekt und kann auf Wunsch – das heißt
bei einer Anfrage von einem Client – einen Stellvertreter des Server-Objektes an den
Client senden. Der Vorgang, bei dem sich ein RMI-Server bei der RMI-Registry
registriert, wird als "Binden" des Servers bezeichnet. Das Binden des Server-Objek-
tes an die RMI-Registry erfolgt über die Klassemethode bind() der Klasse
java.rmi.Naming. Ihr wird der Service-Name als String und eine Referenz auf das
Server-Objekt übergeben.

Die RMI-Registry bindet dann aber nicht das übergebene Server-Ob-
jekt, sondern instantiiert die Stub-Klasse und bindet stattdessen das
erzeugte Stellvertreter-Objekt.

Der genaue Ablauf dieses Vorgangs und wie dafür die Klasse java.rmi.Naming
eingesetzt wird, ist in Kapitel 25.3 beschrieben.

Wichtig ist jedoch, dass die RMI-Registry auf demselben Rechner ver-
fügbar ist, auf dem die Server-Anwendung läuft.

25.2.3.3 Lookup des Clients

Nachdem die Server-Anwendung eine Instanz des Stellvertreter-Objektes an die
RMI-Registry unter einem eindeutigen Service-Namen gebunden hat, kann sich der
Client über diesen Namen eine Referenz auf das Stellvertreter-Objekt beschaffen.

Über das Stellvertreter-Objekt, das der Client referenziert, besitzt die-
ser dann quasi eine entfernte Referenz auf das eigentliche Server-Ob-
jekt, die so genannte Remote-Referenz.

Dieser Vorgang, bei dem sich ein Client eine Referenz auf den Server-Stellvertreter
beschafft, wird als "Look-up" bezeichnet. Es wird dafür die Klassenmethode look-
up() der Klasse java.rmi.Naming verwendet. Über die Remote-Referenz auf das
Server-Objekt kann nun der Client den angebotenen Dienst des RMI-Servers in
Anspruch nehmen.

1022 Kapitel 25

Bild 25-7 zeigt nochmals den gesamten Vorgang vom Start der RMI-Registry bis zum
Aufrufen einer Methode des Servers durch den Client.

Start der RMI-Registry

Start des Servers

1.

2.

Binden des
Server-Objektes3.

Start des Clients4.

Look-up5.

Methoden des
Server-Objekts aufrufen6.

Bild 25-7 Ablauf der Client/Server-Kommunikation

25.3 Ein einfaches Beispiel

Im Folgenden soll nun anhand eines einfachen Beispiels gezeigt werden, wie die
RMI-API verwendet wird. Dabei werden ein RMI-Server und ein Client entwickelt,
wobei der Client einen String durch Aufruf einer Methode des Servers an diesen
sendet. Der Server gibt den empfangenen Text dann in der Konsole der Server-
Anwendung aus. In Bild 25-8 ist das Klassendiagramm der Beispiel-Anwendung zu
sehen.

 interface

java. rmi .Remote java. rmi .server. UnicastRemoteObject

interface

RMIServer

RMIServerImpl

+setString
+setString

RMIClient

+main

ruft auf

Bild 25-8 Klassendiagramm der Anwendung

Remote Method Invocation 1023

Die Schnittstelle RMIServer ist von der Schnittstelle Remote abgeleitet und bildet
somit die Remote-Schnittstelle des Servers. Das Server-Objekt RMIServerImpl ist
von der Klasse UnicastRemoteObject abgeleitet und implementiert die Remote-
Schnittstelle. Die Klasse RMIClient stellt den Client dar und enthält eine Remote-
Referenz auf das Server-Objekt. Da zum Ausführen von Methoden im Server-Objekt
immer die Remote-Schnittstelle verwendet wird, assoziiert RMIClient die Schnitt-
stelle RMIServer.

25.3.1 Implementierung der Remote-Schnittstelle

Der erste Schritt besteht darin, die Remote-Schnittstelle zu definieren. Diese Schnitt-
stelle beschreibt die Methoden, die von einem Programm auf einem anderen Rech-
ner aus im Server aufgerufen werden können. Im Gegensatz zu normalen Schnitt-
stellen muss die Remote-Schnittstelle von der Schnittstelle Remote, die sich im Pa-
ket java.rmi befindet, abgeleitet werden. Die Schnittstelle Remote enthält keine
Methoden und dient lediglich der Markierung, sodass die Methoden in den von ihr
abgeleiteten Schnittstellen remote aufgerufen werden können – sie ist also eine
Marker-Schnittstelle. Außerdem muss bei allen deklarierten Methoden angegeben
werden, dass diese eine RemoteException werfen können. Diese Exception kann
geworfen werden, wenn ein Fehler bei der Kommunikation zwischen Client und Ser-
ver auftritt.

Sollen an die deklarierten Methoden der Remote-Schnittstelle – also
an die Methoden, die auf dem entfernten Server-Objekt aufgerufen
werden können – selbst definierte Referenztypen – also Objekte von
Klassen – übergeben werden oder gibt die Methode einen selbst defi-
nierten Referenztyp zurück, so muss sichergestellt sein, dass die ent-
sprechenden Klassen:

• entweder dafür sorgen, dass deren Instanzen serialisierbar
• oder deren Instanzen Remote-Objekte sind.

Wie Objekte von Klassen die Serialisierbarkeit erlangen oder zu Remote-Objekten
werden, wird in Kapitel 25.4 ausführlich beschrieben. Einige Klassen der Java-Klas-
senbibliothek erfüllen jedoch schon diese Forderungen – wie beispielsweise die Klas-
se String. Somit können Referenzen auf Objekte dieser Klassen als Übergabepa-
rameter oder Rückgabewert einer Methode der Remote-Schnittstelle dienen. Werden
hingegen an die Methoden primitive Datentypen übergeben oder liefern diese Werte
eines primitiven Typs zurück, so muss nichts weiter beachtet werden.

Der folgende Code zeigt die Remote-Schnittstelle des Servers:

// Datei: RMIServer.java
import java.rmi.*;

public interface RMIServer extends Remote
{
 // Methode des Servers, die remote ausgeführt werden kann
 void setString (String str) throws RemoteException;
}

Vorsicht!

1024 Kapitel 25

25.3.2 Implementierung der Server-Klasse

Die Server-Klasse selbst muss die Remote-Schnittstelle, das heißt die Remote-Me-
thoden, implementieren. Im Konstruktor der Basisklasse UnicastRemoteObject
wird das Server-Objekt zum Remote-Objekt gemacht, wodurch es ankommende Auf-
rufe akzeptieren kann. Da bei diesem Vorgang Netzwerkfehler auftreten können,
muss auch beim Konstruktor angegeben werden, dass eine RemoteException ge-
worfen werden kann.

Damit die Server-Klasse als Remote-Objekt verwendet werden kann,
wird sie in der Regel von der Klasse UnicastRemoteObject des
Paketes java.rmi.server abgeleitet.

Um das Server-Objekt an der RMI-Registry anzumelden, wird die Klassenmethode
bind() bzw. rebind() der Klasse Naming des Paketes java.rmi aufgerufen.
Der Unterschied zwischen bind() und rebind() besteht darin, dass das Server-
Objekt mit bind() nur einmal angemeldet werden kann. Wird erneut versucht, die-
ses Objekt anzumelden, so wird von der RMI-Registry eine Exception vom Typ Al-
readyBoundException geworfen. rebind() hingegen überschreibt eine bereits
unter diesem Namen bestehende Anmeldung. Als erster Parameter ist bei bind()
bzw. rebind() die URL des Servers anzugeben. Die URL hat das folgende Format:

rmi://Hostname/ServiceName

rmi ist das zu verwendende Protokoll. Hostname ist der Name des Rechners, auf
welchem die RMI-Registry gestartet wurde. Da die RMI-Registry immer auf demsel-
ben Rechner gestartet wird, auf dem auch das Server-Objekt zu finden ist, kann hier
immer localhost angegeben werden. Wird wie im folgenden Beispiel kein Name
verwendet, dann wird automatisch localhost eingesetzt. ServiceName gibt den
Namen des Server-Objektes an, unter welchem der Client dann dieses ansprechen
kann. Dieser Name kann frei gewählt werden. Um ein Objekt aus der RMI-Registry
zu entfernen, wird die Klassenmethode unbind() ausgeführt:

Naming.unbind (URL);

Die URL ist dieselbe, die auch bei bind() bzw. unbind() zur Registrierung des
Server-Objektes verwendet wurde. Der folgende Code zeigt die Implementierung der
Server-Klasse:

// Datei: RMIServerImpl.java

import java.rmi.*;
import java.rmi.server.*;
import java.net.*;

public class RMIServerImpl extends UnicastRemoteObject
 implements RMIServer
{
 private static final String HOST = "localhost";
 private static final String SERVICE_NAME = "RMI-Server";

Remote Method Invocation 1025

 public RMIServerImpl() throws RemoteException
 {
 String bindURL = null;
 try
 {
 bindURL = "rmi://" + HOST + "/" + SERVICE_NAME;
 Naming.rebind (bindURL, this);
 System.out.println (
 "RMI-Server gebunden unter Namen: "+ SERVICE_NAME);
 System.out.println ("RMI-Server ist bereit ...");
 }
 catch (MalformedURLException e)
 {
 System.out.println ("Ungültige URL: " + bindURL);
 System.out.println (e.getMessage());
 System.exit (1);
 }
 }

 // Die in der Remote-Schnittstelle RMIServer deklarierte Methode
 // setString() muss in der Server-Klasse implementiert werden
 public void setString (String s) throws RemoteException
 {
 System.out.println ("Nachricht vom Client erhalten: " + s);
 }

 public static void main (String[] args)
 {
 try
 {
 new RMIServerImpl();
 }
 catch (RemoteException e)
 {
 System.out.println
 ("Fehler während der Erzeugung des Server-Objektes");
 System.out.println (e.getMessage());
 System.exit (1);
 }
 }
}

Um ein Objekt zum Remote-Objekt zu machen, kann die Server-Klasse wie im obi-
gen Beispiel von UnicastRemoteObject abgeleitet werden. Eine andere Möglich-
keit besteht darin, die Klassenmethode exportObject() der Klasse UnicastRe-
moteObject auszuführen, z. B.:

UnicastRemoteObject.exportObject (this);

Dies ermöglicht es, dass die Server-Klasse von einer anderen Klasse abgeleitet wer-
den kann. Ein weiterer Vorteil kann darin bestehen, dass das Objekt nicht automa-
tisch beim Instantiieren zum Remote-Objekt wird. Soll ein Objekt nicht mehr remote
ansprechbar sein, kann die Klassenmethode unexportObject() aufgerufen wer-
den:

UnicastRemoteObject.unexportObject (this, true);

1026 Kapitel 25

Der zweite Parameter gibt an, ob das Objekt sofort entfernt werden soll, auch wenn
noch RMI-Aufrufe ausgeführt werden.

25.3.3 Implementierung des RMI-Clients

Als nächstes wird der Client implementiert. Hierbei ist darauf zu achten, dass aus-
schließlich die Remote-Schnittstelle zum Aufruf von Methoden des Servers verwen-
det werden kann. Der Client erhält die Remote-Referenz des Servers durch Aufruf
der Klassenmethode lookup() der Klasse Naming. Auch hierbei wird eine URL
zum Auffinden des Servers verwendet. Wichtig ist hierbei, dass der Rechnername
den Rechner bezeichnet, auf dem sich die RMI-Registry befindet, in der das Server-
Objekt gebunden wurde. Im folgenden Beispiel wird localhost verwendet, da bei-
de Programme auf demselben Rechner laufen. Der Client erhält von der Methode
lookup() als Rückgabe eine Referenz vom Typ Remote, die dann auf die Remote-
Schnittstelle gecastet wird. Hier der Code des Clients:

// Datei: RMIClient.java

import java.rmi.*;
import java.net.*;

public class RMIClient
{
 private static final String HOST = "localhost";
 private static final String BIND_NAME = "RMI-Server";

 public static void main (String[] args)
 {
 try
 {
 String bindURL = "rmi://" + HOST + "/" + BIND_NAME;
 RMIServer server = (RMIServer) Naming.lookup (bindURL);
 System.out.println
 ("Remote-Referenz erfolgreich erhalten.");
 System.out.println ("Server ist gebunden an: " + bindURL);

 // setString() des Server-Objektes aufrufen
 server.setString ("Hallo Server");
 System.out.println
 ("Methode setString() des Servers aufgerufen");
 }
 catch (NotBoundException e)
 {
 // Wenn der Server nicht registriert ist ...
 System.out.println ("Server ist nicht gebunden:\n" +
 e.getMessage());
 }
 catch (MalformedURLException e)
 {
 // Wenn die URL falsch angegeben wurde ...
 System.out.println ("URL ungültig:\n" + e.getMessage());
 }

Remote Method Invocation 1027

 catch (RemoteException e)
 {
 // Wenn während der Kommunikation ein Fehler auftritt
 System.out.println ("Fehler während Kommunikation:\n" +
 e.getMessage());
 }
 }
}

25.3.4 Starten der gesamten RMI-Anwendung

Um das Programm zu starten, sind mehrere Schritte notwendig. Es ist darauf zu ach-
ten, dass alle Quelldateien im selben Verzeichnis liegen. Zuerst werden alle Klassen
kompiliert. Dies geschieht durch den Aufruf:

javac *.java

Dabei werden die Dateien RMIClient.class, RMIServer.class und RMISer-
verImpl.class erzeugt. Es sei hier nochmals angemerkt, dass mit Hilfe der RMI-
Compilers rmic nur dann zusätzlich die Stub-Klasse generiert werden muss, wenn
Clients mit einer JDK-Version kleiner 5.0 vom RMI-Server bedient werden sollen. Ist
dies der Fall, so muss der Aufruf folgendermaßen erfolgen:

rmic RMIServerImpl

Dieser Aufruf erzeugt dann die class-Datei RMIServerImpl_Stub.class. An-
schließend muss die RMI-Registry durch den Befehl

rmiregistry

gestartet werden. Es ist darauf zu achten, dass diese aus dem Verzeichnis gestartet
wird, in welchem sich auch die Klassen der Anwendung befinden. Die RMI-Registry
gibt nach dem Start keine Meldungen aus. Die Konsole ist jedoch nach dem Start der
Registry gesperrt237. Danach kann der Server durch einen herkömmlichen Java-
Interpreter-Aufruf gestartet werden:

java RMIServerImpl

Die Server-Anwendung bindet damit ein Server-Objekt an die RMI-Registry. Der Ser-
ver ist nun bereit und kann Anfragen von Clients bedienen. In der Server-Konsole
wird folgender Text ausgegeben:

Eine mögliche Ausgabe des Servers ist:

RMI-Server gebunden unter Namen: RMI-Server
RMI-Server ist bereit ...

237 Unter LINUX kann durch den Aufruf von rmiregistry & die RMI-Registry als Hintergrundprozess

gestartet werden. Die Konsole ist dadurch nicht gesperrt. Unter Windows kann dafür der Befehl
start rmiregistry verwendet werden. Es öffnet sich dadurch ein neues Konsolenfenster, in
dem der RMI-Registry-Prozess ausgeführt wird.

1028 Kapitel 25

Der Client wird ebenfalls durch einen einfachen Interpreter-Aufruf gestartet:

java RMIClient

Eine mögliche Ausgabe des Clients ist:

Remote-Referenz erfolgreich erhalten.
Server ist gebunden an: rmi://localhost/RMI-Server
Methode setString() des Servers aufgerufen

Nachdem der Client den Aufruf der Methode setString() über die Remote-Refe-
renz auf das Server-Objekt ausgeführt hat, wird in der Konsole der Server-Anwen-
dung folgende Ausgabe erzeugt:

Eine mögliche Ausgabe des Servers ist:

RMI-Server gebunden unter Namen: RMI-Server
RMI-Server ist bereit ...
Nachricht vom Client erhalten: Hallo Server

Die Ursachen von Fehlern, die oft im Zusammenhang mit dem Start und der Aus-
führung von RMI-Anwendungen auftreten, und die zur Fehlerbehebung geeigneten
Maßnahmen werden in Kapitel 25.6 behandelt.

25.4 Object by Value und Object by Reference

Bei der Übergabe von Objekten werden zwei wesentliche Arten unterschieden: Ob-
ject by Value und Object by Reference.

Virtuelle
Maschine

Client

Virtuelle
Maschine

Server
Objekt A

Bild 25-9 Übergabe eines Objektes

25.4.1 Object by Value-Übergabe

Object by Value bedeutet, dass das übergebene Objekt als Klon zum Server gesen-
det wird. Änderungen in diesem Objekt, die vom Server durchgeführt werden, beein-
flussen das beim Client instantiierte Objekt nicht. Damit ein Objekt an den Server
übergeben werden kann, muss dieses serialisierbar sein.

Remote Method Invocation 1029

Wenn ein Java-Objekt über ein Netzwerk auf einen anderen Rech-
ner – oder in eine andere virtuelle Maschine auf demselben Rechner –
übertragen werden soll, so muss es vor der Übertragung in eine dafür
geeignete Form umgewandelt werden. Besitzt ein Objekt diese Fähig-
keit, dann ist das Objekt serialisierbar. Der Vorgang der Übertragung
eines Objektes über ein Netzwerk nennt man auch Objekt-Serialisie-
rung.

Damit ein Objekt die Fähigkeit der Serialisierung besitzt, muss dessen Klasse die
Schnittstelle Serializable aus dem Paket java.io implementieren (siehe Kap.
16.7.1). Diese Schnittstelle enthält keine Methoden und dient lediglich der Markie-
rung – sie ist also ebenfalls eine Marker-Schnittstelle. Beim Kompilieren einer Klas-
se, welche die Serializable-Schnittstelle implementiert, fügt der Compiler dann
den für die Serialisierung notwendigen Code hinzu. Das folgende Beispiel zeigt eine
Anwendung, die Object by Value zur Übergabe von Daten verwendet. Im Folgenden
der Code der zu serialisierenden Klasse Data:

// Datei: Data.java
import java.io.*;

public class Data implements Serializable
{
 public int i;
 public int j;

 public Data (int i, int j)
 {
 this.i = i;
 this.j = j;
 }

 public String toString()
 {
 return "i = " + i + ", j = " + j;
 }
}

In der Remote-Schnittstelle wird eine zusätzliche Methode definiert, über welche das
Daten-Objekt an den Server übergeben werden kann. Der Schnittstelle RMIServer2
vom obigen Beispiel wird somit erweitert:

// Datei: RMIServer2.java
import java.rmi.*;

public interface RMIServer2 extends Remote
{
 // Methode des Servers, die remote
 // ausgeführt werden kann
 void setString (String str) throws RemoteException;

 // Methode, der eine Referenz auf ein serialisierbares
 // Objekt übergeben wird
 void setData (Data data) throws RemoteException;
}

1030 Kapitel 25

Entsprechend muss die Methode in der Server-Klasse RMIServerImpl2 implemen-
tiert werden. Das ihr übergebene Objekt der Klasse Data wird in der Methode set-
Data() verändert:

// Datei: RMIServerImpl2.java
import java.rmi.*;
import java.rmi.server.*;
import java.net.*;

public class RMIServerImpl2 extends UnicastRemoteObject
 implements RMIServer2
{
 private static final String HOST = "localhost";
 private static final String SERVICE_NAME = "RMI-Server2";

 public RMIServerImpl2() throws RemoteException
 {
 String bindURL = null;
 try
 {
 bindURL = "rmi://" + HOST + "/" + SERVICE_NAME;
 Naming.rebind (bindURL, this);
 System.out.println (
 "RMI-Server gebunden unter Namen: "+ SERVICE_NAME);
 System.out.println ("RMI-Server ist bereit ...");
 }
 catch (MalformedURLException e)
 {
 System.out.println ("Ungültige URL: " + bindURL);
 System.out.println (e.getMessage());
 System.exit (1);
 }
 }

 public void setString (String s) throws RemoteException
 {
 System.out.println ("Nachricht vom Client erhalten: " + s);
 }

 public void setData (Data data) throws RemoteException
 {
 System.out.println ("Datenobjekt erhalten: " + data);
 data.i = 8;
 data.j = 17;
 System.out.println ("Datenobjekt verändert: " + data);
 }

 public static void main (String[] args)
 {
 try
 {
 new RMIServerImpl2();
 }
 catch (RemoteException e)
 {
 System.out.println (
 "Fehler während der Erzeugung des Server-Objektes");

Remote Method Invocation 1031

 System.out.println (e.getMessage());
 System.exit (1);
 }
 }
}

Auf der Client-Seite wird nun ein Objekt der Klasse Data erzeugt und dessen Refe-
renz der Methode setData() der Server-Klasse übergeben. Hierzu dient die Klasse
RMIClient2:

// Datei: RMIClient2.java

import java.rmi.*;
import java.net.*;

public class RMIClient2
{
 private static final String HOST = "localhost";
 private static final String BIND_NAME = "RMI-Server2";

 public static void main (String[] args)
 {
 try
 {
 String bindURL = "rmi://" + HOST + "/" + BIND_NAME;
 RMIServer2 server = (RMIServer2) Naming.lookup (bindURL);
 System.out.println (
 "Remote-Referenz erfolgreich erhalten.");
 System.out.println ("Server ist gebunden an: " + bindURL);

 Data daten = new Data (1, 2);
 System.out.println ("Data-Objekt erzeugt: " + daten);
 System.out.println (
 "Data-Objekt wird an Server übergeben ...");
 server.setData (daten);
 System.out.println ("Data-Objekt nach Aufruf: " + daten);
 }
 catch (NotBoundException e)
 {
 // Wenn der Server nicht registriert ist ...
 System.out.println ("Server ist nicht gebunden:\n" +
 e.getMessage());
 }
 catch (MalformedURLException e)
 {
 // Wenn die URL falsch angegeben wurde ...
 System.out.println ("URL ungültig:\n" + e.getMessage());
 }
 catch (RemoteException e)
 {
 // Wenn während der Kommunikation ein Fehler auftritt
 System.out.println ("Fehler während Kommunikation:\n" +
 e.getMessage());
 }
 }
}

1032 Kapitel 25

Nachdem das Server-Objekt der Klasse RMIServerImpl2 an die RMI-Registry ge-
bunden und der Client gestartet wurde, kann in der Konsole des Clients folgende
Ausgabe beobachtet werden:

Eine mögliche Ausgabe des Clients ist:

Remote-Referenz erfolgreich erhalten.
Server ist gebunden an: rmi://localhost/RMI-Server2
Data-Objekt erzeugt: i = 1, j = 2
Data-Objekt wird an Server übergeben ...
Data-Objekt nach Aufruf: i = 1, j = 2

Es ist zu erkennen, dass die Werte der Instanzvariablen unverändert sind, obwohl
das Data-Objekt an den Server übergeben und dort die Attributwerte geändert wur-
den:

Eine mögliche Ausgabe des Servers ist:

RMI-Server gebunden unter Namen: RMI-Server2
RMI-Server ist bereit ...
Datenobjekt erhalten: i = 1, j = 2
Datenobjekt verändert: i = 8, j = 17

25.4.2 Object by Reference-Übergabe

Um eine Referenz zu übergeben, wird Object by Reference verwendet. Hierbei wird
eine echte Referenz des Objektes übergeben, dessen Methoden wiederum vom Ser-
ver aufgerufen werden können. Diese Methoden führen Änderungen beim Client
durch.

Damit bei einem RMI-Methodenaufruf die Referenz eines Objektes
übergeben werden kann und somit ein Object by Reference-Aufruf
ausgeführt wird, muss das Objekt selbst – wie das RMI-Server-Objekt
auch – ein Remote-Objekt sein. Das heißt, die Klasse des Objektes,
dessen Referenz an den Server übergeben werden soll, muss von der
Klasse UnicastRemoteObject abgeleitet sein und eine Remote-
Schnittstelle mit den ausführbaren Methoden implementieren.

Ist ein Objekt weder serialisierbar, noch ein Remote-Objekt, so wird
beim Versuch einer Referenzübergabe zur Laufzeit eine Exception
vom Typ NotSerializableException geworfen.

Das folgende Beispiel zeigt die Implementierung eines einfachen Chat-Servers. Der
RMI-Server stellt für RMI-Clients Methoden zum Anmelden, Abmelden und zum Sen-
den von Nachrichten bereit. Alle Nachrichten, die von den angemeldeten Clients auf

Vorsicht!

Remote Method Invocation 1033

dem Server eingehen, werden von diesem nach dem Publisher-Subscriber-Prinzip238
an alle Chat-Teilnehmer weitergeleitet. Der Server muss also auf allen angemeldeten
Clients eine Methode aufrufen, über die er die erhaltene Nachricht an alle Teilnehmer
weiterleiten kann. Das bedeutet, der RMI-Client muss dafür dem Server ein Protokoll
in Form einer Remote-Schnittstelle zur Verfügung stellen – er muss also selbst ein
Remote-Objekt sein.

Als erstes wird die Remote-Schnittstelle des Servers vorgestellt:

// Datei: RMIServer3.java

import java.rmi.*;

public interface RMIServer3 extends Remote
{
 // Ein Client kann sich hiermit am Chat-Server
 // anmelden. Ist sein Nickname bereits vergeben,
 // so wird eine ChatException geworfen.
 public void anmelden (RMIClientInterface client)
 throws RemoteException, ChatException;

 // Ein angemeldeter Client ruft diese Methode
 // auf, um eine Nachricht an alle Chat-Teilnehmer
 // zu senden. Der Server verteilt die Nachrichten
 // dann nach dem Publisher-Subscriber-Prinzip
 public void sendeNachricht (
 RMIClientInterface client, String msg)
 throws RemoteException, ChatException;

 // Angemeldete Clients melden sich mit Aufruf
 // dieser Methode vom Chat-Server ab.
 public void abmelden (RMIClientInterface client)
 throws RemoteException, ChatException;
}

Alle Methoden werfen unter anderem eine Exception vom Typ ChatException:

// Datei: ChatException.java

import java.rmi.*;

public class ChatException extends RemoteException
{
 public ChatException (String msg)
 {
 super (msg);
 }
}

238 Das Publisher-Subscriber-Prinzip ist ein Entwurfsmuster, bei dem ein Nachrichtensender – der

Publisher, in unserem Beispiel also ein Client, der eine Chat-Nachricht eingibt – eine Information
an eine zentrale Instanz – hier der Chat-Server – sendet. Die zentrale Instanz verteilt dann die
erhaltene Nachricht an alle angemeldeten Interessenten, welche die Nachricht erhalten wollen –
die Subscriber, in unserem Falle also alle Chat-Clients.

1034 Kapitel 25

Die Klasse RMIServerImpl3 implementiert nun die Schnittstelle RMIServer3:

// Datei: RMIServerImpl3.java

import java.rmi.*;
import java.rmi.server.*;
import java.net.*;
import java.util.*;

public class RMIServerImpl3 extends UnicastRemoteObject
 implements RMIServer3
{
 private static final String HOST = "localhost";
 private static final String SERVICE_NAME = "RMI-Server3";

 // Von alle angemeldeten Clients wird die
 // Referenz in diesem Vector<T>-Objekt gespeichert
 private Vector<RMIClientInterface> clients = null;

 public RMIServerImpl3() throws RemoteException
 {
 String bindURL = null;
 try
 {
 bindURL = "rmi://" + HOST + "/" + SERVICE_NAME;
 Naming.rebind (bindURL, this);

 clients = new Vector<RMIClientInterface>();
 System.out.println (
 "RMI-Server gebunden unter Namen: "+ SERVICE_NAME);
 System.out.println ("RMI-Server ist bereit ...");
 }
 catch (MalformedURLException e)
 {
 System.out.println ("Ungültige URL: " + bindURL);
 System.out.println (e.getMessage());
 System.exit (1);
 }
 }

 // Die Methoden des Servers sind alle synchronisiert, weil diese
 // von mehreren Clients gleichzeitig aufgerufen werden können.

 // Methode zum Anmelden
 public synchronized void anmelden (RMIClientInterface client)
 throws RemoteException, ChatException
 {
 String msg = null;
 // Prüfen, ob der Nickname schon vergeben ist
 if (angemeldet (client.getName()))
 {
 msg = client.getName() + " schon vergeben.";
 throw new ChatException (msg);
 }

 // Neuen Client dem Vector hinzufügen
 clients.add (client);

Remote Method Invocation 1035

 // Willkommensnachricht senden
 msg = "Willkommen auf RMIChat. " +
 "Zum Abmelden \"Exit\" eingeben.";
 client.sendeNachricht (msg);

 // Alle angemeldeten Clients über
 // neuen Chat-Teilnehmer informieren
 for (RMIClientInterface c : clients)
 {
 msg = "\n" + client.getName() + " hat sich angemeldet.";
 c.sendeNachricht (msg);
 }
 printStatus();
 }

 // Methode zum Senden einer Chat-Nachricht an alle Teilnehmer
 public synchronized void sendeNachricht (
 RMIClientInterface client, String nachricht)
 throws RemoteException, ChatException
 {
 String msg = null;
 // Prüfen, ob der Client angemeldet ist
 if (!angemeldet (client.getName()))
 {
 msg = "Client " + client.getName() +
 " nicht angemeldet.";
 throw new ChatException (msg);
 }

 msg = client.getName()+" schreibt: " + nachricht;

 // An alle angemeldeten Chat-Teilnehmer
 // die Nachricht des Senders publizieren
 for (RMIClientInterface c : clients)
 {
 c.sendeNachricht ("\n" + msg);
 }
 }

 // Methoden zum Abmelden vom Chat-Server
 public synchronized void abmelden (RMIClientInterface client)
 throws RemoteException, ChatException
 {
 String msg = null;
 // Ist der Chat-Teilnehmer überhaupt angemeldet?
 if (!angemeldet (client.getName()))
 {
 msg = "Client " + client.getName() +
 " nicht angemeldet.";
 throw new ChatException (msg);
 }

 // Referenz auf den Chat-Client entfernen
 clients.remove (client);

1036 Kapitel 25

 // Alle noch verbleibenden Chat-Teilnehmer informieren
 for (RMIClientInterface c : clients)
 {
 msg = "\n" + client.getName() +
 " hat sich abgemeldet.";
 c.sendeNachricht (msg);
 }
 printStatus();
 }

 // Ausgabe, welche Clients momentan angemeldet sind
 private void printStatus() throws RemoteException
 {
 Calendar cal = GregorianCalendar.getInstance();
 String msg = cal.get (Calendar.HOUR) + ":" +
 cal.get (Calendar.MINUTE) + ":" +
 cal.get (Calendar.SECOND) + " Uhr: ";

 msg += clients.size() + " User aktuell online: ";

 for (RMIClientInterface c : clients)
 {
 msg += c.getName() + " ";
 }
 System.out.println (msg);
 }

 // Überprüfung, ob der übergebene Nickname schon vergeben ist
 private boolean angemeldet (String name) throws RemoteException
 {
 for (RMIClientInterface c : clients)
 {
 if (name.equalsIgnoreCase (c.getName()))
 {
 return true;
 }
 }
 return false;
 }

 public static void main (String[] args)
 {
 try
 {
 new RMIServerImpl3();
 }
 catch (RemoteException e)
 {
 System.out.println (e.getMessage());
 System.exit (1);
 }
 }
}

Im Folgenden wird das Remote-Protokoll des RMI-Clients vorgestellt. Es ist definiert
in der Schnittstelle RMIClientInterface:

Remote Method Invocation 1037

// Datei: RMIClientInterface.java

import java.rmi.*;

public interface RMIClientInterface extends Remote
{
 // Der Server ruft diese Methode auf, um die eingegangenen
 // Chat-Nachrichten an die Clients zu publizieren.
 void sendeNachricht (String msg) throws RemoteException;

 // Gibt den Namen des Clients zurück
 public String getName() throws RemoteException;
}

Die Klasse RMIClientImpl implementiert das Remote-Interface RMIClientIn-
terface. Dadurch, dass die Klasse von UnicastRemoteObject ableitet, ist ein
Objekt dieser Klasse ein Remote-Objekt, wodurch Call by Reference ermöglicht wird.
Das bedeutet, der Server hält bloß eine Referenz des Clients und bekommt keine
Kopie des Objektes übergeben. Des Weiteren implementiert die Klasse die Schnitt-
stelle Runnable. Ein RMI-Client ist also als Thread realisiert:

// Datei: RMIClientImpl.java

import java.net.*;
import java.rmi.*;
import java.rmi.server.*;
import java.util.*;

public class RMIClientImpl extends UnicastRemoteObject
 implements RMIClientInterface, Runnable
{
 private static final String HOST = "localhost";
 private static final String BIND_NAME = "RMI-Server3";
 private String name;

 public RMIClientImpl (String n) throws RemoteException
 {
 name = n;
 }

 // Implementierung der Methode getName()
 // aus der Schnittstelle RMIClientInterface
 public String getName()
 {
 return name;
 }

 // Implementierung der Methode sendeNachricht() aus der Schnitt-
 // stelle RMIClientInterface. Der Server ruft sendeNachricht()
 // auf, um dem Client eine Chat-Nachricht mitzuteilen, die ein
 // anderer Chat-Teilnehmer eingegeben hat.
 public void sendeNachricht (String msg)
 throws RemoteException
 {
 System.out.print (msg+ "\nEingabe: ");
 }

1038 Kapitel 25

 // Methode run() aus Schnittstelle Runnable implementieren.
 public void run()
 {
 RMIServer3 server = null;
 // Verbindung aufbauen
 try
 {
 String bindURL = "rmi://" + HOST + "/" + BIND_NAME;
 server = (RMIServer3) Naming.lookup (bindURL);
 }
 catch (NotBoundException e)
 {
 // Wenn der Server nicht registriert ist ...
 System.out.println ("Server ist nicht gebunden:\n" +
 e.getMessage());
 }
 catch (MalformedURLException e)
 {
 // Wenn die URL falsch angegeben wurde ...
 System.out.println ("URL ungültig:\n" + e.getMessage());
 }
 catch (RemoteException e)
 {
 // Wenn während der Kommunikation ein Fehler auftritt
 System.out.println (e.getMessage());
 }

 // Anmelden und chatten
 try
 {
 // Ameldung am Chat-Server
 server.anmelden (this);

 Scanner eingabe = new Scanner (System.in);
 String msg = null;
 while (true)
 {
 // Solange nicht "exit" eingegeben wird, bleibt
 // der Client angemeldet und kann mit anderen
 // Teilnehmern chatten
 msg = eingabe.nextLine();
 if (msg.equalsIgnoreCase ("exit"))
 {
 break;
 }
 server.sendeNachricht (this, msg);
 }
 // Die Endlosschleife wurde verlassen, weil der
 // Client sich abmelden will. Also muss die
 // Methode abmelden() aufgerufen werden.
 server.abmelden (this);
 }
 catch (ChatException e)
 {
 // Ein Fehler ist während des Chats aufgetreten
 System.out.println (e.getMessage());
 }

Remote Method Invocation 1039

 catch (RemoteException e)
 {
 // Wenn während der Kommunikation ein Fehler auftritt
 System.out.println (e.getMessage());
 }
 }
}

Die Klasse RMIChat stellt letztendlich für einen Chatter den Einstiegspunkt zum
Chat-Server dar. Sie beinhaltet die Methode main(), in der ein neuer Chat-Client er-
zeugt wird:

// Datei: RMIChat.java

public class RMIChat
{
 public static void main (String[] args)
 {
 if (args.length != 1)
 {
 System.out.println ("Aufruf: RMIChat <Nickname>");
 System.exit (1);
 }

 try
 {
 // Neuen Thread erzeugen
 Thread t = new Thread (new RMIClientImpl (args[0]));

 // starten
 t.start();

 // und warten, bis der Thread zu Ende gelaufen ist
 t.join();
 System.exit (0);
 }
 catch (Exception e)
 {
 System.out.println (e.getMessage());
 }
 }
}

Das Starten der RMI-Anwendung unterscheidet sich nicht von den zuvor beschriebe-
nen Beispielen. Alle Dateien müssen sich in einem Verzeichnis befinden. Durch den
Aufruf des Compilers werden alle Klassen kompiliert. Danach muss die RMI-Registry
gestartet und die Server-Anwendung ausgeführt werden. Nun ist der Chat-Server be-
reit, die Chat-Clients zu bedienen.

Zur Demonstration der Chat-Anwendung werden zwei Chat-Clients am Server ange-
meldet. Es wird zuerst ein bisschen "geschwatzt", bevor nach und nach beide Clients
den Chat-Raum wieder verlassen. Innerhalb der Konsole, in der der erste Client ge-
startet wurde, können folgende Ausgaben beobachtet werden:

1040 Kapitel 25

 Der Aufruf war:

java RMIChat Myriam

Folgende Ausgaben werden beobachtet:

Willkommen auf RMIChat. Zum Abmelden "Exit" eingeben.
Eingabe:
Georg hat sich angemeldet.
Eingabe: Hallo. Jemand da?

Georg schreibt: Hallo. Jemand da?
Eingabe:
Myriam schreibt: Hallo Georg. Hier ist Myriam
Eingabe: Hallo Myriam

Georg schreibt: Hallo Myriam
Eingabe: Ich muss weg! Bye

Georg schreibt: Ich muss weg! Bye
Eingabe:
Myriam schreibt: Schade
Eingabe:
Myriam schreibt: Bye
Eingabe: Exit

In der Konsole des zweiten Chat-Clients, in der sich der Chatter Georg angemeldet
hat, können folgende Ausgaben beobachtet werden:

Der Aufruf war:

java RMIChat Georg

Folgende Ausgaben werden beobachtet:

Willkommen auf RMIChat. Zum Abmelden "Exit" eingeben.
Eingabe:
Georg hat sich angemeldet.
Eingabe: Hallo. Jemand da?

Georg schreibt: Hallo. Jemand da?
Eingabe:
Myriam schreibt: Hallo Georg. Hier ist Myriam
Eingabe: Hallo Myriam

Georg schreibt: Hallo Myriam
Eingabe: Ich muss weg! Bye

Georg schreibt: Ich muss weg! Bye
Eingabe:
Myriam schreibt: Schade
Eingabe:
Myriam schreibt: Bye
Eingabe: Exit

Remote Method Invocation 1041

Der Chat-Server führt Statistik. Sobald sich ein Chatter an- oder abmeldet, werden
folgende Status-Informationen auf der Konsole der Server-Anwendung ausgegeben:

Die Ausgabe des Servers ist:

RMI-Server gebunden unter Namen: RMI-Server3
RMI-Server ist bereit ...
11:14:12 Uhr: 1 User aktuell online: Myriam
11:14:39 Uhr: 2 User aktuell online: Myriam Georg
11:15:40 Uhr: 1 User aktuell online: Myriam
11:15:45 Uhr: 0 User aktuell online:

25.5 Verwendung der RMI-Codebase

Bisher mussten sowohl Client, als auch Server auf demselben Rechner ausgeführt
werden. Damit die Anwendung auf mehrere Rechner verteilt werden kann und damit
erst ein wirklich verteiltes System entsteht, müssen verschiedene Bedingungen be-
achtet werden, die im folgenden Abschnitt beschrieben sind.

25.5.1 Laden von Klassen-Code durch Klassenlader

Ein Klassenlader ist dafür verantwortlich, dass der Code einer Klasse oder einer
Schnittstelle dynamisch – das heißt zur Laufzeit – in eine virtuelle Maschine geladen
werden kann. Wenn während der Ausführung eines Programms der Interpreter ange-
wiesen wird, ein Objekt einer bestimmten Klasse anzulegen, beispielsweise durch
die Anweisung:

MeineKlasse ref = new MeineKlasse();

so muss dafür gesorgt werden, dass der Code der Klasse MeineKlasse innerhalb
der virtuellen Maschine verfügbar ist. Der Interpreter muss ja wissen, welche Daten-
felder das Objekt besitzt und über welche aufrufbaren Methoden es in der Method
Area verfügt. Der Code der Klasse muss also geladen werden und bekannt sein.

Im Gegensatz zu statisch kompilierenden Programmiersprachen wie C oder C++, bei
denen nach der Übersetzung des Quellcodes die einzelnen Teile zu einem ausführ-
baren Programm statisch239 zusammengeführt – man sagt gelinkt – werden, ist Java
eine dynamisch kompilierende Programmiersprache. Das bedeutet, dass die einzel-
nen class-Dateien erst in der virtuellen Maschine zu einem ausführbaren Programm
zusammen gelinkt werden. Wird ein Java-Programm durch den Aufruf

java StartKlasse

239 In C und C++ besteht natürlich auch die Möglichkeit, durch dynamisch ladbare Bibliotheken – so

genannte shared libraries (in Windows dlls = dynamic load libraries) – Code erst zur Laufzeit zu
einem Programm dazuzulinken. Um jedoch überhaupt ein ausführbares Programm zu erhalten,
müssen zumindest einige Kernbibliotheken des verwendeten Betriebssystems mit dem eigenen
Code statisch verlinkt werden, damit ein minimal ausführbares Programm entsteht.

1042 Kapitel 25

gestartet, so wird die virtuelle Maschine – diese wird durch den Aufruf des Pro-
gramms java ins Leben gerufen – damit beauftragt, die Methode

public static void main (String[] args)

aufzurufen und den darin enthaltenen Code auszuführen. Die Methode main()
muss natürlich in der Klasse StartKlasse implementiert sein, sonst wird eine
Exception vom Typ NoSuchMethodError geworfen. Bekanntermaßen ist jede
Klasse in Java direkt oder indirekt von der Klasse Object abgeleitet, das heißt, die
eigene Klasse steht höchstens an zweiter Stelle in der Klassenvererbungshierarchie
– sie ist also mindestens von Object abgeleitet. Dadurch entstehen Abhängigkeiten
zwischen der eigenen Klasse, deren Code ausgeführt werden soll und anderen Klas-
sen, beispielsweise von Klassen der Java-Klassenbibliothek. Somit ist es notwendig,
dass alle Klassen, von denen die Klasse StartKlasse abhängt, zusätzlich in die
virtuelle Maschine geladen werden.

Damit sich der Programmierer nicht auch noch darum kümmern muss, gibt es für die-
se Aufgabe mehrere Klassen, die sich um das Laden von Klassen in die virtuelle Ma-
schine kümmern. Solche Klassen werden Klassenlader genannt. Ein so genannter
Ur-Klassenlader – oder bootstrap class loader – ist dabei verantwortlich, dass
beim Starten der virtuellen Maschine als erstes die Klassen geladen werden, die für
die Ausführung der Java-Laufzeitumgebung benötigt werden. Der Ur-Klassenlader
wird also beim Starten der virtuellen Maschine instantiiert und ist dafür verantwort-
lich, die Klassen der Java-Klassenbibliothek zu laden, die im Root-Klassenpfad240 zu
finden sind.

Daneben gibt es einen weiteren Klassenlader, den so genannten Anwendungs-Klas-
senlader – oder application class loader. Er ist unter anderem für das Laden von
Klassen verantwortlich, die unter dem aktuellen Arbeitsverzeichnis des ausgeführten
Programms oder in den Klassenpfaden zu finden sind, die unter der Umgebungs-
variable CLASSPATH angegeben wurden.

Die einzelnen Klassenlader bilden untereinander eine baumförmige Hierarchie, wo-
bei der Ur-Klassenlader an der Wurzel dieser Hierarchie steht. Dabei kennt jeder
Klassenlader immer seinen Vaterklassenlader. Wird nun ein Klassenlader mit dem
Laden einer Klasse beauftragt, so gibt der angesprochene Klassenlader als erstes
diesen Auftrag an seinen Vaterklassenlader weiter.

Die Klassenlader arbeiten nach dem Delegationsprinzip, um Klassen
zur Laufzeit eines Programms zu laden.

Das Weiterdelegieren des Ladeauftrags wird so lange fortgesetzt, bis:

• ein Klassenlader gefunden wird, der in dem Klassenpfad, für den er zuständig ist,
den angeforderten Klassencode gefunden hat. Der Code wird dann von diesem
Klassenlader geladen und der Vorgang ist beendet.

240 Der Root-Klassenpfad ist der Klassenpfad, in dem die Klassen der Java-Laufzeitumgebung zu fin-

den sind, also im Verzeichnis lib des Installationsverzeichnisses des JDK oder der JRE.

Remote Method Invocation 1043

• die Delegation an der Wurzel der Klassenlader-Hierarchie – also beim Ur-Klas-
senlader – angelangt ist und dieser ebenfalls nicht den Code der zu ladenden
Klasse finden kann. In diesem Fall geht der Ladeauftrag an den ursprünglich damit
beauftragten Klassenlader zurück. Dieser versucht dann, die Klasse zu laden.

Kann kein Klassenlader den angeforderten Code der Klasse laden, –
wird also keine entsprechende Klassendefinition gefunden – so wird
von der virtuellen Maschine eine Exception vom Typ NoClassDef-
FoundError geworfen.

Die Klassenlader-Funktionalität ist in der Klasse java.lang.ClassLoader imple-
mentiert. Die Klasse ist abstrakt, was bedeutet, dass von ihr Klassen abgeleitet wer-
den müssen, die dann einen konkreten Klassenlader zur Verfügung stellen. Da die
Implementierung eines Klassenladers sehr kompliziert ist und dabei viel falsch
gemacht werden kann, sind in der Java-Klassenbibliothek konkrete Implementie-
rungen von Klassenladern für die verschiedensten Aufgabengebiete vorhanden. Bei-
spielsweise gibt es die Klasse AppClassLoader, die den Applikations-Klassenlader
implementiert. Instanzen davon sind für das Laden von Klassen zuständig sind, die
sich im aktuellen Arbeitsverzeichnis und unter dem CLASSPATH befinden. Zum La-
den einer Klasse stellt die Klasse ClassLoader die Methode loadClass() zur
Verfügung. Ihr wird der Name der zu ladenden Klasse als String übergeben.

Eine der Stärken von Java ist es, dass nicht nur Klassen in eine virtuelle Maschine
geladen werden können, die sich auf dem Rechner des ausgeführten Programms
befinden. Es besteht auch die Möglichkeit, Klassendefinitionen von einem entfernten
Rechner – etwa von einem FTP-Server oder einem HTTP-Server – auf den lokalen
Rechner herunterzuladen und dort in einer virtuellen Maschine zu einem ausgeführ-
ten Programm dynamisch dazuzulinken. Von dieser Funktionalität wurde schon im
Kapitel über Applets241 Gebrauch gemacht – jedoch mehr oder weniger unbewusst.
Wird eine HTML-Seite von einem Browser abgerufen, in der sich ein <APPLET>-Tag
befindet, so wird als erstes das Java-Plugin geladen, das seinerseits eine virtuelle
Maschine initialisiert. Nachdem durch den Ur-Klassenlader alle benötigten Kern-
Klassen der Java-Laufzeitumgebung in die virtuelle Maschine geladen wurden, muss
natürlich auch der Code des auszuführenden Java-Applets in die auf dem lokalen
Rechner ausgeführte virtuelle Maschine geladen werden. Für diesen Zweck stellt die
Java-Laufzeitumgebung einen weiteren Klassenlader zur Verfügung, den so genann-
ten URLClassLoader aus dem Paket java.net. Er bietet die Möglichkeit, unter
Angabe einer URL die dadurch spezifizierte Ressource – also beispielsweise eine
Klasse, oder aber ein Textdokument oder eine Bilddatei – von dem entfernten Rech-
ner auf den lokalen Computer herunterzuladen und dort zur Verfügung zu stellen. Die
URL muss dabei in folgender Form angegeben werden:

Protokoll://Hostname/Verzeichnis

Als Protokoll kann file oder http verwendet werden. Wird das file-Protokoll ein-
gesetzt, so müssen beide Rechner – also der Rechner, von dem die Ressource he-
runtergeladen wird und der Rechner, zu dem die Ressource übertragen werden soll,
mit anderen Worten: Server und Client – über ein gemeinsames Dateisystem ver-

241 Siehe Kap. 20.

1044 Kapitel 25

fügen. Das heißt, die Ressource, die unter der URL angegeben wird, muss in einem
Verzeichnis liegen, auf das Client und Server Zugriff haben. Werden zudem auf bei-
den Rechnern unterschiedliche Betriebssysteme eingesetzt (z. B. Microsoft Windows
und LINUX), kann es somit vorkommen, dass die Pfadangaben nicht richtig inter-
pretiert werden – Windows verwendet zum Beispiel Laufwerksbuchstaben, was unter
LINUX unbekannt ist – und damit das Laden der Ressource nicht möglich ist.

Wird stattdessen das http-Protokoll eingesetzt, so können auch Ressourcen gela-
den werden, die sich auf einem entfernten Web-Server befinden. Es muss dafür
jedoch ein HTTP-Server zur Verfügung stehen, der den Download der Ressourcen
mit Hilfe des http-Protokolls unterstützt.

Das folgende Beispiel zeigt die Verwendung der Klasse URLClassLoader. Zum
Spezifizieren einer URL wird die Klasse URL verwendet, die sich ebenfalls im Paket
java.net befindet. Es wird nun die Klasse TestKlasse geladen, die sich im Ver-
zeichnis d:\rmi\classes befindet:

// Datei: TestKlasse.java

public class TestKlasse
{
 public TestKlasse()
 {
 System.out.println ("Instanz erzeugt");
 }
}

// Datei: URLClassLoaderTest.java

import java.net.*;

public class URLClassLoaderTest
{
 public static void main (String[] args) throws Exception
 {
 // Der Konstruktor der Klasse URLClassLoader
 // erwartet ein Array von URLs. Es wird nun eine
 // URL auf das Verzeichnis d:\rmi\classes gesetzt.
 URL[] classpath = {new URL ("file:/d:\\rmi\\classes/")};

 // Erzeugen einer Instanz von URLClassLoader
 URLClassLoader loader = new URLClassLoader (classpath);

 // Aufruf der Methode loadClass() mit dem Parameter
 // TestKlasse. Die Klasse TestKlasse muss also im
 // Verzeichnis d:\rmi\classes vorhanden sein!
 Class<?> c = loader.loadClass ("TestKlasse");

 // Nun kann eine Instanz der Klasse TestKlasse erzeugt werden.
 Object ref = c.newInstance();
 }
}

Remote Method Invocation 1045

Die Ausgabe des Programms ist:

Instanz erzeugt

25.5.2 Einsatz einer Codebase

In den zuvor diskutierten Beispielen war es nun so, dass der Code der Server-Klasse
sowohl vom Client als auch von der RMI-Registry – stets aus dem aktuellen Ar-
beitsverzeichnis heraus geladen wurde. Hierzu soll das Bild 25-10 betrachtet werden.
Es ist dort das Schaubild eines Computers dargestellt, auf dem drei virtuelle Ma-
schinen aktiv sind: die der RMI-Registry, die des RMI-Servers und die des RMI-
Clients. Alle drei virtuellen Maschinen werden aus demselben Verzeichnis heraus ge-
startet, sie haben also alle drei dasselbe Arbeitsverzeichnis. Auch die für die Aus-
führung der RMI-Anwendung benötigten class-Dateien des RMI-Servers und des
RMI-Clients liegen alle im selben Verzeichnis. Folgender Ablauf lässt sich nun beim
Laden des Server-Codes festhalten:

• 1. Schritt: Binden des Server-Objektes

Wird der RMI-Server gestartet, so bewirkt der Aufruf der Methode bind(), dass
das Server-Objekt an die RMI-Registry gebunden wird. Dabei muss die Remote-
Referenz auf das Server-Objekt serialisiert werden, weil sie von der virtuellen
Maschine des RMI-Servers in die virtuelle Maschine der RMI-Registry übertragen
werden muss. Für diesen Vorgang der Serialisierung wird die zu übertragende
Remote-Referenz in ein separates Objekt der Klasse MarshalledObject<T>
aus dem Paket java.rmi verpackt. In diesem Objekt wird zusätzlich die Informa-
tion hinterlegt, wo die RMI-Registry den Server-Code finden kann. In diesem Fall
findet die RMI-Registry diesen in ihrem aktuellen Arbeitsverzeichnis. Der Vorgang
des Verpackens eines Objektes in ein anderes Objekt wird als Marshalling242, die
Wiederherstellung des Objektes auf der Empfänger-Seite wird als Unmarshalling
bezeichnet.

• 2. und 3. Schritt: Laden der Remote-Schnittstelle in die VM der RMI-Registry

Damit das Server-Objekt nun vom Empfänger – hier also die RMI-Registry – ver-
wendet werden kann, wird der Code der Remote-Schnittstelle benötigt. Dadurch,
dass in dem MarshalledObject die Information hinterlegt ist, wo die class-
Datei der Remote-Schnittstelle gefunden werden kann, kann ein Klassenlader der
virtuellen Maschine der RMI-Registry diesen laden. Dafür wird die Methode load-
Class() des zuständigen Klassenladers aufgerufen, in diesem Fall des Applika-
tions-Klassenladers. Der Aufruf bewirkt, dass der Code der Remote-Schnittstelle
aus dem aktuellen Arbeitsverzeichnis in die virtuelle Maschine der RMI-Registry
geladen wird.

242 Marshalling (engl.) anordnen, arrangieren: Daten werden in einem Paket zur Übertragung verpackt.

Das Auspacken der Daten durch den Empfänger wird als Unmarshalling bezeichnet.

1046 Kapitel 25

Die RMI-Registry benötigt den Code der Remote-Schnittstelle des
Servers, weil darin Informationen hinterlegt sind, die von der virtu-
ellen Maschine benötigt werden, um die Stub-Klasse dynamisch ge-
nerieren zu können. Den Code der Stub-Klasse benötigt die RMI-
Registry, weil sie bei einer Anfrage eines Clients ein Stub-Objekt in-
stantiieren muss.

• 4. und 5. Schritt: Client beschafft sich Remote-Referenz

Danach kann sich der Client mittels lookup() ein Objekt der Stub-Klasse von der
RMI-Registry beschaffen.

Über das Stub-Objekt, das sich nun im Heap der virtuellen Maschi-
ne des Clients befindet, besitzt der Client eine Remote-Referenz
auf das im Heap der virtuellen Maschine des Servers lebende Ser-
ver-Objekt.

Die Übertragung des Stub-Objektes aus der virtuellen Maschine der RMI-Registry
in die virtuelle Maschine des RMI-Clients geschieht über Objektserialisierung.

• 6. und 7. Schritt: Generierung der Stub-Klasse in die Client-VM

Nun benötigt der Client aber auch den Code der Stub-Klasse, damit dessen virtu-
elle Maschine ebenfalls das mittels lookup() erhaltene Stub-Objekt verwenden
kann. Für die Generierung der Stub-Klasse benötigt der Client den Code der Re-
mote-Schnittstelle. Die Information, wo sich dieser befindet, ist im Stub-Objekt
hinterlegt. Die virtuelle Maschine des Clients beauftragt also einen Klassenlader
mit der Aufgabe, nach dem Code der Remote-Schnittstelle zu suchen und diesen
zu laden. Letztendlich wird der Applikations-Klassenlader fündig, weil die class-
Datei der Remote-Schnittstelle im Arbeitsverzeichnis des Clients verfügbar ist.

Computer

VM

VM VM

Client Server

R
M

I-
R

eg
is

tr
y

1. bind()

4. lookup()

5. Stub-Objekt
(RMI-Registry)

lokales
Verzeichnis

Server.class

2. loadClass()

3. Server.class

6. loadClass()

7. Server.class

Bild 25-10 Laden des Server-Codes aus lokalem Verzeichnis

Remote Method Invocation 1047

Dieser Umstand, dass die Remote-Schnittstelle des Servers bisher immer im Arbeits-
verzeichnis des Clients zur Verfügung stehen musste – oder zumindest unter einem
Klassenpfad auf dem Client-Rechner zu finden sein musste – ist für den sinnvollen
Einsatz von RMI natürlich nicht praktisch. Der Sinn von RMI ist es ja, eine verteilte
Anwendung zu entwickeln, bei der Methodenaufrufe zwischen den zusammenarbei-
tenden Objekten über Rechnergrenzen hinweg funktionieren sollen – eben Remote
Method Invocations.

Damit der Client vom Server nun wirklich unabhängig ist, muss der Server eine so
genannte Codebase definieren. Die Codebase ist ein Bereich, in dem die Klassen
des Servers abgelegt sind und von dort von allen virtuellen Maschinen, die den Code
benötigen, bezogen werden können. Die Codebase kann dabei ein Verzeichnis auf
dem lokalen Rechner – wenn Client und Server auf derselben Maschine ausgeführt
werden – oder aber ein Verzeichnis auf einem entfernten Server im Internet sein.

Die RMI-Registry muss jedoch immer auf demselben Rechner verfüg-
bar sein, auf dem der RMI-Server gestartet wird!

Das Bild 25-11 zeigt nun den Ablauf des Downloads der Remote-Schnittstelle auf
den Rechner des Clients, wenn der RMI-Server eine Codebase spezifiziert hat.

 Server Computer

VM

VM

Client Computer

VM

Client Server

R
M

I-
R

eg
is

tr
y

1. bind()
4. lookup()

5. Stub-Objekt
(RMI-Registry)

Server-
Codebase

Server.class

2. loadClass()

6. loadClass()

3. Server.class

7. Server.class

Bild 25-11 Download der Stub-Klasse

Der in Bild 25-11 gezeigte Ablauf des Auffindens und Ladens der Remote-Schnitt-
stelle unterscheidet sich nicht von dem, der in Bild 25-10 erläutert wurde. Jedoch ist
die Strukturierung der nun wirklich verteilten Anwendung eine grundlegend andere.
Die virtuellen Maschinen des RMI-Servers und der RMI-Registry befinden sich auf
einem Server-Computer, der RMI-Client wird hingegen in einer virtuellen Maschine
ausgeführt, die auf einem Client-Computer aktiv ist. Die beiden Rechner sind also
wirklich physikalisch getrennt. Des Weiteren existiert nun eine Server-Codebase, die

1048 Kapitel 25

ebenfalls physikalisch vom Client-Computer und Server-Computer getrennt ist – sie
ist beispielsweise auf einem entfernten HTTP-Server untergebracht. Alle drei Server
müssen dabei über ein Netzwerk – beispielsweise das Internet oder ein LAN (Local
Area Network) – miteinander verbunden sein.

Der einzige Unterschied, der nun zwischen beiden Szenarien – im ersten Fall befin-
den sich alle virtuellen Maschinen auf einem Rechner, wobei eine quasi "lokale
Codebase" verwendet wird, und im zweiten Fall befindet sich die virtuelle Maschine
des Clients auf einem separaten Rechner und es existiert eine externe Codebase –
besteht darin, dass beim Starten des RMI-Servers dessen virtueller Maschine die
Information mitgegeben wird, wo sich seine Codebase befindet. Dadurch wird es
möglich, die RMI-Registry in einem beliebigen Verzeichnis zu starten, da an sie beim
Binden des Server-Objektes die Information weitergereicht wird, wo die Remote-
Schnittstelle und alle weiteren benötigten Klassen zu finden sind.

Die RMI-Registry darf die Server-Klasse in ihrem Arbeitsverzeichnis
oder unter einem ihr bekannten Klassenpfad – beispielsweise die Pfa-
de, welche unter CLASSPATH eingetragen sind – nicht finden! Ist dies
irrtümlicherweise der Fall, so wird der Klassenlader der RMI-Registry
auch diese Server-Klasse laden und die ihr mitgeteilte Codebase ig-
norieren. Dies liegt an dem Delegationsprinzip der Klassenladerhie-
rarchie. Der Klassenlader, der mit dem Laden der Server-Klasse be-
auftragt wird, gibt diese Aufgabe zuerst an den Applikations-Klassen-
lader ab, der ja das Arbeitsverzeichnis und alle bekannten Klassenpfa-
de durchsucht!

Lädt die RMI-Registry doch die Server-Klasse aus einem nur ihr bekannten Verzeich-
nis – Arbeitsverzeichnis oder Klassenpfad – so teilt sie auch einem Client, der eine
Anfrage mittels lookup() macht, diesen von ihr verwendeten Klassenpfad mit.
Findet die RMI-Registry also zufälligerweise den Code der Server-Klasse in einem
Verzeichnis namens

c:\irgendwas\klassen

so bekommt der Client auch dieses Verzeichnis als "vermeintliche Codebase" zum
Auffinden der Server-Klasse mitgeteilt und versucht, lokal auf seinem Rechner unter
diesem Verzeichnis die Server-Klasse zu finden. Dieser Vorgang wird natürlich nicht
funktionieren, weil er höchst wahrscheinlich über dieses Verzeichnis nicht verfügt
und mit Sicherheit darin nicht die gesuchte Klasse zu finden ist.

Beim Starten teilt der RMI-Server mittels einer System-Property243 die Codebase der
RMI-Registry mit, beispielsweise:

java -Djava.rmi.server.codebase=file:/d:\rmi\server\codebase/

Damit nun die Remote-Schnittstelle dynamisch von einem entfernten Rechner gela-
den werden kann, muss beim Client eine so genannte Sicherheits-Richtlinie gesetzt
werden. Hierzu muss in der virtuellen Maschine des Clients eine Instanz der Klasse

243 Eine System-Property wird dem Interpreter über den Schalter D mitgegeben, beispielsweise zu

java -D<System-Property> MeineKlasse.

Vorsicht!

Remote Method Invocation 1049

SecurityManager vorhanden sein. Der SecurityManager sorgt dafür, dass die
Client-Anwendung den Server-Code von einer Codebase herunterladen darf und die-
sen in seiner virtuellen Maschine verwenden kann.

Der SecurityManager wird über die Klassenmethode setSecurityManager()
der Klasse System gesetzt:

System.setSecurityManager (new RMISecurityManager());

Ein SecurityManager muss auch im Server gesetzt werden, wenn
der Server vom Client-Rechner Code zu sich herunterladen muss.

Der RMISecurityManager befindet sich im Paket java.rmi. Die Sicherheitsricht-
linien können in einer Datei eingerichtet werden, die über die System-Property
java.security.policy gesetzt wird, z. B.:

java -Djava.security.policy=policy.all

Um dem Client alle Zugriffsrechte zu garantieren, kann die Datei folgenden Inhalt ha-
ben:

// Datei: policy.all

grant
{
 permission java.security.AllPermission "", "";
};

Damit eine RMI-Anwendung auf mehrere Rechner verteilt werden
kann, müssen folgende Punkte unbedingt beachtet werden:

1. Die Codebase muss beim Server gesetzt werden.
2. Die Codebase muss das Protokoll zum Laden der Klassen enthal-

ten.
3. Ein SecurityManager muss beim Client gesetzt werden.
4. Muss der Server vom Client Code über das Netzwerk laden, so

muss auch der Server einen SecurityManager setzen.
5. Die Rechte des SecurityManagers müssen mittels der Policy ent-

sprechend gesetzt werden.

Das folgende Beispiel zeigt eine Anwendung eines RMI-Servers, der von einem ent-
fernten Client Bestellungen entgegen nehmen kann. Die Server-Komponente besteht
aus der Remote-Schnittstelle Bestellserver und der implementierenden Klasse
BestellserverImpl. Der Client wird durch die Klasse BestellClient repräsen-
tiert. Die RMI-Anwendung ist so implementiert, dass sie auf mehrere Rechner verteilt
werden kann. Aus diesem Grund befinden sich der Server, die RMI-Registry und die
Codebase zusammen auf einem eigenen Rechner. Um die Codebase zu realisieren,
ist auf dem Server-Rechner ein Tomcat HTTP-Server installiert. In dessen Root-Ver-

1050 Kapitel 25

zeichnis webapps befindet sich das Unterverzeichnis codebase. Des Weiteren wer-
den auf dem Server-Rechner folgende Verzeichnisse verwendet244:

• Verzeichnis server: Enthält die Dateien Bestellserver.class und Bestell-
serverImpl.class.

• Verzeichnis codebase (liegt im Root-Verzeichnis webapps des Web-Servers):
Enthält die Datei Bestellserver.class.

• Verzeichnis registry: In diesem Verzeichnis sind keine programmspezifischen
Dateien hinterlegt. Von dort aus wird nur die RMI-Registry gestartet.

Natürlich ist keines der Verzeichnisse in der Umgebungsvariable CLASSPATH hinter-
legt. Im Folgenden wird der Code des Servers vorgestellt:

// Datei: Bestellserver.java

import java.rmi.*;
import java.io.*;

public interface Bestellserver extends Remote
{
 // Der Client kann die Methode bestellen des
 // Servers aufrufen, um ihm durch den übergebenen
 // String mitzuteilen, was er bestellen möchte.
 public void bestellen (String s)
 throws RemoteException;
}

// Datei: BestellserverImpl.java

import java.rmi.*;
import java.rmi.server.*;
import java.net.*;

public class BestellserverImpl extends UnicastRemoteObject
 implements Bestellserver
{
 private static final String HOST = "localhost";
 private static final String SERVICE_NAME = "Bestellserver";

 public BestellserverImpl() throws RemoteException
 {
 String bindURL = null;

 try
 {
 bindURL = "rmi://" + HOST + "/" + SERVICE_NAME;
 Naming.rebind (bindURL, this);

 System.out.println (
 "RMI-Server gebunden unter Namen: "+ SERVICE_NAME);
 System.out.println ("RMI-Server ist bereit ...");
 }

244 Übersetzt werden müssen die dazugehörigen Quelldateien jedoch in einem Verzeichnis!

Remote Method Invocation 1051

 catch (MalformedURLException e)
 {
 System.out.println (e.getMessage());
 }
 catch (Throwable e)
 {
 System.out.println (e.getMessage());
 }

 }

 // Implementierung der Methode bestellen()
 public void bestellen (String s)
 throws RemoteException
 {
 System.out.println ("Bestellt wurde:" + s);
 }

 public static void main (String[] args)
 {
 try
 {
 new BestellserverImpl();
 }
 catch (RemoteException e)
 {
 System.out.println (e.getMessage());
 }
 }
}

Die Client-Anwendung wird auf einem separaten Rechner gestartet. Beide Rechner –
also der Server-Rechner und der Client-Rechner – müssen natürlich über ein Netz-
werk miteinander verbunden sein. Um nun überprüfen zu können, mit welchem Klas-
senlader die Stub-Klasse beim Client geladen wurde, wird dem Client folgender
Code hinzugefügt:

ClassLoader classLoader = server.getClass().getClassLoader();
System.out.println (classLoader);

Der Aufruf getClassLoader() liefert eine Referenz auf den Klassenlader der Re-
mote-Schnittstelle. Übergibt man die Referenz der Methode println(), so wird
ausgegeben, von welchem Typ der Klassenlader ist:

// Datei: BestellClient.java

import java.rmi.*;
import java.net.*;

public class BestellClient
{
 // Dies ist nun die IP-Adresse des entfernten Server-Rechners,
 // auf dem die RMI-Registry und der Server laufen
 private static final String HOST = "192.168.0.161";
 private static final String BIND_NAME = "Bestellserver";

1052 Kapitel 25

 public static void main (String[] args)
 {
 try
 {
 // Im Client muss der SecurityManager gesetzt werden
 System.setSecurityManager (new RMISecurityManager());
 String bindURL = "rmi://" + HOST + "/" + BIND_NAME;
 Bestellserver server =
 (Bestellserver) Naming.lookup (bindURL);

 // ClassLoader der Server-Klasse
 ClassLoader classLoader =
 server.getClass().getClassLoader();
 System.out.println ("ClassLoader des Stub-Objektes");
 System.out.println (classLoader);
 server.bestellen ("Javabuch");
 }
 catch (Exception e)
 {
 System.out.println (e.getMessage());
 e.printStackTrace ();
 }
 }
}

Gestartet wird der Client nun durch den Aufruf:

java -Djava.security.policy=policy.all BestellClient

Durch den Schalter -Djava.security.policy=policy.all wird der virtuellen Ma-
schine mitgeteilt, dass der gesetzte SecurityManager seine Sicherheitsrichtlinie
der Datei policy.all entnehmen soll.

Die Ausgabe des Clients ist:

ClassLoader des Stub-Objekts
sun.rmi.server.LoaderHandler$Loader@1457cb
["http://192.168.0.161:8080/rmi/codebase/"]

Als Klassenlader wurde eine Instanz der Klasse LoaderHandler.Loader aus dem
Paket sun.rmi.server verwendet. Dies lässt den Rückschluss zu, dass der Ser-
ver-Code wirklich über das Netzwerk geladen wurde. Der Server hingegen wird nun
durch folgenden Aufruf gestartet:

java -Djava.rmi.server.codebase=
 http://192.168.0.161:8080/rmi/codebase/ BestellserverImpl

Mit dem Schalter

-Djava.rmi.server.codebase=
 http://192.168.0.161:8080/rmi/codebase/

wird bekannt gemacht, dass sowohl die RMI-Registry als auch alle Clients, die eine
Remote-Referenz von dieser erfragen, die Remote-Schnittstelle aus dem Verzeichnis

Remote Method Invocation 1053

/rmi/codebase/ laden sollen, das im Root-Verzeichnis des HTTP-Servers ab-
gelegt ist. Der HTTP-Server ist unter der Adresse 192.168.0.161:8080 erreichbar.

Die Ausgabe des Servers ist:

RMI-Server gebunden unter Namen: Bestellserver
RMI-Server ist bereit ...
Bestellt wurde: Javabuch

Die Remote-Schnittstelle des Servers muss – wie zuvor schon erwähnt – sowohl in
den Arbeitsverzeichnissen von Client und Server als auch im Codebase-Verzeichnis
vorhanden sein. Denn sowohl der Server als auch der Client benötigen diese Schnitt-
stelle beim Start der Anwendung.

Soll vom Client eine Referenz auf ein beim Client instantiiertes Remote-Objekt an
den Server übergeben werden (Object by Reference), dann muss auch beim Client
die Codebase gesetzt werden. D. h., es muss angegeben werden, wo der Server die
Remote-Schnittstelle des Clients finden kann, da er diese zum Ausführen von Re-
mote-Methoden benötigt (Callback). Wie zuvor schon erwähnt, muss dann auch der
Server einen SecurityManager setzen.

25.5.3 Sonderfälle beim Laden des Server-Codes

Es gibt einige Sonderfälle, die man im Zusammenhang mit dem Download der Re-
mote-Schnittstelle in die virtuelle Maschine des Clients und der dynamischen Ge-
nerierung der Stub-Klasse beachten muss. Obwohl in den nachfolgend beschrie-
benen Fällen die Regeln für die Verwendung der Codebase verletzt werden, funktio-
niert die RMI-Anwendung trotzdem einwandfrei.

Sobald der Client weiteren Code des Servers von dessen Codebase
herunterladen muss – beispielsweise weitere Klassen, die als Über-
gabeparameter genutzt werden – muss die Codebase stets richtig ge-
setzt werden und der gesamte Code dort auch verfügbar sein.

Es sollte jedoch darauf geachtet werden, dass die in den folgenden Kapiteln be-
schriebenen Fälle vermieden werden.

25.5.3.1 SecurityManager im Client nicht gesetzt

Wie zuvor erwähnt wurde, benötigt der Client einen SecurityManager, sobald er
Code über ein Netzwerk in seine virtuelle Maschine laden möchte. Wird jedoch die
Zeile

System.setSecurityManager (new RMISecurityManager());

im Quellcode des Client auskommentiert, neu übersetzt und die Anwendung durch
den Aufruf

java BestellClient

Vorsicht!

1054 Kapitel 25

gestartet, so wird Folgendes ausgegeben:

Die Ausgabe des Clients ist:

ClassLoader des Stub-Objekts
sun.misc.Launcher$AppClassLoader@9cab16

Der Code ist offensichtlich ohne Probleme ausführbar. Nun ist aber zu sehen, dass
als Klassenlader eine Instanz der Klasse AppClassLoader verwendet wird, was
den Rückschluss zulässt, dass die Remote-Schnittstelle aus dem lokalen Verzeichnis
des Clients heraus geladen wurde. Passiert ist folgendes: Die virtuelle Maschine hat
beim Auspacken des Stub-Objektes feststellen müssen, dass ihr der Code der Stub-
Klasse nicht bekannt ist und dass sie auch nicht die Erlaubnis hat, Code von der
Codebase – deren Adresse bekam sie natürlich mitgeteilt – herunterzuladen. Also
hat sie den Code der Stub-Klasse selbst generiert. Die dafür benötigten Informa-
tionen bekam sie aus der lokal vorhandenen Remote-Schnittstelle des Servers und
aus dem von der RMI-Registry erhaltenen Stub-Objekt. Die virtuelle Maschine des
Clients ist somit nicht auf den Download von Code von der Codebase angewiesen.

25.5.3.2 Remote-Schnittstelle nicht in der Codebase vorhanden

Wird im Client der SecurityManager gesetzt – er ist also berechtigt, Code über
das Netz zu laden – die class-Datei der Remote-Schnittstelle ist aber nicht in der
Codebase verfügbar, so wird vom Client beim Aufruf

java -Djava.security.policy=policy.all BestellClient

Folgendes ausgegeben:

Die Ausgabe des Clients ist:

ClassLoader des Stub-Objekts
sun.rmi.server.LoaderHandler$Loader@1457cb
["http://192.168.0.161:8080/rmi/codebase/"]

Als Klassenlader wurde der LoaderHandler.Loader verwendet, der auf die ent-
sprechende Codebase des Servers Zugriff hat. Weil dort aber die Remote-Schnitt-
stelle nicht vorhanden ist, passiert dasselbe, wie im vorherigen Beispiel: die virtuelle
Maschine generiert den Code der Stub-Klasse aus dem Stub-Objekt und der lokal
verfügbaren Remote-Schnittstelle.

25.5.3.3 Keine Codebase vom Server gesetzt

Wird beim Server keine Codebase gesetzt – die RMI-Registry muss dann in ihrem
Arbeitsverzeichnis die Remote-Schnittstelle des Servers finden – so wird dem Client
beim Aufruf der Methode lookup() auch keine Codebase mitgeteilt. Der Client mit
gesetztem SecurityManager gibt beim Aufruf

java -Djava.security.policy=policy.all BestellClient

Remote Method Invocation 1055

somit Folgendes aus:

Die Ausgabe des Clients ist:

ClassLoader des Stub-Objekts
sun.rmi.server.LoaderHandler$Loader@16897b2["null"]

Es wird zwar eine Instanz der Klasse LoaderHandler.Loader als Klassenlader
verwendet, da aber keine Codebase gesetzt ist – es ist null eingetragen – muss die
virtuelle Maschine den Code der Stub-Klasse wieder aus der lokal verfügbaren
Remote-Schnittstelle generieren.

25.5.3.4 Keine Codebase beim Server, kein SecurityManager beim Client

Ist keine Codebase beim Server gesetzt und wird im Client auch kein SecurityMa-
nager gesetzt, so wird beim Aufruf des Clients mit

java BestellClient

Folgendes ausgegeben:

Die Ausgabe des Clients ist:

ClassLoader des Stub-Objekts
sun.misc.Launcher$AppClassLoader@9cab16

Als Klassenlader wird der Anwendungs-Klassenlader AppClassLoader verwendet.
Dies muss ja auch so sein, weil kein SecurityManager gesetzt ist und die virtuelle
Maschine des Clients keinen Klassenlader einsetzen darf, der über ein Netzwerk
lädt. Die Remote-Schnittstelle wird also wiederum aus dem aktuellen Arbeitsver-
zeichnis des Clients geladen.

25.6 Häufig auftretende Fehler und deren Behebung

In den folgenden Kapiteln werden die häufigsten Fehler beschrieben, welche beim
Aufruf bestimmter Methoden auftreten können.

25.6.1 Aufruf von bind() bzw. rebind()

Folgende Fehler können beim Aufruf der Methoden bind() bzw. rebind() auf-
treten:

• Beim Starten des Servers wird folgende Fehlermeldung ausgegeben:

 Connection refused to host: localhost; nested exception is:
 java.net.ConnectException: Connection refused: connect

Ursache: Die RMI-Registry ist nicht gestartet.
Behebung: Starten Sie die RMI-Registry, um den Fehler zu beheben.

1056 Kapitel 25

• Die RMI-Registry ist gestartet. Beim Starten des Servers wird folgende Fehlermel-
dung ausgegeben:

RemoteException occurred in server thread; nested exception
is: java.rmi.UnmarshalException: error unmarshalling
arguments; nested exception is:

 java.lang.ClassNotFoundException: Bestellserver

Ursache: Beim Versuch, das Server-Objekt zu binden, konnte die RMI-Registry
die Definition der Remote-Schnittstelle nicht finden.

Behebung: Die RMI-Registry muss entweder aus dem Verzeichnis heraus gestar-
tet werden, in dem die Klassen des Servers liegen oder beim Starten des Servers
muss eine Codebase angegeben werden.

• Sicherheitspolitik verweigert Zugriff zur RMIRegistry, da die Policy nicht korrekt

gesetzt ist, die Policy-Datei nicht vorhanden ist oder die Policy-Datei fehlerhaft ist:

java.security.AccessControlException: access denied
(java.net.SocketPermission 127.0.0.1:1099 connect,resolve)

• Die RMIRegistry kann eine Klassendefinition nicht finden, da die Codebase nicht

korrekt gesetzt wurde oder die Klasse nicht in der Codebase liegt:

Error occurred in server thread; nested exception is:
java.lang.NoClassDefFoundError: Klassenname

25.6.2 Aufruf von lookup()

• Server-Klasse kann nicht geladen werden, da der SecurityManager nicht
gesetzt wurde:

error unmarshalling return; nested exception is: java.lang.Class-
NotFoundException: Bestellserver (no security manager: RMI class
loader disabled)

• Sicherheitspolitik verweigert Zugriff auf RMI-Registry, da die Policy nicht korrekt

gesetzt wurde, die Policy-Datei nicht vorhanden ist oder die Policy-Datei fehlerhaft
ist:

java.security.AccessControlException: access denied (
java.net.SocketPermission 127.0.0.1:1099 connect,resolve)

25.6.3 Aufruf einer Remote-Methode im Server

• Die vom Client aufgerufene Remote-Methode ist nicht in der Server-Schnittstelle
enthalten, da die Server-Schnittstelle geändert wurde, aber nicht zum Client ko-
piert wurde:

RemoteException occurred in server thread; nested exception is:
java.rmi.UnmarshalException: invalid method hash

Remote Method Invocation 1057

• Die vom Client aufgerufene Remote-Methode ist nicht in der Server-Schnittstelle
enthalten, da die Server-Schnittstelle geändert wurde, aber die Server-Klasse
nicht erneut generiert wurde:

java.lang.NoSuchMethodError at

• Klasse wurde vom Server nicht gefunden, da die Klasse eines Objektes, das vom

Client an den Server übergeben wird nicht in der Codebase liegt oder die Code-
base auf der Clientseite nicht korrekt angegeben ist:

RemoteException occurred in server thread; nested exception is:
java.rmi.UnmarshalException: error unmarshalling arguments; nested
exception is:
java.lang.ClassNotFoundException: Klassenname

25.7 Übungen

Aufgabe 25.1: Sitzplatzbelegung in einem Kino

Schreiben Sie eine RMI-Anwendung, bei der Sitzplätze in einem Kino über RMI be-
legt werden können.

25.1.1 Server programmieren

Legen Sie ein Paket server an, das die Schnittstelle Kino und die Klasse
KinoImpl enthält. Die Schnittstelle Kino muss von der Schnittstelle Remote
abgeleitet werden. Die Schnittstelle Kino soll die folgenden zwei Methoden
definieren:

public boolean[] getBelegung() throws RemoteException;
public void belegePlatz (int id) throws RemoteException;

Die Klasse KinoImpl soll die Schnittstelle Kino implementieren und soll die
die folgenden konstanten Klassenvariablen vom Typ String definieren:

• HOST mit dem Wert "localhost"

• und SERVICE_NAME mit dem Wert "RMI-KinoServer".

Legen Sie ferner ein Array vom Typ boolean an, auf das die Instanzvariable
belegung zeigen soll. Das Array soll die Belegung der Sitzplätze festhalten.
Der Wert false markiert einen nicht belegten Sitzplatz und der Wert true
markiert einen belegten Sitzplatz. Implementieren Sie die Methoden getBe-
legung() und belegePlatz() der Schnittstelle Kino. In der main()-Me-
thode der Klasse KinoImpl soll das Server-Objekt erzeugt werden.

25.1.2 Client programmieren

Legen Sie ein Paket client an, das die Klasse KinoClient beinhaltet.

Die Klasse KinoClient soll die folgenden konstanten Klassenvariablen
vom Typ String definieren:

1058 Kapitel 25

• HOST mit dem Wert "localhost"

• und BIND_NAME mit dem Wert "RMI-KinoServer".

In der Methode main() der Klasse KinoClient soll ein Stellvertreterobjekt
vom Typ Kino über die RMI-Registry gebunden werden. Beim Start des
Clients soll der Benutzer über einen Kommandozeilenparameter angeben
können, welchen Sitzplatz er reservieren möchte. Mit Hilfe der Methode
getBelegung() soll vom Remote-Objekt der Belegungsstatus abgefragt
werden. Falls der Platz frei ist, soll der Platz mittels der Methode belege-
Platz() belegt werden. Geben Sie entsprechende Meldungen auf dem
Bildschirm aus. Achten Sie ferner auf die Behandlung der verschiedenen
Exceptions in der main()-Methode.

Aufgabe 25.2: Mailprogramm mit RMI

Es soll ein Mailprogramm realisiert werden, das beim Start durch einen Benutzer
eine Auflistung der empfangenen Mails anzeigt. Legen Sie hierzu die Pakete client,
daten und server an. Im Paket daten soll die Klasse Mail, die zur Datenhaltung
von Mails dient, liegen. Sie soll die Instanzvariablen absender, empfaenger und
nachricht vom Typ String besitzen, zugehörige get- und set-Methoden und einen
Konstruktur bereitstellen, mit dessen Hilfe die drei Instanzvariablen gesetzt werden
können.

Server und Client sollen die folgenden Schnittstellen verwenden, die zu ergänzen
sind:

// Datei: MailServerInterface.java

package server;

import

public interface MailServerInterface extends Remote
{
 public void anmelden (MailClientInterface client)
 public void sendeNachricht (String absender, String empfaenger,
 String msg)
 public void abmelden (MailClientInterface client)
}

// Datei: MailClientInterface.java

package client;

import

public interface MailClientInterface extends Remote
{
 public void sendeNachricht (String msg)
 public String getName()
}

Remote Method Invocation 1059

25.2.1 Server programmieren

Implementieren Sie die Schnittstelle MailServerInterface in der Klasse
MailServerImpl, die von der Klasse UnicastRemoteObject ableiten soll.
Die Klasse MailServerImpl soll folgende Eigenschaften besitzen:

• eine konstante Klassenvariable HOST mit dem Wert "localhost",

• eine konstante Klassenvariable SERVICE_NAME mit dem Wert "local-
host",

• eine Instanzvariable clients vom Typ ArrayList, die zum Verwalten
aller angemeldeter Clients Objekte vom Typ MailClientInterface spei-
chern soll,

• die Instanzvariable nachrichten vom Typ HashMap soll mit einem String
für den Schlüssel, der den Empfänger der Nachricht(en) enthält und einer
ArrayList mit Mail-Objekten, in der die Nachrichten des Empfängers
liegen, parametrisiert werden. Sie soll der Speicherung der Mails für die
Benutzer dienen.

Die Klasse MailServerImpl soll ausführbar sein und dazu in der Klassen-
methode main() versuchen den Default-Konstruktor der eigenen Klasse auf-
zurufen und im Fehlerfall die Anwendung beenden. Mit Hilfe des Default-
Konstruktors dieser Klasse soll der Server an die URL gebunden werden, die
durch die Klassenvariablen zusammengesetzt werden soll.

Die Methoden der Schnittestelle MailServerInterface müssen in der Klas-
se MailServerImpl implementiert werden. Innerhalb der Methoden anmel-
den() und abmelden() soll der Client in die Collection, auf welche die In-
stanzvariable clients zeigt, eingetragen beziehungsweise wieder herausge-
nommen werden können. Dabei ist zu beachten, dass der Client nicht mehr-
fach in die Liste der Clients eingetragen werden darf. Beim erfolgreichen
Anmelden soll der Client eine Willkommens-Nachricht und eine Auflistung
seiner Mails bekommen. Innerhalb der Methode sendeNachricht() soll die
Nachricht aus der Parameterübergabe in die Collection, auf welche die
Instanzvariable nachrichten zeigt, eingefügt werden. Um die Methoden
übersichtlich zu halten, wird empfohlen, Hilfsmethoden zu verwenden.

25.2.2 Client programmieren

Legen Sie im Paket clients die Klasse MailClientImpl an, die von der
Klasse UnicastRemoteObject ableitet und die Schnittstellen MailClient-
Interface und Runnable implementiert. Die Klasse MailClientImpl soll
folgende Eigenschaften besitzen:

• eine konstante Klassenvariable HOST mit dem Wert "localhost",

• eine konstante Klassenvariable BIND_NAME mit dem Wert "localhost",

• eine Instanzvariable name vom Typ String besitzen, die den Namen des
Clients enthält,

1060 Kapitel 25

• einen Konstruktor, dem ein Parameter vom Typ String übergeben wird.
Der Parameter ist der Name des Benutzers und soll in der Instanzvariable
name gespeichert werden,

• durch die Methode getName() soll der Name des Clients vom Server
abgefragt werden können,

• eine Methode sendeNachricht(), die vom Server aufgerufen wird, um
eine Nachricht an den Client zu übertragen. Der übergebene String soll
auf der Konsole ausgegeben werden.

Bauen Sie in der Methode run() der Klasse MailClientImpl mit Hilfe der
Klassenvariablen HOST und BIND_NAME eine Verbindung zum Server auf.
Wenn die Verbindung aufgebaut wurde, soll sich der Client auf dem Server
anmelden, indem die Methode anmelden() des Servers mit dem Parameter
this aufgerufen wird. Mit Hilfe einer Endlosschleife sollen vom Benutzer je-
weils der Empfänger und der Inhalt einer neuen Nachricht abgefragt und an
den Server übermittelt werden. Bei der Eingabe von Exit soll die Endlos-
schleife beendet werden und der Client soll sich vom Server abmelden.

Die Klasse MailClientImpl soll durch die Klasse RMIClient aus dem Pa-
ket client als Thread gestartet werden. Dazu muss die Klasse RMIClient
in der statischen Methode main() prüfen, ob der Benutzername in der Kon-
sole als Übergabeparameter übergeben wurde. Bei einem übergebenen Be-
nutzername soll ein neuer Thread vom Typ MailClientImpl angelegt und
gestartet werden.

JDBC

DMBS

JDBC

26.1 Einführung in SQL
26.2 JDBC-Treiber
26.3 Installation und Konfiguration von MySQL
26.4 Zugriff auf ein DBMS
26.5 Datentypen
26.6 Exceptions
26.7 Metadaten
26.8 JDBC-Erweiterungspaket
26.9 Connection Pooling

26.10 Übungen

26 JDBC

JDBC ist eine Low Level-API, die es ermöglicht, auf einfache Weise SQL-Anwei-
sungen auszuführen. SQL (Structured Query Language) ist eine standardisierte Ab-
fragesprache für relationale Datenbanken245. Die Grundlagen von SQL werden in Ka-
pitel 26.1.2 erklärt. JDBC ist eine API von Sun Microsystems und steht für "Java
Database Connectivity". Java bietet mit der JDBC-API einfache Möglichkeiten an,
Daten aus Datenbanken in Objekte zu wandeln und diese wieder zurück in eine Da-
tenbank zu schreiben. Außerdem ist JDBC unabhängig vom verwendeten Daten-
bankverwaltungssystem, sodass man das Datenbankverwaltungssystem wechseln
kann, ohne die darüberliegende Anwendung ändern zu müssen246. JDBC benutzt
einen Treiber, um auf das jeweilige Datenbankverwaltungssystem zuzugreifen. Ist
dieser Treiber netzwerkfähig, so können mit JDBC verteilte Anwendungen realisiert
werden. Auf die unterschiedlichen Treibertypen wird in Kapitel 26.2 näher einge-
gangen.

Die JDBC-API ist aktuell in der Version 4.0 verfügbar und ist Teil der Java Standard
Edition. Dabei ist die API in zwei Pakete unterteilt:

• java.sql

Dieses Paket stellt die so genannte Core-API von JDBC dar. Die dort enthaltenen
Schnittstellen und Klassen stellen die Funktionalität bereit, welche für Client-
seitige Anwendungen benötigt werden. Dies umfasst unter anderem die folgen-
den Bereiche:

– Verbindungsaufbau zur Datenbank durch einen Verbindungsmanager
– Absetzen von SQL-Statements gegen die Datenbank wie zum Beispiel

Abfragen oder Updates
– Auswertung der Ergebnisse eines Abfrage-Befehls und Durchführen von Ab-

änderungen bestehender Datensätze
– Abbildung Datenbank-spezifischer Datentypen auf Java-konforme Datentypen

 Dieser Teil der API ist kompatibel zur früheren Version JDBC 1.0, die seit dem
JDK 1.1 zu Java gehört. Somit sind ältere Programme, die mit JDBC 1.0 ent-
wickelt wurden, immer noch ablauffähig. In der Version 2.0 wurden neben zu-
sätzlichen Datentypen von SQL99247 auch Erweiterungen bei Abfragen eingebaut.
Diese Erweiterungen umfassen unter anderem eine wahlfreie Navigation innerhalb
eines Datensatzes oder eine verbesserte Funktionalität zum Einfügen, Löschen
oder Verändern von Daten in einer Datenbank. Während die zuvor beschriebenen

245 JDBC ermöglicht prinzipiell den Zugriff auf Datenbanken beliebigen "Formates" – beispielsweise

Textdatei-basierte oder XML-basierte Datenbanken –, sofern von den Datenbank-Herstellern die
entsprechenden JDBC-Treiber (siehe Kap. 26.2) dafür angeboten werden. Im Folgenden werden
jedoch der Einsatz und die Arbeitsweise von JDBC anhand relationaler Datenbanken erläutert.

246 Die Portabilität der Datenbanken ist gegeben, solange nur Funktionalitäten des Base Level der
SQL92 Spezifikation verwendet werden, da diese von allen Treiberanbietern implementiert werden
müssen. Vor allem komplexere Funktionen werden nicht von allen Datenbanken oder entspre-
chenden Treibern unterstützt.

247 SQL99 oder auch SQL3 genannt, ist ein SQL-Standard des American National Standard Institute
(ANSI), der 1999 herausgebracht wurde. SQL99 wurde auch von der International Standards
Organisation (ISO) als Standard anerkannt.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_26,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

JDBC 1063

Features mit der darauf folgenden Version 3.0 weiter verfeinert und ausgebaut
wurden, ist mit der Version 4.0 neue Funktionalität hinzugekommen, wie beispiels-
weise die Abdeckung des SQL-2003-Standards248 oder das Intensivieren von
Ease-Of-Development durch den Einsatz von Annotations249.

• javax.sql

Dieses Paket erweitert die durch das java.sql-Paket zur Verfügung gestellte
Funktionalität um Klassen und Schnittstellen, die für Server-seitige Anwendung-
en verwendet werden. Es umfasst unter anderem:

 – Einen in der Funktionalität erweiterten Verbindungsmanager. Der Zugriff auf
das Datenbankverwaltungssystem wird dabei typischerweise über JNDI250
(Java Naming and Directory Interface) realisiert.

 – Die Möglichkeit, bereits aufgebaute Verbindungen zu einer Datenbank in
einem so genannten Connection-Pool bzw. vorgefertigte SQL-Statements in
einem so genannten Statement-Pool abzulegen, was zu einer höhere Perfor-
mance der Anwendung führt.

 – Die Möglichkeit, verteilte Transaktionen durchzuführen.

Das Paket javax.sql ist ein essentieller Bestandteil der Java Enterprise Edition
(Java EE). Seit der JDBC-API Version 3.0 ist es auch in der Java Standard Edition
(Java SE) – also seit der JDK-Version 1.4 – enthalten.

JDBC ist eine Low Level-API, in der man sich zum Beispiel nicht mehr um Details
wie den Verbindungsaufbau zum Datenbankverwaltungssystem kümmern muss, da
diese Funktionalität durch Klassen und Methoden der API zur Verfügung gestellt
wird. Der Programmierer muss jedoch selbst die SQL-Befehle in Form von Strings er-
zeugen und die einzelnen Attribute eines Datensatzes einer Datenbankabfrage in
Objekte wandeln. Deshalb wird bei größeren Anwendungen in den meisten Fällen
eine zusätzliche Softwareschicht zur Datenaufbereitung oberhalb der JDBC-API im-
plementiert, welche den Zugriff auf ein Datenbankverwaltungssystem weiter abstra-
hiert und als High Level-API von den Anwendungen aufgerufen wird.

26.1 Einführung in SQL

JDBC arbeitet beim Zugriff auf relationale Datenbanken auf der Ebene von SQL. In
diesem Kapitel soll erklärt werden, was eine relationale Datenbank ist und welche
grundlegenden SQL-Befehle es gibt.

26.1.1 Relationale Datenbanken

Das Datenbankkonzept ermöglicht eine zentrale Speicherung von Daten. Steht ein
Datenbankverwaltungssystem (DBMS251) zur Verfügung, so verwalten und speichern
Programme die benötigten Daten nicht mehr selbst, sondern delegieren die Daten-
haltung an das Datenbankverwaltungssystem. Das Datenbankkonzept beinhaltet da-

248 Dieser Standard ersetzt den SQL99-Standard, wobei die bis dahin verfügbaren Elemente

überarbeitet und von Fehlern bereinigt wurden. Zudem ist ein neuer Teil hinzugekommen, der die
Abbildung von XML-Datenstrukturen in eine Datenbank ermöglicht.

249 Siehe Anhang E.
250 Siehe Kap. 26.4.2.3.

1064 Kapitel 26

mit die Datenbank als die Menge der zentral gespeicherten Daten und das Daten-
bankverwaltungssystem als Schnittstelle zwischen Programmen und der Daten-
bank. Das Datenbankverwaltungssystem stellt dabei alle benötigten Funktionen zur
Handhabung der gespeicherten Daten zur Verfügung.

Bei relationalen Datenbanken ist die physikalische Speicherung der Daten dem An-
wender verborgen. Der Anwender arbeitet nur noch mit den Daten, unabhängig da-
von, wo und wie diese gespeichert sind. Auch der Zugriff auf die Daten ist über eine
eigene Abfragesprache – die Structured Query Language (SQL) – vereinheitlicht
worden. Relationale Datenbanken speichern ihre Daten in Tabellen (Relationen252).
Diese Tabellen bestehen aus mehreren Datensätzen (rows, Zeilen), die wiederum
aus unterschiedlichen Attributen (columns, Spalten) bestehen. Eine Tabelle, die Da-
tensätze von Studenten aufnehmen soll, könnte zum Beispiel die Attribute Name,
Vorname und Matrikelnummer beinhalten:

name vorname matrikelnr
Riese Adam 123456
Klein Eva 123457
Meier Max 214321

Weiland Walter 105432

Tabelle 26-1 Die Tabelle studenten

Um auf einen Datensatz in einer Tabelle in eindeutiger Weise zugreifen zu können
oder um einen Datensatz einfügen zu können, bedarf es eines Primärschlüssels
(Primary Key). Ein Primärschlüssel ist Bestandteil eines Datensatzes. Er muss
wegen der Eindeutigkeit für jeden Datensatz einen jeweils anderen Wert annehmen.

Ein Primärschlüssel identifiziert einen Datensatz in einer Tabelle. Der
Wert eines Primärschlüssels muss innerhalb einer Tabelle eindeutig
sein.

Ein Primärschlüssel kann eine Kombination verschiedener Felder eines Datensatzes
sein, wenn diese Kombination eindeutige Werte annimmt. Viel häufiger ist jedoch der
Fall, dass ein neues Attribut speziell für diesen Zweck eingeführt wird, z. B. eine Per-
sonal-Nummer in einer Angestellten-Relation. In der Tabelle studenten wird als
Primärschlüssel die Matrikelnummer verwendet.

Informationen zu einem Objekt können in mehreren Tabellen gespeichert werden. So
wäre zur Studenten-Tabelle noch eine weitere Tabelle für Fachnoten möglich:

matrikelnr fach note
123456 Informatik 1,0
123456 Mathematik 3,5
123457 Informatik 2,0

Tabelle 26-2 Die Tabelle fachnoten

251 DBMS = Data Base Management System.
252 Als Relation bezeichnet man eine logisch zusammenhängende Einheit von Informationen.

Relationen werden durch Tabellen realisiert.

JDBC 1065

In der zweiten Tabelle sind außer der Matrikelnummer keine "persönlichen" Informa-
tionen über die Studenten gespeichert. Damit von den Fachnoten auf die Studenten
geschlossen werden kann, besitzt jeder Datensatz als Verweis die Matrikelnummer
der Studententabelle als so genannten Fremdschlüssel.

Ein Fremdschlüssel stellt einen Bezug zu einer anderen Tabelle her.
Ein Fremdschlüssel ist immer ein Primärschlüssel in einer anderen
Tabelle.

Zur Erläuterung sei darauf hingewiesen, dass der Primärschlüssel in der Tabelle
fachnoten durch die Kombination der Felder matrikelnr und fach gebildet wird.

Die einzelnen Attribute (Spalten) einer Tabelle können unterschiedliche Datentypen
aufweisen wie zum Beispiel INT oder CHAR. Diese hängen vom verwendeten DBMS
ab. Für die meisten Beispiele in diesem Buch wird eine Tabelle studenten mit den
Attributen

• name vom Typ CHAR (20),

• vorname vom Typ VARCHAR (12)

• und matrikelnr vom Typ INT.

verwendet. Während der Datentyp INT für ganze Zahlen verwendet wird, werden die
Datentypen CHAR und VARCHAR für Zeichenketten verwendet. Bei CHAR wird eine
Spalte fester Länge verwendet. Im Gegensatz dazu gibt die Längenangabe bei
VARCHAR nur die maximale Länge an. Kürzere Zeichenketten brauchen somit we-
niger Platz in der Datenbank.

26.1.2 Grundlegende SQL-Befehle

In diesem Rahmen kann nur eine kleine Einführung in die wichtigsten SQL-Befehle
gegeben werden. Für eine ausführliche Beschreibung wird hier auf die entsprechen-
de Literatur verwiesen. Der Befehlssatz von SQL wird in drei Bereiche unterteilt:

• Data Definition Language (DDL),
• Data Manipulation Language (DML)
• und Data Control Language (DCL).

SQL-Befehle sind case insensitiv, das heißt, Groß- und Kleinbuchstaben sind
gleichwertig. Bei manchen Datenbanksystemen sind auch die Spaltennamen unab-
hängig von der Groß- und Kleinschreibung. In den Beispielen hier werden zum bes-
seren Verständnis SQL-Befehle wie SELECT in Großbuchstaben und Tabellen- und
Spaltennnamen – zum Beispiel studenten – in Kleinbuchstaben geschrieben.

Alle gängigen Datenbankverwaltungssysteme liefern ein Tool zum interaktiven Arbei-
ten mit der Datenbank. Dieses Tool kann zum Beispiel in der Form eines Komman-
dozeileninterpreters oder eines grafischen Werkzeugs existieren. Die folgenden
SQL-Befehle mit ihren Ausgaben basieren auf einem textbasierten Kommando-

1066 Kapitel 26

zeileninterpreter. Sie können aber auch direkt über JDBC an das DBMS gesendet
werden. Dazu mehr in Kapitel 26.4.

Da sich die DBMS-Hersteller bei der Implementierung von SQL meist nicht exakt an
den Standard halten, kann sich die Syntax eines SQL-Befehls von Datenbank zu
Datenbank mehr oder weniger unterscheiden. Aus diesem Grund sind die folgenden
SQL-Befehle konform zur Syntax des MySQL-DBMS. MySQL ist eine frei verfügbare
Datenbank, die auch für die folgenden JDBC-Beispiele zum Einsatz kommt und auf
der beigelegten CD enthalten ist.

Werden SQL-Befehle mit Hilfe des MySQL-Kommandozeileninterpre-
ters an das MySQL-DBMS gesendet, so müssen die SQL-Befehle
stets mit einem Semikolon ; abschließen.

26.1.2.1 Data Definition Language

Die unter dem Begriff "Data Definition Language" zusammengefassten SQL-Befehle
werden für das Erzeugen, Ändern und Entfernen von Datenbanktabellen verwendet:

Befehl zum Erzeugen und Löschen von Datenbanken

Bevor Relationen in Form von Tabellen angelegt werden können, muss innerhalb
des DBMS zuerst ein Speicherbereich geschaffen werden, in dem die Datensätze
abgelegt werden. Wie und in welcher Form dieser Speicherbereich verwaltet wird, ist
Aufgabe des DBMS. Ein solcher Bereich trägt ebenfalls die Bezeichnung "Daten-
bank", wodurch ein Namensraum für Datensätze gebildet wird, die logisch zusam-
mengehören – also beispielsweise Tabellen zur Verwaltung von Studenten, Profes-
soren, Prüfungen und Fachnoten.

Eine Datenbank wird mit dem Befehl CREATE DATABASE angelegt. Soll eine Daten-
bank erstellt werden, welche Daten zur Verwaltung einer Hochschule enthält, so er-
zeugt man diese mit:

CREATE DATABASE hochschule;

Nachdem der Befehl abgesetzt ist, können Tabellen in diesem Speicherbereich ab-
gelegt werden. Das Löschen der Datenbank erfolgt mit dem Befehl DROP DATA-
BASE. So könnte die Hochschul-Datenbank mit

DROP DATABASE hochschule;

vollständig gelöscht werden.

Der Befehl DROP DATABASE entfernt die Datenbank, womit auch alle
Tabellen – und somit die Daten – unwiderruflich gelöscht werden.

Vorsicht!

JDBC 1067

Befehl zum Erzeugen einer Tabelle

Mit dem Befehl CREATE TABLE wird eine neue Datenbanktabelle erzeugt. Der Aufruf
zum Erzeugen einer Tabelle für Studenten sieht folgendermaßen aus:

CREATE TABLE studenten (name CHAR (20),
 vorname VARCHAR (12),
 matrikelnr INT NOT NULL,
 PRIMARY KEY (matrikelnr));

Nach dem SQL-Befehl CREATE TABLE wird der neue Tabellenname angegeben –
hier studenten. Danach werden in runden Klammern die Spaltennamen und deren
Datentyp genannt. In diesem Beispiel ist die erste Spalte name für den Namen vom
Typ CHAR (20), was einem String der festen Länge von 20 Zeichen entspricht. Die
zweite Spalte vorname repräsentiert den Vornamen und ist vom Typ VARCHAR. Die
Spalte matrikelnr ist vom Typ INT und dient zur Hinterlegung der Matrikelnummer
als ganze Zahl. Der Zusatz NOT NULL legt fest, dass die Matrikelnummer für jeden
Datensatz angegeben werden muss. Zudem fungiert die Matrikelnummer als Primär-
schlüssel, was durch die Angabe von PRIMARY KEY(matrikelnummer) vereinbart
wird.

Eine Tabelle, die als Primärschlüssel die Werte zweier Spalten heranzieht, ist die
Tabelle fachnoten. Das CREATE TABLE-Statement für diese Tabelle lautet:

CREATE TABLE fachnoten (
 matrikelnr INT NOT NULL,
 fach VARCHAR (20) NOT NULL,
 note DOUBLE NOT NULL,
 PRIMARY KEY(matrikelnr, fach),
 FOREIGN KEY(matrikelnr)
 references studenten(matrikelnr)
 ON DELETE CASCADE);

Die Anweisung zur Definition des Primärschlüssels umfasst nun die Spalten matri-
kelnr und fach. Es dürfen somit nur Datensätze eingefügt werden, bei denen die
Kombination aus Matrikelnummer und Fach genau einmal vorkommt. Ist ja auch
logisch, weil jeder Student, der durch eine eindeutige Matrikelnummer identifiziert
wird, pro Fach nur eine Note besitzt. Die Anweisung FOREIGN KEY(matrikelnr)
gibt zudem an, dass über die Spalte matrikelnr der Tabelle fachnoten eine
Referenz auf die Spalte matrikelnr der Tabelle studenten hergestellt wird. Das
bedeutet, dass jeder Eintrag in der Tabelle fachnoten auf genau einen Eintrag in
der Tabelle studenten verweist. Dies hat zur Konsequenz, dass nur Matrikelnum-
mern in die Tabelle fachnoten eingetragen werden können, die in der Tabelle stu-
denten existieren. Der Zusatz ON DELETE CASCADE gibt weiterhin an, dass alle
Einträge in der Tabelle fachnoten automatisch gelöscht werden, wenn der referen-
zierende Eintrag in der Tabelle studenten gelöscht wird. Das ist logisch, weil von
einem Studenten, der sein Studium beendet hat und somit sein Eintrag aus der Da-
tenbank gelöscht wird, alle Fachnoten aus dem Datenbestand automatisch mitge-
löscht werden sollen.

1068 Kapitel 26

Befehl zum Löschen einer Tabelle

Mit dem Befehl DROP TABLE wird eine Datenbanktabelle und ihr Inhalt unwiderruf-
lich gelöscht. Es muss beim Aufruf der Tabellenname angegeben werden. Die Stu-
dententabelle wird mit folgendem Befehl gelöscht:

DROP TABLE studenten;

Befehl zum Ändern einer Tabelle

Mit dem Befehl ALTER TABLE kann der Aufbau einer bestehenden Tabelle geändert
werden. Zum Beispiel können neue Spalten zu einer Tabelle hinzugefügt oder der
Datentyp einer Spalte geändert werden.

26.1.2.2 Data Manipulation Language

Mit Befehlen der "Data Manipulation Language" können bestehende Tabellen mit
Daten gefüllt werden. Außerdem gibt es Befehle zum Löschen, Ändern oder Aus-
lesen von Datensätzen.

Befehl zum Auslesen von Datensätzen

Der Befehl SELECT dient zum Auslesen von Datensätzen. Möchte man zum Beispiel
alle Studenten mit Vornamen und Nachnamen ausgeben, so gibt man den folgenden
Befehl ein:

SELECT name, vorname FROM studenten;

Die Ausgabe dieser Abfrage ist:

NAME VORNAME
------------ ------------
Riese Adam
Klein Eva
Meier Max
Weiland Walter

Die Reihenfolge der ausgegebenen Datensätze ist dabei nicht festgelegt.

Möchte man alle Attribute einer Tabelle auslesen, so wird anstatt der Spaltennamen
ein Stern verwendet:

SELECT * FROM studenten;

Die Ausgabe dieser Abfrage ist:

NAME VORNAME MATRIKELNR
------------ ------------ ----------
Riese Adam 123456
Klein Eva 123458
Meier Max 214321
Weiland Walter 105432

JDBC 1069

Auch hier ist die Reihenfolge der ausgegebenen Datensätze nicht definiert. Mit den
Optionen ORDER BY <spaltenname> ASC253 und ORDER BY <spaltenname>
DESC254 werden die Datensätze in numerischer und alphabetischer Folge auf- be-
ziehungsweise absteigend sortiert. Der SQL-Befehl, um die Studenten sortiert nach
ihren Matrikelnummern in aufsteigender Folge auszugeben, lautet somit:

SELECT * FROM studenten ORDER BY matrikelnr ASC;

Die Ausgabe dieser Abfrage ist:

NAME VORNAME MATRIKELNR
------------ ------------ ----------
Weiland Walter 105432
Riese Adam 123456
Klein Eva 123458
Meier Max 214321

Häufig will man eine Datenbankabfrage einschränken. Dazu dient die WHERE-Klau-
sel. Durch einen logischen Ausdruck wird die Abfrage einer Selektion unterzogen.
Das folgende Statement liefert nur die Datensätze der Studenten zurück, deren Ma-
trikelnummer kleiner als 130000 ist:

SELECT * FROM studenten WHERE matrikelnr < 130000;

Die Ausgabe dieser Abfrage ist:

NAME VORNAME MATRIKELNR
------------ ------------ ----------
Riese Adam 123456
Klein Eva 123458
Weiland Walter 105432

Es ist möglich, Daten aus mehreren Tabellen in einer Ausgabe zu kombinieren. Zum
Beispiel könnte es interessant sein, das Fach und die Noten zusammen mit dem
Studentennamen auszugeben. Die Attribute fach und noten sind in der Tabelle
fachnoten gespeichert und das Attribut name ist in der Tabelle studenten ge-
speichert. Die Fächer, die ein Student besucht, und die entsprechenden Noten wer-
den in der Tabelle fachnoten durch die Matrikelnummer identifiziert. Die Matrikel-
nummer ist dabei der Primärschlüssel der Tabelle studenten und der Fremd-
schlüssel der Tabelle fachnoten. Der folgende Befehl ermöglicht die kombinierte
Ausgabe von Datenfeldern aus Datensätzen beider Tabellen. Hierbei ist zur eindeu-
tigen Identifizierung eines Attributes, diesem immer der Tabellenname voranzustel-
len.

SELECT studenten.name, fachnoten.fach, fachnoten.note
 FROM studenten, fachnoten
 WHERE studenten.matrikelnr = fachnoten.matrikelnr;

253 Abkürzung für ascending (engl.) = aufsteigend.
254 Abkürzung für descending (engl.) = absteigend.

1070 Kapitel 26

Die Ausgabe dieser Abfrage ist:

NAME FACH NOTE
--------------- --------------------- ----
Riese Informatik 1,2
Riese Mathematik 3,4
Klein Informatik 2,3

Befehl zum Einfügen von Datensätzen

Mit dem Befehl INSERT werden Datensätze in Tabellen eingefügt. Dabei müssen
Zeichenketten in einfachen Hochkommata eingeschlossen werden:

INSERT INTO studenten (name, vorname, matrikelnr)
 VALUES ('Gross', 'Daniel', 135321);

Die Spalten, welche keine Primär- oder Fremdschlüssel sind und die nicht mit NOT
NULL gekennzeichnet sind, müssen keinen Wert beinhalten. Im folgenden Beispiel
wird der Vorname nicht angegeben:

INSERT INTO studenten (name, matrikelnr)
 VALUES ('Gross', 135322);

Werden alle Attribute einer Tabelle in der ursprünglichen Reihenfolge angegeben, so
kann die erste Klammer mit den Spaltennamen weggelassen werden:

INSERT INTO studenten
 VALUES ('Kleinlich', 'Hans', 722421);

Nachdem das DBMS diese drei INSERT-Befehle ausgeführt hat, sind folgende Da-
tensätze in der Datenbank enthalten:

name vorname matrikelnr
Riese Adam 123456
Klein Eva 123457
Meier Max 214321

Weiland Walter 105432
Gross Daniel 135321
Gross 135322

Kleinlich Hans 722421

Tabelle 26-3 Die Tabelle studenten nach dem Ausführen der INSERT-Befehle

Befehl zum Ändern bestehender Datensätze

Mit dem Befehl UPDATE können die Attribute eines oder mehrerer Datensätze geän-
dert werden. Dabei werden die zu ändernden Datensätze über die WHERE-Bedingung
ermittelt. Wird die WHERE-Bedingung vergessen, so werden alle Datensätze geän-
dert! Hier ein einfaches Beispiel:

UPDATE studenten
SET name = 'Mueller',
 vorname = 'Ben'
WHERE matrikelnr = 135322;

JDBC 1071

Befehl zum Löschen von Datensätzen

Mit dem Befehl DELETE werden Datensätze einer Tabelle gelöscht. Auch hier wird
über die WHERE-Bedingung geprüft, welche Datensätze gelöscht werden sollen. Wird
die WHERE-Bedingung hier vergessen, so werden alle Datensätze der Tabelle un-
widerruflich gelöscht! Mit der folgenden Anweisung wird der Student mit der Matrikel-
nummer 123456 gelöscht:

DELETE FROM studenten
 WHERE matrikelnr = 123456;

Dabei werden alle Einträge in der Tabelle fachnoten, die für die Matrikelnummer
123456 hinterlegt sind, automatisch mitgelöscht.

26.1.2.3 Data Control Language

Die SQL-Befehle COMMIT und ROLLBACK der "Data Control Language" dienen zur
Steuerung von Transaktionen. Viele Datenbankverwaltungssysteme sind standard-
mäßig auf die Funktion Auto-Commit eingestellt. Das bedeutet, dass jede Änderung
an den Daten der Datenbank sofort gültig wird. Will man dies verhindern, so kann
man die Auto-Commit-Funktion ausschalten und den Übernahmezeitpunkt von abge-
setzten SQL-Statements gezielt durch den SQL-Befehl COMMIT steuern.

Bei Transaktionen werden mehrere Datenbankzugriffe als eine ato-
mare Einheit zusammengefasst. Dabei sollen entweder alle Anwei-
sungen einer Transaktion ausgeführt oder – falls es technische
Schwierigkeiten gibt – alle Anweisungen verworfen werden. Man sagt,
dass Transaktionen atomar sind, d. h. sie finden entweder als Ganzes
statt oder gar nicht.

Ein bekanntes Beispiel für eine Transaktion ist eine Buchung: Wenn von Konto A et-
was abgebucht wird, soll derselbe Betrag auf Konto B gutgeschrieben werden:

SELECT kontostand FROM konto
WHERE user = 'A'

SELECT kontostand FROM konto
WHERE user = 'B'

UPDATE konto
SET kontostand = (alterStandA - 50)
WHERE user = 'A'

UPDATE konto
SET kontostand = (alterStandB + 50)
WHERE user = 'B'

Bild 26-1 Buchung als Transaktion aus mehreren Einzelaufträgen

Tritt bei einer dieser Kontoänderungen ein Fehler auf, so soll die gesamte Buchung
rückgängig gemacht werden. Es soll nicht vorkommen, dass zum Beispiel der Betrag

1072 Kapitel 26

von A abgebucht, aber nicht bei B gutgeschrieben wird. Die Verwaltung und Durch-
führung der Transaktionen erfolgt durch das Datenbankverwaltungssystem. Je nach
Anwendungsschnittstelle sind die Verfahren dazu unterschiedlich. In Kapitel 26.4.5
werden Transaktionen mit JDBC näher besprochen.

Mit dem Befehl COMMIT werden die durchgeführten Teilschritte einer Transaktion un-
widerruflich festgehalten. Die in diesen Teilschritten erfolgten Änderungen werden
endgültig in der Datenbank übernommen. Mit dem Befehl ROLLBACK kann man da-
gegen die Änderungen einer Transaktion verwerfen.

26.2 JDBC-Treiber

Auf ein DBMS greift man mit JDBC über einen so genannten Treiber zu. Die Aufgabe
des Treibers ist es, JDBC-Aufrufe in Anweisungen umzusetzen, die von dem jewei-
ligen DBMS verstanden werden. Zusätzlich muss der Treiber dann die Ergebnisse
von Datenbankabfragen entgegennehmen und in eine für das aufrufende Java-Pro-
gramm verständliche Form bringen. Der Aufbau der JDBC-Treiber ist von Sun in der
JDBC-Treiber-API spezifiziert. Sie sind in den meisten Fällen abhängig vom DBMS
und werden von den DBMS-Herstellern oder Drittanbietern entsprechend der JDBC-
Spezifikation implementiert.

Der Anwendungsentwickler arbeitet hauptsächlich mit der JDBC-API und somit unab-
hängig von der eigentlichen Implementierung der Treiber. Die Treiber für den JDBC-
Zugriff lassen sich in vier Typen unterteilen, die im folgenden Kapitel vorgestellt wer-
den.

26.2.1 Treiberarchitektur unter Verwendung eines JDBC-Treiber-
Managers

Die Anwendung greift über die JDBC-API auf einen JDBC-Treiber-Manager255 zu.
Der JDBC-Treiber-Manager ruft über die JDBC-Treiber-API einen passenden JDBC-
Treiber auf. Der JDBC-Treiber-Manager wird durch die Klasse java.sql.Driver-
Manager repräsentiert. Diese Klasse enthält Klassenmethoden zum Laden von Trei-
bern und bietet Unterstützung für das Erzeugen von Verbindungen zu einem DBMS.

Der JDBC-Treiber implementiert die Schnittstelle java.sql.Driver. In Kapitel
26.4.1 wird beschrieben, wie der Treiber aufgerufen wird. Je nach Treibertyp verläuft
der Zugriff auf ein DBMS unterschiedlich. In Bild 26-2 ist der Zugriff einer Java-An-
wendung auf ein DBMS über JDBC beschrieben. Auch Applets können über JDBC
auf ein DBMS zugreifen. Applets können jedoch nicht alle Treibertypen verwenden.
Dies wird bei der Beschreibung der einzelnen Treibertypen im nächsten Kapitel er-
klärt. Zusätzlich wird in Bild 26-2 gezeigt, welche Teile einer Anwendung auf dem
Client-Rechner, auf einem Applikationsserver-Rechner und auf dem Datenbankser-
ver-Rechner laufen. Natürlich kann der gesamte Code auch auf einem einzigen
Rechner ausgeführt werden.

255 Eine andere Möglichkeit ist die Verwendung von DataSource-Objekten (siehe Kap. 26.8).

JDBC 1073

Java-Anwendung

JDBC-Treiber-Manager

JDBC-Treiber

ODBC-Treiber

ODBC-Brücke

Applikations-
Server

C/C++ -
Bibliothek

JDBC-Treiber JDBC-Treiber

C/C++ -
Bibliothek

DBMS

pr
op

rie
tä

re
s

P
ro

to
ko

ll

DBMS

pr
op

rie
tä

re
s

P
ro

to
ko

ll

DBMS DBMS

pr
op

rie
tä

re
s

P
ro

to
ko

ll

pr
op

rie
tä

re
s

P
ro

to
ko

ll

DB-
Server

JDBC/ODBC-
Bridge Driver

Client

JDBC-API

JDBC-Treiber-API

native-API partly-
Java driver

native-protocol
all-Java driver

net-protocol
all-Java driver

Applikations-
Server

Bild 26-2 JDBC-Treiber in einer Three-Tier-Architektur

26.2.2 Treibertypen

Die Dokumentation von SUN unterteilt die JDBC-Treiber in vier Typen. Häufig gibt es
für eine Anwendung mehrere Treiber, die man verwenden kann. Da sich die Treiber-
typen aber in ihrer Arbeitsweise und Leistungsfähigkeit unterscheiden, ist es wichtig,
ihre Arbeitsweise zu kennen. Von der Anwendung wird über die JDBC-API auf alle
Treibertypen in gleicher Weise zugegriffen.

Typ 1-Treiber: Die JDBC/ODBC-Bridge

Dieser Treibertyp stellt eine Brücke zu einer weiteren Datenbankschnittstelle dar. Mit
der von Sun gelieferten und im JRE bzw. JDK enthaltenen JDBC/ODBC256-Treiber-
Klasse sun.jdbc.odbc.JdbcOdbcDriver ist ein Zugriff auf alle Datenbankver-
waltungssysteme möglich, für die es einen ODBC-Treiber gibt. Da die meisten Da-
tenbankverwaltungssysteme einen ODBC-Treiber besitzen, kann damit auch auf Da-
tenbankverwaltungssysteme zugegriffen werden, die JDBC nicht direkt unterstützen.
Die zu verwendende Datenbank muss auf dem gleichen Rechner wie die Java-An-
wendung als ODBC-Datenquelle registriert sein. Aus diesem Grund kann die
JDBC/ODBC-Bridge nicht über das Netz von Applets aufgerufen werden.

256 ODBC (Open Database Connectivity) bezeichnet ein Set von C-Funktionen, mit deren Hilfe auf

unterschiedliche Datenbanken auf die gleiche Art und Weise zugegriffen werden kann.

1074 Kapitel 26

Typ 2-Treiber: Der Native-API Partly Java-Driver

Dieser Treiber ist nur teilweise in Java geschrieben und greift über das Java Native
Interface (JNI)257 auf eine in C oder C++ geschriebene Bibliothek des DBMS-Her-
stellers zu. Die JDBC-Aufrufe werden in Anweisungen des entsprechenden DBMS
konvertiert. Auf dem Client-Rechner müssen auch bei diesem Typ Treiberprogramme
installiert sein. Deshalb kann auch der Native-API Partly Java-Driver nicht über das
Netz von Applets aufgerufen werden.

Typ 3-Treiber: Der Net-Protocol All-Java-Driver

Der vollständig in Java geschriebene Treiber setzt JDBC-Aufrufe in ein netzwerk-
unabhängiges Protokoll um. Dieses Protokoll wird von einem Programm in ein
DBMS-spezifisches Protokoll gewandelt. Dieser Treibertyp ist sehr flexibel, da auf
dem Client keine zusätzliche Software installiert werden muss. Er kann auch von
Applets aufgerufen werden.

Typ 4-Treiber: Der Native Protocol All-Java-Driver

Dieser Treibertyp setzt die JDBC-Aufrufe in ein Netzwerkprotokoll um, das direkt vom
DBMS verstanden wird und greift über eine Socket-Verbindung auf das DBMS zu.
Auch dieser Treiber ist ähnlich wie der Typ 3-Treiber vollständig in Java implemen-
tiert und internetfähig. Man kann somit aus Applets heraus direkt auf ein DBMS
zugreifen.

26.3 Installation und Konfiguration von MySQL

Da in den folgenden Kapiteln das freie Datenbanksystem MySQL verwendet werden
soll, wird in diesem Kapitel kurz beschrieben, wie die Datenbank installiert und für
den Einsatz als Test-Datenbank vorbereitet wird. Da natürlich nicht alle Details er-
läutert und nur die wichtigsten Befehle aufgelistet werden können, wird an dieser
Stelle auf die sehr ausführliche Dokumentation von MySQL unter

http://dev.mysql.com/doc

verwiesen. Hierüber kann unter anderem die gesamte SQL-Syntax der MySQL-Da-
tenbank ausführlich nachgelesen werden.

26.3.1 Installation der Datenbank

Die MySQL-Datenbank in der Version 5.1 kann unter dem Link

http://www.mysql.com/downloads/mysql

für die Plattform des eigenen Rechners heruntergeladen werden. Für die Betriebs-
systeme Microsoft Windows (x86, 32 Bit) und LINUX (x86, 32 Bit, glibc-2-3) sind die
Installationsquellen auf der Begleit-CD enthalten.

Die oben gezeigte Download-Seite enthält zudem weiterführende Informationen über
die Installation der Datenbank für die jeweilige Plattform.

257 Siehe Kap. 28 auf der CD.

JDBC 1075

26.3.2 Konfiguration des DBMS

Nachdem man sich mit Hilfe des Kommandozeileninterpreters von MySQL am DBMS
als Benutzer root – dieser Benutzer besitzt alle Konfigurationsrechte – angemeldet
hat, soll als erstes eine Datenbank mit dem Namen JDBCTest angelegt werden:

CREATE DATABASE JDBCTest;

Danach soll ein neues Benutzerkonto mit dem Befehl CREATE USER eingerichtet
werden, damit die nachfolgenden Programmbeispiele nicht das Benutzerkonto von
root verwenden müssen. Unserem Benutzer wird der Name tester und das Pass-
wort geheim zugewiesen:

CREATE USER tester IDENTIFIED BY 'geheim';

Unserem Benutzer tester müssen nun noch die benötigten Rechte zugewiesen
werden, damit er auf der angelegten Datenbank JDBCTest arbeiten kann. Dies ge-
schieht mit dem Befehl GRANT:

GRANT ALL ON JDBCTest.* to tester;

Dieser Befehl legt fest, dass dem Benutzer tester alle Rechte auf der Datenbank
JDBCTest verliehen werden.

Nun ist die Datenbank JDBCTest und der Benutzer tester angelegt worden. Mel-
det man sich nun in einem neuen Fenster des Kommandozeileninterpreters mit dem
Befehl

mysql –u tester –pgeheim

an, und wechselt zur Datenbank JDBCTest mittels

use JDBCTest;

so können die im Kapitel 26.1.2.1 beschriebenen CREATE TABLE-Befehle für die Ta-
bellen studenten und fachnoten für den Benutzer tester in der Datenbank
JDBCTest angelegt werden. Mit dem Befehl

show tables;

kann überprüft werden, ob die Konfiguration erfolgreich abgeschlossen wurde:

 +--------------------+
| Tables_in_jdbctest |
+--------------------+
| fachnoten |
| studenten |
+--------------------+
2 rows in set (0.00 sec)

Bild 26-3 Ausgabe des Befehls show tables nach dem Anlegen der Tabellen

1076 Kapitel 26

26.3.3 Vorbereiten der Arbeitsverzeichnisse

Damit nun die in den folgenden Kapiteln entwickelten Datenbank-Anwendungen aus-
geführt werden können, muss der MySQL-Datenbanktreiber im CLASSPATH der je-
weiligen Anwendung verfügbar sein. Der benötigte Treiber ist in der Klasse com.my-
sql.jdbc.Driver implementiert, die im Java-Archiv mysql-connector-java-
5.x.y-bin.jar258 enthalten ist. Die Platzhalter x und y stehen dabei für die kon-
krete Version des Treibers. Dieses Archiv kann in das Arbeitsverzeichnis – beispiels-
weise C:\work\jdbc – hineinkopiert werden.

Seit der JDBC-Version 4.0 ist für den Verbindungsaufbau zum DBMS der Java Ser-
vice Provider Mechanismus implementiert, mit dem es möglich ist, benötigte Daten-
bank-Treiber dynamisch durch das Laufzeitsystem laden zu lassen. Soll diese
Technik zum Einsatz kommen, so muss im Arbeitsverzeichnis die Ordner-Struktur
META-INF\services\ verfügbar sein, wobei im Ordner services dann die Datei
java.sql.Driver vorhanden sein muss. In dieser Datei werden dann alle Namen
der Treiber eingetragen, die beim Programmstart automatisch von der virtuellen
Maschine geladen werden sollen. Enthält die Datei beispielsweise den Eintrag
com.mysql.jdbc.Driver, so wird automatisch ein Klassenlader259 instantiiert, der
den Code der Klasse Driver in die virtuelle Maschine lädt. Ein Programm, das
JDBC zum Zugriff auf eine MySQL-Datenbank verwendet, kann diesen Treiber dann
verwenden, ohne ihn vorher explizit geladen zu haben.

Die hier beschriebene Technik des dynamischen Ladens des JDBC-
Treibers ist erst in der JDBC 4.0-Version implementiert. Kommt eine
ältere Version von JDBC zum Einsatz, so muss der Treiber mittels
Class.forName(), beispielsweise

Class.forName ("com.mysql.jdbc.Driver");

explizit in die virtuelle Maschine geladen werden. Mit JDBC 4.0 ist
dieser Code jedoch ebenfalls lauffähig.

Wird nun beispielsweise in der Methode main() der Klasse JDBCTest eine Verbin-
dung zu einer MySQL-Datenbank aufgebaut, wozu der MySQL-JDBC-Treiber Dri-
ver benötigt wird, so kann der Interpreter wie folgt gestartet werden:

java -cp mysql-connector-java-5.x.y-bin.jar; JDBCTest

26.4 Zugriff auf ein DBMS

Nachdem die im Kapitel 26.3.2 beschriebenen Schritte zur Konfiguration des DBMS
erfolgreich durchgeführt worden sind, kann auf die Datenbank JDBCTest mittels
JDBC zugegriffen werden. Dieser Zugriff auf ein DBMS läuft immer nach einem fest-
gelegten Schema ab. Er lässt sich in mehrere Phasen aufteilen, die hier kurz vor-
gestellt und in den nächsten Kapiteln ausführlich besprochen werden:

258 Siehe Begleit-CD und http://www.mysql.com/downloads/connector/j.
259 Siehe Kap. 25.5.1.

Vorsicht!

JDBC 1077

• Herstellen der Verbindung zu einem DBMS. Hierbei gibt es keinen Unterschied,
ob die Datenbank sich lokal auf dem gleichen Rechner befindet oder ob über das
Netz auf sie zugegriffen wird.

• Absetzen eines SQL-Statements. Dieses Statement kann zum Beispiel den In-
halt einer Datenbanktabelle auslesen, Datensätze in eine Tabelle einfügen oder
Tabellen löschen.

Wird JDBC für den Zugriff auf eine MySQL-Datenbank verwendet,
so werden die SQL-Statements stets ohne Semikolon an das
DBMS gesendet.

• Auswerten des Ergebnisses. Bei einer Manipulation der Daten durch ein UP-
DATE-Statement ist das Ergebnis nur eine Integerzahl, bei einer Abfrage mit
SELECT wird eine Referenz auf ein Objekt vom Typ ResultSet zurückgegeben.

• Schließen des SQL-Statements.

• Schließen der Verbindung zum DBMS.

Neben den Klassen und Schnittstellen für den Verbindungsaufbau und das Bear-
beiten von Daten gibt es noch Klassen und Schnittstellen, um Informationen über die
Datenbank aufzunehmen oder Abfrageergebnisse zu erhalten. Ein Abfrageergebnis
kann z. B. in einem Objekt vom Typ ResultSet übergeben werden. Datenbankinfor-
mationen werden in Objekten für so genannte Metadaten260 übergeben wie beispiels-
weise einem Objekt vom Typ ResultSetMetaData. Eine Anwendung kann gleich-
zeitig mehrere Verbindungen zu einem oder mehreren Datenbankverwaltungssyste-
men aufbauen. Innerhalb jeder Verbindung kann dann eine Folge von SQL-Befehlen
ausgeführt werden.

Das folgende Beispiel zeigt, wie in die Tabelle studenten Informationen über drei
Studenten mit Hilfe eines INSERT-SQL-Befehls eingefügt werden. Danach werden
für jeden Studenten Noten für das Fach Info 1 in die Tabelle fachnoten einge-
tragen. Anschließend wird mittels eines SELECT-Befehls überprüft, ob alle Informa-
tionen richtig im System hinterlegt wurden:

// Datei: JDBCTest.java
import java.sql.*;

public class JDBCTest
{
 private static final String[] NAMEN =
 {"Schmidt", "Peters", "Dlugosch"};
 private static final String[] VORNAMEN =
 {"Georg", "Anja", "Andrea"};
 private static final int[] MATRIKELNRN =
 {12345678, 47110815, 54123678};

260 Meta (griech.: mit, über). Metadaten sind so genannte beschreibende Daten, die Informationen

über die eigentlichen Nutzdaten bereitstellen. So kann über ein Objekt vom Typ ResultSetMeta-
Data unter anderem die Anzahl und Namen der Spalten der Ergebnismenge abgefragt werden.

1078 Kapitel 26

 private static final double[] NOTEN =
 {1.0, 2.1, 1.7};

 public static void main (String[] args)
 {
 Connection con = null;
 Statement stmt = null;
 ResultSet rs = null;

 // Die einzelnen Elemente der url werden später erklärt.
 String url = "jdbc:mysql://localhost:3306/";

 // Es soll die Datenbank JDBCTest verwendet werden.
 String dbName = "JDBCTest";

 // Es wird das Konto des zuvor angelegten
 // Benutzers tester verwendet.
 String user = "tester";
 String passwd = "geheim";

 try
 {
 // Verbindung zum DBMS herstellen. Es wird nun implizit
 // der JDBC-Treiber com.mysql.jdbc.Driver geladen.
 // Der Aufruf liefert ein Objekt vom Typ Connection zurück,
 // das die Verbindung zum DBMS kapselt.
 con = DriverManager.getConnection (
 url + dbName, user, passwd);

 // Der Aufruf der Methode createStatement() auf dem
 // Connection-Objekt liefert ein Objekt vom Typ
 // Statement zurück. Über dieses Objekt können SQL-
 // Befehle an die Datenbank gesendet werden.
 stmt = con.createStatement();

 String sqlBefehl = null;

 // Als erstes werden die Studenten eingetragen
 for (int i = 0; i < NAMEN.length; i++)
 {
 sqlBefehl = "insert into studenten values ('" +
 NAMEN [i] + "', '" + VORNAMEN [i] + "'," +
 MATRIKELNRN [i] + ")";

 // Mit der Methode execute() wird der übergebene
 // SQL-Befehl an das DBMS gesendet und dort ausgeführt
 stmt.execute (sqlBefehl);
 }

 // Nun können die Noten für die Studenten hinterlegt werden
 for (int i = 0; i < NAMEN.length; i++)
 {
 sqlBefehl = "insert into fachnoten values (" +
 MATRIKELNRN [i] + ",'Info 1'," +
 NOTEN [i] + ")";
 stmt.execute (sqlBefehl);
 }

JDBC 1079

 // Mit dem Aufruf von executeQuery können
 // nur SELECT-Statements abgesetzt werden.
 // Das Ergebnis der Abfrage wird ein einem
 // Objekt vom Typ ResultSet zurückgeliefert.
 rs = stmt.executeQuery (
 "SELECT matrikelnr, name FROM studenten");

 // Auswerten des Ergebnisses
 System.out.println (
 "Folgende Studenten sind verzeichnet:");
 System.out.println ("Matrikelnummer name ");
 System.out.println ("------------------------");

 int matrikelnummer = 0;
 String name = null;
 // Der Aufruf von rs.next() setzt einen internen
 // Zeiger im ResultSet-Objekt stets auf den nächsten
 // zu untersuchenden Eintrag in der Ergebnismenge.
 // Es wird solange true zurückgeliefert,
 // bis alle Einträge betrachtet wurden.
 while (rs.next())
 {
 matrikelnummer = rs.getInt ("matrikelnr");
 name = rs.getString ("name");
 System.out.println (matrikelnummer + " " + name);
 }

 // Die Einträge der Noten überprüfen:
 rs = stmt.executeQuery (
 "SELECT matrikelnr, note FROM fachnoten");

 System.out.println (
 "\nSie haben folgende Noten in Info 1 geschrieben:");
 System.out.println ("Matrikelnummer note ");
 System.out.println ("------------------------");

 double note = 0;
 while (rs.next())
 {
 matrikelnummer = rs.getInt ("matrikelnr");
 note = rs.getDouble ("note");
 System.out.println (matrikelnummer + " " + note);
 }

 // Statement schliessen
 stmt.close();

 // DBMS-Verbindung schließen
 con.close();
 }
 catch (Exception e)
 {
 System.out.println ("Exception: " + e.getMessage());
 }
 }
}

1080 Kapitel 26

Die Ausgabe des Programms ist:

Folgende Studenten sind verzeichnet:
Matrikelnummer name

12345678 Schmidt
47110815 Peters
54123678 Dlugosch

Sie haben folgende Noten in Info 1 geschrieben:
Matrikelnummer note

12345678 1.0
47110815 2.1
54123678 1.7

Bitte beachten Sie, dass das gezeigte Beispiel nur einmal aufgerufen werden kann,
ohne einen Fehler zu verursachen. Der Grund dafür ist, dass beim erneuten Aufruf
der Versuch unternommen wird, Studenten mit derselben Matrikelnummer wie zuvor
in die Tabelle studenten einzufügen. Dieses Vorhaben verstößt dann gegen die
Primärschlüssel-Regel, da der Primärschlüssel innerhalb einer Tabelle eindeutig sein
muss.

26.4.1 Verbindung zum DBMS mit dem Treiber-Manager

Der Verbindungsaufbau zu einem DBMS besteht aus zwei Teilen. Zuerst muss ein
passender JDBC-Treiber geladen und dem JDBC-Treiber-Manager bekannt gemacht
werden. Der JDBC-Treiber-Manager erkennt dann beim Verbindungsaufbau anhand
der URL und der registrierten Treiber, welchen Treiber er für eine Verbindung ver-
wenden kann. Nach dem Laden kann eine Verbindung aufgebaut und ein Objekt,
dessen Klasse die Schnittstelle Connection implementiert, erzeugt werden.

Eine Anwendung greift immer über einen JDBC-Treiber auf ein DBMS zu. Dazu
muss der Treiber als erstes geladen werden. Hierbei gibt es mehrere Möglichkeiten:

• Die wohl einfachste Möglichkeit, den JDBC-Treiber zu laden, ist bereits in Kapitel
26.3.3 betrachtet worden. Hierbei wird beim Aufruf der Methode getConnec-
tion() auf einer Referenz auf ein Objekt vom Typ Connection automatisch die
richtige Treiber-Klasse in die virtuelle Maschine geladen, sofern deren Name in
der Datei java.sql.Driver eingetragen ist. Die Datei muss dabei im Verzeich-
nis META-INF\services\ im aktuellen Arbeitsverzeichnis zu finden sein. Der
zugrunde liegende Mechanismus ist der so genannte Service Provider Mechanis-
mus (SPM), der erst seit der Version 4.0 für JDBC implementiert ist.

• Die Treiberklasse kann aber auch explizit im Java-Programm geladen und beim
JDBC-Treiber-Manager registriert werden. In der main()-Methode der Klasse
JDBCTest aus Kapitel 26.4 könnte somit durch den Aufruf:

 Class.forName ("com.mysql.jdbc.Driver");

JDBC 1081

der JDBC-Treiber com.mysql.jdbc.Driver explizit in die virtuelle Maschine
geladen werden. Dabei wird der Klassenmethode forName() der Klasse
Class<T> (siehe Kapitel 17.5) der Name des zu ladenden Treibers – hier Driver
– übergeben.

• Der Treiber kann auch beim Programmaufruf der virtuellen Maschine auf der Kom-
mandozeile in der System Property261 jdbc.drivers angegeben werden:

java -Djdbc.drivers=com.mysql.jdbc.Driver JDBCTest

Sollen mehrere Treiber gleichzeitig registriert werden, so müssen diese durch
einen Doppelpunkt voneinander getrennt angegeben werden.

• Die System Property jdbc.drivers kann auch im Java-Programm registriert
werden. Dazu wird die statische Methode setProperty() der Klasse System
verwendet. Diese Registrierung als Systemeigenschaft könnte im behandelten
Programmbeispiel folgendermaßen aussehen:

 System.setProperty ("jdbc.drivers",
 "com.mysql.jdbc.Driver");

Sollen mehrere Treiber registriert werden, so müssen diese durch Doppelpunkte
voneinander getrennt angegeben werden:

System.setProperty ("jdbc.drivers",
 "Paketverzeichnis1.Driver1:Paketverzeichnis2.Driver2");

• Die letzte Möglichkeit besteht darin, in der Anwendung ein Objekt der Treiber-
klasse zu erzeugen und eine Referenz darauf der statischen Methode register-
Driver() der Klasse DriverManager zu übergeben:

 Driver ref = new com.mysql.jdbc.Driver();
 DriverManager.registerDriver (ref);

Wenn der JDBC-Treiber-Manager einen Treiber für eine DBMS-Verbindung sucht,
benutzt er den ersten passenden, den er findet. Dabei sucht er zuerst in der System-
variablen jdbc.drivers und anschließend prüft er – wenn er dort nicht fündig wird
– ob in der Anwendung ein Treiber geladen wurde.

Im zweiten Schritt baut die Anwendung eine Verbindung zum DBMS auf. Diese
Verbindung wird durch ein Objekt, dessen Klasse die Schnittstelle Connection
implementiert, repräsentiert. Man erhält ein solches Objekt durch Aufruf der Klassen-
methode

public static Connection getConnection (
 String url, String user, String password);

der Klasse DriverManager. Der erste Parameter url enthält die JDBC-URL und
verweist auf die Datenbank. Mit user und password wird der Benutzername für das
DBMS und das dazugehörige Passwort angegeben. Die Verwendung von Benutzer-
name und Passwort ist DBMS-spezifisch.

261 Ein System Property – oder Systemeigenschaften – sind Parameter der Systemumgebung.

1082 Kapitel 26

Sobald man die DBMS-Verbindung nicht mehr braucht, sollte sie wieder geschlossen
werden, um Systemressourcen freizugeben. Dazu bietet die Schnittstelle Connec-
tion die Methode close() an.

Eine Datenbank wird eindeutig über ihre URL identifiziert. Die URL für eine Daten-
bankverbindung über JDBC besteht aus drei Komponenten und hat allgemein die
Form:

jdbc:<subprotokoll>:<subname>

Die einzelnen Komponenten der URL sind durch Doppelpunkte getrennt. Ihre Bedeu-
tung ist:

jdbc bezeichnet das verwendete Protokoll JDBC.

<subprotokoll> Das Subprotokoll spezifiziert den Treiber und ist von dem verwen-
deten DBMS abhängig. Es wird von dem Treiberhersteller definiert.
Beispiele für Subprotokolle sind:

mysql MySQL
db2 DB2 von IBM
oracle Oracle-Datenbank
odbc ODBC-Brücke

<subname> Der Subname kann ein beliebiges Format haben, welches vom ver-
wendeten Subprotokoll abhängt. Im Allgemeinen gibt der Subname
den Rechner und die zu verwendende Datenbank an. Beispiele für
Subnamen sind:

dbName: Datenbank dbName, die auf dem lokalen Rechner be-
kannt gemacht (katalogisiert) wurde.

//pc1:3306/JDBCTest

 Datenbank mit dem Namen JDBCTest auf dem entfern-
ten Rechner pc1. Der Verbindungs-Daemon262 einer My-
SQL-Datenbank lauscht standardmäßig auf dem Port
3306.

Tabelle 26-4 Elemente der JDBC-URL

Wird eine URL der Form jdbc:odbc:dbName verwendet, so wird über die ODBC-
Brücke auf die Datenquelle dbName zugegriffen. Bei der URL jdbc:db2:sample
wird die auf dem lokalen Rechner katalogisierte DB2-Datenbank sample über einen
Typ 2-Treiber angesprochen.

Im Gegensatz dazu erfolgt mit jdbc:mysql://myhost.domain.de:3306/my-
Database über TCP/IP der Zugriff auf die MySQL-Datenbank myDatabase, die auf
dem Rechner myhost.domain.de katalogisiert ist. Dabei wird ein Typ 3- oder ein
Typ 4-Treiber verwendet. Der angegebene Port 3306 kann vom Benutzer einge-
stellt werden. Ein weiteres Beispiel für eine netzfähige URL ist jdbc:orac-
le:oci8:@server:1521:mydb, über die auf eine Oracle-Datenbank auf dem
Rechner server zugegriffen wird, deren Daemon auf Port 1521 lauscht.

262 Der Verbindungs-Daemon ist ein Server-Programm, das Anfragen an den DBMS-Server bear-

beitet.

JDBC 1083

26.4.2 Verbindung zum DBMS mit DataSource

Neben dem Treiber-Manager ist die Verwendung von Klassen, welche die Schnitt-
stelle DataSource implementieren, eine weitere Möglichkeit, eine Verbindung zu
einem DBMS aufzubauen. Mit der Schnittstelle DataSource wurde erstmals mit
JDBC 2.0 ein Verfahren eingeführt, die Verbindungsparameter zu einer Datenquelle
dynamisch zu verwalten. Seit der JDK-Version 1.4 ist die Schnittstelle DataSource
auch in der Standard Edition enthalten.

Beim Verbindungsaufbau über den Treiber-Manager werden die Angaben zur Ver-
bindung wie Servername oder verwendetes Protokoll direkt im Quellcode angege-
ben. Demgegenüber werden bei Data-Source-Objekten – Objekte, deren Klassen
die Schnittstelle DataSource implementieren, werden im Folgenden als Data-
Source-Objekte bezeichnet – die Angaben nicht im Code, sondern über Eigen-
schaften, die so genannten Properties festgelegt, wobei diese Verbindungseigen-
schaften direkt im Data-Source-Objekt hinterlegt werden.

Properties sind parametrisierbare Eigenschaften eines Objektes.
Sie sind als private Datenfelder einer Klasse realisiert, deren Wert mit
Hilfe einer set-Methode geschrieben und mit Hilfe einer get-Methode
ausgelesen werden kann.

Properties kommen unter anderem bei der JavaBeans-Technologie263 zum Einsatz.

Durch den Einsatz von Data-Source-Objekten wird eine höhere Portabilität der An-
wendung erreicht und die Wartbarkeit des Quellcodes entscheidend verbessert.
Verändern sich die Parameter zum Zugriff auf eine Datenbank, muss nicht mehr der
Code der Anwendung, sondern nur der Wert der Properties des Data-Source-Objek-
tes durch den Aufruf von set-Methoden verändert werden.

Die Vorteile bei der Verwendung von Data-Source-Objekten gegenüber dem Verbin-
dungsaufbau mit dem Treiber-Manager sind:

• Verbesserte Portabilität der Anwendung,
• Wartbarkeit des Quellcodes wird verbessert,
• Transparenz von Verbindungspools264 und verteilten Transaktionen.

Von Sun wird den Entwicklern ausdrücklich empfohlen, Data-Source-Objekte zum
Aufbau von Verbindungen zu Datenquellen dem Treiber-Manager (DriverMana-
ger) vorzuziehen.

Mit dem Begriff Datenquelle wird hier ganz allgemein ein Informationsspeicher be-
zeichnet, der in Form einer Datenbank vorliegen oder aber nur aus einer einfachen
Datei bestehen kann. Alle Komponenten der Java Enterprise Edition verwenden für
den Verbindungsaufbau zu Datenquellen ausschließlich Data-Source-Objekte, um
die Portabilität der Anwendung zu gewährleisten.

263 Siehe Kap. 30 auf der beiliegenden CD.
264 Engl.: Verbindungsvorrat, Verbindungsreservoir (siehe Kap. 26.9).

1084 Kapitel 26

Die Implementierungen der Data-Source-Objekte zum Erstellen einer Verbindung zu
einem Datenbankverwaltungssystem müssen ebenso wie die JDBC-Treiber von den
Herstellern geliefert werden. Eine Data-Source-Klasse muss dazu die Schnittstelle
javax.sql.DataSource implementieren. Durch die einheitliche Verwendung die-
ser Schnittstelle können die Data-Source-Objekte verschiedener Hersteller zum Zu-
griff auf unterschiedliche Datenquellen problemlos ausgetauscht werden. Die Ermitt-
lung der Treiber wird in den Data-Source-Objekten gekapselt und der benötigte Trei-
ber implizit geladen. Für den Anwendungsentwickler heißt das, dass kein spezifi-
scher Treiber mehr geladen werden muss. Es genügt, die vom DBMS-Hersteller ge-
lieferten Data-Source-Klassen zu verwenden.

Über ein Objekt, dessen Klasse die Schnittstelle DataSource implementiert, kann
eine Verbindung zu der gewünschten Datenquelle aufgebaut werden. Hierzu wird die
Methode getConnection() angeboten. Der Rückgabewert ist – genau wie beim
Treiber-Manager – ein Objekt vom Typ Connection.

26.4.2.1 DataSource-Properties

Eine vom Hersteller gelieferte Implementierung der Schnittstelle DataSource stellt
eine Vielzahl von Eigenschaften bereit, mit denen die einzelnen Parameter zum Ver-
bindungsaufbau festgelegt werden können. Einige wichtige Eigenschaften, die für
das MySQL-Data-Source-Objekt gesetzt werden können, sind in der nachfolgenden
Tabelle 26-5 dargestellt.

Property Name Datentyp Beschreibung
databaseName String Name der Datenbank
serverName String Name des Datenbank-Servers
url String Gesamte URL der Datenbank
description String Beschreibung der Datenquelle
user String Datenbank-Benutzername
password String Datenbank-Passwort
portNumber int Portnummer des Servers
loginTimeout int Timeout für den Verbindungsaufbau in Sekunden
autoReconnect boolean Automatischer Verbindungsaufbau nach Verbin-

dungsunterbrechung
maxRows int Anzahl der maximal zurückgelieferten Ergebnisse

Tabelle 26-5 Standard-Eigenschaften eines DataSource-Objektes

Die implementierende Klasse des Data-Source-Objektes für die MySQL-Datenbank
lautet MysqlDataSource aus dem Paket com.mysql.jdbc.jdbc2.optional.
Sie leitet von der Klasse ConnectionProperties aus dem gleichen Paket ab.
Darin sind noch viele andere Properties für die Verbindung definiert, die je nach
Bedarf gesetzt werden können.

Die einzige Eigenschaft, die von allen DataSource-Implementierungen bereitgestellt
werden muss, ist die Eigenschaft description. Alle anderen Eigenschaften wer-
den vom Hersteller nur implementiert, falls die entsprechende Datenquelle diese
Eigenschaften auch wirklich unterstützt.

JDBC 1085

Speziell für Enterprise Applications – also unternehmensbasierte Anwendungen –
gibt es zwei Erweiterungen von DataSource:

• XADataSource wird verwendet, um verteilte Transaktionen zu realisieren.

• ConnectionPoolDataSource bietet einen Verbindungspool auf Grundlage von
Datenquellen an.

26.4.2.2 Aufbau einer Verbindung mit DataSource

Um über ein Data-Source-Objekt eine Verbindung zu einer Datenbank aufzubauen,
muss ein solches Objekt instantiiert und mit den entsprechenden Properties für die
Verbindung gefüllt werden. Als Beispiel-Datenbank soll wieder die in Kapitel 26.3.2
konfigurierte MySQL-Datenbank betrachtet werden. Anstatt nun mit dem Treiber-
Manager zu arbeiten, der den MySQL-JDBC-Treiber com.mysql.jdbc.Driver
implizit lädt, wird nun die Klasse com.mysql.jdbc.jdbc2.optional.Mysql-
DataSource als DataSource-Implementierung verwendet. Über den Aufruf der
Methode getConnection() auf einem Objekt der Klasse MysqlDataSource wird
wiederum ein Objekt vom Typ java.sql.Connection zurückgeliefert, das dann
die physikalische Verbindung zum DBMS kapselt. Man beachte, dass die Methode
getConnection() der Klasse MysqlDataSource im Gegensatz zur Methode
getConnection() der Klasse DriverManager nun ohne Parameter aufgerufen
wird, weil im Objekt vom Typ MysqlDataSource die Informationen über Datenbank-
URL, Benutzername und Passwort schon hinterlegt sind. Es folgt nun die Implemen-
tierung der Klasse DataSourceTest:

// Datei: DataSourceTest.java

import java.sql.*;
import com.mysql.jdbc.jdbc2.optional.*;

public class DataSourceTest
{
 public static void main (String[] args)
 {
 try
 {
 MysqlDataSource ds = new MysqlDataSource();

 // Im Data-Source-Objekt selbst werden die
 // Verbindungseigenschaften gesetzt

 // Es soll eine Verbindung zur Datenquelle
 // JDBCTest aufgebaut werden
 ds.setDatabaseName ("JDBCTest");

 // Die Datenbank ist auf dem lokalen Rechner verfügbar
 ds.setServerName ("localhost");

 // Der Datenbank-Deamon lauscht auf dem Port 3306
 ds.setPort (3306);

 // Es wird das Benutzerkonto tester verwendet
 ds.setUser ("tester");
 ds.setPassword ("geheim");

1086 Kapitel 26

 // Ein Aufruf von getConnection() liefert ein
 // Objekt vom Typ Connection zurück. Darin ist
 // die physikalische Verbindung zum DBMS gekapselt.
 Connection con = ds.getConnection();

 // Über die zurückgelieferte Referenz auf das
 // Connection-Objekt können nun SQL-Statements
 // erzeugt und abgesetzt werden
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery (
 "SELECT * FROM fachnoten");

 System.out.println ("\nInhalt der Tabelle fachnoten:");
 System.out.println ("Matrikelnr Fach Note");
 System.out.println ("-------------------------");

 while (rs.next())
 {
 System.out.print (rs.getString ("matrikelnr") + " ");
 System.out.print (rs.getString ("fach") + " ");
 System.out.print (rs.getDouble ("note"));
 System.out.println();
 }

 // Auch hier sollte die Verbindung zum DBMS
 // mit close() wieder geschlossen werden.
 con.close();
 }
 catch (Exception e)
 {
 System.out.println ("Exception: " + e.getMessage());
 }
 }
}

Die Ausgabe des Programms ist:

Inhalt der Tabelle fachnoten:
Matrikelnr Fach Note

12345678 Info 1 1.0
47110815 Info 1 2.1
54123678 Info 1 1.7

Um sämtliche Datenbankaktionen zu protokollieren, wie es für die Erstellung sicher-
heitsrelevanter Systeme unerlässlich ist, kann ebenso wie beim Treiber-Manager
auch bei Data-Source-Objekten ein Ausgabestrom registriert werden. Hierzu wird die
Methode setLogWriter() die Schnittstelle DataSource angeboten, mit welcher
der Datenquelle ein Characterstream zugewiesen werden kann. In diesen
Datenstrom werden die Aktionen beim Zugriff auf die Datenquelle protokolliert. Bei
dem verwendeten Characterstream handelt es sich um ein Objekt vom Typ
java.io.PrintWriter. Beim Erzeugen des Data-Source-Objektes wird zunächst
kein Ausgabestrom festgelegt, d. h., standardmäßig ist die Protokollierung abge-
schaltet.

JDBC 1087

26.4.2.3 Einsatz von JNDI

Im professionellen Einsatz von Data-Source-Objekten, wie es beispielsweise in gro-
ßen Unternehmensanwendungen vorkommt, wird ein Data-Source-Objekt, das eine
Verbindung zu einer bestimmten Datenquelle darstellt, einmal erzeugt, mit Verbin-
dungseigenschaften gefüllt und in einem globalen Namens- und Verzeichnisdienst
hinterlegt. Der Zugriff auf einen solchen Namensdienst wird durch das Java Naming
and Directory Interface JNDI ermöglicht (siehe auch Anhang D).

JNDI kann mit der Funktion und Arbeitsweise der RMI-Registry verglichen werden,
die in Kapitel 25.2.3 vorgestellt wurde. Dabei stellt die RMI-Registry einen einfachen
Server dar, an den Referenzen auf Objekte unter einem eindeutigen logischen
Namen gebunden werden können. Mit Hilfe einer Methode lookup() der Klasse
java.rmi.Naming kann sich dann ein Client unter Angabe dieses logischen
Namens eine so genannte Remote-Referenz auf das in der RMI-Registry gebundene
Objekt beschaffen.

Ein so genannter JNDI-Server verwaltet auch Referenzen auf Objekte, – beispiels-
weise Data-Source-Objekte – wobei diese ebenfalls unter einem logischen Namen
innerhalb des so genannten JNDI-Namensraums gebunden sind. Ein Client – bei-
spielsweise eine Anwendung, die von einer Datenbank Informationen abfragen
möchte – kann sich nun durch den Aufruf der Methode lookup() der Klasse Ini-
tialContext aus dem Paket javax.naming eine Referenz auf ein Data-Source-
Objekt beschaffen, die im JNDI-Server hinterlegt ist. Das einzige, was der Client
hierzu wissen muss, ist der logische Name des Data-Source-Objektes, unter dem es
im JNDI-Server gebunden ist. Über die sonstigen Datenbank-spezifischen Verbin-
dungsinformationen muss der Client nicht Bescheid wissen, weil diese Eigenschaften
ja im Data-Source-Objekt hinterlegt sind. Ein Datenbank-Administrator, der sich um
die Verwaltung und Pflege der Data-Source-Objekte kümmert, kann bei Bedarf die
Verbindungseigenschaften der Data-Source-Objekte ändern, beispielsweise wenn
dem Datenbank-Server eine andere IP-Adresse zugewiesen wurde oder der DBMS-
Deamon unter einem anderen Port erreichbar ist. Dadurch wird eine größtmögliche
Flexibilität und Portabilität erreicht, weil die Verbindungen zu allen verfügbaren
Datenquellen eines Unternehmens zentral von einer Stelle aus verwaltet werden.

Der Umgang mit JNDI ist ein sehr umfangreiches Fachgebiet und kann im Rahmen
dieses Kapitels nicht ausführlich erklärt werden. Für weiterführende Informationen
siehe Anhang D.

26.4.3 Absetzen eines SQL-Statements

Nachdem eine Verbindung zum DBMS aufgebaut wurde, kann eine Abfrage oder ein
sonstiges SQL-Statement abgesetzt werden. Jedes SQL-Statement wird dabei durch
ein Objekt repräsentiert, das die Schnittstelle java.sql.Statement implementiert.
Es gibt drei verschiedene Arten von SQL-Statements, die durch die drei Schnitt-
stellen Statement, PreparedStatement und CallableStatement repräsentiert
werden, wobei die Schnittstellen die in Bild 26-4 gezeigte Vererbungshierarchie
bilden.

1088 Kapitel 26

<<interface>>
CallableStatement

<<interface>>
PreparedStatement

<<interface>>
Statement

Bild 26-4 Vererbungshierarchie der Schnittstellen vom Typ Statement

Um eine Referenz auf ein Objekt zu erhalten, dessen Klasse die Schnittstelle
Statement, PreparedStatement bzw. CallableStatement implementiert,
stellt die Schnittstelle Connection die folgenden drei Methoden zur Verfügung:

• Statement createStatement() throws SQLException,

• PreparedStatement prepareStatement() throws SQLException,

• CallableStatement prepareCall() throws SQLException,

wobei diese mehrfach überladen sind. Für eine geöffnete DBMS-Verbindung können
mehrere Statements erzeugt werden. Die maximale Anzahl dieser Statements hängt
von dem verwendeten DBMS ab und kann aus den Metadaten265 des Datenbank-
verwaltungssystems durch die Methode getMaxStatements() der Schnittstelle
DatabaseMetaData ausgelesen werden. Eine Referenz auf ein Objekt vom Typ
DatabaseMetaData erhält man durch Aufruf der Methode getMetaData() zu
einem Connection-Objekt. Ein Statement-Objekt existiert von seiner Erzeugung
bis zum Aufruf der Methode close() für das Statement.

26.4.3.1 Die Schnittstelle Statement

Die Schnittstelle Statement – die sich im Paket java.sql befindet – stellt Metho-
den für statische SQL-Statements bereit. Bei einem statischen SQL-Statement wird
der gesamte SQL-Befehl, der an das DBMS gesandt werden soll, in einem String-
Objekt zusammengesetzt und dann zum DBMS geschickt. Das DBMS analysiert
dann den String, führt die entsprechenden Anweisungen aus und gibt das Ergebnis
zurück. Das Ergebnis kann entweder ein einfacher Rückgabewert sein, der Auskunft
über den Erfolg des Statements gibt, oder mehrere Datensätze, die über ein Objekt
vom Typ ResultSet zurückgegeben werden.

Es soll nun nochmals die Klasse DataSourceTest des vorherigen Beispiels
betrachtet werden. Dort wird mit dem Aufruf

stmt = con.createStatement();

265 Siehe Kap. 26.7.

JDBC 1089

ein Statement-Objekt erzeugt und die Referenz darauf der Referenzvariable stmt
zugewiesen. Um nun mit Hilfe dieses Statement-Objektes eine Abfrage auf der
Datenbank auszuführen, wird die Methode executeQuery() mit dem entsprechen-
den SQL-Befehl wie folgt aufgerufen:

rs = stmt.executeQuery ("SELECT matrikelnr, name
 FROM studenten");

Ein SQL-Statement, das vom DBMS ausgeführt werden soll, wird einfach als String
übergeben. Der Rückgabewert ist eine Referenz, die auf ein Objekt vom Typ Re-
sultSet zeigt, in welchem die Daten der Abfrage enthalten sind.

Die Methode executeQuery() wird zum Absetzen eines SELECT-Befehls verwen-
det. Möchte man Befehle wie INSERT, UPDATE, DELETE oder Statements der Data
Definition Language – wie CREATE TABLE – an das DBMS senden, so wird die Me-
thode executeUpdate() der Schnittstelle Statement verwendet. Da die genann-
ten Befehle keine umfangreichen Daten zurückgeben, hat die Methode execute-
Update() nur einen einfachen Rückgabewert vom Typ int. Der folgende Codeaus-
schnitt zeigt, wie in die Studententabelle ein neuer Student eingefügt werden kann:

stmt.executeUpdate ("INSERT INTO studenten
 VALUES ('Waizenegger','Judith',615388)");

Verwendet man hingegen die Methode execute(), so können beliebige SQL-Be-
fehle zum DBMS gesendet werden, also SELECT, UPDATE oder CREATE TABLE-Be-
fehle. Sie gibt einen Booleschen Wert zurück und liefert true, falls das abgesetzte
SQL-Statement ein Ergebnis in Form eines Objektes vom Typ ResultSet zurück-
geliefert hat – beispielsweise bei einem SELECT-Statement. Die Referenz auf das
ResultSet kann dann mit der Methode getResultSet() besorgt werden. Liefert
der Aufruf von execute() hingegen false, so war das abgesetzte Statement ein
UPDATE-Befehl.

Möchte man mehrere SQL-Statements hintereinander ausführen, so kann dies durch
einen so genannten Batch-Job erfolgen. Hierzu bietet die Schnittstelle Statement
die Methode addBatch()266 an, mit der man ein SQL-Statement zu einem Batch-
Job hinzufügen kann, ohne es gleich an das DBMS zu senden. Mit der Methode
executeBatch() können die gesammelten SQL-Statements dann gebündelt aus-
geführt werden. Sie speichert für jedes ausgeführte SQL-Statement einen Ergebnis-
wert in einem int-Array ab und liefert eine Referenz auf dieses Array als Ergebnis
zurück. Der Vorteil der gebündelten Ausführung liegt im Performancegewinn ge-
genüber einer separaten Ausführung eines jeden einzelnen Statements. Das folgen-
de Beispiel JDBCTest2 zeigt die Anwendung der Schnittstelle Statement:

// Datei: JDBCTest2.java

import java.sql.*;

266 Da nicht alle Treiber den vollen JDBC-Standard implementiert haben, kann eine Exception vom

Typ SQLException oder AbstractMethodError geworfen werden, falls dieses Feature nicht
unterstützt wird.

1090 Kapitel 26

public class JDBCTest2
{
 public static void main (String[] args)
 {
 Connection con = null;
 Statement stmt = null;
 ResultSet rs = null;
 String url = "jdbc:mysql://localhost:3306/";

 // Es soll die Datenbank JDBCTest verwendet werden.
 String dbName = "JDBCTest";
 // Verwenden des Kontos des zuvor angelegten Benutzers tester.
 String user = "tester";
 String passwd = "geheim";

 try
 {
 // Verbindung zum DBMS herstellen.
 con = DriverManager.getConnection (
 url + dbName, user, passwd);

 // Aufruf der Methode createStatement() des Connection-
 // Objektes liefert ein Objekt vom Typ Statement zurück.
 stmt = con.createStatement();

 // Einen Datensatz updaten:
 boolean ergebnis =
 stmt.execute ("UPDATE studenten SET name='Schmidt' " +
 "WHERE name='Dlugosch'");

 System.out.print ("Der SQL-Befehl war ein ");
 if (ergebnis)
 {
 System.out.println ("SELECT-Statement");
 }
 else
 {
 System.out.println ("UPDATE-Statement");
 }

 ergebnis = stmt.execute ("SELECT * FROM fachnoten");
 if (ergebnis)
 {
 rs = stmt.getResultSet();

 System.out.println ("\nTabelle fachnoten:");
 System.out.println ("Matrikelnr\tFach\tNote");
 System.out.println ("-------------------------------");

 while (rs.next())
 {
 System.out.print (rs.getString ("matrikelnr")+ "\t");
 System.out.print (rs.getString ("fach") + "\t");
 System.out.println (rs.getDouble ("note"));
 }
 }

JDBC 1091

 // Statements sammeln
 stmt.addBatch ("INSERT INTO studenten " +
 "VALUES ('Jach', 'Philipp', 31412166)");
 stmt.addBatch ("INSERT INTO studenten " +
 "VALUES ('Gross', 'Daniel', 47914545)");

 // Statements des Batch-Jobs ausführen
 stmt.executeBatch();

 ergebnis = stmt.execute ("SELECT * FROM studenten");
 if (ergebnis)
 {
 rs = stmt.getResultSet();
 System.out.println ("\nTabelle studenten:");
 System.out.println ("Matrikelnr\tName\tVorname");
 System.out.println ("-------------------------------");

 while (rs.next())
 {
 System.out.print (rs.getInt ("matrikelnr") + "\t");
 System.out.print (rs.getString ("name") + "\t");
 System.out.println (rs.getString ("vorname"));
 }
 }
 con.close();
 }
 catch (Exception e)
 {
 System.out.println ("Exception: " + e.getMessage());
 }
 }
}

Die Ausgabe des Programms ist:

Der SQL-Befehl war ein UPDATE-Statement

Tabelle fachnoten:
Matrikelnr Fach Note

12345678 Info 1 1.0
47110815 Info 1 2.1
54123678 Info 1 1.7

Tabelle studenten:
Matrikelnr Name Vorname

12345678 Schmidt Georg
31412166 Jach Philipp
47110815 Peters Anja
47914545 Gross Daniel
54123678 Schmidt Andrea

1092 Kapitel 26

26.4.3.2 Die Schnittstelle PreparedStatement

Häufig müssen mehrere gleiche SQL-Befehle nacheinander an das DBMS gesandt
werden, die sich nur in ihren Werten unterscheiden. Ein Beispiel hierfür ist der Fall,
dass eine Tabelle mit neuen Daten gefüllt werden muss. Der SQL-Befehl, um einen
neuen Studenten als Datensatz in eine Tabelle studenten einzufügen, ist:

INSERT INTO studenten VALUES ('Riese', 'Adam', 13413498)

Werden mehrere neue Studenten in die Tabelle eingetragen, so ändern sich nur die
Werte für Name, Vorname und Matrikelnummer, der restliche SQL-Befehl bleibt un-
verändert. Ein Beispiel hierfür zeigt die Klasse JDBCTest im Kapitel 26.4, wo der
INSERT-Befehl zum Einfügen der Datensätze in die Tabelle studenten aufwendig
zusammengesetzt wurde.

Bei einem PreparedStatement hingegen wird das Statement in einen konstanten
und einen variablen Teil zerlegt. Der konstante Teil besteht aus der Struktur des
SQL-Befehls, wobei die Fragezeichen Platzhalter für die noch einzusetzenden vari-
ablen Anteile darstellen:

INSERT INTO studenten VALUES (?, ?, ?)

In einem zweiten Schritt wird jedem Fragezeichen ein Wert zugewiesen und an-
schließend wird das fertige Statement ausgeführt. Die genaue Funktionsweise zeigt
das folgende Beispiel:

// Datei: JDBCTest3.java

import java.sql.*;

public class JDBCTest3
{
 private Connection con = null;

 // Baut die Verbindung zur Datenbank auf
 private void connect (String url, String user, String passwd)
 throws Exception
 {
 con = DriverManager.getConnection (url, user, passwd);
 System.out.println ("Connect erfolgreich!");
 }

 // Liefert die nächste freie Matrikelnummer zurück
 private int getNextMatrikelNr() throws SQLException
 {
 Statement stmt = con.createStatement();

 // Die SQL-Funktion MAX() liefert das Maximum
 // einer Spalte zurück. Hier wird das Maximum
 // aus der Spalte matrikelnr gesucht.
 ResultSet rs = stmt.executeQuery (
 "SELECT MAX(matrikelnr) from studenten");

 // Intern den Zeiger auf den ersten Datensatz stellen
 rs.next();

JDBC 1093

 // Aktuell höchste Matrikelnummer auslesen
 int mnr = rs.getInt (1);

 // Die nächst höhere zurückliefern
 return ++mnr;
 }

 // Fügt neue Studenten in die Tabelle studenten ein
 private void insertIntoStudenten (
 String[] namen, String[] vornamen)
 throws SQLException
 {
 // Als erstes muss die nächst freie
 // Matrikelnummer herausgefunden werden:
 int nextMatrikelnr = getNextMatrikelNr();

 // Es wird ein PreparedStatement angelegt, das nun
 // nach Belieben mit Informationen "gefüttert" wird
 PreparedStatement stmt = con.prepareStatement (
 "INSERT INTO studenten VALUES (?,?,?)");
 for (int i = 0; i < namen.length; i++)
 {
 stmt.setString (1, namen [i]);
 stmt.setString (2, vornamen [i]);
 stmt.setInt (3, nextMatrikelnr++);
 stmt.executeUpdate();
 }
 stmt.close();
 System.out.println (
 namen.length + " Studenten erfolgreich eingefuegt!");
 }

 private void print() throws SQLException
 {
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery ("SELECT * from studenten");

 System.out.println ("\nTabelle studenten:");
 System.out.println ("Matrikelnr\tName\tVorname");
 System.out.println ("-------------------------------");

 int counter = 0;
 while (rs.next())
 {
 System.out.print (rs.getInt ("matrikelnr") + "\t");
 System.out.print (rs.getString ("name") + "\t");
 System.out.print (rs.getString ("vorname"));
 System.out.println();
 counter++;
 }

 System.out.println ("Momentan sind " + counter +
 " Studenten immatrikuliert\n");
 }

1094 Kapitel 26

 private void releaseConnection() throws SQLException
 {
 con.close();
 System.out.println ("Verbindung zur Datenbank geschlossen!");
 }

 public static void main (String[] args)
 {
 String url = "jdbc:mysql://localhost:3306/JDBCTest";
 String user = "tester";
 String passwd = "geheim";
 String[] namen = {"Kafka", "Mueller", "Claasen", "Petz"};
 String[] vornamen = {"Franz", "Martin", "Antje", "Myriam"};

 try
 {
 JDBCTest3 db = new JDBCTest3();

 // Verbindung zum Studentenverwaltungssystem herstellen
 db.connect (url, user, passwd);
 // Neue Studenten einfügen
 db.insertIntoStudenten (namen, vornamen);
 // Tabelle studenten ausgeben
 db.print();
 // Verbindung Schließen
 db.releaseConnection();
 }
 catch (Exception e)
 {
 System.out.println ("Ein Fehler ist aufgetreten:");
 System.out.println (e.getMessage());
 }
 }
}

Die Ausgabe des Programms ist:

Connect erfolgreich!
4 Studenten erfolgreich eingefuegt!

Tabelle studenten:
Matrikelnr Name Vorname

12345678 Schmidt Georg
31412166 Jach Philipp
47110815 Peters Anja
47914545 Gross Daniel
54123678 Schmidt Andrea
54123679 Kafka Franz
54123680 Mueller Martin
54123681 Claasen Antje
54123682 Petz Myriam
Momentan sind 9 Studenten immatrikuliert

Verbindung zur Datenbank geschlossen!

JDBC 1095

Für die unterschiedlichen Datentypen gibt es unterschiedliche set-Methoden. So gibt
es für den Typ int die Methode setInt() und für den Typ String die Methode
setString() usw. Mit dem aktuellen Parameter 1 in der Methode setString()
wird das erste Fragezeichen durch den übergebenen Wert namen [i] ersetzt, mit
dem aktuellen Parameter 2 wird das zweite Fragezeichen von links ersetzt und so
weiter. Abschließend wird dann die Methode executeUpdate() aufgerufen, um
das vollständige SQL-Statement ausführen zu lassen.

Prepared-Statements können effizienter als statische SQL-Statements
ausgeführt werden.

Auch bei einem Prepared-Statement kann ein Batch-Job geschrieben werden. Die
Methode insertIntoStudenten() aus der Klasse JDBCTest3 sieht mit der
Batch-Job-Variante folgendermaßen aus:

private void insertIntoStudenten (
 String[] namen, String[] vornamen)
throws SQLException
{
 // Als erstes muss die nächste freie
 // Matrikelnummer herausgefunden werden:
 int nextMatrikelnr = getNextMatrikelNr();

 // Es wird ein PreparedStatement angelegt, das nun
 // nach Belieben mit Informationen "gefüttert" wird
 PreparedStatement stmt = con.prepareStatement (
 "INSERT INTO studenten VALUES (?,?,?)");
 for (int i = 0; i < namen.length; i++)
 {
 stmt.setString (1, namen [i]);
 stmt.setString (2, vornamen [i]);
 stmt.setInt (3, nextMatrikelnr++);
 stmt.addBatch();
 }
 stmt.executeBatch();
 stmt.close();
 System.out.println (
 namen.length + " Studenten erfolgreich eingefuegt!");
}

Ein Objekt vom Typ PreparedStatement kann nur für ein einziges parametrisier-
tes SQL-Statement verwendet werden. Nach seiner Verwendung sollte es durch Auf-
ruf der Methode close() geschlossen werden.

26.4.3.3 Die Schnittstelle CallableStatement

Inzwischen sind bereits zwei unterschiedliche Statement-Typen bekannt, mit denen
man beliebige SQL-Statements vom Datenbankverwaltungssystem ausführen lassen
kann. Der letzte Statement-Typ – das CallableStatement – soll hier zum Ab-
schluss kurz angesprochen werden. Die Schnittstelle CallableStatement ist von
PreparedStatement abgeleitet und stellt damit eine Erweiterung dar. Objekte vom

1096 Kapitel 26

Typ CallableStatement werden bei größeren Anwendungen eingesetzt und kön-
nen mehrere Datenbankabfragen serverseitig ausführen und abhängig von den Ab-
frageergebnissen und den zum Server gesandten Parametern ein Ergebnis an den
Client zurückliefern. Ein Teil der Anwendungslogik267 wird also auf dem Server imple-
mentiert, um den Netzverkehr zu minimieren. Weitere Details zu dieser Optimie-
rungsvariante sollen hier jedoch nicht betrachtet werden268.

26.4.4 Auswerten eines Abfrage-Ergebnisses

Generell ist es kein Problem, das Ergebnis eines SQL-Statements auszuwerten. Die
Methode executeUpdate(), die für UPDATE, DELETE und INSERT-Befehle genau-
so wie für Befehle wie CREATE TABLE verwendet werden kann, liefert nur einen
einfachen int-Wert zurück, der absolut problemlos ausgewertet werden kann. Ein
wenig komplizierter wird es bei der Ergebnisauswertung eines SELECT-Befehls, der
mit der Methode executeQuery() abgesetzt wird. Hier ist der Rückgabewert vom
Typ ResultSet.

Im JDBC-Standard 1.0 ist nur das einmalige Auslesen eines Ergebnisses in fest-
gelegter Reihenfolge möglich. Das Ergebnis einer SELECT-Abfrage hat dabei immer
die Form einer Tabelle, in der die Spalten die Attribute darstellen und die Zeilen die
einzelnen Datensätze. Die Datensätze können nun beginnend mit dem ersten Da-
tensatz nacheinander ausgelesen werden. Im Folgenden soll nochmals die Methode
print()der Klasse JDBCTest3 betrachtet werden:

private void print() throws SQLException
{
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery (
 "SELECT * from studenten");

 System.out.println ("\nTabelle studenten:");
 System.out.println ("Matrikelnr\tName\tVorname");
 System.out.println ("-------------------------------");

 int counter = 0;
 while (rs.next())
 {
 System.out.print (rs.getInt ("matrikelnr") + "\t");
 System.out.print (rs.getString ("name") + "\t");
 System.out.println (rs.getString ("vorname"));
 counter++;
 }
 System.out.println ("Momentan sind " + counter +
 " Studenten immatrikuliert\n");
}

Dabei ist darauf zu achten, dass die next()-Methode aufgerufen werden muss, be-
vor man den ersten Datensatz auslesen kann. Die einzelnen Werte des aktuellen Da-

267 Die Teile der Anwendungslogik, die auf dem Server liegen, werden auch als Stored Procedures

bezeichnet.
268 Es wird hier auf die Dokumentation von Sun verwiesen.

JDBC 1097

tensatzes können entweder durch Angabe des Spaltennamens oder durch die Anga-
be der Spaltenposition abgefragt werden.

Im Gegensatz zu Arrays und Collections wie Vector<T> oder
List<E>, bei denen das erste Element unter dem Index 0 zu finden
ist, werden bei einem ResultSet die Nutzdaten erst ab dem Index 1
abgelegt. Versucht man auf ein ResultSet an der Stelle 0 zuzugrei-
fen – dies ist dann der Fall, wenn vor dem ersten Aufruf der Methode
next() eine get- oder set-Methode auf dem ResultSet aufgerufen
wird – so wird eine Exception vom Typ SQLException geworfen.

Es ist noch zu beachten, dass die Methode next() den Wert true zurückgibt, so-
lange ein Datensatz zum Auslesen vorhanden ist. Für die unterschiedlichen Datenty-
pen gibt es auch unterschiedliche get-Methoden in der Schnittstelle ResultSet.

Leider kann man in der Version JDBC 1.0 die Daten nur einmal und auch nur in fest-
gelegter Reihenfolge auslesen. Dieser Nachteil wurde jedoch ab der Version JDBC
2.0 vollständig aufgehoben, sofern natürlich der verwendete JDBC-Treiber diese
Funktionalität unterstützt. Es ist jetzt möglich, beliebig an die Position eines Daten-
satzes zu springen, vorwärts und rückwärts Datensätze beliebig oft auszulesen und
noch vieles mehr. Um noch eine Kleinigkeit zu verraten: Es ist sogar möglich, be-
stehende Datensätze in einem Objekt vom Typ ResultSet zu ändern oder zu
löschen und neue Datensätze hinzuzufügen. Diese Änderungen können dann je
nach eingestellter Option sogar auf der Datenbank wirksam gemacht werden! Im
folgenden Beispiel werden ein paar wenige Möglichkeiten gezeigt, die ein Objekt
vom Typ ResultSet bietet. Es wird nur ein einziges Statement-Objekt nach dem
Verbindungsaufbau zum DBMS erzeugt. Werden die Parameter CONCUR_UPDAT-
ABLE und TYPE_SCROLL_SENSITIVE in der Methode createStatement() ange-
geben, so kann man ein Objekt vom Typ ResultSet beliebig oft auslesen und sogar
ein Aktualisieren von in der Datenbank gespeicherten Daten über ein Objekt vom
Typ ResultSet vornehmen.

// Datei: JDBCTest4.java
import java.sql.*;

public class JDBCTest4
{
 private Connection con = null;
 private ResultSet rs = null;
 private Statement stmt = null;

 private void connect (String url, String user, String passwd)
 throws Exception
 {
 con = DriverManager.getConnection (url, user, passwd);
 stmt = con.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 executeStatement();
 System.out.println ("Connect erfolgreich!");
 }

1098 Kapitel 26

 // Führt das Statement aus
 private void executeStatement() throws Exception
 {
 rs = stmt.executeQuery ("SELECT * FROM studenten");
 System.out.println ("Statement erfolgreich ausgeführt");
 }

 private void updateStudent (int matrikelnr, String name)
 throws SQLException
 {
 // Vor den ersten Datensatz springen.
 rs.beforeFirst();
 while (rs.next())
 {
 if (rs.getInt ("matrikelnr") == matrikelnr)
 {
 // Neue Werte eintragen
 rs.updateString (1, name);
 // Änderung vornehmen
 rs.updateRow();
 break;
 }
 }
 System.out.println ("Datensatz des Studenten mit Matrikelnr "+
 + matrikelnr + " wurde erfolgreich aktualisiert.");
 }

 private void print() throws SQLException
 {
 // Zeiger vor den ersten Eintrag setzen
 rs.beforeFirst();

 System.out.println ("\nTabelle studenten:");
 System.out.println ("Matrikelnr\tName\tVorname");
 System.out.println ("-------------------------------");

 int counter = 0;
 while (rs.next())
 {
 System.out.print (rs.getInt ("matrikelnr") + "\t");
 System.out.print (rs.getString ("name") + "\t");
 System.out.print (rs.getString ("vorname"));
 System.out.println();
 counter++;
 }
 System.out.println ("Momentan sind " + counter +
 " Studenten immatrikuliert\n");
 }

 private void releaseConnection() throws SQLException
 {
 con.close();
 System.out.println ("Verbindung zur Datenbank geschlossen!");
 }

JDBC 1099

 public static void main (String[] args)
 {
 String url = "jdbc:mysql://localhost:3306/JDBCTest";
 String user = "tester";
 String passwd = "geheim";

 try
 {
 JDBCTest4 db = new JDBCTest4();

 // Verbindung zum Studentenverwaltungssystem herstellen
 db.connect (url, user, passwd);
 // Tabelle studenten ausgeben
 db.print();
 // Kafka heißt jetzt Brod
 db.updateStudent (54123679, "Brod");
 // Tabelle studenten ausgeben
 db.print();
 // Verbindung Schließen
 db.releaseConnection();
 }
 catch (Exception e)
 {
 System.out.println ("Ein Fehler ist aufgetreten:");
 System.out.println (e.getMessage());
 e.printStackTrace();
 }
 }
}

Die Ausgabe des Programms ist:

Matrikelnr Name Vorname

12345678 Schmidt Georg
.
54123679 Kafka Franz
.
54123682 Petz Myriam
Momentan sind 9 Studenten immatrikuliert

Datensatz des Studenten mit Matrikelnr 54123679
wurde erfolgreich aktualisiert.

Tabelle studenten:
Matrikelnr Name Vorname

12345678 Schmidt Georg
.
54123679 Brod Franz
.
54123682 Petz Myriam
Momentan sind 9 Studenten immatrikuliert

Verbindung zur Datenbank geschlossen!

1100 Kapitel 26

Ein Objekt vom Typ ResultSet wird automatisch ungültig und kann
nicht mehr verwendet werden, sobald das Statement-Objekt – bzw.
das Connection-Objekt – mit einem Aufruf der Methode close()
geschlossen wurde, über das das ResultSet-Objekt erzeugt wurde.
Um mit einem Objekt vom Typ ResultSet arbeiten zu können, wird
also immer die geöffnete Datenbankverbindung benötigt.

26.4.5 Transaktionen

Häufig müssen mehrere Datenbankanweisungen durch eine Transaktion gekapselt
werden. Eine Transaktion bezieht sich dabei immer auf eine geöffnete DBMS-Verbin-
dung. Es gibt auch verteilte Transaktionen, bei denen Datensätze in mehreren Da-
tenbanken innerhalb einer Transaktion geändert werden. Diese sollen hier jedoch
nicht betrachtet werden. Bei der Erzeugung eines Connection-Objektes ist die Ver-
bindung im Modus "auto commit" geöffnet. In diesem Modus wird jedes SQL-State-
ment, das an ein DBMS gesandt wird, sofort ausgeführt und wirksam.

Möchte man bestimmen, wann die abgesetzten SQL-Statements ausgeführt werden,
so kann man die manuelle Transaktionssteuerung für ein Connection-Objekt ein-
stellen. Dies geschieht durch den Aufruf der Methode:

con.setAutocommit (false)

Danach können mehrere SQL-Statements erzeugt und ausgeführt werden. Abge-
schlossen wird eine Transaktion, die aus beliebig vielen SQL-Statements bestehen
kann, durch den Aufruf der Methode commit() des Connection-Objektes. Ent-
scheidet man sich nicht für ein COMMIT, so kann man die Anweisungen der Trans-
aktion durch ein ROLLBACK verwerfen, was durch die Methode rollback() bewirkt
wird. Wird die Methode close() des Connection-Objektes aufgerufen, so werden
alle Anweisungen, die noch nicht durch den Aufruf der Methode commit() bestätigt
wurden, rückgängig gemacht. Das folgende Beispiel beschreibt eine Buchung zwi-
schen zwei Konten als Transaktion. Dabei wird hier nur der "interessante" Teil des
Programms angegeben:

// Autocommit auf manuelles COMMIT umschalten
con.setAutoCommit (false);

stmt = con.createStatement();

rs = stmt.executeQuery ("SELECT betrag FROM konto "
 + "WHERE name = 'Mueller'");
rs.next();
kontostandA = rs.getFloat (1);

rs = stmt.executeQuery ("SELECT betrag FROM konto "
 + "WHERE name = 'Maier'");
rs.next();
kontostandB = rs.getFloat (1);

JDBC 1101

// 50 Euro umbuchen
stmt.executeUpdate ("UPDATE konto SET betrag = "
 + (kontostandA - 50)
 + " WHERE name = 'Mueller'");
stmt.executeUpdate ("UPDATE konto SET betrag = "
 + (kontostandB + 50)
 + " WHERE name = 'Maier'");
stmt.close();

// Transaktion abschliessen
con.commit();

26.5 Datentypen

In einer Java-Anwendung werden die bekannten Java-Datentypen wie int, float,
oder String verwendet, während in der Datenbank SQL-spezifische Datentypen
zum Einsatz kommen. Diese SQL-Datentypen werden in Java durch Konstanten der
Klasse java.sql.Types definiert. Die Klasse besitzt nur einen als privat dekla-
rierten Default-Konstruktor und kann somit nicht instantiiert werden.

Der Wertebereich und der Name eines Typs müssen nicht immer zwischen dem
Java-Datentyp und der entsprechenden Repräsentation des SQL-Datentyps in der
Datenbank übereinstimmen. Außerdem kann der Wertebereich gleichnamiger Daten-
typen in unterschiedlichen Datenbanken verschieden sein. Anhand der get-Methoden
der Schnittstelle ResultSet wird in der folgenden Tabelle gezeigt, welche Daten-
typen mit welchen Methoden ausgelesen werden können. Die mit einem fetten "x"
markierten Paare ermöglichen dabei die beste Konvertierung.

T
IN

Y
IN

T

S
M

A
LL

IN
T

IN
T

E
G

E
R

B
IG

IN
T

R
E

A
L

F
LO

A
T

D
O

U
B

LE

D
E

C
IM

A
L

N
U

M
E

R
IC

B
IT

C
H

A
R

V
A

R
C

H
A

R

LO
N

G
V

A
R

C
H

A
R

B
IN

A
R

Y

V
A

R
B

IN
A

R
Y

LO
N

G
V

A
R

B
IN

A
R

Y

D
A

T
E

T
IM

E

T
IM

E
S

T
A

M
P

getByte() x x x x x x x x x x x x x
getShort() x x x x x x x x x x x x x
getInt() x x x x x x x x x x x x x
getLong() x x x x x x x x x x x x x
getFloat() x x x x x x x x x x x x x
getDouble() x x x x x x x x x x x x x
getBigDecimal() x x x x x x x x x x x x x
getBoolean() x x x x x x x x x x x x x
getString() x x x x x x x x x x x x x x x x x x x
getBytes() x x x
getDate() x x x x x
getTime() x x x x x
getTimestamp() x x x x x
getAsciiStream() x x x x x x
getUnicodeStream() x x x x x x
GetBinaryStream() x x x
getObject() x x x x x x x x x x x x x x x x x x x

Tabelle 26-6 Auslesen von Werten unterschiedlicher Datentypen

1102 Kapitel 26

Mit der Methode getObject() kann jeder Datentyp ausgelesen werden, wobei die
Klasse des Objektes folgendermaßen ermittelt werden kann:

Class<?> classRef = rs.getObject (1).getClass();

Eine Anwendung kann dann beispielsweise die Formatierung der Ausgabe abhängig
von der Klasse gestalten269. Die folgenden Codezeilen zeigen, wie der Datentyp zu
einem Objekt ermittelt werden kann:

rs = stmt.executeQuery ("SELECT * FROM studenten");
rs.next();
Object name = rs.getObject ("name");
Object matrikel = rs.getObject ("matrikelnr");
System.out.println (name.getClass());
System.out.println (matrikel.getClass());

Eine Besonderheit ist der SQL-Wert NULL für ein Attribut, das keinen Wert trägt. Bei
Objekten wird der SQL-Wert NULL meistens auf eine null-Referenz abgebildet.
Aber was ist mit elementaren Datentypen wie int oder float? Wenn beim Ausle-
sen eines Attributes zum Beispiel mit getInt() der Wert 0 zurückgegeben wird,
weiß man nicht, ob die Spalte den Wert 0 enthält oder ob sie leer war. Mit der Metho-
de wasNull() der Schnittstelle ResultSet kann man für das zuletzt mit einer get-
Methode ausgelesene Attribut feststellen, ob es sich um ein leeres Feld gehandelt
hat:

rs = stmt.executeQuery ("SELECT note FROM fachnoten");
rs.next();
double note = rs.getDouble ("note");
if (rs.wasNull())
 System.out.println ("Note wurde noch nicht eingetragen");

26.6 Exceptions

Beim Zugriff auf ein DBMS können Fehler auftreten. Zum Beispiel kann ein DBMS
nicht erreichbar sein oder ein übermitteltes SQL-Statement ist fehlerhaft. In diesem
Fall wird eine Exception vom Typ SQLException geworfen. Außer der typischen
Beschreibung einer Exception kann eine solche Exception noch eine Fehlermeldung
des Datenbankverwaltungssystems oder des Treibers enthalten. Bei einem Batch-
Job kann zudem eine Exception der Klasse BatchUpdateException, die von der
Klasse SQLException abgeleitet ist, geworfen werden. Sie gibt bei einem Fehler
innerhalb eines Batch-Jobs Hinweise, welcher Teil des Jobs abgearbeitet wurde. Ne-
ben der Klasse SQLException gibt es noch die Klasse SQLWarning, die für "leich-
tere" Fehlermeldungen des Datenbankverwaltungssystems verwendet wird. Eine
Exception vom Typ SQLWarning wird nicht explizit geworfen, sondern kann über die
Methode getWarnings() der Schnittstellen Connection, Statement und Re-
sultSet vom DBMS abgefragt werden. Zuletzt gibt es noch die Exception Data-
Truncation, die geworfen wird, wenn ein Attribut beim Schreiben in die Datenbank
gekürzt wird. Beim Lesen von der Datenbank wird eine Warnung generiert, falls ein

269 So kann zum Beispiel eine Spalte innerhalb einer JTable-Instanz abhängig von der Klasse des

anzuzeigenden Wertes für die Ausgabe formatiert werden.

JDBC 1103

Attribut abgeschnitten wird. Diese kann mit der Methode getWarnings() ausgele-
sen werden.

26.7 Metadaten

JDBC bietet Informationsklassen an, um Daten über das verwendete DBMS und den
JDBC-Treiber sowie über die Ergebnismenge in einem Objekt vom Typ ResultSet
einer SQL-Abfrage zu bekommen. Die Methoden der Schnittstelle DatabaseMeta-
Data liefern zum Beispiel den Namen und die Version des verwendeten Datenbank-
verwaltungssystems. Außerdem kann geprüft werden, ob optionale Merkmale des
JDBC-Standards – zum Beispiel Stored Procedures und somit auch SQL-State-
ments, die mittels der Schnittstelle CallableStatement realisiert werden – unter-
stützt werden. Ein Objekt vom Typ DatabaseMetaData kann über das Connec-
tion-Objekt erfragt werden. Die Schnittstelle ResultSetMetaData liefert dagegen
Informationen über die Ergebnismenge einer Abfrage. Damit kann man zum Beispiel
die Anzahl der erhaltenen Spalten und deren Namen auslesen.

Das folgende Beispiel zeigt die Verwendung von Metadaten:

// Datei: MetadatenTest.java

import java.sql.*;

public class MetadatenTest
{
 public static void main (String[] args)
 {
 Connection con = null;
 String url = "jdbc:mysql://localhost:3306/";
 // Es soll die Datenbank JDBCTest verwendet werden.
 String dbName = "JDBCTest";
 // Konto des zuvor angelegten Benutzers tester verwenden
 String user = "tester";
 String passwd = "geheim";
 try
 {
 // Verbindung zum DBMS herstellen.
 con = DriverManager.getConnection (url+dbName,user,passwd);

 // Der Aufruf der Methode getMetaDate() auf dem
 // Connection-Objekt liefert eine Referenz auf
 // ein Objekt vom Typ DatabaseMetaData zurück.
 // Diese Objekt kapselt Meta-Informationen über die
 // Datenbank, zu der eine Verbindung aufgebaut ist.
 DatabaseMetaData dbMetaData = con.getMetaData();

 // Ein paar Informationen werden nun abgefragt:
 System.out.println ("Meta-Informationen der Datenbank:");
 System.out.print ("Datenbankhersteller: ");
 System.out.println (dbMetaData.getDatabaseProductName());
 System.out.print ("Produktversion : ");
 System.out.println (
 dbMetaData.getDatabaseProductVersion());

1104 Kapitel 26

 System.out.print ("Verwendeter Treiber: ");
 System.out.println (dbMetaData.getDriverName());

 // Der Aufruf der Methode getTables() auf dem Objekt
 // vom Typ DatabaseMetaData liefert eine Auflistung
 // aller Tabellen in Form eines Objektes vom Typ
 // ResultSet zurück, die in der Datenbank JDBCTest
 // definiert sind.
 ResultSet rs =
 dbMetaData.getTables ("JDBCTest", "", "", null);

 // Es werden nun Meta-Informationen
 // über die Ergebnismenge abgefragt
 ResultSetMetaData rsMetaData = rs.getMetaData();

 int spaltenzahl = rsMetaData.getColumnCount();
 int counter = 0;
 System.out.println ("\nMeta-Informationen vom ResultSet:");
 for (; counter < spaltenzahl; counter++)
 {
 // Die Namen der einzelnen Spalten ausgeben
 System.out.println (
 "Name der " + (counter + 1) + ". Spalte : " +
 rsMetaData.getColumnName (counter + 1));
 }

 System.out.println (
 "\nFolgende Tabellen sind in JDBCTest definiert:");
 // Das zurückgelieferte ResultSet hat folgende Struktur:
 // 1. Spalte: Katalogname = Name der Datenbank
 // 2. Spalte: Schemaname
 // 3. Spalte: Tabellenname
 // 4. Spalte: Tabellen-Typ
 // 5. Spalte: Kommentare
 // Im Folgenden wird der Katalogname, Name und
 // Typ der Tabelle ausgelesen:
 counter = 0;
 while (rs.next())
 {
 System.out.println ((++counter) + ". Tabelle:");
 System.out.println ("Definiert in : " +
 rs.getString (1));
 System.out.println ("Name : " +
 rs.getString (3));
 System.out.println ("Typ : " +
 rs.getString (4));
 System.out.println();
 }
 con.close();
 }
 catch (Exception e)
 {
 System.out.println ("Exception: " + e.getMessage());
 }
 }
}

JDBC 1105

Die Ausgabe des Programms ist:

Meta-Informationen der Datenbank:
Datenbankhersteller: MySQL
Produktversion : 5.1.50-community
Verwendeter Treiber: MySQL-AB JDBC Driver

Meta-Informationen vom ResultSet:
Name der 1. Spalte : TABLE_CAT
Name der 2. Spalte : TABLE_SCHEM
Name der 3. Spalte : TABLE_NAME
Name der 4. Spalte : TABLE_TYPE
Name der 5. Spalte : REMARKS

Folgende Tabellen sind in JDBCTest definiert:
1. Tabelle:
Definiert in : JDBCTest
Name : fachnoten
Typ : TABLE

2. Tabelle:
Definiert in : JDBCTest
Name : studenten
Typ : TABLE

26.8 JDBC-Erweiterungspaket

Seit JDBC 2.0 wird das Erweiterungspaket javax.sql ausgeliefert, das seit JDK
1.4 in der Java Standard Edition enthalten ist. Das Erweiterungspaket javax.sql ist
vor allem für den serverseitigen Einsatz von JDBC vorgesehen. Im Folgenden wer-
den diese Erweiterungen kurz vorgestellt.

Datenquellen

Durch den Einsatz von Datenquellen kann der Verbindungsaufbau zum DBMS und
die Pflege und Verwaltung dieser Verbindungsdaten vereinfacht werden. Der Zugriff
auf ein DBMS erfolgt dann über ein DataSource-Objekt. Beim Verbindungsaufbau
muss lediglich noch der Name der Datenbank bekannt sein. Das Laden des Treibers
sowie die Netzwerkverbindung wird durch diese Datenquelle gekapselt. Die Data-
Source-Objekte werden dabei in einem globalen Namens- und Verzeichnisdienst
hinterlegt und können von Clients erfragt werden.

Connection Pooling

Zum Ressourcen-schonenden Zugriff auf eine Datenbank wird im Erweiterungspaket
das so genannte Connection Pooling unterstützt und kann sinngemäß mit Verbin-
dungsreservoir oder einfach Verbindungspool übersetzt werden. Beim Einsatz eines
Verbindungspools wird eine Verbindung zur Datenbank nach dem Gebrauch nicht
geschlossen, sondern in einem Pool offener Verbindungen abgelegt. Eine Anwen-
dung, die eine Verbindung zur Datenbank benötigt, öffnet eine Verbindung zum
DBMS nicht selbst, sondern fordert diese vom Verbindungspool an. Dadurch wird der
zeit- und ressourcenaufwendige Verbindungsaufbau zum DBMS gespart. Im Java-
Paket javax.sql werden Schnittstellen PooledConnection und Connection-

1106 Kapitel 26

PoolDataSource deklariert. Im Kapitel 26.9 wird das Thema Connection Pooling
genauer behandelt.

Rowsets

Mit der von java.sql.ResultSet abgeleiteten Schnittstelle Rowset spezifiziert
Java die Rahmenbedingungen für die Implementierung einer Datenbankabfrage über
die JavaBeans-API270. Das Ziel ist, eine Bean zu verwenden, die die DBMS-Ver-
bindung und das Absetzen einer Abfrage kapselt.

Im Gegensatz zu Objekten vom Typ ResultSet, die über das State-
ment-Objekt angefordert werden und somit immer auf die geöffnete
Verbindung angewiesen sind, verwalten Objekte vom Typ RowSet die
Verbindung zum DBMS selbst. Sie können bei bestehender Verbin-
dung zum DBMS als so genannte connected rowsets verwendet
werden. Jedoch ist auch ihre Verwendung bei geschlossener Verbin-
dung zum DBMS möglich. Ein solches RowSet wird dann als dis-
connected rowset bezeichnet. Um Änderungen über ein disconnec-
ted rowset am physikalischen Datenbestand durchzuführen, muss die
Verbindung zum DBMS jedoch wieder aufgebaut werden.

Verteilte Transaktionen

Die Schnittstelle XAConnection wird zum Aufbau von verteilten Transaktionen ver-
wendet. Dabei sind mehrere Datenbankverwaltungssysteme an einer Transakion be-
teiligt.

26.9 Connection Pooling

Der herkömmliche Verbindungsaufbau mit DriverManager.getConnection()
oder über Data-Source-Objekte ist ein sehr ressourcenintensiver Prozess. Gerade
bei Applikations-Servern, die viele DBMS-Verbindungen gleichzeitig aufbauen und
benutzen, wie es zum Beispiel bei dynamischen Webseiten mit Servlets271 der Fall
ist, kann die DBMS-Verbindung leicht zum Flaschenhals des gesamten Systems
werden. Um diesem Problem zu begegnen, bietet sich die Verwendung von Connec-
tion Pooling an. Beim Connection Pooling wird nicht jede Verbindung zur Datenbank
eines DBMS neu erzeugt, sondern aus einem Pool angefordert. Wenn die Verbin-
dung dann nicht mehr gebraucht wird, wird sie wieder in den Pool zurückgestellt und
kann später ein weiteres Mal angefordert werden. Das Java-Paket javax.sql de-
klariert hierfür die Schnittstellen PooledConnection und ConnectionPoolData-
Source.

Ein Verbindungspool ist ein Speicher für physikalische Datenbank-
verbindungen. Er verwaltet bestehende Verbindungen im Arbeits-
speicher und gibt Verbindungen auf Anfrage ab.

270 Siehe Kap. 30 auf der beiliegenden CD.
271 Siehe Kap. 22.

JDBC 1107

Die Verbindungspools arbeiten auf Basis der Data-Source-Objekte. Um für ein
DBMS Connection Pooling zu unterstützen, muss ein JDBC-Treiber-Hersteller Imple-
mentierungen der Schnittstellen javax.sql.ConnectionPoolDataSource und
javax.sql.PooledConnection zur Verfügung stellen.

Connection Pooling ist vor allem für den Einsatz auf Applikations-Servern vor-
gesehen. Für die Anwendung auf Client-Seite bleibt ein solcher Verbindungspool un-
sichtbar. Bild 26-5 zeigt die Verwendung von Schnittstellen:

Client-
Anwendung

DBMS

Anwendungsschicht

Mittelschicht-
Servercode

JDBC-Treiber

DataSource

ConnectionPoolDataSource

Bild 26-5 Verwendung der Schnittstellen bei Connection Pooling auf dem Server

Bild 26-5 zeigt die Schichten einer serverbasierten Anwendung mit Connection Poo-
ling. Der eigentliche Pool wird dabei in der Mittelschicht gehalten. Der Zugriff vom
Pool auf die JDBC-Treiber geschieht mit Hilfe der Schnittstelle ConnectionPool-
DataSource, der Zugriff der Anwendung auf den Pool erfolgt mit der Schnittstelle
DataSource, wobei der Pool von der Anwendung wie ein gewöhnliches Data-
Source-Objekt verwendet wird.

Objekte, welche die Schnittstelle ConnectionPoolDataSource implementieren,
sollten nicht direkt von JDBC-Anwendungen verwendet werden. Stattdessen ist es
sinnvoll, eine speziell für Connection Pooling entwickelte Implementierung der
Schnittstelle javax.sql.DataSource zu verwenden, mit der die Verwaltung
mehrerer physikalischer Verbindungen zur Datenbank gekapselt wird. Auf diese Wie-
se verwendet die Anwendung wie gewöhnlich ein DataSource-Objekt. Bei der Ver-
wendung eines Verbindungspools ändert sich daher für die Anwendung nichts. Sie
bezieht zum Verbindungsaufbau zur Datenbank wie bisher eine Referenz auf ein
DataSource-Objekt, nur dass dieses spezielle DataSource-Objekt nun intern
einen Verbindungspool unterhält. Die Verwaltung der Verbindungen geschieht dabei
verborgen auf dem Applikations-Server.

Werden die Datenquellen eines Connection Pools mit JNDI verwaltet,
so werden diese Datenquellen ebenso wie die herkömmlichen Daten-
quellen im JNDI-Kontext unter einem logischen Namen eingetragen
und können von der Anwendung wie eine gewöhnliche Datenquelle
verwendet werden.

Das DataSource-Objekt, das speziell für Connection Pooling implementiert ist, ver-
hält sich nach außen hin gegenüber der Anwendung wie ein herkömmliches Data-
Source-Objekt. Wird eine Verbindung mit getConnection() angefordert, so
nimmt das Verbindungspool-Objekt eine bestehende Verbindung aus dem internen
Pool und delegiert diese an die Anwendung. Sobald eine Verbindung über ein Objekt

1108 Kapitel 26

vom Typ Connection mit close() geschlossen wird, signalisiert dies der darunter
liegenden Verbindungspool-Schicht, dass die verwendete Verbindung wieder freige-
geben wurde und zurück in den Pool von freien Verbindungen gegeben werden
kann.

Die physikalische Verbindung zum DBMS wird mit einem Aufruf von
close() auf dem Connection-Objekt seitens des Clients nicht wirk-
lich geschlossen, sondern wieder an den Verbindungspool zurückge-
geben und kann von dort wieder neu angefordert werden.

ConnectionPoolDataSource-Properties

Wie bei der Schnittstelle DataSource definiert die JDBC-API auch für Implementie-
rungen der Schnittstelle ConnectionPoolDataSource mehrere Eigenschaften,
die verwendet werden, um das Verhalten von Verbindungspools festzulegen.

Nachstehende Tabelle zeigt die Standard-Verbindungspool-Eigenschaften:

Property Name Datentyp Beschreibung
maxStatements int Anzahl an Statements, die der Pool offen halten

kann. Mit 0 wird das Halten von Statements deak-
tiviert.

initialPoolSize int Die Anzahl an Verbindungen, die der Pool auf-
bauen soll, sobald er erzeugt wird.

minPoolSize int Die Anzahl an freien Verbindungen, die der Pool
mindestens bereithalten soll. Mit 0 werden Verbin-
dungen nur nach Bedarf aufgebaut.

maxPoolSize int Die Anzahl an Verbindungen, die der Pool maximal
enthalten darf. Mit 0 wird keine Grenze festgelegt.

maxIdleTime int Die Anzahl an Sekunden, die eine Verbindung
ungenutzt ruhen darf, ehe sie vom Pool geschlos-
sen wird. Mit 0 wird diese Funktion deaktiviert.

propertyCycle int Die Wartezeit des Pools in Sekunden, ehe die ge-
setzten Properties wirksam werden.

Tabelle 26-7 Standardeigenschaften der Klasse ConnectionPoolDataSource

Ablauf bei der Verbindungsanforderung

In Bild 26-6 wird das Zusammenspiel der am Verbindungspooling beteiligten Objekte
anhand eines Sequenzdiagramms dargestellt. Bitte beachten Sie, dass die Klasse,
welche die Schnittstelle ConnectionPoolDataSource implementiert, den Namen
DCPoolImpl, die Klasse, welche PooledConnection implementiert, den Namen
PooledConImpl und die Klasse, welche die Schnittstelle Connection implemen-
tiert, den Namen ConImpl trägt. Weiterhin sind die Methoden getPooledConnec-
tion() mit getPoolCon() und getConnection() mit getCon() abgekürzt. Das
DSPoolImpl-Objekt ist zuvor erzeugt und mit allen benötigten Parametern wie Ser-
vername, Datenbankname, Benutzername und Passwort versorgt worden.

JDBC 1109

getCon()

close()

getPooledCon()
<<new>>

getCon()

:Client c2:ConImpl c1:ConImpl :DSPoolImpl :PooledConImpl

<<new>>

close()

getCon()

close()

<<new>>

close() close()

Bild 26-6 Ablauf einer Verbindungsanforderung über Pooled Connections

Es lassen sich folgende Schritte festhalten:

• Der Client fordert durch Aufruf der Methode getPooledCon() auf dem DSPool-
Impl-Objekt ein neues PooledConImpl-Objekt an.

• Darauf wird die Klasse PooledConImpl instantiiert und die Referenz auf das
Objekt dem Client zurückgeliefert.

• Auf dem PooledConImpl-Objekt ruft der Client nun die Methode getCon() auf
und fordert damit eine physikalische Verbindung zur Datenbank an.

• Da noch keine physikalische Verbindung zur Datenbank besteht und die maximal
zulässige Anzahl an bestehenden physikalischen Verbindungen noch nicht über-
schritten ist, erzeugt das PooledConImpl-Objekt eine solche physikalische Ver-
bindung und liefert die Referenz auf das erzeugte ConImpl-Objekt dem Client
zurück. Falls jedoch die maximale Anzahl an physikalischen Verbindungen er-
reicht wurde, so wird eine Exception vom Typ SQLException geworfen.

• Wenn der Client die Verbindung zur Datenbank nicht mehr benötigt, ruft er die
Methode close() auf dem ConImpl-Objekt auf. Dieser Aufruf schließt jedoch
nicht die physikalische Verbindung, sondern markiert das "geschlossene" Con-
Impl-Objekt als frei verfügbar.

• Der Client ruft nun erneut auf dem PooledConImpl-Objekt die Methode get-
Con() auf, um eine physikalische Verbindung zur Datenbank erneut anzufordern.

• Daraufhin instantiiert das PooledConImpl-Objekt jedoch nicht mehr die Klasse
ConImpl, sondern greift auf das frei verfügbare ConImpl-Objekt im Verbindungs-
pool zu, markiert diese Verbindung als belegt und liefert dem Client die Referenz
auf das ConImpl-Objekt zurück.

• Ein erneuter Aufruf von close() auf dem ConImpl-Objekt seitens des Clients
gibt die Verbindung wieder frei, woraufhin sie erneut dem freien Verbindungspool
hinzugefügt wird.

• Ruft nun der Client getCon() nicht auf dem PooledConImpl-Objekt, sondern
direkt auf dem DSPoolImpl-Objekt auf, so wird keine Verbindung aus dem Ver-

1110 Kapitel 26

bindungspool entnommen – auch wenn dort gerade eine freie Verbindung ver-
fügbar wäre. Das DSPoolImpl-Objekt instantiiert nun selbst die Klasse ConImpl
und liefert die Referenz auf das erzeugte Objekt dem Client zurück.

• Ruft der Client nun close() auf der zuletzt angeforderten Verbindung auf, so
wird diese nicht dem Verbindungspool hinzugefügt, sondern die physikalische Ver-
bindung wird tatsächlich geschlossen.

• Ruft der Client nun die close()-Methode auf dem PooledConImpl-Objekt auf,
so werden alle physikalischen Verbindungen, die über dieses Objekt geöffnet wur-
den, wirklich geschlossen.

• Das PooledConImpl-Objekt delegiert dafür den close()-Aufruf an das von ihr
geöffnete ConImpl-Objekt und schließt damit die physikalische Datenbankver-
bindung.

Das folgende Beispiel veranschaulicht den zuvor beschriebenen Sachverhalt. Bitte
beachten Sie, dass nach jedem Datenbankverbindungsaufbau und -abbau das Pro-
gramm im Ablauf um jeweils 5 Sekunden mit dem Aufruf von

Thread.sleep (5000);

angehalten wird. Sie haben damit die Möglichkeit, in einem weiteren Konsolenfenster
durch Eingabe des Befehls

netstat –an

die physikalisch vorhandenen Datenbankverbindungen nachzuzählen. Bitte beachten
Sie dabei, dass eine Verbindung zur MySQL-Datenbank immer zum Port 3306 auf-
gebaut wird:

// Datei: ConnectionPoolTest.java

import java.sql.*;
import javax.sql.*;
import com.mysql.jdbc.jdbc2.optional.*;

public class ConnectionPoolTest
{
 public static void main (String[] args) throws Exception
 {
 // Objekt erzeugen, das den Verbindungspool darstellt
 MysqlConnectionPoolDataSource cpds =
 new MysqlConnectionPoolDataSource();

 // Die Verbindungseigenschaften setzen
 cpds.setServerName ("localhost");
 cpds.setPort (3306);
 cpds.setDatabaseName ("JDBCTest");
 cpds.setUser ("tester");
 cpds.setPassword ("geheim");

 // Hiermit können Verbindungen aus dem Pool angefordert werden
 PooledConnection pooledCon = cpds.getPooledConnection();
 Connection con1 = pooledCon.getConnection();
 System.out.println ("Eine phys. Verbindung aufgebaut");
 Thread.sleep (5000);

JDBC 1111

 // Die Verbindung für dieses Connection-Objekt wird nun
 // geschlossen. Aber physikalisch besteht sie weiterhin
 con1.close();
 System.out.println ("Verbindung \"lokal\" geschlossen");
 Thread.sleep (5000);

 // Wird eine Verbindung direkt vom Verbindungspool -
 // das heißt nicht über das PooledConnection-Objekt -
 // angefordert, so wird diese nicht dem Verbindungspool
 // entnommen, sondern gesondert erzeugt
 Connection con2 = cpds.getConnection();
 System.out.println ("Verbindung direkt angefordert");
 Thread.sleep (5000);

 // Der Aufruf von close() schließt dabei auch
 // die tatsächliche physikalische Verbindung
 con2.close();
 System.out.println (
 "Direkte Verbindung phys. wieder geschlossen");
 Thread.sleep (5000);

 // Hier wird nun dieselbe physikalische Verbindung
 // zurückgeliefert, die bei con1 schon verwendet wurde.
 Connection con3 = pooledCon.getConnection();
 System.out.println ("Dieselbe phys. Verb neu angefordert");
 Thread.sleep (5000);

 // Hier wird eine neue physikalische Verbindung erzeugt
 Connection con4 = pooledCon.getConnection();
 System.out.println ("Neue physikalische Verbindung erzeugt");
 Thread.sleep (5000);

 // Dieser Aufruf schließt alle physikalischen
 // Verbindungen, die über die PooledConnection
 // angefordert wurden.
 pooledCon.close();

 System.out.println (
 "Alle physikalischen Verbindungen geschlossen");
 Thread.sleep (5000);
 }
}

Die Ausgabe des Programms ist:

Eine phys. Verbindung aufgebaut
Verbindung "lokal" geschlossen
Verbindung direkt angefordert
Direkte Verbindung phys. wieder geschlossen
Dieselbe phys. Verb neu angefordert
Neue physikalische Verbindung erzeugt
Alle physikalischen Verbindungen geschlossen

1112 Kapitel 26

26.10 Übungen

Aufgabe 26.1: H2 Database Engine

Beim iterativen Entwickeln von Datenbank-Anwendungen kommt öfters der Fall vor,
dass man dieselben Anfragen an eine Datenbank mehrfach ausführen will. Wenn es
sich um das Einfügen von Daten handelt, muss man beachten, dass nicht dieselben
Daten immer wieder eingefügt werden, da sonst Primärschlüssel-Regeln verletzt
werden und vom DBMS Fehlermeldungen kommen würden. In anderen Fällen hat
man nur einen eingeschränkten Zugang zum DBMS oder im schlimmsten Fall gar
keinen. Um trotz all dieser Probleme eine entsprechende Anwendung entwickeln zu
können, empfiehlt sich der Einsatz der H2 Database Engine. Die H2 Database
Engine (H2) ist ein relationales DBMS, das komplett in Java implementiert ist, direkt
im Kontext eines Java-Programms laufen kann und angelegte Datenbanken sowohl
permanent auf der Festplatte speichern kann als auch temporäre Datenbanken voll-
ständig im Arbeitsspeicher behalten kann. H2 implementiert die Schnittstellen von
JDBC, so dass der Zugriff darauf wie auf jedes andere DBMS erfolgen kann.

Um H2 in einer eigenen Anwendung nutzen zu können, muss man sich die H2
Distribution von folgender Adresse herunterladen:

http://www.h2database.com

oder alternativ von der Buch-CD kopieren. Die Distribution besteht aus einigen Skrip-
ten und der Dokumentation. Für einen schnellen Einstieg sind nur die Dateien im Un-
terverzeichnis bin/ der Distribution von Interesse. Für die Entwicklung von Anwen-
dungen mit H2 muss man lediglich die jar-Datei aus dem Unterverzeichnis bin/ in
den Classpath des jeweiligen Java-Programms kopieren.

Die URL für H2 Datenbanken sieht generell wie folgt aus:

jdbc:h2:[Pfad zur Datenbank]

Der Pfad kann ein absoluter Betriebssystempfad sein wie C:/data/sample oder
/data/sample, ein relativer Pfad wie ./data/sample oder ~/data/sample oder
ein Pfad für eine Datenbank im Arbeitsspeicher wie mem:sample. Dabei bezeichnet
der letzte Teil des Pfades keinen Ordner, sondern ist der Name der Datenbank. Es
gibt noch mehr Optionen, diese kann man in der Online-Dokumentation nachlesen.
Wenn die angegebene Datenbank nicht existieren sollte, wird automatisch eine neue
Datenbank angelegt, ansonsten wird die existierende Datenbank geladen. Standard-
mäßig existiert der Benutzer SA für jede neu angelegte Datenbank, dessen Passwort
leer ist.

Möchte man also eine temporäre Datenbank im Speicher anlegen (eine In-Memory-
Datenbank), die nicht auf die Festplatte gespeichert wird, kann man die folgende
Verbindungs-URL benutzen:

jdbc:h2:mem:sample

In der Distribution von H2 wird im Unterverzeichnis bin/ auch eine Konsole zur Ad-
ministration mitgeliefert, mit deren Hilfe man Datenbanken laden und den Inhalt an-
schauen und verändern kann. Diese Konsole wird gestartet, abhängig vom Be-

JDBC 1113

triebssystem, mit Hilfe der mitgelieferten Skripte h2.bat oder h2.sh. In beiden Fäl-
len kann man daraufhin unter der Adresse http://localhost:8082 im Browser
auf die Konsole zugreifen. Gibt man die JDBC-URL der gewünschten Datenbank ein,
so kann man sich diese Datenbank im Folgenden anschauen und diese auch edi-
tieren.

Für die folgenden Aufgaben soll eine In-Memory-Datenbank verwendet werden.

Im Rahmen der folgenden Aufgabenteile soll eine Utility-Klasse mit dem Namen Da-
tabaseTools im Paket tools erstellt werden. Der Zweck dieser Klasse ist es, die
Kommunikation mit der Datenbank zu vereinfachen. Aus diesem Grund soll die
Verwaltung von Verbindungen und der Zugriff auf JDBC-APIs durch diese Klasse
gekapselt werden. Sämtliche Exceptions, die von den verwendeten Methoden der
JDBC-API geworfen werden können, sollen von den Methoden der Utility-Klasse an
den Aufrufer weitergegeben werden, ohne sie in der Utility-Klasse zu behandeln.

Zunächst soll jedes Objekt dieser Klasse beim Instantiieren eine Verbindung mit
einer Datenbank herstellen und diese Verbindung für die jeweilige Instanz speichern.
Diese Klasse soll einen Konstruktor mit der folgenden Signatur anbieten:

public DatabaseTools (String dbPathName, String user,
 String password)

Dabei soll mit dem Übergabeparameter dbPathName der Pfad zur und der Name
der Datenbank übergeben werden. Mit den Parametern user und password wer-
den die Login-Daten für die Datenbank übergeben. In diesem Konstruktor soll darauf-
hin eine Verbindung zur angegebenen Datenbank hergestellt und gespeichert wer-
den.

Mit Hilfe der Methode closeConnection() soll eine geöffnete Verbindung wieder
geschlossen werden können.

Für die folgenden Aufgabenstellungen werden In-Memory-Datenbanken verwendet,
da sich in den Testklassen immer wieder die gleichen Aufrufe befinden und diese in
einer permanent gespeicherten Datenbank Fehlermeldungen und Exceptions verur-
sachen würden.

Aufgabe 26.2: Metadaten und das Statement CREATE TABLE

In dieser Teilaufgabe soll mit Hilfe von Metadaten-Klassen die Erstellung einer Ta-
belle mit Hilfe des SQL-Statements CREATE TABLE vereinfacht werden. Dazu soll
die Klasse Column im Paket metadata angelegt werden, die einige der möglichen
Attribute einer Tabellenspalte speichert. Eine Liste aus Column-Objekten soll dann
der Methode createTable() in der Utility-Klasse übergeben werden, damit eine
neue Tabelle in der Datenbank angelegt werden kann.

Die Klasse Column soll einen Satz von öffentlich zugänglichen Instanzvariablen
besitzen:

• Die Variable name vom Typ String soll den Namen der Tabellenspalte spei-
chern.

1114 Kapitel 26

• Die Variable type vom Typ String soll den SQL-Datentyp der Spalte speichern.

• Die Variable nullable vom Typ boolean soll beschreiben, ob diese Spalte
NULL-Werte annehmen kann (Wert true) oder nicht (Wert false).

• Die Variable pk vom Typ boolean soll beschreiben, ob diese Spalte zum Primär-
schlüssel einer Tabelle gehört (Wert true) oder nicht (Wert false).

• Die Variable fk vom Typ boolean soll beschreiben, ob diese Spalte zum Fremd-
schlüssel dieser Tabelle gehört (Wert true) oder nicht (Wert false).

• Die Variable refTable vom Typ String soll den Namen der Tabelle enthalten,
auf die diese Spalte verweist, wenn sie zum Fremdschlüssel gehört.

• Die Variable delCascade vom Typ boolean soll beschreiben, ob alle Einträge in
dieser Tabelle automatisch gelöscht werden sollen, wenn der entsprechende Ein-
trag in der referenzierten Tabelle gelöscht wird (Wert true) oder nicht (Wert
false).

Zum einfacheren Anlegen von Objekten vom Typ Column sollen drei Konstruktoren
bereitgestellt werden mit den folgenden Signaturen:

• public Column (String name, String type, boolean nullable,
boolean pk, boolean fk, String refTable, boolean delCascade)

• public Column (String name, String type, boolean nullable,
 boolean pk)

• public Column (String name, String type, boolean nullable)

Die kürzeren Konstruktoren sollen dabei immer die jeweils längeren verwenden und
für die nicht spezifizierten Werte entsprechend die Werte null oder false überge-
ben.

Die Methode createTable() der Utility-Klasse DatabaseTools soll anhand eines
übergebenen Tabellennamens und einer Liste aus Column-Objekten zunächst über-
prüfen, ob eine Tabelle mit dem gleichen Namen bereits existiert. Wenn das nicht der
Fall sein sollte, soll diese Methode anhand der übergebenen Liste eine entsprechen-
de CREATE TABLE Abfrage zusammenstellen und auf der Datenbank ausführen.

Ergänzen Sie die folgende Vorlage für die Methode createTable():

public boolean createTable (String name, List<.> columns)
 throws
{
 // Metadataten-Objekt erzeugen.
 dbMetaData =;
 String[] tableTypes = {"TABLE"};
 // Metadaten für die Datenbank holen und das Ergebnis der Abfrage
 // speichern.
 rs =
 dbMetaData.get ("", null, null, tableTypes);

 // Das Ergebnis der Metadaten-Abfrage durchgehen und mit dem
 // übergebenen Tabellennamen vergleichen.
 // Abbrechen, falls Tabelle bereits existiert.
 while (.)

JDBC 1115

 {
 if (.getString (3).equalsIgnoreCase (name))
 {
 System.out.println ("Tabelle " + name +
 " existiert bereits!");
 // Tabelle existiert, false zurückgeben.
 return false;
 }
 }

 // Schalter, um festzustellen, ob mehrere Primärschlüsseleinträge
 // existieren.
 boolean pkExists = false;
 // Dieser StringBuilder baut den Teilstring für
 // Primärschlüsseleinträge zusammen.
 StringBuilder pkPart = new StringBuilder ("PRIMARY KEY (");
 // Diese Liste enthält die einzelnen FOREIGN KEY-Einträge.
 List<StringBuilder> fkPart = new ArrayList<StringBuilder>();
 // Dieser StringBuilder baut die gesamte Abfrage zusammen.
 StringBuilder query =
 new StringBuilder ("CREATE TABLE " + name + " (");

 // Die Liste der Column-Objekte durchlaufen.
 for (. col :)
 {
 // Spaltennamen und Spaltentyp zur Hauptabfrage hinzufügen.
 append (col. + " " + col.);
 // Falls NULL-Werte nicht erlaubt sein sollen, entsprechenden
 // Eintrag hinzufügen, sonst nur Komma hinzufügen.
 append (!col. ? " , " : ", ");

 // Falls eine Spalte als Primärschlüssel markiert ist.
 if (col.)
 {
 // Spaltennamen zum Primärschlüssel-Teilstring hinzufügen.
 append (pkExists ? ", " + col.name : col.name);
 // Markieren, dass mindestens ein Primärschlüsseleintrag
 // existiert (notwendig für Kommasetzung).
 pkExists = true;
 }

 // Falls eine Spalte als Fremdschlüssel markiert ist.
 if (col.)
 {
 // String für einen Fremdschlüsseleintrag zusammenbauen.
 StringBuilder fkRef = new StringBuilder ("FOREIGN KEY ");
 // Spaltennamen zum Fremdschlüsseleintrag hinzufügen.
 append ("(" + col. + ") REFERENCES ");
 // Referenzierte Tabelle zum String hinzufügen, der
 // referenzierte Spaltenname soll der gleiche sein wie der
 // Name der Spalte in der aktuellen Tabelle.
 append (col. +
 " (" + col. + ") ON DELETE ");
 // Festlegen, ob referenzierte Werte beim Löschen in
 // Quelltabelle mit gelöscht werden sollen.
 append (col. ? "CASCADE" : "NO ACTION");

1116 Kapitel 26

 // Den zusammengebauten Fremdschlüsseleintrag zur Liste der
 // Einträge hinzufügen.
 add (.);
 }
 }

 // Falls ein Primärschlüssel eingetragen wurde.
 if (.)
 {
 // Primärschlüsselstring abschließen.
 append (")");
 // String zur Abfrage hinzufügen.
 append (.toString() + ", ");
 }

 // Falls Fremdschlüsseleinträge existieren.
 if (!.isEmpty())
 {
 // Liste der Fremdschlüsseleinträge durchlaufen.
 for (StringBuilder fk :)
 {
 // Jeden String aus Liste zur Abfrage hinzufügen.
 append (.toString() + ", ");
 }
 }

 // nachfolgendes Komma entfernen.
 query.setLength (query.length() - 2);
 // Abfrage abschließen.
 query.append (")");

 System.out.println ("Versuche Tabelle " + name + " anzulegen:");
 System.out.println (query.toString());
 // Abfrage-Objekt erstellen.
 stmt = connection.();
 // Update-Abfrage mit dem zusammengebauten String ausführen.
 stmt. (.toString());

 // Erfolg zurückgeben.
 return true;
}

Testen Sie Ihr Programm mit der folgenden Klasse:

// Datei: Test1.java

import java.util.*;
import tools.DatabaseTools;
import metadata.Column;

public class Test1
{
 public static void main (String[] args)
 {
 String dbPathName = "mem:hochschuldb";
 String user = "SA";
 String passwd = "";

JDBC 1117

 List<Column> colStudenten = new ArrayList<Column>();
 List<Column> colFachnoten = new ArrayList<Column>();

 colStudenten.add (new Column ("name", "CHAR (20)", true));
 colStudenten.add
 (new Column ("vorname", "VARCHAR (12)", true));
 colStudenten.add
 (new Column ("matrikelnr", "INT", false, true));

 colFachnoten.add (new Column ("matrikelnr", "INT",
 false, true, true, "studenten", true));
 colFachnoten.add
 (new Column ("fach", "VARCHAR (20)", false, true));
 colFachnoten.add (new Column ("note", "DOUBLE", false));

 try
 {
 DatabaseTools tools =
 new DatabaseTools (dbPathName, user, passwd);
 tools.createTable ("studenten", colStudenten);
 tools.createTable ("fachnoten", colFachnoten);
 tools.closeConnection();
 }
 catch (Exception e)
 {
 System.out.println ("Exception: " + e.getMessage());
 }
 }
}

Aufgabe 26.3: Entities und Batch-Abfragen

Um von der zugrundeliegenden Datenbank in einem Java-Programm zu abstrahie-
ren, empfiehlt sich der Einsatz von sogenannten Entity-Objekten. Entities sind ein-
fache Java-Objekte, die jeweils Daten aus einem Datensatz einer Tabelle beinhalten.
Auf diese Weise ist es möglich, die relational organisierten Daten einer Datenbank in
einer objektorientierten Sprache zur Verfügung zu stellen. Das Verfahren der Abbil-
dung von Datensätzen auf Objekte wird als Objekt-Relationales-Mapping bezeichnet.

Für die in der vorhergehenden Aufgabe erstellten Tabellen sollen zunächst entspre-
chende Entity-Klassen erstellt werden. Für die Tabelle fachnoten soll die Klasse
Note, für die Tabelle studenten die Klasse Student erstellt werden.

Die Klasse Note soll folgende öffentliche Instanzvariablen besitzen, beachten Sie,
dass hier keine primitiven Typen verwendet werden, um NULL-Werte abbilden zu
können:

• Die Variable matrikelNr vom Typ Integer zum Speichern der Matrikelnum-
mer.

• Die Variable fach vom Typ String zum Speichern der Bezeichnung des Fachs.

• Die Variable note vom Typ Double zum Speichern der Note für ein Fach.

1118 Kapitel 26

Diese Klasse soll zum einfachen Anlegen von Objekten Konstruktoren mit folgenden
Signaturen anbieten:

• public Note (Integer matrikelNr, String fach, Double note)

• public Note (Integer matrikelNr, String fach)

• public Note (String fach)

• public Note (Integer matrikelNr)

Die Klasse Student soll folgende öffentliche Instanzvariablen besitzen:

• Die Variable name vom Typ String zum Speichern des Namens des Studenten.

• Die Variable vorname vom Typ String zum Speichern des Vornamens.

• Die Variable matrikelNr vom Typ Integer zum Speichern der Matrikelnum-
mer.

• Die Variable noten vom Typ List<Note>, die eine Liste von Noten enthält, die
für einen Studenten eingetragen wurden

Auch diese Klasse soll einen Satz an Konstruktoren anbieten, um das Anlegen von
Objekten dieser Klasse zu vereinfachen:

• public Student (String name, String vorname,
 Integer matrikelNr, List<Note> noten)

• public Student (String name, String vorname,
 Integer matrikelNr, Note note)

• public Student (String name, String vorname,
 Integer matrikelNr)

• public Student (String name, String vorname)

• public Student (Integer matrikelNr)

Die kürzeren Konstruktoren beider Klassen sollen die jeweils längeren benutzen und
die nicht gesetzten Werte als null-Referenzen übergeben. Weiterhin sollen beide
Klassen die Methode toString() überschreiben, um eine Ausgabe ihrer Inhalte zu
ermöglichen.

Die Klasse DatabaseTools soll nun um Methoden erweitert werden, um Entity-
Objekte in die Datenbank übernehmen zu können.

Die Methode mit der Signatur public void addNoten (List<Note> noten)
soll eine Liste mit Objekten vom Typ Note in die Tabelle fachnoten übertragen
können. Da mehrere Noten mit dieser Methode auf einmal eingefügt werden sollen,
bietet sich der Einsatz von Prepared Statements und Batch-Jobs an. In dieser Me-
thode soll die Liste der Noten durchlaufen werden. Für jede einzufügende Note soll
ein Batch-Job hinzugefügt werden und der Batch-Job anschließend auf der Daten-
bank ausgeführt werden.

Die Methode mit der Signatur public void addNote (Note note) soll das Be-
nutzen vereinfachen. Sie soll lediglich das übergebene Objekt vom Typ Note in eine
neue Liste einfügen und die zuvor definierte Methode addNoten() aufrufen.

JDBC 1119

Die Methode mit der Signatur public void addStudenten (List<Student>
studenten) soll symmetrisch zur Methode addNoten() eine Liste mit Objekten
vom Typ Student in die Tabelle studenten übertragen können. Auch hier sollen
Prepared Statements und Batch-Jobs zum Einsatz kommen. Im Unterschied zu
Objekten vom Typ Note, halten Objekte vom Typ Student eine Liste von Objekten
vom Typ Note in einer Instanzvariablen gespeichert. Aus diesem Grund soll, nach-
dem die Studenten aus der übergebenen Liste in die Datenbank eingefügt wurden, in
einem Aufruf an die Methode addNoten() auch die Noten dieser Studenten einge-
fügt werden.

Für die Einfachheit der Nutzung der Methode addStudenten() soll die Methode
mit der Signatur public void addStudent (Student student) angelegt wer-
den, die einen übergebenen Studenten in eine neue Liste einfügt und die Methode
addStudenten() aufruft.

Testen Sie Ihr Programm mit der folgenden Klasse:

// Datei: Test2.java

import java.util.*;
import tools.DatabaseTools;
import metadata.Column;
import entities.*;

public class Test2
{
 public static void main (String[] args)
 {
 String dbPathName = "mem:hochschuldb";
 String user = "SA";
 String passwd = "";

 List<Column> colStudenten = new ArrayList<Column>();
 List<Column> colFachnoten = new ArrayList<Column>();

 colStudenten.add (new Column ("name", "CHAR (20)", true));
 colStudenten.add
 (new Column ("vorname", "VARCHAR (12)", true));
 colStudenten.add
 (new Column ("matrikelnr", "INT", false, true));

 colFachnoten.add (new Column ("matrikelnr", "INT", false,
 true, true, "studenten", true));
 colFachnoten.add
 (new Column ("fach", "VARCHAR (20)", false, true));
 colFachnoten.add (new Column ("note", "DOUBLE", false));

 List<Student> studenten = new ArrayList<Student>();

 studenten.add (new Student ("Schmidt", "Georg", 12345678,
 new Note (12345678, "Info 1", 1.0)));
 studenten.add (new Student ("Peters", "Anja", 47110815,
 new Note (47110815, "Info 1", 2.1)));

1120 Kapitel 26

 List<Note> dlugoschNoten = new ArrayList<Note>();
 dlugoschNoten.add (new Note (54123678, "Info 1", 1.7));
 dlugoschNoten.add (new Note (54123678, "Mathe 1", 2.5));
 studenten.add (new Student ("Dlugosch", "Andrea", 54123678,
 dlugoschNoten));

 try
 {
 DatabaseTools tools =
 new DatabaseTools (dbPathName, user, passwd);
 tools.createTable ("studenten", colStudenten);
 tools.createTable ("fachnoten", colFachnoten);
 tools.addStudenten (studenten);
 tools.closeConnection();
 }
 catch (Exception e)
 {
 System.out.println ("Exception: " + e.getMessage());
 }
 }
}

Aufgabe 26.4: Das Statement SELECT und ResultSets

Zum Auslesen von Daten aus der Datenbank sollen der Klasse DatabaseTools
weitere Methoden hinzugefügt werden. Diese Methoden sollen wiederum Entity-
Objekte als Eingabe akzeptieren und Listen von Entity-Objekten zurückgeben. Alle
Methoden, die im Rahmen dieser Aufgaben erstellt werden sollen, dürfen auf keinen
Fall die an sie übergebenen Objekte verändern, stattdessen sollen immer neue Ob-
jekte angelegt und zurückgegeben werden.

Die Methode mit der Signatur public List<Note> getNote (Note note) soll
anhand der übergebenen Referenz auf das Objekt vom Typ Note eine passende
SELECT-Abfrage konstruieren, diese ausführen und die Ergebnisse in einer Liste, die
Referenzen auf Objekte vom Typ Note hält, zurückgeben. Dabei soll gelten, dass
diese Methode auch mit einer null-Referenz aufgerufen werden kann. In diesem
Fall sollen sämtliche Einträge aus der Tabelle fachnoten zurückgegeben werden.
Wenn eine Referenz auf ein Note-Objekt übergeben wird, soll die Methode get-
Note() beachten, ob die Referenzen der Instanzvariablen matrikelNr und fach
des übergebenen Objektes gesetzt sind. Abhängig davon soll die SELECT-Abfrage
angepasst werden, um die passenden Einträge aus der Datenbank zu holen. Die In-
stanzvariable note der Klasse Note soll dagegen außer Acht gelassen werden.
Falls für die angegebenen Suchkriterien keine entsprechenden Einträge in der Da-
tenbank vorhanden sein sollten, so soll von dieser Methode eine null-Referenz
zurückgegeben werden.

Die Methode mit der Signatur public List<Note> getNoten (List<Note>
noten) soll den Aufruf der Methode getNote() für mehrere Objekte vom Typ
Note vereinfachen. Auch diese Methode soll eine null-Referenz zurückgeben, falls
keine passenden Einträge in der Datenbank gefunden werden.

JDBC 1121

Die Methode mit der Signatur public List<Student> getStudent (Student
student) soll ähnlich wie die Methode getNote() für eine übergebene Referenz,
die auf ein Objekt vom Typ Student zeigt, eine Liste mit Referenzen auf passende
Studenten zurückliefern. Auch hier soll eine übergebene null-Referenz zur Folge
haben, dass die Methode Referenzen auf alle Studenten aus der Tabelle studen-
ten in einer Liste zurückgibt. Sollte eine gültige Referenz auf ein Objekt vom Typ
Student übergeben werden, so soll die SELECT-Abfrage entsprechend den Instanz-
variablen name, vorname und matrikelNr des Objektes vom Typ Student ange-
passt werden. Falls eine von diesen Variablen eine null-Referenz enthalten sollte,
so soll diese Variable nicht zur Anpassung der Abfrage genutzt werden. Nachdem
alle passenden Studenten aus der Tabelle geholt wurden, sollen die Listen der Noten
der einzelnen Studenten anschließend mit Hilfe der Methode getNote() befüllt wer-
den. Auch für diese Methode gilt, dass wenn keine passenden Studenten in der Da-
tenbank gefunden werden sollten, eine null-Referenz zurückgegeben werden soll.

Für die Methode getStudent() soll die Methode public List<Student> get-
Studenten (List<Student> studenten) das Holen von Listen von Studenten
vereinfachen. Diese Methode soll, wie ihre Vorgänger, eine null-Referenz zurück-
geben, falls keine passenden Studenten in der Datenbank gefunden werden sollten.

Sie sollten Ihr Programm mit der folgenden Klasse testen:

// Datei: Test3.java

import java.util.*;
import tools.DatabaseTools;
import metadata.Column;
import entities.*;

public class Test3
{
 public static void main (String[] args)
 {
 String dbPathName = "mem:hochschuldb";
 String user = "SA";
 String passwd = "";

 List<Column> colStudenten = new ArrayList<Column>();
 List<Column> colFachnoten = new ArrayList<Column>();

 colStudenten.add (new Column ("name", "CHAR (20)", true));
 colStudenten.add
 (new Column ("vorname", "VARCHAR (12)", true));
 colStudenten.add
 (new Column ("matrikelnr", "INT", false, true));

 colFachnoten.add (new Column ("matrikelnr", "INT", false,
 true, true, "studenten", true));
 colFachnoten.add
 (new Column ("fach", "VARCHAR (20)", false, true));
 colFachnoten.add (new Column ("note", "DOUBLE", false));

 List<Student> studenten = new ArrayList<Student>();

1122 Kapitel 26

 studenten.add (new Student ("Schmidt", "Georg", 12345678,
 new Note (12345678, "Info 1", 1.0)));
 studenten.add (new Student ("Peters", "Anja", 47110815,
 new Note (47110815, "Info 1", 2.1)));

 List<Note> dlugoschNoten = new ArrayList<Note>();
 dlugoschNoten.add (new Note (54123678, "Info 1", 1.7));
 dlugoschNoten.add (new Note (54123678, "Mathe 1", 2.5));
 studenten.add (new Student ("Dlugosch", "Andrea", 54123678,
 dlugoschNoten));

 try
 {
 DatabaseTools tools =
 new DatabaseTools (dbPathName, user, passwd);
 tools.createTable ("studenten", colStudenten);
 tools.createTable ("fachnoten", colFachnoten);
 tools.addStudenten (studenten);

 studenten = tools.getStudent (null);
 for (Student student : studenten)
 System.out.println (student);
 System.out.println ("----------------");
 for (Note note : tools.getNote (new Note (54123678)))
 System.out.println (note);
 System.out.println ("----------------");
 for (Note note : tools.getNote (new Note ("Info 1")))
 System.out.println (note);
 System.out.println ("----------------");
 for (Note note : tools.getNote (null))
 System.out.println (note);
 System.out.println ("----------------");
 for (Note note : tools.getNoten (dlugoschNoten))
 System.out.println (note);
 System.out.println ("----------------");
 studenten = tools.getStudenten (studenten);
 for (Student student : studenten)
 System.out.println (student);

 tools.closeConnection();
 }
 catch (Exception e)
 {
 System.out.println ("Exception: " + e.getMessage());
 }
 }
}

Enterprise JavaBeans 3.1

Komponentenname

27.1 Idee der Enterprise JavaBeans
27.2 Objektorientierte Modellierung
27.3 Abbildung von Klassen auf Bean-Typen
27.4 Überblick über die Enterprise JavaBeans-Architektur
27.5 Konzept der EJB-Typen
27.6 Session-Beans
27.7 Der Applikations-Server JBoss
27.8 Java Persistence-API
27.9 Übungen

27 Enterprise JavaBeans 3.1

Im Folgenden wird die Enterprise JavaBeans (EJB)-Technologie in ihrer aktuellen
Version 3.1 vorgestellt272. Es kann von vorne herein klar gesagt werden, dass die Im-
plementierung von Enterprise JavaBeans bereits seit der Version 3.0 erheblich ver-
einfacht wurde. Viele Dinge, die nach der alten Spezifikation, d. h. nach der Version
2.1, noch benötigt wurden – wie beispielsweise der Deployment-Deskriptor oder das
Home-Interface einer Session-Bean – sind mit der neuen Version weggefallen oder
werden nur noch optional eingesetzt. Mit der Version 3.1 wurde die Entwicklung von
Enterprise JavaBeans nochmals vereinfacht. Die Spezifikation wurde außerdem um
Punkte erweitert, auf die viele Entwickler schon lange gewartet haben wie zum Bei-
spiel die Möglichkeit Methoden von Session-Beans asynchron auszuführen. Da EJB
3.0 noch häufig eingesetzt wird, wird in diesem Kapitel sowohl auf die Version 3.0,
als auch die Version 3.1 eingegangen.

EJB 3 setzt auf das Programmieren von Plain Old Java Objects (POJOs), die mit
Metadaten in der Form so genannter Annotations instrumentiert werden. Diese An-
notations erlauben eine Art attributorientiertes Programmieren und stellen Zusatz-
informationen dar, die dem EJB-Container zur Laufzeit Auskunft über die in den
Annotations festgehaltenen Eigenschaften geben. All das, was man früher mit
dem Home-Interface und verschiedensten XML-Deskriptoren definieren musste,
kann man jetzt elegant mit Annotations erledigen. Der Programmierer fügt einfach
seine Annotations zu Klassen, Datenfeldern und Methoden hinzu und diese werden
vom Java-Compiler mitkompiliert. Für den Programmierer sieht es so aus, als würde
er einfach nur Modifikatoren wie z. B. public oder private anschreiben. Während
diese Schlüsselwörter jedoch Teil der Programmiersprache Java sind, handelt es
sich bei Annotations um Metadaten.

Annotations stellen eine einfache Möglichkeit dar, Metadaten, die zu-
vor in diversen Deployment-Deskriptoren auf andere Weise umständ-
lich aufgeschrieben werden mussten, direkt im Quellcode für die ent-
sprechende Komponente – Klasse, Interface, Methode, etc. – anzu-
geben.

Ein Beispiel für eine Annotation ist

@Stateless

Mit dieser Notation wird definiert, dass die geschriebene Bean-Klasse "stateless" ist.
Kurz und gut, bei den EJBs wird wirklich alles einfacher – der Markt verlangt es.
Dennoch ist es weiterhin erlaubt, XML Deployment-Deskriptoren zu verwenden. So
kann man mit XML Deployment-Deskriptoren die Annotations überschreiben.

272 Um dieses Kapitel komplett verstehen zu können, sollten auch die Anhänge "Annotations" (siehe

Anhang E) und "JNDI" (siehe Anhang D) vom Leser mit einbezogen werden.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_27,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Enterprise JavaBeans 3.1 1125

27.1 Idee der Enterprise JavaBeans

Größere Anwendungen in einem Unternehmen existieren heutzutage in der Regel
nicht mehr zentral auf einem Rechner, sondern sind auf mehrere Computersysteme
verteilt. In diesem Fall spricht man von einer verteilten Anwendung oder von einem
verteilten System. Dabei werden mehrere Ziele verfolgt:

� eine Erhöhung der Ausfallsicherheit,
� günstigere Anschaffungskosten,
� eine schnellere Verarbeitung
� und eine skalierbare Architektur273.

Um ein verteiltes System zu erzeugen, werden mehrere Rechner miteinander ver-
netzt, damit sie zusammenarbeiten können274.

Ein verteiltes System besteht aus autonomen Rechnern, die mit Hilfe
einer Systemsoftware untereinander vernetzt sind. Die Systemsoft-
ware versetzt die vernetzten Rechner in die Lage, ihre Aktivitäten zu
koordinieren.

In Bild 27-1 ist das Modell einer Client/Server-Architektur in Form einer Three
Tier275-Architektur276 abgebildet.

Applikations-
Server-
Rechner

Datenbank-
Server-
Rechner

Client-
Rechner

DB-Speicher Tier 1 Tier 2 Tier 3
Bild 27-1 Three Tier-Architektur

Die Enterprise JavaBeans, mit denen sich das vorliegende Kapitel befasst, befin-
den sich auf dem Applikations-Server-Rechner.

27.2 Objektorientierte Modellierung

Ein Software-Entwickler bekommt von seinem Kunden die Aufgabe gestellt, die Ge-
schäftsprozesse277 des Kunden durch Programme zu unterstützen. Dazu muss der
Software-Entwickler sich zunächst im Problembereich bewegen und im Rahmen der

273 Eine Architektur wird als skalierbar bezeichnet, wenn sich eine gute Performance des Systems

auch bei steigenden Nutzerzahlen oder zunehmender Datenmenge einhalten lässt.
274 Dies ist die so genannte Shared Nothing-Architektur eines verteilten Systems. Es gibt auch eine

Shared Disk-Architektur, bei der sich mehrere Prozessor/Hauptspeicher-Einheiten einen gemein-
samen Externspeicherpool teilen.

275 Engl.: Schicht, Lage.
276 Der für die Beispiele dieses Kapitels verwendete Applikations-Server JBoss beinhaltet bereits eine

Datenbank, sodass die Schichten Applikations-Server-Rechner und Datenbank-Server-Rechner
verschmelzen. Somit stellen die Beispiele in diesem Kapitel eine Two Tier-Architektur dar.

277 Ein Geschäftsprozess ist ein Ablauf in einer Organisation, der ein bestimmtes Ergebnis hervor-
bringen soll. Zum Beispiel gibt es bei einer Bank den Geschäftsprozess "Konto eröffnen" mit dem
Ergebnis, dass für einen Kunden ein Konto eröffnet worden ist.

1126 Kapitel 27

Systemanalyse Modelle dieser Geschäftsprozesse anfertigen, um anschließend
im Lösungsbereich beim Systementwurf ein Modell für das technische System
aus Programmen und Rechnern in Form einer Architektur zu erstellen. Erst dann
kommt die Programmierung. Kapitel 27.2.1 zeigt den Unterschied zwischen Problem-
und Lösungsbereich auf. Kapitel 27.2.2 stellt die Klassenarten der Systemanalyse
vor. Ziel ist es letztendlich, diese Klassen in eine EJB-Architektur abzubilden.

27.2.1 Problembereich und Lösungsbereich

Im Software Engineering unterscheidet man zwischen dem Problembereich und
dem Lösungsbereich eines zu bauenden Systems. Der Problembereich ist dabei
die Welt der Geschäftsprozesse in einer idealen Welt ohne technisches System, d. h.
ohne Rechner. Der Lösungsbereich ist die Welt des Entwurfs und der Programmie-
rung auf einem Rechnersystem. Während man sich in der Welt der Systemanalyse
um die Logik der Geschäftsprozesse, in anderen Worten um die Logik der Verarbei-
tung in Form von Use Cases278 oder Anwendungsfunktionen279 kümmert, kommen
im Lösungsbereich noch technische Funktionen hinzu, da die Geschäftsprozesse
auf einem Rechnersystem laufen sollen. In der Sprechweise der Objektorientierung
findet man im Rahmen der Systemanalyse die Objekte des Problembereichs, im
Lösungsbereich kommen noch viele technische Objekte hinzu.

Geschäftsprozesse, in anderen Worten die Logik der Verarbeitung bzw.
die Verarbeitungsfunktionen, werden in der Systemanalyse durch die
Zusammenarbeit von Objekten des Problembereichs modelliert.

Problembereich

Tabelle 27-1 Sicht des Problembereichs

Tabelle 27-2 fasst die Sicht des Lösungsbereichs zusammen. Wie man dort sieht, gibt
es die Verarbeitungsfunktionen nicht nur in der Systemanalyse, sondern auch
beim Systementwurf, da der Grund für den Bau einer Anwendung natürlich die Ge-
schäftsprozesse sind.

� verarbeiten
� speichern
� übertragen
� ein- und ausgeben

� Betriebssicherheit
� Security
� Parallelität

Objekte der Funktionsklassen
� Verarbeitung
� Datenhaltung
� Übertragung
� Ein- und Ausgabe

� Systemüberwachung
� Zugriffssicherheit
� Interprozess-
 kommunikation

 Grundele-
mente der
Informations-
technik

Eigenschaften

Lösungsbereich

technische
Funktionen

Tabelle 27-2 Sicht des Lösungsbereichs

278 Ein Use Case ist ein Geschäftsprozess oder Teil eines Geschäftsprozesses, der automatisiert wird,

d. h. auf den Rechner kommt.
279 Ein anderes Wort für Use Case ist Anwendungsfall oder auch Anwendungsfunktion.

Enterprise JavaBeans 3.1 1127

Die Datenhaltung sorgt für die dauerhafte Speicherung der Daten in einem Datei-
system oder einer Datenbank, während die Übertragung die benötigten Informatio-
nen zwischen den Rechnern eines verteilten Systems austauscht. Die Ein- und Aus-
gabe beschreibt die Wechselwirkung des Systems mit seinen Nutzern. Die System-
überwachung hat die Aufgabe:

� den Start-up und Shut-down des Systems durchzuführen,
� bei Performance-Problemen für ein Load Balancing, d. h. für eine Verlagerung von

angeforderten Aufgaben auf andere Rechner zu sorgen,
� Fehler zu erkennen und zu behandeln
� und Fehlermeldungen der verteilten Anwendung an einer zentralen Stelle auszu-

geben.

Die Zugriffssicherheit betrifft die Security – das heißt z. B. Schutz vor unerlaubtem
Zugriff, Mitlesen, Umleiten oder Abändern von Daten, die über ein Netzwerk über-
tragen werden – und die Interprozesskommunikation realisiert die Kommunikation
zwischen den verschiedenen parallelen Programmen des Systems.

Enterprise JavaBeans sind:

� eine Technologie des Lösungsbereichs
� und zwar speziell für einen Applikations-Server-Rechner einer

Client-Server-Architektur.

Die in Tabelle 27-2 vorgestellte Funktionalität der Ein- und Ausgabe läuft in einer
Client/Server-Architektur auf einem Client-Rechner. Die Übertragungsfunktionen
sind für den Transport der Informationen paarweise zwischen den verschiedenen
Rechnern verantwortlich und müssen daher immer bei beiden Kommunikationspart-
nern vorhanden sein. Funktionen der Zugriffssicherheit und der Interprozesskommu-
nikation gibt es auf dem Client-Rechner und den Server-Rechnern, während die
Verarbeitung, die Schnittstelle zur Datenhaltung und die Systemüberwachung
dem Applikations-Server-Rechner vorbehalten sind. Die Datenhaltung selbst mit
einem Datenbankmanagementsystem und der Datenbank, welche eine geordnete
Zusammenstellung der Daten darstellt, sind in einer Three Tier-Architektur auf dem
Datenbank-Server-Rechner angeordnet.

Die Idee, die nun hinter den Enterprise JavaBeans steckt, ist, dass
der Programmierer sich nur noch um die Implementierung der Ge-
schäftsprozesse kümmern soll.

Die technischen Funktionen der Schnittstelle zur Datenhaltung, der Systemüber-
wachung und der Interprozesskommunikation auf dem Applikations-Server-Rechner
sollen von dem so genannten Applikations-Server, einem Stück Standard-Soft-
ware, das als Produkt erhältlich ist wie z. B. JBoss, WebLogic oder WebSphere, zur
Verfügung gestellt werden. Der Applikations-Server enthält in seinem Innern auch
den so genannten EJB-Container, welcher das Laufzeitsystem der EJBs darstellt.

Der Programmierer muss sich somit beim Entwurf und bei der Programmierung der
Anwendung, die auf dem Applikations-Server-Rechner läuft, überhaupt nicht um die

1128 Kapitel 27

technischen Funktionen kümmern. Welche Klassen persistent gespeichert werden
sollen, wird über Annotations deklariert. Der so genannte Persistence Manager
führt dann zur Laufzeit den Zugriff auf die Datenbank aus.

Die EJB-Technologie entlastet den Programmierer von der Implemen-
tierung der technischen Funktionsklassen für die Interprozesskommu-
nikation/Übertragung, Datenhaltung, Systemüberwachung und Zu-
griffssicherheit auf den Server-Rechnern. Diese Aufgaben werden
vom Applikations-Server übernommen.

Der Programmierer kann sich somit ganz auf die Implementierung
der Geschäftsprozesse konzentrieren.

 Applikations-

Server-Rechner

Client-
Rechner

programmiert vom
Anwendungsentwickler

MMI, wie z.B. GUI

Applikations-Server
wie z.B. JBoss

Technische Funktionsklassen:
� Interprozesskommunikation/

Übertragung
� Schnittstelle zur Datenhaltung
� Systemüberwachung
� Zugriffssicherheit

Technische Funktion:
� Interprozesskommunikation/

Übertragung

Verarbeitung bzw.
Geschäftsprozesse
(Problembereich)

bereitgestellt durch
Java EE-Plattform

Bild 27-2 Arbeitsteilung zwischen der Standard-Software und den zu erstellenden

Anwendungsprogrammen für die Geschäftsprozesse und deren MMI280

27.2.2 Klassenarten in der Systemanalyse

Vor Jacobson gab es ursprünglich in der Objektorientierung nur eine einzige Sorte
von Objekten – die Entity-Objekte.

Entity-Objekte (Entity-Klassen) sind Objekte (Klassen) des Problembereichs. Sie
repräsentieren Abbilder der Realität, d. h. sie haben echte Gegenstücke in dem be-
trachteten Ausschnitt der realen Welt. Dabei werden aber nur die für die jeweilige An-
wendung relevanten Eigenschaften in die Modellierung und Programmierung über-

280 Abk. für Mensch Maschine-Interface. Beispielsweise stellt eine grafische Benutzerschnittstelle ein

MMI dar.

Enterprise JavaBeans 3.1 1129

nommen. Das Wesentliche wird betrachtet und das Unwesentliche wird weggelas-
sen, d. h. man abstrahiert.

Entity-Objekte werden gefunden, indem man einen Ausschnitt der
realen Welt betrachtet und prüft, welche Gegenstände des Alltags in
Objekte des Programms überführt werden sollen. So kann alles Ge-
genständliche, aber auch ein Konzept wie z. B. ein Vertrag, durch ein
Entity-Objekt repräsentiert werden.

Entity-Objekte haben Datenfelder und Methoden. Die Datenfelder der Objekte stel-
len Nutzdaten dar. Sie entsprechen Eigenschaften der Objekte. Diese Eigenschaften
werden langfristig gespeichert. Beim Shut-down des Systems müssen diese Daten
persistent – das heißt dauerhaft – in nicht-flüchtigen Speichermedien gespeichert
werden, damit sie beim Start-up des Systems wiederhergestellt werden können.

Jacobson hat zusätzlich zu den Entity-Objekten noch zwei weitere Typen eingeführt:

� Kontroll-Objekte
� Interface-Objekte

Kontroll-Objekte (Kontroll-Klassen) im Sinne von Jacobson dienen zur Bündelung
komplexer Verarbeitungsvorgänge in einem Objekt. Es wird dadurch verhindert, dass
diese Verarbeitungsvorgänge durch das Zusammenwirken von Methoden in vielen
Objekten beschrieben werden müssen. Damit sind komplexe Algorithmen zentral in
einer Kontroll-Klasse abgelegt und Änderungen an den Algorithmen erfolgen nur in
dieser Kontroll-Klasse.

Kontroll-Objekte müssen sich die zu verarbeitenden Daten oft von vielen anderen
Objekten beschaffen. Ein bekanntes Beispiel von Jacobson ist ein so genanntes
Reporting-Objekt für eine Bankanwendung. Dieses Reporting-Objekt beschafft sich
über get-Methoden die Kontostände von allen Konto-Objekten – ganz gleich, ob es
sich um Girokonten, Sparbuchkonten oder Geldmarktkonten handelt – und erstellt
daraus einen Bericht.

Die Alternative, eine Berichtsmethode in jedem Objekt unterzubringen, scheitert, da
alle Konto-Objekte gleichberechtigt sind und keines der gleichberechtigten Objekte
mehr als die anderen wissen darf. Daher muss der Aufbau des Berichtes außerhalb
der Konto-Objekte zentral festgelegt werden.

Eine Kontroll-Klasse entspricht keiner Entität der realen Welt. Kon-
troll-Klassen bündeln komplexe Verarbeitungsvorgänge, in anderen
Worten ein prozedurales Verhalten, an zentraler Stelle in einer Klas-
se. Eine Kontroll-Klasse stellt damit eine Wrapper-Klasse für Proze-
duren dar.

Kontroll-Objekte findet man beim Betrachten von Abläufen, das heißt
beim Studieren der Use Cases.

1130 Kapitel 27

Interface-Objekte (Interface-Klassen) dienen zum Handling der Schnittstellen. Führt
man Interface-Klassen ein, so schlagen Änderungen an den Schnittstellen nicht auf
die Entity-Klassen oder Kontroll-Klassen durch. Interface-Objekte stellen im Rah-
men der Systemanalyse nur einen Merker dar, dass an ihrer Stelle im Rahmen des
Systementwurfs zahlreiche Objekte stehen können, um ein Interface zu realisieren.
So kann an die Stelle einer einzigen MMI-Interface-Klasse der Systemanalyse beim
Systementwurf ein ganzes Paket von Klassen treten, um die Mensch-Maschine-
Schnittstelle zu realisieren.

Interface-Klassen werden zwischen den betrachteten Entity- und
Kontroll-Objekten und den Aktoren eingeschoben. Sie kapseln die
Geräte-Abhängigkeit, damit die Entity- und Kontroll-Objekte gerä-
teunabhängig werden.

Interface-Klassen haben kein Gegenstück im Problembereich. Es
sind technische Klassen, die Geräte bedienen. Sie sollten erst kurz
vor dem Übergang vom Problembereich in den Lösungsbereich einge-
führt werden.

Neben den Kontroll-Klassen von Jacobson gibt es noch eine zweite Art von Kontroll-
Klassen, die eine reine Steuerungsfunktion im Sinne einer zustandsbasierten Koor-
dination anderer Objekte haben. Obwohl das Wort Kontroll-Klasse und Steuerungs-
Klasse prinzipiell dasselbe bedeutet, wählen wir das Wort Kontroll-Klasse für die von
Jacobson vorgeschlagenen Klassen und das Wort Steuer-Klasse für Klassen, die
zustandsbasiert andere Objekte koordinieren. Bei Steueraufgaben spielen Zustände
und Zustandsübergänge eine wichtige Rolle.

Eine zustandsbasierte Koordination bedeutet, dass das steuernde Ob-
jekt Zustände hat, die makroskopischen, d. h. in der Realität sicht-
baren Zuständen der zu steuernden Umgebung entsprechen.

Je nach erreichtem Zustand wird entsprechend gesteuert. Beispiele für makroskopi-
sche Zustände einer Anwendung können sein: eine Reise im Zustand "Flug gebucht"
oder im Zustand "Flug nicht gebucht", ein Kinosaal im Zustand "ausverkauft" oder
"nicht ausverkauft", ein Ventil im Zustand "offen" oder "geschlossen".

Auch Kontroll-Klassen, Steuer-Klassen und Interface-Klassen können
Daten tragen.

So halten beispielsweise Kontroll-Objekte, die einen Bericht erstellen, temporär alle
Daten, die sie sich von den Entity-Objekten besorgt haben, so lange, bis diese Daten
in den Bericht eingearbeitet sind. Ein Steuer-Objekt, welches eine Schranke öffnet
oder schließt, hält den Zustand, ob die Schranke offen oder geschlossen ist in einer
Statusvariablen. Die Daten von Kontroll-, Steuer- und Interface-Objekten können je
nach Anwendung persistent oder nicht persistent gespeichert werden.

Enterprise JavaBeans 3.1 1131

27.3 Abbildung von Klassen auf Bean-Typen

In der Systemanalyse arbeitet man mit Klassen. Beim Entwurf der Applikation, die
auf dem Applikations-Server-Rechner läuft, müssen diese Klassen den EJB-Typen
zugeordnet werden.

Die Abbildung von Objekten der Systemanalyse auf Enterprise Java-
Beans ist zunächst erdenklich einfach:

� den Kontroll- und Steuerungs-Objekten entsprechen die State-
less und Stateful Session-Beans

� und den Entity-Objekten entsprechen die Entity-Beans.

Diese Abbildung trifft aber nicht ganz zu.

Diese Zuordnung klingt zunächst vollkommen logisch, sie ist aber nur vordergründig
korrekt. Die Strategie bei den Entity-Beans ist, dass diese selbst nur get- und set-
Methoden zum Lesen und Schreiben der Datenfelder aufweisen. Im Gegensatz dazu
können Entity-Klassen nach Jacobson zusätzlich Geschäftsmethoden beinhalten,
welche die Datenfelder verarbeiten, beispielsweise eine toString()-Methode.
Denkt man zunächst an Entity-Klassen nach Jacobson, so muss man die Geschäfts-
methoden aus den Entity-Klassen herausschneiden und den Stateless Session-
Beans zuordnen. Tabelle 27-3 gibt eine Übersicht:

Klassenart EJB-Typ
Kontroll-Klasse Stateless Session-Bean
Steuerungs-Klasse Stateful Session-Bean
"nackte" Entity-Klasse ohne
Geschäftsmethoden

Entity-Bean

Geschäftsmethoden aus Entity-Klassen Stateless Session-Bean
Interface-Klasse Kein Bean-Typ, sondern MMI +

Dienste des Applikations-Servers

Tabelle 27-3 Zuordnung der Klassenarten zu den Bean-Typen

Die Schnittstelle zur Datenhaltung wird in der Systemanalyse durch eine Interface-
Klasse modelliert, um die Kontroll- und Entity-Klassen unabhängig vom verwendeten
Dateisystem oder Datenbankmanagementsystem zu machen. Im Lösungsbereich
stellt der Applikations-Server die Schnittstellen zur Datenhaltung bereit.

Mit Hilfe der Session-Beans wird die Verarbeitungslogik der Ge-
schäftsprozesse auf dem Server programmiert.

Die Technik der EJBs kehrt weitgehend zur Trennung der Prozeduren
und der Daten zurück. Der Grund dafür ist, dass die Entity Beans dem
Objekt-relationalen Mapping dienen.

1132 Kapitel 27

Die Technik der EJBs steht für das Object-Relational Mapping (ORM) in starker
Konkurrenz beispielsweise zu dem Werkzeug Toplink oder zu dem Open Source-
Persistenz-Framework Hibernate. Auch wenn Daten heute zumeist objektorientiert
modelliert werden, so basiert die vorherrschende Speicherungstechnik dennoch auf
dem relationalen Datenmodell, da rein objektorientierte Datenbanken am Markt keine
große Bedeutung erlangt haben. Zwischen dem objektorientierten und relationalen
Datenmodell hat daher ein Mapping – also eine Abbildung der klassenbasierten
Datenstruktur auf ein relationales Datenmodell bestehend aus Tabellen und umge-
kehrt – zu erfolgen.

Entity-Beans speichern Daten. Ein Zugriff auf diese Daten darf nur
durch set- und get-Methoden erfolgen. Geschäftsmethoden, die in der
Systemanalyse bei ihren Daten stehen, müssen beim Entwurf der
EJBs in Stateless Session-Beans umgeordnet werden.

27.4 Überblick über die Enterprise JavaBeans-Architektur

Enterprise JavaBeans sind serverseitige Komponenten, welche die Geschäftslo-
gik einer so genannten Enterprise-Applikation281 kapseln. Der Unterschied von
Komponenten zu normalen Klassen ist, dass alle Methoden einer Komponente in
einem Interface definiert sein müssen, bei einer normalen Klasse des Systement-
wurfs aber nicht. Seit EJB 3.1 ist dieses Interface jedoch optional.

Eine Komponente lässt sich durch die folgenden Eigenschaften be-
schreiben:

� Eine Komponente stellt Dienste (Funktionen) zur Verfügung.
� Auf diese Dienste kann nur über klar definierte Schnittstellen zu-

gegriffen werden.

Bei EJBs kommt noch die folgende Eigenschaft hinzu: Eine EJB-Kom-
ponente ist ortstransparent und dadurch räumlich verteilbar.

Mehrere Enterprise JavaBeans beschreiben ein komplexes Zusam-
menspiel. Die Gesamtheit der Enterprise JavaBeans, die zusammen-
gefasst eine Dienstleistung erbringen, bezeichnet man als EJB-Appli-
kation. Eine EJB-Applikation stellt einen Use Case des Applikations-
Server-Rechners dar. Diese Dienstleistung kann von einem Client in
Anspruch genommen werden, z. B. indem er Methoden aufruft, wel-
che von den Enterprise JavaBeans bereitgestellt werden.

281 Eine Enterprise-Applikation befasst sich mit der Lösung eines bestimmten Problems – z. B. einer

Bankanwendung – und befindet sich dabei auf einem Applikations-Server-Rechner. Die
Dienstleistung einer Enterprise-Applikation kann einer großen Anzahl von Client-Rechnern zur
Verfügung gestellt werden. Mit den Geschäftsprozessen werden dabei die Teile der Enterprise-
Applikation bezeichnet, welche den eigentlichen Zweck der Anwendung implementieren. So könnte
dies bei einer Bankanwendung das Öffnen und Schließen von Konten, die Durchführung von Über-
weisungen oder das Abheben von Geld sein.

Enterprise JavaBeans 3.1 1133

Enterprise JavaBeans befinden sich innerhalb eines so genannten EJB-Containers,
der eine Laufzeitumgebung für die EJBs bereitstellt. Der EJB-Container ist wie-
derum Teil des so genannten EJB-Servers. Die Schnittstelle zwischen dem EJB-
Container und dem EJB-Server ist herstellerspezifisch und daher nicht standardisiert.
Die Schnittstelle zwischen dem EJB-Container und den darin befindlichen Enterprise
JavaBeans ist durch die EJB-Spezifikation von Sun standardisiert und daher bei
jedem EJB-Server gleich. Das Bild 27-3 verdeutlicht diesen Zusammenhang:

EJB-Server

EJB-Container

EJB

herstellerspezifische
Schnittstelle

standardisierte
Schnittstelle

Bild 27-3 Schnittstellen innerhalb des EJB-Servers

Im Folgenden wird zwischen den Begrifflichkeiten EJB-Server und EJB-Container
nicht mehr unterschieden. Dadurch, dass die Schnittstelle zwischen den EJBs und
dem EJB-Container standardisiert ist, ergibt sich eine wichtige Eigenschaft von
Enterprise JavaBeans, und zwar, dass sie voll kompatibel zwischen verschiedenen
Applikations-Servern sind. Dies gilt allerdings nur solange die Beans keine server-
spezifischen Features verwenden.

Enterprise JavaBeans sind kompatibel und austauschbar zwischen
unterschiedlichen Applikations-Servern. Eine EJB, die in einem
EJB-Container eines bestimmten Herstellers läuft, ist ohne Änderung
am Code der EJB in einem anderen EJB-Container eines anderen
Herstellers lauffähig, wenn beide Hersteller die EJB-Spezifikation ein-
halten.

Ein EJB-Container/-Server stellt die folgenden Dienste zur Verfügung:

� Ein Speichermanagement in Form eines Ressourcen Poolings und in Form
eines Passivierungsdienstes.

Beim Ressourcen Pooling werden nicht benötigte Stateless Session-Beans und
Message-Driven Beans (siehe Kap. 27.5) in einem Pool zwischengespeichert, um
sie nicht bei Bedarf erst erzeugen zu müssen, da ein Erzeugungsprozess viel Zeit
braucht. Falls ein neues Objekt benötigt wird, kann es dem Pool einfach entnom-
men werden.

Ein EJB-Server enthält für jeden Typ einer Stateless Session-Bean einen eigenen
Pool. Dasselbe gilt in der Regel auch für Message-Driven Beans, da auch diese
keine Zustände für einen Client führen.

1134 Kapitel 27

Beim Passivieren werden Stateful Session-Beans im Falle von knappem Spei-
cher aus dem Arbeitsspeicher genommen und in der Datenbank zwischengespei-
chert, um sie bei Bedarf später wieder zu aktivieren.

� Synchronisationsdienst

Da der EJB-Server konkurrierende Zugriffe auflöst, müssen die Methoden einer
EJB nicht vom Programmierer synchronisiert werden.

� Kommunikationsdienst

Dieser Dienst verbirgt die Kommunikationstechnik zwischen den Programmen auf
dem Client- und den Server-Rechnern.

� Namensdienst (Name Service)

Mit Hilfe eines Namensdienstes können EJBs innerhalb des verteilten Systems
gesucht werden. Der EJB-Server stellt einen Namensdienst zur Verfügung und
bietet zum Zugriff auf diesen Namensdienst eine geeignete Schnittstelle an. Diese
Schnittstelle entspricht der so genannten Java Naming and Directory Inter-
face282-Spezifikation (JNDI).

Kommunikationsdienst und Namensdienst zusammen werden auch als Object
Brokering bezeichnet. Sie machen aus einem Objekt bzw. aus einer Komponente
ein verteiltes Objekt (distributed object) bzw. eine verteilte Komponente (distribu-
ted component).

� Sicherheitsdienst

Der Sicherheitsdienst kontrolliert bei einem Zugriff auf eine EJB die Berechtigung
des Aufrufers.

� Transaktionsdienst

Es wird ein Transaktionsdienst zur Verfügung gestellt, der gewährleistet, dass alle
Verarbeitungsschritte einer Transaktion vollständig oder gar nicht abgearbeitet
werden.

� Persistenzdienst

Der Persistenzdienst sorgt dafür, dass Änderungen an den Daten, die durch so
genannte Entity-Beans283 repräsentiert werden, dauerhaft gespeichert werden.
Transaktionen müssen prinzipiell immer dauerhaft sein, wenn ein so genanntes
Commit, also die endgültige Bestätigung der Änderungen an den Daten, stattge-
funden hat.

282 Siehe Anhang D "JNDI".
283 Siehe Kap. 27.5.

Enterprise JavaBeans 3.1 1135

� Objektverteilung (Load Balancing284)

Es besteht die Möglichkeit, eine Enterprise-Applikation, die eine Zusammenstel-
lung mehrerer EJBs darstellt, auf mehreren Applikations-Servern gleichzeitig zu in-
stallieren. Das Load Balancing-System verteilt die Anfragen der Clients homogen
auf die einzelnen Applikations-Server-Rechner. Dadurch wird eine Lastverteilung
erzielt. Für den Client macht diese Lastverteilung keinen Unterschied, weil für ihn
der Ort der Enterprise JavaBean, deren Dienstleistung er entgegennimmt, verbor-
gen ist (Ortstransparenz).

Dadurch, dass der EJB-Container die eben vorgestellten Funktionen bereits zur Ver-
fügung stellt, muss sich der Entwickler einer EJB um diese Aufgaben nicht mehr
kümmern und kann sich somit voll auf die Entwicklung der Geschäftslogik konzen-
trieren.

Seit EJB 3.1 gibt es mit EJB Lite eine Zusammenstellung von EJB-APIs, die auf die
wesentlichen Elemente reduziert sind. Sie beinhaltet alle Funktionalitäten, die norma-
lerweise zur Erstellung von Business-Anwendungen benötigt werden aber reduziert
für den Entwickler den Einarbeitungsaufwand auf die zentralen Funktionalitäten. Es
wird auch kein vollständiger EJB-Applikations-Server mehr benötigt, um EJBs auszu-
führen. Es genügt ein spezieller Container, der alleinstehend betrieben werden kann.

Datenbanken

Client

Persistenz- und
Transaktionsdienst für
verteilte Transaktionen

Sicher-
heits-
dienste

Applikations-Server

EJB Container

EJB

EJB

EJB

Datenbanken

Datenbanken

Bild 27-4 Sicherheitsdienste, Persistenz- und Transaktionsdienst als Beispiele für die

Dienste eines EJB-Containers/Applikations-Servers

Bild 27-5 veranschaulicht den Aufbau eines Applikations-Server-Rechners, auf dem
sich der Applikations-Server befindet. Es wird zudem verdeutlicht, wie der Client mit
der Enterprise-Applikation kommunizieren kann.

Der Client-Rechner greift auf den Applikations-Server-Rechner – genauer gesagt
auf den Applikations-Server – über eine Client-Applikation oder einen Web-Browser
zu:

� Client-Applikation

Die Client-Applikation kommuniziert mit dem EJB-Container und tritt dadurch di-
rekt über das Business-Interface einer Session-Bean mit dieser in Kontakt.

284 Ein mögliches Load Balancing-Verfahren ist das so genannte Round-Robin-Verfahren, bei dem die

eingehenden Anfragen der Clients im Rundlauf auf die zur Verfügung stehenden Applikations-
Server verteilt werden.

1136 Kapitel 27

� Web-Browser

Auch über einen Web-Browser kann auf den Applikations-Server zugegriffen wer-
den. Der Web-Browser kommuniziert jedoch mit dem Web-Container und greift
dabei auf ein Servlet285 zu. Der Web-Container steht wiederum mit dem EJB-Con-
tainer in Kontakt.

Datenbank-
Server-Rechner

Applikations-
Server-Rechner

Client-Rechner
Client-

Applikation
Web-

Browser

EJB-Container

EJB EJB EJB

Web-Container

Servlet

Datenbank-
System

Applikations-Server Serverseitige
Darstellung

Serverseitige
Geschäftslogik

Serverseitige
Datenhaltung

Clientseitige
Darstellung

Bild 27-5 Aufbau eines Applikations-Servers und Kommunikationswege mit dem Client

Der Applikations-Server stellt die Laufzeitumgebung einer Enterprise-Applikation
durch den EJB-Container zur Verfügung. Er beheimatet weiterhin den Web-Con-
tainer:

� EJB-Container

Innerhalb des EJB-Containers leben die Instanzen der Enterprise JavaBeans. Ein
EJB-Container stellt somit die Laufzeitumgebung der Enterprise JavaBeans bereit.

� Web-Container

Der Web-Container verwaltet die Ausführung von Java Servlets286 und bildet somit
die Laufzeitumgebung für Servlets.

285 Servlets können auch mit Hilfe von Java ServerPages generiert werden.
286 Ein Servlet ist ebenfalls eine serverseitige Komponente, die dem Client, der den Dienst eines

Servlets in Anspruch nimmt, dynamisch generierten HTML-Code zurückliefert. Siehe Kap. 22.

Enterprise JavaBeans 3.1 1137

Der Applikations-Server steht direkt mit der Datenbank in Verbindung, die sich auf
dem Datenbank-Server-Rechner befindet.

27.5 Konzept der EJB-Typen

Es wird zwischen vier verschiedenen Typen von Enterprise JavaBeans unterschie-
den:

� Stateless Session-Beans

Ein Client kommuniziert mit einer Stateless Session-Bean-Instanz und ruft deren
Methoden auf.

Eine Stateless Session-Bean implementiert die Methoden eines
Use Case auf dem Applikations-Server-Rechner und hat keinen
Zustand.

Sie kann ferner noch private Methoden besitzen, die von außen nicht zugänglich
sind. Im Falle von sehr kleinen Use Cases wie "Adresse holen", "Adresse ändern"
oder "Adresse löschen", macht es Sinn, dass eine Session-Bean ein Paket von
Use Cases implementiert.

� Stateful Session-Beans

Ein Client kommuniziert mit einer Stateful Session-Bean-Instanz und ruft deren
Methoden auf.

Eine Stateful Session-Bean implementiert die Methoden eines
Use Case auf dem Applikations-Server-Rechner und hat einen Zu-
stand.

Sie kann ferner noch private Methoden besitzen, die von außen nicht zugänglich
sind. Insbesondere kann eine Stateful Session-Bean je nach internem Zustand auf
ein und dieselbe Anfrage des Clients ganz verschieden reagieren.

� Entity-Beans

Sie sind für die persistente Datenhaltung zuständig. Eine Instanz einer Entity-Bean
repräsentiert ein Objekt der realen Welt, zum Beispiel ein Konto bei einer Bank
oder einen Kunden eines Geldinstituts. Die Persistenzhaltung der Daten wird
durch Annotations bewirkt.

� Message-Driven-Beans (MDB)

Mit Hilfe einer Message-Driven-Bean wird die Möglichkeit geschaffen, dass der
Client mit der Enterprise-Applikation Informationen via Nachrichten austauscht.
Dies kann synchron oder asynchron geschehen. Asynchrone Methodenaufrufe
können in EJB3.1 direkt in einer Session-Bean mittels einer speziellen Annotation

1138 Kapitel 27

durchgeführt werden. MDB wird daher in Zukunft eher für nachrichtenbasierende
Kommunikation (z.B. als Schnittstelle in Fremdsysteme) verwendet.

Aufgrund der umfangreichen Thematik, die im Zusammenhang mit Message-
Driven-Beans betrachtet werden muss, wird diese Art von Enterprise JavaBeans
nicht in diesem Lehrbuch behandelt. Es wird hierfür auf die weiterführende Litera-
tur [27] verwiesen.

Alle vier existierenden Arten von Enterprise JavaBeans – Stateless
Session-Beans, Stateful Session-Beans, Entity-Beans und Message-
Driven-Beans – bestehen aus einfachen Java-Klassen bzw. Java-
Interfaces, welche mit bestimmten Annotations versehen werden.
Aus diesem Grund spricht man auch von der Programmierung mit
Plain Old Java Objects (POJOs).

27.6 Session-Beans

Die Session-Beans implementieren die Use Cases auf dem Applikations-Server-
Rechner. Session-Beans haben kein Gegenstück in der realen Welt und werden da-
her auch nicht persistent in einer Datenbank gespeichert. Session-Beans können
einen internen Zustand besitzen. In diesem Fall werden sie als Stateful Session-
Bean bezeichnet. Die Session-Bean ohne internen Zustand wird als Stateless
Session-Bean bezeichnet.

Eine grundlegende Neuerung, welche durch die EJB 3.0-Spezifikation Einzug erhält,
ist, dass eine Session-Bean aus einem einfachen Java-Interface, dem so genannten
Business-Interface, und einer einfachen Java-Klasse – der so genannten Bean-
Klasse –, welche dieses Interface implementiert, besteht. Die Implementierung des
Home-Interface, wie es noch bis zur Spezifikation 2.1 vorgeschrieben war, ist nun
nicht mehr notwendig. Ab EJB 3.1 kann auch die Implementierung des Business-
Interface entfallen.

Im Business-Interface einer Session-Bean werden die Methoden-
köpfe eines Use Case deklariert. In anderen Worten, das Business-
Interface enthält das Protokoll des von der Session-Bean implemen-
tierten Use Case. Die Bean-Klasse implementiert dieses Business-
Interface und stellt eine Implementierung der Methodenköpfe bereit.

Zum Zeitpunkt eines Methodenaufrufs kann eine Instanz einer Session-Bean genau
ein Client-Programm bedienen, das sich an die Enterprise-Applikation bindet. Die
Bindung eines Client-Programms erfolgt aber nur über ein automatisch generiertes
Stub-Objekt, welches das Business-Interface einer Session-Bean bereitstellt. Es
erfolgt keine Bindung an eine Session-Bean-Instanz selbst. Das Stub-Objekt dele-
giert die Aufrufe im Falle einer Stateless Session-Bean zu irgendeiner vorhandenen
Session-Bean-Instanz im Container. Im Falle einer Stateful Session-Bean delegiert
das Stub-Objekt die Aufrufe immer zu derselben Session-Bean-Instanz, im Falle
einer Stateless Session-Bean kann jeder Methodenaufruf zu einer anderen Session-
Bean-Instanz gehen.

Enterprise JavaBeans 3.1 1139

Solange ein Client den Dienst einer Instanz einer Session-Bean durch einen Metho-
denaufruf benutzt, kann kein anderer Client den Dienst derselben Instanz in An-
spruch nehmen. Es besteht somit zwischen einem Client und einer Session-Bean-
Instanz zum Zeitpunkt des Methodenaufrufs eine 1-zu-1-Beziehung.

27.6.1 Stateful Session-Bean

Eine Stateful Session-Bean ist zustandsbehaftet und merkt sich einen internen
Zustand über einen Methodenaufruf hinweg. Der Zustand einer Stateful Session-
Bean wird durch die aktuelle Belegung der Datenfelder der Session-Bean-Instanz re-
präsentiert.

Ein Client ist über mehrere Methodenaufrufe hinweg an ein und die-
selbe Stateful Session-Bean gebunden.

Ein Client, welcher mit einer Stateful Session-Bean kommuniziert, ist
solange an diese gebunden, bis er diese selbst zerstört.

Ein Client löst sich von einer Stateful Session-Bean-Instanz, indem er eine Methode
aufruft, die mit der Annotation @javax.ejb.Remove versehen ist. Kehrt der Client
aus diesem Methodenaufruf zurück, so wird der EJB-Container beauftragt, den Client
von der Session-Bean-Instanz zu lösen und diese aus dem Heap zu entfernen.

Weil der Client fest mit einer bestimmten Instanz einer Stateful
Session-Bean im Dialog steht, wird der interne Zustand der Session-
Bean auch als Dialog-Zustand bezeichnet.

27.6.2 Stateless Session-Bean

Eine Stateless Session-Bean ist zustandslos und merkt sich nicht einen internen
Dialog-Zustand. Ruft ein Client eine Methode einer Stateless Session-Bean auf, so
kann für die Dauer des Aufrufs ein Zustand in den Datenfeldern der Session-Bean-
Instanz hinterlegt werden. Nachdem der Client aus dem Methodenaufruf zurückkehrt,
ist dieser temporäre Zustand jedoch wieder verloren.

Ein Client ist nur für die Dauer eines Methodenaufrufs an eine be-
stimmte Instanz einer Stateless Session-Bean gebunden und ist
nach der Inanspruchnahme des Dienstes von ihr gelöst.

Da sich eine Stateless Session-Bean nur über den Zeitraum eines Methodenaufrufs
hinweg einen Zustand merkt, sind alle unbenutzten Instanzen einer Stateless

1140 Kapitel 27

Session-Bean, die denselben Typ haben, identisch. Der EJB-Container kann somit
eine beliebige Instanz einer Stateless Session-Bean aus einem Pool, der Stateless
Session-Beans eines bestimmten Typs enthält, einem beliebigen Client zuweisen.

27.6.3 Singleton Session-Bean

Seit EJB 3.1 können Session-Beans via Annotation als Singleton markiert werden.
Wenn eine Bean mit @Singleton markiert ist, gibt es von dieser Bean nur eine
einzige Instanz, die von allen Clients genutzt wird. Singleton Beans ermöglichen es,
Daten über die gesamte Anwendung hinweg zur Verfügung zu stellen. Der gleich-
zeitige Zugriff auf die Bean kann dabei sowohl vom Container (Container-managed
concurrency, CMC) als auch von der Bean selbst (Bean-managed concurrency,
BMC) kontrolliert werden.

Vor EJB 3.1 konnten Singletons mit EJBs nur realisiert werden, indem über eine
Stateless Session-Bean auf eine normale Singleton Klasse zugegriffen wurde.

27.6.4 Web-Beans

Oft wird für eine EJB-Anwendung ein Web-basierter Client eingesetzt. Dieser Client
wird meist mit Hilfe eines MVC-Frameworks wie JavaServer Faces (JSF) erstellt. Um
aus einem solchen Framework EJB-Komponenten auf einfache Weise benutzen zu
können, wurde in der Java EE 6 Spezifikation eine Möglichkeit geschaffen, um EJBs
an einen Kontext in einem Web-basierten MVC-Framework zu binden. Mit Hilfe der
Spezifikation zu Java Context and Dependency Injection (JSR-299287) ist es zum
Beispiel möglich geworden, speziell im JSF-Framework EJBs direkt als datentragen-
de Beans (Modell) zu verwenden, anstatt EJBs in JSF-Spezifische Managed-Beans
zu injizieren (siehe Kap. 34 auf der beiliegenden CD).

Somit ist eine Vereinfachung der Einbindung der EJB-Technologie in verschiedene
View-Technologien geschaffen worden. Die erwähnte Spezifikation umfasst weitere
Technologien, auf diese wird hier jedoch nicht weiter eingegangen, da sie nicht Teil
des EJB-Standards sind.

27.6.5 Entscheidungskriterien für den Einsatz

Es stellt sich nun die Frage, wann zustandslose und wann zustandsbehaftete
Session-Beans eingesetzt werden sollen. Die folgenden Punkte sind maßgeblich für
diese Entscheidung:

� Zustand

Ist das Merken des Zustands über einen Methodenaufruf hinweg wichtig, so muss
mit Stateful Session-Beans gearbeitet werden. Dies ist beispielsweise bei Waren-
korb-Systemen, Applikationen für Bezahlvorgänge oder Transaktions-Systemen
wichtig.

287 Siehe: http://jcp.org/en/jsr/detail?id=299.

Enterprise JavaBeans 3.1 1141

� Performance der Applikation

Stateless Session-Beans lassen prinzipiell eine höhere Performance als Stateful
Session-Beans zu. Dies rührt daher, dass eine Stateful Session-Bean unter Um-
ständen bei Inaktivität persistent gespeichert wird, um Platz im Arbeitsspeicher zu
schaffen, und vor dem Zugriff eines Clients von dort wieder geladen werden muss.
Dieser Vorgang beansprucht natürlich Rechenleistung und damit auch Zeit.

Ist hingegen für den Aufruf einer Methode ein Zustand nicht erforderlich – ein
Beispiel hierfür wäre die Prüfung einer Kreditkartengültigkeit – so kann diese
Funktionalität auch durch eine Stateless Session-Bean bereitgestellt werden.

� Skalierbarkeit

Mit Stateless Session-Beans lässt sich die Applikation besser skalieren als mit
Stateful Session-Beans. Während eine Stateful Session-Bean für eine Client-
Anwendung vorgehalten wird, bis diese die Stateful Session-Bean zerstört, kann
eine Stateless Session-Bean nach jedem Methodenaufruf eines Clients von jedem
anderen Client wieder verwendet werden. Dies bedeutet, dass eine Applikation mit
einer bestimmten Anzahl an Instanzen von Stateless Session-Beans mehr Clients
bedienen kann als mit derselben Anzahl an Instanzen von Stateful Session-Beans.

Kommuniziert jedoch ein Client mit einer Stateless Session-Bean und muss bei
jedem Methodenaufruf eine erhebliche Menge an Zustandsdaten übertragen, so
ist der Einsatz einer Stateful Session-Bean, welche diese Information in ihrem
Kontext hinterlegen kann, die bessere Alternative.

27.6.6 Business-Interface

Eine Session-Bean kann von einer Client-Applikation auf dem Client-Rechner oder
von einem Servlet im Web-Container aufgerufen werden. Dieser Aufruf geschieht
über die Schnittstelle des Business-Interface. Ab EJB 3.1 muss das Business-
Interface nicht mehr zwingend implementiert werden.

Wird eine Session-Bean von einem Client-Programm auf dem Client-
Rechner aufgerufen oder allgemein aus einer anderen virtuellen Ma-
schine heraus, so muss das Business-Interface als Remote deklariert
werden.

Eine Session-Bean kann auch von einer anderen Session-Bean aufgerufen werden.
Dies ist der Fall, wenn ein Use Case einen anderen Use Case inkludiert oder wenn
es optionale Erweiterungen eines Use Case gibt.

Wird eine Session-Bean von einem Client-Programm in derselben vir-
tuellen Maschine heraus aufgerufen, so soll das Business-Interface
aus Performance-Gründen als Local deklariert werden.

1142 Kapitel 27

Das Business-Interface bildet die Schnittstelle der EJB zur Außenwelt. Es sind dort
alle Köpfe der Methoden eines Use Case deklariert, welche vom Client aufgerufen
werden können. Ein Client erhält immer eine Referenz auf ein Objekt vom Typ des
Business-Interface. Das Business-Interface kann als Remote-Interface markiert
sein. Es wird dafür die Annotation @javax.ejb.Remote verwendet. Ein Client,
der mit einer Instanz einer Session-Bean kommuniziert, deren Klasse ein Remote-
Interface implementiert, ist folgendermaßen charakterisiert:

� Er kann sich auf einem anderen Rechner befinden und in einer eigenen virtuellen
Maschine laufen. Dies ist jedoch nicht zwingend vorgeschrieben. Er kann sich
auch in derselben virtuellen Maschine befinden wie die Session-Bean, deren
Dienstleistung er in Anspruch nimmt.

� Der Client kann eine Web-Komponente wie z. B. ein Servlet, eine eigenständige
Java-Applikation oder selbst eine EJB sein.

� Es ist für den entfernten Client egal, wo sich die Session-Bean befindet. Er erhält
eine Remote-Referenz (siehe Kap. 25) auf die gewünschte Session-Bean-Instanz
und muss dabei nicht wissen, wo sich diese Instanz tatsächlich befindet. Der
Client arbeitet mit der Session-Bean-Instanz genau so, als wäre sie in derselben
virtuellen Maschine vorhanden.

� Ruft ein Client eine Methode der Remote-Schnittstelle einer Session-Bean auf und
übergibt dieser Methode Referenzen auf Objekte, so müssen diese Objekte
serialisierbar sein, weil der Methodenaufruf stets als call by value (siehe Kap.
9.2.4) erfolgt. Das ist logisch, da die Übergabe einer Referenz nur innerhalb
derselben virtuellen Maschine möglich ist.

Sollen die Grenzen einer virtuellen Maschine überschritten werden, so
funktioniert dies nur mit einem Call-by-Value-Aufruf, was eine auf-
wändige Serialisierung und Deserialisierung zur Folge hat.

Die Geschäftsmethoden können nach Belieben selbst definierte Exceptions werfen.
In diesem Fall muss die Deklaration einer Geschäftsmethode um die entsprechende
throws-Klausel erweitert werden.

Im Folgenden wird die Implementierung des Remote-Business-Interface einer State-
less Session-Bean vorgestellt. Die Session-Bean soll es dem Client ermöglichen,
zwei Zahlen zu addieren, voneinander zu subtrahieren, miteinander zu multiplizieren
oder diese durcheinander zu dividieren. Die Methode dividiere() wirft die selbst-
definierte Exception RechnerException. Hier die Klasse RechnerException:

// Datei: RechnerException.java

package rechner.hilfsklassen;

// Eine selbstdefinierte Exception, die von einer Session-Bean an
// den Aufrufer geworfen werden soll, muss serialisierbar sein.
// Die Klasse java.lang.Exception implementiert das Serializable-
// Interface. Somit sind alle von ihr abgeleiteten Klassen ebenfalls
// serialisierbar.
public class RechnerException extends Exception
{

Enterprise JavaBeans 3.1 1143

 public RechnerException (String message)
 {
 super (message);
 }
}

Und nun die Schnittstelle RechnerRemote:

// Datei: RechnerRemote.java

package rechner.beans;
import rechner.hilfsklassen.*;

// Es wird der Code der Annotation javax.ejb.Remote importiert.
import javax.ejb.Remote;

// Durch diese Annotation wird das Interface RechnerRemote
// zum Remote-Interface. Das bedeutet, dass die darin deklarierten
// Methodenköpfe über die Grenzen einer virtuellen Maschine
// hinweg aufgerufen werden können.
@Remote

public interface RechnerRemote
{
 // Die Methode addiere() addiert die Werte
 // von zahl1 und zahl2 und liefert das Ergebnis zurück.
 public int addiere (int zahl1, int zahl2);

 // Die Methode subtrahiere() zieht den Wert von zahl2 vom Wert
 // der zahl1 ab und liefert das Ergebnis zurück.
 public int subtrahiere (int zahl1, int zahl2);

 // zahl1 und zahl2 werden miteinander multipliziert und das
 // Ergebnis zurückgeliefert.
 public int multipliziere (int zahl1, int zahl2);
 // Diese Methode dividiert zahl1 durch zahl2 und liefert das
 // Ergebnis als double-Zahl zurück. Hat zahl2 den Wert 0, so
 // soll eine Exception vom Typ RechnerException geworfen werden.
 public double dividiere (int zahl1, int zahl2)
 throws RechnerException;
}

Das Business-Interface kann aber auch als lokales Interface markiert sein. Für
diesen Zweck wird die Annotation @javax.ejb.Local verwendet. Kommuniziert
ein Client mit einer Session-Bean-Instanz, deren Klasse ein lokales Business-Inter-
face implementiert, muss der Client die folgenden Eigenschaften erfüllen:

� Der Client muss in derselben virtuellen Maschine laufen wie die Instanz der
Session-Bean selbst, mit der er kommuniziert.

� Der Client kann selbst eine EJB sein oder ein Servlet darstellen.
� Der Ort der Session-Bean ist für den Client nicht transparent.
� Der Aufruf einer Methode des lokalen Business-Interface erfolgt stets als call by

reference. Das heißt, die Session-Bean-Instanz arbeitet mit dem Objekt, dessen
Referenz bei einem Methodenaufruf übergeben wird.

1144 Kapitel 27

Soll das Business-Interface als lokales Interface markiert werden, so lautet die De-
finition der Schnittstelle wie folgt:

package rechner.beans;

import rechner.hilfsklassen.*;
import javax.ejb.Local;

@Local

// Am Namen sollte zu erkennen sein, ob es
// sich um ein lokales Interface handelt.
public interface RechnerLocal
{
 // Der Rest ist identisch zum obigen Beispiel
}

Die Entscheidung, ob eine Session-Bean ein lokales oder ein Remote-Interface be-
reitstellt, hängt von mehreren Gesichtspunkten ab:

� Wenn eine Session-Bean ausschließlich von einer anderen Session-Bean, die
sich in derselben virtuellen Maschine befindet, verwendet wird, so soll die verwen-
dete Session-Bean nur ein Local-Interface bereitstellen. Ein Zugriff auf eine
Session-Bean-Instanz über ein Remote-Interface erfordert stets einen höheren
Aufwand und sollte daher immer vermieden werden, wenn der Zugriff über ein
Local-Interface möglich ist. Der erhöhte Aufwand kommt daher, dass beim Aufruf
von Methoden eines Remote Business-Interface dieser Aufruf als call by value
ausgeführt wird und somit die Objekte, deren Referenzen übergeben wurden, zu-
erst serialisiert werden müssen, was Zeit und Rechenleistung beansprucht.

� Es hängt auch grundsätzlich von der Architektur der Enterprise-Applikation ab, ob
die Session-Beans entfernte oder lokale Schnittstellen bereitstellen. Sind die EJBs
über mehrere Server verteilt und stehen untereinander im Zusammenhang, so
müssen die verwendeten Session-Beans natürlich Remote-Schnittstellen anbie-
ten. Durch die Verteilung der Enterprise-Applikation erreicht man auch eine Vertei-
lung der Last. Bedacht werden muss hierbei jedoch, dass die dadurch resultie-
renden entfernten Methodenaufrufe mehr Ressourcen und damit mehr Zeit bean-
spruchen.

� Eine Session-Bean kann aber durchaus ein Local- und ein Remote-Interface
gleichzeitig implementieren. So ist der Zugriff auf diese Session-Bean innerhalb
derselben virtuellen Maschine über die lokale Schnittstelle und von außerhalb –
also aus einer anderen virtuellen Maschine heraus – über die entfernte Schnitt-
stelle möglich.

27.6.7 Bean-Klasse

Die Bean-Klasse implementiert nun alle Geschäftsmethoden, deren Methoden-
köpfe im Business-Interface deklariert sind. Die Bean-Klasse stellt also die konkrete
Implementierung der Geschäftslogik dar. Sie kann weiterhin Hilfsklassen verwen-
den, welche für die Implementierung benötigt werden. Die Hilfsklassen müssen keine
Enterprise JavaBeans sein, sondern können einfache Java-Klassen darstellen, bei-
spielsweise eine geworfene Exception.

Enterprise JavaBeans 3.1 1145

Ob eine Session-Bean zustandsbehaftet oder zustandslos ist, wird durch eine ent-
sprechende Annotation bei der Bean-Klasse festgelegt.

Soll eine Stateful Session-Bean implementiert werden, so muss der
Bean-Klasse die Annotation @javax.ejb.Stateful angefügt
werden. Wird sie mit @javax.ejb.Stateless annotiert, so ist die
Bean-Klasse zustandslos.

Es folgt nun eine beispielhafte Implementierung der Bean-Klasse RechnerBean, die
eine Stateless Session-Bean darstellt, mit dem bereits vorgestellten Remote Busi-
ness-Interface RechnerRemote:

// Datei: RechnerBean.java

package rechner.beans;
import rechner.hilfsklassen.*;
import javax.ejb.Stateless;

// Die Annotation @Stateless dekoriert die Bean-Klasse
// und gibt an, dass sie die Implementierung einer
// zustandslosen Session-Bean darstellt.
@Stateless

// Die Bean-Klasse muss lediglich das Business-
// Interface RechnerRemote implementieren.
public class RechnerBean implements RechnerRemote
{
 // Es folgen nun die Implementierungen der einzelnen Methoden.
 // Zur Vereinfachung der Implementierung soll nicht überprüft
 // werden, ob der gültige Zahlenbereich von int durch die
 // Operation überschritten wird.

 public int addiere (int zahl1, int zahl2)
 {
 return zahl1 + zahl2;
 }

 public int subtrahiere (int zahl1, int zahl2)
 {
 return zahl1 - zahl2;
 }

 public int multipliziere (int zahl1, int zahl2)
 {
 return zahl1 * zahl2;
 }

 public double dividiere (int zahl1, int zahl2)
 throws RechnerException
 {
 // Diese Überprüfung verstößt eigentlich gegen die Vor-
 // schriften des Design by Contract. Danach hat der
 // Aufrufer die Pflicht, zu überprüfen, ob die übergebenen
 // Zahlenwerte im gültigen Bereich liegen. Es soll hier jedoch

1146 Kapitel 27

 // nur veranschaulicht werden, dass eine Session-Bean eine
 // Exception an den Aufrufer werfen kann.
 if (zahl2 == 0)
 {
 throw new RechnerException ("zahl2 hat den Wert 0!");
 }
 return (double) zahl1 / (double) zahl2;
 }
}

Die EJB 3.0-Spezifikation schreibt keine Namenskonvention vor, wie ein Business-
Interface und eine Bean-Klasse benannt werden soll. Trotzdem ist es sinnvoll, die
folgende Vereinbarung zu befolgen:

� Die Bean-Klasse soll der Namenskonvention <Bezeichnung>Bean entsprechen.
Beispielsweise könnte eine Bean-Klasse RechnerBean288 heißen.

� Das Business-Interface der Session-Bean soll der Vorschrift <Bezeichnung>-
Remote für das Remote Business-Interface bzw. <Bezeichnung>Local für das
lokale Business-Interface entsprechen. Ein geeigneter Name eines Remote Busi-
ness-Interface ist beispielsweise RechnerRemote.

27.6.8 Client-Applikation

Nachdem nun alle Bestandteile einer Session-Bean – das Business-Interface und die
Bean-Klasse – vorgestellt sind, kann eine einfache Client-Applikation für die oben
definierte Session-Bean implementiert werden. Wie schon vorweggenommen, kann
der Client eine eigenständige Java-Applikation, eine Web-Applikation – beispiels-
weise ein Servlet – oder selbst eine EJB sein. Im Folgenden wird eine kleine,
eigenständige Java-Applikation implementiert, die sich auf einem entfernten Rechner
befindet und den Dienst der Stateless Session-Bean in Anspruch nimmt.

Um mit der EJB arbeiten zu können, muss sich der Client eine Referenz auf die
Session-Bean beschaffen. Diese Referenz bekommt er mit Hilfe eines JNDI Lookup.

// Datei: RemoteRechnerClient.java

package rechner.client;

import rechner.beans.*;
import rechner.hilfsklassen.*;
import javax.naming.InitialContext;

public class RemoteRechnerClient
{
 public static void main (String[] args)
 {
 try
 {
 InitialContext ctx = new InitialContext();

 // Die Stateless Session-Bean ist unter dem JNDI-
 // Namen Rechner/RechnerBean/remote gebunden.

288 Natürlich muss die Quelldatei dann den Namen RechnerBean.java tragen.

Enterprise JavaBeans 3.1 1147

 RechnerRemote rechner = (RechnerRemote)
 ctx.lookup ("Rechner/RechnerBean/remote");

 int zahl1 = 5;
 int zahl2 = 3;
 int intErgebnis = 0;
 double doubleErgebnis = 0.0;

 intErgebnis = rechner.addiere (zahl1, zahl2);
 System.out.println(
 "addiere (" + zahl1 + ", " + zahl2 + ") = " +
 intErgebnis);

 intErgebnis = rechner.subtrahiere (zahl1, zahl2);
 System.out.println(
 "subtrahiere (" + zahl1 + ", " + zahl2 + ") = " +
 intErgebnis);

 intErgebnis = rechner.multipliziere (zahl1, zahl2);
 System.out.println(
 "multipliziere (" + zahl1 + ", " + zahl2 + ") = " +
 intErgebnis);

 doubleErgebnis = rechner.dividiere (zahl1, zahl2);
 System.out.println(
 "dividiere (" + zahl1 + ", " + zahl2 + ") = " +
 doubleErgebnis);

 zahl2 = 0;
 doubleErgebnis = rechner.dividiere (zahl1, zahl2);
 }
 catch (RechnerException e)
 {
 System.err.println ("RechnerException: " + e.getMessage());
 }
 catch (Exception e)
 {
 System.err.println("Exception unbekannt: "+e.getMessage());
 }
 }
}

27.7 Der Applikations-Server JBoss

Um die EJB aus dem vorangegangenen Beispiel verwenden zu können, muss ein
Applikations-Server mit einem EJB-Container vorhanden sein, welcher mindestens
der EJB 3.0-Spezifikation entspricht. Ein solcher EJB-Container ist im Applikations-
Server JBoss implementiert. JBoss unterstützt in der aktuellen Version 5.1 die EJB
3.0-Spezifikation und wird in der kommenden Version EJB 3.1 unterstützen.

Der Applikations-Server JBoss stellt eine Laufzeitumgebung für Enter-
prise JavaBeans in Form eines EJB-Containers zur Verfügung und
stellt somit einen EJB-Server dar.

1148 Kapitel 27

JBoss ist ein freier Applikations-Server und steht im Internet als Open-Source-Projekt
zum Download unter:

http://jboss.org/jbossas/downloads.html

zur Verfügung.

27.7.1 Installationsprozess

Die benötigte Installationsdatei jboss_51.zip für den JBoss Applikations-Server in
der Version 5.1 befindet sich auf der dem Buch beigefügten CD. Für die Installation
müssen ca. 160 MB an freiem Speicherplatz zur Verfügung stehen.

Für die Installation wird das JDK mindestens in der Version 5.0 benö-
tigt.

JBoss verwendet keine Installationsroutine. Es muss die Datei jboss_51.zip ent-
packt werden. Hierzu kann ein Archivierungsprogramm verwendet werden. Eine wie-
tere Möglichkeit zum Entpacken ist das beim JDK enthaltene Tool jar, das mit dem
folgenden Befehl JBoss entpacken kann:

jar –xvf jboss_51.zip

Entpacken Sie JBoss unter Windows in das Verzeichnis C:\Programme\jboss. Es
muss weiterhin die Umgebungsvariable JAVA_HOME auf das Installationsverzeichnis
des JDK 6.0 – unter Windows beispielsweise C:\Programme\Java\jdk1.6.0_21
– gesetzt werden (siehe hierzu Kap. 3.5.1). Zusätzlich muss die Umgebungsvariable
JBOSS_HOME auf das Installationsverzeichnis von JBoss gesetzt werden. Nach der
erfolgreich durchgeführten Installation befindet sich nun im Verzeichnis C:\Pro-
gramme\ das Verzeichnis jboss\ und darin das Verzeichnis bin\. Das bin-Ver-
zeichnis enthält alle Dateien, die für das Starten und Stoppen des JBoss benötigt
werden. Auf einem Windows-System kann nun durch einen Doppelklick auf die Datei
run.bat289 der Applikations-Server gestartet werden. Es öffnet sich daraufhin ein
neues Kommandozeilenfenster – die so genannte Server-Konsole –, in dem Infor-
mationen über den Server-Startvorgang ausgegeben werden.

Es dürfen während des Startvorgangs keine Exceptions in der Server-
Konsole ausgegeben werden. Werden Exceptions geworfen, so kön-
nen unter anderem folgende Gründe dafür vorliegen:

� Der Applikations-Server ist nicht richtig installiert und muss erneut
installiert werden.

� Es wird nicht die vorgeschriebene JDK-Version verwendet.
� Eine Firewall sperrt möglicherweise Ports, die der Applikations-Ser-

ver für die Kommunikation verwendet.

289 Auf einem LINUX- oder MAC-System muss die Datei run.sh in einem Kommandozeilenfenster

ausgeführt werden.

Vorsicht!

Vorsicht!

Enterprise JavaBeans 3.1 1149

27.7.2 Kompilieren der Quelldateien

Die Quelldateien der EJB-Applikation Rechner sind in einem Arbeitsverzeichnis –
beispielsweise C:\work – unter der in Bild 27-6 gezeigten Verzeichnisstruktur ab-
gelegt.

Bild 27-6 Verzeichnisstruktur für die Rechner-EJB im Arbeitsverzeichnis C:\work

Dabei besteht die folgende Zuordnung:

� Die Quelldateien der Rechner-EJB, d. h. RechnerRemote.java und Rechner-
Bean.java, liegen im Verzeichnis rechner\beans,

� die Quelldatei des Clients RemoteRechnerClient.java befindet sich im Ver-
zeichnis rechner\client

� und die Quelldatei der benötigten Hilfsklasse RechnerException.java ist im
Verzeichnis rechner\hilfsklassen abgelegt.

Zum Kompilieren der Quelldateien und zum Ausführen der Client-An-
wendung wird mindestens das JDK 5.0 benötigt. Es muss somit
sichergestellt sein, dass der Aufruf von

javac –version

bzw.

java –version

jeweils als Versionsnummer mindestens 1.5.0_xx ausgibt.

Die Klassen können nun in einem Kommandozeilenfenster – wie unten gezeigt –
übersetzt werden290. Bitte beachten Sie, dass in den folgenden Compiler- bzw. Inter-
preteraufrufen der Platzhalter <JAVA_HOME> durch den Pfad zum Installationsver-
zeichnis des JDK 5.0 oder höher und der Platzhalter <JBOSS_HOME> durch
C:\Programme\jboss ersetzt werden muss. Hier nun die einzelnen Schritte:

� Übersetzung der Hilfsklasse

Als erstes muss die Hilfsklasse RechnerException mit einem einfachen Com-
pileraufruf übersetzt werden:

 <JAVA_HOME>\bin\javac rechner\hilfsklassen*.java

290 Das aktuelle Arbeitsverzeichnis muss hierbei das Verzeichnis C:\work sein.

Vorsicht!

1150 Kapitel 27

� Übersetzung der EJBs

Die EJB-Klassen verwenden Bytecode der EJB 3.0-API, der nicht im JDK der Java
Standard Edition enthalten ist.

Die Klassen der EJB 3.0-API sind Bestandteil der Java Enterprise
Edition und müssen somit beim Übersetzen dem Compiler bekannt
gemacht werden.

Unter dem Installationsverzeichnis des JBoss sind die Klassen der EJB 3.0-API in
der Datei client\jboss-javaee.jar enthalten. Somit können die Quellda-
teien durch folgenden Compileraufruf übersetzt werden:

 <JAVA_HOME>\bin\javac
 -cp <JBOSS_HOME>\client\jboss-javaee.jar
 rechner\beans*.java

Der Schalter cp fügt beim Compileraufruf die danach folgenden jar-Dateien tem-
porär – das heißt nur für die Dauer des Compileraufrufs – dem CLASSPATH hinzu.
Somit ist der Code, der in der jar-Datei jboss-javaee.jar enthalten ist, beim
Kompilieren dem Compiler bekannt und kann bei der Übersetzung der Quellda-
teien der Rechner-EJB herangezogen werden.

� Übersetzung des Clients

Auch der Client verwendet Bytecode, der Bestandteil der EJB 3.0-API ist. Somit
erfolgt die Übersetzung der Client-Klasse RemoteRechnerClient durch den
Aufruf:

 <JAVA_HOME>\bin\javac
 -cp <JBOSS_HOME>\client\jboss-javaee.jar;
 rechner\client\RemoteRechnerClient.java

27.7.3 Deployment-Prozess

Durch das Deployment wird die Enterprise-Applikation auf dem Applikations-Server
installiert. Wenn dieser Prozess erfolgreich abgeschlossen wurde, kann ein Client
den Dienst der Enterprise-Applikation in Anspruch nehmen.

Das Deployment kann unter der Verwendung einer so genannten ear291-Datei
durchgeführt werden. Eine ear-Datei ist nichts anderes als eine jar292-Datei, welche
anstatt der Endung jar die Endung ear trägt – beispielsweise Rechner.ear. Sie
beinhaltet dabei die folgenden Komponenten:

� Eine jar-Datei, welche die kompilierten Bytecode-Dateien der Enterprise Java-
Bean enthält – für die Rechner-EJB also die Dateien RechnerRemote.class
und RechnerBean.class. Im obigen Beispiel befinden sich diese Dateien im

291 Abkürzung für Enterprise Archive
292 Abkürzung für Java Archiv.

Enterprise JavaBeans 3.1 1151

Verzeichnis rechner\beans\. Somit müssen die Bytecode-Dateien in der jar-
Datei unter dem Namen \rechner\beans\RechnerRemote.class bzw.
rechner\beans\RechnerBean.class abgelegt werden. Ein möglicher Name
der jar-Datei könnte beans.jar lauten.

 Nach dem Aufruf des Kommandos

 <JAVA_HOME>\bin\jar -cf beans.jar rechner\beans*.class

befindet sich im Arbeitsverzeichnis C:\works die Datei beans.jar, welche die
benötigten Bytecode-Dateien der Rechner-EJB enthält. Die Schalter c und f –
diese können direkt hintereinander angeschrieben werden, also cf – sind Schalter
des Programms jar, das Bestandteil des JDK ist. Mit dem Schalter c wird an-
gegeben, dass ein neues Archiv erstellt werden soll. Über den Schalter f wird der
Name des zu erstellenden Archivs angegeben, dessen Name direkt nach dem
Schalter f erwartet wird – in diesem Fall also das Archiv beans.jar. Danach
werden – durch Leerzeichen getrennt – alle Dateien angegeben, die dem Archiv
hinzugefügt werden sollen – in diesem Falle also alle class-Dateien, die sich im
Verzeichnis rechner\beans befinden.

� Die Session-Bean RechnerBean verwendet die Hilfsdatei RechnerException,

deren Bytecode somit auch auf dem Applikation-Server vorhanden sein muss.
Eine Möglichkeit wäre, die class-Datei der Klasse RechnerException eben-
falls im Archiv beans.jar abzulegen, wobei es bei diesem kleinen Demo-Pro-
gramm keinen großen Unterschied macht, ob eine weitere class-Datei im
beans.jar-Archiv liegt. Sobald jedoch die Enterprise-Applikation sich aus mehre-
ren EJBs und mehreren Hilfsklassen zusammensetzt, macht es Sinn, eine logi-
sche Struktur in die Verteilung der class-Dateien hineinzubringen. Dafür emp-
fiehlt es sich, die verwendeten Hilfsdateien in ein separates jar-Archiv zu
packen – beispielsweise mit dem Namen hilfsklassen.jar – und dem ear-
Archiv mit hinzuzufügen. Die class-Datei der Klasse RechnerException befin-
det sich im Verzeichnis rechner\hilfsklassen\ und kann mit folgendem
Aufruf in einem neuen jar-Archiv verpackt werden:

 <JAVA_HOME>\bin\jar -cf hilfsklassen.jar
 rechner\hilfsklassen*.class

Nach dem Kommandoaufruf befindet sich ebenfalls im Arbeitsverzeichnis
C:\work die Datei hilfsklassen.jar.

� Weiterhin muss sich im ear-Archiv ein Ordner mit Namen META-INF befinden. In

diesem Ordner werden Dateien abgelegt, die beschreibende Informationen über
die zu installierende Enterprise-Applikation bereithalten. Der Ordner muss mindes-
tens den so genannten Deployment-Deskriptor für Enterprise-Applikationen
application.xml enthalten. Durch den Deployment-Deskriptor für Enterprise-
Applikationen wird beschrieben, aus welchen Archiven die Enterprise-Applikation
zusammensetzt ist – im oben beschriebenen Beispiel aus den zwei Archiven
beans.jar und hilfsklassen.jar. Eine gültige application.xml für das
Rechner-Beispiel sieht folgendermaßen aus:

1152 Kapitel 27

<?xml version="1.0" encoding="UTF-8"?>
<application version="5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/application_5.xsd">

 <!-- display-name gibt den Namen -->
 <!-- der Enterprise-Applikation an.-->
 <display-name>Rechner</display-name>
 <!-- Mit dem Element module werden die einzelnen Archive -->
 <!-- dem Applikations-Server bekannt gemacht. -->
 <module>
 <!-- Das Element ejb beschreibt, dass das Archiv beans.jar -->
 <!-- den Bytecode der Enterprise JavaBeans enthaelt. -->
 <ejb>beans.jar</ejb>
 </module>

 <module>
 <!-- Mit dem Element java werden gewoehnliche Java-Archive -->
 <!-- dem Applikations-Server bekannt gemacht. -->
 <!-- hilfsklassen.jar ist damit im CLASSPATH von beans.jar -->
 <!-- vorhanden. -->
 <java>hilfsklassen.jar</java>
 </module>
</application>

Innerhalb des Arbeitsverzeichnisses wird nun ein weiteres Verzeichnis META-INF
angelegt, in dem die Datei application.xml abgelegt wird (siehe Bild 27-7).

Bild 27-7 Arbeitsverzeichnis mit META-INF-Verzeichnis

Wenn zusätzlich eine Web-Applikation als Client für die Enterprise-Applikation im
ear-Archiv mit ausgeliefert werden soll, so reicht es, diese Applikation in ihrem war-
Archiv mit in das ear-Archiv aufzunehmen. Der Deployment-Deskriptor applica-
tion.xml muss erweitert werden, damit die Web-Applikation vom Applikations-Ser-
ver gefunden wird. Die Erweiterung sieht für eine beispielhafte Web-Applikation im
Archiv webtest.war folgendermaßen aus:

<module>
 <web>
 <!-- Dieses Element gibt den Namen des Archivs der -->
 <!-- Web-Applikation an -->
 <web-uri>webtest.war</web-uri>
 <!-- Mit diesem Element setzt man die relative URL, -->
 <!-- unter der die Web-Applikation erreichbar sein soll. -->
 <context-root>/webtest</context-root>
 </web>
</module>

Enterprise JavaBeans 3.1 1153

Ab EJB 3.1 ist es möglich für einfache Projekte, die eine Web-Applikation als Client
einsetzen, auch eine vereinfachte ear-Struktur zu verwenden. Die EJB class-Datei-
en können bei dieser Struktur direkt in das Unterverzeichnis WEB-INF\classes
oder in ein jar-Archiv im Verzeichnis META-INF\lib des war-Archivs hinterlegt
werden. In diesem Fall kann ein war-Archiv nur einen einzigen EJB Deployment-
Deskriptor ejb-jar.xml enthalten, der im Verzeichnis WEB-INF\ejb-jar.xml
abgelegt wird. Eine andere Möglichkeit ist es, diesen Deskriptor innerhalb eines jar-
Archivs im Verzeichnis META-INF\ejb-jar.xml zu speichern und das jar-Archiv
dann im Verzeichnis WEB-INF\lib im war-Archiv zu hinterlegen.

Im Arbeitsverzeichnis sind nun alle benötigten Informationen – die beiden Archive
beans.jar und hilfsklassen.jar und der Deployment-Deskriptor für Enter-
prise-Applikationen application.xml – hinterlegt, welche für die Erstellung des
Enterprise-Archivs Rechner.ear benötigt werden. Die Datei Rechner.ear wird
nun durch folgenden Aufruf erstellt:

 <JAVA_HOME>\bin\jar -cf Rechner.ear
 beans.jar hilfsklassen.jar META-INF*.xml

Nach diesem Aufruf ist im Arbeitsverzeichnis die Datei Rechner.ear hinterlegt.

Nun beginnt der eigentliche Deployment-Prozess. Dazu muss ins Installationsver-
zeichnis des JBoss gewechselt werden, wo folgende Verzeichnisstruktur vorgefun-
den wird:

Bild 27-8 Verzeichnisstruktur im Arbeitsverzeichnis des JBoss

Wird nun die Datei Rechner.ear in den Ordner deploy hineinkopiert, so wird damit
die darin enthaltene Enterprise-Applikation im Applikations-Server JBoss installiert –
sie wird also "deployt". In der Server-Konsole muss nach einem erfolgreichen De-
ployment folgende Ausgabe zu sehen sein:

1154 Kapitel 27

 Die Ausgabe des Servers ist:

[EARDeployer] Init J2EE application:
 file:/C:/Programme/jboss/server/default/deploy/Rechner.ear
.
[JmxKernelAbstraction] installing MBean:
 jboss.j2ee:ear=Rechner.ear,jar=beans.jar,
 name=RechnerBean,service=EJB3 with dependencies
[EJBContainer] STARTED EJB: rechner.beans.RechnerBean ejbName:
 RechnerBean
[EJB3Deployer] Deployed:
 file:/C:/Programme/jboss/server/default/tmp/
 deploy/tmp9221Rechner.ear-contents/beans.jar
[EARDeployer] Started J2EE application:
 file:/C:/Programme/jboss/server/default/deploy/Rechner.ear

Der Applikations-Server entpackt hierbei das ear-Archiv, wertet die Datei applica-
tion.xml aus und bindet die enthaltene Stateless Session-Bean RechnerBean im
JNDI-Namensraum an einen eindeutigen oder mehrere eindeutige Namen. Binden
bedeutet, dass über den Applikations-Server unter Angabe eines eindeutigen Na-
mens eine Referenz auf eine Instanz einer Stateless Session-Bean abgefragt werden
kann. Es findet also eine so genannte Name-Objekt-Bindung293 statt. Dabei vergibt
der Applikations-Server die JNDI-Namen nach folgendem Schema:

� Eine Session-Bean, deren Klasse ein lokales Business-Interface implementiert,
wird unter dem JNDI-Namen:

 <Name ear-Datei>/<Name Bean-Klasse>/local

 gebunden.

� Der JNDI-Name einer Session-Bean, deren Klasse ein Remote Business-Interface

implementiert, lautet:

 <Name ear-Datei>/<Name Bean-Klasse>/remote

� Eine Session-Bean, deren Klasse beide Schnittstellen – sowohl das lokale als

auch das Remote Business-Interface – implementiert, wird unter beiden JNDI-Na-
men im Namensraum des JNDI-Servers gebunden.

Nach dem Deployment der Session-Bean aus dem obigen Beispiel kann somit unter
Angabe des Namens

Rechner/RechnerBean/remote

eine Referenz auf eine Instanz294 der Stateless Session-Bean abgefragt werden.

293 Siehe Anhang D "JNDI".
294 Genauer gesagt wird zum Client ein so genanntes Stub-Objekt – also ein Stellvertreter –

übertragen. Das eigentliche Objekt, mit dem der Client kommuniziert, befindet sich auf dem EJB-
Server. Der Client kommuniziert also mit einem entfernten Objekt – einem Remote-Objekt. Das
Stub-Objekt kapselt dabei nur die Kommunikationslogik, die benötigt wird, damit ein Client die
Methoden des Stateless Session-Bean-Objektes remote – also über ein Netzwerk – aufrufen kann.
Siehe auch Kap. 25.

Enterprise JavaBeans 3.1 1155

Ab EJB 3.1 werden standardisierte, globale JNDI-Namen verwendet. Dies hat den
Vorteil, dass die Namen unabhängig vom eingesetzten Applikations-Server stets
gleich sind. Diese standardisierten Namen werden nach folgendem Schema gebildet:

java:global[/<Anwendungs-Name>]/<Module-Name>/<Name Bean-
Klasse>#<Interface-Name>

27.7.4 Starten des Clients

Die Client-Anwendung führt zum Auffinden des Session-Bean-Objektes einen so
genannten JNDI Lookup durch. JNDI Lookup bedeutet, dass unter Angabe des
JNDI-Namens dem Client eine Referenz auf das gesuchte Objekt – bzw. einen Stell-
vertreter davon – vom JNDI-Server zurückgeliefert wird. Der JNDI Lookup wird mit
der Methode lookup() der Klasse InitialContext durchgeführt. So beschafft
man sich eine Referenz auf beispielsweise ein RechnerBean-Objekt wie folgt:

InitialContext ctx = new InitialContext();
RechnerRemote rechner =
 (RechnerRemote) ctx.lookup ("Rechner/RechnerBean/remote");

Es wird vorausgesetzt, dass die Datei jndi.properties im Arbeitsverzeichnis
vorhanden ist. Dort wird unter anderem definiert, wo sich der JNDI-Server befindet:

// Datei: jndi.properties

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Eine ausführliche Erklärung der Funktionsweise von JNDI kann im Anhang D nach-
gelesen werden. Der virtuellen Maschine, in welcher die Client-Applikation ablaufen
soll, müssen nun mehrere jar-Dateien über den CLASSPATH-Schalter cp überge-
ben werden. Der gesamte Aufruf sieht nun folgendermaßen aus:

<JAVA_HOME>\bin\java
 -cp <JBOSS_HOME>\client\jbossall-client.jar;
 <JBOSS_HOME>\client\jnp-client.jar;
 .\rechner\hilfsklassen*;
 rechner.client.RemoteRechnerClient

Die Ausgabe des Programms ist:

addiere (5, 3) = 8
subtrahiere (5, 3) = 2
multipliziere (5, 3) = 15
dividiere (5, 3) = 1.6666666666666667
RechnerException: zahl2 hat den Wert 0!

1156 Kapitel 27

27.8 Java Persistence-API

Ein Entwickler von Java-Anwendungen, deren Daten in einer Datenbank gespeichert
werden sollen, steht vor der Herausforderung, dass die Daten in zweierlei Strukturen
verwaltet werden müssen:

� Zum einen werden die Daten innerhalb der Applikation durch reine Java-Objekte
repräsentiert. Die Daten befinden sich hier in einer objektorientierten Welt. Die
Objekte werden im Heap der virtuellen Maschine der Anwendung abgelegt und
können direkt im Arbeitsspeicher verarbeitet und manipuliert werden. Nach Been-
digung der virtuellen Maschine – gewollt durch Beenden der Applikation oder
durch Neustarten des Servers oder ungewollt durch einen Absturz der Anwen-
dung – gehen die Daten innerhalb der virtuellen Maschine verloren.

� Sollen die erfassten Daten persistent – das heißt über die Lebensdauer der vir-
tuellen Maschine hinweg – in einer relationalen Datenbank295 abgespeichert wer-
den, so muss ein relationales Datenmodell einer Datenbank erstellt werden, in das
die Java-Objektwelt abgebildet werden kann. Die Daten sollen also in eine relatio-
nale Welt überführt werden. Innerhalb des Modells müssen Tabellen modelliert
werden, die es erlauben, die Java-Objekte darauf abbilden zu können.

Zwischen der objektorientierten Welt – es wird dort mit Objekten und Referenzen auf
Objekte gearbeitet – und der relationalen Welt – es wird dort mit Tabellen und
Beziehungen zwischen diesen Tabellen gearbeitet – besteht jedoch eine Lücke, die
es zu füllen gilt. Diese Lücke wird als das so genannte object relational gap
bezeichnet. Der Programmierer steht vor dem Problem, dass die Attribute eines
Objektes auf die Spalten einer Tabelle abgebildet werden müssen. Stellt man sich
vor, dass ein zu speicherndes Objekt aus sehr vielen Attributen besteht und diese
Attribute wiederum Referenzen auf andere Objekte darstellen, wird die Persistenz
der Daten schnell zu einem nicht zu vernachlässigenden Problem.

Ein Beispiel hierfür wäre, dass ein Kunde einer Bank Zugriff auf mehrere Konten hat.
In der objektorientierten Welt gibt es eine Klasse Kunde und eine Klasse Konto,
wobei die Klasse Kunde eine Referenz auf die Klasse Konto hat. Werden für einen
neu erfassten Kunden – es wird dafür ein Objekt vom Typ Kunde benötigt – mehrere
Konten angelegt – es müssen also mehrere Objekte von Typ Konto instantiiert und
mit dem Kunden-Objekt verknüpft werden –, so sollen die erfassten Daten der
Kunde- und Konto-Objekte fest in einer Datenbank gespeichert werden. Es werden
somit die Tabellen TAB_KUNDE und TAB_KONTO benötigt, wobei der Primärschlüssel
von TAB_KUNDE in der Tabelle TAB_KONTO als Fremdschlüssel auftaucht, um die
Verbindung zwischen Kunde und die ihm gehörenden Konten herzustellen. Bei der
Abspeicherung der Daten werden nun mehrere Fragen aufgeworfen:

� Sollen beim Abspeichern des Objektes Kunde auch alle referenzierten Objekte
vom Typ Konto abgespeichert werden?

� Sollen die Konto-Objekte beim Laden des Kunde-Objektes oder später geladen
werden?

� Was passiert mit den referenzierten Konto-Objekten, wenn das Kunde-Objekt
gelöscht wird?

295 Es müssen nicht zwingend relationale Datenbanken verwendet werden.

Enterprise JavaBeans 3.1 1157

Es können auch weitere Probleme hinzukommen wie schlechtes Programmieren der
Persistenz-Algorithmen und dadurch Verlangsamung der Applikation oder zirkuläre
Referenzen innerhalb des Datenmodells. Um dem Object-Relational Gap entgegen-
zuwirken, bedient man sich eines Object-Relational Mappers, der sich um die Auf-
gaben der Daten-Persistenz kümmert. Mit Hilfe der Java Persistence-API wird die
Möglichkeit geschaffen, datenhaltende Java-Klassen auf Datenbanktabellen abzubil-
den und damit das object relational gap zu schließen. Diese datenhaltenden Klassen
werden auch als Entity-Klassen oder im Sinne von Enterprise JavaBeans als Enti-
ty-Beans bezeichnet. Die Abbildung von Klassen auf Tabellen erfolgt durch Annota-
tions, mit denen die Java-Klassen ausgezeichnet werden.

Die Programmierung von Entity-Beans hat sich im Vergleich zu EJB
2.1 erheblich vereinfacht. Dort musste die Abbildung der Entity-Beans
auf eine Tabelle in der Datenbank über den Deployment-Deskriptor
vorgenommen werden. In der Version 3.0 erfolgt die Beschreibung
des Object-Relational Mapping in einfacher Form mit Hilfe von Anno-
tations.

Die Abbildung der Java-Klassen auf die Datenbanktabellen geschieht für den Pro-
grammierer völlig transparent und wird durch den EJB-Container vorgenommen.

Folgende Anforderungen werden an eine Entity-Bean gestellt:

� Um eine reine Java-Klasse als Entity-Bean auszuweisen, muss sie mit der Anno-
tation @javax.persistence.Entity dekoriert werden. Die Klasse muss seri-
alisierbar sein und muss somit das Interface java.io.Serializable imple-
mentieren.

� Die Entity-Bean kann weiterhin mit der Annotation @javax.persistence.Tab-
le markiert werden. Es wird dadurch der Name der Tabelle festgelegt, auf welche
die Entity-Bean abgebildet wird. Beispielsweise könnte die Klasse Kunde folgen-
dermaßen deklariert werden:

 @javax.persistence.Entity
 @javax.persistence.Table (name = �TAB_KUNDE�)
 public class Kunde implements java.io.Serializable
 {
 // Definition der Klasse Kunde
 }

Ist die Annotation nicht vorhanden, so wird als Tabellenname der Name der Klas-
se verwendet.

� Die Klasse der Entity-Bean muss einen public oder protected Default-Kon-
struktor besitzen. Sie darf aber auch weitere Konstruktoren besitzen.

� Weder die Klasse selbst, noch deren Methoden oder abzuspeichernde Attribute –
die so genannten Persistenz-Attribute – dürfen als final deklariert sein.

� Die Entity-Bean-Klassen dürfen wiederum von anderen Entity-Bean-Klassen und
Nicht-Entity-Bean-Klassen ableiten. Von einer Entity-Bean-Klasse dürfen weiterhin
Nicht-Entity-Bean-Klassen ableiten.

1158 Kapitel 27

� Die Persistenz-Attribute sollen als private deklariert werden und nur über get-
und set-Methoden zugänglich sein. Diese get- und set-Methoden müssen dabei
der JavaBeans-Spezifikation entsprechen. Besitzt die Entity-Bean Kunde bei-
spielsweise ein Attribut private String vorname so müssen die Methoden
public String getVorname() und public void setVorname (String
vorname) existieren.

� Der Datentyp der Persistenz-Attribute muss entweder ein einfacher Datentyp wie
int, float, double oder boolean oder serialisierbar sein.

27.8.1 Primärschlüssel einer Entity-Bean

Für jede Entity-Bean-Klasse kann innerhalb des Datenmodells durch den EJB-Con-
tainer eine eigene Tabelle angelegt296 werden. Jedes erzeugte Objekt der Entity-
Bean wird durch genau einen Eintrag – das heißt durch genau eine Zeile – in der kor-
respondierenden Tabelle repräsentiert. Um die Einträge darin eindeutig zu iden-
tifizieren, muss für jede Entity-Bean ein Primärschlüssel definiert werden. Es wird
nun zwischen einfachen und zusammengesetzten Primärschlüsseln unterschieden.

27.8.1.1 Entity-Bean mit einfachem Primärschlüssel

Um eine Entity-Bean mit einem einfachen Primärschlüssel auszustatten, wird ein so
genanntes Persistenz-Attribut oder die dazugehörige get-Methode mit der Anno-
tation @javax.persistence.Id dekoriert. Das ausgewiesene Attribut ist dann
das Primärschlüssel-Attribut der Entity-Bean.

Wird das schon mit der Annotation @Id versehene Persistenz-Attribut weiterhin mit
der Annotation @javax.persistence.GeneratedValue dekoriert, so wird der
Wert des Attributs vom EJB-Container automatisch generiert. Das bedeutet, dass bei
der Instantiierung einer Entity-Bean der Wert des Primärschlüssel-Attributs nicht
durch den Programmierer gesetzt werden darf. Der EJB-Container weist dem Primär-
schlüssel-Attribut eines jeden erzeugten Objektes einen eindeutigen Wert zu. Der
Entwickler muss sich somit um eine fortlaufende Erzeugung von Primärschlüsseln
nicht kümmern. Betrachtet man die Entity-Bean Kunde, so sind alle Objekte davon
innerhalb einer Bank eindeutig durch die Kundennummer identifizierbar. Die Entity-
Bean Kunde besitzt somit ein Persistenz-Attribut kundenNr. Die dazugehörige get-
Methode wird dann mit den Annotations @Id und @GeneratedValue versehen:

@Id
@GeneratedValue
public int getKundenNr()
{
 return kundenNr;
}

296 Leitet eine Entity-Bean von einer anderen Entity-Bean ab, so besitzt eine Entity-Bean der Sohn-

klasse einen Vater- und einen Sohnanteil. Der Entwickler muss entscheiden, ob er den Vater- und
den Sohnanteil jeweils für sich getrennt in einer Tabelle abbildet, oder ob er eine Tabelle anlegt,
die sowohl den Vater- als auch und den Sohnanteil enthält.

Enterprise JavaBeans 3.1 1159

Das Attribut kundenNr ist somit das Primärschlüssel-Attribut der Entity-Bean Kun-
de. Da der Primärschlüssel aus einem Attribut besteht, nennt man ihn auch einfa-
cher Primärschlüssel. Die Entity-Bean Kunde könnte für die Implementierung eines
Bankkunden könnte somit folgendermaßen aussehen:

// Datei: Kunde.java

package bank.beans;

import java.util.*;
import javax.persistence.*;
import bank.hilfsklassen.*;

@Entity
@Table (name = "TAB_KUNDE")
public class Kunde implements java.io.Serializable
{
 private int kundenNr;
 private String vorname;
 private String nachname;
 private Collection<Konto> konten = new Vector<Konto>();

 public Kunde()
 {
 }

 public Kunde (String v, String n)
 {
 vorname = v;
 nachname = n;
 }

 @Id
 @GeneratedValue
 public int getKundenNr()
 {
 return kundenNr;
 }

 public void setKundenNr (int i)
 {
 kundenNr = i;
 }

 public String getVorname()
 {
 return vorname;
 }

 public void setVorname (String s)
 {
 vorname = s;
 }

1160 Kapitel 27

 public String getNachname()
 {
 return nachname;
 }

 public void setNachname (String s)
 {
 nachname = s;
 }

 @OneToMany (mappedBy = "besitzer", cascade = {CascadeType.ALL})
 public Collection<Konto> getKonten()
 {
 return konten;
 }

 public void setKonten (Collection<Konto> col)
 {
 konten = col;
 }

 public KundeData gibData()
 {
 KundeData data =
 new KundeData (kundenNr, vorname, nachname);
 return data;
 }
}

Die Klasse Konto ist ebenfalls eine Entity-Bean und repräsentiert ein Bankkonto:

// Datei: Konto.java

package bank.beans;

import javax.persistence.*;
import bank.hilfsklassen.*;

@Entity
@Table (name = "TAB_KONTO")
public class Konto implements java.io.Serializable
{
 private int knr;
 private double stand = 0;
 private Kunde besitzer;

 public Konto()
 {
 }

 public Konto (Kunde b)
 {
 this.besitzer = b;
 }

Enterprise JavaBeans 3.1 1161

 @Id
 @GeneratedValue
 public int getKnr()
 {
 return knr;
 }

 public void setKnr (int k)
 {
 knr = k;
 }

 public double getStand()
 {
 return stand;
 }

 public void setStand (double k)
 {
 stand = k;
 }

 @ManyToOne
 public Kunde getBesitzer()
 {
 return besitzer;
 }

 public void setBesitzer (Kunde k)
 {
 besitzer = k;
 }

 public KontoData gibData()
 {
 KontoData data=new KontoData (knr, stand, besitzer.gibData());
 return data;
 }
}

Ein Kunde kann mehrere Konten besitzen. Das bedeutet, dass ein Objekt vom Typ
Kunde mehrere Objekte vom Typ Konto referenziert. Um diese Beziehung zwischen
dem Kunden und seinen Konten zu beschreiben, d. h. um diesen Umstand von der
objektorientierten Welt in die relationale Welt abzubilden, werden die beiden
Annotations @javax.persistence.OneToMany für die Entity-Bean Kunde und
@javax.persistence.ManyToOne für die Entity-Bean Konto benötigt. Es wird
dadurch eine bidirektionale 1-zu-N-Beziehung beschrieben. Auf diese und weitere
Beziehungsarten zwischen Etnity-Beans wird im Kapitel 27.8.2.7 genauer einge-
gangen.

Beim Deployment-Prozess legt der EJB-Container für die Entity-Bean Kunde die
Tabelle TAB_KUNDE bzw. für die Entity-Bean Konto die Tabelle TAB_KONTO an,
wobei in der Tabelle TAB_KUNDE die Kundennummer und in der Tabelle TAB_KONTO
die Kontonummer als Primärschlüssel dient.

1162 Kapitel 27

27.8.1.2 Entity-Bean mit zusammengesetztem Primärschlüssel

Nun kann es sein, dass ein Eintrag in einer Tabelle nicht eindeutig durch den Wert
einer Spalte bestimmt werden kann. Dies ist zum Beispiel bei der Tabelle
TAB_BUCHUNG der Fall. Findet auf einem Konto eine Geldbewegung statt – wird also
ein Betrag auf ein bestimmtes Konto gebucht oder von ihm abgebucht – so werden
alle Buchungen in einer Tabelle TAB_BUCHUNG hinterlegt. Um einen Eintrag in dieser
Tabelle eindeutig zu identifizieren, reicht es nicht aus, beispielsweise die Konto-
nummer des Kontos als Primärschlüssel zu bestimmen, auf das die Buchung erfolgt
bzw. von dem ein bestimmter Betrag abgebucht wurde. Der Primärschlüssel muss
sich somit aus mehreren Spalten zusammensetzen. Da auf einem Konto mehrere
Buchungen eingehen können, lassen sich die Einträge in der Tabelle TAB_BUCHUNG
nur anhand folgender Werte unterscheiden:

� Kontonummer des Auftraggebers – hinterlegt in der Variablen vonKnr –, welche
das Konto bezeichnet, von dem der Betrag abgebucht werden soll,

� Kontonummer des Empfängers – hinterlegt in der Variablen nachKnr –, welche
das Konto identifiziert, auf das der Betrag gebucht werden soll,

� nanosekundengenauer Zeitstempel, der sich aus einem Objekt vom Typ
java.sql.Timestamp und dem long-Wert systemNanoTime ergibt.

In diesem Fall setzt sich der Primärschlüssel aus vier Spalten zusammen, wodurch
man von einem zusammengesetzten Primärschlüssel spricht. Ein solcher zusam-
mengesetzter Primärschlüssel muss in einer Primärschlüsselklasse definiert wer-
den. Eine Primärschlüsselklasse muss folgende Eigenschaften erfüllen:

� Die Klasse muss den Zugriffsmodifikator public besitzen und das Interface
java.io.Serializable implementieren. Weiterhin kann sie als final dekla-
riert werden.

� Die Klasse muss einen public Default-Konstruktor besitzen.
� Die Primärschlüsselattribute der Primärschlüsselklasse müssen auf Attribute der

Entity-Bean abbildbar sein, das heißt, sie müssen vom Datentyp und Namen her
identisch sein.

� Es müssen die Methoden hashCode() und equals() der Klasse Object über-
schrieben werden.

Die Primärschlüsselklasse BuchungPK für die Entity-Bean Buchung könnte somit
folgendes Aussehen haben:

// Datei: BuchungPK.java
package bank.hilfsklassen;
import java.sql.*;

public final class BuchungPK implements java.io.Serializable
{
 public int vonKnr;
 public int nachKnr;
 public Timestamp buchungTs;
 public long systemNanoZeit;

 public BuchungPK()
 {
 }

Enterprise JavaBeans 3.1 1163

 public BuchungPK (int vonKnr, int nachKnr, long l, Timestamp ts)
 {
 this.vonKnr = vonKnr;
 this.nachKnr = nachKnr;
 this.systemNanoZeit = l;
 this.buchungTs = ts;
 }

 public int getVonKnr()
 {
 return vonKnr;
 }

 public void setVonKnr (int i)
 {
 vonKnr = i;
 }

 public int getNachKnr()
 {
 return nachKnr;
 }

 public void setNachKnr (int i)
 {
 nachKnr = i;
 }

 public Timestamp getBuchungTs()
 {
 return buchungTs;
 }

 public void setBuchungTs (Timestamp t)
 {
 buchungTs = t;
 }

 public long getSystemNanoZeit()
 {
 return systemNanoZeit;
 }

 public void setSystemNanoZeit (long l)
 {
 systemNanoZeit = l;
 }

 public boolean equals (Object refObj)
 {
 if (this == refObj)
 return true;
 else if (!(refObj instanceof BuchungPK))
 return false;
 BuchungPK refBuchungPK = (BuchungPK) refObj;

1164 Kapitel 27

 return
 buchungTs.getTime() == refBuchungPK.buchungTs.getTime() &&
 systemNanoZeit == refBuchungPK.systemNanoZeit &&
 vonKnr == refBuchungPK.vonKnr &&
 nachKnr == refBuchungPK.nachKnr;
 }

 public int hashCode()
 {
 return (vonKnr ^ nachKnr ^ buchungTs.hashCode());
 }
}

Das Zeichen ^ stellt den EXCLUSIV-ODER-Operator297 dar. Er verknüpft zwei Ope-
randen – beispielsweise vonKnr und nachKnr – auf Bit-Ebene und berechnet
daraus einen eindeutigen int-Wert. Der Rückgabewert der Methode hashCode()
ist der so genannte Hash-Wert. Die Entity-Bean Buchung muss nun zusätzlich mit
der Annotation @javax.persistence.IdClass versehen werden, mit der ange-
geben wird, dass als Primärschlüsselklasse die Klasse BuchungPK verwendet wird.
Zudem müssen in der Entity-Bean Buchung alle Attribute bzw. deren get-Methoden
mit der Annotation @Id versehen werden, aus denen sich der Primärschlüssel zu-
sammensetzen soll:

// Datei: Buchung.java

package bank.beans;

import java.sql.*;
import javax.persistence.*;
import bank.hilfsklassen.*;

@Entity
@Table (name = "TAB_BUCHUNG")
@IdClass (BuchungPK.class)
public class Buchung implements java.io.Serializable
{
 private int vonKnr;
 private int nachKnr;
 private Timestamp buchungTs;
 private long systemNanoZeit;
 private double betrag;

 public Buchung()
 {
 }

 public Buchung (int vonKnr, int nachKnr, Timestamp ts,
 long sysNano, double betrag)
 {
 this.vonKnr = vonKnr;
 this.nachKnr = nachKnr;
 this.buchungTs = ts;

297 Siehe Kap. 7.6.6.1.

Enterprise JavaBeans 3.1 1165

 this.systemNanoZeit = sysNano;
 this.betrag = betrag;
 }

 @Id
 public int getVonKnr()
 {
 return vonKnr;
 }

 public void setVonKnr (int i)
 {
 vonKnr = i;
 }

 @Id
 public int getNachKnr()
 {
 return nachKnr;
 }

 public void setNachKnr (int i)
 {
 nachKnr = i;
 }

 @Id
 public Timestamp getBuchungTs()
 {
 return buchungTs;
 }

 public void setBuchungTs (Timestamp t)
 {
 buchungTs = t;
 }

 @Id
 public long getSystemNanoZeit()
 {
 return systemNanoZeit;
 }

 public void setSystemNanoZeit (long l)
 {
 systemNanoZeit = l;
 }

 public double getBetrag()
 {
 return betrag;
 }

 public void setBetrag (double d)
 {
 betrag = d;
 }

1166 Kapitel 27

 // Die Systemzeit im Nanosekundenbereich ist uninteressant
 public BuchungData gibData()
 {
 return new BuchungData (vonKnr, nachKnr, betrag, buchungTs);
 }
}

Die vorgestellten Entity-Beans Kunde, Konto und Buchung besitzen alle die Metho-
de gibData(). Der Aufruf dieser Methode liefert jeweils eine Referenz auf ein Ob-
jekt zurück, das lediglich die Daten der entsprechenden Entity-Bean-Instanz kapselt.
Beispielsweise liefert der Aufruf der Methode gibData() auf einem Objekt vom Typ
Kunde eine Referenz auf ein Objekt vom Typ KundeData zurück, das dieselben
Daten kapselt, wie die Entity-Bean Kunde selbst. Der Sinn dieser Datenobjekte liegt
darin, dass ein Client keine Referenz auf ein Entity-Bean-Objekt erhalten soll. Ein
Client soll nur mit einer Session-Bean arbeiten. Damit ein Client aber beispielsweise
Informationen über einen Kunden abfragen kann, wird ihm dafür ein Datenobjekt – in
diesem Falle ein Objekt vom Typ KundeData – übermittelt. Die Datenklassen Kun-
deData, KontoData und BuchungData werden in Aufgabe 27.3 im Kapitel 27.9
genauer vorgestellt.

27.8.2 Der Entity Manager

Mit der EJB-Version 3.0 ist die Erzeugung von Entity-Beans sehr einfach geworden.
Da Entity-Beans nun wie ganz normale Java-Klassen implementiert werden, die man
lediglich mit entsprechenden Annotations versieht, können die Entity-Beans einfach
mit Hilfe des new-Operators instantiiert werden. Verwendet man beispielsweise die
Entity-Bean Konto zur Repräsentation von Bankkonten, so wird ein Objekt davon
folgendermaßen erzeugt:

Konto konto = new Konto();

Bis zur EJB 2.1-Spezifikation war die Erzeugung einer Entity-Bean noch weit um-
ständlicher. Es musste zuerst eine Referenz auf das so genannte Home-Interface
beschafft werden. Dieses Interface deklarierte die Lifecycle-Methodenköpfe einer
Entity-Bean-Instanz – z. B. create() zum Erzeugen einer Instanz – oder Methoden
zum Auffinden einer bestimmten Instanz – z. B. findByName(). Eine Referenz auf
ein Objekt, deren Klasse das entsprechende Home-Interface implementiert, erhielt
man mittels JNDI Lookup. Es musste dafür also stets der JNDI-Name der Entity-
Bean bekannt sein. Hatte man eine Referenz auf das Home-Interface erhalten, so
konnte schließlich mit Hilfe der Methode create() eine Instanz der Entity-Bean er-
zeugt werden. Die Erzeugung, das Auffinden, das Abspeichern und das Löschen
einer Instanz übernahm hierbei der EJB-Container298.

Erstellt man Enterprise JavaBeans nach der EJB 3.0-Spezifikation, so werden die
Aufgaben des Auffindens, Abspeicherns und Löschens vom so genannten Entity
Manager übernommen. Ein EJB-Container, welcher der EJB 3.0-Spezifikation ent-
spricht, stellt einen oder mehrere Entity Manager bereit. Diese Entity Manager sind
Java-Klassen, welche das Interface javax.persistence.EntityManager imple-

298 Bei Container Managed Persistence.

Enterprise JavaBeans 3.1 1167

mentieren. Ein Entity Manager ist immer mit einem so genannten Persistenz-Kon-
text verbunden.

Der Entity Manager ist für folgende Aufgaben verantwortlich:

� Abspeichern von erzeugten Instanzen einer Entity-Bean in den da-
zugehörigen Persistenz-Kontext.

� Aktualisierung der Attribute von bereits hinterlegten Instanzen im
Persistenz-Kontext.

� Löschen von Instanzen aus dem Persistenz-Kontext.
� Auffinden von Instanzen innerhalb des Persistenz-Kontextes an-

hand ihres Primär-Schlüssels.

Der Persistenz-Kontext beschreibt somit die Gesamtheit aller Entity-Beans. Er ver-
waltet das Datenbank-Schema einer EJB-Applikation, das durch die Entity-Beans
und deren Referenzen untereinander beschrieben wird. Innerhalb des Persistenz-
Kontextes ist jede Instanz einer Entity-Bean eindeutig auffindbar. Für jede Entity-
Bean kann eine eigene Tabelle angelegt werden – beispielsweise die Tabelle
TAB_KONTO –, wobei innerhalb der Tabelle die abgespeicherten Instanzen wiederum
durch ihren Primärschlüssel an Eindeutigkeit erlangen. Die Instanzen selbst und
deren Lifecycle werden innerhalb dieses beschriebenen Kontextes verwaltet.

Der Entity Manager implementiert nun die Methoden des EntityManager-Interface,
welche der Client benötigt, um mit dem Persistenz-Kontext zu interagieren. In den
folgenden Abschnitten wird das EntityManager-Interface vorgestellt und dessen
wichtigste Methoden erläutert.

27.8.2.1 Beschaffen einer Referenz auf den Entity Manager

Wie schon aus dem vorherigen Kapitel über Session-Beans bekannt ist, implemen-
tieren Session-Beans die Geschäftslogik einer Applikation. Der Client kommuniziert
somit mit einer Instanz der Session-Bean. Innerhalb der Session-Bean findet dann
die Interaktion mit den Konto-Objekten statt. Das bedeutet, dass der Client nie eine
Referenz auf ein Objekt der Klasse Konto – sprich auf eine Entity-Bean-Instanz –
erhält. Die Session-Bean bildet somit die Schnittstelle zwischen Client und Persi-
stenz-Kontext. Die Session-Bean benötigt dafür eine Referenz auf den Entity Mana-
ger. Die Funktionalität des Entity Managers wird vom EJB-Container implementiert
und dem Client zur Verfügung gestellt. Der Client beschafft sich eine Referenz auf
ein Objekt vom Typ EntityManager mit:

@PersistenceContext (unitName = �Bank�)
public EntityManager em;

Die Annotation @javax.persistence.PersistenceContext liefert über die so
genannte Dependency Injection eine Referenz auf ein Objekt vom Typ Entity-
Manager zurück und diese Referenz wird der Referenzvariablen em zugewiesen.
Der Client muss sich die Referenz auf den Entity Manager nicht mittels JNDI Lookup
besorgen, sondern diese wird vom EJB-Container automatisch zugewiesen. Die
Referenz auf den Entity Manager – also die Abhängigkeit – wird dem Client quasi
injiziert.

1168 Kapitel 27

Dieser Vorgang geschieht für den Client vollkommen transparent. Verwaltet der
Entity Manager mehrere Persistenz-Kontexte, die auf unterschiedliche Datenbank-
Konfigurationen zurückzuführen sind, so kann ein bestimmter Kontext über das
Attribut unitName der Annotation @PersistenceContext ausgewählt werden. Der
Name des Persistenz-Kontextes wird in einem Deployment-Deskriptor mit Namen
persistence.xml299 gesetzt.

27.8.2.2 Erzeugen und Abspeichern eines Entity-Bean-Objektes

Die Bank stellt die Funktion bereit, Konten anzulegen. Dabei muss ein Objekt vom
Typ Konto erzeugt werden. Mit der Methode

void persist (Object entity)

des EntityManager-Objektes wird dann das neu angelegte Konto im Persistenz-
Kontext des Entity-Managers hinterlegt. Folgendes Codebeispiel zeigt die Erzeugung
und das Abspeichern eines Konto-Objektes:

Konto konto = new Konto();
em.persist (konto);

Beim Erzeugen des Konto-Objektes generiert der EJB-Container automatisch einen
eindeutigen Wert für das Persistenz-Attribut, weil dieses Persistenz-Attribut mit der
Annotation @Id versehen ist. Der Aufruf em.persist() legt dann für das Objekt
konto einen Eintrag in der entsprechenden Tabelle an, wobei die aktuellen Werte
des Objektes dort eingetragen werden. Die Methode wirft folgende (unchecked) Ex-
ceptions:

� EntityExistsException: Wird geworfen, wenn schon eine Instanz mit dem
gleichen Primärschlüssel existiert.

� IllegalStateException: Wird geworfen, wenn die Verbindung zum Entity-Ma-
nager geschlossen ist.

� IllegalArgumentException: Wird geworfen, wenn das übergebene Objekt
kein Objekt einer Entity-Bean ist.

� TransactionRequiredException: Wird geworfen, wenn der Entity-Manager
im Transaktionsmodus arbeitet, aber keine Transaktion aktiv ist.

Die Funktionalität des Erzeugens und Abspeicherns einer Entity-Bean-Instanz könnte
beispielsweise in der Methode kontoAnlegen() passieren. Die Implementierung
sähe folgendermaßen aus:

public int kontoAnlegen()
{
 Konto konto = new Konto();
 em.persist (konto);
 return konto.getKontonummer();
}

299 Siehe Kap. 27.8.2.6.

Enterprise JavaBeans 3.1 1169

Die Methode gibt vor dem Verlassen die Kontonummer des erzeugten Konto-Ob-
jektes zurück.

Die Lebensdauer des Konto-Objektes endet mit dem Verlassen der
Methode kontoNeuAnlegen(). Das Konto-Objekt ist nach Rück-
kehr aus der Methode nicht mehr vorhanden. Die Repräsentation des
Objektes existiert nur noch im Persistenz-Kontext – also im dazuge-
hörigen Datenmodell der Bank-Applikation. Von dort kann sich der
Client die abgespeicherten Attributwerte wieder beschaffen und mit
dem Konto-Objekt weiterarbeiten.

27.8.2.3 Laden und Aktualisieren einer Entity-Bean-Instanz

Für das Auffinden einer Entity-Bean-Instanz stellt das EntityManager-Interface die
eigenständig generische Methode

<T> T find (Class<T> entityClass, Object primaryKey)

zur Verfügung. Als erstes Argument erwartet die Methode ein Klassenliteral300, bei-
spielsweise Konto.class, um dem Entity Manager mitzuteilen, in welcher Tabelle
er nach dem gewünschten Objekt suchen soll. Das zweite Argument beschreibt den
Primärschlüssel des zu findenden Objektes. Besteht dieser aus einem primitiven
Datentyp – beispielsweise int – so kann der Schlüssel von einem Wrapper-Objekt
umhüllt werden. Diese Aufgabe übernimmt seit dem JDK 5.0 jedoch auch der
Compiler durch Autoboxing. Der Aufruf

em.find (Konto.class, 1);

wird somit vom Compiler akzeptiert. Die find()-Methode liefert dann das gesuchte
Objekt vom Typ T zurück, im genannten Beispiel also das Konto-Objekt mit der
Kontonummer 1.

Wird der Primärschlüssel von einer Primärschlüsselklasse gebildet, da er ein zusam-
mengesetzter Primärschlüssel ist, so muss eine Instanz der Primärschlüsselklasse
erzeugt und die Referenz darauf der Methode find() übergeben werden. Als Bei-
spiel soll die Klasse Buchung betrachtet werden, die als Primärschlüsselklasse die
Klasse BuchungPK besitzt. Soll nun eine Buchung gefunden werden, so muss wie
folgt vorgegangen werden:

BuchungPK primKey = new BuchungPK (
 vonKonto, nachKonto, systemNanoTime, buchungTS);
Buchung buchung = em.find (Buchung.class, primKey);

Kann die Methode das gesuchte Objekt nicht finden, so gibt sie null zurück. Die
Methode find() wirft folgende (unchecked) Exceptions:

� IllegalStateException: Wird geworfen, wenn die Verbindung zum Entity
Manager geschlossen ist.

300 Siehe Kap. 17.5.2.

1170 Kapitel 27

� IllegalArgumentException: Wird geworfen, falls das Klassenliteral nicht den
Typ einer Entity-Bean repräsentiert oder falls das zweite Argument keinen gültigen
Primärschlüssel für die Klasse T darstellt.

Bei der Implementierung der Buchungsfunktionalität der Bank kann die find()-Me-
thode zum Einsatz kommen, weil damit das gewünschte Konto-Objekt ausfindig ge-
macht werden kann. Nachdem auf das Konto ein bestimmter Betrag gebucht wurde –
das Attribut kontostand also verändert wurde – sollen die Daten auch mit der
Datenbank abgeglichen werden, damit beim nächsten Zugriff auf das Konto-Objekt
der aktuelle Kontostand zur Verfügung steht. Diese Funktionalität stellt ebenfalls die
Methode persist() bereit. Beim Aufruf von persist() wird der Eintrag – also die
Zeile in der entsprechenden Tabelle – aktualisiert, der das Objekt entity reprä-
sentiert.

Die Funktionalität "Beträge auf ein Konto buchen" soll nun mit der Methode bu-
chen() der Klasse Bank umgesetzt werden. Dafür werden der Methode die Kon-
tonummer und die Höhe des zu buchenden Betrages übergeben. Eine einfache Im-
plementierung der Methode buchen() kann folgendermaßen aussehen:

public void buchen (int kontonummer, double betrag)
{
 Konto konto = (Konto) em.find (Konto.class, kontonummer);
 double kontostandAlt = konto.getStand();
 double kontostandNeu = kontostandAlt + betrag;
 konto.setStand (kontostandNeu);
 em.persist (konto);
}

27.8.2.4 Löschen einer Entity-Bean-Instanz

Zum Löschen von Einträgen aus dem Persistenz-Kontext stellt das EntityMana-
ger-Interface die Methode

void remove (Object entity)

bereit. Dabei erwartet die Methode eine Referenz auf ein Objekt einer Entity-Bean.
Die Methode wirft die folgenden Exceptions:

� IllegalStateException: Wird geworfen, wenn die Verbindung zum Entity
Manager geschlossen ist.

� IllegalArgumentException: Wird geworfen, wenn das übergebene Objekt
kein Objekt einer Entity-Bean ist oder wenn das Objekt im Persistenz-Kontext
nicht gefunden werden kann.

� TransactionRequiredException: Wird geworfen, wenn der Entity Manager
im Transaktionsmodus arbeitet, aber keine Transaktion aktiv ist.

Die Funktionalität "Konto löschen" kann somit in der Methode kontoLoeschen()
folgendermaßen umgesetzt werden:

Enterprise JavaBeans 3.1 1171

public void kontoLoeschen (int kontonummer)
{
 Konto konto = (Konto) em.find (Konto.class, kontonummer);
 em.remove (konto);
}

27.8.2.5 EJB Query Language

Ein Bankangestellter möchte sich vielleicht einen Überblick darüber verschaffen, wie
viele Konten momentan existieren und wie hoch der gesamte Geldbetrag ist, der von
der Bank verwaltet wird. Dafür wäre eine Abfrage sinnvoll, die bei einmaliger Aus-
führung alle Konto-Objekte zurückliefert. Für diesen Zweck definiert der Entity
Manager die EJB Query Language (EJB QL), eine Abfragesprache, deren Syntax
an die SQL angelehnt ist. Es besteht damit die Möglichkeit, Abfragen an die Daten-
bank zu richten, um gezielt nach einer Instanz oder einer Menge von Instanzen zu
suchen. Das EntityManager-Interface stellt dafür unter anderem die Methode

Query createQuery (String qlString)

zur Verfügung, wobei das übergebene String-Objekt ein gültiges EJB QL-State-
ment sein muss. Ansonsten wirft die Methode eine Exception vom Typ Illegal-
ArgumentException.

Ist das Statement EJB QL-konform, so liefert createQuery() eine Referenz auf ein
Objekt zurück, welches die Schnittstelle javax.persistence.Query implemen-
tiert. Dieses Objekt vom Typ Query kapselt die benötigte Logik, um eine EJB QL-
konforme Anfrage an die Datenbank zu richten. Die eigentliche Abfrage ist mit der
Erzeugung des Query-Objektes jedoch noch nicht abgesetzt worden. Dafür stellt das
Query-Interface die Methode

List<E> getResultList()

zur Verfügung. Wird getResultList() ausgeführt, so wird die Abfrage an die Da-
tenbank gerichtet und das Ergebnis in einem Objekt zurückgeliefert, dessen Klasse
das List<E>-Interface implementiert. Die Methode wirft eine Exception vom Typ
IllegalStateException, falls das Query-Objekt, auf dem getResultList()
aufgerufen wird, ein UPDATE- oder DELETE-Statement kapselt.

EJB QL ist eine Abfragesprache, mit deren Hilfe es möglich ist, kom-
plexe Datenbankabfragen auszuführen.

Im Folgenden wird das SELECT- Statement vorgestellt, das den Einsatz der EJB QL
demonstrieren soll. Eine ausführliche Beschreibung der EJB QL-Syntax kann unter
[27] recherchiert werden.

1172 Kapitel 27

SELECT-Statement

Ein gültiges SELECT-Statement setzt sich aus sechs Teilen zusammen. Es wird in
Backus-Naur-Form folgendermaßen beschrieben:

SELECT-Statement ::= SELECT-Klausel FROM-Klausel
 [WHERE-Klausel] [GROUPBY-Klausel]
 [HAVING-Klausel] [ORDERBY-Klausel]

Neben den benötigten SELECT- und FROM-Klauseln gibt es die vier weiteren optio-
nalen WHERE-, GROUPBY-, HAVING- und ORDERBY-Klauseln. Im Folgenden werden
ein paar Anwendungsfälle des SELECT-Statements vorgestellt:

� Alle Datensätze einer Tabelle abfragen

 SELECT C from Schemaname C

Schemaname bezeichnet dabei den so genannten Abstract Schema Name einer
Entity-Bean. Wird beispielsweise die Entity-Bean Konto wie folgt definiert:

 @Entity
 class Konto
 {

 }

so ist der Abstract Schema Name der Entity-Bean Konto gleich dem Klassenna-
men, also Konto. Wird die Entity-Bean Konto hingegen zu:

 @Entity (name="KTO")
 class Konto
 {

 }

definiert, so erhält die Entity-Bean Konto den Abstract Schema Name KTO.

C ist ein Stellvertreter für den Abstract Schema Name und kann anstatt von Sche-
maname verwendet werden. Mit der SELECT-Klausel werden nun alle Objekte
gesucht, deren Klasse den angegebenen Abstract Schema Name besitzen.

 Beispiel:

 SELECT k FROM Konto k // Erfasst alle Konto-Objekte
 // Unsortierte Ausgabe
 SELECT k FROM Konto k ORDER BY k.id desc
 // Absteigend sortiert nach dem
 // Attribut id der Klasse Konto

� Ergebnis einschränken

Mit EJB QL besteht die Möglichkeit, den Abfrage-String dynamisch über Para-
meter zusammenzusetzen. Dieses Verfahren ist vergleichbar mit der Parametri-

Enterprise JavaBeans 3.1 1173

sierung von Prepared Statements in JDBC. Ein Parameter wird mit Hilfe der bei-
den Methoden

 Query setParameter (int position, Object value)

 oder

 Query setParameter (String name, Object value)

an das Query-Objekt gebunden301. Der erste Parameter der Methoden setPara-
meter() – int position bzw. String name – übergibt den Bezeichner des
Parameters, der zweite Parameter value beinhaltet seinen Wert. Der Unterschied
zwischen beiden Methoden setParameter() besteht darin, dass im ersten Fall
innerhalb des Statements auf den Parameter über seine Position zugegriffen wird.
Der als erstes mit setParameter() gesetzte Parameter hat demnach die Po-
sition 1, der zweite die Position 2 usw. Innerhalb des Statements erfolgt der Zugriff
über ein Fragezeichen ?, gefolgt von der Position wie in folgendem Beispiel:

 ?1 // Zugriff auf den ersten mit setParameter()
 // gesetzten Parameter.

Im zweiten Fall wird der Parameter an einen festen Namen gebunden. Der Zugriff
über den Namen erfolgt durch die Angabe eines Doppelpunktes :, gefolgt vom
Namen des Parameter.

 Beispiel:

 :low // mit setParameter() wurde an das Query-Objekt
 // der Parameter mit Namen low gebunden.

 Beispiel:

 // Es soll das Konto-Objekt mit der
 // Kontonummer 2 gesucht werden:
 Query query = em.createQuery (
 �SELECT k FROM Konto k where k.id = :knr�);
 query.setParameter (�knr�, new Integer (2));
 List<?> liste = query.getResultList();
 // Alle Konto-Objekte mit den Kontonummern
 // zwischen low und high suchen:
 SELECT k from Konto k where k.id > :low and k.id < :high

27.8.2.6 Der Deployment-Deskriptor persistence.xml

Das Deployment einer EJB-Applikation, die mit Entity-Beans arbeitet und für die aus
diesem Grund ein Persistenz-Kontext eingerichtet werden muss, verläuft nach dem
gleichen Schema, das zuvor in Kapitel 27.7.3 schon vorgestellt wurde. Dem jar-Ar-
chiv, das den Bytecode der Enterprise JavaBeans enthält, muss jedoch ein weiterer
Deployment-Deskriptor hinzugefügt werden, der den Namen persistence.xml

301 Die Methode setParameter() wird auf einer Referenz auf ein Objekt vom Typ Query aufgerufen

und gibt diese Referenz wieder als Rückgabewert zurück.

1174 Kapitel 27

trägt. In diesem Deployment-Deskriptor wird unter anderem der Name des Persi-
stenz-Kontextes angegeben, der für diese EJB-Applikation eingerichtet werden soll.
Beispielsweise wird für die Bank-EJB-Applikation der Persistenz-Kontext mit dem
Namen Bank folgendermaßen festgelegt:

<?xml version="1.0" encoding="UTF-8"?>
<persistence
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="Bank">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>
</persistence>

Beim Zugriff auf den Persistenz-Kontext über das EntityManager-Interface wird
dieser Name über die Annotation @PersistenceContext angegeben:

@PersistenceContext (unitName = �Bank�)
public EntityManager em;

Der Referenzvariablen em wird somit vom EJB-Container per Dependency Injection
eine Referenz auf ein Objekt vom Typ EntityManager zugewiesen, über den nun
auf dem Persistenz-Kontext Bank gearbeitet werden kann.

27.8.2.7 Beziehungen zwischen den Entity-Beans

Befindet man sich in der objektorientierten Welt, so können Entity-Objekte Referen-
zen auf andere Entity-Objekte haben. Beispielsweise können einem Kunden – also
einem Objekt vom Typ Kunde – mehrere Konten zugeordnet werden – das Kunde-
Objekt kann also mehrere Objekte vom Typ Konto referenzieren. Solche Beziehung-
en der objektorientierten Welt müssen auch in die relationale Welt übertragen und im
Datenmodell abgebildet werden. Dabei werden die Referenzen zwischen den Objek-
ten in Beziehungen zwischen den Tabellen abgebildet, die über Primärschlüssel und
Fremdschlüssel hergestellt werden. Damit sich der Programmierer um diese zum Teil
komplizierten Beziehungen nicht kümmern muss, bietet die Java Persistence-API
dafür diverse Annotations an, mit deren Hilfe der Programmierer diese Beziehungen
im Quellcode der Entity-Beans durch "steuernde Kommentare" beschreiben kann.

Der oben vorgestellte Beziehungstyp – es handelt sich dort um eine 1-zu-N-Bezie-
hung, weil einem Kunden N Konten zugeordnet werden – und weitere Typen werden
im Folgenden vorgestellt. Es wird zwischen sieben Beziehungstypen unterschieden:

1-zu-1-Beziehung (unidirektional)

Zwischen einem Objekt vom Typ Kunde und einem Objekt Adressdaten, das wie-
tere Informationen über einen Kunden enthält, wird eine 1-zu-1-Beziehung gepflegt,

Enterprise JavaBeans 3.1 1175

die unidirektional ist. Unidirektional bedeutet, dass vom Kunde-Objekt aus das
Adressdaten-Objekt referenziert wird, aber nicht umgekehrt.

1 1
knr: int
adr: AdressDaten

Kunde

knr: int

Adressdaten

Bild 27-9 Unidirektionale 1-zu-1-Beziehung

In Bild 27-9 wird das Klassendiagramm302 für die Klasse Kunde und die Klasse
Adressdaten gezeigt. Dort ist zu sehen, dass nur die Klasse Kunde eine Referenz
auf ein Objekt vom Typ Adressdaten besitzt. Damit diese Beziehung im Datenmo-
dell abgebildet wird, muss in der Klasse Kunde die Referenzvariable adr – bzw. die
dazugehörige get-Methode – mit folgenden Annotations versehenen werden:

� @javax.persistence.OneToOne

Diese Annotation @javax.persistence.OneToOne gibt an, dass
in der objektorientierten Welt ein Objekt vom Typ Kunde genau ein
Objekt vom Typ Adressdaten referenziert.

Es kann zudem das Attribut cascade gesetzt werden. Das Attribut cascade gibt
an, was der Entity Manager mit dem referenzierten Datensatz des Adressdaten-
Objektes unternehmen soll, wenn der Datensatz des Kunde-Objektes z. B. mit
persist() gespeichert bzw. aktualisiert oder mit remove() gelöscht wird. Mit
CascadeType.ALL wird vereinbart, dass alle Operationen – beispielsweise das
Abspeichern oder das Löschen des Datensatzes des Kunde-Objektes – auch auf
den Datensatz des Adressdaten-Objektes angewendet werden. So wird der
Datensatz des Adressdaten-Objektes ebenfalls abgespeichert bzw. aktualisiert,
wenn das Kunde-Objekt mit persist() abgespeichert bzw. aktualisiert wird.

� @javax.persistence.PrimaryKeyJoinColumn

Mit @javax.persistence.PrimaryKeyJoinColumn wird ange-
geben, dass die dazugehörige Beziehung – in diesem Fall eine 1-
zu-1-Beziehung – über die Primärschlüssel-Attribute der beiden be-
teiligten Entity-Beans hergestellt werden soll.

Das bedeutet, dass beide Klassen über ein Primärschlüssel-Attribut verfügen, das
jeweils denselben Wert hat – im obigen Beispiel aus Bild 27-9 die Kundennummer
knr des Kunden.

302 In diesem und in den folgenden Klassendiagrammen werden jeweils nur die Referenzvariablen

eingetragen, die für das Verständnis der Beziehungstypen notwendig sind.

1176 Kapitel 27

� @javax.persistence.JoinColumn

Anstatt der Annotation @PrimaryKeyJoinColumn kann auch die
Annotation @JoinColumn angegeben werden.

Diese Annotation besitzt das Attribut name, dem der Name der Spalte übergeben
wird, die in die Tabelle Kunde eingefügt wird, um das Mapping zwischen dem
Kunde-Objekt und dem Adressdaten-Objekt herzustellen. Wird in der Klasse
Kunde die get-Methode getAdr() mit den folgenden Annotations versehen:

@OneToOne (cascade={CascadeType.ALL})
@JoinColumn (name="ADR_ID")
public Adressdaten getAdr()
{
 return adr;
}

so wird im relationalen Datenmodell in der Tabelle TAB_KUNDE die Spalte ADR_ID
eingefügt, in welcher der Primärschlüssel der dazugehörigen Adressdaten-Zeile
eingetragen wird. Wird keine der beiden Annotations – weder @PrimaryKey-
JoinColumn noch @JoinColumn – angeführt, so wird vom Persistenz-Manager
eine Standard-Spalte für das Mapping eingeführt.

Im Folgenden werden Ausschnitte aus den Klassen Adressdaten und Kunde
gezeigt:

@Entity
@Table (name = "TAB_ADRDATA")
public class Adressdaten implements java.io.Serializable
{
 private int knr;

 // Diesmal wird der Primärschlüssel nicht automatisch
 // generiert, sondern muss vom Programmierer gesetzt
 // werden.
 @Id
 public int getKnr()
 {
 return knr;
 }

}

@Entity
@Table (name = "TAB_KUNDE")
public class Kunde implements java.io.Serializable
{
 private int knr;
 private Adressdaten adr;

Enterprise JavaBeans 3.1 1177

 @Id
 public int getKnr()
 {
 return knr;
 }

 @OneToOne (cascade = {CascadeType.ALL})
 @PrimaryKeyJoinColumn
 // oder wahlweise: @JoinCloumn (name="ADR_ID")
 public Adressdaten getAdr()
 {
 return adr;
 }

}

Um nun einen Kunden anzulegen und diesem seine Adressdaten zuzuordnen, wird
folgendermaßen vorgegangen:

Kunde kunde = new Kunde();
int knr = kunde.getKnr();
Adressdaten adr = new Adressdaten (knr);
kunde.setAdr (adr);
em.persist (kunde);

1-zu-1-Beziehung (bidirektional)

Die bidirektionale 1-zu-1-Beziehung zeichnet sich dadurch aus, dass
sich in der objektorientierten Welt beide Objekte kennen, welche zu-
einander in Beziehung stehen.

Ein Beispiel hierfür ist die Beziehung zwischen einem Kunden und seiner Kreditkarte.
Ein Kunde besitzt eine Kreditkarte und eine Kreditkarte gehört einem Kunden. Taucht
nun in der Bank eine Kreditkartenzahlung auf, so soll man über diese Zahlung
natürlich auch den Besitzer ausmachen können. Das bedeutet, dass eine Kreditkarte
ihren Besitzer kennt.

1 1
knr: int
karte: Kreditkarte

Kunde

kartennummer: int
besitzer: Kunde

Kreditkarte

Bild 27-10 Bidirektionale 1-zu-1-Beziehung

Um diese Beziehung herzustellen, muss der Quellcode der Klassen Kunde und
Kreditkarte mit folgenden Annotations versehen werden:

1178 Kapitel 27

� Klasse Kreditkarte

Die get-Methode der Referenzvariable besitzer vom Typ Kunde
wird mit der Annotation

@OneToOne (mappedBy = "karte")
public Kunde getBesitzer() {return besitzer;}

versehen.

Durch das Attribut mappedBy der Annotation @OneToOne wird angegeben, dass
die Referenz auf ein Objekt vom Typ Kreditkarte in der Klasse Kunde dort in
der Referenzvariablen karte gespeichert ist.

� Klasse Kunde

Die get-Methode der Referenzvariable karte vom Typ Kredit-
karte wird mit den Annotations

@OneToOne (cascade = {CascadeType.ALL})
@JoinColumn (name = "ID_KREDITKARTE")
public Kreditkarte getKarte()
{
 return karte;
}

versehen.

Die Referenzvariable karte referenziert somit das dem Kunde-Objekt zugeordne-
te Kreditkarte-Objekt. Die Referenzvariable karte wurde dabei in der get-
Methode getBesitzer() der Klasse Kreditkarte als "Mapping-Referenz" an-
gegeben.

Im Folgenden die wichtigen Teile der Klassen Kreditkarte und Kunde:

@Entity
@Table (name = "TAB_KREDITKARTE")
public class Kreditkarte implements java.io.Serializable
{
 private int kartennr;
 private Kunde besitzer;

 @Id
 public int getKartennr()
 {
 return kartennr;
 }

Enterprise JavaBeans 3.1 1179

 @OneToOne (mappedBy = "karte")
 public Kunde getBesitzer()
 {
 return besitzer;
 }

}

@Entity
@Table (name = "TAB_KUNDE")
public class Kunde implements java.io.Serializable
{
 private int knr;
 private Kreditkarte karte;

 @Id
 @GeneratedValue
 public int getKnr()
 {
 return knr;
 }

 @OneToOne (cascade = {CascadeType.ALL})
 @JoinColumn (name = "ID_KREDITKARTE")
 public Kreditkarte getKarte()
 {
 return karte;
 }

}

1-zu-N-Beziehung (unidirektional)

Ein Bankangestellter ist für die Verwaltung mehrerer Konten verantwortlich. Damit
müssen in der objektorientierten Welt einem Objekt vom Typ Bankangestellter
mehrere Objekte vom Typ Konto zugewiesen werden. Beim Konto ist die Informa-
tion, von welchem Bankangestellten es verwaltet wird, nicht interessant. Daher wird
diese Beziehung als unidirektionale Beziehung realisiert, wobei über ein Bankange-
stellter-Objekt mehrere Konto-Objekte referenziert werden – aber nicht umge-
kehrt.

1 N
pnr: int
konten: Collection

Bankangestellter

kontoNr: int

Konto

Bild 27-11 Unidirektionale 1-zu-N-Beziehung

1180 Kapitel 27

Alle Referenzen auf Objekte vom Typ Konto werden beim Bankangestellter-
Objekt in einem Objekt vom Typ Collection<Konto> hinterlegt. Die Referenz auf
die Collection ist dabei in der Referenzvariablen konten gespeichert. Die Konto-
Objekte bleiben davon unberührt – das heißt, sie merken nicht, ob und von welchem
Bankangestellten sie verwaltet werden.

Folgende Annotations müssen im Quellcode der Klasse Bankangestellter nun
verwendet werden, um diesen Sachverhalt in die relationale Welt zu übertragen:

� @javax.persistence.OneToMany

Die get-Methode getKonten() der Klasse Bankangestellter,
welche die Referenz auf das Collection<Konto>-Objekt zurück-
liefert, muss mit der @OneToMany-Annotation markiert werden.

Dadurch wird im Datenmodell der relationalen Welt verankert, dass ein Eintrag in
der Tabelle für Bankangestellte-Objekte auf mehrere Einträge in der Tabelle
für Konto-Objekte zeigt.

� @javax.persistence.JoinColumn

Weiterhin kann die getKonto()-Methode mit der Annotation
@JoinCloum versehen werden, wodurch wiederum ein Spalten-
name in der Tabelle für Bankangestellter-Objekte für das Map-
ping der Konto-Objekte angegeben wird. Wird nichts angegeben,
so vergibt der Persistenz-Manager für die Spalte einen Standardna-
men.

Im Folgenden werden Fragmente der Klasse Bankangestellter gezeigt:

@Entity
@Table (name = "TAB_EMPL")

public class Bankangestellter implements java.io.Serializable
{
 private int pnr;

 private Collection<Konto> konten =
 new Vector<Konto>();

 @Id
 @GeneratedValue
 public int getPnr()
 {
 return pnr;
 }

Enterprise JavaBeans 3.1 1181

 @OneToMany (cascade = {CascadeType.ALL})
 public Collection<Konto> getKonten()
 {
 return konten;
 }

}

Anhand der Methode kontoAnlegen() der Bank-EJB wird nun gezeigt, wie einem
Objekt vom Typ Bankangestellter Objekte vom Typ Konto zur Verwaltung zuge-
wiesen werden:

public int kontoAnlegen (int angestellter)
{
 Konto k = new Konto();
 Bankangestellter emp =
 em.find (Bankangestellter.class, angestellter);
 emp.getKonten().add (k);
 em.persist (emp);
 return k.getKnr();
}

N-zu-1-Beziehung (unidirektional)

Eine unidirektionale N-zu-1-Beziehung liegt dann vor, wenn viele Objekte dasselbe
Objekt referenzieren, das referenzierte Objekt davon aber nichts merkt. Ein Beispiel
dafür ist die Beziehung von Kunden zu einem Geldautomat. Mehrere Kunden können
von ein und demselben Geldautomaten Geld abheben – das heißt die Kunden wis-
sen, wo der Geldautomat steht und kennen somit dessen Lokation. Dem Geldauto-
maten hingegen ist es egal, wer über ihn Bargeld abhebt – er muss die Kunden also
nicht kennen303.

N 1
knr: int
atm: ATM

Kunde

standortID: int

ATM

Bild 27-12 Unidirektionale N-zu-1-Beziehung

Der Geldautomat – repräsentiert durch die Klasse ATM304 – bleibt von der N-zu-1-
Beziehung unangetastet. Somit muss die Beschreibung der Beziehung für die
Abbildung in die relationale Welt durch geeignete Annotations in der Klasse Kunde
vorgenommen werden. Es wird dafür die Annotation @javax.persistence.Many-
ToOne benötigt.

303 Natürlich wird anhand der Kredit- oder EC-Karte, die beim Geldautomaten eingeführt wird, die

Identität des Geldabhebenden überprüft. Aber diese Identifizierung findet vielmehr in der Bank
statt, mit welcher der Geldautomat verbunden ist. Mit anderen Worten, ein Geldautomat ist nicht für
einen exklusiven Kundenkreis vorbestimmt, sondern bedient jeden Kunden.

304 Abk. für Automated Teller Machine. Engl. für: Geldautomat.

1182 Kapitel 27

Wird die get-Methode getATM() zum Abrufen der Referenzvariablen
atm vom Typ ATM in der Klasse Kunde mit der Annotation
@ManyToOne gekennzeichnet, so wird dadurch im Datenmodell spezi-
fiziert, dass viele Objekte vom Typ Kunde ein und dasselbe Objekt
vom Typ ATM referenzieren können.

Es kann wiederum zusätzlich die Annotation @JoinColumn angeführt werden, um
den Namen der Join-Spalte in der Tabelle für Kunde-Objekte anzugeben. Es werden
im Folgenden die interessanten Passagen der Klassen ATM und Kunde gezeigt:

@Entity
@Table (name = "TAB_ATM")
public class ATM implements java.io.Serializable
{
 private int standortID;

 @Id
 @GeneratedValue
 public int getStandortID()
 {
 return standortID;
 }

}

@Entity
@Table (name = "TAB_KUNDE")
public class Kunde implements java.io.Serializable
{
 private int kundenNr;
 private ATM atm;

 @Id
 @GeneratedValue
 public int getKundenNr()
 {
 return kundenNr;
 }

 public void setKundenNr (int k)
 {
 kundenNr = k;
 }

 @ManyToOne
 public ATM getATM()
 {
 return atm;
 }

Enterprise JavaBeans 3.1 1183

 public void setATM (ATM a)
 {
 atm = a;
 }
}

1-zu-N-Beziehung (bidirektional)

Eine bidirektionale 1-zu-N-Beziehung besteht nun aus einer Kombination der beiden
zuvor vorgestellten unidirektionalen Beziehungstypen 1-zu-N und N-zu-1. Eine bidi-
rektionale 1-zu-N-Beziehung bedeutet, dass ein Objekt Referenzen auf beliebig viele
andere Objekte besitzen kann, wobei diese referenzierten Objekte wiederum das
Objekt kennen, von dem sie referenziert werden. Ein Beispiel hierfür ist die Bezie-
hung zwischen einem Bankangestellten und seinen Kunden. Ein Bankangestellter
betreut viele Kunden. Die Kunden kennen dabei den für sie zuständigen Bankan-
gestellten. Diese Beziehung ist also bidirektional.

1 N
pnr: int
kunden: Collection

Bankangestellter

kundenNr: int
betreuer: Bankangestellter

Kunde

Bild 27-13 Bidirektionale 1-zu-N-Beziehung

In der objektorientierten Welt sind beide Objekt-Typen – sowohl Objekte vom Typ
Bankangestellter als auch Objekte vom Typ Kunde – von dieser Beziehung
betroffen. Es werden somit folgende Annotations benötigt, um diese Beziehung in
das relationale Datenmodell zu übertragen:

� Klasse Bankangestellter

Die Referenzen auf Objekte vom Typ Kunde werden in einer Col-
lection hinterlegt. Die dazugehörige get-Methode muss mit der
Annotation @OneToMany kommentiert werden, wobei das Attribut
mappedBy der Annotation @OneToMany den Wert betreuer er-
hält.

Der Wert muss deswegen auf betreuer gesetzt werden, weil Objekte vom Typ
Kunde die Referenz auf das Bankangestellter-Objekt in der Referenzvariab-
len betreuer abspeichern.

� Klasse Kunde

Die get-Methode getBetreuer(), welche die Referenzvariable
betreuer vom Typ Bankangestellter zurückliefert, muss mit
der Annotation @ManyToOne annotiert werden.

1184 Kapitel 27

Im Folgenden werden nochmals die wichtigen Passagen aus den Klassen Bankan-
gestellter und Kunde vorgestellt:

@Entity
@Table (name = "TAB_EMPL")
public class Bankangestellter implements java.io.Serializable
{
 private int pnr;
 private Collection<Kunde> kunden =
 new Vector<Kunde>();

 @Id
 @GeneratedValue
 public int getPnr()
 {
 return pnr;
 }

 @OneToMany (mappedBy = "betreuer")
 public Collection<Kunde> getKunden()
 {
 return kunden;
 }

}

@Entity
@Table (name = "TAB_KUNDE")
public class Kunde implements java.io.Serializable
{
 private int kundenNr;
 private Bankangestellter betreuer;

 @Id
 @GeneratedValue
 public int getKundenNr()
 {
 return kundenNr;
 }

 @ManyToOne
 public Bankangestellter getBetreuer()
 {
 return betreuer;
 }

}

N-zu-M-Beziehung (bidirektional)

Eine bidirektionale N-zu-M-Beziehung – mit anderen Worten eine Viele-zu-Viele-Be-
ziehung – liegt dann vor, wenn ein Objekt vom Typ A Referenzen auf beliebig viele

Enterprise JavaBeans 3.1 1185

andere Objekte vom Typ B besitzt, wobei diese referenzierten Objekte vom Typ B
ebenso beliebig viele Referenzen auf Objekte vom Typ A verwalten. Beim Bankbei-
spiel käme hier die Beziehung zwischen Kunden und Konten in Betracht. Ein Kunde
kann der Inhaber von beliebig vielen Konten sein – beispielsweise einem Girokonto,
einem Festgeldkonto und einem Tagesgeldkonto. Gleichzeitig können auf ein Konto
beliebig viele Kunden zugreifen – beispielsweise können Eheleute den Zugriff auf ge-
meinsamen Konten beantragen. Bei den Konten sind dann mehrere Kunden als Be-
sitzer eingetragen.

N M
kundenNr: int
konten: Collection

Kunde

kontoNr: int
besitzer: Collection

Konto

Bild 27-14 Bidirektionale N-zu-M-Beziehung

Aus dem Klassendiagramm in Bild 27-14 kann entnommen werden, dass die bidi-
rektionale N-zu-M-Beziehung in der objektorientierten Welt durch den Einsatz von
Collections – beispielsweise eines Objektes vom Typ Set<E> oder Vector<E> –
umgesetzt werden kann. Eine N-zu-M-Beziehung kann jedoch nicht direkt in die
relationale Welt des Datenmodells übertragen werden. Die N-zu-M-Beziehung muss
aufgelöst und in zwei 1-zu-N-Beziehungen übersetzt werden. Dazu wird zwischen
der Tabelle zum Abspeichern der Datensätze von Kunde-Objekten TAB_KUNDE und
von Konto-Objekten TAB_KONTO eine so genannte Join-Tabelle – beispielsweise
TAB_KUNDE_KONTO – eingefügt, in der jeweils die Fremdschlüssel der beiden Ta-
bellen TAB_KUNDE und TAB_KONTO eingetragen werden. Beide Tabellen –
TAB_KUNDE und TAB_KONTO – pflegen dann zu der KUNDE_KONTO-Tabelle jeweils
eine abbildbare 1-zu-N-Beziehung.

1 N TAB_KUNDE TAB_KUNDE_KONTO TAB_KONTO 1 N

ID_KONTO INT ID_KUNDE INT ID INT PRIMARY KEY ID INT PRIMARY KEY

Bild 27-15 Relationales Datenmodell für die bidirektionale N-zu-M-Beziehung

Um in der objektorientierten Welt diesen Ansatz zu beschreiben, werden in den Klas-
sen Kunde und Konto folgende Annotations benötigt:

� Klasse Kunde

In der Klasse Kunde muss die Referenzvariable konten – bzw. die
dazugehörige get-Methode getKonten() – mit der Annotation
@javax.persistence.ManyToMany kommentiert werden.

1186 Kapitel 27

Des Weiteren benötigt man die Annotation @javax.persisten-
ce.JoinTable, mit der die Join-Tabelle definiert wird.

Von der Annotation @JoinTable müssen dann folgende Attribute gesetzt werden:

 – Attribute name

Hier wird der Name der Join-Tabelle angegeben, beispielsweise:

 name = "TAB_KUNDE_KONTO"

 – Attribut joinColumns

Dieses Attribut muss mit der Annotation @JoinColumn initialisiert werden. Mit
@JoinColumn wird dann der Name der Spalte in der Join-Tabelle angegeben,
in der die Fremdschlüssel der Datensätze für Kunde-Objekte abgespeichert
werden, z. B.:

 joinColumns = {@JoinColumn (name = "ID_KUNDE")}

 – Attribut inverseJoinColumns

Es wird hier für die Join-Tabelle der Name der Spalte angegeben, der die
Fremdschlüssel der korrespondierenden Tabelle enthält, also der Tabelle
TAB_KONTO. Die Angabe des Spaltennamens erfolgt wiederum über die
Annotation @JoinColumn:

inverseJoinColumns = {@JoinColumn (name = "ID_KONTO")}

 Insgesamt wird die Methode getKonten() folgendermaßen annotiert:

 @ManyToMany
 @JoinTable (name = "TAB_KUNDE_KONTO",
 joinColumns = {@JoinColumn (name = "ID_KUNDE")},
 inverseJoinColumns = {@JoinColumn (name = "ID_KONTO")})
 public Collection<Konto> getKonten() {return konten;}

� Klasse Konto

In der Klasse Konto muss die Referenzvariable besitzer – oder
die dazugehörige get-Methode getBesitzer() – mit der Anno-
tation @ManyToMany annotiert werden.

Hierbei wird das Attribut mappedBy auf den Wert konten gesetzt:

 @ManyToMany (mappedBy = "konten")
 public Collection<Kunde> getBesitzer()
 {
 return besitzer;
 }

Enterprise JavaBeans 3.1 1187

Es folgen die wichtigsten Passagen der Klassen Kunde und Konto:

@Entity
@Table (name = "TAB_KUNDE")
public class Kunde implements java.io.Serializable
{
 private int kundenNr;
 private Collection<Konto> konten = new ArrayList<Konto>();

 @Id
 @GeneratedValue
 public int getKundenNr()
 {
 return kundenNr;
 }

 @ManyToMany
 @JoinTable (name = "TAB_KUNDE_KONTO",
 joinColumns = {@JoinColumn (name = "ID_KUNDE")},
 inverseJoinColumns = {@JoinColumn (name= " ID_KONTO")})
 public Collection<Konto> getKonten()
 {
 return konten;
 }

}

@Entity
@Table (name = "TAB_KONTO")
public class Konto implements java.io.Serializable
{
 private int knr;
 private Collection<Kunde> besitzer =
 new ArrayList<Kunde>();

 @Id
 @GeneratedValue
 public int getKnr()
 {
 return knr;
 }

 @ManyToMany (mappedBy = "konten")
 public Collection<Kunde> getBesitzer ()
 {
 return besitzer;
 }

}

1188 Kapitel 27

N-zu-M-Beziehung (unidirektional)

Eine unidirektionale N-zu-M-Beziehung liegt dann vor, wenn beispielsweise die Kon-
to-Objekte nicht die Kunde-Objekte referenzieren würden. Um diesen Fall zu kon-
struieren, müsste in der Klasse Konto die Referenzvariable besitzer entfernt wer-
den. Die Klasse Kunde bliebe hingegen unangetastet.

27.9 Übungen

In dieser Übungsaufgabe werden Sie Schritt für Schritt eine einfache Bankanwen-
dung erstellen. Dazu erhalten Sie in jedem Schritt den fertigen Code und eine Erklä-
rung, wie vorzugehen ist. Ergänzend wird gezeigt, wie Sie mit dem Entity Manager
arbeiten können. Eine Bank soll durch die Stateless Session-Bean BankBean umge-
setzt werden. Dabei soll die Bank mehrere Konten und mehrere Kunden verwalten.
Ein Konto wird durch die Entity-Bean Konto beschrieben, ein Benutzer durch die
Entity-Bean Kunde. Es sollen die Implementierungen der Klassen Kunde und Konto
aus Kapitel 27.8.1.1 und Buchung mit der Primärschlüsselklasse BuchungPK aus
dem Kapitel 27.8.1.2 verwendet werden. Die Bank stellt folgende Funktionen bereit:

� Anlegen eines Kunden.
� Alle Kunden auflisten.
� Für einen Kunden ein Konto anlegen.
� Alle Konten eines Kunden anzeigen lassen.
� Ein Konto löschen.
� Den aktuellen Kontostand eines Kontos anzeigen lassen.
� Geld auf einem Konto einzahlen.
� Geld von einem Konto abheben.
� Beträge zwischen Konten umbuchen.
� Alle Buchungsvorgänge eines Kontos anzeigen lassen.
� Das Gesamtvermögen der Bank abfragen.
� Die Anzahl aller verwalteten Konten abfragen.

Aufgabe 27.1: Business-Interfaces

Es soll neben einem Remote Business-Interface auch ein lokales Business-Interface
bereitgestellt werden, damit ein Client, der sich in derselben virtuellen Maschine
befindet – beispielsweise ein Servlet – über das lokale Business-Interface auf die
Session-Bean zugreifen kann. Da die Session-Bean somit zwei Business-Interfaces
implementiert, die jeweils dieselben Methodenköpfe spezifizieren sollen, wird das
Interface Bank als herkömmliches Java-Interface definiert:

// Datei: Bank.java
package bank.beans;
import java.util.*;
import bank.hilfsklassen.*;

public interface Bank
{
 public int kundeAnlegen (String vorname, String nachname)
 throws BankException;
 public Collection<KundeData> zeigeKunden();

Enterprise JavaBeans 3.1 1189

 public int kontoAnlegen (int kundenNr) throws BankException;
 public Collection<KontoData> zeigeKonten (int kundenNr)
 throws BankException;
 public double kontoLoeschen (int knr) throws BankException;
 public double gibKontostand (int knr) throws BankException;
 public void einzahlen (int knr, double betrag)
 throws BankException;
 public double abheben (int knr, double betrag)
 throws BankException;
 public void buchen (int vonKnr, int nachKnr, double betrag)
 throws BankException;
 public Collection<BuchungData> gibKontoauszug (int knr);
 public double gibBankvermoegen();
 public int gibAnzahlKonten();
}

Einige Methoden werfen eine Exception vom Typ BankException:

// Datei: BankException.java

package bank.hilfsklassen;

public class BankException extends Exception
{
 public BankException (String msg)
 {
 super (msg);
 }
}

Durch die Schnittstelle Bank wird weder das lokale noch das Remote Business-Inter-
face spezifiziert. Für diesen Zweck werden die Schnittstellen BankRemote als Re-
mote Business-Interface und BankLocal als lokales Business-Interface eingeführt.
Beide Schnittstellen leiten jeweils von der Schnittstelle Bank ab:

// Datei: BankRemote.java
package bank.beans;
import javax.ejb.Remote;
@Remote
public interface BankRemote extends Bank
{}

// Datei: BankLocal.java
package bank.beans;
import javax.ejb.Local;
@Local
public interface BankLocal extends Bank
{}

Dadurch wird sichergestellt, dass beide Business-Interfaces stets dieselben Metho-
denköpfe spezifizieren. Würde man hingegen die Methodenköpfe in beiden Schnitt-
stellen parallel anschreiben, so birgt die so entstehende Code-Redundanz die Ge-
fahr, dass der Quellcode versehentlich "auseinander läuft", wenn die Methodenköpfe
geändert werden müssen.

1190 Kapitel 27

Aufgabe 27.2: Stateless Session-Bean BankBean

Die Klasse BankBean ist eine Stateless Session-Bean und implementiert die beiden
Business-Interfaces BankRemote und BankLocal:

// Datei: BankBean.java

package bank.beans;

import java.sql.*;
import java.util.*;
import javax.ejb.*;
import javax.persistence.*;
import bank.hilfsklassen.*;

@Stateless
public class BankBean implements BankRemote, BankLocal
{
 @PersistenceContext (unitName = "Bank")
 public EntityManager em;

 public int kundeAnlegen (String vorname, String nachname)
 throws BankException
 {
 if ((vorname == null) || (vorname.equals ("")) ||
 (nachname == null) || (nachname.equals ("")))
 {
 throw new BankException ("Gueltigen Namen angeben.");
 }
 Kunde k = new Kunde (vorname, nachname);
 em.persist (k);
 return k.getKundenNr();
 }

 public Collection<KundeData> zeigeKunden()
 {
 Collection<KundeData> data = new Vector<KundeData>();
 Query q = em.createQuery ("FROM Kunde k");
 List<?> kunden = q.getResultList();
 for (Object o : kunden)
 {
 data.add (((Kunde)o).gibData());
 }
 return data;
 }

 public int kontoAnlegen (int kundenNr) throws BankException
 {
 Kunde kunde = em.find (Kunde.class, kundenNr);
 if (kunde == null)
 {
 throw new BankException ("Kunde unbekannt: " + kundenNr);
 }

 Konto k = new Konto (kunde);
 kunde.getKonten().add (k);

Enterprise JavaBeans 3.1 1191

 em.persist (kunde);
 return k.getKnr();
 }

 public Collection<KontoData> zeigeKonten (int kundenNr)
 throws BankException
 {
 Kunde kunde = em.find (Kunde.class, kundenNr);
 if (kunde == null)
 {
 throw new BankException ("Kunde unbekannt: " + kundenNr);
 }

 Collection<KontoData> data = new Vector<KontoData>();
 for (Object o : kunde.getKonten())
 {
 data.add (((Konto) o).gibData());
 }
 return data;
 }

 public double kontoLoeschen (int knr) throws BankException
 {
 Konto k = em.find (Konto.class, knr);
 if (k == null)
 {
 throw new BankException ("Konto unbekannt: " + knr);
 }

 em.remove (k);
 return k.getStand();
 }

 public void einzahlen (int knr, double betrag)
 throws BankException
 {
 Konto k = em.find (Konto.class, knr);

 if (k == null)
 {
 throw new BankException ("Konto unbekannt: " + knr);
 }

 double alt = k.getStand();
 k.setStand (alt + betrag);
 em.persist(k);
 sichereBuchung (-1, knr, betrag);
 }

 public double abheben (int knr, double betrag)
 throws BankException
 {
 Konto k = em.find (Konto.class, knr);
 if (k == null)
 {
 throw new BankException ("Konto unbekannt: " + knr);
 }

1192 Kapitel 27

 double alt = k.getStand();
 if ((alt - betrag) < 0)
 {
 throw new BankException ("Zu wenig Guthaben!");
 }

 k.setStand (alt - betrag);
 em.persist (k);
 sichereBuchung (knr, -1, betrag);
 return betrag;
 }

 public void buchen (int vonKnr, int nachKnr, double betrag)
 throws BankException
 {
 Konto von_k = em.find (Konto.class, vonKnr);
 if (von_k == null)
 {
 throw new BankException ("Konto nicht bekannt: " + vonKnr);
 }

 double von_alt = von_k.getStand();
 if ((von_alt - betrag) < 0)
 {
 throw new BankException ("Zu wenig Guthaben!");
 }

 Konto nach_k = em.find (Konto.class, nachKnr);
 if (nach_k == null)
 {
 throw new BankException ("Konto unbekannt: " + nachKnr);
 }

 double nach_alt = nach_k.getStand();
 von_k.setStand (von_alt - betrag);
 nach_k.setStand (nach_alt + betrag);
 em.persist (von_k);
 em.persist (nach_k);
 sichereBuchung (vonKnr, nachKnr, betrag);
 }

 public double gibKontostand (int knr) throws BankException
 {
 Konto k = em.find (Konto.class, knr);
 if (k == null)
 {
 throw new BankException ("Konto unbekannt: " + knr);
 }
 return k.getStand();
 }

 public Collection<BuchungData> gibKontoauszug (int knr)
 {
 Collection<BuchungData> ergebnis = new Vector<BuchungData>();
 Query q = em.createQuery ("FROM Buchung b WHERE "+
 "vonKnr = :knr OR nachKnr = :knr");
 q.setParameter ("knr", knr);

Enterprise JavaBeans 3.1 1193

 List<?> buchungen = q.getResultList();
 for (Object o : buchungen)
 {
 ergebnis.add (((Buchung) o).gibData());
 }
 return ergebnis;
 }

 public double gibBankvermoegen()
 {
 double vermoegen = 0.0;
 Query query = em.createQuery ("FROM Konto k");
 Collection<?> liste = query.getResultList();
 for (Object o : liste)
 {
 vermoegen += ((Konto) o).getStand();
 }
 return vermoegen;
 }

 public int gibAnzahlKonten()
 {
 Query query = em.createQuery ("FROM Konto k");
 Collection<?> liste = query.getResultList();
 return liste.size();
 }

 // Die Methode sichereBuchung() erzeugt ein Objekt
 // vom Typ Buchung und speichert dieses im Persistenz-
 // kontext ab. Dabei soll der Methode im Falle
 // einer Geldeinzahlung über die Methode einzahlen () eine
 // -1 für die von-Kontonummer und im Falle einer
 // Geldauszahlung über die Methode abheben() eine -1 für
 // die nach-Kontonummer übergeben werden.
 private void sichereBuchung (int von, int nach, double betrag)
 {
 Timestamp ts = new Timestamp (System.currentTimeMillis());
 long nano = System.nanoTime();
 Buchung b = new Buchung (von, nach, ts, nano, betrag);
 em.persist (b);
 }
}

Aufgabe 27.3: Datenklassen der Entity-Beans

Die Design-Strategie bei Enterprise JavaBeans schreibt vor, dass kein Client –
weder ein lokaler Client noch ein Remote-Client – eine Referenz auf eine Entity-Bean
erhalten soll. Einem Client wird lediglich eine Referenz auf eine Session-Bean zuge-
wiesen. Mit den Entity-Beans soll ein Client nicht in Berührung kommen.

Nun soll aber ein Client beispielsweise Informationen über einen Kunden, ein Konto
oder über Buchungen abfragen können. Für diesen Zweck werden für die drei Entity-
Beans die Datenklassen KundeData, KontoData und BuchungData definiert.
Diese Datenklassen sind reine Wrapper-Klassen, die lediglich die Daten der entspre-

1194 Kapitel 27

chenden Entity-Beans kapseln. Die Objekte dieser Wrapper-Klassen können dann
zum Client übertragen werden:

// Datei: KundeData.java

package bank.hilfsklassen;

import bank.beans.*;

public final class KundeData implements java.io.Serializable
{
 public int kundenNr;
 public String vorname;
 public String nachname;

 public KundeData (Kunde k)
 {
 this (k.getKundenNr(), k.getVorname(), k.getNachname());
 }

 public KundeData (int nr, String v, String n)
 {
 this.kundenNr = nr;
 this.vorname = v;
 this.nachname = n;
 }

 public String toString()
 {
 return vorname+" "+nachname+" (Kundennr: "+kundenNr+")";
 }
}

// Datei: KontoData.java

package bank.hilfsklassen;

import bank.beans.*;

public class KontoData implements java.io.Serializable
{
 public int knr;
 public double stand;
 public KundeData besitzer;

 public KontoData (int knr, double stand, KundeData besitzer)
 {
 this.knr = knr;
 this.stand = stand;
 this.besitzer = besitzer;
 }

 public String toString()
 {
 return "[Besitzer: "+besitzer+"] Knr: "+knr+", Stand: "+stand;
 }
}

Enterprise JavaBeans 3.1 1195

// Datei: BuchungData.java

package bank.hilfsklassen;

import java.sql.*;

public class BuchungData implements java.io.Serializable
{
 private int vonKnr;
 private int nachKnr;
 private double betrag;
 private Timestamp ts;

 public BuchungData (int vonKnr, int nachKnr, double betrag,
 Timestamp ts)
 {
 this.vonKnr = vonKnr;
 this.nachKnr = nachKnr;
 this.betrag = betrag;
 this.ts = ts;
 }

 public int getVonKnr()
 {
 return vonKnr;
 }

 public void setVonKnr(int i)
 {
 vonKnr = i;
 }

 public int getNachKnr()
 {
 return nachKnr;
 }

 public void setNachKnr (int i)
 {
 nachKnr = i;
 }

 public double getBetrag()
 {
 return betrag;
 }

 public void setBetrag (double b)
 {
 betrag = b;
 }

 public Timestamp getTs()
 {
 return ts;
 }

1196 Kapitel 27

 public void setTs (Timestamp t)
 {
 ts = t;
 }

 public String toString()
 {
 String msg = "";
 if (vonKnr == -1)
 {
 msg = "Einzahlung auf Knr "+nachKnr+": "+betrag+" Euro.";
 }
 else if (nachKnr == -1)
 {
 msg = "Auszahlung von Knr "+vonKnr+": "+betrag+" Euro.";
 }
 else
 {
 msg = "Buchung von Knr "+vonKnr+", nach Knr "+nachKnr+": "+
 betrag + " Euro.";
 }
 return msg;
 }
}

Aus diesem Grunde stellen die drei Entity-Beans Kunde, Konto und Buchung je-
weils eine Methode gibData() zur Verfügung, welche beim Aufruf eine Referenz
auf ein entsprechendes Daten-Objekt zurückgeben. Beispielsweise stellt die Entity-
Bean Kunde folgende Implementierung bereit:

public KundeData gibData()
{
 KundeData data =
 new KundeData (kundenNr, vorname, nachname);
 return data;
}

Durch den Aufruf wird die Klasse KundeData instantiiert und das erzeugte Objekt
mit den aktuellen Werten der Instanzvariablen der Klasse Kunde initialisiert.

Aufgabe 27.4: Remote Client

Die Klasse RemoteBankClient stellt eine Client-Anwendung dar, welche mit der
Session-Bean BankBean über ein Netzwerk, also remote, interagieren kann. Der
Client beschafft sich dabei eine Remote-Referenz auf die Session-Bean über einen
JNDI Lookup mit dem Namen Bank/BankBean/remote (siehe Kap. 0):

// Datei: RemoteBankClient.java

package bank.client;
import java.util.*;
import javax.annotation.*;
import javax.ejb.*;
import javax.naming.*;

Enterprise JavaBeans 3.1 1197

import bank.beans.*;
import bank.hilfsklassen.*;

public class RemoteBankClient
{
 public static void main (String[] args)
 {
 try
 {
 InitialContext ctx = new InitialContext();
 BankRemote bank =
 (BankRemote) ctx.lookup ("Bank/BankBean/remote");
 // Zwei Kunden anlegen
 int kunde1 = bank.kundeAnlegen ("Fritz", "Mueller");
 int kunde2 = bank.kundeAnlegen ("Klaus", "Meier");
 // Jedem Kunden zwei Konten zuweisen
 int kto1 = bank.kontoAnlegen (kunde1);
 int kto2 = bank.kontoAnlegen (kunde1);
 int kto3 = bank.kontoAnlegen (kunde2);
 int kto4 = bank.kontoAnlegen (kunde2);

 // Alle Konten des Kunden Mueller auflisten
 System.out.println ("Die Konten des Kunden Mueller sind:");
 Collection<KontoData> konten1 = bank.zeigeKonten (kunde1);
 for (KontoData k : konten1)
 {
 System.out.println (k);
 }

 // Auf die angelegten Konten wird Geld eingezahlt
 bank.einzahlen (kto1, 5000);
 bank.einzahlen (kto3, 5000);

 // Zwischen den Konten werden Betraege gebucht
 bank.buchen (kto1, kto4, 288);
 bank.buchen (kto3, kto2, 500);

 // Vom Konto mit der Kontonummer kto1 wird Geld abgehoben
 bank.abheben (kto1, 500);

 // Alle Buchungen des Kontos mit
 // der Kontonummer knr1 anzeigen
 System.out.println (
 "\nDie Buchungen des Kontos knr1 sind:");
 Collection<BuchungData> buchungen1 =
 bank.gibKontoauszug (kto1);
 for (BuchungData o : buchungen1)
 {
 System.out.println (o);
 }

 // Alle Konten des Kunden Mueller auflisten
 Collection<KontoData> konten2 = bank.zeigeKonten (kunde1);
 System.out.println (
 "\nDie Konten des Kunden Mueller sind:");

1198 Kapitel 27

 for (KontoData k : konten2)
 {
 System.out.println (k);
 }
 // Alle Konten des Kunden Meier auflisten
 System.out.println ("\nDie Konten des Kunden Meier sind:");
 Collection<KontoData> konten3 = bank.zeigeKonten (kunde2);
 for (KontoData k : konten3)
 {
 System.out.println (k);
 }

 // Bank-Statistik ausgeben:
 System.out.print ("\nGesamtes Bankvermoegen: ");
 System.out.println (bank.gibBankvermoegen());
 System.out.print ("Anzahl verwalteter Konten: ");
 System.out.println (bank.gibAnzahlKonten());
 }
 catch (Exception e)
 {
 System.out.println (e.getMessage());
 }
 }
}

Ein lokaler Client – beispielsweise ein Servlet – könnte auf die Session-Bean Bank-
Bean über das lokale Business-Interface BankLocal folgendermaßen zugreifen:

BankLocal bank = (BankLocal)
 ctx.lookup ("Bank/BankBean/local");

Aufgabe 27.5: Kompilieren der Quelldateien

Die Quelldateien der EJB-Applikation Bank sind wiederum in einem Arbeitsverzeich-
nis wie beispielsweise C:\work abgelegt.

Bild 27-16 Verzeichnisstruktur für die EJB Bank im Arbeitsverzeichnis C:\work

Vergleichbar zum Beispiel der Rechner-EJB aus Kapitel 27.7.2 befinden sich in den
darin enthaltenen Ordner bank\beans, bank\client und bank\hilfsklassen
folgende Quelldateien:

� Ordner bank\beans: Bank.java, BankRemote.java, BankLocal.java,
BankBean.java, Buchung.java, Konto.java, Kunde.java

� Ordner bank\client: RemoteBankClient.java
� Ordner bank\hilfsklassen: BankException.java, BuchungPK.java, Bu-
chungData.java, KundeData.java, KontoData.java

Enterprise JavaBeans 3.1 1199

Die Bank-EJB verwendet Code der Java Persistence-API. Diese API wird ebenfalls
mit dem JBoss ausgeliefert und befindet sich in der jar-Datei ejb3-persisten-
ce.jar im Verzeichnis client\ unter dem JBoss-Installationspfad. Diese API
muss dem Compiler zusätzlich über den CLASSPATH zur Verfügung stehen. Im
Folgenden wird die Kompilierung der verschiedenen Klassen vorgestellt:

� Übersetzung der Hilfsklassen

Da die Datenklassen der Entity-Beans KundeData, KontoData und Buchung-
Data mit dem Code der Entity-Beans arbeiten, muss für deren Übersetzung der
Code der EJB 3.0-API und der Java-Persistence-API dem Compiler zur Verfügung
stehen:

 <JAVA_HOME>\bin\javac
 -cp <JBOSS_HOME>\client\jboss-javaee.jar;
 <JBOSS_HOME>\client\ejb3-persistence.jar;
 bank\hilfsklassen*.java

� Übersetzung der EJBs

Zur Übersetzung der EJBs wird der Code der EJB 3.0-API und der Java Persisten-
ce-API benötigt:

 <JAVA_HOME>\bin\javac
 -cp <JBOSS_HOME>\client\jboss-javaee.jar;
 <JBOSS_HOME>\client\ejb3-persistence.jar;
 bank\beans*.java

� Übersetzung des Clients

Der Client hingegen verwendet nur den Bytecode der EJB 3.0-API und benötigt
nicht den Code der Java Persistence-API. Somit kann der Client lediglich unter
Einbindung der jar-Datei jboss-javaee.jar übersetzt werden:

 <JAVA_HOME>\bin\javac
 -cp <JBOSS_HOME>\client\jboss-javaee.jar;
 bank\client\RemoteBankClient.java

Aufgabe 27.6: Deployment-Prozess

Das Deployment verläuft nun in ähnlicherweise wie bei der Rechner-EJB. Es muss
jedoch der jar-Datei beans.jar, die den EJB-Bytecode enthalten wird, die Datei
META-INF\persistence.xml hinzugefügt werden. Es muss das Arbeitsverzeich-
nis also wiederum um den Ordner META-INF erweitert werden.

Bild 27-17 Arbeitsverzeichnis mit Ordner META-INF

1200 Kapitel 27

Im Ordner META-INF befinden sich dann wiederum der Deployment-Deskriptor für
Enterprise-Applikationen (siehe Kap. 27.7.3) application.xml, welcher direkt der
ear-Datei hinzugefügt wird, und die Datei persistence.xml. In der Datei appli-
cation.xml muss lediglich der Wert des XML-Elementes <display-name> ange-
passt und dort Bank eingetragen werden: <display-name>Bank</display-na-
me>.

Die jar-Datei beans.jar wird nun folgendermaßen erzeugt:

<JAVA_HOME>\bin\jar -cf beans.jar
 bank\beans*.class
 META-INF\persistence.xml

Des Weiteren müssen die Hilfsklassen wiederum zu der jar-Datei hilfsklas-
sen.jar zusammengefasst werden:

 <JAVA_HOME>\bin\jar -cf hilfsklassen.jar
 bank\hilfsklassen*.class

Letztendlich wird das ear-Archiv mit dem Namen Bank.ear durch folgenden
Kommandoaufruf erzeugt:

 <JAVA_HOME>\bin\jar -cf Bank.ear
 beans.jar hilfsklassen.jar META-INF\application.xml

Es kann nun das Deployment durch Kopieren der Datei Bank.ear in das deploy-
Verzeichnis (siehe Bild 27-8) des JBoss durchgeführt werden. In der Server-Konsole
dürfen wiederum keine Exceptions oder sonstige Fehlermeldungen erscheinen.
Zudem muss ersichtlich sein, dass der Persistenz-Kontext Bank für die "deployte"
EJB-Applikation angelegt wird.

 Die Ausgabe des Servers ist:

[EARDeployer] Init J2EE application:
 file:/C:/Programme/jboss/server/default/deploy/Bank.ear
.
[JmxKernelAbstraction] installing MBean:
 persistence.units:ear=Bank.ear,jar=beans.jar,unitName=Bank
.
[Ejb3Configuration] found EJB3 Entity bean: bank.beans.Buchung
[Ejb3Configuration] found EJB3 Entity bean: bank.beans.Konto
[Ejb3Configuration] found EJB3 Entity bean: bank.beans.Kunde
.
[AnnotationBinder] Binding entity from annotated class:
 bank.beans.Buchung
[EntityBinder] Bind entity bank.beans.Buchung on table TAB_BUCHUNG
[AnnotationBinder] Binding entity from annotated class:
 bank.beans.Konto
[EntityBinder] Bind entity bank.beans.Konto on table TAB_KONTO
[AnnotationBinder] Binding entity from annotated class:
 bank.beans.Kunde
[EntityBinder] Bind entity bank.beans.Kunde on table TAB_KUNDE
[CollectionBinder] Mapping collection: bank.beans.Kunde.konten ->
 TAB_KONTO
.
[EARDeployer] Started J2EE application:
 file:/C:/Programme/jboss/server/default/deploy/Bank.ear

Enterprise JavaBeans 3.1 1201

Der Applikations-Server bindet nun die Session-Bean an die beiden JNDI-Namen
Bank/BankBean/remote und Bank/BankBean/local.

Aufgabe 27.1: Starten des Clients

Die Client-Anwendung führt zum Auffinden der Session-Bean BankBean wiederum
einen JNDI Lookup durch. Er verwendet dazu den JNDI-Namen Bank/Bank-
Bean/remote. Der Client wird nun durch folgenden java-Aufruf gestartet:

<JAVA_HOME>\bin\java
 -cp <JBOSS_HOME>\client\jbossall-client.jar;
 <JBOSS_HOME>\client\jnp-client.jar;
 .\bank\hilfsklassen*;
bank.client.RemoteBankClient

Es muss wiederum die Datei jndi.properties im Arbeitsverzeichnis vorliegen,
damit auf den Namensdienst des JBoss über JNDI zugegriffen werden kann.

Die Ausgabe des Programms ist:

Die Konten des Kunden Mueller sind:
[Besitzer: Fritz Mueller (Kundennr: 1)] Knr: 1, Stand: 0.0
[Besitzer: Fritz Mueller (Kundennr: 1)] Knr: 2, Stand: 0.0

Die Buchungen des Kontos knr1 sind:
Einzahlung auf Knr 1: 5000.0 Euro.
Buchung von Knr 1, nach Knr 4: 288.0 Euro.
Auszahlung von Knr 1: 500.0 Euro.

Die Konten des Kunden Mueller sind:
[Besitzer:Fritz Mueller (Kundennr:1)] Knr: 1, Stand:4212.0
[Besitzer:Fritz Mueller (Kundennr:1)] Knr: 2, Stand: 500.0

Die Konten des Kunden Meier sind:
[Besitzer:Klaus Meier (Kundennr: 2)] Knr: 3, Stand: 4500.0
[Besitzer:Klaus Meier (Kundennr: 2)] Knr: 4, Stand: 288.0

Gesamtes Bankvermoegen: 9500.0
Anzahl verwalteter Konten: 4

Anhang A Der ASCII-Zeichensatz
Der ASCII-Zeichensatz ist die US-nationale Ausprägung des ISO-7-Bit-Codes (ISO
646). Eine weitere nationale Ausprägung des ISO-7-Bit-Codes ist der nach DIN
66003 spezifizierte deutsche Zeichensatz, bei dem die Zeichen Ä, Ö, Ü, ä, ö, ü und ß
berücksichtigt wurden. Im DIN-Zeichensatz sind gegenüber dem ASCII-Zeichensatz
folgende Änderungen vorgenommen worden:

[=Ä \=Ö]=Ü {=ä |=ö }=ü ~=ß

Bei manchen Rechnern wie z. B. beim IBM-PC wird aber ein erweiterter ASCII-
Zeichensatz eingesetzt, bei dem alle 8 Bits verwendet werden. Die ersten 128
Zeichen stimmen dabei mit dem 7-Bit ASCII-Code in Tabelle überein. Die Sonder-
zeichen Ä, Ö, Ü, ä, ö, ü und ß befinden sich dabei im Bereich 128-255.

Wie aus Tabelle A-1 und Tabelle A-3 ersichtlich ist, enthält der ASCII-Zeichensatz
Buchstaben, Ziffern, Sonderzeichen und Steuerzeichen. Da jedem Zeichen im Rah-
men des jeweiligen Codes eine 7- bzw. 8-stellige Binärzahl eindeutig zugeordnet ist
und die Binärzahlen selbst eine geordnete Menge darstellen, bilden damit in jedem
dieser Codes die Zeichen eine geordnete Menge. Es gibt für die Zeichen also ein
vorher (<) und nachher (>), sodass die Zeichen dem Code entsprechend alphabe-
tisch sortiert werden können.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

ASCII-Zeichensatz 1203

Dez. Hex. Ctrl-Ch. Char. Dez. Hex. Char. Dez. Hex. Char. Dez. Hex. Char.
0 00 ^@ 32 20 64 40 @ 96 60 �
1 01 ^A � 33 21 ! 65 41 A 97 61 a

2 02 ^B � 34 22 " 66 42 B 98 62 b

3 03 ^C � 35 23 # 67 43 C 99 63 c

4 04 ^D 	 36 24 $ 68 44 D 100 64 d

5 05 ^E
 37 25 % 69 45 E 101 65 e

6 06 ^F � 38 26 & 70 46 F 102 66 f

7 07 ^G � 39 27 ’ 71 47 G 103 67 g

8 08 ^H � 40 28 (72 48 H 104 68 h

9 09 ^I
 41 29) 73 49 I 105 69 i

10 0A ^J � 42 2A * 74 4A J 106 6A j

11 0B ^K � 43 2B + 75 4B K 107 6B k

12 0C ^L � 44 2C , 76 4C L 108 6C l

13 0D ^M � 45 2D - 77 4D M 109 6D m

14 0E ^N � 46 2E . 78 4E N 110 6E n

15 0F ^O � 47 2F / 79 4F O 111 6F o

16 10 ^P � 48 30 0 80 50 P 112 70 p

17 11 ^Q � 49 31 1 81 51 Q 113 71 q

18 12 ^R � 50 32 2 82 52 R 114 72 r

19 13 ^S � 51 33 3 83 53 S 115 73 s

20 14 ^T ¶ 52 34 4 84 54 T 116 74 t

21 15 ^U § 53 35 5 85 55 U 117 75 u

22 16 ^V � 54 36 6 86 56 V 118 76 v

23 17 ^W � 55 37 7 87 57 W 119 77 w

24 18 ^X � 56 38 8 88 58 X 120 78 x

25 19 ^Y � 57 39 9 89 59 Y 121 79 y

26 1A ^Z � 58 3A : 90 5A Z 122 7A z

27 1B ^[� 59 3B ; 91 5B [123 7B {

28 1C ^\ � 60 3C < 92 5C \ 124 7C |

29 1D ^] � 61 3D = 93 5D] 125 7D }

30 1E ^^ � 62 3E > 94 5E ^ 126 7E ~

31 1F ^_ 63 3F ? 95 5F _ 127 7F !

Tabelle A-1 Der ASCII-Zeichensatz mit 128 Zeichen

In der Spalte Control-Character (Steuerzeichen), abgekürzt durch Ctrl-Ch., werden
spezielle Tastenkombinationen angegeben, mit denen Steuerzeichen erzeugt wer-
den können. Hierbei kann es je nach Betriebssystem auch geringfügige Modifikatio-
nen geben. Die ersten 32 ASCII-Zeichen stellen Steuerzeichen für die Ansteuerung
von Peripheriegeräten und die Steuerung einer rechnergestützten Datenübertragung
dar. Diese Zeichen tragen die Namen:

Dez. Symbol Dez. Symbol Dez. Symbol Dez. Symbol Dez. Symbol Dez. Symbol
0 NUL 6 ACK 12 FF 18 DC2 24 CAN 30 RS

1 SOH 7 BEL 13 CR 19 DC3 25 EM 31 US

2 STX 8 BS 14 SO 20 DC4 26 SUB

3 ETX 9 HAT 15 SI 21 NAK 27 ESC

4 EOT 10 LF, NL 16 DLE 22 SYN 28 FS

5 ENQ 11 VT 17 DC1 23 ETB 29 GS

Tabelle A-2 Namen der 32 Steuerzeichen des ASCII-Zeichensatzes

So ist beispielsweise FF die Abkürzung für Form Feed, d. h. Seitenvorschub, oder
CR die Abkürzung für Carriage Return, dem Wagenrücklauf, der schon von der
Schreibmaschine her bekannt ist.

1204 Anhang A

Dez Hex Char Dez Hex Char Dez Hex Char Dez Hex Char Dez Hex Char Dez Hex Char

0 00 43 2B + 86 56 V 129 81 ü 172 AC ¼ 215 D7 �
1 01 � 44 2C , 87 57 W 130 82 é 173 AD ¡ 216 D8 �
2 02 � 45 2D - 88 58 X 131 83 â 174 AE « 217 D9 �
3 03 � 46 2E . 89 59 Y 132 84 ä 175 AF » 218 DA �
4 04 	 47 2F / 90 5A Z 133 85 à 176 B0 " 219 DB �
5 05
 48 30 0 91 5B [134 86 å 177 B1 # 220 DC 	
6 06 � 49 31 1 92 5C \ 135 87 ç 178 B2 $ 221 DD

7 07 � 50 32 2 93 5D] 136 88 ê 179 B3 % 222 DE �
8 08 � 51 33 3 94 5E ^ 137 89 ë 180 B4 & 223 DF �
9 09
 52 34 4 95 5F _ 138 8A è 181 B5 ' 224 E0 α
10 0A � 53 35 5 96 60 � 139 8B ï 182 B6 (225 E1 β
11 0B � 54 36 6 97 61 a 140 8C î 183 B7) 226 E2 Γ
12 0C � 55 37 7 98 62 b 141 8D ì 184 B8 * 227 E3 π
13 0D � 56 38 8 99 63 c 142 8E Ä 185 B9 + 228 E4 Σ

14 0E � 57 39 9 100 64 d 143 8F Å 186 BA , 229 E5 σ
15 0F � 58 3A : 101 65 e 144 90 É 187 BB - 230 E6 μ
16 10 � 59 3B ; 102 66 f 145 91 æ 188 BC . 231 E7 τ
17 11 � 60 3C < 103 67 g 146 92 Æ 189 BD / 232 E8 φ

18 12 � 61 3D = 104 68 h 147 93 ô 190 BE 0 233 E9 θ

19 13 � 62 3E > 105 69 i 148 94 ö 191 BF 1 234 EA Ω
20 14 ¶ 63 3F ? 106 6A j 149 95 ò 192 C0 � 235 EB δ
21 15 § 64 40 @ 107 6B k 150 96 û 193 C1 2 236 EC ∝
22 16 � 65 41 A 108 6C l 151 97 ù 194 C2 3 237 ED ∅
23 17 � 66 42 B 109 6D m 152 98 ÿ 195 C3 4 238 EE ε

24 18 � 67 43 C 110 6E n 153 99 Ö 196 C4 5 239 EF ∩
25 19 � 68 44 D 111 6F o 154 9A Ü 197 C5 6 240 F0 ≡
26 1A � 69 45 E 112 70 p 155 9B ¢ 198 C6 7 241 F1 ±
27 1B � 70 46 F 113 71 q 156 9C £ 199 C7 8 242 F2 ≥
28 1C � 71 47 G 114 72 r 157 9D ¥ 200 C8 9 243 F3 ≤

29 1D � 72 48 H 115 73 s 158 9E : 201 C9 ; 244 F4 �
30 1E � 73 49 I 116 74 t 159 9F ƒ 202 CA < 245 F5 �
31 1F 74 4A J 117 75 u 160 A0 á 203 CB = 246 F6 ÷

32 20 75 4B K 118 76 v 161 A1 í 204 CC > 247 F7 ≈

33 21 ! 76 4C L 119 77 w 162 A2 ó 205 CD ? 248 F8 @
34 22 " 77 4D M 120 78 x 163 A3 ú 206 CE A 249 F9 •
35 23 # 78 4E N 121 79 y 164 A4 ñ 207 CF B 250 FA ⋅
36 24 $ 79 4F O 122 7A z 165 A5 Ñ 208 D0 C 251 FB √
37 25 % 80 50 P 123 7B { 166 A6 ª 209 D1 D 252 FC E
38 26 & 81 51 Q 124 7C | 167 A7 º 210 D2 F 253 FD ²

39 27 ’ 82 52 R 125 7D } 168 A8 ¿ 211 D3 G 254 FE H

40 28 (83 53 S 126 7E ~ 169 A9 I 212 D4 J 255 FF
41 29) 84 54 T 127 7F ! 170 AA ¬ 213 D5 K
42 2A * 85 55 U 128 80 Ç 171 AB ½ 214 D6 L

Tabelle A-3 Der erweiterte ASCII-Zeichensatz (256 Zeichen)

Anhang B Gültigkeitsbereiche von Namen

Unter dem Gültigkeitsbereich eines einfachen Namens versteht
man den Bereich im Programm, innerhalb dessen die Deklaration
des Namens bekannt ist.

Qualifizierte Namen dienen zum Zugriff auf die Komponenten eines
Pakets und auf die Methoden und Datenfelder von Referenztypen
wie einer Klasse oder Schnittstelle.

Soll beispielsweise in einer Klasse eine Klasse eines anderen Pakets benutzt wer-
den, so erfolgt der Zugriff mit Hilfe eines qualifizierten Namens. Ein qualifizierter
Name besteht aus einem Namen, einem Punkt und einem Bezeichner. Hierbei ver-
steht man unter einem Bezeichner einen einfachen Namen.

Ähnliche Zugriffsformen sind die Zugriffe auf Datenfelder und Methoden von Objek-
ten über Referenzen. Diese Zugriffe erfolgen auch mit Hilfe des Punkt-Operators.

Bei den im Folgenden erörterten Gültigkeitsbereichen geht es nicht um Zugriffe von
außen, sondern um die Gültigkeit von Namen, die bei ihrer Deklaration, d. h. wenn
sie dem Compiler bekannt gegeben werden, stets einfache Namen sind.

Deklarationen können in Teilen ihres Gültigkeitsbereichs verdeckt werden durch
andere Deklarationen mit demselben Namen. Wird der entsprechende Name durch
eine weitere Einheit mit demselben Namen verdeckt, so ist der Name immer noch
gültig, aber nicht sichtbar, da bei seiner Verwendung der Zugriff auf die verdeckende
Einheit erfolgt. Ein Beispiel für das Verdecken ist das Verdecken eines Datenfeldes
mit dem Namen x durch eine lokale Variable mit dem Namen x, oder das Verdecken
einer Marke in einem äußeren Block durch eine Marke mit demselben Namen in
einem inneren Block.

Wird ein Name nicht verdeckt, so kann innerhalb des Gültigkeitsbereichs über den
Namen auf die entsprechende Einheit Bezug genommen werden.

Nicht immer führt ein gleicher Name dazu, dass ein anderer Name verdeckt wird.
Durch die Verwendung von Kontexten kann Java Namenskonflikte minimieren. So
dürfen beispielsweise Typen, Methoden und Datenfelder in Java denselben Namen
tragen. Aus der Verwendung wird dabei klar, um was es sich jeweils handelt.

1206 Anhang B

Man unterscheidet zwischen den Gültigkeitsbereichen:

• von Paketen,
• von importierten Klassen und Schnittstellen,
• eines Klassen- oder Schnittstellennamens,
• von Datenfeldern und Methoden innerhalb einer Klasse oder einer

Schnittstelle,
• von formalen Parametern einer Methode oder eines Konstruktors,
• von lokalen Variablen innerhalb eines Blocks,

• von lokalen Variablen, die in der Initialisierungsklausel einer for-
Schleife definiert werden,

• und eines Exception-Parameters in einem catch-Block.

B 1 Pakete

Pakete entsprechen Verzeichnissen in der Verzeichnisstruktur eines Speichermedi-
ums. Auf welche Pakete auf der obersten Ebene zugegriffen werden kann, d. h. wel-
che Paketnamen auf der obersten Ebene gültig sind, wird durch Einstellungen auf
der Betriebssystem-Ebene festgelegt.

B 2 Importierte Klassen und Schnittstellen

Wird ein Klassenname oder ein Schnittstellenname in einer Übersetzungseinheit
(Datei) importiert, so ist er ab der import-Vereinbarung in der ganzen Überset-
zungseinheit sichtbar. Dies gilt für einen vollständig qualifizierten Namen wie z. B.:

import java.awt.Frame;

ebenso wie für die Verwendung von Wildcards

import java.awt.*;

Werden Wildcards verwendet, so werden alle entsprechenden public-Typen des
genannten Pakets importiert, sofern sie benötigt werden. Die Gültigkeit der im-
portierten Namen erstreckt sich nur auf die Datei, nicht auf das gesamte Paket.

B 3 Klassen und Schnittstellennamen

Der Gültigkeitsbereich einer in einem Paket definierten Klasse oder Schnittstelle be-
zieht sich auf alle Übersetzungseinheiten (Dateien) des Pakets. Eine Vorwärtsde-
klaration ist nicht erforderlich.

B 4 Datenfelder und Methoden innerhalb einer Klasse
 oder einer Schnittstelle

Wenn ein Attribut, d. h. ein Datenfeld oder eine Methode, in einer Klasse oder
Schnittstelle definiert wird oder von der Klasse bzw. Schnittstelle geerbt wird, so ist
das Attribut – unabhängig von der Reihenfolge der Attribute – in der gesamten Defi-

Gültigkeitsbereiche von Namen 1207

nition der Klasse bzw. Schnittstelle gültig, es sei denn, es wird ein Datenfeld zur Ini-
tialisierung eines Datenfeldes benutzt. Ist dies der Fall, dann muss das zur Initiali-
sierung verwendete Datenfeld bereits selbst definiert sein, wenn es zur Initialisierung
eines Datenfeldes herangezogen wird. Deshalb wird beim folgenden Beispiel ein
Fehler erzeugt.

// Datei: Inittest.java

class Inittest
{
 int alpha = beta; //nicht zulässig
 int beta = 3;
}

Die Meldung des Compilers lautet:

Inittest.java:5: illegal forward reference
 int alpha = beta; //nicht zulässig

Zulässig ist aber:

// Datei: Inittest2.java

class Inittest2
{
 Inittest2()
 {
 alpha = 3;
 }

 int beta = 1;
 int alpha;
}

Ebenso ist zulässig:

// Datei: Inittest3.java

class Inittest3
{
 int alpha = beta;
 static int beta = 3;
}

da eine Klassenvariable bereits beim Laden initialisiert wird.

B 5 Formale Parameter bei Methoden und Konstruktoren

Der Gültigkeitsbereich des Namens eines formalen Parameters ist der ganze Metho-
denrumpf. Es ist nicht zulässig, den Namen eines formalen Parameters zu ver-
decken, d. h. der Name eines formalen Parameters kann nicht für die Definition einer
lokalen Variablen oder eines Exception-Parameters innerhalb der Methode verwen-
det werden. Auf formale Parameter kann nur unter Verwendung ihres einfachen

1208 Anhang B

Namens, nicht aber mit einem qualifizierten Namen Bezug genommen werden. For-
male Parameter eines Konstruktors werden wie formale Parameter von Methoden
behandelt.

B 6 Lokale Variablen innerhalb eines Blocks

Der Gültigkeitsbereich einer lokalen Variablen ist der Rest des Blocks ab der Defi-
nition der Variablen einschließlich weiterer Definitionen im Rahmen ihrer Deklara-
tionsanweisung. Lokale Variablen verlieren am Ende ihres Blockes ihre Gültigkeit.

B 7 Lokale Variablen in einer for-Anweisung

Der Gültigkeitsbereich einer lokalen Variablen, die im Initialisierungskonstrukt einer
for-Schleife definiert wird, erstreckt sich über die Initialisierungsklausel mit
der eigenen Definition und den Definitionen rechts davon, über den Ausdruck
BoolescherAusdruck, die Aktualisierungs-Ausdrucksliste und schließ-
lich die Anweisung. An die Stelle der Anweisung kann ein Block treten. Nach der
Schleife verlieren die in der Initialisierungsklausel definierten Variablen ihre Gültig-
keit.

Das folgende Beispiel demonstriert den Gültigkeitsbereich einer in der Initialisie-
rungsklausel definierten lokalen Variablen i:

// Datei: Calc.java

class Calc
{
 public static void main (String [] args)
 {
 for (int n = 10; n <= 15; n++)
 {
 int summe = 0;
 for (int i = 1, j = n; i <= n / 2; i++, j--)
 summe = summe + i + j;
 // i ist nicht mehr gültig
 if (n % 2 != 0)
 summe = summe + n / 2 + 1;
 System.out.println ("Die Summe von 1 bis " + n + " ist: "
 + summe);
 }
 }
 // n ist nicht mehr gültig
}

Die Ausgabe des Programms ist:

Die Summe von 1 bis 10 ist: 55
Die Summe von 1 bis 11 ist: 66
Die Summe von 1 bis 12 ist: 78
Die Summe von 1 bis 13 ist: 91
Die Summe von 1 bis 14 ist: 105
Die Summe von 1 bis 15 ist: 120

Gültigkeitsbereiche von Namen 1209

Wird versucht, auf i bzw. n nach der jeweiligen Schleife zuzugreifen, so resultiert ein
Kompilierfehler.

B 8 Parameter eines Exception-Handlers

Ein catch-Konstrukt besitzt genau einen Parameter, den Exception-Parameter, als
formalen Parameter in der Liste der Übergabeparameter:

catch (Exceptiontyp name)
{ //
 // catch-Block
} //

Der Gültigkeitsbereich des Exception-Parameters erstreckt sich auf den catch-
Block. Der Name des Exception-Parameters darf nicht verdeckt werden, d. h. es darf
kein lokaler Parameter oder keine Exception mit demselben Namen im catch-Block
definiert werden. Nach dem catch-Block verliert der Exception-Parameter seine
Gültigkeit. Wird er nach dem catch-Block verwendet, so resultiert ein Kompilierfeh-
ler. Dies zeigt das folgende Beispiel:

// Datei: Except.java

class Except
{
 Except()
 {
 try
 {
 }
 catch (ArrayIndexOutOfBoundsException e)
 {
 e.getMessage();
 }
 e.getMessage();
 }
}

Die Meldung des Compilers lautet:

Except.java:14: cannot find symbol
symbol : variable e
location: class Except
 e.getMessage();

Auf Exception-Parameter kann nur über einfache Namen, nicht über qualifizierte Na-
men Bezug genommen werden.

Anhang C Die Klasse System
Die Klasse System stellt eine Reihe systemnaher Methoden und Variablen zur Ver-
fügung. Da alle Methoden und Variablen dieser Klasse statisch (static) sind, ist es
nicht notwendig, eine Instanz der Klasse zu erzeugen. Dieser Umstand wird zu-
sätzlich erzwungen, da alle Konstruktoren der Klasse System als private dekla-
riert sind. Die Klasse System befindet sich im Paket java.lang. Im Folgenden wer-
den die wichtigsten Methoden der Klasse System aufgezeigt.

C 1 Die Klassenvariablen in, out und err

Die wohl am häufigsten benötigten Elemente der Klasse System sind mit Sicherheit
die beiden Klassenvariablen in und out. Sie dienen zur Ein-/Ausgabe von Zeichen
und Zeichenketten. So wurde in den Buchkapiteln schon häufig der Aufruf Sys-
tem.out.println() verwendet, um Text auf dem Bildschirm auszugeben. Analog
dazu wurden Texteingaben des Benutzers mit Hilfe von System.in.readLine()
über die Tastatur eingelesen. Ein Aufruf sah z. B. so aus:

System.out.println (�Geben Sie Ihren Namen ein: �);
String name = System.in.readLine();

Neben in und out beinhaltet die Klasse System mit err eine weitere Variable zur
Textausgabe. Diese Variable funktioniert analog zu out, dient aber dazu, Fehler-
meldungen auszugeben. Dadurch ist eine Trennung zwischen normaler Textausgabe
und erweiterten Meldungen wie z. B. Fehlermeldungen möglich. Wird die Standard-
ausgabe out in eine Datei umgeleitet, so können dennoch Fehlermeldungen über
die Variable err auf dem Bildschirm ausgegeben werden.

Hinter den drei Variablen in, out und err stehen Objekte verschiedener Stream-
Klassen. Die beiden Klassenvariablen out und err sind vom Typ PrintStream.
PrintStream ist eine Klasse, die zum Ausgeben von Text auf der Konsole ver-
wendet wird. Die Klassenvariable in ist vom Typ InputStream und wird zum Ein-
lesen von Zeichen verwendet.

Die Klasse System ermöglicht es dem Programmierer, den Datenstrom auf eigene
Stream-Objekte umzulenken. Beispielsweise können Textausgaben in eine Datei
umgeleitet werden oder die Daten für eine Texteingabe aus einer Datei gelesen wer-
den. Hierzu werden die folgende Methoden zur Verfügung gestellt:

static void setIn (InputStream in)
static void setOut (PrintStream out)
static void setErr (PrintStream err)

C 2 Properties

Properties bieten Informationen über das Betriebssystem. Eine Property ist ein
Wertepaar bestehend aus einem Schlüssel und dem dazugehörenden Wert. Diese
Daten werden jeweils in einem String gehalten. Die Klasse System beinhaltet eine
Instanz der Klasse java.utils.Properties. Auf diese Instanz kann über die

Die Klasse System 1211

Klassenmethode getProperties() zugegriffen werden. Über die Klassenmethode
setProperties() kann die Instanz gesetzt werden.

Das direkte Arbeiten mit der Klasse java.utils.Properties ist in der Regel
nicht notwendig, da die Klasse System die folgenden Methoden zur Verfügung stellt:

static String setProperty (String key, String value)
static String getProperty (String key)

So lässt sich mit der Methode setProperty() eine bestehende Property abändern
oder eine neue Property anlegen. Dies sieht folgendermaßen aus:

System.setProperty (�MyProperty�, �Meine eigene Property�);
System.out.println (System.getProperty (�MyProperty�));

Die Ausgabe des Programms ist:

Meine eigene Property

Die Laufzeitumgebung stellt standardmäßig folgende Properties zur Verfügung:

Property Bedeutung
file.separator Trennzeichen für die Bestandteile eines Pfadnamens
java.class.path Aktueller Klassenpfad
java.class.version Versionsnummer der verwendeten Java-Klassenbibliothek
java.home Installationsverzeichnis der Java-Laufzeitumgebung
java.vendor Herstellerspezifische Zeichenkette der Java-Laufzeitumgebung
java.vendor.url Internet-Link zum Hersteller der Java-Laufzeitumgebung
java.version Versionsnummer der verwendeten Java-Laufzeitumgebung
line.separator Zeilenendezeichen
os.arch Betriebssystem-Architektur
os.name Name des Betriebssystems
os.version Versionsnummer des Betriebssystems
path.separator Trennzeichen zwischen einzelnen Pfadnamen
user.dir Aktuelles Arbeitsverzeichnis
user.home Home-Verzeichnis des angemeldeten Benutzers
user.name Name des angemeldeten Benutzers

Tabelle C-1 Properties

C 2.1 Beenden der Java-Laufzeitumgebung

Die Klasse System beinhaltet eine Klassenmethode zum sofortigen Beenden der
Laufzeitumgebung. Diese Methode ist folgendermaßen definiert:

static void exit (int status);

Durch den Aufruf dieser Methode werden das Programm und die dazugehörige Lauf-
zeitumgebung beendet. Der Parameter dient als Statuscode. Es ist eine Konvention,
dass ein von 0 verschiedener Statuscode eine abnormale Beendigung anzeigt. Ein
Ablauf im Fehlerfall könnte folgendermaßen aussehen:

1212 Anhang C

if (isVerbindungVerfuegbar() == false)
{
 System.out.println (�Verbindung nicht verfügbar!�);
 System.exit (5);
}

C 2.2 Weitere Methoden

Die Klasse System bietet weitere Methoden an, von denen zwei hier noch näher er-
läutert werden sollen. Die anderen Methoden werden der Vollständigkeit halber noch
kurz erwähnt.

Manchmal ist es wünschenswert, den Garbage Collector direkt zu starten. Hierfür
bietet die Klasse System eine Methode gc() an, mit der eine Speicherbereinigung
durch die Garbage Collection angefordert werden kann. Es ist allerdings zu beach-
ten, dass dadurch der Garbage Collector nicht explizit aufgerufen wird. Der Metho-
denaufruf kann eine Speicherbereinigung durch den Garbage Collector nur erbitten
und keinesfalls erzwingen. Die Methode gc() ist wie folgt definiert:

static void gc();

Die zweite Methode, die hier vorgestellt werden soll, ermöglicht es dem Programmie-
rer, die seit dem 1.1.1970 verstrichene Zeit in Millisekunden zu ermitteln. Diese Me-
thode hat die folgende Syntax:

static long currentTimeMillis();

Es folgt ein kleines Beispiel, welches 5 Sekunden lange wartet:

long timeSnap = System.currentTimeMillis();
while (System.currentTimeMillis() < timeSnap + 5000);

Anhang D JNDI
Verzeichnisdienste spielen für verteilte Systeme eine große Rolle, da sie das Auffin-
den der verteilten Systemkomponenten ermöglichen. Verzeichnisdienste unterstüt-
zen das Speichern und Abfragen diverser Informationen über Benutzer, Rechner,
Anwendungen und Netzwerke. Verzeichnisdienste verwenden oft so genannte Na-
mensdienste, um die Informationen in einer verständlicheren Sprache für den Be-
nutzer leichter zugänglich zu machen.

Das folgende Kapitel behandelt das Java Naming and Directory Interface, kurz
JNDI. JNDI wurde mit dem JDK 1.3 eingeführt. Es stellt eine einheitliche Schnittstelle
für den Zugriff auf Namens- und Verzeichnisdienste zur Verfügung. Somit verbirgt die
JNDI-API den verwendeten Dienst und stellt eine allgemeine Zugriffsmöglichkeit dar.
Des Weiteren bietet JNDI die Möglichkeit, auf Basis des so genannten Service Pro-
vider Interfaces eigene Namensdienste zu realisieren. Die Dienste der Service Pro-
vider können mittels eines Plugin-Mechanismus von JNDI zugänglich gemacht wer-
den. Es wird zwischen Namens- und Verzeichnisdienst unterschieden.

Ein Namensdienst stellt eine Zuordnung zwischen Namen und Objekten her. Die
Zuordnung eines Namens zu einem Objekt wird Bindung (engl. binding) genannt.
Das Auffinden eines Objektes über dessen Namen mit Hilfe des Namensdienstes
wird als Namensauflösung (engl. lookup) bezeichnet. Der Namensdienst gibt ent-
weder eine lokale Referenz oder eine Remote-Referenz (siehe Kap. 25) auf das
gesuchte Objekt zurück.

Wird eine lokale Referenz zurückgegeben, so bedeutet dies, dass sich das referen-
zierte Objekt in derselben virtuellen Maschine wie der Client befindet. Das vom
Namens- bzw. Verzeichnisdienst erfragte Objekt wird dann als Kopie zum Client
übertragen. Im Gegensatz dazu werden von Client-Server-Anwendungen so genann-
te Proxy305- oder Stellvertreter-Objekte verwendet, um den Zugriff auf entfernte
Objekte zu ermöglichen. Der Client bekommt dabei ein Stellvertreter-Objekt des
eigentlich gesuchten Objektes zurückgeliefert, wobei dieses Stellvertreter-Objekt
dann eine Remote-Referenz auf das gesuchte Objekt darstellt, das sich auf einem
anderen Rechner – oder zumindest in einer anderen virtuellen Maschine – befindet.
Als Beispiele für den Zugriff auf entfernte Objekte über einen Stellvertreter sind die
EJB-Architektur (siehe Kap. 27) oder die RMI-Middleware zu sehen.

JNDI ist dabei selbst in der Lage, Objekte, welche sich außerhalb des Namens-
dienstes befinden, zu verwalten. Es macht für den Client beim Lookup keinen
Unterschied, wo sich das Objekt befindet, da JNDI die Art und Weise, wie Objekte
verwaltet werden, vor dem Client versteckt.

305 Proxy-Objekte entsprechen lokalen Stellvertretern von entfernten Objekten.

1214 Anhang D

Namensdienst

NameX ObjektX

Bindung

NameY ObjektY

Bindung

NameZ ObjektZ

Bindung

Client

NameZ

ObjektZ

Bild D-1 Namensdienst

Verzeichnisdienste bieten gegenüber einem Namensdienst erweiterte Funktionalität
an. Mit Hilfe eines Verzeichnisdienstes können Objekte in einer hierarchischen Ver-
zeichnisstruktur abgelegt und verwaltet werden. Zusätzlich stehen Mechanismen zur
Verfügung, um Attribute für Objekte zu definieren, welche in eine Suche miteinbezo-
gen werden können. Ein gutes Beispiel für einen Verzeichnisdienst ist das Dateisys-
tem eines Computers. Dort sind die Verzeichnisse und Dateien hierarchisch abgelegt
und besitzen zusätzliche Informationen wie z. B. Größe, Typ oder Erstelldatum.

Verzeichnisdienst

NameX ObjektX

Bindung

NameY ObjektY

Bindung

NameZ ObjektZ

Bindung

Client

NameZ

ObjektZ

Attribut
Attribut

Attribut
Attribut

Attribut
Attribut

Bild D-2 Verzeichnisdienst

D 1 Die JNDI-Architektur

Die JNDI-Architektur selber setzt sich aus drei Teilen zusammen:

� JNDI API

Die JNDI API bietet den Zugriff auf vorhandene Namens- und Verzeichnisdienste
an, die durch verschiedene Service Provider zur Verfügung gestellt werden. JNDI
definiert dafür eine Schnittstelle, mit der einheitlich auf verschiedene Namens- und
Verzeichnisdienste zugegriffen werden kann. Diese Abstraktion ermöglicht ein
Austauschen des Dienstes, ohne dass der Client von diesem Austausch etwas
mitbekommt. Er ist somit unabhängig vom verwendeten Dienst und kann jeden
Dienst auf dieselbe Weise ansprechen, so lange dieser Dienst die JNDI-Spezifi-
kation einhält.

JNDI 1215

� JNDI SPI

Das JNDI Service Provider Interface dient dazu, einen eigenen Dienst, der einen
Zugriff auf einen Namens- bzw. Verzeichnisdienst bietet, in den Naming Manager
(siehe unten) zu integrieren und somit Anwendungen zur Verfügung zu stellen.

� Naming Manager

Der Naming Manager verwaltet die verschiedenen Namensanfragen und liefert die
passenden Ergebnisse an die jeweilige Anwendung zurück. JNDI stellt den Na-
ming Manager als Vermittler zwischen der JNDI API und dem JNDI SPI zur Verfü-
gung. Er ermöglicht das Erstellen von so genannten Kontexten, welche von den
Service Providern den Clients zugänglich gemacht werden.

Das folgende Bild D-3 zeigt die Zusammenhänge der einzelnen JNDI-Komponenten.

Java Anwendung

Naming Manager

JNDI API

JNDI SPI

LDAP DNS RMI CORBA

Verzeichnis- bzw.
Namensdienst LDAP

Server
COS DNS

Server
RMI
Registry

 Service Provider

Bild D-3 JNDI- Architektur

Java-Anwendungen können über die JNDI API auf den entsprechenden Namens-
bzw. Verzeichnisdienst zugreifen. Der Naming Manager übernimmt dabei die korrek-
te Zuordnung zwischen dem Client und dem Dienst.

D 2 Kontexte und Namensräume

Mit Namens- und Verzeichnisdiensten eng verbunden ist der Begriff Kontext. Alle
Operationen auf diese Dienste, wie z. B. Binden, Suchen und Löschen von Objekten,
erfolgen relativ zu einem Kontext.

Ein Kontext entspricht einer Menge von Name-Objekt-Bindungen.

Befindet sich ein Kontext relativ zu einem anderen Kontext, so wird von einem so
genannten Subkontext gesprochen. Dieser Sachverhalt kann am besten am Bei-

1216 Anhang D

spiel eines Dateisystems veranschaulicht werden. Ein Ordner A stellt einen Kontext
dar. Enthält der Ordner A einen weiteren Ordner B als Unterverzeichnis, so entspricht
der Ordner B ebenfalls einem Kontext und stellt einen Subkontext bezüglich des Kon-
text von A dar.

Für den Einsatz von JNDI ist weiterhin der Begriff Namensraum wichtig.

Als Namensraum wird die Menge aller möglichen gültigen Namen
innerhalb eines Namendienstes bezeichnet. Namensräume dienen vor
allem zur Ordnung von Namen innerhalb des Dienstes.

Dabei kann die Anordnung der Namen flach oder hierarchisch sein. Flach bedeutet,
dass sich alle Namen auf einer einzigen Ebene befinden. Um sich diesen Ansatz
besser vorstellen zu können, kann ein einzelner Ordner betrachtet werden, in dem
sich ausschließlich Dateien befinden. Ein hierarchischer Aufbau würde dann dem
von Windows bekannten Dateisystem mit verschachtelten Ordnern entsprechen.
Hierarchische Namensräume haben den Vorteil, dass durch die Baumstruktur Na-
men doppelt vorkommen dürfen, da sie relativ zu ihrem Kontext gesehen werden.
Weiterhin wird durch die bessere Strukturierung die Lokalisierung von Objekten
erleichtert. Als Beispiel sei hier der Domain Name Service306 (DNS) genannt, wel-
cher die Namen in einer hierarchischen Baumstruktur verwaltet.

Bevor Operationen, wie z. B. Binden, Suchen und Löschen auf einen Namens- oder
Verzeichnisdienst ausgeführt werden können, muss ein so genannter initialer
Kontext festgelegt werden. Dieser definiert den Startpunkt und stellt somit die Wur-
zel dar, von der aus alle Namensoperationen erfolgen. Die Zugriffe erfolgen anschlie-
ßend relativ zu diesem Startpunkt. Zugriffe dienen vor allem der Suche nach ge-
wünschten Objekten innerhalb des festgelegten Kontextes oder eines Subkontextes.

D 3 Aufbau von Namen

Der Aufbau von Namen innerhalb eines Namensdienstes muss syntaktischen Regeln
entsprechen. Die Namenskonventionen sind vom jeweiligen Service Provider ab-
hängig. Das DNS-System baut beispielsweise seine Namen (Adressen) mittels Punkt
. auf. Im Gegensatz dazu werden Verzeichnisstrukturen im UNIX-Dateisystem durch
Schrägstriche / getrennt. Weiterhin ist zu beachten, dass selbst die Leserichtung
differiert. Hierarchische Adressen werden von rechts nach links gelesen, während
Verzeichnispfade genau umgekehrt interpretiert werden.

Jeder Namensdienst hat eine eigene Namenskonvention. Namen ver-
schiedener Service Provider können sich demnach unterscheiden. So-
mit kann ein Unterschied in der Syntax, wie z. B. die Leserichtung, die
zulässigen Zeichen und verwendete Trennzeichen, vorhanden sein.

Ebenfalls können Mischformen bei der Namensbildung auftreten. Dies entspricht
einer Verknüpfung von mehreren Namensräumen. Das folgende Beispiel zeigt eine

306 DNS wird zur Umsetzung von Domainnamen in IP-Adressen und umgekehrt verwendet.

JNDI 1217

URL, die aus einer Adresse und einer Verzeichnisstruktur besteht und betrifft demzu-
folge die Namensräume des DNS-Systems (siehe D 2) und eines Dateisystems:

foo.bar.com/ordner/datei.html

Dabei entspricht foo.bar.com einer Adresse und /ordner/datei.html einer
Dateisystemstruktur.

Namen können sich aus unterschiedlichen Bestandteilen zusammensetzen:

� Atomarer Name

Ein atomarer Name (engl. atomic name) ist ein nicht zerlegbarer Teil eines zusam-
mengesetzten Namens in einem bestimmten Kontext. In obiger URL entspricht
z. B. bar einem atomaren Namen.

� Zusammengesetzter Name

Ein zusammengesetzter Name (engl. compound name) ist ein Name innerhalb
eines Namensraums. Dieser wird aus atomaren Namen hierarchisch aufgebaut.
Somit stellen foo.bar.com und /ordner/datei.html zusammengesetzte Na-
men dar.

� Zusammengefasster Name

Das Zusammenfassen mehrerer compound names wird als zusammengefasster
Name (engl. composite name) bezeichnet. Ein solcher Name besteht somit aus
zusammengesetzten Namen verschiedener Namensräume. Die komplette oben
beschriebene URL entspricht daher einem composite name.

Manche Komponenten-Frameworks spezifizieren standardisierte, globale JNDI-Na-
men, um einen Zugriff auf Namensdienste zu ermöglichen, so wie zum Beispiel EJB
3.1. Dies hat den Vorteil, dass die Namen unabhängig vom eingesetzten Applika-
tions-Server stets gleich sind. Diese standardisierten Namen werden bei EJB 3.1
nach folgendem Schema gebildet:

java:global[/<Anwendungs-Name>]/<Module-Name>/<Name Bean-
Klasse>#<Interface-Name>

D 4 Anordnung von Objekten im Namensdienst

Dieses Kapitel befasst sich mit der Speicherung von Objekten in einem Namens-
dienst, ohne detailliert auf die Implementierung einzugehen. Wie oben bereits er-
wähnt, werden Objekte in einer Struktur innerhalb eines Dienstes abgelegt. Die An-
ordnung erfolgt meist in einer hierarchischen Baumstruktur, dessen Einstiegspunkt
dem initialen Kontext entspricht.

Jeder Ast im Baum entspricht einem Subkontext. Die Blätter stellen
die Bindungen zwischen einem Namen und einem Objekt innerhalb
eines Kontextes dar.

1218 Anhang D

Für die Bindung der Objekte an einen Namen verwenden die Service Provider eine
Map-Implementierung. Der Einsatz einer Map ermöglicht die Zuordnung von Schlüs-
seln zu Werten. Das JDK stellt durch die Collection-API307 einige Klassen wie z. B.
die Klasse java.util.Hashtable<K,V> bereit, die das Interface Map<K,V> im-
plementieren. Die Subkontexte werden ebenfalls in dieser Map abgelegt. Bei einer
Anfrage muss der Service Provider rekursiv entlang eines Pfades im Baum die Maps
der jeweiligen Kontexte durchlaufen, bis das gesuchte Objekt gefunden ist. Zur
besseren Illustration dient das Bild D-4:

Initialer
Kontext

Subkontexte

Bindungen

Bild D-4 Hierarchischer Dienst

D 5 Namens- und Verzeichnisdienste in Java verwenden

Das JDK bietet vier Service Provider-Module an, um auf folgende Dienste zuzugrei-
fen:

� Lightweight Directory Access Protocol (LDAP)308,
� CORBAs Common Object Services (COS),
� DNS-Systeme,
� Java RMI Registry.

Applikations-Server wie z. B. JBoss (siehe Kap. 27) müssen ebenfalls einen Na-
mensdienst bereitstellen. Für den Zugriff auf den Namensdienst bietet der Applika-
tions-Server-Hersteller wiederum eine geeignete Schnittstelle an, die der JNDI-Spe-
zifikation entspricht. Im Folgenden werden die notwendigen Schritte erklärt, um auf
einen dieser Namens- bzw. Verzeichnisdienste zugreifen zu können.

Die zentralen Klassen für den Zugriff auf einen Namens- bzw. Verzeichnisdienst stel-
len die Klassen javax.naming.InitialContext bzw. javax.naming.Ini-
tialDirContext dar. Dabei implementiert die Klasse InitialContext das
javax.naming.Context-Interface und die Klasse InitialDirContext die
Schnittstelle javax.naming.DirContext. Beide Schnittstellen deklarieren Metho-
denköpfe, die beispielsweise für das Binden und das Auffinden von Objekten benö-
tigt werden. So deklariert das Interface Context unter anderem den Methodenkopf

void bind (String name, Object obj)

mit der das Objekt obj innerhalb eines Kontexts an den Namen name gebunden
wird.

307 Siehe Kap. 18.
308 LDAP ist ein offenes Netzwerkprotokoll zum Zugriff auf Verzeichnisdienste. LDAP wird vor allem

verwendet für Ressourcen-, Benutzer- und Zertifikatsverwaltung.

JNDI 1219

� Die Klasse InitialContext stellt den Startpunkt für sämtliche
Operationen in einem Namensdienst dar.

� Die Klasse InitialDirContext stellt den Startpunkt für sämtli-
che Operationen in einem Verzeichnisdienst dar.

� Ein Context-Objekt entspricht einem Knoten innerhalb der Struk-
tur eines Dienstes.

D 5.1 Zugriff auf einen Namensdienst

Im Folgenden wird davon ausgegangen, dass auf einen Namensdienst zugegriffen
wird. Der Zugriff auf einen Verzeichnisdienst erfolgt analog dazu. Anstatt eines Ob-
jektes der Klasse InitialContext wird dann ein Objekt vom Typ InitialDir-
Context verwendet.

Beim Zugriff auf einen Namensdienst sind nun folgende Schritte durchzuführen:

� Setzen von Parametern für das Erzeugen eines InitialContext-Objektes
� Instanziieren eines InitialContext-Objektes
� Aufrufen der lookup()-Methode, um eine Referenz auf das gewünschte Objekt

zu erhalten.

Die konkrete Implementierung des initialen Kontexts wird zur Laufzeit bestimmt. Wel-
che tatsächliche Ausprägung des Context-Interfaces für das Instanziieren des Ini-
tialContext-Objektes von der Laufzeitumgebung gewählt wird, kann über Konfi-
gurationseinstellungen festgelegt werden. In den Einstellungen sind der Service Pro-
vider anzugeben, der eine Implementierung zur Verfügung stellt und der Ort, um die-
sen Dienst zu lokalisieren.

Die Konfigurationseinstellungen werden im Konstruktor der InitialContext-Klas-
se per Hashtable<K,V>-Objekt übergeben. Neben der Angabe des zu verwenden-
den Service Providers können weitere Einstellungen – beispielsweise bezüglich Se-
curity oder der zu verwendeten Sprache – gemacht werden. Einige Einstellungen
sind wiederum vom verwendeten Service Provider abhängig.

Hashtable<String, String> env =
 new Hashtable<String, String>();

env.put (Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context.PROVIDER_URL,
 "ldap:389//ldap.foo.com");

Context context = new InitialContext (env);

Der obige Codeausschnitt benutzt einen Service Provider für den Zugriff auf einen
LDAP-Server. Die Provider-URL legt fest, unter welcher Adresse der JNDI-Dienst zu
finden ist.

Die Konfiguration, um ein InitialContext-Objekt zu erstellen, kann über ver-
schiedene Arten erfolgen. Im obigen Codefragment wird ein Hashtable<String,

1220 Anhang D

String>-Objekt verwendet, um Konfigurationsinformationen zu übergeben. Alterna-
tiv dazu können auch so genannte Systemeigenschaften gesetzt werden. Das Set-
zen von Systemeigenschaften kann auf unterschiedliche Weise erfolgen:

� Setzen im Programmcode

Bevor eine Instanz von InitialContext erzeugt wird, sind über die Methode
setProperty() der Klasse System die gewünschten Eigenschaften zu setzen:

 System.setProperty ("java.naming.factory.initial",
 "com.sun.jndi.ldap.LdapCtxFactory");
 System.setProperty ("java.naming.provider.url",
 "ldap:389//ldap.foo.com");

Die beiden Einträge führen zum selben Ergebnis wie bei der Verwendung des
obigen Hashtable<String, String>-Objektes.

� Anlegen einer jndi.properties-Datei

Die Systemeigenschaften können auch in einer Datei mit dem Namen jndi.pro-
perties abgelegt werden. JNDI liest automatisch diese Datei ein, wenn sie sich
innerhalb des Klassenpfades oder im lib-Verzeichnis des Java Runtime Environ-
ment-Verzeichnisses befindet. Das folgende Beispiel zeigt die Einträge in der
jndi.properties Datei, um einen CORBA-Namensdienst anzusprechen:

java.naming.factory.initial=
 com.sun.jndi.cosnaming.CNCtxFactory
java.naming.provider.url=iiop://localhost:1050

� Setzen beim Programmstart in der Kommandozeile

Als letzte Variante können die Systemeigenschaften beim Starten des Programms
über den Schalter D gesetzt werden.

 java -Djava.naming.factory.initial=
 com.sun.jndi.cosnaming.CNCtxFactory
 -Djava.naming.provider.url=iiop://localhost:1050

Als die beste Variante kann das Setzen der Konfiguration über die jndi.proper-
ties gesehen werden. Sie ermöglicht eine schnelle und flexible Anpassung aller
Clients und wirkt sich nicht auf deren Quellcode aus. Falls eine individuelle An-
passung pro Client notwendig ist, ist das Setzen über die Kommandozeile zu bevor-
zugen.

Ein Objekt im Kontext wird über die Methode lookup() gesucht. Existiert zum ange-
gebenen Namen eine passende Objekt-Bindung, so wird eine Referenz auf das Ob-
jekt zurückgegeben:

Object object = context.lookup ("name");

Zur Ermittlung der durch den Kontext gebundenen Objekte stehen unter anderem die
beiden Methoden zur Verfügung:

� NamingEnumeration<NameClassPair> list (String name):

JNDI 1221

Mit der Methode list() werden alle an den Kontext gebundenen Objekte zu-
rückgegeben. Der Rückgabewert ist ein Objekt vom Typ NamingEnumera-
tion<T>, welches Referenzen auf NameClassPair-Objekte enthält. Ein Name-
ClassPair-Objekt beinhaltet den Namen eines Objektes und den Namen der da-
zugehörigen Klasse.

� NamingEnumeration<Binding> listBindings (String name):

Die Methode listBindings() gibt ebenfalls ein NamingEnumeration-Objekt
zurück. Allerdings referenziert das NamingEnumeration<T>-Objekt Objekte vom
Typ Binding. Die Binding-Klasse kapselt den Namen des Objektes, sowie die
Referenz auf das Objekt und repräsentiert somit eine Name-Objekt-Bindung.

Zum Ablegen von Objekten in einem bestimmten Kontext können die Methoden

void bind (String name, Object obj)

bzw.

void rebind (String name, Object obj)

verwendet werden. Mit bind() wird ein Objekt an einen Namen gebunden und eine
neue Bindung erzeugt. Falls der Name im Kontext schon vorhanden ist, wird eine
Exception vom Typ javax.naming.NameAlreadyBoundException geworfen.
Die rebind()-Methode hingegen überschreibt evtl. vorhandene Bindungen. Beide
Methoden bewirken das Speichern des Objektes unter dem angegebenen Namen in
der Map des Namensdienstes. Weitere nützliche Methoden des Interfaces Context
sind:

� void unbind (String name)

Um bestehende Bindungen zu lösen, wird unbind() aufgerufen. Dadurch wird
der Eintrag in der Map des angesprochenen Kontexts gelöscht.

� void rename (String alterName, String neuerName)

Mit Hilfe der rename()-Methode können bestehende Bindungen umbenannt
werden. Es wird eine NameAlreadyBoundException geworfen, falls ein Objekt
schon unter dem neuen Namen gebunden ist.

� Context createSubcontext (String name)

Die createSubcontext()-Methode bietet die Möglichkeit, einen Subkontext zu
erstellen und diesen an den initialen Kontext oder einen Kontext zu binden, der
direkt oder indirekt über das InitialContext-Objekt referenziert wird.

Das folgende Beispiel illustriert den Zugriff auf einen JBoss309-Namensdienst. Bevor
Objekte im Namensdienst abgespeichert werden können, muss der JBoss-Applika-
tions-Server gestartet werden. Danach kann die JMX310-Konsole mittels

http://localhost:8080/jmx-console/

309 Der Applikations-Server JBoss wird in Kapitel 27.7 vorgestellt.
310 Siehe Kap. 33 auf der beiligenden CD.

1222 Anhang D

im Browser angezeigt werden:

Bild D-5 JMX-Konsole

Über den Link service=JNDIView kann der interne Namensdienst beobachtet wer-
den. Um sich die Baumstruktur des Namensdienstes anzeigen zu lassen, muss über
den Button invoke die list()-Methode aufgerufen werden.

Bild D-6 Aufrufen der list()-Methode

Danach erscheint im Browser der Baum des JBoss-Namensdienstes, wovon in Bild
D-7 ein Ausschnitt dargestellt ist. Es ist zu erkennen, dass beispielsweise unter dem
Namen queue/DLQ eine Referenz auf ein Objekt vom Typ org.jboss.jms.des-
tination.JBossQueue gebunden ist.

Bild D-7 Baumstruktur des Namensdienstes

JNDI 1223

Bisher sind noch keine eigenen Name-Objekt-Bindungen innerhalb des JBoss-Na-
mensdienstes erzeugt worden. Die folgende Klasse JBossClient bindet zwei Ob-
jekte an den JBoss-Namensdienst. Dabei wird ein String-Objekt im initialen Kon-
text unter dem Namen bindName abgelegt. Danach wird ein Sub-Kontext bezüglich
des initialen Kontext mit dem Namen subkontext erzeugt. Darin wird ebenfalls ein
String-Objekt unter dem Namen subkontext/weitererName gebunden. Für das
Binden der Objekte wird dabei stets die Methode bind() verwendet. Nach dem
Binden werden die Referenzen auf die zuvor gebundenen String-Objekte mittels
lookup() wieder abgefragt. Zum Ausführen des folgenden Programms muss noch
die Bibliothek jbossall-client.jar eingebunden werden, die sich im Verzeich-
nis <JBOSS_HOME>/client befindet:

// Datei: JBossClient.java

// Im Paket javax.naming liegen die Schnitt-
// stellen und Klassen der JNDI-API
import javax.naming.*;

public class JBossClient
{
 public static void main (String[] args)
 {
 // Es müssen die folgenden vier System-
 // eigenschaften gesetzt werden
 System.setProperty ("java.naming.provider.url",
 "jnp://localhost:1099");
 System.setProperty ("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");
 System.setProperty ("java.naming.factory.url.pkgs",
 "org.jboss.naming:org.jnp.interfaces");
 System.setProperty ("jnp.socket.Factory",
 "org.jnp.interfaces.TimedSocketFactory");
 try
 {
 // Der initiale Kontext wird erzeugt
 Context initialerContext = new InitialContext();
 System.out.println ("Initialer Kontext erzeugt\n");
 // Das String-Objekt, dessen Referenz in der Referenz-
 // variable ref hinterlegt ist, wird unter dem
 // Namen "bindName" im initialen Kontext gebunden.
 String ref = new String ("String-Objekt");
 initialerContext.bind ("bindName", ref);
 System.out.println ("Objekt \"" + ref + "\" unter dem " +
 "Namen " + "\"bindName\" im initialen Kontext gebunden\n");

 // Innerhalb des initialen Kontextes wird ein Sub-
 // Kontext mit dem Namen "subkontext" erzeugt
 Context subContext =
 initialerContext.createSubcontext ("subkontext");
 System.out.println("Sub-Kontext \"subkontext\" erzeugt\n");

 // Es wird ebenfalls eine Name-Objekt-Bindung erzeugt
 ref = new String ("Objekt im Sub-Kontext");
 subContext.bind ("weitererName", ref);

1224 Anhang D

 System.out.println ("Objekt \""+ref+"\" unter dem Namen "+
 "\"weitererName\" im Sub-Kontext gebunden\n");

 // Aus dem initialen Kontext wird nun wieder die Referenz
 // auf das String-Objekt, das dort unter dem Namen bindName
 // gebunden ist, ausgelesen.
 String stringObjekt1 =
 (String) initialerContext.lookup ("bindName");
 System.out.println ("String-Objekt \"" + stringObjekt1 +
 "\" vom initialen Kontext mit \"bindName\" abgefragt\n");

 // Aus dem Sub-Kontext wird nun das unter dem
 // Namen weitererName abgelegte Objekt abgefragt
 String stringObjekt2 =
 (String) subContext.lookup ("weitererName");
 System.out.println ("String-Objekt \"" + stringObjekt2 +
 "\" vom Sub-Kontext mit \"weitererName\" abgefragt\n");

 // Vom initialen Kontext aus ist das im Sub-Kontext
 // "subkontext" gebundene Objekt unter dem Namen
 // subkontext/weitererName erreichbar
 stringObjekt2 = (String) initialerContext.lookup (
 "subkontext/weitererName");
 System.out.println ("String-Objekt \"" + stringObjekt2 +
 "\" vom initialen Kontext mit " +
 "\"subkontext/weitererName\" abgefragt");
 }
 catch (NamingException e)
 {
 System.out.println ("Fehler: " + e.getMessage());
 }
 }
}

 Die Ausgabe des Programms ist:

Initialer Kontext erzeugt

Objekt "String-Objekt" unter dem Namen "bindName" im
initialen Kontext gebunden

Sub-Kontext "subkontext" erzeugt

Objekt "Objekt im Sub-Kontext" unter dem Namen
"weitererName" im Sub-Kontext gebunden

String-Objekt "String-Objekt" vom initialen Kontext mit
"bindName" abgefragt

String-Objekt "Objekt im Sub-Kontext" vom Sub-Kontext mit
"weitererName" abgefragt

String-Objekt "Objekt im Sub-Kontext" vom initialen Kontext
mit "subkontext/weitererName" abgefragt

JNDI 1225

Wird nun erneut der Baum des JBoss-Namensdienstes abgerufen, so ist zu erken-
nen, dass jetzt unter den beiden Namen bindName und subkontext/weiterer-
Name jeweils ein String-Objekt gebunden ist. Das Bild D-8 zeigt wiederum den in-
teressanten Ausschnitt.

Bild D-8 Ausschnitt des Namensdienstes nach Ausführen des Programms

D 5.2 Benutzung von Verzeichnisdiensten

Ein wichtiger Aspekt bei der Organisation von Objekten in Verzeichnisdiensten ist,
komplexe Suchanfragen formulieren zu können. Das Interface DirContext erwei-
tert das Context-Interface um Methoden, die das Suchen von Objekten über Attri-
bute erlauben. Die Attribute werden aus diesem Grund mit Objekten in Bezug ge-
setzt. Ein Verzeichnisdienst kann somit auch als eine Art Branchenverzeichnis gese-
hen werden.

Das Interface javax.naming.directory.Attribute repräsentiert ein Attribut,
welches einem Objekt zugeordnet ist. Falls eine ganze Sammlung von Attributen
benötigt wird, kann auf das Interface javax.naming.directory.Attributes
zurückgegriffen werden.

Um eine Suche im Verzeichnisdienst durchzuführen, muss die search()-Methode
eines Objektes vom Typ DirContext ausgeführt werden. Diese search()-Metho-
de ist in mehreren Ausprägungen vorhanden. Generell muss immer der Kontext, in
dem gesucht werden soll, übergeben werden. Als Suchkriterien können dann ent-
weder die oben genannten Attribute oder aber reguläre Ausdrücke verwendet wer-
den. Es wird stets ein Objekt vom Typ javax.naming.NamingEnumeration<T>
zurückgegeben.

Das folgende Programm soll den beschriebenen Sachverhalt anhand eines Zugriffs
auf einen Active Directory311-Dienst verdeutlichen. Dabei ist zu beachten, dass die
Domain HSA.local vorliegt, in welcher der Benutzer mit dem Namen "Daniel
Förster" eingetragen ist. Sowohl die Domäne als auch der Benutzer werden durch
Knoten – also Kontexte – im Namensdienst abgespeichert. Die Kontexte für die
Benutzer befinden sich unterhalb der Domain-Kontexte:

// Datei: ActiveDirectoryClient.java

import java.util.Hashtable;
import javax.naming.*;
import javax.naming.directory.*;

public class ActiveDirectoryClient
{

311 Active Directory ist ein Verzeichnisdienst von Microsoft Windows 2000/2003 Server, wo Infor-

mationen über das Netzwerk wie Benutzer, Gruppen und Computer gespeichert werden können.

1226 Anhang D

 public static void main (String[] args)
 {
 Hashtable<String, String> env =
 new Hashtable<String, String>();

 env.put (Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 env.put (Context.PROVIDER_URL, "ldap://192.168.0.203:389");
 env.put (Context.SECURITY_AUTHENTICATION, "simple");
 env.put (Context.SECURITY_PRINCIPAL, "HSA\\Daniel");
 env.put (Context.SECURITY_CREDENTIALS, "passwort");

 try
 {
 DirContext context = new InitialDirContext (env);

 // Alle Attribute von
 // Daniel Förster.Users.HSA.local ausgeben.
 System.out.println ("Der Knoten Daniel Förster.Users." +
 "HSA.local besitzt die Attribute:");
 Attributes alleAttribute = context.getAttributes
 ("cn=Daniel Förster,cn=Users,dc=HSA,dc=local");

 NamingEnumeration attributeEnum =
 alleAttribute.getAll();

 while (attributeEnum.hasMore())
 {
 Attribute attr = (Attribute) attributeEnum.next();
 System.out.print ("\n" + attr.getID());

 NamingEnumeration values = attr.getAll();
 while (values.hasMore())
 {
 // Ausgabe der Attribut-Werte wird aus
 // Übersichtlichkeitsgründen weggelassen.
 values.next();
 }
 }

 System.out.println ("\n\nSuche über regulären " +
 "Ausdruck in Subkontexten von HSA.local:");

 SearchControls cons = new SearchControls();
 cons.setSearchScope (SearchControls.SUBTREE_SCOPE);

 NamingEnumeration<SearchResult> suchErgebnisseReg =
 context.search ("dc=HSA,dc=local",
 "(&(objectclass=user)(cn=Daniel Förster))",
 cons);
 ActiveDirectoryClient.ausgabe (suchErgebnisseReg);

 System.out.println("\nSuche über " +
 "Attribut-Klassen im Kontext " +
 "Users.HSA.local:");

JNDI 1227

 DirContext sub =
 (DirContext) context.lookup
 ("cn=Users,dc=HSA,dc=local");
 Attributes matchingAttribute = new BasicAttributes();
 matchingAttribute.put
 (new BasicAttribute ("objectclass", "user"));
 matchingAttribute.put
 (new BasicAttribute ("cn", "Daniel Förster"));
 NamingEnumeration<SearchResult> suchErgebnisse =
 sub.search ("", matchingAttribute);

 ActiveDirectoryClient.ausgabe (suchErgebnisse);
 }
 catch (NamingException e)
 {
 e.printStackTrace();
 }
 }

 public static void ausgabe (
 NamingEnumeration<SearchResult> suchErgebnisse)
 {
 try
 {
 while (suchErgebnisse.hasMoreElements())
 {
 SearchResult suchErgebnis =
 suchErgebnisse.next();

 Attributes attribute =
 suchErgebnis.getAttributes();
 Attribute benutzer =
 attribute.get ("userPrincipalName");
 Attribute benutzerGruppe =
 attribute.get ("primaryGroupID");
 Attribute accountVerfall =
 attribute.get ("accountExpires");

 System.out.println ("Benutzer: " +
 benutzer.get());
 System.out.println ("Der Benutzer gehört" +
 "zur Gruppe mit der ID: " +
 benutzerGruppe.get());
 System.out.println ("Account verfällt: " +
 accountVerfall.get() +
 " Sekunden nach dem 1.1.1970");
 }
 }
 catch (NamingException e)
 {
 e.printStackTrace();
 }
 }
}

1228 Anhang D

 Die Ausgabe des Programms ist:

Der Knoten Daniel Förster.Users.HSA.local besitzt die
Attribute:

displayName
givenName
.
name

Suche über regulären Ausdruck in Subkontexten von
HSA.local:
Benutzer: daniel@HSA.local
Der Benutzer gehört zur Gruppe mit der ID: 513
Account verfällt: 9223372036854775807 Sekunden nach dem
1.1.1970

Suche über Attribut-Klassen im Kontext Users.HSA.local:
Benutzer: daniel@HSA.local
Der Benutzer gehört zur Gruppe mit der ID: 513
Account verfällt: 9223372036854775807 Sekunden nach dem
1.1.1970

Zuerst werden Einstellungen für den Zugriff auf den Active Directory-Verzeichnis-
dienst gemacht. Als Anmelde-Account wird der Benutzer Daniel der Domaine HSA
und dessen Passwort verwendet. Danach werden alle Attribute des Knoten Daniel
Förster.Users.HSA.local ausgegeben. Zu beachten ist, dass hier die Lese-
richtung von rechts nach links erfolgt. Zum Schluss wird über zwei verschiedene
Arten nach dem Benutzer Daniel Förster gesucht. Das Attribut cn (engl. common
name) steht für einen vollständigen Benutzernamen und repräsentiert daher einen
Knoten, der sich im Baum unterhalb eines Domänen-Knoten befindet. Knoten, die
Domänen abbilden, verwenden das Attribut dc. Daher besitzt sowohl der Knoten für
die Domäne local als auch der Knoten für die Subdomäne HSA dieses Attribut. Der
gesuchte Benutzer ist innerhalb des Active Directory als user gekennzeichnet. Da-
her muss für das Attribut objectclass der Wert user angegeben werden.

Als Erstes erfolgt die Suche von der Wurzel aus über einen regulären Ausdruck. Mit
cons.setSearchScope (SearchControls.SUBTREE_SCOPE) wird festgelegt,
dass nicht nur der Kontext (Knoten) selber, sondern auch dessen Subkontexte, also
auch die untergeordneten Knoten im Baum, durchsucht werden sollen. Die Suche
unter Verwendung des Attribute-Interfaces bezieht sich lediglich auf den gewähl-
ten Kontext. Daher muss mittels

context.lookup ("cn=Users,dc=HSA,dc=local")

zunächst im Baum zum Kontext Users navigiert werden, bevor die search()-Me-
thode aufgerufen wird. Anschließend kann dann nach dem Eintrag für Daniel
Förster gesucht werden.

Wenn der gesuchte Benutzer in der Domain vorhanden ist, werden sein Domain-Na-
me, die ID seiner Gruppe und die Zeit, wann sein Benutzer-Account abläuft, ausge-
geben. Die Daten für den Benutzer sind zweimal zu sehen, da der gesuchte Benut-
zer über beide Sucharten gefunden wurde.

Anhang E Annotations
Annotations stellen zusätzliche Informationen in Form von Metadaten im Quelltext
eines Programms dar. Sie bieten aber im Gegensatz zu informellen Kommentaren
die Möglichkeit einer maschinellen Auswertung. Sie können zur Übersetzungszeit
oder zur Laufzeit eines Programms berücksichtigt werden.

Metadaten – oder so genannte beschreibende Daten – sind Daten,
die Informationen über andere Daten enthalten. Die Metadaten eines
Buches sind beispielsweise der Name des Autors oder der Name des
Verlags.

Seit JDK 5.0 werden Annotations in Java unterstützt und können zur Laufzeit mit
Hilfe der Java Reflection312-API ausgewertet werden. Dabei ermöglicht es die Java
Reflection-API unter anderem, den Aufbau von Java-Typen wie beispielsweise Klas-
sen oder Schnittstellen zur Laufzeit zu untersuchen.

Durch die Annotations wird das von Sun favorisierte Ease of Development vorange-
trieben, dessen Ziel es ist, Strategien und Techniken zu entwickeln, die dem Pro-
grammierer die Entwicklung von Programmen vereinfacht.

Annotations sind streng genommen spezielle Java-Schnittstellen, die mit einem @-
Zeichen definiert werden. So wird eine Annotation beispielsweise mit

public @interface MeineAnnotation {}

definiert. Mit Annotations können dann unter anderem Pakete, Klassen, Konstruk-
toren, Methoden oder Datenfelder markiert werden, beispielsweise:

@MeineAnnotation
public class AnnotierteKlasse { }

Annotations können weiterhin Attribute besitzen, die entweder mit Standardwerten
vorbelegt sind oder die bei der Anwendung der Annotation mit eigenen Werten
initialisiert werden müssen.

E 1 Annotations der Java Standard Edition

Seit dem JDK 5.0 existieren in der Java Standard-API insgesamt sieben vordefinierte
Annotations. Diese werden in so genannte Standard-Annotations und in Meta-An-
notations aufgeteilt. Mit Standard-Annotations können direkt Elemente wie Klas-
sen, Methoden oder Datenfelder dekoriert werden. Meta-Annotations hingegen
werden dazu verwendet, benutzerdefinierte Annotations zu erstellen. Somit kön-
nen mit Meta-Annotations nur Annotations, aber keine anderen Elemente wie Klas-
sen oder Datenfelder markiert werden:

 312 Siehe Kap. 31 auf der beiliegenden CD.

1230 Anhang E

Es gibt die folgenden drei Standard-Annotations:

• @java.lang.Deprecated

 Mit @Deprecated können Elemente markiert werden, die nicht mehr verwendet
werden sollen, weil sie veraltet sind. Wird ein solches Element trotzdem benutzt,
gibt der Compiler eine Warnung aus.

• @java.lang.Override

 Eine mit @Override markierte Methode weist den Compiler darauf hin, dass eine
Methode der Vaterklasse überschreiben wird. Für den Fall, dass eine mit
@Override markierte Methode keine Methode der Vaterklasse überschreibt, wird
vom Compiler eine Fehlermeldung ausgegeben.

• @java.lang.SupressWarnings

 Mit @SupressWarnings können Warnungen des Compilers unterdrückt werden.
Wird beispielsweise eine Methode verwendet, die durch @Deprecated markiert
ist, kann durch @SupressWarnings die Warnung des Compilers unterdrückt wer-
den.

Weiterhin sind folgende Meta-Annotations verfügbar:

• @java.lang.annotation.Documented

 Eine durch @Documented markierte Annotation wird bei der Erzeugung der Doku-
mentation durch javadoc berücksichtigt.

• @java.lang.annotation.Inherited

 Eine durch @Inherited markierte Annotation wird automatisch vererbt. Für den
Fall, dass ein Element mit einer Annotation markiert wird, welche wiederum mit
@Inherited annotiert ist, wird das Element auch in allen Sohnklassen mit dieser
Annotation markiert.

• @java.lang.annotation.Retention

 @Retention legt die Gültigkeit der Annotation fest. Die Annotation @Retention
besitzt das Attribut value vom Typ java.lang.annotation.RetentionPo-
licy, das bei der Verwendung der Annotation gesetzt werden muss. Reten-
tionPolicy ist ein Aufzählungstyp und definiert die folgenden Aufzählungs-
konstanten:

 – SOURCE: Der Compiler entfernt die Annotation. Sie entspricht in ihrer Wirkung
einem Kommentar.

 – CLASS: Die Annotation wird in die class-Datei aufgenommen, aber nicht von
der virtuellen Maschine geladen. Damit ist der Zugriff zur Laufzeit nicht möglich
(Standardeinstellung).

Annotations 1231

 – RUNTIME: Die Annotation wird in die class-Datei aufgenommen und von der
virtuellen Maschine geladen. Damit ist der Zugriff auf die Annotation zur Lauf-
zeit möglich.

 So steht der Code einer Annotation, die mit

 @Retention (value = RetentionPolicy.RUNTIME)

annotiert wurde, auch zur Laufzeit zur Verfügung und kann mit Hilfe der Java Re-
flection-API ausgewertet werden.

• @java.lang.annotation.Target

 Durch @Target wird festgelegt, welche Elemente – z. B. Klassen, Methoden oder
Datenfelder – mit der zu definierenden Annotation markiert werden können. Dazu
werden dem Attribut value durch ein Array beliebig viele Aufzählungskonstanten
vom Typ java.lang.annotation.ElementType übergeben. Soll beispielswei-
se die Annotation @MeineAnnotation dazu dienen, Konstruktoren und Metho-
den zu markieren, so muss Folgendes geschrieben werden:

 @Target (value={ElementType.CONSTRUCTOR, ElementType.METHOD})
 public @interface MeineAnnotation { }

 Durch den Aufzählungstyp ElementType werden neben den oben verwendeten

Aufzählungskonstanten CONSTRUCTOR und METHOD noch weitere Konstanten:

 ANNOTATION_TYPE, FIELD, LOCAL_VARIABLE, PACKAGE, PARAMETER, TYPE,
TYPE_PARAMETER und TYPE_USE.

Seit JDK 6.0 sind weitere vordefinierte Annotations eingeführt, die sich in den Pa-
keten javax.lang.annotation und javax.lang.annotation.processing
befinden. Sie werden unter anderem für die Entwicklung von Programmen einge-
setzt, die ein automatisiertes Auslesen von Annotations aus dem Quellcode ermög-
lichen. Diese Annotations bilden die so genannte Pluggable Annotation Proces-
sing-API, auf die jedoch nicht weiter eingegangen wird.

E 2 Eigene Annotations definieren

Neben den vordefinierten Annotations können, wie bereits erwähnt, auch eigene
Annotations definiert werden. Dazu sind folgende Schritte nötig:

• Annotation definieren mit @interface

 Die Definition einer Annotation entspricht der Definition einer Schnittstelle, wobei
dem Schlüsselwort interface zusätzlich ein @-Zeichen vorangestellt wird.

• Funktionsweise und Verhalten festlegen

 Die Funktionsweise und das Verhalten der Annotation werden über die oben
genannten Meta-Annotations beschrieben.

1232 Anhang E

• Attribute definieren

 Annotations können Attribute besitzen. Für jedes Attribut, das die Annotation be-
sitzen soll, wird eine Methode mit entsprechendem Rückgabetyp erzeugt. Der Na-
me des Attributs entspricht dabei dem Namen der Methode.

• Standardwerte der Attribute festlegen

 Optional können Standardwerte für ein Attribut angegeben werden. Dazu wird das
Schlüsselwort default, gefolgt von dem Standardwert an den Methodennamen
angehängt. Alle Attribute, denen bei der Definition kein Standardwert zugewiesen
wurde, müssen bei der Verwendung der Annotation mit einem Wert initialisiert
werden.

Beim Übersetzen des Quellcodes der Annotation wird die Annotation
automatisch von der Schnittstelle java.lang.annotation.Anno-
tation abgeleitet. Aus der Definition

public @interface MeineAnnotation

wird vom Compiler somit folgender Code generiert:

public interface MeineAnnotation extends Annotation

Bitte beachten Sie, dass Schnittstellen, die ein Programmierer selbst
von der Schnittstelle Annotation ableitet, keine Annotations dar-
stellen. Eine Annotation muss also immer mit dem Schlüsselwort
@interface definiert werden.

Die Definition einer Annotation soll an einem Beispiel gezeigt werden. In einem Soft-
ware-Unternehmen soll den Entwicklern die Möglichkeit gegeben werden, zu Konst-
ruktoren und Methoden Notizen hinzuzufügen, die später mit Hilfe der Java Reflec-
tion313-API ausgewertet werden können. Zu diesem Zweck wird die Annotation
NotizAnnotation definiert:

// Datei: NotizAnnotation.java

// Die verwendeten Meta-Annotations @Target und @Retention
// sowie die Aufzählungstypen ElementType und RetentionPolicy
// befinden sich im Paket java.lang.annotation
import java.lang.annotation.*;

// Die Annotation @NotizAnnotation wird mit @Target annotiert,
// wobei dem Attribut value die Aufzählungskonstanten CONSTRUCTOR
// und METHOD übergeben werden. Somit dürfen mit der Annotation
// @NotizAnnotation nur Konstruktoren und Methoden annotiert werden.
// Kommentiert man mit der Annotation @NotizAnnotation beispiels-
// weise eine Klasse, so wird vom Compiler ein Fehler generiert.
@Target (value={ElementType.CONSTRUCTOR,ElementType.METHOD})
// Die Annotation NotizAnnotation soll zur Laufzeit verfügbar sein.

313 Siehe Kap. 31 auf der beiliegenden CD.

Vorsicht!

Annotations 1233

// Damit wird eine Auswertung der Methoden oder Konstruktoren, die
// mit @NotizAnnotation annotiert sind, zur Laufzeit ermöglicht.
@Retention (RetentionPolicy.RUNTIME)

// Die Annotation @NotizAnnotation wird nun mit dem Schlüsselwort
// interface mit vorangestelltem @-Zeichen definiert.
public @interface NotizAnnotation
{
 // Die Annotation NotizAnnotation besitzt zwei Attribute.
 // Das Attribut entwickler wird mit dem Standardwert "Unbekannt"
 // belegt. Das bedeutet, dass das Attribut bei der Verwendung der
 // Annotation @NotizAnnotation nicht gesetzt werden muss.
 String entwickler() default "Unbekannt";

 // Dem Attribut notiz hingegen wird kein Standardwert mitgegeben.
 // Die Konsequenz ist, dass es bei der Verwendung der Annotation
 // @NotizAnnotation vom Programmierer gesetzt werden muss, da
 // sonst ein Compiler-Fehler ausgegeben wird.
 String notiz();
}

In der Klasse AnnotationTest werden nun die dort definierten Konstruktoren und
Methoden mit der Annotation @NotizAnnotation markiert. In der Methode main()
werden dann mit Hilfe der Java Reflection-API die definierten Konstruktoren und
Methoden der Klasse AnnotationTest abgefragt und untersucht, ob diese mit der
Annotation @NotizAnnotation versehen sind:

// Datei: AnnotationTest.java

// Es wird zur Untersuchung, ob ein Konstruktor oder eine Methode
// mit der Annotation @NotizAnnotation markiert ist, die Java
// Reflection-API verwendet, die sich im Paket java.lang.reflect
// befindet.
import java.lang.reflect.*;

// Der Versuch, die Klasse direkt mit der Annotation @Notiz-
// Annotation zu markieren, würde vom Compiler abgelehnt werden!
public class AnnotationTest
{
 // Auch eine Instanzvariable kann nicht mit der Annotation
 // @NotizAnnotation markiert werden, weil bei der Definition
 // von @NotizAnnotation durch @Target angegeben wurde, dass
 // diese Annotation nur an Konstruktoren und Methoden stehen
 // darf.
 private Integer instanzVariable;

 // Hier kann @NotizAnnotation stehen. Bitte beachten Sie, dass
 // nach der schließenden runden Klammer der Annotation kein
 // Semikolon stehen darf
 @NotizAnnotation (
 entwickler = "Will Bates",
 notiz = "Dieser Konstruktor ist noch " +
 "nicht vollständig implementiert."
)

1234 Anhang E

 public AnnotationTest (Integer init)
 {
 }

 // Die Methode testMethode() wird mit @NotizAnnotation
 // markiert, wobei nur das Attribut Notiz gesetzt wird.
 @NotizAnnotation (
 notiz = "Diese Methode muss noch verbessert werden"
)
 public void testMethode()
 {
 // nicht relevant
 }

 // Eine Methode mit @NotizAnnotation zu markieren, ohne ein
 // Attribut zu setzen, wird vom Compiler abgelehnt, weil
 // mindestens das Attribut notiz belegt werden muss.
 // @NotizAnnotation
 public void andereTestMethode()
 {
 // nicht relevant
 }

 public static void main (String[] args)
 {
 // Die Java Reflection-API arbeitet stets mit dem Class<T>-
 // Objekt, das für jeden instantiierten Typ in der virtuellen
 // Maschine vorhanden ist.
 Class<AnnotationTest> testClassObj = AnnotationTest.class;

 // Das Class<T>-Objekt der Annotation @NotizAnnotation
 // wird auch benötigt.
 Class<NotizAnnotation> notizAnnoClass = NotizAnnotation.class;

 // Die Klasse Class<T> stellt die Methode getMethods() zur
 // Verfügung. Beim Aufruf auf einem Class<T>-Objekt wird eine
 // Referenz auf ein Array von Objekten vom Typ Method zurück-
 // geliefert. Jedes Method-Objekt repräsentiert dann eine
 // Methode, die in der Klasse AnnotationTest definiert ist.
 Method[] definierteMethoden = testClassObj.getMethods();

 System.out.println ("Annotierte Methoden:");
 for(Method methode : definierteMethoden)
 {
 // Mit der Methode isAnnotationPresent() der Klasse Method
 // wird überprüft, ob die repräsentierte Methode mit der
 // Annotation versehen ist, von der eine Referenz auf ihr
 // Class<T>-Objekt beim Aufruf übergeben wird. Es wird hier
 // die Referenz auf das Class<T>-Objekt der Annotation
 // @NotizAnnotation übergeben
 if (methode.isAnnotationPresent (notizAnnoClass))
 {
 System.out.println ("Die Methode \""+methode.toString()+
 "\" ist mit einer Notiz versehen:");
 // Eine Referenz auf die Annotation kann dann über die
 // Methode getAnnotation() der Klasse Method beschafft
 // werden.

Annotations 1235

 NotizAnnotation annotation =
 methode.getAnnotation (notizAnnoClass);

 // Auf die definierten Attribute der Annotation greift
 // man über deren Namen mit nachgestellten runden
 // Klammern zu.
 System.out.println ("Der Entwickler \"" +
 annotation.entwickler() + "\" notiert: " +
 annotation.notiz());
 }
 }

 // Es werden nun die Konstruktoren untersucht
 System.out.println("\nAnnotierte Konstruktoren: ");
 Constructor[] definierteKonstruktoren =
 testClassObj.getConstructors();

 for(Constructor konstruktor : definierteKonstruktoren)
 {
 if (konstruktor.isAnnotationPresent (notizAnnoClass))
 {
 System.out.println ("Der Konstruktor \"" +
 konstruktor.toString() +
 "\" ist mit einer Notiz versehen:");

 NotizAnnotation annotation =
 konstruktor.getAnnotation (notizAnnoClass);
 System.out.println ("Der Entwickler \"" +
 annotation.entwickler() +
 "\" notiert: " + annotation.notiz());
 }
 }
 }
}

Die Ausgabe des Programms ist:

Annotierte Methoden:
Die Methode "public void AnnotationTest.testMethode()" ist
mit einer Notiz versehen:
Der Entwickler "Unbekannt" notiert: Diese Methode muss noch
verbessert werden

Annotierte Konstruktoren:
Der Konstruktor "public AnnotationTest(java.lang.Integer)"
ist mit einer Notiz versehen:
Der Entwickler "Will Bates" notiert: Dieser Konstruktor ist
noch nicht vollständig implementiert.

Bei der Verwendung einer Annotation müssen für alle ihre Attribute
Werte angegeben werden, wenn die Attribute nicht in der Definition
der Annotation mit Standardwerten belegt sind.

Neben den zuvor verwendeten Klassen Method und Constructor der Java Reflec-
tion-API sind dort weitere Klassen wie beispielsweise Field oder Array definiert,

1236 Anhang E

die zur Untersuchung der entsprechenden Elemente dienen. All diese Klassen imple-
mentieren unter anderem die Schnittstelle java.lang.reflect.AnnotatedEle-
ment, das insgesamt folgende vier Methodenköpfe für die Untersuchung von an den
Elementen angeschriebenen Annotations deklariert:

• <T extends Annotation> T getAnnotation (
 Class<T> annotationClass)

Der Aufruf dieser Methode gibt eine Referenz auf das Annotation-Objekt zu-
rück, dessen Class<T>-Objekt übergeben wurde. Wird die Methode beispielswei-
se auf einer Referenz auf ein Objekt vom Typ Method aufgerufen und die reprä-
sentierte Methode ist nicht mit der gesuchten Annotation markiert, so gibt der
Aufruf der Methode getAnnotation() null zurück.

• boolean isAnnotationPresent (
 Class<? extends Annotation> annotationClass)

Der Aufruf dieser Methode gibt true zurück, wenn das Element mit der durch
annotationClass spezifizierten Annotation versehen ist, ansonsten false. Die
übergebene Referenz auf das Class<T>-Objekt muss dabei einen Typ repräsen-
tieren, der die Schnittstelle Annotation implementiert.

• Annotation[] getAnnotations()

Diese Methode gibt alle Annotations zurück, mit denen das Element versehen ist.
Dazu gehören auch alle geerbten Annotations.

• Annotation[] getDeclaredAnnotations()

Diese Methode ist ähnlich zu der Methode getAnnotations(). Es werden beim
Aufruf der Methode allerdings keine geerbten Annotations zurückgegeben.

Begriffsverzeichnis
Abstraktion Abstraktion ist immer damit verbunden, dass man sich mit dem

Wesentlichen befasst und die unwesentlichen Dinge gedank-
lich weglässt. Die Abstraktion bei einem Objekt befasst sich mit
der Festlegung des nach außen sichtbaren Verhaltens eines
Objekts, d.h. mit der Definition der von außen aufrufbaren Me-
thoden eines Objekts.

Abstrakte
Basisklasse

Eine Abstrakte Basisklasse dient zur Abstraktion in einer Klas-
senhierarchie. Von einer abstrakten Basisklasse werden keine
Objekte gebildet.

Aggregation

Bei der Aggregation enthält ein Objekt eine Referenz auf ein
anderes Objekt. Über die Referenz "enthält" das "Groß-Objekt"
(aggregierendes Objekt) ein "Klein-Objekt" (aggregiertes Ob-
jekt). Das aggregierte Objekt kann auch weiterleben, wenn das
aggregierende Objekt vernichtet wird.

Applet Ein Applet ist ein kleines Programm, das in einer Web-Seite
läuft.

Array

Ein Array ist eine Datenstruktur, die aus Komponenten aufge-
baut ist. Das Besondere an einem Array ist, dass alle Kompo-
nenten denselben Datentyp besitzen müssen. Über einen
Array-Index kann gezielt auf eine bestimmte Komponente des
Arrays zugegriffen werden.

Basisklasse siehe Superklasse

Bibliotheksklasse Eine Bibliotheksklasse ist eine Klasse, welche durch die Java-
API, d.h. durch die Klassenbibliothek des Java Development
Kits, zur Verfügung gestellt wird.

Bindung Wird eine Methode aufgerufen, so ist der entsprechende Pro-
grammcode der Methode, d.h. der Methodenrumpf, auszu-
führen. Die Zuordnung des Methodenrumpfes zum Aufruf
der Methode, d.h. dem Methodenkopf, nennt man Bindung.

Bindung, frühe
(statische)

Bei der frühen Bindung erfolgt die Zuordnung des Methoden-
rumpfes zum Methodenkopf der Aufrufstelle zur Kompilierzeit.

Bindung, späte
(dynamische)

Bei der späten Bindung erfolgt die Zuordnung des Methoden-
rumpfes zum Methodenkopf der Aufrufstelle zur Laufzeit des
Programms.

Bit Binärziffer, d.h. Ziffer, die die Werte 0 oder 1 annehmen kann
(engl. bit = binary digit).

Block Ein Block ist eine besondere Anweisung. Ein Block kann keine,
eine oder mehrere Anweisungen enthalten, die in der Rei-
henfolge, wie sie notiert sind, abgearbeitet werden. Von der
Syntax der Sprache her zählt ein Block wie eine einzige An-

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

1238 Begriffsverzeichnis

weisung. Damit ist der Block ein elegantes Hilfsmittel an Pro-
grammstellen, an denen die Syntax der Sprache nur eine ein-
zige Anweisung zulässt, tatsächlich aber mehrere Anweisungen
erforderlich sind.

Browser Ein Browser ist ein Werkzeug, um durch hierarchische Struk-
turen wie z.B. eine Verzeichnisstruktur auf einer Festplatte
durchzulaufen (zu navigieren). Im Falle des Internets dient ein
Browser zur Navigation durch das Internet und zur Darstellung
der gefundenen Web-Seiten.

Byte Ein Byte stellt eine Folge von 8 zusammengehörigen Bits dar.

Casten Ein Wert eines bestimmten Datentyps wird in einen anderen
Datentyp gewandelt (Typkonvertierung). Hierzu ist eine Typ-
verträglichkeit erforderlich.

Datenfeld Ein Datenfeld ist eine Komponente einer Klasse bzw. eines
Objektes, die einen Wert oder eine Referenz aufnehmen kann.

Datentyp Ein Datentyp ist der Bauplan für eine Variable. Der Datentyp
legt fest, welche Operationen auf einer Variablen möglich sind
und wie die Darstellung (Repräsentation) der Variablen im Spei-
cher des Rechners erfolgt. Mit der Darstellung wird festgelegt,
wie viele Bytes die Variable im Speicher einnimmt und welche
Bedeutung ein jedes Bit dieser Darstellung hat.

Datentyp, abstrakt Ein abstrakter Datentyp wird spezifiziert durch die Festlegung
seiner Operationen, die öffentlich bekannt sind. Die Darstellung
des Typs und die Implementierung der Operationen kennt nur
der Ersteller des Typs, dem Benutzer des Typs sind sie ver-
borgen.

Datentyp, einfacher Ein einfacher Datentyp ist ein Bauplan für einfache Variablen.
Das sind Variablen, die atomar sind und nur einen einzigen
Wert tragen können.

Datentyp, selbst
definiert

Selbst definierte Datentypen sind dem Compiler standard-
mäßig nicht bekannt. Wenn die Programmiersprache hierfür die
Sprachmittel anbietet, so ist es dem Programmierer möglich,
eigene Datentypen zu erfinden, die für die Modellierung einer
Anwendung von Bedeutung sind, und diese dem Compiler be-
kannt zu machen. Java bietet hierfür das Sprachkonstrukt der
Klasse (class).

Default-Konstruktor Ein Default-Konstruktor ist eine Konstruktor ohne Übergabe-
parameter.

Definition Eine Definition einer Variablen umfasst die Deklaration und das
Anlegen der Variable. Eine Definition einer Methode und einer
Klasse umfasst die Deklaration und das Festlegen des Metho-
denrumpfes bzw. des Klassenrumpfes.

Begriffsverzeichnis 1239

Deklaration Eine Deklaration gibt dem Compiler einen Typ und zugehörigen
Namen an, wie z.B. bei der Deklaration einer Variablen oder
einer Klasse.

Exception Eine Exception ist eine Ausnahme. In Java werden Exceptions
als Klassen modelliert. Tritt eine Ausnahme im Programm auf,
so wird ein Objekt einer Exception „geworfen“, d.h. vom Anwen-
dungsprogramm an die virtuelle Maschine gegeben, die dann im
Anwendungsprogramm nach einem Exception Handler sucht,
der in der Lage ist, auf die Exception zu reagieren.

Exemplar siehe Objekt

Gültigkeit Die Gültigkeit einer Variablen bedeutet, dass an einer Pro-
grammstelle der Name einer Variablen dem Compiler durch
eine Vereinbarung bekannt ist.

Hauptprogramm Mit dem Hauptprogramm beginnt ein klassisches Programm
seine Ausführung. In der Programmiersprache C heißt das
Hauptprogramm main(). In Anlehnung daran beginnt eine
Java-Anwendung ihre Ausführung bei der Methode main()
einer Startklasse.

Information Hiding Die Daten eines Objekts können im Idealfall nur durch die
Methoden des Objekts selbst manipuliert werden. Sie sind also
nach außen nicht direkt sichtbar und sind damit verborgen. Ein
solches Objekt tritt mit seiner Umwelt im Idealfall nur über wohl-
definierte Schnittstellenmethoden in Kontakt. Die Implemen-
tierungseigenschaften der Klasse, d.h. die Struktur der Daten-
felder, die Methodenrümpfe und private Hilfsmethoden sind ein
Implementierungsgeheimnis. Nur die Schnittstellenmethoden
und ihre Parameter werden offen gelegt.

Initialisierung Der Vorgang der Initialisierung dient dazu, Variablen mit defi-
nierten Anfangswerten zu versehen.

Instantiierung Unter Instantiierung versteht man das Erzeugen einer Instanz
einer Klasse gemäß dem Bauplan der Klasse. Bei der Instan-
tiierung wird eine Instanz der Klasse, mit anderen Worten ein
Exemplar der Klasse oder Objekt im Arbeitsspeicher erzeugt.

Instanz siehe Objekt

Instanzmethode Eine Instanzmethode kann nur direkt für eine Instanz (ein
Objekt) aufgerufen werden. Eine Instanzmethode arbeitet auf
den Datenfeldern des Objektes, den Instanzvariablen, kann
aber auch auf Klassenvariablen zugreifen.

Instanzvariable Eine Instanzvariable eines Objektes besitzt den in der Klasse
angegebenen Namen und Typ und hat grundsätzlich für jedes
Objekt einen individuellen Wert. So hat beispielsweise jedes
Objekt der Klasse ZweidimensionalerPunkt seine indivi-
duellen Koordinaten x und y.

1240 Begriffsverzeichnis

Iteration Bei einer Iteration wird ein Verarbeitungsschritt mehrmals hin-
tereinander ausgeführt.

Java-Anwendung Zu einer Java-Anwendung gehört eine Methode main(). In
der Methode main() werden Objekte geschaffen und Metho-
den aufgerufen.

Java-Plattform Eine Plattform ist die Kombination von Betriebssystem und
zugehöriger Rechner-Hardware.

JDK Das Java Development Kit stellt eine Entwicklungsumgebung
dar, die aus Werkzeugen wie Compiler und Interpreter besteht,
und darüber hinaus alle Klassen der Java-Klassenbibliothek
bereitstellt.

Kapselung Daten und die Methoden, die auf ihnen arbeiten, werden nicht
mehr getrennt wie in der klassischen Programmierung, sondern
als Einheit betrachtet – Daten und Methoden sind zusammen
in einer Kapsel. Sie verschmelzen zu einem Objekt. Diese
Kapselung ist eines der wichtigsten Konzepte der objektorien-
tierten Programmierung.

Klasse (class) Eine Klasse bildet ein Objekt der realen Welt in ein Schema ab,
das der Compiler versteht, wobei ein Objekt z.B. ein Haus, ein
Vertrag oder eine Firma sein kann – also prinzipiell jeder Ge-
genstand, der für einen Menschen eine Bedeutung hat und den
er sprachlich beschreiben kann. Eine Klasse besteht aus dem
Klassennamen, Datenfeldern (siehe Datenfeld) und Methoden
(siehe Methode).

Klasse, abgeleitete siehe Unterklasse

Klassenmethode Eine Klassenmethode kann nur auf Klassenvariablen arbeiten,
nicht jedoch auf Instanzvariablen, es sei denn, man übergibt
eine Referenz auf ein Objekt an die Klassenmethode.

Klassenvariable Eine Klassenvariable stellt eine Variable dar, die allen Exem-
plaren (Objekten) einer Klasse gemeinsam ist und die in der
Klasse selbst und nicht bei einem Objekt gespeichert wird. De
facto ist eine Klassenvariable eine globale Variable, auf die
zumindest alle Objekte dieser Klasse zugreifen können.

Komposition Bei der Komposition hat ein "Groß-Objekt" als Datenfeld ein
"Klein-Objekt". Da das Datenfeld eines Objektes untrennbar mit
dem Objekt selbst verknüpft ist, sind die Lebensdauern von
"Groß-Objekt" und "Klein-Objekt" identisch.

Konstante Konstanten sind Werte, die während des Programmablaufs
nicht geändert werden können. Es gibt literale Konstanten, die
einfach angeschrieben werden wie z.B. die Zahl 46. Es gibt
auch symbolische Konstanten, die unter einem Namen ange-
sprochen werden, denen aber während eines Programmlaufs
ein fester Wert zugeordnet ist. So kann man z.B. eine Konstante
PI einführen. Muss eventuell der Wert der Konstanten wie z.B.

Begriffsverzeichnis 1241

die Genauigkeit von PI abgeändert werden, so hat man den
Vorteil, dass man nur an einer Stelle, nämlich an der Stelle der
Definition der Konstanten, eine Änderung durchführen muss.
Die Änderung gilt dann an all den Stellen des Programms, an
denen die Konstante mit Namen, d.h. als Symbol, steht.

Konstruktor Ein Konstruktor ist eine spezielle Methode einer Klasse, die
dazu dient, um ein Objekt zu initialisieren.

Konstruktor mit
Parameter

Ein Konstruktor mit Parametern erlaubt es, Werte zur
Initialisierung als aktuelle Parameter an den Konstruktor zu
übergeben.

Kontrollfluss Die Reihenfolge der Abarbeitung der Anweisungen eines Pro-
gramms wird als der Kontrollfluss des Programms bezeichnet.

Kontrollstruktur Konstrukte einer Programmiersprache, die den Kontrollfluss –
d.h. die Abarbeitungsreihenfolge der Anweisungen – steuern,
werden Kontrollstrukturen genannt.

Laufzeitsystem siehe Laufzeitumgebung

Laufzeitumgebung Die Laufzeitumgebung (auch Laufzeitsystem genannt) für das
auszuführende Programm wird von der virtuellen Maschine
gebildet. Die Laufzeitumgebung stellt einem Programm zusätz-
liche Funktionen (Routinen) zur Verfügung, welche für die Aus-
führung des Programms benötigt werden. Dazu gehören unter
anderem Funktionen zur Speicheranforderung oder Fehlerer-
kennung.

Lebensdauer Die Lebensdauer ist die Zeitspanne, in der die virtuelle Ma-
schine einer Variablen einen Platz im Speicher zur Verfügung
stellt. Mit anderen Worten, während ihrer Lebensdauer besitzt
eine Variable einen Speicherplatz.

lokale Variable Eine lokale Variable lebt nur innerhalb einer Methode oder
innerhalb eines Blocks. Dies bedeutet, dass nur während der
Abarbeitung der Methode bzw. des Blocks für sie Platz im
Arbeitsspeicher bereitgestellt wird.

Lösungsbereich Die Welt der technischen Lösung, bei Programmiersprachen
der Bereich der Programmkonstruktion.

L-Wert Ein L-Wert ist eine Variable. Eine Variable hat eine Adresse im
Arbeitsspeicher und kann Werte aufnehmen.

Maschinencode Maschinencode ist eine prozessorspezifische Programmier-
sprache, die ein spezieller Prozessor direkt versteht.

Mehrfachvererbung Unterstützt eine Programmiersprache das Sprachmittel der
Mehrfachvererbung, so kann eine Klasse von mehreren
Klassen abgeleitet werden und erbt dabei Datenfelder und
Methoden aus mehreren Klassen.

1242 Begriffsverzeichnis

Methode Eine Methode stellt eine Funktion dar, die für ein Objekt im Falle
einer Instanzmethode (siehe Instanzmethode) bzw. für eine
Klasse im Falle einer Klassenmethode (siehe Klassenmetho-
de) aufgerufen werden kann. Methoden dienen dazu, um Werte
an das Objekt (die Klasse) zu übergeben, um mit den im Objekt
(in der Klasse) gespeicherten Daten Berechnungen durchzu-
führen und um Werte vom Objekt (der Klasse) abzuholen.

Modifikator Ein Modifikator dient zur verfeinerten Festlegung der Eigen-
schaften von Datenfeldern, Methoden, Konstruktoren, Klassen
und Schnittstellen.

Nebeneffekt Ein Nebeneffekt liegt vor, wenn ein Operator oder eine
Methode nicht nur den Wert eines Ausdrucks beeinflusst,
sondern nebenbei auch noch den Wert einer Variablen
abändert.

Oberklasse siehe Superklasse

Object Die Klasse Object ist die Wurzelklasse aller Java-Klassen. Eine
jede Klasse in Java stellt einen Untertyp der Klasse Object dar.

Objekt Ein Objekt ist eine Variable, die nach dem Datentyp einer
Klasse gebaut ist. Andere Begriffe für Objekt sind Instanz und
Exemplar.

Operand Operanden werden durch Operatoren manipuliert. So verknüpft
der Operator + die beiden Operanden a und b im Ausdruck a +
b zur Summe.

Operation Eine Operation stellt in abstrakter Weise eine Verarbeitungs-
vorschrift dar. Eine Operation wird als Methode in einer Klasse
implementiert. Eine Operation kann in verschiedenen Klassen
verschiedene Implementierungen erhalten, dabei wird jedoch
stets die abstrakte Verarbeitungsvorschrift der Operation einge-
halten.

Operator Ein Operator ist eine Rechenvorschrift in Symbolform wie
z.B. der Vorzeichenoperator - (Ändere das Vorzeichen) oder der
Additionsoperator + (Bilde die Summe).

Paket Pakete dienen zur Gruppierung von inhaltlich zusammenge-
hörigen Klassen und Schnittstellen. Ein Paket stellt eine Biblio-
thek für einen bestimmten Zweck dar und kann als Einheit für
den Zugriffsschutz verwendet werden.

Polymorphie Polymorphie bedeutet Vielgestaltigkeit. So kann beispielsweise
ein Objekt eines Subtyps auch in Gestalt der Basisklasse auf-
treten.

Polymorphie von
Objekten

Eine Polymorphie von Objekten gibt es nur bei Vererbungs-
hierarchien. An die Stelle eines Objektes in einem Programm
kann stets auch ein abgeleitetes Objekt treten. Der Grund dafür
ist, dass ein Objekt einer abgeleiteten Klasse polymorph ist.

Begriffsverzeichnis 1243

Es kann sich als Objekt einer abgeleiteten Klasse, aber auch
als ein Objekt irgendeiner Basisklasse verhalten.

Polymorphie von
Operationen

Bedeutet, dass eine Operation vom Objekt selbst interpretiert
wird, d.h. dass der Sender einer Nachricht nicht die Klasse des
Empfängers, sondern nur den Namen des Empfänger-Objektes
kennen muss und damit nicht wissen muss, wie die Methode in
der Empfänger-Klasse implementiert ist.

Problembereich Der Problembereich oder Problem Domain ist die Welt der
Anwendung. Er ist derjenige Ausschnitt aus der realen Welt,
der später durch die zu realisierende Software abgedeckt wer-
den soll.

Quellcode Ein in einer Programmiersprache geschriebenes Programm
oder Programmstück.

Referenztyp Variablen eines Referenztyps stellen Referenzen (Zeiger) dar.
Dies bedeutet, dass die gesuchte Information an einer anderen
Stelle steht, nämlich an der Stelle, auf die die Referenz ver-
weist.

Rekursion Ein rekursiver Algorithmus enthält im Falle einer direkten Re-
kursion Abschnitte, die sich selbst direkt aufrufen. Im Falle
einer indirekten Rekursion rufen sich Abschnitte wechselseitig
auf.

R-Wert Ein R-Wert ist ein Wert, dem keine Adresse im Speicher zu-
geordnet ist und der nur temporär existiert.

Selbst
geschriebener
Default-Konstruktor

Ein selbst geschriebener Default-Konstruktor wird im Gegen-
satz zu einem voreingestellten Default-Konstruktor vom Pro-
grammierer selbst geschrieben.

Selektion Fallunterscheidung

Sichtbarkeit Die Sichtbarkeit einer Variablen bedeutet, dass man von einer
Programmstelle aus die Variable sieht, das heißt, dass man auf
sie über ihren Namen zugreifen kann.

Sohnklasse Eine abgeleitete Klasse, die direkt von einer Vaterklasse ab-
geleitet ist. Sohnklasse und Vaterklasse stehen in direkt be-
nachbarten Hierarchieebenen.

Standardtyp Eine Programmiersprache stellt selbst standardmäßig einige
Datentypen bereit, die ein Programmierer in der vorgesehenen
Bedeutung ohne weitere Maßnahmen verwenden kann. Ein
Beispiel hierfür ist in Java der Datentyp int.

Startklasse Eine Klasse, die eine Methode main() enthält, und damit von
der virtuellen Maschine gestartet werden kann.

String Ein String ist eine Zeichenkette, d.h. eine bestimmte Folge von
zusammengehörigen Zeichen.

1244 Begriffsverzeichnis

Subklasse Eine Klasse, die von einer anderen Klasse abgeleitet ist, ist eine
Subklasse dieser Klasse. Die Subklasse wird auch abgeleitete
Klasse oder Unterklasse genannt.

Superklasse Eine Klasse, von der eine andere Klasse abgeleitet ist. Eine
Superklasse wird auch Basisklasse oder Oberklasse genannt.

this-Referenz Eine this-Referenz ist eine Referenz (ein Zeiger) auf das aktuell
betrachtete Objekt.

Typkonvertierung siehe Casten

Überschreiben Definiert eine Unterklasse eine Methode mit demselben Namen,
Rückgabetyp und derselben Parameterliste wie eine Super-
klasse, so ist direkt über den Namen nur die Methode der Unter-
klasse sichtbar. Dies wird als Überschreiben bezeichnet. Phy-
sikalisch findet jedoch kein Überschreiben statt. Wenn auch
nicht direkt über den Namen, so kann dennoch über andere Me-
chanismen auf die überschriebene Methode zugegriffen werden.

Unterklasse siehe Subklasse

Variable Eine Variable in einer Programmiersprache ist eine benannte
Speicherstelle im Arbeitsspeicher des Rechners. Über den
Variablennamen kann der Programmierer auf die entsprechen-
de Speicherstelle zugreifen. Eine Variable hat vier Kennzeichen:
Variablennamen, Datentyp, Wert und Adresse. In Java ist die
Adresse einer Variablen dem Programmierer verborgen. Siehe
auch lokale Variable.

Vaterklasse Eine Klasse, von der eine Sohnklasse abgeleitet ist. Sohnklasse
und Vaterklasse stehen in direkt benachbarten Hierarchieebe-
nen.

Verdecken Gibt es in einem Programmstück mehrere gültige Variablen, die
den gleichen Namen tragen, wie z.B. ein Datenfeld und eine
lokale Variable mit demselben Namen, so ist über den Namen in
definierter Weise nur eine der Variablen erreichbar. Auf die
andere kann direkt über den Namen nicht zugegriffen werden,
mit anderen Worten, sie ist verdeckt.

Vereinbarung Oberbegriff für Deklaration und Definition von Variablen.

Vererbung Eine Unterklasse erbt alle Methoden und Datenfelder ihrer Su-
perklasse. Sie müssen bei der Definition der Unterklasse nicht
erneut angeschrieben werden.

Virtuelle Maschine Eine virtuelle Maschine verbirgt eine spezielle Plattform vor
einem Programm. Damit wird erreicht, dass Programme Platt-
form-unabhängig – mit anderen Worten portabel – werden.
Natürlich braucht man für jede Plattform die entsprechende vir-
tuelle Maschine.

Begriffsverzeichnis 1245

voreingestellter
Default-Konstruktor

Ein voreingestellter Default-Konstruktor wird vom Compiler
für jede selbst geschriebene Klasse zur Verfügung gestellt,
wenn der Programmierer selbst keinen Konstruktor schreibt.

Wrapper-Klasse Eine Wrapper-Klasse wird gebraucht, wenn man ein nicht-
objektorientiertes Verhalten in eine objektorientierte Form
bringen muss. Bespiele hierfür sind das Wrappen (Einpacken)
einer Prozedur in Form einer main()-Methode in eine eigene
Klasse oder das Einpacken einer Variablen eines einfachen
Datentyps in die Gestalt eines Objektes, das in seinem Innern
eine einfache Variable enthält.

Zustand,
makroskopisch

Ein Zustand eines Objektes, der für eine Anwendung eine
Bedeutung hat. So kann ein Objekt der Klasse Fahrstuhl sich
beispielsweise im Zustand "fahren" oder im Zustand "Türen
öffnen" befinden.

Zustand,
mikroskopisch

Jede Kombination von Datenfeldwerten eines Objekts stellt
einen Zustand dar, der als mikroskopischer Zustand eines
Objektes bezeichnet wird.

Literaturverzeichnis
[1] Dijkstra, E.W., Go To Statement Considered Harmful, in Communications of

the ACM, vol. 15, no. 10, p. 859, October 1972

[2] Nassi I., Shneiderman B.: Flowchart Techniques for Structred Programming, in
SIGPLAN, S. 12-26, Aug.1973

[3] DIN 66001, Sinnbilder und ihre Anwendung, Beuth-Verlag, Berlin 1983

[4] DIN 66261, Sinnbilder für Struktogramme nach Nassi-Shneiderman, Beuth-
Verlag, Berlin 1985

[5] Meyer, B., Object-Oriented Software Construction, 2nd ed., Prentice Hall, 1997

[6] Booch, G., Objektorientierte Analyse und Design, Addison-Wesley, 1994

[7] The Unicode Standard, Version 5.0, Addison-Wesley, 2007, ISBN: 0-321-
48091-0

[8] Arnold, K., Gosling, J., The Java Programming Language, Third Edition
Addison-Wesley, 2000

[9] Kernighan, B.W., Ritchie, D.M., The C Programming Language, Prentice Hall,
1978
Kernighan, B.W., Ritchie, D.M., Programmieren in C, 2. Ausgabe, Hanser,
München, 1990

[10] IEEE 754 Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-1985

[11] Eckel, B., Thinking in Java, Second Edition, Prentice Hall, 2000

[12] Gosling, J., Joy, B., Steele, G., Java – Die Sprachspezifikation, Addison-
Wesley, 1997

[13] Fowler, M., Scott, K., UML Distilled, Second Edition, Addison-Wesley, 2000

[14] Oaks, S., Java Security, OReilly Associates, 1998

[15] Bengel, G., Betriebssysteme: Aufbau, Architektur und Realisierung, Hüthig,
Heidelberg, 2000

[16] Dausmann, M., Bröckl, U., Goll, J., C als erste Programmiersprache, 6.
Auflage, Teubner, 2008

[17] Wirth, N., The Programming Language PASCAL, Acta Informatica, Vol 1, No
1, 1971

[18] Schmeil, 0., Tierkunde, Quelle & Meyer Heidelberg, 1964

[19] Nowak, J., Fortgeschrittene Programmierung mit Java 5, Generics, Anno-
tations, Concurrency and Reflection – mit allen wesentlichen Neuerungen des
J2SE 5.0, dpunkt Verlag, 2004

[20] Cunningham, W. und Beck, K., A Diagram for Object-Oriented Programs,
Proceedings of OOPSLA-86, Oktober 1986

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Literaturverzeichnis 1247

[21] Hruschka, P., Ein pragmatisches Vorgehensmodell für die UML, OBJEKT-
spektrum 2/98, Seite 34

[22] Jacobson, I., Object-Oriented Software Engineering, A Use Case Driven
Approach, Addison-Wesley, ISBN: 0-201-54435-0

[23] Liskov, B., Liskov Substitution Principle, Data Abstraction and Hierarchy,
SIGPLAN Notices, 23 , 5, (Mai 1988)

[24] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M.: „Pattern-
orientierte Architektur“, Addison Wesley Longman, ISBN: 3-8273-1282-5, 1998

[25] Gamma E.: „Design Patterns. Elements of Reusable Object-Oriented
Software“, Addison-Wesley Professional, ISBN: 0201633612, 1997

[26] Esser F.: Das Tiger-Release Java 5 im Einsatz, Generics, Enums, Concurrent
Programming, Galileo Computing, ISBN: 3-89842-459-6

[27] Monson-Haefel R., Enterprise JavaBeans 3.0, 5. Auflage, O’Reilly, ISBN:
059600978X, 2006

[28] Das Java-Tutorial

Index

A�

Abbruchkriterium
Erreichen des ~ 302

abgeleitete Klasse Siehe Sohnklasse
Ableitung Siehe Vererbung
abstract 121, 159, 393, 512
Abstract Window Toolkit Siehe AWT
abstrakte Basisklasse 392, 527
abstrakte Methode 512
Abstraktion 504
Abstraktionsebene 38
Accessibility 819
Adapter-Klasse Siehe Swing-Klasse
Adresse 18
Aggregation 39, 364
Aktualisierungs-Ausdrucksliste 261
aktuell parametrisierte Klasse 625

Repräsentation ~ 628
aktueller Parameter 283
aktueller Typ-Parameter 625
Algorithmus 4

Merge-Sort-~ 707
Quicksort-~ 707

Alphabet 16
Binäralphabet 16
Dezimalalphabet 16

Alternative
einfach 12
mehrfach 13

Annotation 1229
@Deprecated 1230
@Documented 1230
@Entity 1157
@GeneratedValue 1158
@Id 1158
@IdClass 1164
@Inherited 1230
@interface 1231
@JoinColumn 1176
@JoinTable 1186
@Local 1143
@ManyToMany 1186
@ManyToOne 1181
@OneToMany 1180
@OneToOne 1175
@Override 1230
@PersistenceContext 1167
@PrimaryKeyJoinColumn 1175
@Remote 1142
@Remove 1139

@Retention 1230
@SupressWarnings 1230
@Table 1157
@Target 1231
EJB und ~ 1124
Meta-~ 1229
Pluggable ~ Processing-API 1231
selbst definierte ~ 1231
Standard-~ 1229

anonyme Klasse 546, 556
Einschränkungen 561
Realisierung 568

anonymes Paket 454
Anweisung 5, 211
assert-~ 491
break-~ 259, 266
continue-~ 267
do-while-~ 264
else-if-~ 254
for-~ 260
if-else-~ 254
return-~ 282
super()-~ 382
switch-~ 255
synchronized-~ 767, 768
throw-~ 478
try-~ 474
while-~ 259

Anwendungsschicht 973
API

~ Dokumentation 62
Java-~ 62
JDBC-~ 1063, 1072
JDBC-Treiber-~ 1072
Servlet-~ 918

Applet 59, 788
~ in HTML-Seite 799
Importieren von Audio-Clips 812
Importieren von Bildern 810
Lebenszyklus 804
Parameterübernahme 809

Appletviewer 802
Applikations-Server 901, 1127

~-Rechner 1125, 1135
JBoss 1127

Architektur
Client/Server~ 1125
Three-Tier-~ 1125

Architekturmuster
MVC Siehe Model-View-Controller

Archiv 69

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Index 1249

arithmetischer Ausdruck 13
Array 159

assoziatives ~ siehe Verzeichnis
aus Basisklassen 168, 404
aus einfachen Datentypen 162
aus Referenzen 164
Casten auf einen ~-Typ 380
Datenfeld length 162
Default-Wert 163
eindimensionales ~ 160
Erzeugung 161, 162, 164
Grenzen 161
Initialisierung 161, 163, 165
Initialisierungsliste 163, 166
Komponente 160
mehrdimensionales ~ 168
Objektcharakter 166
offenes ~ 168
Referenzen auf ~ 162
Syntax-Varianten 170

Array-Index 160
Array-Objekt 160
Array-Variable 162
ascending 1069
ASCII-Zeichensatz 17, 1202
assert 121, 491
Assoziativität 214, 235
atomic name 1217
Attribut 1064
Attributorientiertes Programmieren 1124
Aufrufschnittstelle 35, 506, 520

Sohnklasse 369
Vaterklasse 369
Vererbung 369

Aufzählungskonstante 171
Aufzählungstyp 171
Ausdruck 12, 210, 211

bedingter ~ 234
konstanter ~ 123
Rückgabewert eines ~ 211

Ausdrucksanweisung 212
ausführbares Programm 63
Ausgabe

formatierte ~ 99
Ausgabestrom 580
Ausgabestrom-Klasse 581
Ausnahme Siehe Exception
Ausnahmebehandlung 472
Auswertungsreihenfolge 213
Auto-Commit 1071
AWT 819, 820

~-GUI-Komponente 820, 821
AWT-Klasse
ActionEvent 827, 870
Applet 820
Component 820, 838, 839

Container 820, 838, 839
Dialog 820
Frame 820
Window 820

B�

Background-Thread Siehe Worker-Thread
Backslash 113
Basis 20
Basisklasse Siehe Superklasse

abstrakte ~ 392, 527
batch-Betriebssysteme 742
Baum 726

Blatt 726
Knoten 726
Wurzel 726

Bean 59
bedingte Anweisung 253
Bedingung 12
Bedingungsoperator 234, 428
Betriebsmittel

räumlich aufteilbar 745
virtuell 743
zeitlich aufteilbar 745

Betriebssystem-Prozess 743, 746
Bewertungsreihenfolge 215
Bezeichner 120
Bibliotheksklasse 22, 70
Big-Endian 597
Binden des Servers 1021
binding 1213
Bindung 406

dynamische ~ Siehe späte Bindung
finale Methode 409
frühe ~ 406, 407
private Methode 408
späte ~ 406, 407
statische ~ Siehe frühe Bindung

Bit 17
Bit-Operatoren 230
blank 113
Block 11, 252, 276

Schachtelung 278
synchronisierter ~ 767

blocked 747
boolean 121, 136
Boolesche Konstante 123, 127
Boolescher Ausdruck 12
Boolescher Wert 127
break 121, 259, 266
BREAK-Anweisung 15
Bridge-Klasse 599, 601, 602
Broadcast 999
Buchstaben 112
Business-Interface 1141

1250 Index

call by reference 1143
call by value 1142
JNDI-Bind-Name 1154
Local 1143
Remote 1142

byte 121, 136
Bytecode 58, 65, 67
Bytecode-Interpreter 61
Byte-InputStream-Klasse 591
Bytestream

Klasse 580, 582, 586

C�

call by value 286
Callback 1014

~-Methode 868, 875, 882, 888
~-Schnittstelle 868

case 121, 256, 257
case insensitiv 1065
case sensitiv 114
case-Marke 256, 257
cast-Operator 80, 236, 377, 427
catch 121, 474
catch-Konstrukt 474, 477, 483
CGI 908
char 121, 136
Character Encoding 603
Characterstream

Klasse 580, 582, 599
Checked Exception 473, 481
class 121, 139
Class<T> 662
CLASSPATH 70, 450
Client 903

Fat ~ 905
Thin ~ 901, 905

Client/Server-Architektur 902, 1125
Client-Rechner 904, 905
Code (Codierung) 17
Code Sharing 626
Codebase 1047
Codeerzeugung 66
Codierung 17
Coersion 668
Cohesion 504
Collection 684

~-Schnittstellen 687
blocking ~ 735
bounded ~ 735
concurrent ~ 735
geordnete ~ 686, 707
sortierte ~ 686
thread-safe ~ 735

Common Gateway Interface Siehe CGI
Compiler 19

composite name 1217
compound name 1217
concurrent Siehe nebenläufig
Connection Pooling 1105
const 121
Container 684
Content-Pane 849
Content-Type 919
continue 121, 267
Controller

~ als anonyme Klasse 880
~ als Elementklasse 879
~ als externe Klasse 877
Ereignissenke 867
gemeinsamer ~ 869
selbst geschriebener ~ 827, 828, 882
vordefinierter ~ 826

Cookie 921
CORBA 904
Coupling 504
critical section Siehe kritischer Abschnitt

D�

Daemon-Thread 781
Data Control Language 1065, 1071
Data Definition Language 1065, 1066
Data Manipulation Language 1065, 1068
Dateinamenserweiterung 64
Dateizeiger 83
Datenbank 1064

relationale ~ 1063
Datenfeld 32, 143

Default-Initialisierung 329
klassenbezogenes ~ 314
manuelle Initialisierung 329
objektbezogenes ~ 314
Verdecken 385, 386

Datenquelle 576
Datensenke 576
Datentransparenz 1014
Datentyp 19, 21, 134

abstrakter ~ 138
Bibliotheksklasse 22
boolean 121, 136
byte 121, 136
char 121, 136
double 121, 137
einfacher ~ 19, 134, 135
float 121, 137
int 19, 121, 136
Klasse 29
Klassen-Typ 137
Konvertierung von ~ 236
long 121, 136
Referenztyp 134, 137

Index 1251

selbst definierter ~ 22, 29
short 122, 136
Standardtyp 19
Übersicht 134

DBMS 1063
DCL 1065
DDL 1065
Deadlock 776
default 121, 257, 458
Default-Encoding 603
Default-Wert 329
Defensive Programmierung 225
Definition 146

Klassen~ 139
Schnittstellen~ 510
Variablen~ 145

Deklaration 146
Methoden~ 140
Paket 445
Schnittstellen~ 510

Deklarationsanweisung 276
Dekorierer 586
Delegationsprinzip 93, 586
Dependency Injection 1167
Deployment 915, 1150
Deployment-Deskriptor 911, 915, 1124

Annotations als Ersatz für~ 1124
descending 1069
Design by Contract 409
Dezimalzahl 124
Division

ganzzahlige ~ 220
DML 1065
DNS 908, 974
do 121
Domain Name Service Siehe DNS
double 121, 137
do-while-Schleife 14, 264
Down-Cast 377
Drag and Drop 849
dynamisches Laden 65

E�

Ease of Development 1229
Eigenschaften 364
einfache

~ Alternative 253
~ Datentypen 19

Einfachvererbung
Schnittstelle 526

Eingabedatei 83
Eingabestrom 83, 580
Eingabestrom-Klasse 581
Eingabesymbole 114

eingebettete Klasse Siehe geschachtelte
Klasse

EJB 1124
@Local 1143
@Remote 1142
@Remove 1139
@Stateful 1145
@Stateless 1145
~ und Lösungsbereich 1126
~ und Problembereich 1125
~-Container 1133
~-Server 1133
Annotations und ~ 1124
application.xml 1151
Architektur-Überblick 1132
Bean-Klasse 1138, 1144
Business-Interface 1138, 1141
call by reference 1143
call by value 1142
Deployment-Prozess 1150
ear-Datei 1150
EJB-Applikation 1132
Entity-Bean 1157
Idee von ~ 1127
JBoss 1147
JNDI-Bind-Name 1154
Kompilieren 1149
Lokales Business-Interface 1143
Namenskonvention 1146
Object Relational Mapping 1132
objektorientierte Modellierung 1125
Remote Business-Interface 1142
Remote Client 1146, 1155
serverseitige Komponenten 1132
Session-Bean 1138
Stateful Session-Bean 1138, 1139
Stateless Session-Bean 1138, 1139,

1140
Stub-Objekt 1138
technologische Zuordnung 1127
Zuordnung Klassenarten 1131

EJB QL 1171
EJB-Container 1127

Kommunikationsdienst 1134
Load Balancing 1135
Namensdienst 1134
Persistenzdienst 1134
Ressourcen Pooling 1133
Sicherheitsdienst 1134
Speichermanagement 1133
Synchronisationsdienst 1134
Transaktionsdienst 1134

Elementklasse 546, 547
Einschränkungen 552
Realisierung 564

1252 Index

Syntax 549
Zugriffsschutz 548

else 121, 253
else-if 254
Encoding 603

Default-~ 603
Setzen eines ~ 604

Ende-Zeichen 1003
Endian

Big-~ 597
Little-~ 597

Endlos-Schleife 259, 264
Enterprise JavaBeans 3.1 1124
Enterprise-Applikation 1132
Entity-Beans 1137
Entwurfsmuster

Dekorierer 586
Kompositum 839
Marker 533

enum 121, 171
Ereignis 869

~klasse ActionEvent 870, 872
~klasse EventObject 869
~klasse MouseEvent 873
~-Klassenhierarchie 871
~objekt 868, 869
~quelle 867, 868
~senke 867, 868
Low-Level-~ 872
semantisches ~ 872

Ereignisbehandlung 867
~ in Elementklasse 879
~ in externer Klasse 877
~ mit anonymer Klasse 880

Ersatzdarstellung 113, 128
in konstanten Zeichenketten 128
in Zeichenkonstanten 128
oktal 130
Unicode ~ 113, 129

Erweitern 369
Euklid 16
Event Siehe Ereignis
Event-Dispatch-Thread Siehe Swing
Event-Listener Siehe Listener-Schnittstelle
Exception 472

ableiten 478
Ankündigen einer ~ 488
ArithmeticException 219
ArrayIndexOutOfBoundsExceptio
n 484

Behandeln einer ~ 483
Checked ~ 473, 481
ClassNotFoundException 612
CloneNotSupportedException 351,

533

Error 480
Exception 481
Fangen einer ~ 484
IllegalMonitorStateException

 773
IllegalThreadStateException749
InterruptedException 749, 750
IOException 600, 601
Klassenbaum 478
NameAlreadyBoundException 1221
NoSuchMethodError 616
NotSerializableException 610
OutOfMemoryError 348
Propagieren einer ~ 477
RuntimeException 482
Throwable 480
Unchecked ~ 481
Weiterreichen einer ~ 487
Werfen einer ~ 476

Exception Handling 472
Exception-Handler 474, 475, 483

Reihenfolge 485
Exception-Hierarchie 480, 485
Exception-Objekt 476
executable program 63
Exemplar Siehe Instanz
Exponent 20, 126, 137
Exponential-Anteil 125
Exponentialzahl 20
extends 365, 511
Extension 64

F�

Fallunterscheidung 7
Fat Client 905
Feld 161
FIFO Siehe Warteschlange
final 121, 159, 512
finale Klasse 391
finale Methode 391
finalize() 350, 351
finally-Konstrukt 121, 474, 477
flache Kopie 534
Fließkommakonstanten 125
float 121, 137
Flussdiagramm 11
for 121, 260, 263
for-each Schleife 263
formaler Parameter 283
formaler Typ-Parameter 622, 624

Ersetzung beim Kompilieren 630
formatierte Ausgabe 99, 606
Forms 919
for-Schleife 260

Index 1253

Freigabe von Speicher 348
Fremdschlüssel 1065
friendly Siehe default

G�

ganze Zahl 19
Ganzzahlige Konstante 123
Garbage Collector 157, 348
Gegenschrägstrich 113
Generalisierung 38, 368
generische Klassen

Implementierung von ~ 623
Instanzmethoden von ~ 626
Notation 631
Speicherabbild von ~ 630
Subtyping und ~ 632
Übersetzen von ~ 626
Vererbungsbeziehungen und ~ 635

generische Methode 639
Notation 640

generische Schnittstellen
Bounds und ~ 654
Implementierung von ~ 652, 653
Notation 651
Vererbungsbeziehungen und ~ 657

generischer Konstruktor
Notation 640

Generizität 622
Coersion und ~ 668
Die Klasse Class<T> 662
generische Klasse 623
generische Methode 639
generische Schnittstellen 651
generischer Konstruktor 639
Lower Bound Wildcard 649
Polymorphie und ~ 666
Unbounded Wildcard 646
Upper Bound Wildcard 648
Wildcards 643

gepufferte Eingabe 83
geschachtelte Klasse 546

anonyme Klasse 546, 556
Elementklasse 546, 547
lokale Klasse 546, 552
Realisierung 564
statisch ~ 561

geschachtelte Schnittstelle 547
Glass-Pane 848
Gleitpunktkonstante 123, 125

Mantisse 126
Gleitpunktzahl 19, 137

IEEE-Format 137
goto 121
Groß- und Kleinschreibung 114
Gruppierungsobjekt 846

Gültigkeit 279
Gültigkeitsbereich 145

Datenfeld 1206
einfacher Name 1205
Klassenname 454
Methode 1206

GUI-Container 838
internes Fenster 852
JApplet 846
JDialog 842
JFrame 841
JPanel 846
JWindow 845
leichtgewichtiger ~ 846, 848
Methode add() 839
Methode pack() 854
Schachtelung 846
schwergewichtiger ~ 841

GUI-Komponente
Anordnung 852
AWT-~ 820, 821
Ereignisquelle 867
leichtgewichtige ~ 820, 821
schwergewichtige ~ 821
Swing-~ 820, 821

H�

Halbbyte 125
Hashing 722

Hash-Code 722
Hash-Funktion 722

Hauptfenster 826, 841, 845
interner Aufbau eines ~ 848
Methode add() 850

Heap 151, 152, 157, 323
hexadezimale Konstante 124
Hierarchie 38

"is a"-~ 38
"kind-of"-~ 38
"part-of"-~ 38
Exception-~ 480
Schnittstellen-~ 511
Vererbungs~ 38
Zerlegungs~ 38

Hilfsklasse 445
Hilfsmethode 32
Home-Interface 1124
HTML 789

Bild 798
Dokumenten-Kopf 791
Dokumenten-Rumpf 791
Hervorhebung 793
Liste 794
Überschrift 792

HTML-Browser 805

1254 Index

HTML-Dokument 900
HTML-Seite 788, 805

Parameterübergabe an Applet 809
HTTP

~-Anfrage 908
~-Befehl 908
~-Kommando 919, 927
~-Protokoll 900
~-Request 907

HTTP-Kommando
GET 927
POST 927

HTTP-Server 788
Hypertext 796
Hypertextfähigkeit 796

I�

IEEE 754 137
if 121, 253
Imperative Sprachen 18
implements 121, 513, 520
import 121, 447
Information Hiding 36, 314, 504
initialer Kontext 1216
Initialisierung 152, 329

Default-~ 329
durch Zuweisung 155
manuelle ~ 155, 329
mit Initialisierungsblock 332
mit Konstruktor 85, 335
Reihenfolge 337
Variable 9
von Arrays 165

Initialisierungsblock 332
nicht statischer ~ 333
statischer ~ 332

Initialisierungsklausel 261
Initialisierungsliste

für Arrays 163, 166
Initialisierungsreihenfolge 337
Initial-Thread Siehe Swing
Initialwerte 18
Inklusions-Polymorphie 667
innere Klasse Siehe geschachtelte Klasse
Inputstream Siehe Eingabestrom
Installation des JDKs 69
instanceof 121, 424, 427, 533, 534
Instantiierung 43, 346

Ablauf bei der ~ 346
Verhindern der ~ 347

Instanz 43
Instanzmethode 35, 88

synchronisierte ~ 766, 768
Instanzvariable 35, 154, 314
int 121, 136

Integer Siehe int
Integer-Erweiterung 239
integral promotion Siehe Integer-

Erweiterung
interface 121, 505, 511
Internationalisierung 819
Internet 900
Internetschicht 973
Interpunktionszeichen 113
Invariante 410, 412
IP-Adresse 900, 973
IP-Paket 900
IP-Protokoll 973
is a Beziehung 365
Iteration 7, 13, 212, 259, 300, 691

for-each Schleife 692
Iterator 691

J�

Jacobson
Entity-Klassen 1128
Interface-Klassen 1130
Kontroll-Klassen 1129
Steuer-Klassen 1130

jar 1151
java 3, 61
Java 2D 819, 821
Java 7

binäre Konstante 124
Konstante mit Unterstrich 125
Look and Feel 835
Typ-Parameter 625

Java Foundation Classes 818
Java Homepages 71
Java Persistence-API 1156
@Entity 1157
@GeneratedValue 1158
@Id 1158
@IdClass 1164
@JoinColumn 1176
@JoinTable 1186
@ManyToMany 1186
@ManyToOne 1181
@OneToMany 1180
@OneToOne 1175
@PersistenceContext 1167
@PrimaryKeyJoinColumn 1175
@Table 1157
Beziehungen zwischen Entity-Beans

 1174
einfacher Primärschlüssel 1158
EJB Query Language 1171
Entity Manager 1166
Entity-Bean 1157

Index 1255

persistence.xml 1173
Persistenz-Kontext 1167
Primärschlüssel 1158
Primarschlüsselklasse 1162
zusammengesetzter Primärschlüssel

 1162
Java Virtuelle Maschine 61
JAVA_HOME 69
Java-Anwendung 71
Java-API 62
Java-Applet 71
javac 3, 65
javadoc 117
Java-Plattform 60
JavaScript 71
JavaServer Pages 71
JBoss 1147
application.xml 1151
Applikations-Server 1127
Deployment-Prozess 1150
ear-Datei 1150
EJB kompilieren 1149
Installationsprozess 1148

JDBC 1062
JDBC-API 1063, 1072
JDBC-Treiber 1072, 1080
JDBC-Treiber-API 1072
JDK 68

Bezugsquelle 68
Installation 69
Konfiguration 69

JDK 7 Siehe Java 7
JFC Siehe Java Foundation Classes
JNDI 1213

atomic name 1217
binding 1213
composite name 1217
compound name 1217
initialer Kontext 1216
Kontext 1215
lookup 1213
Namensdienst 1213
Namensraum 1216
Naming Manager 1215
Service Provider Interface 1215
Subkontext 1215
Verzeichnisdienst 1213, 1214

K�

Kapselung 32, 36
Klasse 22, 443

abgeleitete ~ 364
AbstractList<E> 693
AbstractSequentialList<E> 693
Adapter-~ Siehe Swing-Klasse

aktuell parametrisierte ~ 625
anonyme ~ 546, 556
ArrayList<E> 693, 695, 706
AudioClip 812
Basis~ 364
Binding 1221
BufferedInputStream 593
BufferedOutputStream 589
BufferedReader 601
BufferedWriter 601
ByteArrayInputStream 592
ByteArrayOutputStream 588
CharArrayReader 601
CharArrayWriter 600
Collections 706
Component 803, 811
DataInputStream 593, 597
DataOutputStream 589, 597
Definition einer ~ 139
Dictionary<K,V> 730
Element~ 546, 547
EnumMap 689, 733
EnumSet 689, 721, 727
Error 480
Exception 481
FileInputStream 592
FileOutputStream 588
FileReader 601
FileWriter 603
FilterReader 601
FilterWriter 601
finale ~ 391
Formatter 606
generische ~ 623
Graphics 804
HashMap<K,V> 730
HashSet<E> 721, 722, 725
Hashtable<K,V> 730
InetAddress 975
InitialContext 1218
InitialDirContext 1218
InputStream 582, 584, 606
InputStreamReader 601
InputStreamWriter 602
Instantiierung einer ~ 346
LineNumberReader 601
LinkedBlockingQueue<E> 716
LinkedList<E> 693, 706, 711, 713
lokale ~ 546, 552
NameClassPair 1220
NamingEnumeration<T> 1220
Object 62, 351
ObjectInputStream 594, 610

1256 Index

ObjectOutputStream 590, 610
OutputStream 582, 584, 587
OutputStreamWriter 602
PipedInputStream 593
PipedOutputStream 588
PipedReader 601
PipedWriter 600
PrintStream 590, 606, 1210
PrintWriter 601
PriorityBlockingQueue<E> 720
PriorityQueue<E> 720
Properties 730
PushbackInputStream 593
PushbackReader 601
Reader 582, 584, 601
Root~ 365
RuntimeException 482
Scanner 99, 101
selbst definierte ~ 70
SequenceInputStream 593
Sohn~ 364
Stack<E> 693, 702
Start~ 67
static geschachtelte ~ 546
String 178
StringBuffer 178, 184
StringBuilder 189
StringReader 601
StringWriter 600
Sub~ 364
Super~ 364
System 606
Thread 751, 752
Throwable 478, 480
TreeMap<K,V> 732
TreeSet<E> 721, 725
Unter~ 364
URLConnection 979
Vater~ 364
Vector<E> 693, 695
Vertrag 413
WeakHashMap<K,V> 733
Writer 582, 584, 599, 600
Wurzel~ 365

Klasse-A-Netz 999
Klasse-B-Netz 999
Klasse-C-Netz 999
Klassenbaum

Exception 480
Klassenbibliothek 443
Klasseninvariante 412
Klassenlader 67
Klassenmethode 35, 317

synchronisierte ~ 765, 769
Klassenname 42
Klassen-Typ 137
Klassenvariable 35, 154, 314, 316
kombinierte Zuweisungsoperatoren 223
Kommentar 42, 116

Dokumentationskommentar 117
Kommentarblock 116
Zeilenkommentar 116

Kompilierung 65
bei Aggregation 428
bei Vererbung 428

Komponente
EJB 1132
Unterschied zu Klassen 1132

Komposition 39
Kompositum Siehe Entwurfsmuster
Konfiguration des JDKs 69
Konkatenationsoperator 129
Konstante 122, 123

Aufzählungs~ 171
Boolesche ~ 123, 127
false 127
ganzzahlige ~ 123
Gleitpunkt~ 123, 125
hexadezimal 124
literale 123
MAX_VALUE 126
MIN_VALUE 126
NaN 126
NEGATIVE_INFINITY 126
Null~ 123, 130, 135
oktale ~ 124
POSITIVE_INFINITY 126
String~ 123
symbolische ~ 76, 122
symbolische Gleitpunkt~ 126
true 127
Zeichen~ 123, 127

konstante Ausdrücke 123
konstante Variable 158
konstante Zeichenkette 129, 178
Konstruktor 87, 335

abgeleitete Klasse 381
Aufruf eines ~ im ~ 340
Default-~ 87, 339
mit Parameter 338, 339
parameterloser ~ 339
selbst geschriebener Default-~ 339
vordefinierter Default-~ 88
voreingestellter Default-~ 339, 383
Zugriffsschutz 462

Konsument Siehe Warteschlange
Kontext 1215
Kontexthilfe 826

Index 1257

Kontext-Pfad 913
Kontextwechsel 744
Kontrollfluss 6, 252
Kontrollstruktur 7, 252

Iteration 7, 13
Selektion 7, 12
Sequenz 252

Kooperation 745
Kopie

flache ~ 534
tiefe ~ 535

kritischer Abschnitt 745, 761, 764

L�

Laden
dynamisches ~ 65

Laufzeit 63
Laufzeitsystem 67, 151
Laufzeitumgebung 67

EJB-Container 1133
Layered-Pane 849
Layout-Manager 852

Border-Layout 856
Box-Layout 864
Card-Layout 858
Flow-Layout 853
GridBag-Layout 860
Grid-Layout 855
Group-Layout 866
Klassendiagramm 853
Methode setLayout() 853
Null-Layout 866, 894
Overlay-Layout 867
Schachtelung 858
Spring-Layout 867
ViewportLayout 867
voreingestellter ~ 852, 853

Lebensdauer 39, 145, 279
leere Anweisung 277
leerer Block 277
Leerzeichen 113, 116
leichtgewichtig

GUI-Container 846, 848
GUI-Komponente 820, 821

leichtgewichtiger Prozess 746
Lesezeiger 83
Lexikalische Analyse 65
lexikalische Einheiten 112, 114
LIFO Siehe Stapel
LIFO-Prinzip 702
linksassoziativ 214
Liskov Substitution Principle 394, 409

~ und generische Klassen 633
Liste 685, 693

Laufzeiteigenschaften 704

sortieren einer ~ 706
traversieren 696
verkettete ~ 696

Listener-Schnittstelle 872, 873, 876
ActionListener 827
MouseListener 873, 874
Vererbungshierarchie 873
Zuordnung Adapter-Klasse 876

Literale 123
literale Konstante 123
Little-Endian 597
logische Bit-Operatoren 230
logische Operatoren 227
lokale Klasse 546, 552

Einschränkungen 555
in einer Instanzmethode 552
in einer Klassenmethode 553
Realisierung 565

lokale Schnittstelle 1017
lokale Variable 154, 277
long 121, 136
Look and Feel

Cross-Platform ~ 832
Klasse UIManager 894
Klasse UIManger 835
Metal ~ 832
Multiplexing ~ 834
Nimbus ~ 832
Pluggable ~ 819, 832
Properties-Datei 834
swing.defaultlaf 834
Synth ~ 833
System ~ 833

Look-up 1000, 1021, 1213
Low-Level-Ereignis Siehe Ereignis
lvalue Siehe L-Wert
L-Wert 215

M�

MAC-Adresse 973
makroskopischer Zustand 33
Mantisse 20, 125, 137
Map Siehe Verzeichnis
Marke 256, 257, 265
Marshalling 1045
Maschinencode 61, 1241
mehrfache Alternative 254, 255
Mehrfachvererbung

Schnittstelle 526
Mehrfachzuweisung 222
Memory Management 746
Menge 685, 721

~ für Aufzählungstypen 727
~ mit Bäumen 725
~ mit Hashing 722

1258 Index

Mensch-Maschine-Schnittstelle 822
Message-Driven-Beans 1137
Metadaten 1103
Method-Area 158, 323, 426
Methode 32, 140, 276, 281

abstrakte ~ 512
actionPerformed() 827, 870
add() 694
addActionListener() 827, 869
Aufruf einer ~ 281
available() 591
binarySearch() 735
bind() 1045, 1055
Callback-~ 868
cancel() 888
clone() 351, 532, 534
close() 587, 591, 600, 601
compare() 706
compareTo() 659
contains() 721
containsKey() 729
containsValue() 729
currentTimeMillis() 1212
Definition 281
Deklaration 281
destroy() 807
disjoint() 735
doInBackground() 888, 889
drawImage() 811
drawOval() 816
drawString() 804
eigenständig generische ~ 639
element() 712
empty() 702
equals() 351, 722, 730
execute() 888
exit() 1211
finale ~ 391
finalize() 350, 351
flush() 587, 600
format() 606, 608
forName() 663
frequency() 735
gc() 1212
get() 693, 729
getActionCommand() 870
getAudioClip() 812
getClass() 663
getCodeBase() 811
getHeight() 811
getImage() 810
getInstalledLookAndFeels() 836
getLine() 816

getMessage() 481
getModel() 829
getParameter() 809
getPriority() 760
getSource() 869
getWidth() 811
hashCode() 722, 730
hasNext() 692
init() 806
Instanz~ 35
interrupt() 749, 750
invokeLater() 884
isAlive() 751
isCancelled() 889
isDaemon() 781
isEmpty() 713
iterator() 692
join() 750
keySet() 729
Klassen~ 35, 317
listIterator() 692
loadClass() 1045
lookup() 1046, 1056
mark() 591, 601
markSupported() 591, 601
mit Parametern 143, 282
mousePressed() 873
mouseReleased() 873
newInstance() 663
next() 692
notify() 771, 772
notifyAll() 772
offer() 712, 715
ohne Parameter 142, 281
pack() 854
paint() 803
parseInt() 191
peek() 703, 712
play() 812
poll() 712, 715
pop() 702, 703
print() 606
printf() 99, 606
println() 606, 1210
printStackTrace() 946
process() 889
publish() 889
push() 702
put() 715, 729
read() 591, 601
readDouble() 598
readExternal() 614

Index 1259

readInt() 598
readObject() 610
ready() 601
rebind() 1055
Remote-~ 1056
remove() 694, 712
replace() 708
replaceAll() 736
reset() 591, 601
reverse() 735
rotate() 735
run() 752, 754
search() 703
set() 693
setActionCommand() 870
setDaemon() 781
setIn() 1210
setLayout() 853
setLookAndFeel() 835
setModel() 829
setOut() 1210
setPriority() 760
shuffle() 735
skip() 591, 601
sleep() 749
sort() 735
start() 749, 753, 806
stop() 806
take() 715
toString() 197, 351
Überladen einer ~ 294
Überschreiben einer ~ 372
updateComponentTreeUI() 836
valueOf() 192
values() 729
Vertrag einer ~ 411
wait() 771, 772
write() 587, 600
writeDouble() 598
writeExternal() 614
writeInt() 598
writeObject() 610
yield() 750

Methodendeklaration 140
Methodenkopf 140, 406
Methodenrumpf 140, 281, 406
Methodentabelle 426
mikroskopischer Zustand 33
MIME-Bezeichner 918
MMI Siehe Mensch-Maschine-Schnittstelle
modale Beziehung 842
modaler Dialog 843
Model-View-Controller 822

Implementierung in Swing 824, 831
Modifikator 159
abstract 159, 393, 512
final 159, 512
native 159
private 159
protected 159
public 159
static 159
synchronized 159, 765, 767
transient 159, 613
volatile 159

Modulo-Operator 21
Monitorkonzept

~ allgemein 763
~ in Java 765

Multicast 998
Multithreading 746, 990
mutal exclusion Siehe wechselseitiger

Ausschluss

N�

Nachbedingung 410
Nachricht 34
Name 115, 120

qualifizierter ~ 448, 1205
Variablen~ 145

Namen
Variablennamen 18

Namensdienst 1213
Namensraum 443, 547, 1216
Naming Manager 1215
Nassi-Shneiderman-Diagramm 11, 253
native 121, 159
Nebeneffekt 213, 229, 245
nebenläufig 742
Nebenläufigkeit

Event-Dispatch-Thread Siehe Swing
Initial-Thread Siehe Swing
Worker-Thread Siehe Swing

Nebenwirkung Siehe Nebeneffekt
nested class Siehe geschachtelte Klasse
new 121, 151
Nullkonstante 123, 130, 135
null-Referenz 130, 135, 147
null-Typ 135, 147

O�

Oberflächenprogrammierung 818
Object by Reference 1014, 1028
Object by Value 1014, 1028
object relational gap Siehe Java

Persistence-API
Object Relational Mapping 1132

1260 Index

Object-Relational Mapper Siehe Java
Persistence-API

Objekt
implizite ~ 940
Schlüssel~ 768
zusammengesetzt 92

Objekterzeugung 84, 346
Objektserialisierung 609
ODBC 1073
offene Gruppe 1003
offenes Array 168
oktale Konstante 124
One-Tier-Architektur 904
Open Database Connectivity Siehe ODBC
Operand 210
Operator 130, 210

Additions~ 219
Additions-Zuweisungs~ 222
arithmetischer ~ 217, 218
Bedingungs~ 234, 428
binärer ~ 21, 210
Bit-Operatoren 230
cast-~ 80, 236, 427
Divisions~ 219
dreistelliger ~ 210
einstelliger ~ 210, 213
Exklusiv-ODER-Operator für Bits 231
für Referenzen 427
Gleichheits~ 224
Größer~ 226
Größergleich~ 226
instanceof-~ 424, 427
Kleiner~ 226
Kleinergleich~ 226
Linksshift-~ 234
logischer ~ 227
logischer Exklusiv-ODER-~ 228
logischer Negations~ 229
logischer ODER-~ 228
logischer UND-~ 227
mehrstelliger ~ 213, 214
Modulo-~ Siehe Restwertoperator
Multiplikations~ 219
Negations-Operator für Bits 232
negativer Vorzeichen~ 217
new-~ 151
ODER-Operator für Bits 231
positiver Vorzeichen~ 217
Postfix-Dekrement~ 218
Postfix-Inkrement~ 217
Präfix-Dekrement~ 218
Präfix-Inkrement~ 218
Prioritätentabelle 235
Punkt~ 143
Punkt~ für Referenzen 427
Rechtsshift-~ 233

relationaler ~ 223
Restwert~ 21, 220
Shift-~ 230, 232
Subtraktions~ 219
unärer ~ 21, 210, 211
UND-Operator für Bits 230
Ungleichheits~ 225
Vergleichs~ 78, 224
Verkettungs-~ 428
Vorzeichen~ 124
Zuweisungs~ 78, 221, 428
zweistelliger ~ 210

Outputstream Siehe Ausgabestrom
Outputstream-Klasse 587
Overloading Siehe überladen

P�

package 122, 445
Paket 59, 442, 443

anonymes ~ 454
java.awt 819, 853, 871, 873
java.awt.event 827
java.lang 449
java.sql 1062
java.util 685, 869
java.util.concurrent 734
javax.sql 1063
javax.swing 819, 820, 853, 871, 873
Komponente 447

Paketname 445
eindeutiger ~ 454
vollständiger ~ 452

Parameter 155
aktueller ~ 283
als einfacher Datentyp 286
als Referenztyp 286
Auswertungsreihenfolge 287
formaler ~ 283
für Methode main() 298

parametrische Polymorphie 667
Parser 115
PATH-Variable 69
persistence.xml 1173
Persistenz-Kontext 1167
Pipe 771
Plain Old Java Objects 1124
Plattform 60
POJO 1124
Polymorphie 364, 394

Inklusions-~ 667
parametrische ~ 667
von Methoden 292
von Objekten 395
von Operationen 394

Portierbarkeit 60

Index 1261

Postfix-Operator 211
Präfix-Operator 211
preemptive scheduling 743
Primärschlüssel 1064, 1158

einfacher ~ 1158
Primarschlüsselklasse 1162
zusammengesetzter ~ 1162

Primary Key Siehe Primärschlüssel
printf() 99
Priorität 214, 229, 235
Prioritätentabelle 235
private 122, 159, 458
Problembereich 28, 37
Processingstream-Klasse 580, 583, 588
Produzent Siehe Warteschlange
Programm 4, 10
Programmeinheit 442
Programmierstil 78, 120
Propagieren 477
protected 122, 159, 458
Proxy 1016
Prozess

leichtgewichtiger ~ 746
schwergewichtiger ~ 744, 746

Prozesskontext 744
Prozesskonzept 742
Prozessumgebung 744
public 122, 159, 458
Punktoperator 143

für Referenzen 427

Q�

qualifizierter Name 1205
quasi parallel 743
Quellcode-Datei 64
Quelldatei 64
Queue Siehe Warteschlange

R�

Race Condition 760
Reader/Writer-Problem 760
Reader-Klasse 601
ready-to-run 747
Rechner-Plattform 58
rechtsassoziativ 214, 215
reelle Zahlen 21
Referenz 40, 148
null-~ 130, 135, 147
Remote-~ 1021
this-~ 322
Zuweisung an eine ~ 149

Referenztyp 134, 137
Schnittstelle 514

Referenzvariable 146, 148, 514

Rekursion 300
direkt 300
indirekt 300

Relationale Operatoren 224
Remote Method Invocation 904, 970, 1014
Remote-Methode 1056
Remote-Referenz 1021, 1046
Remote-Schnittstelle 1016, 1017
Repeat-Schleife 14
reserviertes Wort Siehe Schlüsselwort
return-Anweisung 122, 282
RMI Siehe Remote Method Invocation
RMI-Registry 1020, 1022
Rootklasse Siehe Wurzelklasse
Root-Pane 848
RTTI Siehe Run Time Type Identifikation
Rückgabetyp 212
Rückgabewert 210, 211, 212, 282
Run Time Type Identifikation 425
running 747
rvalue Siehe R-Wert
R-Wert 215

S�

Satzzeichen 113, 115, 130
Scanner 114
Schachtelung

Prinzip der ~ 831, 858
Scheduler 743
Scheduling 746
Schichtenmodell 902, 972
Schleife 76

abweisende ~ 13, 259, 260
annehmende ~ 14, 264
endlose 259, 264
for-each ~ 263, 692

Schlüsselobjekt 768
Schlüsselwort 115, 121
Schnittstelle 443, 504
ActionListener 827
als Datentyp 514
AnnotatedElement 1236
BlockingQueue<E> 711
CallableStatement 1095
Callback-~ 868
Cloneable 530
Collection<E> 688
Comparable 658
Comparable<E> 726
Comparable<T> 706
Comparator<T> 706
Context 1218
Definition 510
Deklaration 510, 511

1262 Index

DirContext 1218, 1225
EntityManager 1166
EventListener 873
Externalizable 614
generische ~ 651
ImageObserver 811
Implementieren einer ~ 506, 513, 517
Iterable<E> 687
Iterator<E> 692
LayoutManager 852
LayoutManager2 852
List<E> 688, 693, 711
Listener-~ Siehe Listener-Schnittstelle
ListIterator<E> 692
Map<K,V> 688, 730, 733
Marker-~ 533
Mehrfachvererbung 526
MouseListener 873, 874
PreparedStatement 1092
Queue<E> 688, 711
ResultSet 1077, 1096
Runnable 751, 754
Serializable 610
Set<E> 688
SortedMap<K,V> 732
SortedSet<E> 725, 726
Statement 1087, 1088
static geschachtelte 547, 561
Typsicherheit 516
Vererbung 526

Schnittstellenschicht 973
schwergewichtig

GUI-Container 841
GUI-Komponente 821

schwergewichtiger Prozess 744, 746
Seiteneffekt Siehe Nebeneffekt
Seitengenerierung

dynamische ~ 900
Seitenvorschub 116
Selektion 7, 12, 212, 252

bedingte Anweisung 13, 253
einfache Alternative 12, 253
mehrfache Alternative 13, 254, 255

Semantik
dynamische ~ 66
statische ~ 66

Semantische Analyse 66
semantisches Ereignis Siehe Ereignis
Semaphor 762
signal()-Befehl 762
wait()-Befehl 762
Warteschlange 762

Semaphorkonzept
~ allgemein 762

separators 113
Sequenz 8, 11, 252
Serialisierung 609
serialVersionUID 613
Server 903

Applikations-~ 901
paralleler ~ 990

Server-API 909
Server-Objekt 1046
Server-Rechner 904, 905
Server-Stub 1016
Service Provider Interface 1215
Service-Klasse Siehe Hilfsklasse
Service-Methode Siehe Hilfsmethode
Servlet 71, 900

Lebenszyklus eines ~ 921
Methode destroy() 922
Methode init() 922
Methode service() 922

Servlet-API 909, 918
Servlet-Container 900, 909, 910
Servlet-Engine Siehe Servlet-Container
Session-Bean 1138

Bean-Klasse 1138
Business-Interface 1138
JNDI-Bind-Name 1154
Verarbeitungslogik 1131

Set Siehe Menge
short 122, 136
Sichtbarkeit 279, 443

Klasse 457
Schnittstelle 457

single entry 8
single exit 8
Singleton 347
Sinkstream-Klasse 580, 583, 588, 600
Socket 970, 981
Sohnklasse 364, 369
Sonderzeichen 113
Speicher

Freigabe von ~ 348
Spezialisierung 38, 367, 368
Sprachen

formal 10
natürlich 10

Springstream-Klasse 580, 583, 592
Sprunganweisung 212, 265
SQL 1063
SQL-Befehl
ALTER TABLE 1068
COMMIT 1071, 1072
CREATE TABLE 1067
DELETE 1071
DROP TABLE 1068
INSERT 1070

Index 1263

ROLLBACK 1071
SELECT 1068
UPDATE 1070

SQL-Statement 1077, 1087
statisches ~ 1088
variables ~ 1092

SSL Session 921
Stack 152, 156, 702

Abbau des ~ 303
Aufbau des ~ 302

Standardausgabe 606
Standardeingabe 83, 606
Standardtyp 19
Stapel 702

Abbau des ~ 303
Aufbau des ~ 302

Stapelspeicher 702
Startklasse 64, 67
Stateful Session-Bean 1137, 1138, 1139

Dialog-Zustand 1139
Stateless Session-Bean 1137, 1138, 1139,

1140
static 122, 159, 316
Static imports 449
statisch geschachtelte Klasse 561
statisch geschachtelte Schnittstelle 561
Stellvertreter 1016
Steuerzeichen 113
Stream 576
Stream-Konzept 583
Streuspeicher-Verfahren Siehe Hashing
strictfp 122
String 2, 178

Erzeugung 179
Methode equals() 183
Methode length() 179, 182
Methode substring() 183
Methode trim() 183
Methoden der Klasse ~ 182
Vergleichen 182
Verkettung 187, 197

string constants 129
string literals 129
StringBuffer

Erzeugung 184
Vergleichen 186
Verkettung 186, 187

StringBuilder 189
String-Konstante 123, 129
String-Objekt 179
Strom-eindeutige Bezeichner 613
Struktogramme 10
Strukturierte Programmierung 8, 11
Stub-Objekt 1046
Style Guide 120

Paketname 445
Subklasse 364
Subkontext 1215
Subsystem 504
super 122, 388, 389
super() 381, 382
Superklasse 364
Swing 818, 819

~-GUI-Komponente 820, 821, 891
~-Lernprogramm 891
Architekturmerkmale 820
Ereignisbehandlung 867
Event-Dispatch-Thread 882
Initial-Thread 883
Layout-Manager Siehe Layout-Manager
MVC Siehe Model-View-Controller
Nebenläufigkeit 882
Worker-Thread 886, 888

Swing-Klasse
Adapter-Klasse 555, 872, 875, 876
BorderLayout 856, 894
BoxLayout 864, 894
ButtonGroup 894
CardLayout 858, 894
EventObject 869
FlowLayout 853, 894
GridBagConstraints 860
GridBagLayout 860, 894
GridLayout 855, 894
Insets 861
JApplet 820, 841, 846
JButton 824, 829, 894
JCheckBox 894
JColorChooser 894
JComboBox 894
JDesktopPane 848, 851
JDialog 820, 841, 842, 894
JEditorPane 894
JFileChooser 894
JFormattedTextField 894
JFrame 820, 824, 831, 841, 894
JInternalFrame 848, 850, 851
JLabel 839, 894
JLayeredPane 848
JList 894
JMenu 894
JMenuBar 849, 850, 894
JMenuItem 894
JOptionPane 894
JPanel 846, 848, 894
JPasswordField 894
JPopupMenu 894
JProgressBar 894

1264 Index

JRadioButton 894
JRootPane 848
JScrollPane 894
JSeparator 894
JSlider 894
JSpinner 894
JSplitPane 894
JTabbedPane 894
JTable 894
JTextArea 894
JTextField 840, 894
JToggleButton 894
JToolBar 894
JTree 894
JWindow 820, 841, 845
ProgressMonitor 894
SplashScreen 894
SwingUtilities 884
SwingWorker 888
UIManager 835

switch 122, 255
symbolische Gleitpunkt-Konstanten 126
symbolische Konstante 76, 78, 122
Synchronisation 745

Block 767
Instanzmethode 766, 768
Klassenmethode 765, 769
mit Reihenfolge 769, 771

synchronisierte Blöcke 767
synchronized 122, 159, 765, 767
Syntaxanalyse 66
Systemmenü 826

T�

Tabulator 116
Tag 790
Tastatur-Eingabespeicher 83
Tastaturpuffer 82
TCP Siehe Transmission Control Protocol
TCP/IP-Architektur 900, 972
Teilsystem Siehe Subsystem
Thin Client 901, 905
this 122
this() 340
this-Referenz 322
Thread 443, 742

Beenden von ~ 756
Daemon-~ 781
Erzeugung 751
Priorität 760
Scheduling 759
Zustandsübergang 748

Threads 711, 734
Three-Tier-Architektur 904, 1125

throw 122, 476, 477, 478
throws 122, 478, 481, 488
tiefe Kopie 535
Time Slice 743
Token 112, 114
Top-Level-Container 841, 843
Top-Level-Klasse 563
Top-Level-Schnittstelle 563
Trace-Tabelle 9
Transaktion 1071, 1100

verteilte ~ 1106
transient 122, 159, 613
Transmission Control Protocol 983
Transportschicht 973
Trenner 115
try 122, 474
try-Anweisung 487
try-Block 474
Two-Tier-Architektur 905
Typ

Aufzählungs~ 171
null-~ 135

Typ Erasure 628
Bounded Typ-Parameter 644
Kompilieren und ~ 628
Schnittstellen und ~ 657

Typbegriff 529
Typerkennung 425
Typkonvertierung

einfacher Datentypen 238
explizite ~ 80, 236, 237, 374
explizite ~ von Referenzen 376
für binäre Operatoren 240
für numerische Typen 239, 241
für unäre Operatoren 239
implizite ~ 80, 236, 237, 374
implizite ~ von Referenzen 374
von Referenzen 374
Vorschriften 242

Typ-Parameter
aktueller ~ 625
Ausradieren des formalen 628
Bounded 644
Ersetzung des formalen ~ 626
formaler ~ 622, 624
mehrere formale ~ 631

Typ-Parameter-Sektion
~ bei generischen Klassen 631
~ bei generischen Konstruktoren 640
~ bei generischen Methoden 640

Typsicherheit
~ von Schnittstellen 516
Erhöhung der ~ 623

Typ-Suffix 125, 126
Typumwandlung Siehe Typkonvertierung

Index 1265

U�

UDP Siehe User Datagram Protocol
Überladen 294
Überschreiben

Zugriffsmodifikator 463
zur Optimierung 372
zur Verfeinerung 372

Umgebungsvariable 450
Umwandlungszeichen 607, 608
Unchecked Exception 481
Unicast 998
Unicode 18, 112, 114
Unicode-Ersatzdarstellungen 129
Uniform Resource Locator Siehe URL
Unmarshalling 1045
Unterklasse 364
Unterpaket 448
Up-Cast 376, 377
URL 901, 977
URL Rewriting 921
User Datagram Protocol 973, 994

V�

Variable 9, 18, 134
Definition 145
dynamische ~ 143, 151
Instanz~ 35, 154
Klassen~ 35, 154, 316
konstante ~ 158
lokale ~ 144, 154, 277
ohne Namen 157
PATH-~ 69
Referenz~ 146
statische ~ 143, 145
Variablennamen 18, 145
Wert 18

variable Zeichenkette 178, 184
Vaterklasse 364, 369
Verarbeitungsschritt 11

Sinnbild 11
verdecken 385, 386
Vereinbarung

Begriff der ~ 146
import-~ 447

Vererbung 96, 364
Exception 478
Schnittstelle 511, 526

Vererbungshierarchie 38
Verfeinerung 505, 506, 528
Vergleichsoperator 78, 224
Verkettung 197
Verkettungsoperator 129

~ für String-Objekte 428
Verknüpfungsreihenfolge 229
Verschiebeoperator Siehe Shift-Operator

verteilte Anwendung 1125
verteiltes System 1125
Vertrag 409

einer Klasse 413
einer Methode 411
überschriebene Methode 413

Verzeichnis 685, 728
~ für Aufzählungstypen 733
~ mit Bäumen 732
~ mit Hashing 730

Verzeichnisdienst 1213, 1214
Virtuelle Maschine 61, 67
virtueller Desktop 850
void 122, 135
volatile 122, 159
Vorbedingung 410
Vorzeichenbit 137
Vorzeichenoperator 124

W�

Wahrheitstabelle 231, 232
Wahrheitswert Siehe Boolescher Wert
Warteschlange 685, 710, 711, 771

blockierende ~ 715, 720
einfache ~ 712
Konsument 715
priorisierte ~ 714
Produzent 715

Web-Anwendung 911
Webseite

dynamische ~ 908
statische ~ 908

Web-Server 60, 900, 910
wechselseitiger Ausschluss 745
while 122, 259
while-Schleife 259
Whitespace-Zeichen 115, 116
Wiederholung 13
Wiederverwendung

Quellcode 364
Wildcard 643

Lower Bound ~ 649
Unbounded ~ 646
Upper Bound ~ 648

Window-Manager 841
Word Wide Web 900
Worker-Thread Siehe Swing
Wrapper-Klasse 126, 190
Boolean 191, 197
Byte 191
Character 191, 197
Double 191, 197
Float 191, 197
Integer 191, 197
Long 191, 197

1266 Index

Short 191
Void 191

Writer-Klasse 599
Wurzelklasse 365
WWW Siehe World Wide Web

Z�

Zahlensysteme 124
Zahlenüberlauf 20
Zeichen 16

Buchstaben 17
einlesen von ~ 81
Sonderzeichen 17
Steuerzeichen 17
Whitespace-~ 115, 116
Ziffern 17

Zeichenkette 2, 179
konstante ~ 113, 178
variable ~ 178, 184

Zeichenkonstante 123, 127
Zeichenliteral 127
Zeichensatz 112
Zeichenverkettungsoperator 197
Zeichenvorrat 16, 17, 112
Zeilentrenner 116
Zeitscheibe 743
Zeitscheiben-Betriebssystem 743
Zerlegungshierarchie 38
Ziffer 16, 113
Zugriffsmodifikator 43, 457

beim Überschreiben 463
private 159, 457
protected 159, 457
public 159, 457
Schnittstelle 512

Zugriffsschutz 457
Datenfeld 458
default 457
Elementklasse 548
Klasse 457
klassenbezogen 459
Konstruktor 462
Methode 458
objektbezogen 459
Schnittstelle 457
Übersicht 462

zusammengesetzte Anweisung 252, 276
zusammengesetzte Objekte 92
Zusicherung 410

Invariante 410, 412
Nachbedingung 410
Vorbedingung 410

Zustand
blocked 747, 748
dead 748
eines Objektes 32
makroskopischer ~ 33
mikroskopischer ~ 33
new 748
ready-to-run 747, 748
running 747, 748

Zustandssynchronisation 745
Zustandsübergangsdiagramm

für Betriebssystem-Prozesse 747
Thread 749, 751

Zuweisung 9
zuweisungskompatibel 237
Zuweisungsoperator 78, 221, 428
Zweierkomplement 136
Zwischencode 65

	Cover
	Java als erste
Programmiersprache,
6. Auflage
	ISBN 9783834806567
	Vorwort
	Wegweiser durch das Buch
	Inhaltsverzeichnis
	1 Grundbegriffe der Programmierung
	1.1 Das erste Programm
	1.2 Vom Problem zum Programm
	1.2.1 Der Algorithmus von Euklid als Beispiel für Algorithmen
	1.2.2 Beschreibung sequenzieller Abläufe
	1.2.3 Strukturierte Programmierung
	1.2.4 Variable und Zuweisungen
	1.2.5 Vom Algorithmus zum Programm

	1.3 Nassi-Shneiderman-Diagramme
	1.3.1 Diagramme für die Sequenz
	1.3.2 Diagramme für die Selektion
	1.3.3 Diagramme für die Iteration
	1.3.4 Algorithmus von Euklid als Nassi-Shneiderman-Diagramm

	1.4 Zeichen
	1.5 Variable
	1.6 Datentypen
	1.6.1 Einfache Datentypen
	1.6.1.1 Der Datentyp int
	1.6.1.2 Der Datentyp float
	1.6.1.3 Operationen auf einfachen Datentypen

	1.6.2 Selbst definierte Datentypen
	1.6.3 Von den einfachen Datentypen zu den Klassen

	1.7 Übungen

	2 Objektorientierte Konzepte
	2.1 Modellierung mit Klassen und Objekten
	2.1.1 Problemund Lösungsbereich
	2.1.2 Klassen und Objekte
	2.1.3 Zustände von Objekten
	2.1.4 Zusammenarbeit von Objekten
	2.1.5 Instanzvariablen, Instanzmethoden, Klassenvariablen und Klassenmethoden

	2.2 Das Konzept der Kapselung
	2.3 Abstraktion und Brechung der Komplexität
	2.4 Erstes Programmbeispiel mit Objekten
	2.5 Flughafen-Projekt
	2.5.1 Ausschreibung für ein neues Flughafen-Informationssystem
	2.5.2 Systemanalyse
	2.5.2.1 Kontextdiagramm
	2.5.2.2 Use Case-Diagramme
	2.5.2.3 Use Case-Beschreibungen
	2.5.2.4 Klassendiagramm der konzeptionellen Sicht der Systemanalyse

	2.6 Übungen

	3 Einführung in die Programmiersprache Java
	3.1 Sprachkonzepte von Java
	3.2 Eigenschaften von Java
	3.3 Die Java-Plattform
	3.3.1 Die Java Virtuelle Maschine
	3.3.2 Die Java Klassenbibliothek

	3.4 Programmerzeugung und -ausführung
	3.4.1 Kompilieren
	3.4.1.1 Lexikalische Analyse
	3.4.1.2 Syntaxanalyse
	3.4.1.4 Codeerzeugung
	3.4.1.5 Virtuelle Maschine

	3.4.2 Laden in die virtuelle Maschine
	3.4.3 Ausführen von Bytecode
	3.4.4 Bytecode

	3.5 Das Java Development Kit
	3.5.1 Installation und Konfiguration des JDK
	3.5.2 Java Homepages

	3.6 Java-Anwendungen und Internet-Programmierung
	3.7 Übungen

	4 Einfache Beispielprogramme
	4.1 Lokale Variable, Ausdrücke und Schleifen
	4.2 Zeichen von der Tastatur einlesen
	4.3 Erzeugen von Objekten
	4.4 Initialisierung von Objekten mit Konstruktoren
	4.5 Schreiben von Instanzmethoden
	4.6 Zusammengesetzte Objekte
	4.7 Selbst definierte Untertypen durch Vererbung
	4.8 Die Methode printf() und die Klasse Scanner
	4.9 Übungen

	5 Lexikalische Konventionen
	5.1 Zeichenvorrat von Java
	5.2 Der Unicode
	5.3 Lexikalische Einheiten
	5.3.1 Trenner
	5.3.1.1 Whitespace-Zeichen
	5.3.1.2 Kommentare

	5.3.2 Namen
	5.3.3 Programmier-Style Guide
	5.3.4 Reservierte Wörter
	5.3.5 Literale und symbolische Konstanten
	5.3.5.1 Ganzzahlige Konstanten Ganzzahlige Konstanten wie 1234 sind vom Typ int. Wenn der Typ-Suffix l oder
	5.3.5.2 Gleitpunktkonstanten
	5.3.5.3 Boolesche Konstanten
	5.3.5.4 Zeichenkonstanten
	5.3.5.5 Konstante Zeichenketten Konstante Zeichenketten (String-Konstanten, String-Literale) sind Folgen von
	5.3.5.6 Nullkonstante

	5.3.6 Satzzeichen
	5.3.7 Operatoren

	5.4 Übungen

	6 Datentypen und Variable
	6.1 Klassifikation der Datentypen von Java
	6.2 Einfache Datentypen
	6.2.1 Der logische Typ boolean
	6.2.2 Die Integer-Typen byte, short, int, long, char
	6.2.3 Die Gleitpunkttypen float und double

	6.3 Klassen-Typ
	6.3.1 Abstrakte Datentypen und Klassen
	6.3.2 Definition eines Klassen-Typs
	6.3.2.1 Methoden
	6.3.2.2 Datenfelder

	6.4 Variable
	6.4.1 Variable einfacher Datentypen
	6.4.2 Referenzvariable von Klassen-Typen
	6.4.3 Dynamische Variablen – Objekte
	6.4.4 Klassenvariable, Instanzvariable und lokale Variable
	6.4.5 Speicherbereiche für Variable
	6.4.5.1 Der Stack
	6.4.5.2 Der Heap
	6.4.5.3 Die Method-Area

	6.4.6 Konstante Variablen
	6.4.7 Modifikatoren

	6.5 Array-Typ
	6.5.1 Arrays aus Elementen eines einfachen Datentyps
	6.5.2 Arrays aus Referenztypen
	6.5.3 Objektcharakter von Arrays
	6.5.4 Mehrdimensionale Arrays
	6.5.5 Schreibweise von Arrays

	6.6 Aufzählungstyp
	6.7 Zeichenketten
	6.7.1 Konstante Zeichenketten
	6.7.1.1 Erzeugung von Strings
	6.7.1.2 Vergleichen von Strings
	6.7.1.3 Stringverarbeitung – Methoden der Klasse String

	6.7.2 Variable Zeichenketten mit der Klasse StringBuffer
	6.7.2.1 Erzeugung eines StringBuffer-Objektes
	6.7.2.2 Vergleichen von Objekten vom Typ StringBuffer

	6.7.3 Verkettung von Strings und StringBuffern
	6.7.3.1 Anhängen von Zeichenketten an einen StringBuffer
	6.7.3.2 Verkettung von String-Objekten

	6.7.4 Variable Zeichenketten mit der Klasse StringBuilder

	6.8 Wandlung von Datentypen
	6.8.1 Wrapper-Klassen mit Boxing und Unboxing
	6.8.2 Wandlung beliebiger Datentypen in Zeichenketten

	6.9 Übungen

	7 Ausdrücke und Operatoren
	7.1 Operatoren und Operanden
	7.2 Ausdrücke und Anweisungen
	7.3 Nebeneffekte
	7.4 Auswertungsreihenfolge
	7.4.1 Einstellige und mehrstellige Operatoren
	7.4.2 Mehrstellige Operatoren gleicher Priorität
	7.4.3 Bewertungsreihenfolge von Operanden

	7.5 L-Werte und R-Werte
	7.6 Zusammenstellung der Operatoren
	7.6.1 Einstellige arithmethische Operatoren
	7.6.2 Zweistellige arithmetische Operatoren
	7.6.3 Zuweisungsoperatoren
	7.6.4 Relationale Operatoren
	7.6.5 Logische Operatoren
	7.6.6 Bit-Operatoren
	7.6.6.1 Logische Bit-Operatoren
	7.6.6.2 Shift-Operatoren für Bits

	7.6.7 Der Bedingungsoperator: A ? B : C
	7.6.8 Prioritätentabelle der Operatoren

	7.7 Konvertierung von Datentypen
	7.7.1 Der cast-Operator
	7.7.2 Implizite und explizite Typkonvertierungen
	7.7.3 Typkonvertierungen bei einfachen Datentypen
	7.7.3.1 Implizite Typkonvertierungen bei numerischen Datentypen
	7.7.3.2 Die Integer-Erweiterung
	7.7.3.4 Anpassungen numerischer Typen bei binären Operatoren
	7.7.3.5 Implizite Typkonvertierung von numerischen Typen bei Zuweisungen, Rückgabewerten und Übergabeparametern von Methoden

	7.7.4 Konvertiervorschriften für einfache Datentypen

	7.8 Ausführungszeitpunkt von Nebeneffekten
	7.9 Übungen

	8 Kontrollstrukturen
	8.1 Blöcke – Kontrollstrukturen für die Sequenz
	8.2 Selektion
	8.2.1 Bedingte Anweisung und einfache Alternative
	8.2.2 Mehrfache Alternative – else-if
	8.2.3 Mehrfache Alternative – switch

	8.3 Iteration
	8.3.1 Abweisende Schleife mit while
	8.3.2 Abweisende Schleife mit for
	8.3.3 For-each-Schleife
	8.3.4 Endlos-Schleife
	8.3.5 Annehmende Schleife mit do-while

	8.4 Sprunganweisungen
	8.4.1 Marken
	8.4.2 break
	8.4.3 continue

	8.5 Übungen

	9 Blöcke und Methoden
	9.1 Blöcke und ihre Besonderheiten
	9.1.1 Die Deklarationsanweisung
	9.1.2 Die leere Anweisung und der leere Block
	9.1.3 Lokale Variable
	9.1.4 Schachtelung von Blöcken
	9.1.5 Gültigkeit, Sichtbarkeit und Lebensdauer

	9.2 Methodendefinition und -aufruf
	9.2.1 Parameterlose Methoden
	9.2.2 Methoden mit Parametern
	9.2.3 Der Rückgabewert – die return-Anweisung
	9.2.4 Formale und aktuelle Parameter
	9.2.5 Übergabe von einfachen Datentypen und Referenzen
	9.2.6 Auswertungsreihenfolge der aktuellen Parameter
	9.2.7 Beispielprogramm für die Verwendung von Methoden

	9.3 Polymorphie von Operationen
	9.4 Überladen von Methoden
	9.5 Parameterliste variabler Länge
	9.6 Parameterübergabe beim Programmaufruf
	9.7 Iteration und Rekursion
	9.8 Übungen

	10 Klassen und Objekte
	10.1 Information Hiding
	10.2 Klassenvariable und Klassenmethoden
	10.2.1 Klassenvariable
	10.2.2 Klassenmethoden
	10.2.3 Übergabe von Objekten an Klassenmethoden

	10.3 Die this-Referenz
	10.4 Initialisierung von Datenfeldern
	10.4.1 Default-Initialisierungen von Datenfeldern
	10.4.2 Manuelle Initialisierung von Datenfeldern
	10.4.3 Initialisierung mit einem Initialisierungsblock
	10.4.4 Konstruktoren zur Initialisierung
	10.4.4.1 Beispiel zur Initialisierungsreihenfolge
	10.4.4.2 Konstruktoren mit Parametern
	10.4.4.3 Voreingestellter Default-Konstruktor

	10.4.5 Aufruf eines Konstruktors im Konstruktor
	10.4.6 Arbeitsteilung zwischen new-Operator und Konstruktor bei einer Aggregation

	10.5 Instantiierung von Klassen
	10.5.1 Ablauf bei der Instantiierung
	10.5.2 Verhindern der Instantiierung einer Klasse

	10.6 Freigabe von Speicher
	10.7 Die Klasse Object
	10.8 Übungen

	11 Vererbung und Polymorphie
	11.1 Das Konzept der Vererbung
	11.2 Erweitern und Überschreiben
	11.2.1 Erweitern
	11.2.2 Überschreiben

	11.3 Besonderheiten bei der Vererbung
	11.3.1 Typkonvertierung von Referenzen
	11.3.1.1 Implizite Typkonvertierung von Referenzen
	11.3.1.2 Explizite Typkonvertierung von Referenzen
	11.3.1.3 Gültige Upund Down-Cast Operationen

	11.3.2 Konstruktoren bei abgeleiteten Klassen
	11.3.3 Verdecken
	11.3.3.1 Verdecken von Datenfeldern
	11.3.3.2 Verwendung verdeckter Datenfelder Zugriff auf verdeckte Instanzvariablen der Vaterklasse

	11.3.4 Finale Methoden und finale Klassen
	11.3.5 Abstrakte Basisklassen

	11.4 Polymorphie und das Liskovsche Substitutionsprinzip
	11.4.1 Polymorphes Verhalten bei der Erweiterung
	11.4.2 Polymorphes Verhalten beim Überschreiben
	11.4.3 Statische und dynamische Bindung von Methoden

	11.5 Verträge
	11.5.1 Zusicherungen
	11.5.2 Einhalten der Verträge bei der Vererbung
	11.5.2.1 Regeln für das Einhalten der Methodenverträge
	11.5.2.2 Regeln für das Einhalten der Gültigkeit von Klasseninvarianten

	11.5.3 Klassen als Übergabetypen und Rückgabetypen
	11.5.4 Einhalten von Verträgen bei Rückgabewerten

	11.6 Identifikation der Klasse eines Objektes
	11.6.1 Der instanceof-Operator
	11.6.2 Run Time Type Identification
	11.6.3 Operatoren für Referenztypen

	11.7 Konsistenzhaltung von Quellund Bytecode
	11.8 Übungen

	12 Pakete
	12.1 "Programmierung im Großen"
	12.2 Pakete als Entwurfseinheiten
	12.3 Erstellung von Paketen
	12.4 Benutzung von Paketen
	12.5 Paketnamen
	12.5.1 Paketnamen und Verzeichnisstruktur
	12.5.2 Eindeutige Paketnamen
	12.5.3 Anonyme Pakete

	12.6 Gültigkeitsbereich von Klassennamen
	12.7 Zugriffsmodifikatoren
	12.7.1 Zugriffsschutz für Klassen und Schnittstellen
	12.7.2 Zugriffsschutz für Methoden und Datenfelder
	12.7.3 Zugriffsschutz für Konstruktoren
	12.7.4 Zugriffsmodifikatoren beim Überschreiben von Methoden

	12.8 Übungen

	13 Ausnahmebehandlung
	13.1 Das Konzept des Exception Handling
	13.2 Implementierung von Exception-Handlern in Java
	13.3 Ausnahmen vereinbaren und auswerfen
	13.4 Die Exception-Hierarchie
	13.4.1 Checked und Unchecked Exceptions
	13.4.2 Beispiele für Exceptions

	13.5 Ausnahmen behandeln
	13.5.1 Beispiel für das Fangen einer Exception
	13.5.2 Reihenfolge der Handler
	13.5.3 Ausnahmen weiterreichen
	13.5.4 Schichtenstruktur für das Exception Handling
	13.5.5 Ausnahmen ankündigen – die throws-Klausel

	13.6 Vorteile des Exception-Konzeptes
	13.7 Assertions
	13.7.1 Notation von Assertions
	13.7.2 Anwendungsbeispiele
	13.7.3 Unterschied zwischen Exceptions und Assertions

	13.8 Übungen

	14 Schnittstellen
	14.1 Trennung von Spezifikation und Implementierung
	14.2 Ein weiterführendes Beispiel
	14.3 Aufbau einer Schnittstelle
	14.4 Verwenden von Schnittstellen
	14.4.1 Implementieren einer Schnittstelle
	14.4.2 Schnittstellen als Datentyp
	14.4.3 Typsicherheit von Schnittstellen
	14.4.4 Implementieren von mehreren Schnittstellen
	14.4.5 Vererbung von Schnittstellen

	14.5 Vergleich Schnittstelle und abstrakte Basisklasse
	14.6 Die Schnittstelle Cloneable
	14.7 Übungen

	15 Geschachtelte Klassen
	15.1 Elementklassen
	15.2 Lokale Klassen
	15.3 Anonyme Klassen
	15.4 Statisch geschachtelte Klassen und Schnittstellen
	15.5 Realisierung von geschachtelten Klassen
	15.6 Übungen

	16 Ein-/Ausgabe und Streams
	16.1 Für ganz Eilige ein erstes Beispiel
	16.2 Klassifizierung von Streams
	16.2.1 Datensenken und -quellen
	16.2.2 Byteund Characterstreams
	16.2.3 Sink-, Springund Processingstreams

	16.3 Das Stream-Konzept
	16.4 Bytestream-Klassen
	16.4.1 Outputstream-Klassen
	16.4.1.1 Die Basisklasse OutputStream
	16.4.1.2 Sinkstream-Klassen
	16.4.1.3 Processingstream-Klassen

	16.4.2 Inputstream-Klassen
	16.4.2.1 Die Basisklasse InputStream
	16.4.2.2 Springstream-Klassen
	16.4.2.3 Processingstream-Klassen

	16.4.3 Bytes in Datei schreiben und aus Datei lesen
	16.4.4 Byte-Arrays in Dateien schreiben und aus Dateien lesen
	16.4.5 Datei-Ein-und -Ausgabe elementarer Datentypen

	16.5 Characterstream-Klassen
	16.5.1 Writer-Klassen
	16.5.1.1 Die Basisklasse Writer
	16.5.1.2 Sinkstream-Klassen
	16.5.1.3 Processingstream-Klassen

	16.5.2 Reader-Klassen
	16.5.2.1 Die Basisklasse Reader
	16.5.2.2 Springstream-Klassen
	16.5.2.3 Processingstream-Klassen

	16.5.3 Bridge-Klassen
	16.5.4 Bequemlichkeits-Klassen
	16.5.5 Einund Ausgabe von Zeichenketten

	16.6 Standardeingabe und Standardausgabe
	16.6.1 Formatierte Ausgabe
	16.6.2 Die Methode format()

	16.7 Einund Ausgabe von Objekten
	16.7.1 Objektserialisierung
	16.7.2 Strom-eindeutige Bezeichner
	16.7.3 Das Schlüsselwort transient
	16.7.4 Die Schnittstelle Externalizable

	16.8 Übungen

	17 Generizität
	17.1 Generische Klassen
	17.1.1 Die generische Klasse Punkt<T>
	17.1.2 Repräsentation aktuell parametrisierter Klassen
	17.1.3 Klassen mit mehreren formalen Typ-Parametern
	17.1.4 Subtyping und generische Klassen
	17.1.5 Einschränkungen bei generischen Klassen
	17.1.6 Generische Klassen und Vererbungsbeziehungen
	17.1.6.1 Generische Klasse leitet von generischer Klasse ab
	17.1.6.2 Generische Klasse erweitert herkömmliche Klasse
	17.1.6.3 Herkömmliche Klasse leitet ab von generischer Klasse

	17.2 Eigenständig generische Methoden
	17.3 Bounded Typ-Parameter und Wildcards
	17.3.1 Der Bounded Typ-Parameter
	17.3.2 Die Unbounded Wildcard ?
	17.3.3 Die Upper Bound Wildcard
	17.3.4 Die Lower Bound Wildcard

	17.4 Generische Schnittstellen
	17.4.1 Mit Ersetzung der formalen Typ-Parameter
	17.4.2 Ohne Ersetzung der formalen Typ-Parameter
	17.4.3 Schnittstellen und Bounds
	17.4.4 Vererbungsbeziehung zwischen generischen Schnittstellen
	17.4.5 Die generische Schnittstelle Comparable

	17.5 Die Klasse Class<T>
	17.5.1 Erzeugen eines Objektes mit newInstance()
	17.5.2 Einsatz des Klassenliterals

	17.6 Generizität und Polymorphie
	17.7 Übungen

	18 Collections
	18.1 Überblick über die Collection-API
	18.2 Iterieren über Collections
	18.3 Listen
	18.3.1 Array-ähnliche Listen
	18.3.2 Verkettete Listen
	18.3.3 Stapel
	18.3.4 Laufzeiteigenschaften von Listen
	18.3.5 Sortieren von Listen

	18.4 Warteschlangen
	18.4.1 Einfache Warteschlangen
	18.4.2 Priorisierte Warteschlangen
	18.4.3 Blockierende Warteschlangen
	18.4.4 Blockierende Queues mit Priorität

	18.5 Mengen
	18.5.1 Mengen mit Hashing
	18.5.2 Mengen mit Bäumen
	18.5.3 Mengen für Aufzählungstypen

	18.6 Verzeichnisse
	18.6.1 Verzeichnisse mit Hashing
	18.6.2 Verzeichnisse mit Bäumen
	18.6.3 Maps für Aufzählungstypen
	18.6.4 Verzeichnisse mit schwachen Referenzen

	18.7 Besonderheiten bei der Anwendung von Collections
	18.7.1 Bearbeiten von Collections mit mehreren Threads
	18.7.2 Standardalgorithmen für Collections

	18.8 Übungen

	19 Threads
	19.1 Zustände und Zustandsübergänge von Betriebssystem-Prozessen
	19.2 Zustände und Zustandsübergänge von Threads
	19.3 Programmierung von Threads
	19.3.1 Ableiten von der Klasse Thread
	19.3.2 Implementieren der Schnittstelle Runnable
	19.3.3 Beenden von Threads

	19.4 Scheduling von Threads
	19.5 Zugriff auf gemeinsame Ressourcen
	19.5.1 Prinzip des wechselseitigen Ausschlusses
	19.5.2 Das Semaphorkonzept
	19.5.3 Das Monitorkonzept
	19.5.4 Mutual exclusion in Java mit dem Monitorkonzept
	19.5.4.1 Der versteckte Schlüssel für synchronisierte Methoden
	19.5.4.2 Synchronisation von Methoden und Blöcken
	19.5.4.3 Synchronisation mit Reihenfolge

	19.5.5 Gefahr durch Deadlocks
	19.5.6 Sinnvoller Einsatz der Synchronisation
	19.5.7 Änderungen bei JDK 5.0

	19.6 Daemon-Threads
	19.7 Übungen

	20 Applets
	20.1 Die Seitenbeschreibungssprache HTML
	20.1.1 HTML-Syntax
	20.1.2 Dokumentenstruktur
	20.1.2.1 Der Dokumenten-Kopf
	20.1.2.2 Der Dokumenten-Rumpf

	20.1.3 Einbindung eines Applets in eine HTML-Seite

	20.2 Das "Hello, world"-Applet
	20.3 Der Lebenszyklus eines Applets
	20.4 Parameterübernahme aus einer HTML-Seite
	20.5 Importieren von Bildern
	20.6 Importieren und Abspielen von Audio-Clips
	20.7 Übungen

	21 Oberflächenprogrammierung mit Swing
	21.1 Architekturmerkmale von Swing
	21.1.1 Swing führt "leichtgewichtige" GUI-Komponenten ein
	21.1.2 Swing implementiert MVC
	21.1.2.1 Architekturmuster MVC für grafische Oberflächen
	21.1.2.2 MVC in den Swing-GUI-Komponenten

	21.1.3 Swing unterstützt ein Pluggable "Look and Feel"
	21.1.3.1 Cross Platform-"Look and Feel"
	21.1.3.2 System-"Look and Feel"
	21.1.3.3 Synth-"Look and Feel"
	21.1.3.4 Multiplexing-"Look and Feel"
	21.1.3.5 Setzen des "Look and Feel" über die Kommandozeile
	21.1.3.6 Setzen des "Look and Feel" über die Properties-Datei
	21.1.3.7 Setzen des "Look and Feel" im Java Programm

	21.2 GUI-Container
	21.2.1 Eigenschaften der Klasse Container
	21.2.2 Schwergewichtige GUI-Container
	21.2.2.1 JFrame
	21.2.2.2 JDialog
	21.2.2.3 JWindow
	21.2.2.4 JApplet

	21.2.3 Leichtgewichtige GUI-Container
	21.2.3.1 Leichtgewichtige GUI-Container vom Typ JPanel
	21.2.3.2 Aufbau der Hauptfenster mittels leichtgewichtiger GUI-Container
	21.2.3.3 Leichtgewichtige GUI-Container vom Typ JInternalFrame

	21.3 Anordnung von GUI-Komponenten
	21.3.1 Layout-Manager Flow-Layout
	21.3.2 Layout-Manager Grid-Layout
	21.3.3 Layout-Manager Border-Layout
	21.3.4 Layout-Manager Card-Layout
	21.3.5 Layout-Manager GridBag-Layout
	21.3.6 Layout-Manager Box-Layout
	21.3.7 Weitere Layout-Manager

	21.4 Ereignisbehandlung
	21.4.1 Ereignisse
	21.4.2 Listener-Schnittstellen und Adapter-Klassen
	21.4.2.1 Listener-Schnittstellen
	21.4.2.2 Adapter-Klassen

	21.4.3 Implementierungsvarianten der Controller
	21.4.3.1 Controller als externe Klasse
	21.4.3.2 Controller als Elementklasse
	21.4.3.3 Controller als anonyme Klasse

	21.4.4 Nebenläufigkeit
	21.4.4.1 Empfohlener Start einer Swing-Anwendung
	21.4.4.2 Auslagern von zeitintensiven Vorgängen in Worker-Threads

	21.5 Swing-GUI-Komponenten
	21.6 Übungen

	22 Servlets
	22.1 Das Internet und seine Dienste
	22.1.1 Client/Server-Architekturen
	22.1.2 Von der URL zur Webseite

	22.2 Dynamische Erzeugung von Seiteninhalten
	22.2.1 Ablaufumgebung von Servlets
	22.2.2 Der Tomcat Servlet-Container
	22.2.3 Installation des Apache Tomcat Servers

	22.3 Web-Anwendungen erstellen
	22.3.1 Verzeichnisstruktur einer Web-Anwendung
	22.3.2 Quelldateien einer Web-Anwendung
	22.3.3 Kompilieren und Deployment einer Web-Anwendung
	22.3.4 Aufruf einer Web-Anwendung

	22.4 Wichtige Elemente der Servlet-API
	22.4.1 Protokollunabhängige Servlets
	22.4.2 HTTP Servlet
	22.4.3 Zugriff auf die Anfrage
	22.4.4 Antwort auf die Anfrage
	22.4.5 Session-Verwaltung
	22.4.6 Methoden für den Lebenszyklus
	22.4.7 Bearbeitung paralleler Anfragen

	22.5 Der Deployment-Deskriptor
	22.6 Das Servlet "Forum"
	22.6.1 HTML Formular
	22.6.2 Quellcode des Servlets
	22.6.3 Ausgabe

	22.7 Übungen

	23 JavaServer Pages
	23.1 Skriptelemente
	23.2 Direktiven
	23.2.1 Seitendirektive
	23.2.2 Einschließende Direktive
	23.2.3 Taglib Direktive

	23.3 Aktionen
	23.3.1 Standardaktionen
	23.3.2 Benutzerdefinierte Aktionen

	23.4 Verwendung von JavaBeans
	23.5 Tag-Bibliotheken
	23.6 Übungen

	24 Netzwerkprogrammierung mit Sockets
	24.1 Verteilte Systeme
	24.2 Rechnername, URL und IP-Adresse
	24.2.1 Die Klasse InetAddress
	24.2.2 URL
	24.2.3 URLConnection

	24.3 Sockets
	24.3.1 TCP in Java
	24.3.2 UDP in Java
	24.3.3 Multicast in Java

	24.4 Protokolle
	24.5 Übungen

	25 Remote Method Invocation
	25.1 Die Funktionsweise von RMI
	25.1.1 Die Architektur von RMI

	25.2 Entwicklung einer RMI-Anwendung
	25.2.1 Entwicklungsprozess des RMI-Servers
	25.2.2 Entwicklungsprozess des RMI-Clients
	25.2.3 Starten und Ausführen einer RMI-Anwendung
	25.2.3.1 Starten der RMI-Registry
	25.2.3.2 Binden des Server-Objektes
	25.2.3.3 Lookup des Clients

	25.3 Ein einfaches Beispiel
	25.3.1 Implementierung der Remote-Schnittstelle
	25.3.2 Implementierung der Server-Klasse
	25.3.3 Implementierung des RMI-Clients
	25.3.4 Starten der gesamten RMI-Anwendung

	25.4 Object by Value und Object by Reference
	25.4.1 Object by Value-Übergabe
	25.4.2 Object by Reference-Übergabe

	25.5 Verwendung der RMI-Codebase
	25.5.1 Laden von Klassen-Code durch Klassenlader
	25.5.2 Einsatz einer Codebase
	25.5.3 Sonderfälle beim Laden des Server-Codes
	25.5.3.1 SecurityManager im Client nicht gesetzt
	25.5.3.2 Remote-Schnittstelle nicht in der Codebase vorhanden
	25.5.3.3 Keine Codebase vom Server gesetzt
	25.5.3.4 Keine Codebase beim Server, kein SecurityManager beim Client

	25.6 Häufig auftretende Fehler und deren Behebung
	25.6.1 Aufruf von bind() bzw. rebind()
	25.6.2 Aufruf von lookup()
	25.6.3 Aufruf einer Remote-Methode im Server

	25.7 Übungen

	26 JDBC
	26.1 Einführung in SQL
	26.1.1 Relationale Datenbanken
	26.1.2 Grundlegende SQL-Befehle
	26.1.2.1 Data Definition Language
	26.1.2.2 Data Manipulation Language
	26.1.2.3 Data Control Language

	26.2 JDBC-Treiber
	26.2.1 Treiberarchitektur unter Verwendung eines JDBC-TreiberManagers
	26.2.2 Treibertypen

	26.3 Installation und Konfiguration von MySQL
	26.3.1 Installation der Datenbank
	26.3.2 Konfiguration des DBMS
	26.3.3 Vorbereiten der Arbeitsverzeichnisse

	26.4 Zugriff auf ein DBMS
	26.4.1 Verbindung zum DBMS mit dem Treiber-Manager
	26.4.2 Verbindung zum DBMS mit DataSource
	26.4.2.1 DataSource-Properties
	26.4.2.2 Aufbau einer Verbindung mit DataSource
	26.4.2.3 Einsatz von JNDI

	26.4.3 Absetzen eines SQL-Statements
	26.4.3.1 Die Schnittstelle Statement
	26.4.3.2 Die Schnittstelle PreparedStatement
	26.4.3.3 Die Schnittstelle CallableStatement

	26.4.4 Auswerten eines Abfrage-Ergebnisses
	26.4.5 Transaktionen

	26.5 Datentypen
	26.6 Exceptions
	26.7 Metadaten
	26.8 JDBC-Erweiterungspaket
	26.9 Connection Pooling
	26.10 Übungen

	27 Enterprise JavaBeans 3.1
	27.1 Idee der Enterprise JavaBeans
	27.2 Objektorientierte Modellierung
	27.2.1 Problembereich und Lösungsbereich
	27.2.2 Klassenarten in der Systemanalyse

	27.3 Abbildung von Klassen auf Bean-Typen
	27.4 Überblick über die Enterprise JavaBeans-Architektur
	27.5 Konzept der EJB-Typen
	27.6 Session-Beans
	27.6.1 Stateful Session-Bean
	27.6.2 Stateless Session-Bean
	27.6.3 Singleton Session-Bean
	27.6.4 Web-Beans
	27.6.5 Entscheidungskriterien für den Einsatz
	27.6.6 Business-Interface
	27.6.7 Bean-Klasse
	27.6.8 Client-Applikation

	27.7 Der Applikations-Server JBoss
	27.7.1 Installationsprozess
	27.7.2 Kompilieren der Quelldateien
	27.7.3 Deployment-Prozess
	27.7.4 Starten des Clients

	27.8 Java Persistence-API
	27.8.1 Primärschlüssel einer Entity-Bean
	27.8.1.1 Entity-Bean mit einfachem Primärschlüssel
	27.8.1.2 Entity-Bean mit zusammengesetztem Primärschlüssel

	27.8.2 Der Entity Manager
	27.8.2.1 Beschaffen einer Referenz auf den Entity Manager
	27.8.2.2 Erzeugen und Abspeichern eines Entity-Bean-Objektes
	27.8.2.3 Laden und Aktualisieren einer Entity-Bean-Instanz
	27.8.2.4 Löschen einer Entity-Bean-Instanz
	27.8.2.5 EJB Query Language
	27.8.2.6 Der Deployment-Deskriptor persistence.xml
	27.8.2.7 Beziehungen zwischen den Entity-Beans

	27.9 Übungen

	Anhang A Der ASCII-Zeichensatz
	Anhang B Gültigkeitsbereiche von Namen
	Anhang C Die Klasse System
	Anhang D JNDI
	Anhang E Annotations
	Begriffsverzeichnis
	Literaturverzeichnis
	Index

