

Cornelia Heinisch | Frank Muller-Hofmann | Joachim Goll

Java als erste Programmiersprache

Cornelia Heinisch | Frank Muller-Hofmann | Joachim Goll

Java als erste
Programmiersprache

Vom Einsteiger zum Profi

6., Uberarbeitete Auflage

STUDIUM

=

P

VIEWEG +
TEUBNER

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der

Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet tiber
<http://dnb.d-nb.de> abrufbar.

Dr. Cornelia Heinisch,

geb. WeiB, Jahrgang 1976, studierte Softwaretechnik an der Hochschule Esslingen. Seit
ihrem Diplom im Jahre 1999 ist sie Lehrbeauftragte flir Objektorientierte Modellierung
an der Hochschule Esslingen. Cornelia Heinisch arbeitet bei der Firma IT-Designers
GmbH als System-Designerin fiir Verteilte Objektorientierte Systeme.

Frank Miiller-Hofmann,

MSc, Jahrgang 1969, studierte Softwaretechnik an der Hochschule Esslingen nach Lehre
und Beruf. Herr Miller-Hofmann arbeitet als System-Designer fiir Verteilte Objektorien-
tierte Systeme bei IT-Designers GmbH. Er ist Lehrbeauftragter fir Internettechnologien
an der Hochschule Esslingen und fiir Kommunikation in Verteilten Systemen an der
Brunel University of West-London.

Prof. Dr. Joachim Goll,

Jahrgang 1947, unterrichtet seit 1991 im Fachbereich Informationstechnik der Hoch-
schule Esslingen die Fécher Programmiersprachen, Betriebssysteme, Software
Engineering, Objektorientierte Modellierung und Sichere Systeme. Wahrend seiner
beruflichen Téatigkeit in der Industrie befasste er sich vor allem mit dem Entwurf von
verteilten Informationssystemen. Prof. Goll ist Leiter des Steinbeis-Transferzentrums
Softwaretechnik Esslingen.

1. Auflage 2000
6., Uberarbeitete Auflage 2011

Alle Rechte vorbehalten
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
Lektorat: Ulrich Sandten | Kerstin Hoffmann

Vieweg+Teubner Verlag ist eine Marke von Springer Fachmedien.
Springer Fachmedien ist Teil der Fachverlagsgruppe Springer Science+Business Media.
www.viewegteubner.de

/%v/vi{,°:;@% Das Werk einschlieBlich aller seiner Teile ist urheberrechtlich geschiitzt. Jede
,‘fé&;:"‘,".ﬁ % Verwertung auBerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne
- | Zustimmung des Verlags unzuldssig und strafbar. Das gilt insbesondere fiir
b Vervielfaltigungen, Ubersetzungen, Mikroverfilmungen und die Einspeicherung

und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk
berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im
Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wéaren und daher
von jedermann benutzt werden dirften.

Umschlaggestaltung: KiinkelLopka Medienentwicklung, Heidelberg

Druck und buchbinderische Verarbeitung: TéSinska Tiskarna, a. s., Tschechien
Gedruckt auf saurefreiem und chlorfrei gebleichtem Papier.

Printed in Czech Republic

ISBN 978-3-8348-0656-7

Vorwort

Die Sprache Java ist durch ihre Betriebssystem-Unabhangigkeit ideal fur die Reali-
sierung verteilter Systeme, die aus verschiedenartigsten Rechnern vom Handy bis
zum GroBrechner aufgebaut sein kdnnen. Java wird heute bereits im Informatik-
Unterricht an den Gymnasien unterrichtet und ist fester Bestandteil des Studiums von
Ingenieuren und Betriebswirten geworden.

Java stellt im Grunde genommen eine einfache Sprache dar. Dariiber hinaus werden
jedoch in umfangreichen Klassenbibliotheken wertvolle und weitreichende Hilfsmittel
zur Verfigung gestellt, die den Bau verteilter Systeme mit Parallelitat, Oberflachen,
Kommunikationsprotokollen und Datenbanken in erheblichem MaBe unterstitzen.

Dieses Buch wendet sich an Studierende, Umsteiger und Schiler, welche das In-
teresse haben, die Grundlagen von Java fundiert zu erlernen. Es erlaubt, Java ohne
Vorkenntnisse anderer Programmiersprachen zu erlernen. Daher der Titel "Java als
erste Programmiersprache". Dazu ist aber erforderlich, dass die Ubungsaufgaben am
Ende eines Kapitels bearbeitet werden. Wer das Buch nur lesen méchte, sollte
bereits Uber die Kenntnisse einer anderen Programmiersprache verfigen.

Dieses Buch hat das ehrgeizige Ziel, dem Neuling die Sprachkonzepte von Java, die
Grundkonzepte der objektorientierten Programmierung und wichtige Teile der Klas-
senbibliothek so prazise wie mdglich und dennoch in leicht verstéandlicher Weise vor-
zustellen. Aber unterschétzen Sie dennoch den Lernaufwand nicht. Der Buchumfang
ist nicht in einer einzigen Vorlesung zu schaffen. Vorlesungen Gber das Program-
mieren verteilter Systeme mit Java oder Uber Grafische Oberflachen mit Java ma-
chen erst dann Sinn, wenn die Grundlagen des Programmierens erlernt sind.

Alle Kapitel enthalten Ubungsaufgaben, die zum selbststandigen Programmieren he-
rausfordern. Dasselbe Ziel hat das Flughafen-Projekt, welches begleitend zu den
Kapiteln 10 bis einschlieBlich 21 durchgefihrt werden kann und zu einem System
fuhrt, das die Fluglotsen bei Start und Landung von Flugzeugen unterstitzt.

Das Buch enthélt einige Neuerungen zu Java 7. Es wurden allerdings nur jene Ande-
rungen integriert, die zum Zeitpunkt der Fertigstellung des Buches bereits in der
aktuell vorliegenden Beta-Version des JDK 7 implementiert waren. Einen Uberblick
Uber die im Buch integrierten Java 7-Neuerungen erhalten Sie am besten durch
Nachschlagen des Indexeintrages "Java 7" im Register.

Unser besonderer Dank bei dieser Auflage gilt Herrn Emil Grattner und Herrn Kevin
Erath, die an der Uberarbeitung einzelner Kapitel wesentlich mitgewirkt haben. Herrn
Dimitri Benin, Herrn Markus Bach und Frau Karin Wei3 danken wir fir die Erstellung
des CD-Kapitels JavaServer Faces. Herr Georg Schessler und Frau Meryem Altun-
kaya waren uns bei der Erstellung der Ubungsaufgaben und der CD eine groBe Hilfe.

Esslingen, im Oktober 2010 C. Heinisch / F. Muller-Hofmann / J. Goll

Wegweiser durch das Buch

"Lernkastchen”, auf die grafisch durch eine kleine Glihlampe aufmerksam gemacht
wird, stellen eine Zusammenfassung eines Kapitels dar. Sie erlauben eine rasche
Wiederholung des Stoffes.

Gerade als Anfanger in einer Programmiersprache macht man gerne den Fehler,
sich beim Lesen an nicht ganz so wesentlichen Einzelheiten festzubeiBen. Um zu
erkennen, welche Information grundlegend fir das weitere Vorankommen ist und
welche Information nur ein Detailwissen darstellt — und deshalb auch noch zu einem
spateren Zeitpunkt vertieft werden kann — weist dieses Buch Kapitel oder Kapitelteile,
die beim ersten Lesen Ubersprungen werden kdnnen, mit dem Symbol €J aus.

Generell ist es empfehlenswert, ein oder mehrere Kapitel zu berfliegen, um sich
einen Uberblick zu verschaffen, und dann erst mit der Feinarbeit zu beginnen und
grindlicher zu lesen. Dennoch gilt: Eine Vorgehensweise, die sich fir den einen
Leser als optimal erweist, muss noch lange nicht fur alle Leser das Allheilmittel
darstellen. Wenn Sie zu den Lesern gehoren, die es gewohnt sind, von Anfang an
moglichst detailliert zu lesen, um mdglichst viel sofort zu verstehen, so sollten Sie
zumindest darauf achten, dass Sie in den Kapiteln mit dem "Uberspringe und komm
zurlick"-Symbol beim ersten Durchgang nicht zu lange verweilen.

Bei all den guten Ratschlagen gilt: Programmieren hat man zu allen Zeiten durch
Programmierversuche erlernt. "Do it yourself" heiBt der rote Faden zum Erfolg. So
wie ein Kleinkind beim Erlernen der Muttersprache einfach zu sprechen versucht, so
sollten auch Sie mdglichst friih versuchen, in der Programmiersprache zu sprechen —
das heiBt, eigene Programme zu schreiben. Gestalten Sie den Lernvorgang ab-
wechslungsreich — lesen Sie einen Teil und versuchen Sie, das Erlernte im Pro-
grammieren gleich umzusetzen. Um die mihsame Tipparbeit am Anfang minimal zu
halten, sind alle Beispielprogramme des Buches auf der CD zu finden. Die CD ent-
halt auch die Bilder der einzelnen Kapitel, die Ubungsaufgaben und Lésungen sowie
das Flughafenprojekt.

Die nachfolgende Tabelle soll es dem Leser erleichtern, einzuordnen, welche Kapitel
zu den Grundlagen (Symbol M) z&hlen und auf jeden Fall verstanden werden sollten,
welche Kapitel zuerst Ubersprungen werden kénnen und dann bei Bedarf gelesen
werden sollten (Symbol €), und welche Kapitel rein fortgeschrittene Themen
(Symbol [©)) behandeln, die unabhangig voneinander gelesen werden kénnen.

1 Grundbegriffe der Programmierung Vi
2 Objektorientierte Konzepte VI
3 EinfUhrung in die Programmiersprache Java VI
4 Einfache Beispielprogramme V|
5 Lexikalische Konventionen s
6 Datentypen und Variable N
7 Ausdriicke und Operatoren V|
8 Kontrollstrukturen VI
9 Blécke und Methoden J
10 Klassen und Objekte V|
11 Vererbung und Polymorphie V|
12 Pakete Vi
13 Ausnahmebehandlung J
14 Schnittstellen J
15 Geschachtelte Klassen ')
16 Ein-/Ausgabe und Streams 9
17 Generizitat (8]
18 Collections Vi
19 Threads 'e)
20 Applets VI
21 Oberflachenprogrammierung mit Swing V|
22 Servlets @)
23 JavaServer Pages @)
24 Netzwerkprogrammierung mit Sockets @
25 Remote Method Invocation [@)
26 JDBC @)
27 Enterprise JavaBeans 3.1 @)

Die folgende Tabelle zeigt die auf der CD enthaltenen Kapitel:

28 Java Native Interface @)
29 Sicherheit @)
30 Beans @)
31 Reflection [©
32 Java-Tools @)
33 Java Management Extensions @)
34 JavaServer Faces @)

Schreibweise

In diesem Buch sind der Quellcode und die Ein-/Ausgabe von ganzen Beispiel-
programmen sowie einzelne Anweisungen und Ein-/Ausgaben in der Schriftart
Courier New geschrieben. Dasselbe gilt fir Programmteile wie Variablennamen,
Methodennamen etc., die im normalen Text erwdhnt werden. Wichtige Begriffe im
normalen Text sind fett gedruckt, um sie hervorzuheben.

Ihre Verbesserungsvorschlage und kritischen Hinweise, die wir gerne annehmen,
erreichen uns via E-Mail:

Cornelia.Heinisch@it-designers.de

Inhaltsverzeichnis

1 GRUNDBEGRIFFE DER PROGRAMMIERUNGcoeemmmmmmennnnnnnnnnnns 2
1.1 Das erste ProgramiM ...ttt 2
1.2 Vom Problem zum Programm ... 4
1.3 Nassi-Shneiderman-Diagrammeccoooiiieiiir i 10
1.4 ZEICNEN e 16
1.5 VaAKable ..o 18
1.6 DalentyPeN...eeee e 19
1.7 UDUNGEN et 25
2 OBJEKTORIENTIERTE KONZEPTE........co s 28
2.1 Modellierung mit Klassen und Objektencccoocoeiiiiiiiiiiiee e 28
2.2 Das Konzept der KapSeluNgcoeiiuieeeiiiiiiiiiiic e 36
2.3 Abstraktion und Brechung der Komplexitatcccoeeeiiiiiiiiiiiiiiiiennn. 37
2.4 Erstes Programmbeispiel mit Objektencccceiiiiiiiiiiiiicee e 41
2.5 Flughafen-Projekt.......... e 44
P2 B U o Y01 o T-Y 2 OO 56
3 EINFUHRUNG IN DIE PROGRAMMIERSPRACHE JAVA............... 58
3.1 Sprachkonzepte VON Javaccccoiiiiieiiiiiiie e 58
3.2 Eigenschaften von Java........cccceeiiiiiiiiiii e 59
3.3 Die Java-Plattform ... 60
3.4 Programmerzeugung und -ausflinrung.........cccccovniiiieiiiiiiiieee e, 63
3.5 Das Java Development Kitc.cooiiiiiiiiiie e 68
3.6 Java-Anwendungen und Internet-Programmierung..........cccccceeevvnnnenen. 71
T U Y013 o T-Y 2 TSRO 72
4 EINFACHE BEISPIELPROGRAMME.............oooieieiiiiinnnnnmmnnnnnnnens 76
4.1 Lokale Variable, Ausdriicke und Schleifencccoeeeeeiiiiiiiiiiiiieeeinnn, 76
4.2 Zeichen von der Tastatur einlesen ... 81
4.3 Erzeugen von ObJEKIENooiiiiieiiee e 84
4.4 Initialisierung von Objekten mit Konstruktorencccccooviiiiiiiinnnne. 85
4.5 Schreiben von Instanzmethoden ..o 88
4.6 Zusammengesetzte ObJEKIEovi i 92
4.7 Selbst definierte Untertypen durch Vererbung.........cccoocoeiiiiiiiiinnnne 96
4.8 Die Methode printf() und die Klasse Scanner.........cccccccevecvveeeeeeeccevnnnnn. 99
e I U YU Yo T-Y o OO 102

X Inhaltsverzeichnis

5 LEXIKALISCHE KONVENTIONENcoccsnnnssssssseeeeees 112
5.1 Zeichenvorrat VON Javaccoeoiiiiiiiiieee e 112
LI 1= g U g [ToTo To [T RO 114
5.3 Lexikalische EINNeIteNnuuieiiiiiii e 114
S S U Y01 o T-Y OO 131
6 DATENTYPEN UND VARIABLEcooiiieeeeeeeeeeeesssssssssnnennns 134
6.1 Klassifikation der Datentypen von Java.........cccccoiiiieieiiiniiieec e 134
6.2 Einfache Datentypen ... 135
6.3 KIBSSEN-TYP ettt 137
6.4 Variable ... e 143
L T N1 =)Vl 1Y/ o TP 159
6.6 AUFZENIUNGSIYP <o 171
6.7 ZEIChENKEEN ..oeiieeeee e 178
6.8 Wandlung von Datentypen ... 190
8.9 UDUNGEN ..., 198
7 AUSDRUCKE UND OPERATOREN........cccoeeimrucmsessenssessssnssnsneas 210
7.1 Operatoren und Operanden...........cceeeiieieiiiiieiiieee e 210
7.2 Ausdricke Und ANWEISUNGENcoiiiiiiiiiiiieiiieee et 211
7.3 Nebeneffeklie. ... 213
7.4 Auswertungsreinenfolge ... 213
7.5 L-Werte Und R-Were........ouiiieiiiiiee e 215
7.6 Zusammenstellung der Operatorenccooveeeeicie e 217
7.7 Konvertierung von Datentypen ... 236
7.8 Ausfiihrungszeitpunkt von Nebeneffektenccccovoiiiiiinine 245
2K T U o TO T T =Y IR 246
8 KONTROLLSTRUKTUREN........cccoiiiiiiirirreeeeccccemmnnnsssssssssssseseenns 252
8.1 Blocke — Kontrollstrukturen fur die Sequenz...........ccccovveveiiiiciiinnees 252
8.2 SelEKLON ... 252
SR T | (T - V(o] o I 259
8.4 SPrunganWeiSUNGENccoiiuiiiiiiiieeiiiee ettt ettt 265
8.5 UDUNGEN ..., 269
9 BLOCKE UND METHODENcccotemicemracrsnssensacsesssssnssssssssssssns 276
9.1 Bldcke und ihre Besonderheiten ... 276
9.2 Methodendefinition und -aufruf ... 281
9.3 Polymorphie von Operationenccccooiieiiiiiiiiiiiiee e 292

9.4 Uberladen VON MENOGENoveeeeeeee oo 294

Inhaltsverzeichnis Xl

9.5 Parameterliste variabler LANGeccceveiiiiiiii e 296
9.6 Parametertbergabe beim Programmaufruf...........cccco i 298
9.7 lteration und ReKUISION..........ooiiiiiiiiiie e 300
SR U oYUYo T-Y o OO 306
10 KLASSEN UND OBJEKTE........ccocssssssssssss s e s s s s s se s nnnnncnnnes 314
10.1 Information HidiNg..........cooiiiiii e 314
10.2 Klassenvariable und Klassenmethoden............cccccooiiiiiiiniicen, 316
10.3 Die thisS-Referenz 322
10.4 Initialisierung von Datenfeldern ..., 329
10.5 Instantiierung von KlasSen..........cooiiiiiiiiiiiic e 346
10.6 Freigabe vOn SPEIChEr.....ccoouiii i 348
10.7 Die KIasse ODJECToeiiuiiiieiiiei e 351
10.8 UDUNGEN 1.t 352
11 VERERBUNG UND POLYMORPHIE..........ccccoeirirrrrrrrrrnenneeceecannes 364
11.1 Das Konzept der VErerbungccccooeueeeiiiiiiiieieieee e 364
11.2 Erweitern und Uberschreibenccccvevveveveveeeeeeeeeeeeeeennans 369
11.3 Besonderheiten bei der Vererbung.........ccooiiiiiiiiiiiiiiiii e 374
11.4 Polymorphie und das Liskovsche Substitutionsprinzip..........ccccccevuveee. 394
115 VEIIAQE oo 409
11.6 Identifikation der Klasse eines Objektes.........c.cocvviiiiiriiieeiiiee e, 423
11.7 Konsistenzhaltung von Quell- und Bytecode...........cccevviieeiiiieecinnnen. 428
11,8 UDUNGEN ..ot 432
12 PAKETE...... s sssssssssssss s ssssssssssssss s s s s s s s s snssnsnnnnns 442
12.1 "Programmierung im GroBen"cooceeiiiieiiiee e 442
12.2 Pakete als EntwurfSeinheiten ..., 444
12.3 Erstellung von PaKetenoooiiiiiiiiiiiii e 445
12.4 Benutzung von Paketen ... 447
12.5 PaKetnamenooii e 450
12.6 Gultigkeitsbereich von Klassennamen..........cccceveiiieeiiieiiiiee e, 454
12.7 ZugriffsSmodifikatoren ... 457
12.8 UDUNGEN 1ottt 464
13 AUSNAHMEBEHANDLUNGccoomiinsssssssssssessssssssnsnnsssnes 472
13.1 Das Konzept des Exception Handlingccveeeiiriiiiiiiiiiiiiiiiceeeeee 472
13.2 Implementierung von Exception-Handlern in Javac.coccoeeeernn. 474
13.3 Ausnahmen vereinbaren und auswerfen...........ccccoiiiiiiiiii e, 478

13.4 Die Exception-Hierarchie ... 480

Xl Inhaltsverzeichnis

13.5 Ausnahmen behandeln.........cccueoiiiiii e 483
13.6 Vorteile des Exception-Konzeptes........coooieiiiiiiiiiiieeeiieeeee e, 490
13,7 ASSEITIONS ...ttt e e e e 491
13.8 UDUNGEN 1ot 496
14 SCHNITTSTELLEN......cciiiiieeeeeeeeeceeeesssssssssssssssss s s s s s s s s s s s s nnnnnnes 504
14.1 Trennung von Spezifikation und Implementierungccccceeveeeenneen. 505
14.2 Ein weiterflihrendes BeisSpielcoooiiiiiiiiiiiiiiiee e 506
14.3 Aufbau einer Schnittstelle ..., 510
14.4 Verwenden von Schnittstellen ... 513
14.5 Vergleich Schnittstelle und abstrakte Basisklasse..........ccccccoveennneen. 527
14.6 Die Schnittstelle Cloneable...........ooo i 530
14.7 UDUNGEN 1ot en e 537
15 GESCHACHTELTE KLASSEN........ccccoiiiiiiiiiirrrrrrrsnessssssssnnsnnnnnnes 546
15.1 EIemMentKIaSSEN....ouvveeiiiiiiieeee e 547
15.2 LOKAIE KI@SSEN...ciiiiiiiiiiiiie et 552
15.3 ANONYME KIBSSENeeiiiiiiiiiiiie ettt 556
15.4 Statisch geschachtelte Klassen und Schnittstellen............cccocccceeeeeeee. 561
15.5 Realisierung von geschachtelten Klassenccooceeiiiieiiiieicinneen. 564
158 UDUNGEN ...t 569
16 EIN-/AUSGABE UND STREAMScccooimmimmimrnnnnsssssnnnnnnnnsnssnnnes 576
16.1 FUr ganz Eilige ein erstes Beispiel........cccccoiiiiiiiiiiii e 576
16.2 Klassifizierung von Streamsccoooiiiiiiii e 580
16.3 Das Stream-Konzeptcooiiiiiii e 583
16.4 Bytestream-KIasSSEN ... 586
16.5 Characterstream-KIasSencocueiiiiiiiiiiii e 599
16.6 Standardeingabe und Standardausgabe...........ccccvveeeriiieeninieee e, 606
16.7 Ein- und Ausgabe von Objekten ..o, 609
16.8 UDUNGEN 1.ttt 617
17 GENERIZITAT ..ot ens s s s s s s s s s s s s snnns 622
17.1 Generische KIaSSEN........eoi i 623
17.2 Eigenstandig generische Methoden ... 639
17.3 Bounded Typ-Parameter und Wildcards...........ccccoooiiiieiiiiiiiiiieeneeee 643
17.4 Generische Schnittstellen ..., 651
17.5 Die KIasse Class<T> ...uiiiiiiiiieiiiie et 662
17.6 Generizitat und Polymorphie B3 ... 666

17.7 UDUNGEN ..ot een e 668

Inhaltsverzeichnis X

18 COLLECTIONS.......ccoiiiiiimiiirreeenencmssssnnssssssssssssssssss s s s s s s s ssnnsnnnnnnns 684
18.1 Uberblick tiber die COllECHON-APIccoeeeeeeeeeeeeeeeeeeeeeeeennns 685
18.2 lterieren Uber ColleCtionSooiiiiiiiii e 691
18.3 LSO i 693
18.4 WartesChlangenueiiiiiii e 710
18.5 IMEBNGEN ..t 721
18.6 VEIZEICNNISSE....eiiiiiiiiiiiii e 728
18.7 Besonderheiten bei der Anwendung von Collectionscccceeeueeeee. 734
18.8 UDUNGEN ...t en e n s 736
19 THREADS....... .o srssssssssssss s s n s s e e s nnsnnssnnns 742
19.1 Zusténde und Zustandsibergange von Betriebssystem-Prozessen... 747
19.2 Zusténde und Zustandsibergénge von Threads.........ccccccoviiiiieeeennns 748
19.3 Programmierung von Threadscocceieeiiiiiiniiei e 751
19.4 Scheduling vON TRreadsoueiiiiieiiiee e 759
19.5 Zugriff auf gemeinsame ReSSOUICENccueveviieiiiiiiieieie e 760
19.6 DaemoON-TRreadScuviiieeei e e e 781
19.7 UDUNGEN 1ot 782
20 APPLETS. ..o eeeeeccecceeessssssssssssssss s s s s s s s s s n s s s s s s nmmssssssssssssssssssnnns 788
20.1 Die Seitenbeschreibungssprache HTMLccccooiiiiiiiiiiiiiieeeee 789
20.2 Das "Hello, World"-ApPlet.......coouiiiee e 800
20.3 Der Lebenszyklus eines Applets.......ccveiiiiiiiiiiiiiiee e 804
20.4 Parametertbernahme aus einer HTML-Seite........ccccoviiieiiiiieiiinene 809
20.5 Importieren von Bildern...........coooiii 810
20.6 Importieren und Abspielen von Audio-Clips........cccocccveriieeeiiieeiiieeee 812
PO U o0 Vo T-Y OO 812
21 OBERFLACHENPROGRAMMIERUNG MIT SWING.........ceucue.. 818
21.1 Architekturmerkmale VON SWIiNgcccooiieiiiiiiiiiiiie e 820
P2 B2 C 1 | B @0 | = o[- RSO 838
21.3 Anordnung von GUI-Komponentenccccoieviiiiiieniiieee e 852
21.4 Ereignisbehandlungcooceeiiiiiiiiiii e 867
21.5 Swing-GUI-KOMPONENTENcooiiiiiiiiiii e 891
21.6 UDUNGEN ..., 895
22 SERVLETSoeeeeesssssssssss s ss s s s s s s s ns s s s s nsssssssssssssssssssssnns 900
22.1 Das Internet und seine Dienstecooooiiiiiiiiii 900
22.2 Dynamische Erzeugung von Seiteninhalten..........cccccocvveiiiiiiiiennne 908

22.3 Web-Anwendungen erstellen.........occoiiiiiiiiini e 913

XV Inhaltsverzeichnis

22.4 Wichtige Elemente der Servlet-API ... 918
22.5 Der Deployment-DesKIiptorc.ueeeiieieiieeeiiee e 923
22.6 Das Serviet "FOrumM" . ..o e 925
A U oYUYo T-Y o RO 933
23 JAVASERVER PAGES.........ccccoiiimimmmmnnnnnnsnssssssssssssssssssssssssssnnnnns 936
23.1 SKriptelemMeNte ... 939
23.2 DIFEKEVEN ..t 944
P2 T B Y (o] =Y o PR 948
23.4 Verwendung von JavaBeansc.eeiiiiiiiiiiiie e 951
23.5 Tag-BibliotheKenooo i 956
23.6 UDUNGEN ..., 965
24 NETZWERKPROGRAMMIERUNG MIT SOCKETS.......ccccccuvrrnn. 970
24.1 Verteilte SYSIEME....coiiiiii i 970
24.2 Rechnername, URL und IP-AdreSSeooovevvvieuceeeeeeieeeeeeeeeeann 973
243 SOCKELS ..t 981
24.4 ProtOKOIIE ... 1003
P2 U o Y01 Vo T-Y OO 1008
25 REMOTE METHOD INVOCATIONcooiiiieeeeeeccemcennnnnnsnnssnssnnes 1014
25.1 Die Funktionsweise von RMIccuiiiiiiiiiiii e 1014
25.2 Entwicklung einer RMI-ANWENAUNGcoviiiiiiiiiiiieiiiiieeee e 1017
25.3 Ein einfaches BeiSPI€l.....cccueiiiiiiiieiee e 1022
25.4 Object by Value und Object by Reference........cccoocveiiiiiiiiienieeen. 1028
25.5 Verwendung der RMI-Codebasecccooeiiiiiiiiiiiiiiceeece e 1041
25.6 Haufig auftretende Fehler und deren Behebungcccoociieiinnins 1055
25.7 UDUNGEN ..ot n s e 1057
P2 T] = O 1062
26.1 EinfUhrung in SQIL......c.ooiiiie e 1063
26.2 JDBGC-TrEIDE et 1072
26.3 Installation und Konfiguration von MySQL..........ccccceiiiiiiiiiieeiee. 1074
26.4 Zugriff auf eiNn DBMS ... 1076
26.5 DateNIYPeN.....oiiiiiiie et 1101
26.6 EXCEPLIONS ...ueiiiiiiiiiiitie ettt 1102
26.7 Metadatencooiiiiie e 1103
26.8 JDBC-Erweiterungspaketcceeeiieieiiiieeiee e 1105
26.9 Connection POOINGeiiiiiee et 1106

26.10 UDUNGEN ..o n s e 1112

Inhaltsverzeichnis XV

27 ENTERPRISE JAVABEANS 3.1.....ccooiiiiiieireeeeeecceeceesessssssssnnas 1124
27.1 |dee der Enterprise JavaBeanscccoceiiiiiiiiiiieii 1125
27.2 Objektorientierte Modellierungccceveeiiieiiiieecee e 1125
27.3 Abbildung von Klassen auf Bean-Typen.........ccccoviiieiiiiiiiiiieeeeens 1131
27.4 Uberblick Uber die Enterprise JavaBeans-Architektur 1132
27.5 Konzept der EJB-TYPEN.......oii it 1137
27.6 SESSION-BEANSeiiiiiiiie ettt 1138
27.7 Der Applikations-Server JBOSSccouriieiiieiiieiieeeee e 1147
27.8 Java Persistence-API ... 1156
P2y T U o Y01 Vo T-Y o OO 1188
ANHANG A DER ASCII-ZEICHENSATZ..........cccoociiirmmmmmmnnnnnresennnas 1202
ANHANG B GULTIGKEITSBEREICHE VON NAMEN.........ccccevueusa. 1205
ANHANG C DIE KLASSE SYSTEM.......commeeeeeeeeeeenneessssnnnas 1210
ANHANG D JUNDL......coeeeeeiemenennnnssssssssssssssssssss s s sssssnnssssssssssssssssssssns 1213
ANHANG E ANNOTATIONS........cccooiiririirrirrrnneeeees e 1229
BEGRIFFSVERZEICHNISoossssssse s ee s s e s s s e eennnnnnes 1237
LITERATURVERZEICHNIS.......coeeeeeeeeeeeeessssssssssssss s s s s s s s snnnnnnnnes 1246

Kapitel 1

Grundbegriffe der
Programmierung

R G QI (I QI G Y
Nouohrw=

Das erste Programm

Vom Problem zum Programm
Nassi-Shneiderman-Diagramme
Zeichen

Variable

Datentypen

Ubungen

1 Grundbegriffe der Programmierung

Bevor man mit einer Programmiersprache umzugehen lernt, muss man wissen, was
ein Programm prinzipiell ist und wie man Programme konstruiert. Damit wird sich das
erste Kapitel befassen. Leser, die bereits eine héhere Programmiersprache erlernt
haben, kénnen prifen, ob sie tatséchlich die hier prasentierten Grundbegriffe (noch)
beherrschen, und kénnen dieses Kapitel "Uberfliegen". Ehe es "zur Sache geht",
zundchst als spielerischen Einstieg in Kapitel 1.1 das Programm "Hello, world".

1.1 Das erste Programm

Seit Kernighan und Ritchie ist es Usus geworden, als erstes Beispiel in einer neuen
Programmiersprache mit dem Programm "Hello, world" zu beginnen. Das Programm
"Hello, world" macht nichts anderes, als Hello, world! auf dem Bildschirm aus-
zugeben. In Java sieht das "Hello, world"-Programm folgendermaBen aus:

// Datei: HelloWorld.java

public class HelloWorld // Klasse zur Ausgabe von Hello, world!
{
public static void main (String[] args) // Methode main() zur
{ // RAusgabe der Zeichen-
System.out.println ("Hello, world!"); // kette "Hello, world!"
}
}

Die Methode println () — sie wird ausgesprochen als "print line" — wird Uber Sys-
tem.out.println() aufgerufen und schreibt die Zeichenfolge Hello, world!
auf den Bildschirm. In der Programmiersprache Java stellt man eine Zeichenfolge
durch eine so genannte Zeichenkette (einen String) dar. Eine Zeichenkette beginnt
mit einem Anflhrungszeichen " und endet mit einem Anflhrungszeichen. Die Anflh-
rungszeichen sind nur Begrenzer und werden nicht auf dem Bildschirm ausgegeben.
Bitte erstellen Sie dieses Programm mit einem Texteditor, der lhnen vertraut ist, und
speichern Sie es unter dem Dateinamen HelloWorld. java in einer Datei ab. Die-
ses Programm besteht aus einer Klasse mit dem Namen HelloWorld. Eine Klasse
ist dadurch gekennzeichnet, dass sie das Schlisselwort class trégt. Beachten Sie,
dass alles, was hinter zwei Schrégstrichen in einer Zeile steht, zusammen mit den
beiden Schragstrichen einen so genannten Kommentar darstellt. Ein Kommentar
dient zur Dokumentation eines Programms und hat keinen Einfluss auf den Ablauf
des Programms.

In Java kann man nur objektorientiert programmieren. Alle Programme — -
in Java basieren von ihrem Aufbau her komplett auf Klassen. - ~

Bitte achten Sie beim Eintippen des Programms im Texteditor und bei der Vergabe
des Dateinamens auf die GroB3- und Kleinschreibung, da in Java zwischen Grof3- und
Kleinbuchstaben unterschieden wird. In anderen Worten: Java ist case sensitiv.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_1,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Grundbegriffe der Programmierung 3

Kompilieren Sie das Programm mit dem javac-Compiler' des Java Development
Kits? durch die folgende Eingabe auf der Kommandozeile:

javac HelloWorld. java

Danach driicken Sie die <RETURN>-Taste. Auf der <RETURN>-Taste ist oftmals das

Symbol - zu sehen. Der javac-Compiler Ubersetzt dann den Java-Quellcode der
Datei HelloWorld. java in so genannten Bytecode (siehe Kap. 3.3.1) und legt
diesen in der Datei HelloWorld.class ab. Durch die Eingabe von

java HelloWorld

und das anschlieBende Driicken der <RETURN>-Taste wird der Bytecode-Interpreter
java gestartet, der den Bytecode interpretiert, d. h. in Maschinencode Ubersetzt und
zur Ausfiihrung bringt. Hierbei ist Maschinencode ein spezieller Code, den der
entsprechende Prozessor versteht. Java-Anwendungen kénnen — wie hier gezeigt —
von der Kommandozeile aus gestartet werden. Sie kdnnen aber auch aus Ent-
wicklungsumgebungen wie z. B. aus Eclipse aufgerufen werden. Bild 1-1 zeigt die
Ein- und Ausgaben in einer Windows-Konsole.

+4 Ci\WINDOWS\System32\cmd.exe

C:\Projekte\Hellollorld>javac Hellollorld. java

C:\Projekte\Hellollorld>] ava Hellollorld

Hello, worldt

C:\Projekte\Hellollorld>_

Bild 1-1 Kompilieren und Starten (iber Kommandos in der Windows-Konsole

: \
Zu beachten ist, dass der Interpreter java den Klassennamen _
HelloWorld und nicht den Dateinamen HelloWorld.class ver- -

langt!

Die Ausgabe des Programms ist:

II Hello, world!

So schnell kann es also gehen. Das erste Programm lauft schon. Sie hatten "ein
Handchen" im Umgang mit Texteditor, Compiler und Interpreter. Da es hier nur da-
rum geht, ein allererstes Programm zu starten, wird auf eine detaillierte Erlauterung
des Programms verzichtet.

Der Name javac wurde gewahlt als Abkiirzung fir Java Compiler.

2 Die Installation des Java Development Kits wird in Kap. 3.5.1 beschrieben.

4 Kapitel 1

1.2 Vom Problem zum Programm

Der Begriff Programm ist eng mit dem Begriff Algorithmus verbunden. Algorithmen
sind Vorschriften fir die L6sung eines Problems, welche die Handlungen und ihre
Abfolge — kurz, die Handlungsweise — beschreiben. Im Alltag begegnet man Algo-
rithmen in Form von Bastelanleitungen, Kochrezepten und Gebrauchsanweisungen.
Abstrakt kann man sagen, dass die folgenden Bestandteile und Eigenschaften zu
einem Algorithmus gehdren:

eine Menge von Objekten, die durch den Algorithmus bearbeitet werden,
eine Menge von Operationen, die auf den Objekten ausgefiihrt werden,
ein definierter Anfangszustand, in dem sich die Objekte zu Beginn befinden,

und ein gewilnschter Endzustand, in dem die Objekte nach der Lésung des Pro-
blems sein sollen.

Dies sei am Beispiel Kochrezept erlautert:

Obijekte: Zutaten, Geschirr, Herd, ...

Operationen: waschen, anbraten, schalen, passieren, ...
Anfangszustand: Zutaten im "Rohzustand", Teller leer, Herd kalt, ...
Endzustand: fantastische Mahlzeit auf dem Teller, Herd aus.

Was noch zur Lésung eines Problems gebraucht wird, ist eine Anleitung, ein Rezept
oder eine Folge von Anweisungen und jemand, der es macht. Mit anderen Worten,
man bendtigt einen Algorithmus — eine Rechenvorschrift — und einen Prozessor.

Wahrend aber bei einem Kochrezept viele Dinge gar nicht explizit gesagt werden
missen, sondern dem Koch aufgrund seiner Erfahrung implizit klar sind — z. B. dass
er den Kuchen aus dem Backofen holen muss, bevor er schwarz ist —, muss einem
Prozessor alles explizit und eindeutig durch ein Programm, das aus Anweisungen
einer Programmiersprache besteht, gesagt werden. Ein Programm besteht aus
einer Reihe von einzelnen Anweisungen an den Prozessor, die von diesem der
Reihe nach —in anderen Worten sequenziell — ausgefiihrt werden.

Ein Algorithmus in einer Programmiersprache besteht aus Anwei- — -
sungen, die von einem Prozessor ausgefihrt werden kénnen. - ™~

Bild 1-2 zeigt Anweisungen, die im Arbeitsspeicher des Rechners abgelegt sind und
nacheinander durch den Prozessor des Rechners abgearbeitet werden:

Arbeitsspeicher des Rechners

Anweisung —

I I 1 Prozessor des Rechners
I Anweisung I\\ 2

I Anweisung I 3 Anweisung

I Anweisung I/

Bild 1-2 Der Prozessor bearbeitet eine Anweisung des Programms nach der anderen

Grundbegriffe der Programmierung 5

1.2.1 Der Algorithmus von Euklid als Beispiel flir Algorithmen

Als Beispiel wird der Algorithmus betrachtet, der von Euklid ca. 300 v. Chr. zur
Bestimmung des groBten gemeinsamen Teilers (ggT) zweier natlrlicher Zahlen
aufgestellt wurde. Der gréBte gemeinsame Teiler wird zum Kirzen von Briichen
bendtigt:

/ggT('xungekiir:t’yungekiirzr) _ X

/ggT(x,

ung('k[ir:t’yungekiirzt) ygekiirzt

xzmgekii rat xungekiirzt gekiirzt

y ungekiirzt y ungekiirzt

Hierbei ist ggT(Xungekiir Yungekir2) der groBte gemeinsame Teiler der beiden Zahlen
Xungekiirzt Und Yungekiirzt-

24 24/ggT(249) 24/3 _8

Beispiel:
9 9/ggT(249) 9/3 3

Der Algorithmus von Euklid lautet:

Zur Bestimmung des gréBten gemeinsamen Teilers zwischen zwei natirlichen
Zahlen x und y tue Folgendes®:

Solange x ungleich v ist, wiederhole:
Wenn x gréBer als vy ist, dann:
Ziehe y von x ab und weise das Ergebnis x zu.
Andernfalls:
Ziehe x von y ab und weise das Ergebnis y zu.
Wenn x gleich y ist, dann:
x (bzw. y) ist der gesuchte gréBte gemeinsame Teiler.

Man erkennt in diesem Beispiel Folgendes:

® Es gibt eine Menge von Objekten, mit denen etwas passiert: x und y. Diese
Objekte x und y haben am Anfang beliebig vorgegebene Werte, am Schluss
enthalten sie den gréBten gemeinsamen Teiler.

® Es gibt gewisse Grundoperationen, die hier nicht weiter erldutert werden, da sie
implizit klar sind: vergleichen, abziehen und zuweisen.

® Es handelt sich um eine sequenzielle Folge von Anweisungen (Operationen), d. h.
die Anweisungen werden der Reihe nach hintereinander ausgefuhrt.

® Es gibt aber auch bestimmte Konstrukte, welche die einfache sequenzielle Folge
(Hintereinanderausfiihrung) gezielt verédndern: eine Auswahl zwischen Alternati-
ven (Selektion) und eine Wiederholung von Anweisungen (lteration).

Es gibt auch Algorithmen zur Beschreibung von parallelen Aktivitdten, die zum
gleichen Zeitpunkt nebeneinander ausgefihrt werden. Diese Algorithmen werden
unter anderem bei Betriebssystemen oder in der Prozessdatenverarbeitung benétigt.
Im Folgenden werden bewusst nur sequenzielle Ablaufe behandelt, bei denen zu
einem Zeitpunkt nur eine einzige Operation durchgefihrt wird.

® Die Arbeitsweise dieses Algorithmus fiir die Zahlen x == 24 und y == 9 wird durch die

Tabelle 1-1 in Kapitel 1.2.4 verdeutlicht.

6 Kapitel 1

1.2.2 Beschreibung sequenzieller Ablaufe

Die Abarbeitungsreihenfolge von Anweisungen wird auch als Kon- — -
trollfluss bezeichnet. - ~

Den Prozessor stort es Uberhaupt nicht, wenn eine Anweisung einen Sprungbefehl
zu einer anderen Anweisung enthalt. Solche Sprungbefehle werden in manchen Pro-
grammiersprachen beispielsweise mit dem Befehl coTo und Marken wie z. B. 100
realisiert:

IF(a > b) GOTO 100
Anweisungen?2
GOTO 300

100 Anweisungenl

300 Anweisungen3

In Worten lauten diese Anweisungen an den Prozessor: "Vergleiche die Werte von a
und b. Wenn* a gr6Ber als b ist, springe an die Stelle mit der Marke 100. Fiihre an
der Stelle mit der Marke 100 die Anweisungen Anweisungenl aus. Fahre dann mit
den Anweisungen3 fort. Ist aber die Bedingung a > b nicht erfillt, so arbeite die
Anweisungen Anweisungen2 ab. Springe dann zu der Marke 300 und flhre die
Anweisungen Anweisungen3 aus."

Will jedoch ein Programmierer ein solches Programm lesen, so verliert er durch die
Springe sehr leicht den Zusammenhang und damit das Verstandnis. Fir den
menschlichen Leser ist es am besten, wenn ein Programm einen einfachen und
damit Uberschaubaren Kontrollfluss hat. Wahrend typische Programme der sechziger
Jahre noch zahlreiche Springe enthielten, bemuihen sich die Programmierer seit
Dijkstras grundlegendem Artikel "Go To Statement Considered Harmful" [1],
mdoglichst einen Kontrollfluss ohne Spriinge zu entwerfen. Beispielsweise kann der
oben mit coTO beschriebene Ablauf auch folgendermaBen realisiert werden:

IF (a > b)
Anweisungenl
ELSE
Anweisungen2
ENDIF
Anweisungen3

Hierbei ist wieder IF (a > b) die Abfrage, ob a gréBer als b ist. Ist dies der Fall, so
werden die Anweisungen Anweisungenl ausgeflhrt. Ist die Bedingung a > b nicht
wahr, d. h. nicht erfiillt, so werden die Anweisungen Anweisungen2 des ELSE-
Zweigs durchgefuhrt. Mit ENDIF ist die Fallunterscheidung zu Ende. Unabhangig
davon, welcher der beiden Zweige der Fallunterscheidung abgearbeitet wurde, wer-
den nun die Anweisungen Anweisungen3 abgearbeitet. Dieser Ablauf ist in Bild 1-3
grafisch veranschaulicht.

4 "Wenn* wird ausgedriickt durch das Schllisselwort TF der hier verwendeten Programmiersprache

FORTRAN.

Grundbegriffe der Programmierung 7

[a>Db] I [a<Db]

Anweisungent Anweisungen2

Anweisungen3

O,
Bild 1-3 Grafische Darstellung der Verzweigung
NV
Unter einer Kontrollstruktur versteht man eine Anweisung, welche — -
die Abarbeitungsreihenfolge von Anweisungen beeinflusst. - ™~

Betrachtet man nur sequenzielle Ablaufe, so gibt es Kontrollstruk-
turen firr N

¢ die Selektion, B /\

® die lteration
® und die Sequenz.

i

Zu den Kontrollstrukturen gehért die Fallunterscheidung (Selektion), bei der in
Abhangigkeit davon, ob eine Bedingung erflillt ist oder nicht, entweder die eine oder
die andere Anweisung abgearbeitet wird, oder eine Wiederholung (lteration) einer
Anweisung. Zu den Kontrollstrukturen gehért auch die so genannte Sequenz. Eine
Sequenz ist eine Anweisungsfolge (ein so genannter Block), die eine sequenzielle
Folge von Anweisungen enthalt, wobei die ganze Anweisungsfolge von der Sprach-
syntax her als eine einzige Anweisung zu werten ist.

Im Beispiel des Algorithmus von Euklid stellt

Solange x ungleich v ist, wiederhole:

eine lteration dar, die in freier Sprache ausgedriickt ist.

Wenn x gréBer als vy ist, dann:

stellt eine Fallunterscheidung (Selektion) in freier Sprache dar.

8 Kapitel 1

1.2.3 Strukturierte Programmierung

Die Ideen von Dijkstra und anderen fanden ihren Niederschlag in den Regeln fur die
Strukturierte Programmierung. Die Strukturierte Programmierung ist ein Program-
miersprachen-unabhangiges Konzept. Es umfasst die Zerlegung eines Programms in
Teil-Programme (Haupt- und Unterprogramme), sowie die folgenden Regeln fir den
Kontrollfluss. Danach gilt, dass in einer Sequenz eine Anweisung nach der anderen,
d. h. in einer linearen Reihenfolge, abgearbeitet wird. Man geht Uber einen einzigen
Eingang (engl. single entry), ndmlich von der davor stehenden Anweisung in eine
Anweisung hinein und geht Gber einen einzigen Ausgang (engl. single exit) aus der
Anweisung heraus und kommt direkt zur nachsten Anweisung (siehe Bild 1-4).

l—— nur 1 Eingang

Anweisung

P nur 1 Ausgang

Anweisung
ein zweiter Ausgang
b;w. Eiqggng ist 5 '
nicht maéglich Anweisung

Bild 1-4 Single entry und single exit bei der Sequenz

Haben Kontrollstrukturen fir die Selektion und Iteration die gleichen Eigenschaften
wie einzelne Anweisungen, namlich single entry und single exit, so erhalt man fir alle
Anweisungen einen linearen und damit Gberschaubaren Programmablauf. Program-
me, die nur Kontrollstrukturen mit dieser Eigenschaft aufweisen, gehorchen den
Regeln der Strukturierten Programmierung und kdénnen mit Hilfe von Nassi-
Shneiderman-Diagrammen visualisiert werden (siehe Kap. 1.3).

Bei der Strukturierten Programmierung wird ein Programm in Teil-
Programme zerlegt und es werden nur Kontrollstrukturen mit einem
Eingang und einem Ausgang verwendet.

N
h\\\\@—
/ \\

Mit der Anweisung GOTO MARKE, d. h. einer Sprunganweisung, wére es moglich, die
Ausflihrung eines Programms an einer ganz anderen Stelle, ndmlich der Stelle, an
der MARKE steht, fortzusetzen. Dies ist aber in der Strukturierten Programmierung
nicht zulassig.

1.2.4 Variable und Zuweisungen

Die durch den Algorithmus von Euklid behandelten Objekte sind natirliche Zahlen.
Sie sollen jedoch nicht von vornherein festgelegt werden, sondern der Algorithmus
soll fur die Bestimmung des gréBten gemeinsamen Teilers beliebiger natlrlicher
Zahlen verwendbar sein. Anstelle der Zahlen werden daher Namen verwendet, die

Grundbegriffe der Programmierung 9

als variable GroBen oder kurz Variable bezeichnet werden. Den Variablen werden
im Verlauf des Algorithmus konkrete Werte zugewiesen. Diese Wertzuweisung an
Variable ist eine der grundlegenden Operationen, die ein Prozessor ausfiihren
kénnen muss. Auf Variable wird noch ausfihrlicher in Kapitel 1.5 eingegangen.

Der im obigen Beispiel beschriebene Algorithmus kann auch von einem mensch-
lichen "Prozessor" ausgefihrt werden — andere Mdglichkeiten hatten die Griechen in
der damaligen Zeit nicht. Als Hilfsmittel braucht man dazu Papier und Bleistift, um die
Zustande der Objekte — im obigen Beispiel die Zustdnde der Objekte x und y —
zwischen den Verarbeitungsschritten festzuhalten. Man erhalt dann eine Tabelle, die
auch Trace-Tabelle® genannt wird und fir die Zahlen x == 24 und y == 9 das
folgende Aussehen hat:

Werte von
Verarbeitungsschritt x y
Initialisierung
x =24,y =9 24 9
X =X -y 15 9
X =X -y 6 9
y =y - X 6 3
X =X -y 3 3
Ergebnis: ggT =3
Tabelle 1-1 Trace der Variableninhalte fiir Initialwerte x == 24, y ==

Die Tabelle 1-1 zeigt die Funktion der Variablen: Die Variablen reprasentieren Uber
den Verlauf des Algorithmus hinweg unterschiedliche Werte. Zu Beginn werden den
Variablen definierte Anfangs- oder Startwerte zugewiesen. Diesen Vorgang bezeich-
net man als Initialisierung der Variablen. Die Wertednderung erfolgt — wie in den
Verarbeitungsschritten von Tabelle 1-1 beschrieben — durch so genannte Zuwei-
sungen. Als Zuweisungssymbol haben wir hier das Gleichheitszeichen (=) benutzt,
wie es in Java Ublich ist. Beachten Sie, dass in der Unterschrift von Tabelle 1-1
x == 24 zu lesen ist als "x ist gleich 24". Damit werden wie in Java zwei
Gleichheitszeichen direkt hintereinander als Gleichheitssymbol verwendet.

FUr eine andere Ausgangssituation sieht die Trace-Tabelle beispielsweise so aus:

Werte von
Verarbeitungsschritt x Y
Initialisierung
x =5y =3 5 3
X =X -y 2 3
y =y - X 2 1
X =X -y 1 1
Ergebnis: ggT =1
Tabelle 1-2 Trace der Variableninhalte fiir Initialwerte x == 5,y == 3

Die Schreibweise x = x - vy ist zunachst etwas verwirrend. Diese Schreibweise ist
nicht als mathematische Gleichung zu sehen, sondern meint etwas ganz anderes:

® Mit der Trace-Tabelle verfolgt man die Zustande der Variablen.

10 Kapitel 1

Auf der rechten Seite des Gleichheitszeichens steht ein arithmetischer Ausdruck,
dessen Wert zuerst berechnet werden soll. Dieser so berechnete Wert wird dann in
einem zweiten Schritt der Variablen zugewiesen, deren Name auf der linken Seite
steht. Im Beispiel also:

Nimm den aktuellen Wert von x. Nimm den aktuellen Wert von y.
Ziehe den Wert von y vom Wert von x ab.
Der neue Wert von x ist die soeben ermittelte Differenz von x und y.

Eine Zuweisung verandert den Wert der Variablen, also den Zustand der Variablen,
die auf der linken Seite steht. Bei einer Zuweisung wird zuerst der Ausdruck rechts
vom Gleichheitszeichen berechnet und der Wert dieses Ausdrucks der Variablen auf
der linken Seite des Gleichheitszeichens zugewiesen.

\ /
Variable speichern Werte. Der von einer Variablen gespeicherte Wert —
kann durch eine Zuweisung mit einem neuen Wert Gberschrieben wer-

den.

~

i

Die Beispiele in diesem Kapitel zeigen, wie ein Algorithmus sequenzielle Ablaufe und
Zustandstransformationen seiner Variablen beschreibt. Wird derselbe Algorithmus
zweimal durchlaufen, wobei die Variablen am Anfang unterschiedliche Werte haben,
dann erhélt man in aller Regel auch unterschiedliche Ablédufe. Sie folgen aber ein
und demselben Verhaltensmuster, das durch den Algorithmus beschrieben ist.

1.2.5 Vom Algorithmus zum Programm

Wenn ein Algorithmus derart formuliert ist, dass seine Ausfihrung durch einen be-
stimmten Prozessor mdglich ist, dann spricht man auch von einem Programm fir
diesen Prozessor. Bei einem Computerprogramm missen alle Einzelheiten bis ins
kleinste Detail festgelegt sein und die Sprachregeln miissen absolut eingehalten wer-
den. Der Prozessor macht eben haarscharf nur das, was durch das Programm fest-
gelegt ist, und nicht das, was noch zwischen den Zeilen steht. Hingegen muss ein
Koch bei einem Rezept Erfahrungen mit einbringen und beispielsweise den Topf mit
der Milch vom Herd nehmen, bevor die Milch Gberlauft.

Generell kann man bei Sprachen zwischen natiirlichen Sprachen wie der Um-
gangssprache oder den Fachsprachen einzelner Berufsgruppen und formalen
Sprachen unterscheiden. Formale Sprachen sind beispielsweise die Notenschrift in
der Musik, die Formelschrift in der Mathematik oder Programmiersprachen beim
Computer. Nur das, was durch eine formale Sprache — die Programmiersprache —
festgelegt ist, ist flir den Prozessor verstandlich.

1.3 Nassi-Shneiderman-Diagramme

Zur Visualisierung des Kontrollflusses von Programmen — das heiBt, zur grafischen
Veranschaulichung ihres Ablaufes — wurden 1973 von Nassi und Shneiderman [2]
grafische Strukturen, die so genannten Struktogramme (DIN 66261 [4]), vorgeschla-
gen. Diese Struktogramme werden nach ihren Urhebern oftmals auch als Nassi-

Grundbegriffe der Programmierung 11

Shneiderman-Diagramme bezeichnet. Nassi-Shneiderman-Diagramme enthalten
kein GoTo, sondern nur die Sprachmittel der Strukturierten Programmierung,
insbesondere die Sequenz, Iteration und Selektion. Entwirft man Programme mit
Nassi-Shneiderman-Diagrammen, so gendgt man automatisch den Regeln der
Strukturierten Programmierung. Nassi und Shneiderman schlugen ihre Strukto-
gramme als Ersatz fur die bis dahin Ublichen Flussdiagramme (DIN 66001 [3]) vor.
Traditionelle Flussdiagramme erlauben einen Kontrollfluss mit beliebigen Spriingen
in einem Programm. Spezifiziert und programmiert man strukturiert, so geht der
Kontrollfluss eines solchen Programmes einfach von oben nach unten — eine
Anweisung folgt der nachsten. Wilde Spriinge, welche die Ubersicht erschweren,
sind nicht zugelassen.

Das wichtigste Merkmal der Struktogramme ist, dass jeder Verarbeitungsschritt
durch ein rechteckiges Sinnbild dargestellt wird:

Bild 1-5 Sinnbild fiir Verarbeitungsschritt

Ein Verarbeitungsschritt kann dabei eine Anweisung oder eine Gruppe von zusam-
mengehdrigen Anweisungen sein. Die obere Linie des Rechtecks bedeutet den
Beginn des Verarbeitungsschrittes, die untere Linie bedeutet das Ende des Ver-
arbeitungsschrittes. Jedes Sinnbild erhélt eine Innenbeschriftung, die den Verar-
beitungsschritt naher beschreibt.

1.3.1 Diagramme fiir die Sequenz

Bei der Sequenz folgen zwei Verarbeitungsschritte (hier v1 und v2 genannt) hinter-
einander. Dies wird durch Nassi-Shneiderman-Diagramme wie folgt dargestellt:

V1

A

Bild 1-6 Nassi-Shneiderman-Diagramm fir die Sequenz

Eine Kontrollstruktur fir die Sequenz ist der Block. Der Block stellt eine Folge
logisch zusammenhangender Verarbeitungsschritte dar. Er kann einer Methode
oder Funktion® in einer Programmiersprache entsprechen, kann aber auch nur
einfach mehrere Verarbeitungsschritte unter einem Namen zusammenfassen.

Blockname

Bild 1-7 Sinnbild fiir Block

® Anweisungsfolgen, die unter einem Namen aufgerufen werden konnen, heiBen in der objekt-

orientierten Programmierung "Methoden", in der klassischen Programmierung "Funktionen" wie
z. B. in C oder aber auch "Prozeduren”.

12 Kapitel 1

Wie in Bild 1-7 zu sehen ist, wird der Name des Blockes im Diagramm den Verar-
beitungsschritten vorangestellt.

Das Diagramm in Bild 1-8 stellt das "Hello, world"-Programm aus Kapitel 1.1 in
grafischer Form dar.

Hello-World-Programm

Ausgeben: Hello, World!

Bild 1-8 Einfaches Beispiel eines Struktogramms
Aus der Darstellung ist zu entnehmen, dass die Details einer Programmiersprache
auf dieser Abstraktionsebene keine Rolle spielen.
1.3.2 Diagramme fir die Selektion
Bei den Kontrollstrukturen flr die Selektion kann man zwischen

e der einfachen Alternative (Bild 1-9),
e der bedingten Verarbeitung (Bild 1-10)
® und der mehrfachen Alternative (Bild 1-11) unterscheiden.

Die einfache Alternative stellt eine Verzweigung im Programmablauf dar. Das ent-
sprechende Struktogramm ist in Bild 1-9 zu sehen.

Boolescher
TRUE Ausdruck FALSE

Vi A

Bild 1-9 Struktogramm fiir die einfache Alternative

Bei der einfachen Alternative wird (iberpriift, ob ein Boolescher Ausdruck’ wie
z. B. a > b wahrist oder nicht.

FALSE annehmen. Ein solcher Boolescher Ausdruck wird auch als

\
Ein Boolescher Ausdruck kann die Wahrheitswerte TRUE bzw. @/
Bedingung bezeichnet. g

I

Ist der Ausdruck wahr, so wird der Zweig fir TRUE ausgewahlt und der Verarbei-
tungsschritt v1 ausgeftihrt. Ist der Ausdruck nicht wahr, so wird der FALSE-Zweig
ausgewahlt und der Verarbeitungsschritt v2 durchgefihrt. Jeder dieser Zweige kann
einen Verarbeitungsschritt bzw. einen Block von Verarbeitungsschritten enthalten.

7 Ein Ausdruck ist eine Verkniipfung von Operanden durch Operatoren und runden Klammern

(siehe Kap. 7).

Grundbegriffe der Programmierung 13

Die einfache Alternative wurde bereits in Kapitel 1.2.2 ausflihrlich besprochen. Hier
noch einmal der entsprechende Pseudocode fiir eine solche Verzweigung:

if (a > b) V1
else V2

Bei der bedingten Verarbeitung (siehe Bild 1-10) wird der TRUE-Zweig ausgewahlt,
wenn der Ausdruck wahr ist. Ansonsten wird direkt zu dem nachsten Verarbeitungs-
schritt ibergegangen.

Boolescher
TRUE Ausdruc

VA

Bild 1-10 Struktogramm fiir die bedingte Verarbeitung

Der Pseudocode fiir die bedingte Verarbeitung entspricht dem der einfachen Alter-
native, allerdings fehlt der so genannte else-Teil:

if (a > b) V1

Bei der mehrfachen Alternative (siehe Bild 1-11) wird geprift, ob ein arithmeti-
scher Ausdruck® einen von n vorgegebenen Werten ¢ ... ¢, annimmt. Ist dies der
Fall, so wird der entsprechende Zweig ausgefiihrt, ansonsten wird direkt zu dem
nachsten Verarbeitungsschritt bergegangen.

Arithmetischer
Cq
(;2\\ Ausdruck
Cn-1 Cn
Vi Vo e Vg Vi

Bild 1-11 Struktogramm fiir die mehrfache Alternative
Der entsprechende Pseudocode ist relativ komplex. Daher wird auf eine Darstellung
hier im Einleitungskapitel verzichtet.
1.3.3 Diagramme fir die Iteration
Bei der Iteration kann man drei Falle von Kontrollstrukturen unterscheiden:

e Wiederholung mit vorheriger Prifung,
e Wiederholung mit nachfolgender Priifung,
® Wiederholung ohne Priifung.

Bei der Wiederholung mit vorheriger Priifung (abweisende Schleife) wird zuerst
eine Bedingung geprift. Solange die Bedingung erfillt ist, wird der Verarbeitungs-

8 Bei einem arithmetischen Ausdruck werden arithmetische Operatoren auf die Operanden ange-

wandt, wie z. B. der Minusoperator im Ausdruck 6 - 2 auf die Operanden 6 und 2.

14 Kapitel 1

schritt v wiederholt. Ist diese Bedingung bereits zu Anfang nicht erfiillt, wird der
Verarbeitungsschritt v nicht ausgefiihrt — die Ausflihrung der Schleife wird abge-
wiesen. Das Struktogramm einer abweisenden Schleife ist in Bild 1-12 dargestellt.

Solange Bedingung

V

Bild 1-12 Struktogramm der Wiederholung mit vorausgehender Bedingungspriifung

In einem Pseudocode kann man eine abweisende Schleife folgendermaBen
darstellen:

WHILE (Bedingung) DO V

Hat zu Beginn der Schleife die Bedingung den Wert TRUE, dann missen die Ver-
arbeitungsschritte in der Schleife dafiir sorgen, dass der Wert der Bedingung irgend-
wann FALSE wird, sonst entsteht eine Endlos-Schleife®. Die FOr-Schleife (siehe auch
Kap. 8.3.2) ist ebenfalls eine abweisende Schieife. Sie stellt eine spezielle Auspra-
gung der WHILE-Schleife dar. FOR-Schleifen bieten eine syntaktische Beschreibung
des Startzustandes und der lterationsschritte (z. B. Hoch- oder Herunterzéhlen einer
Laufvariablen, welche die einzelnen lterationsschritte durchzahlt).

Bei der Wiederholung mit nachfolgender Priifung (annehmende Schleife) erfolgt
die Prifung der Bedingung erst am Ende. Das zugehérige Struktogramm ist in Bild
1-13 dargestellt.

v

Solange Bedingung

Bild 1-13 Struktogramm der Wiederholung mit nachfolgender Bedingungspriifung

Die annehmende Schleife kann man in einem Pseudocode folgendermaBen dar-
stellen:

DO V WHILE (Bedingung)

Die annehmende Schleife wird mindestens einmal durchgefiihrt. Erst dann wird die
Bedingung bewertet. Die DO-WHILE-Schleife wird typischerweise dann benutzt, wenn
der Wert der Bedingung erst in der Schleife entsteht, beispielsweise wie in der
folgenden Anwendung "Lies Zahlen ein, solange keine 0 eingegeben wird". Hier
muss zuerst eine Zahl eingelesen werden. Erst dann kann geprift werden, ob sie 0
ist oder nicht.

Prifungen missen nicht immer notwendigerweise zu Beginn oder am Ende statt-
finden. Eine Bedingung muss manchmal auch in der Mitte der Verarbeitungsschritte
einer Schleife geprift werden. Zu diesem Zweck gibt es die Wiederholung ohne
Prifung, bei der die Prifung in den Verarbeitungsschritten "versteckt" ist. Das zu-
gehdrige Struktogramm ist in Bild 1-14 dargestellt.

° Eine Endlos-Schleife ist eine Schleife, deren Ausfiihrung nie abbricht.

Grundbegriffe der Programmierung 15

Bild 1-14 Struktogramm der Wiederholung ohne Bedingungspriifung

In einem Pseudocode kann die Schleife ohne Bedingungspriifung folgendermafBen
angegeben werden:

LOOP V

Die Schleife ohne Bedingungsprifung wird verlassen, wenn in einem der Verarbei-
tungsschritte v eine BREAK-Anweisung ausgefuhrt wird. Eine BREAK-Anweisung ist
eine spezielle Sprunganweisung und sollte nur eingesetzt werden, damit bei einer
Schleife ohne Wiederholungspriifung keine Endlos-Schleife entsteht. Die Regel, dass
eine Kontrollstruktur nur einen Eingang und einen Ausgang hat, wird dadurch nicht
verletzt, sondern der zunéchst fehlende Ausgang wird erst durch die BREAK-An-
weisung zur Verfigung gestellt. Bild 1-15 zeigt das Sinnbild fur eine solche Abbruch-

anweisung.
< BREAK

Bild 1-15 Abbruchanweisung

Im Falle der Programmiersprache Java sind die Kontrollstrukturen der Wiederholung
mit vorheriger Prufung, mit nachfolgender Prifung und ohne Prufung als Sprach-
konstrukt vorhanden, d. h. es gibt in Java Anweisungen fur diese Schleifen. Bild 1-16
stellt ein Beispiel fur eine Schleife ohne Wiederholungsprifung mit Abbruchan-
weisung dar.

V1
Bedingung
TRUE
< BREAK
V2

Bild 1-16 Struktogramm einer Schleife ohne Wiederholungspriifung mit Abbruchbedingung

Nach der Ausfiihrung von v1 wird die Bedingung geprift. Hat die Bedingung nicht
den Wert TRUE, so wird v2 abgearbeitet und dann die Schleife mit v1 beginnend
wiederholt. Der Durchlauf der Schleife mit der Reihenfolge "Ausfihrung v1",
"Bedingungsprufung", "Ausfihrung v2" wird solange wiederholt, bis die Bedingung
den Wert TRUE hat. In diesem Fall wird die Schleife durch die Abbruchbedingung
verlassen.

16 Kapitel 1

1.3.4 Algorithmus von Euklid als Nassi-Shneiderman-Diagramm

Mit den Mitteln der Struktogramme kann nun der Algorithmus von Euklid, der in
Kapitel 1.2.1 eingeflihrt wurde, in grafischer Form dargestellt werden:

Algorithmus von Euklid

Initialisiere x und y

Solange x ungleich y

x kleiner als y
TRUE FALSE

y=y-x X=X-y

x ist groBter gemeinsamer Teiler

Bild 1-17 Struktogramm des Algorithmus von Euklid

1.4 Zeichen

Wenn ein Programm mit Hilfe eines Texteditors geschrieben wird, werden Zeichen
Uber die Tastatur eingegeben. Einzelne oder mehrere aneinander gereihte Zeichen
haben hierbei eine spezielle Bedeutung. So reprasentieren die Zeichen x und vy bei
der Implemen’[ierung10 des Algorithmus von Euklid die Namen von Variablen.

|

\ /
Ein Zeichen ist ein von anderen Zeichen unterscheidbares Objekt, _ —
welches in einem bestimmten Zusammenhang eine definierte Bedeu- P

~
tung tragt.

i

Zeichen kdénnen beispielsweise Symbole, Bilder oder Téne sein. Zeichen derselben
Art sind Elemente eines Zeichenvorrats. So sind beispielsweise die Zeichen |, V, X,
L, C, M Elemente des Zeichenvorrats der rdmischen Zahlen. Eine Ziffer ist ein
Zeichen, das die Bedeutung einer Zahl hat.

Von einem Alphabet spricht man, wenn der Zeichenvorrat eine — -
strenge Ordnung aufweist. - ~

So stellt beispielsweise die geordnete Folge der Elemente

0,1 das Binaralphabet,

a,b,c..z die Kleinbuchstaben ohne Umlaute und ohne B,
0,1,...9 das Dezimalalphabet

dar.

' |mplementierung bedeutet Realisierung, Umsetzung, Verwirklichung.

Grundbegriffe der Programmierung 17

Rechnerinterne Darstellung von Zeichen

Zeichen sind zunachst Buchstaben, Ziffern oder Sonderzeichen. Zu diesen Zei-
chen kdnnen noch Steuerzeichen hinzukommen. Ein Steuerzeichen ist beispiels-
weise "C, das durch gleichzeitiges Anschlagen der Taste Strg (Steuerung) und der
Taste C erzeugt wird. Die Eingabe von *C kann dazu dienen, ein Programm abzu-
brechen.

Rechnerintern werden die Zeichen durch Bits dargestellt. Ein Bit'' kann den Wert 0
oder 1 annehmen. Das bedeutet, dass man mit einem Bit 2 verschiedene Féalle dar-
stellen kann. Mit einer Gruppe von 2 Bits hat man 2 * 2 = 4 Mdglichkeiten, mit einer
Gruppe von 3 Bits kann man 2 * 2 * 2 = 8 verschiedene Falle darstellen, und so fort.
Mit 3 Bits sind die Kombinationen

0oo o001 o010 o011 100 101 110 111

IR

Bit2 Bit1 Bit0

mdoglich. Jeder dieser Bitgruppen kann man je ein Zeichen zuordnen, das heift, jede
dieser Bitkombinationen kann ein Zeichen reprasentieren. Man braucht nur eine ein-
deutig umkehrbare Zuordnung (z. B. erzeugt durch eine Tabelle) und kann dann
jedem Zeichen eine Bitkombination und jeder Bitkombination ein Zeichen zuordnen.
Mit anderen Worten, man bildet die Elemente eines Zeichenvorrats auf die Elemente
eines anderen Zeichenvorrats ab. Diese Abbildung bezeichnet man als Codierung.

Begriff eines Codes

Nach DIN 44300 ist ein Code eine Vorschrift fir die eindeutige

Zuordnung oder Abbildung der Zeichen eines Zeichenvorrats auf die ‘/\
Zeichen eines anderen Zeichenvorrats, die so genannte Bildmenge. =

Dieser Begriff des Codes wird aber nicht eindeutig verwendet.

Oftmals wird unter Code auch der Zeichenvorrat der Bildmenge ver- — -
standen. - ™~

Relevante Codes fiir Rechner

Far die Codierung von Zeichen im Binaralphabet gibt es viele Moglichkeiten. Fir
Rechner besonders relevant sind Codes, die ein Zeichen durch 7 bzw. 8 Bits
reprasentieren. Mit 7 Bits kann man 128 verschiedene Zeichen codieren, mit 8 Bits
256 Zeichen. Zu den am haufigsten verwendeten Zeichensatzen gehéren:

e Der ASCII'?-Zeichensatz mit 128 Zeichen — die US-nationale Variante des 1SO-7-
Bit-Code (ISO 646), die aber weit verbreitet ist.

e Der erweiterte ASCII-Zeichensatz mit 256 Zeichen.

" Abkurzung fir binary digit (engl.) = Binarziffer.

2 ASCII = American Standard Code for Information Interchange (siehe Anhang A).

18 Kapitel 1

® Der Unicode, der jedem Zeichen aller bekannten Schriftkulturen und Zeichen-
systeme eine Bitkombination zuordnet. Der Unicode definiert Codierungen
verschiedener Lange. Java verwendet flr Zeichen die urspringliche UTF-16-
Repréasentation, bei der jedes Zeichen einer Bitkombination einer Gruppe von 16
Bits entspricht. Die ersten 128 Zeichen des UTF-16-Codes sind die Zeichen des 7-
Bit ASCII-Zeichensatzes.

1.5 Variable

Bei imperativen Sprachen — zu dieser Klasse von Sprachen gehért Java — besteht
ein Programm aus einer Folge von Befehlen, wie z. B. "Wenn x gréBer als vy ist,
dann:", "ziehe y von x ab und weise das Ergebnis x zu". Wesentlich an diesen
Sprachen ist das Variablenkonzept — Eingabewerte werden in Variablen gespeichert
und weiterverarbeitet.

namen kann der Programmierer auf die entsprechende Speicherstelle

. \
Eine Variable ist eine benannte Speicherstelle. Uber den Variablen- _ @ —
zugreifen.

{ny

Variable braucht man, um in ihnen Werte abzulegen. Im Gegensatz zu einer Kon-
stanten ist eine Variable eine veranderliche GréBe. In ihrem Speicherbereich kann
bei Bedarf der Wert der Variablen verandert werden. Der Wert einer Variablen muss
der Variablen explizit zugewiesen werden. Ansonsten ist ihr Wert undefiniert. Da im
Arbeitsspeicher die Bits immer irgendwie ausgerichtet sind, hat jede Variable auto-
matisch einen Wert, auch wenn ihr vom Programm noch kein definierter Wert
zugewiesen wurde. Ein solcher Wert ist jedoch rein zuféllig und fihrt zu einer
Fehlfunktion des Programms. Daher darf es der Programmierer nicht versdumen,
den Variablen die gewlinschten Startwerte (Initialwerte) zuzuweisen, d. h. die
Variablen zu initialisieren.

Variable liegen wahrend der Programmausfiihrung in Speicherzellen des Arbeits-
speichers. Die Speicherzellen des Arbeitsspeichers (siehe Bild 1-18) sind durch-
nummeriert. In der Regel ist beim PC eine Speicherzelle 1 Byte'® groB. Die
Nummern der Speicherzellen werden Adressen genannt. Eine Variable kann natir-
lich mehrere Speicherzellen einnehmen (siehe Bild 1-18).

Adressen
7
6 . _ | L Variable mit
5 Wert: 3 } Namen alpha
4
3
2
1 <++— Speicherzelle
0

Bild 1-18 Variable im Arbeitsspeicher

'3 Ein Byte stellt eine Folge von 8 zusammengehdrigen Bits dar.

Grundbegriffe der Programmierung 19

Wahrend man in C sowohl liber den Variablennamen als auch (ber die Adresse auf
den in einer Variablen gespeicherten Wert zugreifen kann, kann man in Java nur
Uber den Namen einer Variablen ihren Wert aus den Speicherzellen auslesen und
verandern. Damit wird ein haufiger Programmierfehler in C — der Zugriff auf eine
falsche Adresse — verhindert.

Physikalische Adressen, d. h. Adressen des Arbeitsspeichers, werden — -
in Java vor dem Programmierer verborgen. - -~

Eine Variable hat in Java 3 Kennzeichen: N
® \ariablennamen, —/\
® Datentyp E

e und Wert. -

1.6 Datentypen

Der Datentyp ist der Bauplan fur eine Variable. Der Datentyp legt fest, welche
Operationen auf einer Variable moglich sind und wie die Darstellung (Reprasen-
tation) der Variablen im Speicher des Rechners erfolgt. Mit der Darstellung wird
festgelegt, wie viele Bytes die Variable im Speicher einnimmt und welche Bedeutung
jedes Bit der Darstellung hat.

1.6.1 Einfache Datentypen

Die Sprache Java stellt selbst standardmaBig einige Datentypen bereit, wie z. B. die
einfachen Datentypen

® int zur Darstellung von ganzen Zahlen
e oder float zur Darstellung von Gleitpunktzahlen®*.

Kennzeichnend fir einen einfachen Datentyp ist, dass sein Wert einfach im Sinne
von atomar ist. Ein einfacher Datentyp kann nicht aus noch einfacheren Datentypen
zusammengesetzt sein. Datentypen, die der Compiler zur Verfligung stellt, sind
Standardtypen. Ein Compiler ist hierbei ein Programm, das Programme aus einer
Sprache in eine andere Sprache Ubersetzt. Ein C-Compiler Ubersetzt z. B. ein in C
geschriebenes Programm in Anweisungen eines so genannten Maschinencodes, die
der Prozessor direkt versteht.

1.6.1.1 Der Datentyp int

Der Datentyp int vertritt in Java-Programmen die ganzen Zahlen (Integer-Zahlen).
Es gibt in Java jedoch noch weitere Integer-Datentypen. Sie unterscheiden sich vom

' Gleitpunktzahlen dienen zur naherungsweisen Darstellung von reellen Zahlen.

20 Kapitel 1

Datentyp int durch ihre Reprasentation und damit auch durch ihren Wertebereich.
Die int-Zahlen umfassen auf dem Computer einen endlichen Zahlenbereich, der
nicht Gberschritten werden kann. Dieser Bereich ist in Bild 1-19 dargestellt.

_p31 231 _ 1

I Wertebereich des Typs int
Bild 1-19 int-Zahlen

-23,d.h. -2147483648, und 2°* - 1,d.h. 2147483647, sind die Grenzen der
int-Werte fir Java auf jeder Maschine. Somit gilt fiir jede Zahl x vom Typ int:

x ist eine ganze Zahl, -2147483648 < x < 2147483647

Rechnet man mit einer Variablen x vom Typ int, so ist darauf zu achten, dass beim
Rechnen nicht die Grenzen des Wertebereichs fiir i nt-Zahlen Uberschritten werden.
Wird beispielsweise 2 * x berechnet und ist das Ergebnis 2 * x groBer als
2147483647 oder kleiner als -2147483648, so kommt es bei der Multiplikation zu
einem Fehler, dem so genannten Zahleniiberlauf. Hierauf muss der Programmierer
selbst achten. Der Zahlenlberlauf wird namlich in Java nicht durch eine Fehler-
meldung oder eine Warnung angezeigt. Meist wird in der Praxis so verfahren, dass
ein Datentyp gewdhlt wird, der fir die géngigen Anwendungen einen ausreichend
groBen Wertebereich hat. Sollte der Wertebereich dennoch nicht ausreichen, kann
ein Gleitkomma-Datentyp oder die Klasse BigInteger eingesetzt werden. Die
Klasse BigInteger ermdglicht beliebig lange Ganzzahlen. Sie wird als Bibliotheks-
klasse (siehe Kap. 1.6.2) von Java zur Verfligung gestellt.

\
Die Variablen vom Typ int haben als Werte ganze Zahlen. Die Dar- _
stellung von int-Zahlen umfasst in Java 32 Bit. Dies entspricht einem -

Wertebereich von -2°" bis +2%'- 1.

I\

1.6.1.2 Der Datentyp float

float-Zahlen entsprechen den rationalen und reellen Zahlen der Mathematik. Im
Gegensatz zur Mathematik ist auf dem Rechner jedoch der Wertebereich endlich und
die Genauigkeit der Darstellung begrenzt. £1oat-Zahlen werden auf dem Rechner in
der Regel als Exponentialzahlen in der Form Mantisse * Basis F*P°"" dargestellt
(siehe Kap. 6.2.3). Dabei wird sowohl die Mantisse als auch der Exponent mit Hilfe
ganzer Zahlen dargestellt, wobei die Basis auf dem jeweiligen Rechner eine feste
Zahl wie z. B. 2 oder 16 ist. Wahrend in der Mathematik die reellen Zahlen unendlich
dicht auf dem Zahlenstrahl liegen, haben die float-Zahlen, welche die reellen
Zahlen auf dem Rechner vertreten, tatséchlich diskrete Abstande voneinander. Es ist
im Allgemeinen also nicht méglich, Brliche, Dezimalzahlen, transzendente Zahlen
oder die Ubrigen nicht-rationalen Zahlen wie z. B. die Quadratwurzel aus 2, /2, exakt

Grundbegriffe der Programmierung 21

darzustellen. Werden float-Zahlen benutzt, so kommt es also in der Regel zu
Rundungsfehlern. Wegen der Exponentialdarstellung werden die Rundungsfehler fiir
groBe Zahlen gréBer, da die Abstande zwischen den im Rechner darstellbaren
float-Zahlen zunehmen. Addiert man beispielsweise eine kleine Zahl y zu einer
groBen Zahl x und zieht anschlieBend die groBe Zahl x wieder ab, so erhalt man
meist nicht mehr den urspringlichen Wert von y.

Die Variablen vom Typ f1oat haben als Werte reelle Zahlen. %/\

AuBer dem Typ float gibt es in Java noch einen weiteren Typ von reellen Zahlen,
namlich den Typ double mit erhéhter Rechengenauigkeit.

1.6.1.3 Operationen auf einfachen Datentypen

Allgemein ist ein einfacher Datentyp wie int oder float definiert durch seine
Wertemenge und die zuldssigen Operationen auf Ausdriicken dieses Datentyps.
Im Folgenden soll der Datentyp int betrachtet werden. Der Wertebereich der int-
Zahlen erstreckt sich lber alle ganzen Zahlen von -2*' bis 23! - 1. Die fiir int-Zahlen
madglichen Operationen sind:

Operator Operanden Ergebnis
Vorzeichenoperatoren

+, - (unan)® int 2 int

Binére arithmetische Operatoren

t,o=, %, /% (int, int) =» int
Vergleichsoperatoren

==, <, <=, >, >=, l= (int, int) =» boolean (Wahrheitswert)
Wertzuweisungsoperator

= int = int

Tabelle 1-3 Operationen fiir den Typ int

Die Bedeutung von Tabelle 1-3 wird am Beispiel

Operator Operanden Ergebnis
+ (binér) (int, int)=» int

Tabelle 1-4 Binédres Plus

erklart. Dieses Beispiel ist folgendermaBen zu lesen: Der bindre Operator -+
verkniipft zwei int-Werte als Operanden zu einem int-Wert als Ergebnis. In
Tabelle 1-3 ist / der Operator der ganzzahligen Division, % der Modulo-Operator,
der den Rest bei der ganzzahligen Division angibt, == der Vergleichsoperator "ist
gleich", <= der "kleiner gleich"-Operator und != der Operator "ungleich". Das unére
+ und - sind Vorzeichenoperatoren.

'S Ein unarer Operator hat nur einen Operanden (siehe Kap. 7.1).

22 Kapitel 1

1.6.2 Selbst definierte Datentypen

Neben den einfachen Datentypen gibt es in modernen Programmiersprachen auch
so genannte selbst definierte Datentypen. Selbst definierte Datentypen sind dem
Compiler standardmaBig nicht bekannt. Wenn die Programmiersprache hierfur die
Sprachmittel anbietet, so ist es dem Programmierer mdglich, eigene Datentypen zu
erfinden — die fUr die Modellierung einer Anwendung von Bedeutung sind — und diese
dem Compiler bekannt zu machen.

Java bietet fUr selbst definierte Datentypen das Sprachkonstrukt der Klasse (class)
oder des Aufzéhlungstyps (enum). Eine Klasse bildet ein Objekt der realen Welt in
ein Schema ab, das der Compiler versteht, wobei ein Objekt z. B. ein Haus, ein
Vertrag oder eine Firma sein kann — also prinzipiell jeder Gegenstand, der fiir einen
Menschen eine Bedeutung hat und den er sprachlich beschreiben kann. Will man
beispielsweise eine Software fur das Personalwesen einer Firma schreiben, so ist es
zweckmaBig, einen selbst definierten Datentyp Mitarbeiter, d. h. eine Klasse
Mitarbeiter, einzufihren.

Es gibt bereits eine groBe Anzahl vordefinierter Datentypen, die in der Java-Klassen-
bibliothek als so genannte Bibliotheksklassen zur Verfliigung gestellt werden.

Ein selbst definierter Datentyp kann durch eine Bibliothek zur Ver- — -
figung gestellt oder von einem Programmierer eingefihrt werden. - ~

1.6.3 Von den einfachen Datentypen zu den Klassen g

Dieses Kapitel soll kurz aufzeigen, wie sich in der Geschichte der Programmier-
sprachen die Entwicklung von den einfachen Datentypen zu den Klassen vollzogen
hat. Ein Programmieranfanger, der keine anderen Programmiersprachen kennt und
sich allein auf das Erlernen der objektorientierten Programmierung mit Java fokus-
sieren mochte, kann dieses Kapitel problemlos tberspringen.

Einen Punkt mit ganzzahligen Koordinaten x und y kann man beschreiben durch
zwei einzelne int-Variablen:

int x;
int vy;

Geht man so vor, so muss sich der Programmierer natrlich im Kopf merken, dass x
und y zum selben Punkt gehdren. Kernighan und Ritchie fiihrten in C den Begriff
Struktur (struct) flr einen zusammengesetzten, selbst definierten Datentyp ein.
Damit war es in C méglich, durch

struct Punkt
{

int x; // Komponentenvariable x
int y; // Komponentenvariable y

Grundbegriffe der Programmierung 23

einen Datentyp struct Punkt zu definieren, der die Komponenten x und y enthalt.
Jede Komponente eines Punktes kann dabei prinzipiell ihren eigenen Datentyp
haben. Eine Variable dieses Typs struct Punkt kann eingefihrt werden durch

struct Punkt p;
p ist eine Strukturvariable, welche die beiden Komponenten x und y hat. Eine Fest-

legung der Koordinaten des Punktes kann erfolgen, indem man den Komponenten
Werte zuweist, z. B. durch

x = 1;
y =1;

\
Mit einer Struktur kann man einen Punkt p als Ganzes beschreiben. _
Der Zugriff auf die Komponenten x und y eines Punktes p erfolgt im -

p.
p.

Programm durch die Punktnotation p. x bzw. p.y.

Selbstverstandlich kann man Variable vom Datentyp struct Punkt mit Funktionen
bearbeiten. Dabei werden in C die Funktionen jedoch auBerhalb der Struktur
definiert. Eine Funktion get_x () beispielsweise wird auBerhalb der Struktur definiert
durch

int get_x (struct Punkt p)
{
return p.x;

}

Diese Funktion soll an dieser Stelle nicht komplett diskutiert werden. Wichtig ist
jedoch, dass eine Funktion get_x (), die auBerhalb der Struktur definiert werden
muss, natdrlich nicht wissen kann, auf welchem der Punkte sie arbeiten soll. Daher
muss der zu bearbeitende Punkt in der Parameterliste — hier (struct Punkt p) —
an die Funktion Gbergeben werden.

Den n&chsten Fortschritt brachte C mit Klassen, das spater dann C++ hief3. In C mit
Klassen wurde es mdglich, dass eine Struktur nicht nur Daten, sondern auch
Funktionen enthielt. Das obige Beispiel sieht dann so aus'®:

struct Punkt
{
int x;
int vy;

int get_x()
{

return x;

}

' Aus Symmetriegriinden wurde hier auch eine Funktion get_y () aufgenommen.

24 Kapitel 1

int get_y ()
{
return y;
}
}

Eine Variable p vom Typ struct Punkt wird durch

struct Punkt pj;

vereinbart. Eine solche Variable reprasentiert in C++ ein Objekt. Dieses Objekt p hat
als Komponenten zum einen die Komponentenvariablen x und y — also Daten — und
zum anderen die Funktionen get_x () und get_y (). In C++ werden die Daten-
Komponenten Attribute genannt. In Java werden die Daten-Komponenten jedoch
als Datenfelder bezeichnet. Daher verwenden wir im Folgenden den Begriff Daten-
feld. Funktions-Komponenten tragen in der objektorientierten Programmierung gene-
rell den Namen Methoden.

Bitte beachten Sie, dass get_x () jetzt keinen Ubergabeparameter mehr benétigt.
Warum? Die Methode get_x () wird jetzt innerhalb der Struktur definiert — das ist in
C++ neu gegentiiber C und typisch fiir die Objektorientierung — und damit haben die
Methoden automatisch Zugriff auf die Datenfelder x und y.

|
Eine klassische Struktur in C kann nur Daten als Komponenten haben. //
Eine Struktur in C++ kann Daten und Funktionen (Methoden) als @
Komponenten haben. Grundsatzlich gilt in der Objektorientierung,

dass ein Objekt Daten und Methoden als Komponenten hat.

~

(i

get_x()
= X =
| ol
3 y &
get_y()

Bild 1-20 Methoden und Datenfelder sind die Komponenten eines Objektes

Bild 1-20 zeigt ein Objekt des Datentyps struct Punkt mit den Datenfeldern x und
y und den Methoden get_x (), get_y (), set_x() und set_y (). Die Methoden
set_x () und set_y () dienen zum Setzen der Werte der Datenfelder x und y.

In der Objektorientierung haben die Methoden eines Objektes auto- —
matisch Zugriff auf die Datenfelder eines Objektes. - ™~

Grundbegriffe der Programmierung 25

Der Aufruf der Methoden get_x () und get_y () erfolgt wie beim Zugriff auf die
Datenfelder Uber die Punktnotation, z. B. durch

p.get_x();

Schreibt man statt struct Punkt nun class Punkt:

class Punkt

{
int x;
int y;

int get_x()
{

return x;

}

int get_vy ()
{

return y;
}
}

so ist man bereits bei den Klassen angelangt. Der Unterschied zwischen struct
Punkt und class Punkt in C++ ist nur der, dass fur den Zugriff auf Komponenten
fir struct und class verschiedene Default-Zugriffsrechte gelten. Default-Zugriffs-
rechte sind die Zugriffsrechte, die automatisch bestehen, wenn nicht explizit
bestimmte Zugriffsrechte angegeben werden.

Als Datentyp ist in C++ neben struct Punkt bzw. class Punkt nun auch ein-
fach Punkt mdglich, wobei der Datentyp Punkt identisch zum Datentyp class
pPunkt ist. Das hier vorgestellte Konzept der Klassen wird auch in Java Uber-
nommen. Klassen stellen einen Datentyp dar. Bei der Bildung von Variablen gibt es
jedoch Unterschiede zwischen C++ und Java, die aber hier nicht diskutiert werden
muissen.

1.7 Ubungen

Aufgabe 1.1: Verstandnisfragen

1.2.1 Was wird unter einem Algorithmus verstanden?

1.2.2 Was wird unter einer Kontrollstruktur verstanden?

1.2.3 Welche Kontrollstrukturen gibt es bei sequenziellen Abldufen?

1.2.4 Was ist ein Datentyp? Was ist eine Variable? Wie hangen Datentyp und

Variable zusammen?
1.2.5 Was ist der Unterschied zwischen einem zusammengesetzten Datentyp und
einem einfachen Datentyp? Nennen Sie je ein Beispiel.
1.2.6 Welche Schritte sind notwendig, um vom Quellcode zu einem lauffédhigen
Java-Programm zu gelangen?
1.2.7 Was beinhalten . class-Dateien?
2.8 Was wird unter einem Code verstanden?

26

Kapitel 1

Aufgabe 1.2: Nassi-Shneiderman-Diagramme

1.2.1

1.2.2

Nassi-Shneiderman-Diagramm Quadratzahlen

Vervollstandigen Sie das unten angegebene Nassi-Shneiderman-Diagramm
fir ein Programm, welches in einer (duBeren) Schleife Integer-Zahlen in
eine Variable n einliest. Die Reaktion des Programms soll davon abhangen,
ob der in die Variable eingelesene Wert positiv, negativ oder gleich Null ist.
Treffen Sie die folgende Fallunterscheidung:

® |st die eingelesene Zahl n grdBer als Null, so soll in einer inneren Schleife
folgende Ausgabe erzeugt werden:

Zahl Quadratzahl
1 1

2 4

n n*n

® |st die eingelesene Zahl n kleiner als Null, so soll ausgegeben werden:

Negative Zahl

® |st die eingegebene Integer-Zahl n gleich Null, so soll das Programm (die
auBere Schleife) abbrechen.

quadratzahlen

einlesen

Bild 1-21 Nassi-Shneiderman-Diagramm fir das Programm quadratzahlen

Nassi-Shneiderman-Diagramm aufsteigende Ausgabe des Wertes
zweier ganzer Zahlen

Eine Funktion SORT soll die Werte zweier Ubergebener ganzer Zahlen so
ausgeben, dass der kleinere Wert immer links von der gréBeren Zahl
ausgeben wird. Dies soll so lange gehen, bis fur beide Zahlen der Wert 0
eingegeben wird. Dann soll der Abbruch erfolgen. Zeichnen Sie das Nassi-
Shneiderman-Diagramm der Funktion SORT.

Kapitel 2

Objektorientierte Konzepte

2.1
2.2
2.3
2.4
2.5
2.6

Modellierung mit Klassen und Objekten
Das Konzept der Kapselung

Abstraktion und Brechung der Komplexitat
Erstes Programmbeispiel mit Objekten
Flughafen-Projekt

Ubungen

2 Objektorientierte Konzepte

Entscheidend flr den objektorientierten Ansatz ist nicht das objektorientierte Pro-
grammieren, sondern das Denken in Objekten vom Start des Projektes an. Dies
wird dadurch erleichtert, dass bei den objektorientierten Techniken in Konzepten und
Begriffen der realen Welt anstatt in computertechnischen Konstrukten wie Haupt- und
Unterprogrammen gedacht und entsprechend programmiert wird.

2.1 Modellierung mit Klassen und Objekten

Bevor ein neues System mit Hilfe einer Programmiersprache realisiert wird, analy-
siert man, welche Objekte von Bedeutung sind, um die Aufgaben des Systems zu
erflllen. In weiteren Schritten macht man sich Gedanken, wie man ein System in
Systemteile gliedern kann, welche Objekte welchem Systemteil zugeordnet werden
und wie die Kommunikation von Systemteilen bzw. Objekten aussieht. All diese
Uberlegungen werden in einer Systemspezifikation festgehalten und erst dann be-
ginnt man, das System mit Hilfe einer Programmiersprache umzusetzen.

2.1.1 Problem- und Lésungsbereich

Bei der objektorientierten Modellierung denkt man lange Zeit hauptsachlich im Pro-
blembereich (engl. problem domain, Anwendungsbereich) — also in der Begriffs-
welt des Kunden. Dies hat den groBen Vorteil, dass der Kunde die Projektunterlagen
verstehen kann.

Bild 2-1 Kunde und Entwickler sprechen dieselbe Sprache. Man versteht sich!

Im Rahmen der so genannten Systemanalyse wird studiert, welche Aufgaben
(Geschaftsprozesse) in einem Geschaftsfeld durchgefihrt werden und welche
Objekte beim Ausfihren der Aufgaben eine Rolle spielen. Hat der Kunde noch kein
EDV-.?)/stem, so fuhrt er zum Zeitpunkt der Systemanalyse alle Aufgaben "von Hand"
durch'’.

Meistens kommen zu einem spateren Zeitpunkt der Systementwicklung noch neue
Objekte hinzu, an die man zu Beginn der Entwicklung gar nicht gedacht hat. Das ist
aber gar nicht so schlimm, da objektorientierte Systeme sehr stabil gegen nach-
trégliche Anderungen sind. Denkt man z. B. an ein Fluglotsensystem, so sind Objek-

7 Ooft genug kommt es allerdings vor, dass man ein abzulésendes EDV-System untersuchen muss,
um zu erkennen, welche Geschéftsprozesse ablaufen.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_2,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Objektorientierte Konzepte 29

te, auf die es ankommt, ganz bestimmt die einzelnen Flugzeuge, die Start- und Lan-
debahnen und die Parkpositionen der Flugzeuge. Objekte haben Eigenschaften. Zu
einer Startbahn gehért z. B. ihre Lange, der Belegtstatus und der Zeitraum der
Belegung, die relative Windrichtung zur Startbahn und die entsprechende Wind-
starke. Mit Objekten kann man in der Realitat und im Programm etwas anfangen. So
kann der Fluglotse eine Start- und Landebahn freigeben oder belegen.

Bei der Modellierung des Problembereichs im Rahmen der Systemanalyse werden
selbst definierte Datentypen wie Flugzeug, Start- und Landebahn, Parkposition,
Fluggesellschaft, Lotse etc. in der Form von Klassen eingefihrt. Eine Klasse
entspricht einem Typ eines Gegenstands der realen Welt. Dabei beschrankt man
sich nicht nur auf konkrete Dinge. Auch Wesen — wie z.B. Mitarbeiter — und
Konzepte — wie z. B. Vertrdge — werden darunter gesehen. Als Oberbegriff fur
konkrete Gegenstande, Wesen und Konzepte wird das Wort Entitat verwendet.

Eine Entitat hat im Rahmen des betrachteten Problems eine definierte
Bedeutung. Sie kann einen Gegenstand oder ein Wesen oder ein
Konzept darstellen.

\ ’ /
h\\\\@ —
/) ~

Es ist ein groBer Vorteil der Objektorientierung, in Entitdten, d. h. in Abstraktionen
von Gegenstédnden, Wesen oder Konzepten der realen Welt zu denken. Eine Entitat
entspricht einem Objekt. Der Begriff Entitatstyp ist eine Analogie zum Begriff der
Klasse. Etwas schwieriger ist in der deutschen Sprache, dass Instanzen (Objekte)
und Typen gleich benannt werden. So wird ein konkretes Flugzeug gleichermaBen
wie der Typ, d. h. die Klasse, Flugzeug genannt.

Der Ansatz der Objektorientierung basiert darauf, Objekte der realen — -
Welt mit Hilfe softwaretechnischer Mittel abzubilden. - ™~

Mit dem EDV-System — also einem technischen System — befasst man sich erst beim
Systementwurf. In der Systemanalyse hingegen ist man in der Welt der Logik der
Aufgaben und hat dabei noch gar keinen Rechner. Man befindet sich in einer idealen
Welt, in der alles unendlich schnell ablauft und in der es keine technischen Fehler
gibt. Beim Systementwurf betritt der Entwickler den Lésungsbereich. Von Vorteil ist,
dass die Objekte des Problembereichs dabei nahtlos in den Lésungsbereich Uber-
nommen werden koénnen. Es liegt auf der Hand, dass zu den Verarbeitungs-
funktionen des Problembereichs beim Eintritt in den L&sungsbereich eine ganze
Reihe technischer Funktionen hinzutreten missen. So werden spezielle technische
Klassen benétigt, um das Programmsystem zu starten, oder technische Klassen, um
die Daten im Programmsystem dauerhaft (persistent) zu speichern. Wurden die wich-
tigsten Daten bei der Arbeit von Hand vielleicht manuell in einem Ordner abgelegt, so
sollten sie in einem EDV-System auf der Festplatte abgelegt werden. Ein anderes
Beispiel fiir technische Klassen sind GUI'®-Klassen, die einem Anwender den Dialog
mit dem EDV-System erlauben.

'® GUI = Graphical User Interface.

30 Kapitel 2

2.1.2 Klassen und Objekte

Die Daten des Systems werden in den so genannten Datenfeldern von Objekten
abgelegt. Datenfelder sind Komponentenvariable eines Objektes, also Variable, die
ein Bestandteil, d. h. eine Komponente, eines Objektes sind. Was man mit dem
Objekt alles tun kann, wird durch Methoden beschrieben.

Klassen stellen die Baupldne fiir Objekte dar. Klassen sind die |/ o
Datentypen, die Objekte die Variablen (Instanzen) dieser Daten- —

typen. Die Objekte werden gemaB den in den Klassen abgelegten ~ ~
Bauplanen erzeugt.

(i

Im Folgenden soll eine Klasse Punkt betrachtet werden. Sie wird benétigt fir einen
grafischen Editor, der dazu dienen soll, Punkte und Figuren zu zeichnen. Ein Punkt,
der gezeichnet wird, stellt ein Objekt oder eine Instanz der Klasse Punkt dar.

Punkt Klassenname Punkt
X :int Datenfeld x vom Typ int
y :int Datenfeld y vom Typ int
zeichne() Methode zeichne ()
verschiebe() Methode verschiebe ()
loesche() Methode loesche ()
Bild 2-2 Klasse Punkt

Eine Klasse tragt stets einen Klassennamen. Der Klassenname lautet hier Punkt. In
einer Ebene hat ein Punkt 2 Koordinaten. Wahlt man kartesische Koordinaten, so
sind dies seine Abszisse auf der x-Achse, x genannt, und seine Ordinate auf der y-
Achse, y genannt. Punkte in der realen Welt sind beispielsweise p1 (111), p2(2]3)
oder p3(010). Was man mit einem Punkt alles anfangen kann, beschreiben die
Methoden. Man kann einen Punkt zeichnen (Methode zeichne ()), einen Punkt
verschieben (Methode verschiebe ()) und lIéschen (Methode 1oesche ()).

|
\ /
Eine Klasse tragt einen Klassennamen und enthélt Datenfelder und — '

die Methoden, die auf diese Datenfelder zugreifen. - ~

(N

Bei der Modellierung werden aus den Punkten (Objekten) der realen Welt Objekte
der Modellierung wie im Falle des Punktes p1, der in Bild 2-3 dargestellt ist. Der
Punkt p1 ist ein Objekt der Klasse Punkt. Dies wird notiert durch p1 : Punkt. Dass
die Koordinaten vom Typ int sind, wird angegeben durch x : intund vy : int.

Objektorientierte Konzepte 31

Objektname p1

ot - Punkt Klassenname Punkt
X ?nt Datenfeld x
y:int Datenfeld y
zeichne() Methode zeichne ()
verschiebe() Methode verschiebe ()
loesche() Methode loesche ()

Bild 2-3 Objekt p1 der Klasse Punkt

Sind Objektname gefolgt von Doppelpunkt und Klassennamen in der

Darstellung unterstrichen, so handelt es sich um ein konkretes . |
Objekt. Sind Objektname gefolgt von Doppelpunkt und Klassenname _
nicht unterstrichen, so handelt es sich um ein Objekt, an dessen Stelle /\
viele konkrete Objekte treten kénnen. Ein solches Objekt wird dann W

als Rolle betrachtet. An die Stelle einer Rolle kénnen alle Objekte =
treten, die der Rolle gentigen.

Bei der Objektorientierung werden die Daten eines Objektes und die Methoden,
welche die Daten eines Objektes ein- und ausgeben und miteinander verknlpfen, als
eine zusammengehorige Einheit — als ein so genanntes Objekt — betrachtet. Ein
Objekt der Klasse punkt enthalt alles, was man fir einen Punkt braucht — seine
Daten und seine Methoden — quasi in einer Kapsel. Die Methoden, welche auf die
Daten zugreifen dirfen, stehen bei ihren Daten und "bewachen" diese. Damit werden
die Daten vor einem direkten unbefugten Zugriff von auBen geschutzt.

Ein Objekt kann sinnbildlich mit einer Burg verglichen werden. Die Daten stellen den
Goldschatz der Burg dar. Die Daten werden durch die Wé&chter — die Methoden —
bewacht und verwaltet. Eine Anderung der Daten oder ein Abfragen der Datenwerte
kann nur durch einen Auftrag an die Wachter, d. h. die Methoden, erfolgen.

Bild 2-4 Daten stellen einen bewachten Goldschatz einer Burg dar

Méochte also eine Methode auf die Daten eines anderen Objektes zugreifen, so kann
sie dies i. Allg. nicht direkt tun. Sie muss eine der Methoden des Objektes — zu dem
auch die Daten gehéren — bitten, auf die gewlnschten Daten zuzugreifen. Die

32 Kapitel 2

Methoden eines Objektes stellen also die Schnittstellen eines Objektes zu seiner
AuBenwelt dar.

Methoden sind
die Schnittstellen des
Objektes.

Daten sind gekapselt. Sie
kdénnen nur von den
eigenen Methoden des
Objektes manipuliert
werden.

Bild 2-5 Daten und Methoden — die Bestandteile von Objekten

Der interne Aufbau eines Objektes, der nach auBen nicht sichtbar ist, besteht aus
privaten Daten, privaten Methoden und der Implementierung der Rimpfe der nach
auBen sichtbaren Methodenschnittstellen. Private Methoden dienen als Hilfsmetho-
den (Service-Methoden) und kénnen durch eine nach auBen sichtbare Methode oder
eine andere private Methode aufgerufen werden.

Die Methoden erfiillen die Aufgaben:

|

\ /
e Werte der Datenfelder eines Objektes auszugeben, _ —
e Datenfelder zu verandern ~ ~
e und mit Hilfe der in den Datenfeldern gespeicherten Werte neue £

Ergebnisse zu berechnen.

Die Methoden beschreiben, was man mit dem Objekt anfangen kann, d. h. wie sich
ein Objekt zu seiner Umgebung verhalt. Das Objekt enthalt damit auch sein Verhal-
ten.

\'/

Datenfelder definieren die Datenstruktur der Objekte, die Methoden —
bestimmen das Verhalten der Objekte. -

~

(m

2.1.3 Zustande von Objekten

Ein Objekt hat — wie schon gesagt — einen Satz von Variablen (Datenfeldern) und
Methoden, die zu ihm gehéren. Jedes Datenfeld hat Werte aus seinem Werte-
bereich. Der Zustand eines Objektes ist festgelegt durch den momentanen Wert
seiner Datenfelder. Verandert werden kann der Zustand eines Objektes durch die
Methoden des Objektes. Die Methoden fiihren ein Objekt von einem Zustand in
einen anderen Uber.

Objektorientierte Konzepte 33

Der Begriff des Zustandes eines Objektes kann noch etwas préazisiert werden:

|

\ /
Jede Kombination von Datenfeldwerten stellt einen Zustand dar, der —
von uns als mikroskopischer Zustand eines Objektes bezeichnet -

wird.

Ein Objekt kann sehr viele mikroskopische Zustéande haben.

Objektes, die fiir eine Anwendung eine Bedeutung haben. Diese

Wichtig bei der Modellierung sind jedoch diejenigen Zustéande eines _ @ —
Zustande werden von uns makroskopische Zustande genannt. =

Um den Unterschied zwischen mikroskopischen und makroskopischen Zustanden zu
erldutern, soll ein Fahrstuhl betrachtet werden. Im Fahrstuhl soll es einen Gewichts-
sensor geben, welcher das Gewicht der im Fahrstuhl befindlichen Personen feststellt.
Jeder Wert des Gewichtssensors entspricht dann einem mikroskopischen Zustand.
Far die_ Anwendung ist jedoch nur interessant, ob der Fahrstuhl Gberladen ist oder
nicht. "Uberladen" oder "nicht Gberladen" sind zwei makroskopische Zustande. Ist der
Fahrstuhl "Uberladen", so fahrt er nicht los. Es missen so lange Fahrgaste ausstei-
gen, bis er nicht mehr "Uberladen" ist. Weitere Beispiele flr makroskopische
Zusténde eines Objektes Fahrstuhl sind "Warten auf Knopfdruck", "Turen schlieBen
sich", "Fahren", "TUren 06ffnen sich". Generell sind makroskopische Zustédnde von
Bedeutung, wenn man Zustandsiibergange von Objekten betrachtet, z. B. dass ein
Objekt Fahrstuhl beim Driicken eines Knopfes vom Zustand "Warten auf Knopfdruck"
in den Zustand "TUren schlieBen sich" Gbergeht.

Ein makroskopischer Zustand resultiert aus Wechselwirkungen mit der |
Umgebung — im Falle eines Fahrstuhls z. B. aus Wechselwirkungen /

mit der Mechanik bei "Tiren 6ffnen sich" oder mit dem Motor bei — -
"Fahren". Andere Wechselwirkungen mit der Umgebung kdnnen das /\
Warten auf ein Ereignis sein oder das Vorliegen bestimmter =
Bedingungen. -

In welchem Zustand sich ein Objekt dabei befindet, wird durch entsprechende Daten-
felder des Objektes festgehalten.

2.1.4 Zusammenarbeit von Objekten

Objektorientierte Systeme erbringen ihre Leistungen durch das Zusammenwirken
von Objekten.

Eine funktionale Leistung, die ein System zur Verfligung stellt, wird als | /,
Anwendungsfall (Use Case) bezeichnet. Ein Use Case stellt einen
Geschéaftsprozess oder Teil eines Geschaftsprozesses dar, der durch
ein EDV-System unterstitzt wird.

(i

34 Kapitel 2

Ganz zu Beginn der Systemanalyse betrachtet man zunachst die Geschaftsprozesse
und fallt dann die Entscheidung, welche Geschéftsprozesse bzw. welche Anteile
durch den Rechner unterstiitzt werden sollen. Nach einigen Vorarbeiten wird dann
fiir jeden Use Case'® ein so genanntes Kommunikations- oder Sequenzdiagramm
erstellt. Kommunikationsdiagramme und Sequenzdiagramme kénnen sowohl bei der
Systemanalyse als auch beim Systementwurf erfolgreich verwendet werden. Im
Rahmen der Systemanalyse bildet man die Wechselwirkungen zwischen den
Objekten auf einen Nachrichtenaustausch zwischen den Objekten ab. Bildlich
gesprochen heiBt dies, dass die Objekte miteinander "reden". Bild 2-6 symbolisiert
einen Austausch von Nachrichten zwischen den Objekten. Bitte beachten Sie, dass
dieses Bild nur der Veranschaulichung dient und keineswegs UML*-konform ist.

/!
P

Nachrichten

Bild 2-6 Informationsaustausch zwischen Objekten in der Systemanalyse

Die in Bild 2-6 eingezeichneten Nachrichten (Botschaften) der Systemanalyse ent-
sprechen beim Entwurf und bei der Programmierung dem Aufruf von Java-Methoden.

|

\ /
Mit dem Aufruf einer Methode wird die Kontrolle an das Objekt, an das —
die Nachricht gerichtet ist, Ubergeben. Wie das Objekt handelt, ist
Sache des Objektes.

~

(i

Ein Aufruf tGber Nachrichten bzw. Methoden stellt eine schwache Kopplung
zwischen Objekten dar, wenn ein Objekt nicht (iber zu viele Kanale Nachrichten
austauscht. Eine schwache Kopplung hat den Vorteil, dass bei Anderungen eines
Objektes die Ruckwirkungen auf ein anderes Objekt gering bleiben. Auf Grund der
schwachen Kopplung sind objektorientierte Systeme in der Regel auch leicht
erweiterbar, sodass kein Schaden entsteht, wenn man zu Beginn des Projektes nicht
alle Klassen des Problembereichs sofort findet. Bei stark gekoppelten Systemen —
wie z. B. bei einer Kopplung Gber globale Variablen in der klassischen prozeduralen
Programmierung — fiihren Anderungen an einer Stelle oftmals zu einer Vielzahl von
unliebsamen Folgeanderungen.

° Der Begriff Use Case wurde durch Ivar Jacobson [22] weltweit bekannt gemacht.
% Die UML (Unified Modeling Language) stellt eine grafische Spezifikationssprache dar, um
objektorientierte Systeme zu modellieren.

Objektorientierte Konzepte 35

|
Die Menge der Nachrichten, auf die ein Objekt antworten kann, legt / -
seine "Aufrufschnittstelle" fest. Sichtbar nach auBen sind von einem —
Objekt nur seine Nachrichten, in anderen Worten seine Aufrufschnitt- -
stelle.

|

2.1.5 Instanzvariablen, Instanzmethoden, Klassenvariablen und
Klassenmethoden

Bild 2-7 zeigt drei Objekte der Klasse Punkt und die Klasse pPunkt selbst. Die
Namen dieser Objekte lauten p1, p2 und p3. Ein jeder Punkt tragt seine individuellen
Koordinaten. So hat der Punkt p1 die Koordinaten x ist gleich 1 und y ist gleich 1
(Initialwerte). Diese Werte sind "persénliche" Eigenschaften des Punktes p1, sie
gehéren zu dem Punkt-Objekt, in anderen Worten zu der Punkt-Instanz. Solche
"persdnlichen" Variablen eines Punktes werden als Instanzvariablen bezeichnet.
Die Instanzen werden mit den angegebenen Initialwerten — z. B. 3 flr x und 5 fir y
im Falle von p2 — initialisiert. Bei jedem Punkt-Objekt gibt es die Methoden
zeichne (), verschiebe () und loesche (). Diese Methoden arbeiten auf den
Instanzvariablen und werden als Instanzmethoden bezeichnet.

2. Punkt 1.: Punkd |_— Instanzvariablen
X=3 x=1 /
=5 =1
y y |_— Instanzmethoden
zeichne() zeichne() /
verschiebe() verschiebe()
loesche() loesche()
Klassenvariable
p3 : Punkt Punkt L
punktAnzahl =3 ¢
X=2 — Klassenmethode
y=4 7
etPunktAnzahl
zeichne()
verschiebe()
loesche()

Bild 2-7 Drei Instanzen der Klasse Punkt und die Klasse Punkt selbst

Die Anzahl der erzeugten Punkte ist jedoch keine Eigenschaft eines individuellen
Punktes, sondern ist eine Eigenschaft der Menge aller Punkte. Die Variable punkt—
Anzahl kann aus Symmetriegriinden bei keinem der Punkt-Objekte untergebracht
werden, da alle Punkte von Haus aus vollkommen gleichberechtigt sind. Es liegt
deshalb nahe, dass eine Variable, die eine Eigenschaft aller Instanzen derselben
Klasse darstellt, in der Klasse selbst angelegt wird — im betrachteten Beispiel also in
der Klasse pPunkt. Dass der Speicherort der Variablen die Klasse selbst ist, wird
durch den Namen Klassenvariable zum Ausdruck gebracht. Methoden, die auf
Klassenvariablen zugreifen, werden dementsprechend Klassenmethoden genannt.
Die Klassenmethode getPunktAnzahl () gibt bei ihrem Aufruf den Wert von
punktAnzahl an den Aufrufer zurlick. Klassenvariablen und Klassenmethoden
werden nach UML unterstrichen.

36 Kapitel 2

Klassenvariable stellen globale Variable fiir alle Objekte einer Klasse — -

Im Rahmen der Objektorientierung werden Variable, die allen Instan-

zen einer Klasse gemeinsam sind, als Klassenvariable bezeichnet. . |
Klassenvariable werden in der Klasse selbst als Unikat fir alle Objekte _
der Klasse gemeinsam angelegt. Variable, die bei jedem Objekt — also /\
bei jeder Instanz — angelegt werden und bei jedem Objekt eine indivi- s
duelle Auspragung annehmen kdnnen, werden als Instanzvariable =
bezeichnet.

Ublicherweise arbeiten Instanzmethoden auf Instanzvariablen. Klassenmethoden
sind dazu da, um auf Klassenvariablen zu arbeiten. Da Klassenvariable globale
Variable fiir alle Instanzen einer Klasse sind, kann eine Instanzmethode nicht nur
auf Instanzvariable, sondern auch auf Klassenvariable zugreifen.

2.2 Das Konzept der Kapselung

Hinter den Mechanismen der objektorientierten Programmierung verbirgt sich ein
neues Denkmodell, das sich von dem bisherigen Modell der funktionsorientierten
Programmierung (z. B. in der Sprache C) sehr stark unterscheidet. Das neue Modell
beruht im Kern darauf, dass man Daten und die Methoden, die auf ihnen arbeiten,
nicht mehr getrennt behandelt, sondern als Einheit betrachtet. Die Begriffe Abstrak-
tion, Kapselung und Information Hiding sind hierbei miteinander eng verwandt:

e Der Begriff Abstraktion in der objektorientierten Programmierung bedeutet, dass
ein komplexer Sachverhalt aus der realen Welt in einem Programm auf das
Wesentliche konzentriert und damit vereinfacht dargestellt wird. Ein Objekt in
einem Programm repréasentiert diejenigen Daten und diejenige Verhaltensweisen
eines realen Gegenstands, die im Kontext des Programms von Interesse sind.
Das Objekt implementiert sein Verhalten in Schnittstellenmethoden, die auBerhalb
des Objektes sichtbar sind. Ein Objekt sollte nur Uber wohl definierte Schnitt-
stellenmethoden mit seiner Umwelt in Kontakt treten.

e Die Schnittstellenmethoden bilden eine Kapsel, die die Daten umgibt, d. h. Metho-
den und Daten verschmelzen zu einem Objekt. Diese Kapselung ist eines der
wichtigsten Konzepte der objektorientierten Programmierung. Es besteht in
diesem Falle keine Trennung zwischen Daten und Funktionen wie in der funktions-
orientierten Programmierung, z. B. in C. Der Begriff der Kapselung beschreibt die
Implementierung von Abstraktion zur Sichtbarmachung des Verhaltens und von
Information Hiding zum Verbergen der inneren Detalils.

® Die Daten einer Kapsel und die Rimpfe der Schnittstellenmethoden sollen nach
auBen nicht direkt sichtbar sein. Die inneren Eigenschaften sollen vor der
AuBenwelt verborgen sein. Nur die Aufrufschnittstelle der Schnittstellenmethoden
soll exportiert werden. Man spricht daher auch von Information Hiding oder
Geheimnisprinzip. Das Prinzip des Information Hiding bedeutet, dass ein Teil-

Objektorientierte Konzepte 37

system (hier ein Objekt) nichts von den Implementierungsentscheidungen eines
anderen Teilsystems wissen darf. Damit wird vermieden, dass ein Teilsystem von
der Implementierung eines anderen Teilsystems abhangt.

Die Prinzipien des Information Hiding, der Abstraktion und der Kapselung sind also
eng miteinander verknlpft. Die AuBenwelt soll keine Mdglichkeit haben, Daten im
Inneren des Objektes direkt zu lesen oder sogar zu verdndern und so mdglicher-
weise unzuldssige Zustande herbeizufihren. Das Verstecken samtlicher Daten
und der Implementierung der Methoden in einer "Kapsel" und die Durchfiihrung
der Kommunikation mit der AuBenwelt durch eigene Schnittstellenmethoden bringt
dem Programmierer den Vorteil, dass er bei der Implementierung der Algorithmen
in den Methoden und bei den Datenstrukturen des Objektes sehr viele Freiheiten hat.
Dem Benutzer bringt dies im Gegenzug den Vorteil, dass er sich nicht um interne
Details (Datenstrukturen, Algorithmen) kimmern muss. Daher kann er immer die
neueste Version des Objektes verwenden, da er nicht vom speziellen inneren Aufbau
des Objektes abhangig ist. Der Programmierer der Klasse kann deren inneren Auf-
bau immer wieder optimieren, ohne Komplikationen beflrchten zu missen. Nur die
Schnittstellen missen gleich bleiben. Bereits an dieser Stelle kann man erkennen,
wie wichtig die Schnittstellen sind. Es ist also unbedingt nétig, diese sorgféaltig zu
entwerfen.

Ein Objekt darf also mit einem anderen Objekt nur Gber wohl definierte Schnittstellen
Informationen austauschen und keine Kenntnisse (ber den inneren Aufbau seines
Partners haben. Damit haben Anderungen im Inneren eines Objekies keine
Auswirkungen auf andere Objekte, solange die Schnittstellen stabil bleiben. Um
trotzdem ein HochstmaB an Flexibilitat zu gewéhrleisten, ist es jedoch immer noch
mdglich, Teile eines Objektes so zu vereinbaren, dass sie ohne weiteres direkt von
auBen zuganglich sind. Zumindest fur die Schnittstellenmethoden muss diese
Eigenschaft in jedem Fall zutreffen.

2.3 Abstraktion und Brechung der Komplexitat

Die Kunst der Abstraktion ist, das Wesentliche zu erkennen und das Unwesentliche
wegzulassen. Abstraktion ist in allen Entwicklungsphasen ein effizientes Mittel, um
die Komplexitat eines Systems Uberschaubar zu machen.

Abstraktion bedeutet immer Konzentration auf das Wesentliche. ‘/\

Abstraktion zur Abgrenzung des Problembereichs

Dies beginnt schon beim Projektstart, wo man entscheiden muss, welcher Ausschnitt
aus der realen Welt den Problembereich darstellt, der analysiert werden soll. Der so
genannte Problembereich (engl. Problem Domain) ist der Bereich der zu unter-
suchenden Aufgaben. Er ist derjenige Teil der realen Welt, der spater durch die zu
realisierende Software abgedeckt werden soll.

38 Kapitel 2

Problem- Reale Welt

bereich

Bild 2-8 Problembereich als relevanter Ausschnitt der realen Welt

Abstraktion zum Finden der Objekte des Problembereichs

Hat man den Problembereich umrissen, so gilt es, die Objekte des Problembereichs
zu finden. Das sind diejenigen Objekte der realen Welt, die auf Objekte der Pro-
grammiersprache abgebildet werden sollen. Ob ein Objekt des Problembereichs in
ein Objekt des Programmsystems Uberflihrt werden soll, wird durch Beantwortung
der Frage entschieden, ob es notwendig ist, Informationen Uber dieses Objekt im
System zu fiihren. Die Beschrankung auf das wirklich Notwendige bedeutet wieder
eine Abstraktion.

Abstraktion zum Erkennen der Datenfelder und Methoden eines Objektes

Hat man erkannt, welche Objekte man braucht, so ist zu abstrahieren, welche Infor-
mationen Uber ein Objekt erforderlich sind oder nicht. Und dies h&ngt ganz entschei-
dend von der jeweiligen Anwendung ab! So wird etwa ein Autohersteller zu einem
Objekt der Klasse autotyp alle Komponenten des Autotyps speichern, um bei-
spielsweise die richtigen Ersatzteile liefern zu kénnen. Das Finanzamt, das auf die
Autos die Kraftfahrzeugsteuer erhebt, interessiert sich fur wesentlich weniger Merk-
male eines Autotyps, namlich nur fiir diejenigen, die steuerrelevant sind wie z. B. der
SchadstoffausstoB.

Abstraktion zur Festlegung der Schnittstellen eines Objektes

Entscheidet man, welche Methoden eines Objektes nach auBen sichtbar sein sollen
und was im Inneren des Objektes verborgen werden soll, so muss erneut abstrahiert
werden.

Abstraktion zur Bildung von Hierarchien

Abstraktion und Information Hiding sind effiziente Mittel, um mit der Komplexitat fertig
zu werden. Ein weiteres Mittel ist die Bildung von Hierarchien. Die Bildung von
Hierarchien hat aber auch mit der Bildung von Abstraktionen zu tun. Dabei gibt es in
der Objektorientierung zwei wichtige Hierarchien:

e die Vererbungshierarchie (auch "kind of"-Hierarchie oder "is a"-Hierarchie ge-
nannt)

® und die Zerlegungshierarchie (auch "part of"-Hierarchie genannt).

Bei der Vererbungshierarchie (siehe Bild 2-9) werden die Klassen in Abstrak-
tionsebenen angeordnet. Geht man in der Hierarchie von unten nach oben, so
spricht man von Generalisierung, geht man von oben nach unten, so kommt man zu
spezielleren Klassen — man spricht von Spezialisierung. Die jeweils tiefer stehende

Objektorientierte Konzepte 39

Klasse ist eine Spezialisierung der Klasse, von der sie abgeleitet ist. So sind in Bild
2-9 die Klassen B, ¢ und D verschiedene Spezialisierungen ihrer Basisklasse 2, in
anderen Worten, jede der Klassen B, C und D ist von der Klasse A abgeleitet.

A

Bild 2-9 Vererbungshierarchie

Typisch fiir solche Vererbungshierarchien sind die Klassifikationsschemen?' der Tie-
re und Pflanzen in der Biologie (siehe Bild 2-10).

Spinnentier
Skorpion Milbe Spinne
Kreuzspinne | Hausspinne Springspinne

Bild 2-10 Klassifikation von Spinnentieren

Eine Kreuzspinne, Hausspinne, Springspinne ist eine Spinne. Ein Skorpion, eine
Milbe und eine Spinne ist ein Spinnentier. Spinnentiere wiederum gehéren zum
Stamm der GliederfuBler und stehen auf einer Ebene mit Krebstieren, Tausend-
fiBlern und Insekten [18].

Bei der Zerlegungshierachie (siehe Bild 2-11) hat man auch verschiedene Abstrak-
tionsebenen. Sieht man nur das Ganze, so ist man eine Ebene hdéher, als wenn
man die Teile betrachtet. Ein Objekt kann als Datenfelder andere Objekte in Form
einer Komposition oder einer Aggregation enthalten. Komposition und Aggregation
unterscheiden sich bezlglich der Lebensdauer des zusammengesetzten Objektes
und seiner Komponenten. Bei einer Komposition ist die Lebensdauer des zusam-
mengesetzten Objektes identisch zur Lebensdauer der Komponenten. Bei einer
Aggregation sind die Lebensdauern von zusammengesetztem Objekt und den
Komponenten entkoppelt — so kénnen die Teile auch langer leben als das Ganze.

2 Wahrend man in der Objektorientierung nur von Klassen redet, werden in der Biologie die Namen

Stamm, Klasse, Unterklasse, Ordnung, Familie, Gattung, Art und Rasse verwendet.

40 Kapitel 2

Bei einer Komposition hat ein Teil einen einzigen "Besitzer", bei einer Aggregation
kénnen mehrere "Besitzer" auf ein und dasselbe Teil zeigen.

Ein Beispiel fur eine Aggregation ist ein Ordner. Der Ordner und sein Inhalt, die
aggregierten Seiten, kdnnen verschieden lange leben. Man kann die Seiten, d. h. die
Komponenten, friher oder spater als den Ordner wegwerfen oder den Ordner samt
Inhalt zur selben Zeit. Ein anderes Beispiel ist ein Auto und seine Rader. Die Rader
sind nur aggregiert. Man kann die Felgen mit den Sommerreifen gegen die Felgen
mit den Winterreifen austauschen oder die Winterreifen und Felgen verkaufen, wenn
das Auto verschrottet wird. Die Rader kdnnen an ein anderes Auto montiert werden.

Bei einer Komposition sind "GroB"- und "Klein"-Objekt fest "verschweiBt". Ein
Beispiel fur eine Komposition ist ein Buch. Hier sind die Seiten und der Umschlag
fest verklebt. Das Ganze, das Buch, und die Komponenten, die Seiten, leben gleich
lange. Sie kdnnen nur gemeinsam vernichtet werden.

Programmiertechnisch kann man eine Aggregation mit Hilfe von Zeigern oder
Referenzen erzeugen. Ein "GroB3"-Objekt enthalt dann als Datenfeld eine Variable, in
welcher die Stelle des Arbeitsspeichers notiert ist, an welcher das "Klein"-Objekt
liegt. Eine solche Variable heiBt Referenzvariable, da sie einen Verweis (eine
Referenz) enthélt.

Eine Referenz auf ein Objekt enthélt als Wert die Adresse des
Objektes, auf das die Referenz zeigt. Die Adresse gibt an, an welcher
Stelle das Objekt im Arbeitsspeicher liegt.

~

N\ I e
I\\\\\@
|

Eine Komposition kann man programmiertechnisch erzeugen, wenn ein "GroB"-
Objekt als Datenfeld ein "Klein"-Objekt enthalt. Datenfelder sind bekanntermaBen mit
ihrem Objekt untrennbar verbunden. Wahrend C++ sowohl die Komposition als auch
die Aggregation zulasst, erlaubt Java nur die Aggregation.

A

Bild 2-11 Aggregationshierarchie

Die Klasse A enthélt Referenzen auf Objekte der Klassen B, ¢ und D. Wird ein Objekt
der Klasse a zerstort, so kénnen dennoch die Objekte der Klassen B, C und D weiter-
leben. Damit ist die Lebensdauer von zusammengesetzten Objekten und Komponen-
ten entkoppelt. Es handelt sich also um eine Aggregation. Dies wird in Bild 2-11
ausgedruckt durch die nicht ausgefillte Raute. Eine Komposition im Gegensatz zu
einer Aggregation wirde in Bild 2-11 durch eine ausgefllite Raute veranschaulicht.

Objektorientierte Konzepte 41

2.4 Erstes Programmbeispiel mit Objekten

In diesem Kapitel soll wie in Kapitel 2.1.2 wieder die Klasse Punkt als Anwendungs-
beispiel herangezogen werden. Dabei soll eine Anwendung geschrieben werden, in
der Punkte, d. h. Objekte der Klasse Punkt erzeugt werden. Betrachtet man den
Punkt als Objekt, so beschreiben dessen Methoden, was man mit dem Objekt alles
anfangen kann. So kann man beispielsweise

die Koordinaten eines Punktes festlegen,

die Koordinaten eines Punktes abfragen,
einen Punkt auf dem Bildschirm zeichnen,
einen Punkt auf dem Bildschirm verschieben
und einen Punkt auf dem Bildschirm I6schen.

Damit hat ein zweidimensionaler Punkt mit ganzzahligen Koordinaten in der Notation
von Java die Datenfelder

int x,
int vy,

und die Methoden

setX (),
setY (),
getX ()
getY (),
zeichne (),
verschiebe ()
und loesche ().

Diese Eigenschaften — Datenfelder und Methoden — gelten fir jeden beliebigen
Punkt. Diese Gemeinsamkeit wird in der Objektorientierung durch die Klasse Punkt
dargestellt. Ein jeder Punkt wird nach dem Bauplan dieser Klasse Punkt gebaut.

Um méglichst einfach zu beginnen, sollen die Methoden zeichne (), verschie-
be () und loesche () hier auBer Acht gelassen werden. Unter dieser Annahme hat
die Klasse Punkt das im Folgenden gezeigte Aussehen, wobei es hier an dieser
Stelle nicht wichtig ist, Schlisselwérter wie public, return, void UusSw. zu
verstehen. Vielmehr soll auf den prinzipiellen Aufbau geachtet werden.

// Datei: Punkt.java

// Deklaration der Klasse Punkt. Dem Compiler wird gesagt, dass es
// eine Klasse Punkt gibt.
public class Punkt
{
private int x; // Datenfelder fir die x- und
private int vy; // y—-Koordinate vom Typ int

42 Kapitel 2

public int getX() // eine Methode, um den Wert
{ // von x abzuholen
return x;

}

public int getY() // eine Methode, um den Wert
{ // von y abzuholen
return y;

}

public void setX (int i) // eine Methode, um den Wert
{ // von x zu setzen
X = 1i;
}
public void setY (int 1) // eine Methode, um den Wert
{ // von y zu setzen
y = 1;
}
// Mit main() beginnt eine Java-Anwendung ihre Ausfiihrung.

public static void main (String[] args)

{

Punkt p = new Punkt(); // Punkt erzeugen
p.setX (3); // Aufruf der Methode setX()
p.setY (2); // Aufruf der Methode setY()

System.out.println ("Die Koordinaten des Punktes p sind: ");
System.out.println (p.getX()); // Wert von x wird ausgegeben
System.out.println (p.getY()); // Wert von y wird ausgegeben

Die Ausgabe des Programmes ist:

Die Koordinaten des Punktes p sind:
3

il 2

Beachten Sie, dass eine Erlduterung hinter einem Doppelschragstrich ein so
genannter Kommentar ist. Ein Kommentar dient nur zur Dokumentation und hat auf
die Ausfihrung eines Programms keinen Einfluss. Es ist nicht das Ziel dieses
Beispiels, alle Details zu betrachten. Zuallererst soll zum Ausdruck kommen, dass
eine Klasse einen Klassennamen — hier Punkt — hat und aus Datenfeldern und
Methoden aufgebaut ist. Ferner wird hier gezeigt, dass zu einer Java-Anwendung
eine Methode main () gehdrt. In der Methode main () werden Objekte geschaffen
und Methoden aufgerufen. Hat man eine Anwendung aus mehreren Klassen, deren
Objekte gemeinsam die Anwendung realisieren, so schreibt man normalerweise eine
separate Klasse mit der Methode main (), um die Anwendung zu starten. Da
Objekte erst in der Methode main () selbst angelegt werden, kann main () nicht zu
einem Objekt, sondern muss zu der Klasse selbst gehéren. Das bedeutet, dass
main () eine Klassenmethode ist. Zusatzlich kann aber jede Klasse noch eine
eigene Methode main () enthalten, die zum Test der jeweiligen Klasse verwendet
wird.

Objektorientierte Konzepte 43

Klassenvariablen und Klassenmethoden erhalten bei Java das — -
Schliisselwort static. - ~

Eine Klassenmethode kann auch aufgerufen werden, ohne dass ein Objekt dieser
Klasse existiert (siehe Kap. 2.1.5).

|

\ /
Die Methode main () muss auch stets public sein, d. h. fir alle —
sichtbar. Sonst kann der Java-Interpreter, der das Programm starten P

und ausftihren soll, nicht auf main () zugreifen.

Methoden sind in der Regel public. Datenfelder sind in der Regel — -
private. - ™~

Das Schlisselwort public ist ein so genannter Zugriffsmodifikator, der angibt,
dass diese Methode ungeschdtzt ist und von allen anderen Klassen aus aufgerufen
werden kann. Die Datenfelder eines Objektes sollen nicht ungeschiitzt der AuBen-
welt ausgeliefert sein. Daher werden sie mit dem Modifikator private versehen. Ein
AuBenstehender wie z. B. eine Testklasse kann nur "geordnet", d. h. Uber speziell
vorgesehene Methoden, auf die Datenfelder zugreifen.

Eine Klasse kann als eine abstrakie Beschreibung eines Objektes angesehen
werden. Wird mit Hilfe dieser Beschreibung ein Objekt im Arbeitsspeicher angelegt,
so spricht man von der Instantiierung einer Klasse. Man erhélt ein arbeitsféhiges
Exemplar im Speicher. Ein Objekt stellt eine Instanz oder ein Exemplar dar.

Mit der Klassenbeschreibung wird ein Schema zur Bildung von
Objekten dieser Klasse vereinbart. Dieses Schema enthalt: N

® den Namen der Klasse, ‘/\

e die Datenfelder dieser Klasse
® und die Methoden dieser Klasse.

(i

Ein Objekt ist eine Instanz einer Klasse. Ein Objekt hat eigene Werte fiir die Daten-
felder. Ein Objekt teilt Datenfeldnamen und Methodennamen mit anderen Objekten
der Klasse. Alle Objekte besitzen eine eigene Identitat, sind also eigene Wesen,
selbst wenn ihre Datenwerte (Werte der Instanzvariablen) identisch sind. Ein Objekt
hat in sich eine implizite Referenz, d. h. einen versteckten Verweis, auf seine eigene
Klasse. Es "weiB3", zu welcher Klasse es gehort.

44 Kapitel 2

2.5 Flughafen-Projekt

Dieses Kapitel richtet sich zum einen an diejenigen, die daran interessiert sind, wie
man eigentlich auf die Objekte kommt, die in den Programmen verwendet werden.
Zum anderen wendet es sich an all jene, die das hier vorgestellte Lernprojekt
Flughafen selbst durchfiihren wollen. Alle Teilschritte des Projektes befinden sich auf
der beiliegenden CD. Die Aufgaben der einzelnen Teilschritte zur Realisierung des
Flughafen-Informationssystems sind in den Ubungskapiteln zu finden. So kann das
Flughafen-Informationssystem begleitend zum Buch erstellt werden.

Im Folgenden soll anhand eines Beispiels prinzipiell gezeigt werden, wie Objekte
gefunden werden kénnen. Nehmen wir einmal an, Sie seien Mitglied eines Teams
von Systemanalytikern, die von einem Flughafenbetreiber die in Kapitel 2.5.1 dar-
gestellte Ausschreibung® erhalten wiirden. Ausgehend von dieser Ausschreibung
sollen dann in Kapitel 2.5.2 erste Objekte gefunden werden, und zwar Objekte, die
Abstraktionen von Entitaten der realen Welt sind.

2.5.1 Ausschreibung fiir ein neues Flughafen-Informationssystem

Ein neues Informationssystem fir einen Flughafen soll es den Fluglotsen ermdgli-
chen, die Landung und den Start von Flugzeugen rechnergestitzt zu Uberwachen.
Ferner sollen die Angestellten der Flughafenverwaltung bei der Erhebung der
Start- und Landegebihren unterstitzt werden.

Das Informationssystem soll Daten Uber die Position der Flugzeuge von ver-
schiedenen Sensoren erhalten. Diese Sensoren sind in folgender Tabelle enthalten:

Radar des Flughafens liefert Positionsdaten der Flugzeuge in der Luft
Positionsmelder des Flugzeugs | liefert (iber eine automatisierte Funkschnittstelle
die Positionsdaten des Flugzeugs in der Luft
Flugplatzsensoren liefern Positionen der Flugzeuge am Boden
Parksensoren liefern Belegungsstati der Parkpositionen

Bild 2-12 Sensoren des Flughafen-Informationssystems

Der Flughafen verflgt Gber 4 getrennte Bahnen, wovon eine jede als Lande- oder als
Startbahn benutzt werden kann. Die Steuerung der Flugzeuge soll Gber Sprechfunk
vom Lotsen an die Piloten erfolgen. Die Steuerung ist ein eigenstandiges System
und nicht Bestandteil des neuen Informationssystems. Auf dem Vorfeld werden die
Flugzeuge durch ein "Follow me"-Fahrzeug geleitet. Die Verwaltung des Vorfeldes ist
ebenfalls nicht Teil des neuen Systems.

Das System soll selbststandig einen Alarm mit einer Hupe generieren, wenn das
Radar andere Positionsdaten als der Positionsmelder des Flugzeugs meldet.

2 Wie Sie wissen, ist das "echte Leben" stets wesentlich komplexer als einfache Schulungs-

aufgaben. Sehen Sie bitte groBzligig darliber hinweg, dass die "Ausschreibung" erhebliche Liicken
aufweist.

Objektorientierte Konzepte 45

Landerichtung Startrichtung
// Start- bzw. Landebahnen ﬁ

Zubringer Zubringer

?

& Vorfeld JJ

Parkpositionen
| | | |

Bild 2-13 Skizze des Flughafens

Um die Bahnkurve eines Flugzeugs grafisch darstellen zu kénnen, sollen alle Positi-
onsdaten eines Flugzeugs im System gefiihrt werden. Fiir ein Objekt der Klasse
Flugzeug selbst sollen Soll-Zeitpunkt der Landung, Ist-Zeitpunkt der Landung, Soll-
Zeitpunkt des Starts, Ist-Zeitpunkt des Starts, Landebahn, Parkposition, Startbahn,
betreuender Lotse, Flugzeugtyp und Fluggesellschaft gespeichert werden kénnen.
Jede Start-/Landebahn sowie jede Parkposition soll im System gespeichert werden
und von den Lotsen belegt werden kénnen. Damit soll sichergestellt werden, dass
ein solches Objekt von den Lotsen nicht zur selben Zeit mehrfach zugeteilt wird. Alle
Fluggesellschaften sollen ebenfalls im System gefiihrt werden.

Das System soll den Anwender bei den folgenden Aufgaben unterstitzen:
® Positionsdaten von Flugzeugen in der Luft am Bildschirm kontrollieren
® Positionsdaten von Flugzeugen am Boden am Bildschirm kontrollieren
e Starts und Landungen mit Hilfe eines Zeitplans planen

® Durchfiihren der Landung

Ein Flugzeug kann sich bei einem Lotsen fir eine Landung anmelden. Wird die
Landung nicht wegen schlechten Wetters verweigert, so tragt der Lotse Flugzeug-
typ, Fluggesellschaft und sich selbst als betreuender Lotse in das System ein.

Ist die Fluggesellschaft des sich im Landeanflug befindenden Flugzeugs dem
System noch nicht bekannt, so wird sie vom Lotsen in das System aufgenommen
(Name, Adresse). Der Lotse verschafft sich einen Uberblick Uber die Start-
/Landebahnen und tragt die von ihm zugeteilte Landebahn und den Soll-Zeitpunkt
der Landung in das System ein. Der Lotse schaut sich die vergebenen und freien
Parkpositionen an und tragt die von ihm vergebene Parkposition in das System
ein. Ist keine Landebahn oder Parkposition frei, wird eine Warteschleife angeord-
net, ansonsten wird der Landeanflug freigegeben. Hat das Flugzeug die Park-
position erreicht, so tragt der Lotse den Ist-Zeitpunkt der Landung in das System
ein und gibt die Landebahn wieder frei.

46 Kapitel 2

Treten wahrend der Landung zwingende Griinde fir einen Abbruch der Landung
ein, so hat der Lotse den Abbruch unter Angabe von Griinden in das System ein-
zutragen.

e Durchfiihren des Starts

Im Rahmen der Startzuweisung lasst sich der Lotse die vergebenen und freien
Start-/Landebahnen darstellen und tragt die zugeteilte Startbahn und den Soll-
Zeitpunkt des Starts in das System ein. Hat das Flugzeug beim Starten die
Startbahn erreicht, so gibt der Lotse die Parkposition wieder frei. Hat das Flugzeug
den Flughafen verlassen — dies ist ersichtlich aus den Positionsmeldungen des
Radars —, gibt der Lotse die Startbahn wieder frei und tragt den Ist-Zeitpunkt des
Starts in das System ein. Mit der Freigabe ist eine automatische Buchung
verbunden. Dabei wird aufgrund des Flugzeugtyps eine bestimmte Gebuhr fir
Start und Landung gemaB der Gebihrenliste dem Rechnungskonto der Flug-
gesellschaft zugeordnet.

® Gelandete Flugzeuge, die auf das separate Parkfeld oder auf die Werft gebracht
werden, sind im System entsprechend zu kennzeichnen.

® Positionsdaten fusionieren

Das System fragt zyklisch die Positionsdaten eines Flugzeugs beim Radar und
beim Positionsmelder des Flugzeugs ab. Weichen die vom Radar und vom
Positionsmelder des Flugzeugs gemeldeten Daten um mehr als eine vorgegebene
Toleranz voneinander ab, so wird automatisch ein akustischer Alarm mit der Hupe
generiert.

® Jeweils am Ersten eines Monats werden automatisch die Rechnungen an die
Fluggesellschaften ausgedruckt und von den Angestellten der Verwaltung weiter-
geleitet.

® Die Angestellten buchen von den Fluggesellschaften bezahlte Rechnungen auf
dem Konto der Fluggesellschaften.

® Die Angestellten der Verwaltung kénnen die Preisliste der Start- und Lande-
gebuhren abandern.

Das System soll in Java mit einer Swing-Oberflache realisiert werden. Die Bedienung
soll einfach sein. Fehler der Software sollen an die Anwender gemeldet werden,
damit diese im Fehlerfall auf ein manuelles Verfahren umsteigen konnen. Das
System soll modular aufgebaut sein, um Anderungen leicht durchfihren zu kénnen.

Die hier vorgestellte Ausschreibung wird von dem Auftragnehmer geordnet in eine
Anforderungs-Spezifikation mit so genannten funktionalen und nicht-funktionalen
Anforderungen Ubertragen und mit dem Auftraggeber abgestimmt. Diese Anfor-
derungs-Spezifikation kann aus Platzgriinden hier nicht wiedergegeben werden. Sie
befindet sich auf der dem Buch beigelegten CD.

Objektorientierte Konzepte 47

2.5.2 Systemanalyse

Die Objekte des Problembereichs — die Entitaten der realen Welt entsprechen — sind
implizit im Text der Ausschreibung enthalten. Diese Objekte zu finden, ist eine der
Aufgaben der Systemanalyse. Naturlich gibt es in der Literatur verschiedene Még-
lichkeiten, Objekte den Texten zu entnehmen. Erwéhnt sei die Analyse aller Haupt-
worter [21] oder die CRC-Methode [20]. In Kapitel 2.5.2.4 wird ein Use Case-
basierter Ansatz vorgestellt, der nach Ansicht der Autoren am effizientesten ist, da er
systematisch einen Use Case nach dem anderen behandelt und damit automatisch
dafir sorgt, dass bei der Analyse alle Use Cases erfasst werden. Beachten Sie, dass
ein Use Case (auf Deutsch: Anwendungsfall) nichts anderes ist als eine Grund-
funktion eines Systems.

_ Ohne Systemanalyse
kommen wir nicht
weiter

Bild 2-14 Objekte des Problembereichs werden bei der Systemanalyse gefunden

2.5.2.1 Kontextdiagramm

Im ersten Schritt der Systemanalyse soll das Kontextdiagramm fir das Flughafen-
Informationssystem gezeichnet werden. Ein Kontextdiagramm ordnet ein System in
seine Umgebung ein und zeigt durch so genannte Datenflisse die Wechselwirkung
des Systems mit seiner Umgebung. Der Name Kontextdiagramm rihrt daher, dass
dieses Diagramm das System in seiner Umgebung, d. h. seinem Kontext, zeigt. Zur
Umgebung gehoéren bestehende Gerate oder Fremdsysteme, die Daten mit dem
System elektronisch austauschen, aber auch die Bediener des Systems. Generell
findet sich all das, was neu gebaut wird, im Kasten des Systems wieder, vorhandene
Fremdsysteme oder die Nutzer des Systems stehen auBerhalb des zu bauenden
Systems und werden als so genannte Aktoren gezeichnet. Die Aktoren werden in der
Regel als Strichmannchen, versehen mit dem Namen der Rolle oder des Fremd-
systems, gezeichnet. Ein Datenfluss wird stets dargestellt durch einen Pfeil, der den
Namen der ausgetauschten Daten tragt.

Zu beachten ist, dass in Bild 2-15 die folgenden Gruppendatenfliisse eingefiihrt
wurden, um das Kontextdiagramm Ubersichtlich zu gestalten:

® | andung Flugzeug := Initialisierung Landeanflug + Reservierung Start-/Landebahn
+ Ist-Zeitpunkt Landung + Reservierung Parkposition + Freigabe Start-/Landebahn
+ [Griinde fUr Abbruch]

mit Initialisierung Landeanflug :=
betreuender Lotse + Flugzeugtyp + Fluggesellschaft + Soll-Zeitpunkt Landung.

48 Kapitel 2

e Start Flugzeug :=
Reservierung Start-/Landebahn + Soll-Zeitpunkt Start + Freigabe Parkposition +
Freigabe Start-/Landebahn + Ist-Zeitpunkt Start

So entspricht der eingezeichnete Gruppendatenfluss "Landung Flugzeug" im Falle
einer erfolgreichen Landung den Datenflissen "Initialisierung Landeanflug" (wie-
derum untergliedert in "betreuender Lotse", "Flugzeugtyp", "Fluggesellschaft" und
"Soll-Zeitpunkt Landung"), "Reservierung Start-/Landebahn”, "Ist-Zeitpunkt Landung",
"Reservierung Parkposition” und "Freigabe Start-/Landebahn”. Im Falle eines Ab-
bruchs umfasst der Gruppendatenfluss "Landung Flugzeug" auch die Griinde fiir den
Abbruch. Wird die Landung erfolgreich durchgefihrt, so entfallen die Griinde fiir den
Abbruch.

Flughafen
Informationssystem

Flugzeugposition Radar
'
L4

Radarsensor
Flugzeugposition
i Positionsmelder Alarm %
| |
L4 L4
Positionsmelder Hupe
Flugzeug

Flugzeugposition
i Flugplatziensor
14

Flugplatzsensor

Status Parkposition
>
14

Parksensor

Anforderung kLuftlage

» Luftlage
Anforderung , Bodenlage ' 4
14 Bodenlage n
Anforderung , Zeitplan »
Zeitplan
Landung , Flugzeug >
4 Status Start-/ Landebahnen
Start | Flugzeug >
4 Status _ Parkposition
T?_Sttatur Verlegung |, Flugzeug > Bildschirm
14
otse Lotse
Anderung Gebiihren
D Rechnungen
Buchung | bezahlte >
L4
Rechnungen Drucker
Tastatur Flughafenangestellter

Flughafenangestellter

Uhrzeit

| Q
v

Betriebssystem

Bild 2-15 Kontextdiagramm fiir das System "Flughafen-Informationssystem"

Objektorientierte Konzepte 49

Das Programm "Flughafen-Informationssystem" erhélt Daten von "Radarsensor",
"Positionsmelder Flugzeug", "Flugplatzsensor", "Parksensor", "Tastatur Lotse",
"Tastatur Flughafenangestellter" und "Betriebssystem" und erzeugt Ausgaben fir
"Hupe", "Bildschirm Lotse" und "Drucker Flughafenangestellter".

2.5.2.2 Use Case-Diagramme

Im nachsten Schritt werden die Use Case-Diagramme flr den Bedienertyp Lotse und
Angestellter der Verwaltung gezeichnet. Eine Besonderheit dieser Anwendung ist,
dass die Use Cases der Lotsen und der Angestellten der Verwaltung streng getrennt
sind. Bei anderen Anwendungen hingegen kénnen in einem Use Case mehrere
Rollen zusammenarbeiten. Ein Use Case-Diagramm enthélt alle Use Cases und die
an dem jeweiligen Use Case beteiligten Aktoren. Die an einem Use Case beteiligten
Aktoren sind mit einer Linie mit dem Use Case (in Form einer Ellipse) verbunden.

Wie bereits bekannt ist, ist ein Use Case eine Leistung, die ein System zur
Verfligung stellt. Leistungen eines Systems kdnnen

® asynchron (ereignisorientiert) angefordert werden,
® zeitgesteuert erfolgen
e oder fortlaufend aktiv sein.

Fortlaufend aktive Prozesse laufen ab, solange das System in Betrieb ist. So etwas
kommt selten vor. Das Normale ist die asynchrone und die zeitgesteuerte Anfor-
derung. Eine asynchrone Anforderung liegt beispielsweise vor, wenn ein Benutzer
das Generieren und Ausdrucken einer Liste vom System anfordert, wenn er sie
braucht. Ein zeitgesteuerter Use Case liegt vor, wenn beispielsweise eine bestimmte
Liste, die einen Tag bilanziert, jede Nacht um 24 Uhr automatisch erzeugt und
ausgedruckt wird.

Flughafen-
Informationssystem

Rechnungen
erstellen

Drucker

\

bezahlte
Rechnungen
buchen
Angestellter

der Verwaltung Gebiihren Bildschirm / Tastatur
andern

Flughafenangestellter

Bild 2-16 Use Case-Diagramm Angestellter der Verwaltung

Die Angestellten der Verwaltung fihren die Aufgaben "Rechnungen erstellen”,
"bezahlte Rechnungen buchen" und "Gebiihren &ndern" rechnergestitzt durch. Der
Use Case "Rechnungen erstellen” wird zeitgesteuert angestoBen. Die Use Cases
"bezahlte Rechnungen buchen" und "Gebihren &ndern" werden auf Anforderung
durch den Bediener, d. h. ereignisorientiert, durchgeflhrt.

50 Kapitel 2

Ein Lotse flhrt ereignisorientiert im Dialog mit dem System die Use Cases "Luftlage
anzeigen", "Bodenlage anzeigen", "Zeitplan anfordern", "Landung durchfiihren”,
"Start durchfiihren" und "Flugzeug verlegen" durch.

Flughafen-
Informationssystem
Positionsdaten mnsmelder
- fusionieren Flugzeug
Hupe \
Luftlage
anzeigen Radarsensor
Bodenlage
anzeigen
Flugplatzsensor
Zeitplan
anfordern
Landung
durchfihren
Bildschirm /
Start Tastatur Lotse
durchfihren
Lotse Flugzeug
verlegen
Parksensor

Bild 2-17 Use Case-Diagramm Lotse

Der Use Case "Positionsdaten fusionieren" kommt ohne Zutun des Lotsen zustande.
Er lauft stets zyklisch im Hintergrund mit. Dieser Use Case liest die Positionsdaten
des Positionsmelders und des Radars ein und priift, ob die zuladssigen Toleranzen
Uberschritten werden. Er 16st einen Alarm mit der Hupe aus, wenn die vorgegebene
Toleranz zwischen den Positionsdaten des Radars und denen des Positionsgebers
im Flugzeug Uberschritten wird. Es ist dann Aufgabe des Lotsen, sich um das
Problem zu kiimmern. Auch wenn der Lotse diesen Use Case nicht anstdBt, so wird
er dennoch dem Lotsen zugeordnet, da er dem Lotsen einen Nutzen bringt.

2.5.2.3 Use Case-Beschreibungen

Zu einem jeden Use Case ist eine Use Case-Beschreibung in textueller Form zu
erstellen, die mit dem Auftraggeber abgestimmt wird. Fir den Use Case "Landung
durchfihren" kann diese Beschreibung wie folgt aussehen. Aus Platzgrinden wird
die Beschreibung nur bis zum Aufsetzen des Flugzeugs durchgefihrt. Es liegt auf
der Hand, wie die Beschreibung weitergeht.

Objektorientierte Konzepte 51

Use Case: "Landung durchfithren"
Initiator: Lotse

Beteiligte Aktoren: Bildschirm / Tastatur Lotse, Parksensor

Basisablauf: Meldet sich ein Flugzeug zur Landung an, so nimmt der Lotse das
Flugzeug in das System auf. Er schaut dann nach, welche Landebahn wann frei ist
und weist dem Flugzeug eine Landebahn zu. Der Soll-Zeitpunkt der Landung wird in
das System aufgenommen. Er schaut nach, welche Parkposition frei ist — dies wird
Uber die Parksensoren gemeldet — und weist dem Flugzeug eine Parkposition zu. Ist
das Flugzeug gelandet, so tragt der Lotse den Ist-Zeitpunkt der Landung ein. Ist das
Flugzeug an der Parkposition angekommen, so gibt der Lotse die Start-/Landebahn
frei.

Alternativablauf: Bei schlechtem Wetter wird die Landung abgebrochen. Der Lotse
muss den Grund fir den Abbruch in das System eintragen.

Alternativablauf: Ist die Fluggesellschaft dem System nicht bekannt, so muissen
Name und Adresse der Gesellschaft in das System aufgenommen werden.

Alternativablauf: Alle Landebahnen belegt. Der Lotse ordnet eine Warteschleife an.

Alternativablauf: Alle Parkpositionen belegt. Der Lotse ordnet eine Warteschleife an.

2.5.2.4 Klassendiagramm der konzeptionellen Sicht der Systemanalyse

Ein Klassendiagramm der konzeptionellen Sicht enthalt nur solche Klassen, deren
Objekte im Alltag sichtbar sind. Im Rahmen der Objektorientierten Modellierung sind
das die Entity-Klassen, die Entitatstypen der realen Welt entsprechen.

Fir das Aufstellen eines Klassendiagramms der konzeptionellen Sicht gehen wir hier
folgendermaBen vor: Ein Bediener des Systems wird im Rahmen der konzeptionellen
Sicht als Klasse dargestellt. Fir jeden Use Case, den der Bediener ausfiihrt, werden
alle Klassen identifiziert, die der Bediener fir die Durchfiihrung dieses Use Case
bendtigt, und die Beziehungen (Assoziationen) zwischen den gefundenen Klassen
gezeichnet. Eine Assoziation ist hierbei eine Verbindungslinie zwischen den Klassen,
die einen Namen tragt. Der Name charakterisiert hierbei diese Beziehung. In ent-
sprechender Weise sind fir die zeitgesteuerten Use Cases und fir fortlaufend aktive
Use Cases die erforderlichen Klassen und ihre Beziehungen zu ermitteln.

Im Folgenden werden die in Bild 2-16 und Bild 2-17 gefundenen Use Cases eingeteilt
in ereignisorientierte Use Cases, die asynchron vom Benutzer angefordert werden,
und zeitgesteuerte Use Cases, die vom System selbst ausgeldst werden. Fortlaufend
aktive Use Cases kommen beim Flughafen-Informationssystem nicht vor.

Ereignisorientierte Use Cases sind:

Luftlage anzeigen,
Bodenlage anzeigen,
Anforderung Zeitplan,
Landung durchfihren,
Start durchfiihren,
Flugzeug verlegen,

52 Kapitel 2

Gebihren andern,
bezahlte Rechnungen buchen.

Zeitgesteuerte Use Cases sind:

Positionsdaten fusionieren,
Rechnungen erstellen.

Fir jeden Use Case werden nun die beteiligten Klassen und ihre Beziehungen ge-
zeichnet. Durch Uberlagerung der fir die einzelnen Use Cases gefundenen Teildia-
gramme kommt man zum Klassendiagramm des Systems. Es folgen nun die Teil-
diagramme fiir die einzelnen Use Cases:

Luftlage anzeigen

Lotse betrachtet Flugzeug
1 1.%
1 1
hat
hat
Position Posi-
tionsmelder 1.*
Iy 1.7
Position
Radar

Bild 2-18 Klassen und Beziehungen fiir den Use Case "Luftlage anzeigen"

Beachten Sie bitte die Multiplizitaiten an den Beziehungen. So hat in Bild 2-18 ein
Flugzeug 1..*, d. h. 1 oder mehrere Positionsdaten, die vom Radar gemeldet werden.
Das ist klar — schlieBlich soll, wenn das Flugzeug zum erstenmal auf dem Bildschirm
auftaucht, seine Bahnkurve am Bildschirm dargestellt werden kénnen.

Bodenlage anzeigen

Lotse Flugzeu
betrachtet gzeug
1 1.*
1
Position hat
Flugplatz- 1
sensor

Bild 2-19 Klassen und Beziehungen flir den Use Case "Bodenlage anzeigen"

Der Lotse kann sich im Lageplan des Flughafens anzeigen lassen, an welcher Stelle
des Flughafens sich aktuell welches Flugzeug befindet.

Objektorientierte Konzepte 53

Anforderung Zeitplan

Lotse zeigt an [Flugzeug angemeldet] Flugzeug

1 1.7

Bild 2-20 Klassen und Beziehungen fiir den Use Case "Anforderung Zeitplan”
Der Zeitplan wird dadurch generiert, indem alle fir Start bzw. Landung angemeldeten
Flugzeuge — dies wird ausgedriickt durch die Bedingung [Flugzeug angemeldet] —
aufgelistet werden.

Landung durchfiihren

Fluggesell-
schaft

Start-
1 benutzt 1| /Landebahn

A
1> gehdrt

Lotse Flugzeu
betreut gzeug Parkposition

1 | 1 benutzt 1

Bild 2-21 Klassen und Beziehungen flir den Use Case "Landung durchfiihren”

Beachten Sie bitte den Lesepfeil bei "gehért". In UML wird der Lesepfeil durch ein
Dreieck dargestellt. StandardmaBig werden die Beziehungen von links nach rechts
gelesen und von oben nach unten. Beispiele hierfir sind in Bild 2-21 "Lotse betreut
Flugzeug" oder "Flugzeug benutzt Parkposition". Die Beziehung "Flugzeug gehért
Fluggesellschaft" ist von unten nach oben zu lesen. Daher der Lesepfeil.

Start durchfiihren

Konto 1
a N
hat wird gebucht auf
1
Fluggesell- 1
schaft Gebiihr Gebiihren-
< liste
1 A
o gehort |
Lotse betreut Flugzeug ! L] Start-
benutzt /Landebahn
1 1.%

Bild 2-22 Klassen und Beziehungen fiir den Use Case "Start durchfiihren”

54 Kapitel 2

Eine Besonderheit ist hier zu sehen. Die Klasse Geblhr stellt eine Assoziations-
klasse dar. Eine Assoziationsklasse gehdrt zu einer Beziehung (Assoziation) und
spezifiziert diese naher. Entfallt die Beziehung, so muss auch die zugeordnete
Assoziationsklasse wegfallen. Da keine Gebuhr anfallt, wenn die Start-/Landebahn
nicht benutzt wird, muss die Klasse Gebiihr also eine Assoziationsklasse sein.

Flugzeug verlegen

Lotse verlegt Flugzeug

1 1.*

Bild 2-23 Klassen und Beziehungen flir den Use Case "Flugzeug verlegen”

Gebiihren andern

Angestellter

andert

Geblihr Gebihren-

> liste

Bild 2-24 Klassen und Beziehungen flir den Use Case "Gebihren dndern”

Positionsdaten fusionieren

Hier werden zyklisch die Flugzeugpositionsdaten des Radars und des Positions-
gebers abgefragt und geprift, ob sie im Rahmen einer vorgegebenen Toleranz-
grenze (bereinstimmen. Der Vergleich wird realisiert durch ein Kontrollobjekt?®, das
sich zyklisch die Positionsdaten vom Radar und vom Positionsgeber beschafft, den
Vergleich durchfihrt, die Positionsdaten vom Radar und vom Positionsgeber im
System anlegt — wenn die Toleranzgrenze nicht Uberschritten wird — und bei
Uberschreiten der Toleranzgrenze einen Alarm auslést. In der konzeptionellen Sicht
leistet dieser Use Case keinen Beitrag zum Klassendiagramm — auBer, dass es die
Klassen Position Positionsmelder und Position Radar gibt — da in der
konzeptionellen Sicht nur Entity-Objekte betrachtet werden.

Rechnungen erstellen

Durch ein Kontrollobjekt, welches auf die Uhr schaut, werden in automatischer Weise
jeweils am Ersten eines Monats die Rechnungen auf Grund der Kontoinformationen
automatisch generiert und ausgedruckt. Die Angestellten missen die Rechnungen
noch kuvertieren und versenden. In der konzeptionellen Sicht gibt dieser Use Case
keinen Beitrag zum Klassendiagramm, da in der konzeptionellen Sicht nur Entity-
Objekte betrachtet werden. Die Rechnungen sind keine Entity-Objekte, d. h. Objekte
von Entity-Klassen, da sie nicht im System gespeichert werden. Sie werden erzeugt
und sofort ausgedruckt.

% Kontrollobjekte haben kein Gegenstiick in der realen Welt.

Objektorientierte Konzepte

55

Bezahlte Rechnungen buchen

Konto -

< bucht auf

Angestellter

Bild 2-25 Klassen und Beziehungen fiir den Use Case "Bezahlte Rechnungen buchen"

Durch die Multiplizitdt wird zum Ausdruck gebracht, dass fur ein bestimmtes Konto
nur ein einziger Angestellter erméchtigt ist zu buchen. Ein Angestellter ist aber fir
mehrere Konten zusténdig.

Durch Zusammensetzen der fir die einzelnen Use Cases gefundenen Teildiagram-
me, d. h. von Bild 2-18 bis Bild 2-25, erhalt man das gesamte Klassendiagramm:

Lotse

Gebiihren-
liste

Konto 1
] 1.*
A 0.+ Angestellter A
hat - wird gebucht auf
4 verwaltet
1 andert
Fluggesell- L
schaft Gebiihr
—
1 |a
gehort :
1.* |
betreut Flugzeug 1 P Start-
e benutzt /Landebahn
1 1.* 1
benutzt
111)1
gehort zu ! Parkposition
Position 1.
Pos.melder
gehort zu
Position 1.7 \
Radar
gehort zu
Position 1
Flugplatz-
sensor

Bild 2-26 Klassendiagramm Flughafen-Informationssystem

56

Kapitel 2

2.6 Ubungen

Aufgabe 2.1: Modellierung mit Klassen und Objekten

NENESENESENENEN
-—L.—L—L—L—L_L—L_L
NGO

2.1.9

2.1.10
2.1.11
2112
2.1.13
21.14

Was versteht man unter Problembereich und unter Lésungsbereich?

Was sollte bei einer Klasse im Idealfall komplett verborgen sein?

Was ist beim objektorientierten Ansatz entscheidend?

Worauf basiert der objektorientierte Ansatz?

Aus welchen Bestandteilen besteht eine Klasse?

Erlautern Sie, was eine Methode ist und welche Aufgaben sie erflillt.
Wodurch wird der Zustand eines Objektes festgelegt?

Was ist der Unterschied zwischen einer Klassenmethode und einer Instanz-
methode?

Wann werden Klassenvariablen verwendet?

Wann werden Instanzvariablen verwendet?

Kann eine Instanzmethode auf eine Klassenvariable zugreifen? Begriindung!
Kann eine Klassenmethode auf eine Instanzvariable zugreifen? Begriindung!
Erlautern Sie die Begriffe Generalisierung und Spezialisierung.

Erlautern Sie die Begriffe Aggregation und Komposition.

Aufgabe 2.2: Kapselung, Information Hiding und Abstraktion

2.21
222
223

Erlautern Sie den Begriff der Kapselung bei einem Objekt.
Was ist Information Hiding bei einem Objekt?
Was versteht man unter Abstraktion bei einem Objekt?

Kapitel 3

EinfUhrung in die
Programmiersprache Java

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Sprachkonzepte von Java

Eigenschaften von Java

Die Java-Plattform

Programmerzeugung und -ausflhrung

Das Java Development Kit

Java-Anwendungen und Internet-Programmierung
Ubungen

3 Einfihrung in die Programmiersprache Java

Im Jahre 1991 befasste sich ein Mitarbeiterteam von Sun Microsystems (inzwischen
ORACLE) mit der Entwicklung von Set-Top Boxen fur Fernsehgerdte mit dem Ziel
des interaktiven Fernsehens. Fir die Software dieser Boxen wurde zunachst C++
verwendet, die damals gangige Sprache fiir objektorientierte technische Anwendung-
en. Unzufriedenheit Gber die Komplexitat von C++ und die daraus resultierende man-
gelnde Sicherheit veranlasste das Team, ausgehend von C und C++ eine neue Spra-
che — die Sprache Java — zu entwickeln.

3.1 Sprachkonzepte von Java

Bei der Definition der Programmiersprache Java wurden von verschiedenen Pro-
grammiersprachen herausragende Konzepte Ubernommen und in einer bisher nicht
bekannten Kombination zusammengeflgt (siehe Bild 3-1).

prachkonstrukte
"Programmieren
Virtuelle Maschine
Bytecode
Paketstruktur
JavaBeans

Smalltalk

Bild 3-1 Die Véter von Java

Die Sprachkonstrukte fir das "Programmieren im Kleinen" wie die einfachen
Datentypen und die Operatoren sind an C++ angelehnt.

Das Konzept der virtuellen Maschine zur Ausfiihrung des Bytecodes hat sich in
Smalltalk bewahrt. Die Idee der virtuellen Maschine stammt von N. Wirth. Dessen
Pascal-Compiler Ubersetzte in den so genannten P-Code und dieser wurde dann in-
terpretiert. Der Gedanke, der dahinter steckt, ist, unabhéngig von der jeweiligen
Rechner-Plattform zu werden.

Unter Rechner-Plattform wird die Kombination von Betriebssystem —
und zugehdriger Rechner-Hardware verstanden. -

Um die Unabhéngigkeit des Bytecodes von der Rechner-Plattform zu ermdglichen,
braucht man ein Stiick Software, das den Bytecode auf die jeweilige Rechner-Platt-

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_3,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

EinfUhrung in die Programmiersprache Java 59

form abbilden kann. Diese Aufgabe wird von der virtuellen Maschine wahrgenom-
men. Die virtuelle Maschine bietet einem auszuflihrenden Programm stets dieselbe
Schnittstelle, egal welche Rechner-Plattform auch immer von der virtuellen Maschine
angesteuert wird. Damit kann ein Programm weltweit auf jeder Rechner-Plattform,
die Uber eine virtuelle Maschine verfigt, laufen und verhélt sich auch immer gleich.
Mit Hilfe der virtuellen Maschine kann die Idee "write once, run anywhere"?* umge-

setzt werden.

Das Konzept der Ag?lets25 in Java, die bei Bedarf geladen werden, wurde von den

Modulen in Oberon~° Glbernommen.

Pakete dienen zur Gruppierung von inhaltlich zusammengehdérigen Klassen und
Schnittstellen. Ein Paket stellt eine Bibliothek flir einen bestimmten Zweck dar.
Pakete als Gruppierung kleinerer Bausteine wurden bereits in Ada verwendet.

Die Idee des JavaBeans-Komponentenmodells wurde von OpenDoc beeinflusst.
OpenDoc wurde von den Firmen Apple, Novell, Borland, WordPerfect und IBM ent-
wickelt und ist eine offene Dokumentenarchitektur, die es ermdglicht, beliebige Doku-
mententeile aufzunehmen. Ein Komponentenmodell soll die Verwendung von vorge-
fertigten Software-Bausteinen auf einfache Weise ermdglichen. Erstellte JavaBeans-
Komponenten, die sich an die JavaBeans-Spezifikation halten, kénnen in einfacher
Weise wiederverwendet werden. Sie kdnnen als fertige Bausteine mit Hilfe eines
Werkzeugs — eines so genannten Application Builders — in eine neue Anwendung
integriert werden.

Enterprise JavaBeans wurden spater als die hier erwdhnten JavaBeans in die
Klassenbibliothek von Java aufgenommen. Sie haben mit JavaBeans nichts zu tun,
auBer dass es sich auch hier um ein Komponentenmodell handelt, das jedoch spe-
ziell zur Realisierung von Server-Architekturen dient.

3.2 Eigenschaften von Java

Java-Programme sind einfach, stabil, objektorientiert, verteilbar, sicher und portier-
bar.

Einfachheit und Stabilitat

Zur Erhéhung der Einfachheit der Programmiersprache und der Stabilitdt der Pro-
gramme wurden in Java gegentber C und C++ verschiedene Sprachkonstrukte wie
z. B. die Zeigerarithmetik weggelassen.

Objektorientiertheit

Mit Java wurde eine echte objektorientierte Sprache entworfen, die den Program-
mierer zwingt, objektorientiert zu programmieren. Es ist generell nicht méglich, Me-
thoden von einer Klasse bzw. von den Objekten zu trennen.

24
25

Einmal schreiben, Gberall laufen lassen.

Java-Applets sind kleine Programme, die nur innerhalb eines Web-Browser oder eines Applet-
Viewers ausgefiihrt werden kénnen. Sie sind in einer HTML-Seite eingebettet.

Oberon ist eine objektorientierte Programmiersprache, die wie Pascal und Modula von N. Wirth
entwickelt wurde.

26

60 Kapitel 3

Verteilbarkeit

Java wurde von Anfang an fur die Verteilung von Programmen auf verschiedene
Rechner entworfen. Infolge einer umfangreichen Unterstitzung durch die Java-
Klassenbibliothek ist Java nahezu optimal fir die Client/Server-Programmierung
geeignet. Des Weiteren wurde durch das Konzept der Applets — die von einem
zentralen Web-Server auf einen anderen Rechner Uber das Netz geladen werden
kénnen — das Problem der Verteilung bei Software-Updates elegant geldst.

Sicherheit

Java hat wie kaum eine andere Sprache ein mehrstufiges Sicherheitskonzept, das
die Ausfuhrung von kritischen oder fir das System geféhrlichen Operationen verhin-
dert.

Portierbarkeit

Durch die Kompilierung in einen von der Rechner-Plattform unabhangigen Bytecode,
der von einer virtuellen Maschine ausgefihrt wird, ist Java unabhangig vom jewei-
ligen Betriebssystem und der zugehérigen Rechner-Hardware. Software-Entwickler
muissen ihre Programme nicht fir jede Rechner-Plattform speziell anpassen. Durch
die exakte Definition aller Datentypen in Lange und Aussehen und das Vorhanden-
sein von Threads als Sprachmittel fir parallel ausfihrbare Programme ist ein Java-
Programm ohne Probleme von einer Rechner-Plattform auf die andere portierbar
(Ubertragbar). Je geringer die Zahl der Eingriffe in ein Programm ist, um es auf einer
anderen Rechner-Plattform ausfiihren zu kénnen, desto héher ist die Portabilitat. Bei
Java sind in einem Programm keine Eingriffe erforderlich, um es auf einer anderen
Rechner-Plattform auszufiihren. Vorausgesetzt wird aber, dass fir jede Rechner-
Plattform eine virtuelle Maschine existiert. Versucht man das Gleiche in C++, einer
Sprache, die auf allen gangigen Maschinen vertreten ist, gerdt man schon bei der
unterschiedlichen Darstellung der einfachen Datentypen in Schwierigkeiten. Dartber
hinaus gibt es in C++ keine Sprachmittel fir parallele Programme, sodass das Errei-
chen von Parallelitdt dort betriebssystemabhangig ist. Die Portierbarkeit erstreckt
sich in Java auch auf die grafische Oberflache, welche traditionsgeman bisher be-
triebssystemabhangig war. So wurde die Oberflache beispielsweise unter UNIX mit
OSF Motif und unter Windows mit Hilfe der Microsoft Foundation Classes realisiert.

3.3 Die Java-Plattform

Meistens ist — wenn man Uber Java spricht — die Programmiersprache Java gemeint.
Java ist aber viel mehr als eine Programmiersprache. Die Programmiersprache Java
bildet zusammen mit verschiedenen Werkzeugen, der Java Virtuellen Maschine
und einer umfangreichen Java-Klassenbibliothek die Java-Plattform.

Zu einer Java-Plattform gehéren:

e die Programmiersprache Java, N B

® Werkzeuge wie zum Beispiel der Java-Compiler (javac), -

e die Java Virtuelle Maschine (JVM) — in anderen Worten ein Byte- N
code-Interpreter fiir eine Rechner-Plattform =

® und eine umfassende Klassenbibliothek.

EinfUhrung in die Programmiersprache Java 61

Die Java Plattform existiert als Standard Edition (bekannt unter dem Namen Java
SE), als Enterprise Edition (Java EE) und als Micro Edition (Java ME). Die einzelnen
Ausfiihrungen unterscheiden sich im Wesentlichen durch Art und Umfang der
Klassenbibliothek und durch die verfugbaren Werkzeuge. Die Java EE und die Java
ME bauen hierbei auf der Java SE auf und spezialisieren diese flir Server-Anwen-
dungen und fur den Einsatz auf mobilen Endgeréaten.

Das Java Development Kit (JDK) bezeichnet eine Java-Plattform mit einem fiir die
jeweilige Rechner-Plattform spezifischen Bytecode-Interpreter. Will man mit Java
Programme entwickeln, so bendtigt man also ein JDK. Hierbei gibt es fur die ver-
schiedenen Java Editions (Java SE, Java EE und Java ME) jeweils ein JDK fur alle
gangigen Rechner-Plattformen. Eine Java Runtime Environment (JRE) beinhaltet
nur diejenigen Bestandteile eines JDKs, welche zum Ausfihren von Java-Program-
men bendtigt werden. Damit besteht eine JRE aus einem Bytecode-Interpreter flir die
jeweilige Rechner-Plattform und der Java-Klassenbibliothek.

Auf die Java Virtuelle Maschine wird in Kapitel 3.3.1 und auf die Java Klassenbiblio-
thek der Standard Edition in Kapitel 3.3.2 noch naher eingegangen.

3.3.1 Die Java Virtuelle Maschine

Bei Java wird bei der Kompilierung aus dem Quellcode nicht Maschinencode®’, son-
dern ein Bytecode (Zwischencode) erzeugt. Der Bytecode wird dann von einem
Bytecode-Interpreter, der Java Virtuellen Maschine (JVM), die fir jede Rechner-
Plattform verfligbar ist, zur Ausfihrung gebracht. Der Bytecode-Interpreter kann ein
eigenes Programm sein — wie im Falle des Interpreters java des Java Development
Kits — oder in einen Browser — wie z. B. den Netscape Navigator — oder in den Micro-
code eines Java-Prozessors integriert sein.

Bytecode } Java-
Programm
JVM JVM JVM JVM JVM Bytecode-
. Rechner-
Solaris | | JavaOS Windows Mac } Plattform
Bild 3-2 Die Java Virtuelle Maschine (JVM)
NV

Durch das Bytecode-Konzept ist jedes Java-Programm auf jeder — -
Rechner-Plattform mit einem Bytecode-Interpreter ausfiihrbar. - ~

" Maschinencode ist eine prozessorspezifische Programmiersprache, die ein spezieller Prozessor
direkt versteht.

62 Kapitel 3

Sonst wére das Konzept der Applets, das vorsieht, von einem beliebigen Rechner
des Internets ein Applet zu laden und auf einem beliebigen anderen Rechner des
Internets auszuflihren, nicht umsetzbar.

3.3.2 Die Java Klassenbibliothek

Erleichtert wird das Programmieren von Java-Anwendungen durch eine umfang-
reiche Klassenbibliothek, die Java-API%.

Die Klasse java.lang.Object ist die Wurzel des Java-Klassen- — -
baums, also auch der Java-API. - ~

Die Java-Klassenbibliothek der Standard Edition Iasst sich in drei Bereiche aufteilen:

e Java Base Libraries

Diese Bibliotheken umfassen Klassen und Schnittstellen, welche die grundlegende
Funktionalitat der Java-Plattform bereitstellen. So sind darin unter anderem Klas-
sen fir die String-Verarbeitung, Ein-/Ausgabe, Sicherheit, Netzwerk-Kommu-
nikation und Internationalisierung definiert.

e Java Integration Libraries

Diese Bibliotheken setzen sich aus Klassen und Schnittstellen zusammen, welche
fir die systemibergreifende Kommunikation benétigt werden. Sie bestehen unter
anderem aus der Java Database Connectivity (JDBC) API fir den Zugriff auf
Datenbanken, der Remote Method Invocation (RMI) API fir den entfernten
Methodenaufruf zwischen unterschiedlichen virtuellen Maschinen und der Java
Naming and Directory Interface (JNDI) API fir das Suchen von Klassen inner-
halb eines Namensraumes.

e Java User Interface Libraries

Mit Hilfe dieser Bibliotheken kénnen verschiedenste Benutzerschnittstellen pro-
grammiert werden. Beispiele hierflir sind Druckerschnittstellen, Tonausgabe, Bild-
verarbeitung und die Entwicklung von grafischen Benutzerschnittstellen.

Eine ausflhrliche Beschreibung der Klassen und Schnittstellen kann der Java-API-
Dokumentation entnommen werden. Sie ist zu finden unter der Java-Webseite von
ORACLE

http://download.oracle.com/javase/index.html

oder auf der dem Buch beigefligten CD. Bild 3-3 zeigt die Startseite der API-Doku-
mentation der Java Standard Edtion.

% AP = Application Programming Interface.

EinfGhrung in die Programmiersprache Java

Java™ Platform

AbstractinferruptibieChan
Abstractl ayoutCache
Abstractl ayoutCache.Not
AbstractList
AbstractlistModel
AbstractMap
AbstractMap.SimpleEntry
AbstractMap. Simplelmmuf

AbstractMarshallerimpl
AbstractMethodErmor

= Package Class Use Tree Deprecated Index Help Java™ Platform
Standard Ed. 6
PREV NEXT FRAMES NO FRAMES Standard Ed. 6

All Classes

Packages Java™ Platform, Standard Edition 6

ot API Specification

ava awt

java awt color %|| This document is the API specification for version 6 of the Java™ Platform, Standard Edition.
[e

— = — See:

All Classes % Description

AbstractAction R

AbstractAnnotationValue\

AbstractBorder Packages

AbstractButton Provides the ¢l -t At let and the
AbstractCellEditor java.applet o i o s 5 el
AbstractCollection ses an applet uses to communicate its applet context.
AbstractColorChooserPal I Contains all of the classes for creating user interfaces and for
AbstractDocument java.awt L 5 i

AbstractDocument Attribu painting graphics and images.

AbstractDocument Conte, : .

Va.. o 4

A (st Tk it Bl java.awt.color Provides classes for color spaces

AbstractElementVisitoré < Provides interfaces and classes for transferring data between
AbstractExeculorService java.awt.datatransfer st b AR AL

Drag and Drop is a direct manipulation gesture found in many
Graphical User Interface systems that provides a mechanism to

Bz ivided transfer information between two entities logically associated
with presentation elements in the GUL

-3 Provides interfaces and classes for dealing with different types

VR v of events fired by AWT componens.

I N oY B S iy e B o

|

Bild 3-3 Startseite der Java-APIl-Dokumentation in einem Browser

Die Java-API enthalt mehrere Tausend Klassen und Schnittstellen. Diese kénnen
unméglich alle in diesem Buch erklart werden. Vielmehr beschranken wir uns auf die
Beschreibung und Erlauterung der grundlegenden Spracheigenschaften von Java

und stellen einige wenige ausgewahlte Klassen der Klassenbibliothek vor.

3.4 Programmerzeugung und -ausfiihrung

Die Erzeugung und das Starten von Java-Programmen unterscheidet sich in einigen
Punkten grundlegend von anderen Programmiersprachen. Im Wesentlichen kann
man sagen, dass kein ausfilhrbares Programm?® (engl. executable program)
erzeugt wird, sondern dass Bytecode interpretiert wird, wobei bendtigte Klassen zur

Laufzeit durch die Java Virtuelle Maschine nachgeladen werden.

|

\ /

Mit dem Begriff "zur Laufzeit" ist gemeint, dass eine Aktion wie bei- _

spielsweise das Laden einer Klasse in die virtuelle Maschine ausge-

flhrt wird, wahrend das Programm |4uft. =
N

In Java wird kein ausfihrbares Programm erzeugt. —/

Ein ausfiihrbares Programm besteht aus Maschinencode und kann nach seinem Aufruf selbstandig

auf dem Prozessor laufen.

64 Kapitel 3

Das folgende Bild zeigt das Erzeugen und Starten einer Java-Anwendung:

| Texteditor |
Bsp1i.java ///7class Bspl ‘\\\
auf Platte {
..main...
}
Bspl.java mit class Bsp2

den Klassen Bsp1, {

B 2 undB 3 i
sp2 und Bsp) Quellcode-Datei

class Bsp3
{

N Y

I
| Compiler |
Bsp1.class, v
pepraies Wassenals () (evrciens] [omsociace] BecodeDatcen
auf Platte l l l
Interpreter

l | !

[Bspl.class] [BspZ.class] [Bsp3.class]

startbare Klasse in die virtuelle
in der virtuellen Maschine
Maschine nachgeladen bei

Aufruf durch Bspl

Bild 3-4 Ablauf und Erzeugnisse beim Kompilieren und Laden

Der Quelltext eines Programms wird mit einem Editor, einem Werkzeug zur Er-
stellung von Texten, geschrieben und auf der Festplatte des Rechners unter einem
Dateinamen als Datei abgespeichert. Da eine solche Datei Quellcode enthalt, wird
sie auch als Quellcode-Datei (oder Quelldatei) bezeichnet. Durch Kompilieren erhalt
man aus der Quellcode-Datei Bspl.java die drei Bytecode-Dateien Bspl.class,
Bsp2.class und Bsp3.class. Dabei werden die Bestandteile des Dateinamens
hinter dem Punkt als Extension (Dateinamenserweiterung) bezeichnet. Fir jede
Klasse in der Quellcode-Datei wird also eine Bytecode-Datei erzeugt, die den Namen
der Klasse tragt und die Extension class hat.

Die Klasse Bsp1 soll eine main ()-Methode haben und als Startklasse dienen. Wird

diese Klasse vom Interpreter aufgerufen, so wird sie vom Klassenlader geladen
und ihre main () -Methode ausgeflhrt.

Klassen, die eine main ()-Methode haben, kdnnen zum Starten einer —
Java-Anwendung verwendet werden. - ~

EinfUhrung in die Programmiersprache Java 65

Werden nun innerhalb der main ()-Methode Klassenvariablen oder Klassenmetho-
den der beiden anderen Klassen Bsp2 oder Bsp3 angesprochen oder Objekte dieser
Klassen angelegt, so miissen diese Klassen vom Klassenlader dynamisch zur Lauf-
zeit vom aktuellen Rechner, einem Intranet oder dem Internet in die virtuelle Ma-
schine nachgeladen werden.

Ein "Programm" in Java besteht aus einem losen Verbund von einzel-
nen .class-Dateien, die bei Bedarf in die virtuelle Maschine geladen

werden. Dynamisches Laden bedeutet, dass die Klassen, wenn sie i@\
das erste Mal benétigt werden, in die virtuelle Maschine nachgeladen =

werden.

3.4.1 Kompilieren

Am Anfang der Programmerzeugung stehen eine oder mehrere Quellcode-Dateien.
Diese Dateien enthalten den in Java geschriebenen Programmtext und werden durch
den Compiler javac in Bytecode Ubersetzt. Flr jede Klasse wird beim Kompilieren
eine interpretierbare .class-Datei erzeugt. Der Bytecode ist unabhéngig von der
Rechner-Plattform, auf welcher der Programmcode entwickelt bzw. kompiliert worden
ist. Man kann den erzeugten Bytecode auch als Maschinencode fiir einen virtuellen
Prozessor, genauer die Java Virtuelle Maschine, bezeichnen.

Der Bytecode ist ein Zwischencode. Er stellt noch nicht den Maschi- .
nencode eines existierenden physikalischen Prozessors dar. Er stellt —
die Maschinensprache fiir eine abstrakte Maschine, die Java Virtu- >

elle Maschine, dar.

Der Kompiliervorgang durchlauft die vier Bearbeitungsschritte

Lexikalische Analyse,
Syntaxanalyse,
Semantikanalyse

und Codeerzeugung.

3.4.1.1 Lexikalische Analyse

Bei der Lexikalischen Analyse wird versucht, in der Folge der Zeichen eines Pro-
gramms die Worter der Sprache — das sind die kleinsten Einheiten einer Sprache, die
eine Bedeutung besitzen — zu erkennen. Die Woérter einer Sprache werden auch
Symbole genannt. Beispiele fiir Symbole sind Namen, Schlisselwdrter, Operatoren.
Zwischenrdume und Kommentare dienen dem Compiler dazu, zu erkennen, wo ein
Wort zu Ende ist. Ansonsten haben sie keine Bedeutung fiir den Compiler und wer-
den Uberlesen.

66 Kapitel 3

Wort

N

Zwischenraum

Bild 3-5 Erkennen von Wortern

3.4.1.2 Syntaxanalyse

Far alle modernen Sprachen existiert ein Regelwerk, welches formal die zuldssigen
Folgen von Symbolen (Wértern) festlegt. Im Rahmen der Syntaxanalyse wird geprift,
ob die bei der lexikalischen Analyse ermittelte Symbolfolge eines zu Ubersetzenden
Programms zu der Menge der zuldssigen Symbolfolgen gehort.

3.4.1.3 Semantische Analyse

Die semantische Analyse versucht die Bedeutung der Wérter herauszufinden. Die
Bedeutung in einem Programm bezieht sich im Wesentlichen auf dort vorkommende
Namen, also muss die semantische Analyse herausfinden, was ein Name, der im
Programm vorkommt, bedeutet. Jeder Name wird mit einer Bedeutung versehen,
d. h. an eine Deklaration des Namens im Programm gebunden. Grundlage hierfir
sind die Sichtbarkeits-, GUltigkeits- und Typregeln einer Sprache. Neben der Uber-
priafung der Verwendung von Namen im Rahmen ihrer Giiltigkeitsbereiche®
spielt die Uberpriifung von Typvertraglichkeiten bei Ausdriicken eine Hauptrolle.
Ein wesentlicher Anteil der semantischen Analyse befasst sich also mit der Er-
kennung von Programmfehlern, die durch die Syntaxanalyse nicht erkannt werden
konnten, wie z. B. die Addition von zwei Werten mit unterschiedlichem und nicht ver-
traglichem Typ. So ist es beispielsweise unzuldssig, Boolesche Werte und Zahlen zu
addieren.

Nicht alle semantischen Regeln einer Programmiersprache kénnen durch den Com-
piler abgeprift werden. Man unterscheidet zwischen der statischen Semantik
(durch den Compiler prifbar) und der dynamischen Semantik (erst zur Laufzeit
eines Programmes prifbar). Die Priifungen der dynamischen Semantik werden von
der virtuellen Maschine durchgefiihrt.

3.4.1.4 Codeerzeugung

Wahrend Lexikalische Analyse, Syntaxanalyse und Semantische Analyse sich nur
mit der Analyse des zu Ubersetzenden Quellcodes befassen, kommen bei der Code-
generierung die Eigenschaften der virtuellen Maschine mit ins Spiel. Bei der Code-
erzeugung wird kein Maschinencode fir einen physikalischen Prozessor einer Platt-
form, sondern Maschinencode — namlich der Bytecode — fir die virtuelle Maschine
erzeugt.

% Sjehe Kap. 9.1.5.

EinfUhrung in die Programmiersprache Java 67

3.4.1.5 Virtuelle Maschine

Die virtuelle Maschine Ubernimmt Aufgaben wie die Speicherverwaltung des Pro-
gramms zur Laufzeit und ist far Ein-/Ausgabe-Operationen und fir Interaktionen mit
dem Betriebssystem zustandig. Sie bildet somit die Laufzeitumgebung (das Lauf-
zeitsystem) des auszufihrenden Java-Programms. Zu den Aufgaben der virtuellen
Maschine gehéren alle Prifungen der dynamischen Semantik, kurz eine ganze
Reihe von Fehlerroutinen. An besonderen Sprachmerkmalen wie Threads (parallele
Prozesse) oder Exceptions (Ausnahmen) ist die virtuelle Maschine ebenfalls beteiligt.
Die Sicherheitsverwaltung der virtuellen Maschine entscheidet zum Beispiel, auf
welche Ressourcen — wie z. B. eine Festplatte — ein in Ausflhrung befindliches
Programm zugreifen darf und auf welche nicht.

Die virtuelle Maschine bildet die Laufzeitumgebung (das Laufzeit- . |
system) fiir das auszufiihrende Programm. Sie stellt einem Programm _
zusatzliche Funktionen (Routinen) zur Verfiigung, welche fir die Aus-
fihrung des Programms benétigt werden. Dazu gehéren unter ande-

rem Funktionen zur Speicheranforderung oder Fehlererkennung.

(i

3.4.2 Laden in die virtuelle Maschine

Das Laden der Klassen erfolgt durch die Java Virtuelle Maschine. Beim Starten eines
Programms wird die Startklasse dem Interpreter bekannt gemacht, der den Klas-
senlader verwendet, um die Startklasse in den Arbeitsspeicher zu laden. Dies ge-
schieht durch den Aufruf von java Klassenname auf der Kommandozeile. Da ein
Java-Programm nicht wie die meisten herkdmmlichen Programme aus einer ein-
zelnen ausfihrbaren Datei, sondern aus mehreren . class-Dateien besteht, werden
die anderen Java-Klassen zur Laufzeit, also zu dem Zeitpunkt, an dem sie gebraucht
werden, durch die Java Virtuelle Maschine nachgeladen. Trifft also der Java-
Interpreter auf eine Klasse, die nicht im Speicher der virtuellen Maschine ist, so
benutzt er den Klassenlader, um die Klasse in den Arbeitsspeicher nachzuladen.

3.4.3 Ausfihren von Bytecode

Die virtuelle Maschine setzt den Java-Bytecode in Maschinencode des jeweiligen
Prozessors um. Erfordert eine Bytecode-Instruktion den Aufruf einer Betriebssystem-
routine, so wird ein Sprungbefehl an die Adresse, an der sich die Betriebssystem-
routine im Speicher befindet, generiert. Alle Betriebssystemroutinen liegen dabei
fertig kompiliert im entsprechenden Maschinencode bereit.

3.4.4 Bytecode

Das Konzept des Bytecodes wurde schon seit den siebziger Jahren eingesetzt, um
Programme leichter portieren zu kdnnen. Beispiele hierfiir sind Bytecode-Systeme
fir die Sprachen BCPL, LISP, Prolog, aber auch fir Pascal. Dabei war beispiels-
weise ein Bytecode-System flr Pascal nicht die Regel, sondern die Ausnahme. Fir
Smalltalk und Java ist der Bytecode jedoch Bestandteil der Architektur der Sprache
und damit zwingend vorgeschrieben.

68 Kapitel 3

Der Bytecode hat die folgenden Eigenschaften:

® Er besteht aus Instruktionen (Befehlen) fir eine virtuelle Maschine.

® FEine Instruktion ist ein Byte lang — daher auch die Bezeichnung Bytecode fur
den Zwischencode.

® Der Bytecode ist unabhéngig von einer Rechner-Plattform und damit unab-
hangig vom Betriebssystem und der Rechner-Hardware.

e Der Bytecode ist maschinennah. Die Phasen Lexikalische Analyse, Syntax-
analyse, Semantikanalyse und Codegenerierung zum Bytecode sind bereits
durchlaufen, sodass man ndher am Maschinencode als am Quellcode ist.

® Der Bytecode spiegelt in der Regel die Eigenschaften der Programmiersprache
wider. So kann es zum Beispiel spezielle Instruktionen fiir den Zugriff auf die
Komponenten von Objekten geben.

e Der Bytecode wird durch einen Bytecode-Interpreter ausgefihrt, der die Befehle
der virtuellen Maschine ausfiihren kann, mit anderen Worten, der die virtuelle
Maschine emuliert.

® Da ein Bytecode fir die jeweilige Programmiersprache optimiert ist, ist das resul-
tierende Programm sehr kompakt. Mit anderen Worten, Bytecode-Programme
eignen sich gut fir die Ubertragung in Netzen.

® Bytecode ist portabel. Programme, die in Bytecode Ubersetzt wurden, sind auf
jeder Rechner-Plattform lauffahig, fir die ein Bytecode-Interpreter zur Verfligung
steht.

e Da der Interpreter eine virtuelle Maschine emuliert und in die Emulation die Zu-
griffe auf physikalische Betriebsmittel wie Drucker oder Dateien eingebunden sind,
kann in den Emulator sehr leicht eine Sicherheitsschicht eingezogen werden, die
unter gewissen Umstanden Zugriffe auf bestimmte Betriebsmittel verwehrt.

Das Konzept des Bytecodes stellt insgesamt gesehen eine Zwischenstufe zwischen
der reinen Interpretation eines Quellcodes und der Ausfiihrung von Instruktionen
eines speziellen Prozessors dar. Wird — wie bei anderen Sprachen — der reine Quell-
code interpretiert, so stellen die Anweisungen im Quellcode die Instruktionen fiir eine
virtuelle Maschine auf héherem Niveau dar.

Letztendlich wird der Zugewinn an Portabilitdt und Sicherheit durch den erhdhten
Zeitaufwand fir den Interpreter erkauft. Um diesen Nachteil zu kompensieren, kann
man den Interpreter selbst als Hardware — als Java-Prozessor — realisieren, der
direkt die Bytecode-Instruktionen ausfiihrt, anstatt als Programm auf einem her-
kémmlichen Prozessor.

3.5 Das Java Development Kit

Die offizielle Quelle fir das Java Development Kit (JDK) ist die Firma ORACLE. Im
Internet ist diese erreichbar Uber die Adresse

http://www.oracle.com/technetwork/java/index.html

Von dort kann das JDK fiir alle gangigen Rechner-Plattformen kostenlos auf den
eigenen Rechner geladen werden. AuBerdem flihren von diesen Seiten Links zu
Herstellern professioneller Entwicklungssysteme oder Herstellern des JDK flr we-

EinfUhrung in die Programmiersprache Java 69

niger bekannte Rechner-Plattformen. Die Java Development Kits fir die Plattformen
Windows 32 Bit/64 Bit und LINUX 32 Bit/64 Bit befinden sind auch auf der CD.

3.5.1 Installation und Konfiguration des JDK
Um mit Java arbeiten zu kdnnen, muss es flr das entsprechende — -
Betriebssystem ein Java Development Kit geben. - ~

Die GroBe des Arbeitsspeichers des Arbeitsplatzrechners sollte 64 MB nicht unter-
schreiten. Fur die Komplettinstallation der JDK-Version 6.0 werden mindestens 300
MB an Plattenplatz benétigt, fur die Version 5.0 mindestens 200 MB.

Das JDK-Installations-File entpackt sich bei der Installation unter Microsoft Windows
selbst. StandardmaBig werden die Dateien in das Verzeichnis Java im Programm-
verzeichnis von Windows installiert (z. B. C: \Programme\Java). Nach der Installa-
tion befinden sich darin die beiden Verzeichnisse jre6 und jdk1.6.0_xx fir die
Version 6.0. Das xx steht hierbei stellvertretend fiir die Update-Version, wie bei-
spielsweise 21. Im Verzeichnis jdk1.6.0_xx werden mehrere Verzeichnisse ange-
legt, unter anderem ein Verzeichnis namens bin. In diesem Verzeichnis befinden
sich alle Programmdateien wie zum Beispiel javac.exe oder java.exe des JDK.
Im Unterverzeichnis demo liegen nitzliche Beispielprogramme. Im Unterverzeichnis
include sind Header-Dateien abgelegt, die zur Einbindung von C-Programmen in
Java-Programme benétigt werden. In Archive®' zusammengefasste Java-Klassen-
dateien befinden sich in dem Unterverzeichnis 1ib.

Setzen der Umgebungsvariable JAVA_HOME

Die Umgebungsvariable Java_HOME wird von vielen Programmen verwendet, die auf
dem JDK aufbauen. Diese Umgebungsvariable zeigt immer auf das Basisverzeichnis
des JDK, beispielsweise C:\Programme\Java\jdkl.x.0_xx. Unter Windows
2000/XP/Vista ist hierbei eine neue Umgebungsvariable Java_HOME mit Hilfe der
Systemsteuerung anzulegen. Unter Window Vista muss hierzu in der Systemsteue-
rung zuerst System und Wartung gefolgt von System ausgewahlt werden. An-
schlieBend ist links auf Erweiterte Systemeinstellungen zu klicken, um dann
unter Umgebungsvariablen eine neue Variable fir JavA_HOME anzulegen. Unter
Unix/Linux kann die Umgebungsvariable beispielsweise wie folgt gesetzt werden:

export JAVA_HOME=/usr/java/jdkl.x.0

Setzen der Umgebungsvariable PATH

Um die Java-Programmdateien — wie javac oder java — direkt von der Kommando-
zeile aufrufen zu kdnnen, muss der Suchpfad fir ausfihrbare Dateien um das ent-
sprechende Verzeichnis erweitert werden. Unter Windows geschieht dies wie folgt:

1" Archive dienen zur Zusammenstellung mehrerer Dateien — in gepackter oder ungepackter Form —
in einer einzigen Datei. Archivdateien haben die Extension jar.

70 Kapitel 3

® Temporar

Will man die pATH-Variable temporédr — also nur in der aktiven Kommandozeile —
um den Pfad zu den Java-Programmdateien erweitern, muss der Befehl

set PATH=%path$%;C:\Programme\Java\jdkl.x.0\bin

in der Kommandozeile eingegeben werden, wobei x durch 5 fir die Java Version
5.0, 6 fur die Version 6.0 bzw. 7 fir die Version 7.0 ersetzt werden muss. Nach
dem SchlieBen des Fensters der Kommandoebene, d. h. der Shell in LINUX bzw.
der Windows-Konsole unter Windows, ist diese Einstellung wieder ungultig.

¢ Permanent

Um den Pfad zu den Java-Programmdateien permanent in die PATH-Variable auf-
zunehmen, muss wie folgt vorgegangen werden. In der Windows Systemsteue-
rung System auswahlen und dort den Reiter Erweitert selektieren. Unter Win-
dows Vista wird aus der Systemsteuerung heraus zuerst System und Wartung
gefolgt von system ausgewahlt. AnschlieBend ist links auf Erweiterte Sys-
temeinstellungen zu klicken. Auf diesem Reiter muss dann der Knopf Um-
gebungsvariablen gedrickt werden. Unter Systemvariablen — flr alle Be-
nutzer gultige Variablen — oder unter Benutzervariablen — nur fur den ak-
tuellen Benutzer gultige Variablen — muss die Variable PATH ausgewahlt und der
Eintrag

; $JAVA_HOMES%\bin
am Ende hinzuftgt werden.

Es empfiehlt sich, ein eigenes Arbeitsverzeichnis zu erstellen, damit die installierten
Programme des JDK und die eigenen Anwendungsprogramme nicht gemischt
abgelegt werden. Damit Iasst sich die Erstellung von Sicherungskopien des eigenen
Programmcodes in einfacher Weise durchfihren.

Setzen der Umgebungsvariable CLASSPATH

Die Umgebungsvariable cLasspATH wird vom Compiler javac sowie vom Inter-
preter java des JDK benutzt, um den Weg zu den Bibliotheksklassen der Java-
Klassenbibliothek bzw. zu benutzerdefinierten Klassen zu finden. Seit der Version
1.2 des JDK wird der CLASSPATH automatisch um das aktuelle Verzeichnis und um
den Weg zu den Bibliotheksklassen des JDK bei der Ausfiihrung des Compilers oder
Interpreters erweitert. Deshalb ist es normalerweise nicht erforderlich, den CLASS-
PATH explizit zu setzen. Sollte der Compiler oder der Interpreter dennoch nicht den
Weg zu den Bibliotheksklassen bzw. zu den selbst geschriebenen Klassen im aktu-
ellen Verzeichnis finden, so ist es erforderlich, den CLASSPATH explizit zu setzen.
Wie der CLASSPATH zu setzen ist, hangt vom jeweiligen Betriebssystem ab. Im Fol-
genden zwei Beispiele:

export CLASSPATH=/wrk:. (UNIX/LINUX)>?
set CLASSPATH=C:\wrk;. (Windows)

% Dieses Kommando gilt far die Bourne-Shell (sh).

EinfUhrung in die Programmiersprache Java 71

Der Punkt . hinter dem Doppel- bzw. Strichpunkt steht dabei fiir das aktuelle Ver-
zeichnis. Es ist auch mdglich, mehrere verschiedene Pfade im CLASSPATH anzuge-
ben. Dann kann der Compiler bzw. der Interpreter nach den Klassen in verschiede-
nen Verzeichnissen suchen. Unter Windows werden alternative Pfadangaben durch
ein Semikolon getrennt, unter UNIX-Systemen durch einen Doppelpunkt.

Der cLASSPATH kann auch direkt beim Kompilieren beziehungsweise beim Aufruf
des Interpreters flir ein Java-Programm angegeben werden. Das folgende Beispiel
zeigt dies fur das Kompilieren:

javac -classpath C:\wrk;. HelloWorld. java

3.5.2 Java Homepages

Die Entwicklung von Java verlduft duBerst dynamisch, sodass herkémmliche Medien
wie Blcher oder Zeitschriften mit der schnellen Entwicklung nicht Schritt halten. Die
meisten Neuerungen erscheinen daher auf den einschlagigen Seiten im Internet.

Hier eine kleine Auflistung gangiger Java Homepages:

® http://www.oracle.com/technetwork/java/index.html
® http://www.developer.com/java

® http://www.jars.com

® http://www.java.net/community

® http://www.javaworld.com

3.6 Java-Anwendungen und Internet-Programmierung

Im Folgenden werden einige wichtige Java-Begriffe, die oft verwechselt werden,
vorgestellt:

e Java-Anwendungen sind Programme, die in Java geschrieben sind und von der
Kommandozeile eines Rechners aus gestartet werden kdnnen.

® Java-Applets sind Programme, die in einer HTML-Seite enthalten sind und zu-
sammen mit einer HTML-Seite von einem Web-Server zu einem Rechner ge-
schickt werden. Sie werden von einem Java-fahigen Web-Browser auf der Ma-
schine des Nutzers ausgefiihrt, wenn die HTML-Seite geladen wird. Der Aufbau
von Java-Anwendungen und Applets ist prinzipiell verschieden. Applets haben an
Bedeutung verloren, seitdem es Servlets und JavaServer Pages gibt.

® Java-Servlets sind Programme, die auf einem Web-Server laufen und dynamisch
HTML-Seiten fur einen Web-Browser erzeugen.

e JavaServer Pages (JSP) ermdglichen das Einbinden von Java Code in HTML-
Seiten. Dadurch kann der Seiteninhalt &hnlich wie bei der Verwendung von Serv-
lets dynamisch generiert werden. JSPs bauen auf der Servlet-Technologie auf,
sind aber einfacher in der Anwendung.

® JavaScript ist eine von Java unabhdngige Skriptsprache. Es stellt eine Erwei-
terung von HTML zum Aufbau von Internet-Seiten dar und sollte nicht mit Java
verwechselt werden.

72

Kapitel 3

3.7 Ubungen

Aufgabe 3.1: Verstandnisfragen

© 0 0w
—I.—L._L_L
Wi

— — — —h
0o N o O

Was sind die besonderen Eigenschaften von Java?

Was geh6rt zur Java-Plattform?

Erlautern Sie das Konzept des Zwischencodes (Bytecodes).

Nennen Sie die drei Bereiche, in welche die Java-Klassenbibliothek der
Standard Edition eingeteilt wird.

Nennen Sie die vier Schritte des Kompiliervorgangs.

Was macht der Java-Compiler bei der lexikalischen Analyse?

Was passiert bei der Syntaxanalyse?

Was wird bei der Codegenerierung generiert?

Aufgabe 3.2: Erste Programmierversuche

3.2.1

Beschreibung der Java-Klassen

Eine Beschreibung aller Java-Klassen befindet sich auf der Homepage von
SUN Microsystems. Diese Dokumentation kann heruntergeladen werden,
steht aber auch online zur Verfligung.

a) Aufrufen der Java-API-Dokumentation
Die Java-API-Dokumentation finden Sie unter der folgenden Adresse:
http://download.oracle.com/javase/index.html

Starten Sie Ihren Browser und rufen Sie die oben genannte Seite auf. Unter
dem Link API Documentation wird die API-Spezifikation der jeweiligen
Java Version aufgerufen. Zum Zeitpunkt des Erscheinens dieses Buches ist
dies noch die Version 6.0. Der folgende Link fiihrt Sie direkt zur API-Spe-
zifikation:

http://download.oracle.com/javase/6/docs/api/index.html

Machen Sie sich mit der Klassendokumentation etwas vertraut, indem Sie
etwas herumspielen.

b) System.out.println()

Um die Zeichenkette Hello World auf der Kommandozeile auszugeben,
wird System.out.println () benutzt:

System.out.println ("Hello World");

Finden Sie mit Hilfe der Klassendokumentation schrittweise heraus, was sich
hinter dieser Anweisung verbirgt. Hierzu folgende Hinweise:

® system ist eine Klasse im Paket java.lang.

® out ist der Name einer Klassenvariablen in der Klasse System. Die
Referenz out zeigt auf ein Objekt der Klasse PrintStream. Die Klasse
PrintStream befindet sich im Paket java.io. Dieses Objekt der Klasse

EinfUhrung in die Programmiersprache Java 73

PrintStream besitzt die Fahigkeit, in die Standardausgabe zu schreiben,
die in der Regel auf den Bildschirm zeigt.

® println() ist eine Methode der Klasse PrintStream.

Beantworten Sie folgende Frage:

Welche weiteren Methoden gibt es in der Klasse PrintStream — auBer der
Methode println()?

3.2.2 DieKlasse string

Die Klasse string befindet sich genauso wie die Klasse system im Paket
java.lang. Beantworten Sie die folgenden Fragen mit Hilfe der Klassendo-
kumentation:

a) Welche Methode liefert einen Ruckgabewert vom Typ char fUr einen
bestimmten Index eines Strings? Hinweis zum Index eines Strings: Im
String "Hallo" hat das Zeichen 'H' den Indexwert 0.

b) Welche Methode gibt die Léange eines Strings zurlick?

c) Welche Aufgabe erfillt die Methode trim()?

d) Welche Aufgabe erfillt die Methode replace () ?

3.2.3 Erste Versuche mit dem Programm "Hello, world"

a) Installieren Sie als erstes das Java Development Kit, so wie in Kapitel
3.5.1 erldutert.

b) Schreiben Sie das "Hello, world"-Programm aus Kapitel 1.1 in einem von
Ihnen gewahlten Editor.

c) Kompilieren Sie die Java-Datei mit Hilfe des Java-Compilers javac.

d) FOhren Sie die kompilierte . class-Datei aus.

Kapitel 4

Einfache
Beispielprogramme

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Lokale Variable, Ausdricke und Schleifen
Zeichen von der Tastatur einlesen

Erzeugen von Objekten

Initialisierung von Objekten mit Konstruktoren
Schreiben von Instanzmethoden
Zusammengesetzte Objekte

Selbst definierte Untertypen durch Vererbung
Die Methode printf() und die Klasse Scanner
Ubungen

4 Einfache Beispielprogramme

Mit dem Programm "Hello, world" in Kap. 1.1 und dem Programm "Punkt" in Kap. 2.1
haben Sie bereits erste Erfahrungen im Programmieren gesammelt. Programmieren
kann viel SpaB bereiten. Im Folgenden sollen deshalb andere kurze aussagekraftige
Programme vorgestellt werden, damit Sie sich spielerisch voran arbeiten, um dann
auch Augen und Ohren flr die erforderliche Theorie zu haben. Alle Programme des
Buches befinden sich auch auf der beiliegenden CD, sodass Sie die Programme
nicht abzutippen brauchen.

Als Einstieg sollen in Kapitel 4.1 und Kapitel 4.2 einfache Programmbeispiele vor-
gestellt werden, die jedem C-Programmierer bekannt sind. Sie wurden in ihrer
Formulierung in C durch Kernighan und Ritchie [9] weltberihmt. Die in diesen
Kapiteln aufgefihrten Beispiele sind fir die Programmierung in Java eigentlich
untypisch. Dennoch ist es sinnvoll, solche einfachen Beispiele zu betrachten, um mit
Variablen, Konstanten, Schleifen, Berechnungen und der Ein- und Ausgabe
vertraut zu werden. Die Wucht solch klassischer Beispiele ist so groB, dass in Java
mit dem JDK 5.0 die Methode printf () mit Formatelementen zur Steuerung der
Ausgabe wie in C eingeflihrt wurde (siehe Kap. 4.8).

Kapitel 4.3 erlautert, was beim Erzeugen von Objekten passiert, und Kapitel 4.4, wie
Objekte mit Hilfe von Konstruktoren initialisiert werden. Da bis zu dieser Stelle
Methoden stets gebrauchsfertig vorgegeben waren, wird in Kapitel 4.5 erklart, wie
eine Methode definiert und aufgerufen wird und wie Parameter an Methoden
Ubergeben werden kénnen, d. h. wie formale und aktuelle Parameter zusammen-
hangen. In Kapitel 4.6 wird gezeigt, wie durch eine Aggregation "GroB"-Objekte aus
"Klein"-Objekten (in der Form von Fertigteilen) "zusammengeschraubt" werden kén-
nen und Kapitel 4.7 befasst sich schlieBlich mit dem Subtyping von Klassen durch
den Vererbungsmechanismus, d. h. mit dem Schreiben von Klassen, die Speziali-
sierungen anderer Klassen sind.

4.1 Lokale Variable, Ausdriicke und Schleifen

Als erstes Programm wird das Temperaturwandlungsprogramm von Kernighan und
Ritchie vorgestellt. Es soll eine Temperaturtabelle zur Umrechnung von Fahrenheit-
Graden in Celsius-Grade erzeugen. Dieses Programm vermittelt erste Erfahrungen
mit einer Schleife und mit der Berechnung von Ausdriicken.

In der ersten Variante dieses Programms werden symbolische Konstanten® fiir die
untere Grenze, die obere Grenze und die Schrittweite in Fahrenheit verwendet. Fir
die Temperatur in Celsius und Fahrenheit werden Variable verwendet, um fir ver-
schiedene Werte in Fahrenheit jeweils den entsprechenden Celsius-Wert zu berech-
nen.

% Symbolische Konstanten sind Konstanten, die einen Namen tragen. An die Stelle eines Namens
setzt der Compiler dann die der symbolischen Konstanten zugeordnete literale Konstante ein, also
z. B. eine "nackte Zahl" wie die Zahl 10.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_4,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Einfache Beispielprogramme

77

// Datei: Fahrenheit.java

// Klasse zur Wandlung von Temperaturen von Fahrenheit nach Celsius

public class Fahrenheit

{

public static void main (String[] args)

{

// Konstanten

final int UPPER = 300; //
//
//

final int LOWER = 0; //

final int STEP = 20; //

// Variablen

int fahr; //
//
//

int celsius; //
//
//

// Anweisungen

fahr = LOWER; //
//

while (fahr <= UPPER)
{
celsius = 5 * (fahr - 32)
//
//
//

System.out.print (fahr);
//
//
System.out.print (" "
//

obere Grenze

UPPER ist eine symbol. Konstante
300 ist eine literale Konstante
untere Grenze

Schrittweite

Definition der lokalen Variablen
fahr fir die Temperatur in
Fahrenheit

Definition der lokalen Variablen
celsius fiir die Temperatur in
Celsius

als Anfangswert wird fahr
der Wert 0 zugewiesen

/ 9;

nach dieser Formel berechnet sich
der Celsius-Wert aus einem
Fahrenheit-Wert

der Wert von fahr wird auf
den Bildschirm ausgegeben

)i

Leerzeichen in derselben Zeile

System.out.println (celsius);

fahr = fahr + STEP; //

0 =17
20 -6

1] 40 4

Der Wert von Celsius wird in
derselben Zeile ausgegeben.
AnschlieRend springt der Cursor
zum Anfang der ndchsten Zeile.

Der ndchste Wert von fahr
wird berechnet

Hier ein Auszug der Programmausgabe:

78 Kapitel 4

Die erzeugte Tabelle hat nicht dieselbe schdne, formatierte Form wie in C, wo in der
Tabelle Einer unter Einern und Zehner unter Zehnern stehen. Der Grund hierflr ist,
dass die Ein- und Ausgabemdglichkeiten in Java schwerpunktmaBig auf eine grafi-
sche Benutzerschnittstelle ausgerichtet wurden, die fensterorientiert arbeitet. Eine
zeilenorientierte Ein- und Ausgabe auf dem ganzen Bildschirm galt zunachst nicht
mehr als Stand der Technik und hatte aus diesem Grund fir die Entwickler von Java
in den ersten Jahren von Java keine Prioritdt. Daher gibt es fir die Methode
println() keine Formatierungsmdglichkeiten. Da dies jedoch beméangelt wurde,
wurde mit dem JDK 5.0 durch Einfihren der Methode printf () (siehe Kap. 4.8)
Abhilfe geschaffen.

Die GréBen LOWER, UPPER und STEP sind symbolische Konstanten. Namen sym-
bolischer Konstanten werden liblicherweise in GroBbuchstaben geschrieben.

Bitte beachten Sie:

® Die Division 5/9 ergibt Null (ganzzahlige Division ohne Rest). Daher wird die 5
zunachst mit (fFahr - 32) multipliziert, damit vor der Division eine groBe Zahl
entsteht. Im zweiten Schritt wird dann durch 9 geteilt.

® Der Zuweisungsoperator ist das Zeichen =. Fir den Vergleichsoperator "ist
gleich" muss die Notation == verwendet werden.

® Die while-Schleife wird abgearbeitet, solange die Bedingung fahr <= UPPER
den Wert true hat.

® Die Methode println () positioniert im Gegensatz zu print () im Anschluss an
die Ausgabe des auszugebenden Ausdrucks den Cursor des Bildschirms zu
Beginn der nachsten Zeile.

® Mit println() bzw. print () kann nicht nur — wie im Falle von "Hello,
wor1d" — Text ausgegeben werden, sondern auch die Werte von Variablen.

Die Methoden println() und print () sind {iberladen. Uberladen
bedeutet, dass es zum selben Methodennamen verschiedene Metho- N
den gibt, die sich im Typ ihrer Parameter unterscheiden. Fir jeden _
Typ gibt es eine eigene Methode und automatisch wird die richtige
Methode aufgerufen. So kénnen an println() bzw. print () bei- Y

spielsweise auch int- oder float-Variable Ubergeben werden, wie
z. B. die int-Variable fahr in System.out.print (fahr).

Im Folgenden werden einige andere Varianten dieses Programms vorgestellt. Dabei
soll in der nachsten Variante ohne symbolische Konstanten und nur mit Integer-
GréBen, d. h. mit ganzzahligen Variablen und Ausdriicken gearbeitet werden.

// Datei: Fahrenheit2.java

public class Fahrenheit2
{

public static void main (String[] args)

{

int fahr;

Einfache Beispielprogramme 79

for (fahr = 0; fahr <= 300; fahr = fahr + 20)

{
System.out.print (fahr);
System.out.print (" ")
System.out.println (5 * (fahr - 32) / 9);

}
Beachten Sie hierbei die folgenden Punkte:

® |n der for-Schleife stellt fahr = 0 den Beginn der Schleife, fahr <= 300 die
Bedingung, solange die Schleife durchgefiihrt wird, und fahr = fahr + 20 den
nachsten Wert, fiir den die Schleife durchgeflihrt wird, dar.

® Die Verwendung des Ausdrucks 5 * (fahr - 32) / 9 in der println ()-Metho-
de anstelle der Variablen celsius wie im vorherigen Beispiel ist beispielhaft far
die allgemeine Regel:

\
In jedem Zusammenhang, in dem der Wert einer Variablen eines —
bestimmten Typs stehen kann, kann auch ein komplizierter Aus- -

druck von diesem Typ stehen.

My

In der letzten Variante soll mit celsius als float-Variable und mit einer while-
Schleife gearbeitet werden.

// Datei: Fahrenheit3.java

public class Fahrenheit3
{
public static void main (String[] args)

{

// Konstanten

final int UPPER = 300; // obere Grenze
final int LOWER = 0; // untere Grenze
final int STEP = 20; // Schrittweite

int fahr;
float celsius;

fahr = LOWER;

while (fahr <= UPPER)

{
celsius = (float) (5.0 / 9) * (fahr - 32);
System.out.println (fahr + " " + celsius);
fahr = fahr + STEP;

80 Kapitel 4

Hier ein Auszug der Programmausgabe:
0 -17.777779

20 -6.666667
280 137.77779
300 148.8889
Beachten Sie:

® Die Konstante 5.0 ist vom Typ double. Damit ist

(5.0 / 9) * (fahr - 32)

vom Typ double — der Compiler muss 9 und (fahr - 32) ohne eine Anwei-
sung des Programmierers implizit in den Gleitpunkityp double wandeln. Man
spricht von impliziter Typkonvertierung, wenn die Konvertierung vorgenommen
wird, ohne dass der Programmierer dies explizit in der Programmiersprache for-
mulieren muss. Die Konvertierung erfolgt automatisch, wenn ein Wert eines
schmaleren Typs wie z. B. die 9 mit einem Wert eines breiteren Typs wie z. B. der
5.0 verknUpft wird (siehe Kap. 7.7).

® Bei der Zuweisung
celsius = (float) (5.0 / 9) * (fahr - 32)

muss eine explizite Typkonvertierung von double nach float stattfinden, da
die Variable celsius vom Typ float ist und damit ein breiterer Typ in einen
schmaleren Typ gewandelt werden muss. Diese Typkonvertierung erfolgt mit Hilfe
des so genannten cast-Operators (siche Kap. 7.7.1), der von der Form (daten-
typname) ist. Dabei wird der hinter dem cast-Operator stehende Ausdruck in den
Datentyp datentypname des cast-Operators gewandelt.

® Mit println() bzw. print () werden auch Zeichenketten, die mit Variablen
durch den Verkettungsoperator + verknlpft sind, ausgegeben.

So kann anstelle von

System.out.print (fahr);
System.out.print (" ")
System.out.println (celsius);

in knapper Form geschrieben werden:

System.out.println (fahr + " " + celsius);

\
Ist eine Variable mit einem String durch den Verkettungsoperator + _ —
verknupft, so wird der Wert der Variablen automatisch in einen -

String gewandelt und an den vorhandenen String angehéangt.

iy

Einfache Beispielprogramme 81

Bild 4-1 visualisiert die Programmstruktur fiir die drei Fahrenheit-Programme am
Beispiel der Klasse Fahrenheit3. In allen drei Programmvarianten liegt jeweils nur
eine Wrapper-Klasse® fiir main () vor, d. h. die Methode main () wird in eine Klasse
eingehdllt.

Fahrenheit3

main() : void

Bild 4-1 Visualisierung der Programmestruktur: eine Wrapper-Klasse fiir die Methode main ()

4.2 Zeichen von der Tastatur einlesen

Im Folgenden wird ein Zeichenz&hlprogramm gezeigt, welches die Zeichen zahlt, die
von der Tastatur eingegeben werden. Der Programmablauf wird solange beim Aufruf
der Funktion

c = System.in.read();

blockiert, bis der Bediener seine Eingabe von beliebig vielen Zeichen mit der
<RETURN>-Taste abgeschlossen hat. Dann liest das Programm aus dem Tastatur-
puffer® die eingegebenen Zeichen solange aus, bis das Zeichen <RETURN> gelesen
wird. Danach wird der Bediener erneut aufgefordert, Zeichen einzugeben. Die Ein-
gabe von Zeichen kann mit der Tastenkombination <strg>® + z, also das gleichzei-
tige Dricken der <strg>-Taste und der Taste mit dem Zeichen z, abgebrochen wer-
den. Diese Tastenkombination erzeugt das Steuerzeichen ~z. Unter LINUX muss
man die Tastenkombination <STRG> + D anstelle von <STRG> + 7 betatigen.

Hier das Programm:

// Datei: Zeichen.java

public class Zeichen

{
// beachten Sie die Deklaration der Methode main() nicht
public static void main (String[] args) throws Exception

{

int ¢ = 0;
int anzahl = 0;
System.out.print ("Bitte eine Folge von Zeichen eingeben ");

System.out.println ("und mit <RETURN> abschliessen");

do

{
// System.in.read() gibt einen int-Wert im Bereich 0 bis
// 255 zurick. -1 wird zuriickgegeben, wenn kein Zeichen

% Mit Hilfe einer Wrapper-Klasse wird ein nicht objektorientiertes Konstrukt — hier die Methode
main () —in die Gestalt einer Klasse gebracht (eingehdllt = engl. wrapped).

% Von der Tastatur eingegebene Zeichen kommen zuallererst in den so genannten Tastaturpuffer.

% Die Abkiirzung Strg steht fiir Steuerung.

82 Kapitel 4

// mehr im Dateipuffer steht.
c = System.in.read();

// Mit (char) c wird die int-Variable c
// in ein Zeichen gewandelt.
System.out.println (

"ASCII-Code: " + c¢c + " Zeichen: " + (char) c);
anzahl = anzahl + 1;
} while (¢ != -1);
System.out.println ("Anzahl: " + anzahl);

}

Es wurde eingegeben:

FHTE<RETURN>
<STRG> + 7Z

Im Protokoll ist zu sehen, dass auf einem Windows-Rechner bei der Eingabe eines
<RETURN> das Zeichen '\r' mit dem ASCII-Wert 13 und das Zeichen '\n' mit
dem ASCII-Wert 10 erzeugt wird®’. Die eingegebenen Zeichen — hier '#' 'u' 'T'
'E' — werden im Tastaturpuffer zwischengespeichert und werden erst mit der
Eingabe von <RETURN> an den so genannten Dateipuffer des Programms Uber-
geben. Die Tastenkombination <STRG> + 7 erzeugt das Steuerzeichen ~z. Dieses
Steuerzeichen hat den ASCII-Code -1.

Die Ausgabe des Programms ist:

FHTE

ASCII-Code: 70 Zeichen: F
ASCII-Code: 72 Zeichen: H
ASCII-Code: 84 Zeichen: T
ASCII-Code: 69 Zeichen: E
ASCII-Code: 13 Zeichen:
ASCII-Code: 10 Zeichen:
~Z

ASCII-Code: -1 Zeichen: ?
Anzahl: 7

Beachten Sie,

® dass throws Exception hier noch nicht erklart werden kann und an dieser
Stelle einfach unbesehen verwendet werden soll,

® dass die Notation ! = "ungleich" bedeutet, == bedeutet "gleich",

® dass die Methode System.in.read () den Wert -1 zurlickgibt, wenn das Datei-
ende — erzeugt durch <CTRL> + 2z — erreicht ist.

% Bei einem UNIX-Rechner wird durch Eingabe von <RETURN> nur das Zeichen '\n' erzeugt, nicht

jedoch zusétzlich das Zeichen '\r'. Im ASCII-Zeichensatz (siehe Tabelle 5-6) tragt das Steuer-
zeichen '\r' den Namen CR (Carriage Return) und das Steuerzeichen '\n' den Namen NL
(New Line) oder LF (Line Feed).

Einfache Beispielprogramme 83

Die Methode system.in.read() legt bei jedem Aufruf als Rlckgabewert das
nachste Zeichen des Eingabestroms in der Variablen ¢ ab. Durch diese Zuweisung
wird der vorhandene Wert von ¢ durch den Wert des nachsten Zeichens Uberschrie-
ben. Nach dem Aufruf der Methode System.in.read () steht der Lesezeiger im
Dateipuffer ein Zeichen weiter als vor dem Aufruf. Der Eingabestrom der Zeichen
wird als Eingabedatei (Standard-Input) gesehen. Deshalb spricht man statt vom
Lesezeiger auch vom Dateizeiger.

Es sei von der Tastatur 'F' 'H' 'T' 'E' mit abschlieBendem <RETURN> einge-
geben worden. Mit der Eingabe <RETURN> wird der Inhalt des Tastaturpuffers '’
"H' 'T' 'E' <RETURN> als Dateipuffer an das Programm Ubergeben. Der Datei-
zeiger steht dabei im Dateipuffer vor dem '#' von 'F' 'H' 'T' 'E' '\r' '\n'
(siehe Bild 4-2). Nach dem Aufruf der Methode System.in.read () steht der Datei-
zeiger ein Zeichen weiter, d. h. vor dem 'H'.

FlH | T | E |\ |\ | Dateipuffer

Dateizeiger vor erstem Dateizeiger nach
Aufruf von — L zweitem Aufruf von
System.in.read() System.in.read ()

Dateizeiger nach
erstem Aufruf von
System.in.read()

Bild 4-2 Veeranschaulichung des Dateizeigers beim Lesevorgang mit System.in.read ()

Liest man mit System.in.read () von der Tastatur ein, so werden die Zeichen zu-
néachst im Tastaturpuffer zwischengespeichert (gepuffert), solange kein <RETURN>
eingegeben wird. Der Inhalt des Tastaturpuffers wird erst dann in den Dateipuffer
Ubergeben, wenn der Benutzer ein <RETURN> eingibt. Bild 4-3 zeigt ein Beispiel fur
die zeilenweise®® Pufferung und die zeilenweise Ubergabe des Inhalts des Tas-
taturpuffers in den Dateipuffer.

Tastatur-
Eingabe von Tastaturpuffer Dateipuffer
R | |
N | |
T | TRrYTHY YT || |
<RETURN> | "F'UH''T''E'<RETURN> || |

| [[em e ea |

Bild 4-3 Zeilenweise Pufferung im Tastaturpuffer

% Eine Zeile ist definiert durch eine Folge von Zeichen bis zum ersten <RETURN>, dem Zeilenende.

84 Kapitel 4

Bild 4-4 visualisiert die Programmstruktur. Auch hier liegt nur eine Wrapper-Klasse
fr main () vor.

Zeichen

main() : void

Bild 4-4 Visualisierung der Programmstruktur: eine Wrapper-Klasse fir die Methode main ()

4.3 Erzeugen von Objekten

Im Beispiel der Klasse Punkt in Kapitel 2.4 wurde ein Punkt erzeugt, indem in der
Methode main () der Klasse Punkt die folgende Anweisung geschrieben wurde:

Punkt p = new Punkt(); // hiermit wird ein Punkt erzeugt

Die Erzeugung lasst sich auch in 2 Schritten durchfliihren:

Punkt p;
p = new Punkt();

Da

Punkt p;

im Methodenrumpf steht, bedeutet dies, dass in der Methode eine Variable p vom
Typ der Klasse punkt angelegt wird. Eine solche Variable ist nur innerhalb ihres
Blocks — hier innerhalb des Methodenrumpfes — sichtbar. Sie wird als lokale
Variable bezeichnet.

Eine Variable p einer Klasse punkt ist in Java eine Referenz auf ein Objekt der
Klasse punkt. Eine Referenz ist nichts anderes als ein Zeiger. In Java spricht man
aber nicht von Zeigern, sondern von Referenzen, weil man mit Zeigern in den Pro-
grammiersprachen C und C++ zum Teil sehr schlechte Erfahrungen gemacht hat.
Der Unterschied zu den Zeigern in C und C++ ist, dass es in Java keine Zeiger-
arithmetik gibt. Es ist nur mdéglich, auf ein selbst erzeugtes Objekt zu zeigen. Es ist
aber nicht méglich, wie in C oder C++ den Zeiger zu verandern und zu beginnen, von
der entsprechenden Stelle an beliebig tber den Arbeitsspeicher zu laufen und auf
andere Speicherzellen zuzugreifen.

Mit

Punkt p; LA
wird in Java eine Referenzvariable mit dem Namen p angelegt. Diese /\
Referenzvariable kann nur auf Objekte der Klasse Punkt zeigen, =
nicht aber auf Objekte anderer Klassen, wie z. B. der Klassen Pferd =
oder Blume.

Einfache Beispielprogramme 85

Nun zur Anweisung

p = new Punkt();

Der new-Operator wird verwendet, um Objekte zu erzeugen. Mit

new Punkt

erfahrt der new-Operator, dass er ein Objekt der Klasse Punkt erzeugen soll. Dies
ist der erste Schritt der Anweisung:

p = new Punkt();

Der Aufruf des new-Operators mit seinem Parameter Punkt wurde zur besseren
Ubersicht unterstrichen. Im 2. Schritt wird der so genannte Default-Konstruktor, der
keine Parameter hat, aufgerufen:

p = new Punkt();

Das Elegante an dieser Notation ist, dass Punkt zum einen ein Parameter fir den
new-Operator ist, damit dieser weiB3, was fir ein Objekt er Uberhaupt erzeugen soll,
und dass zum anderen mit Absicht der Name des Konstruktors gleich dem Klassen-
namen gewahlt wurde und damit Punkt () dem Aufruf des Konstruktors entspricht.

Der new-Operator gibt als Rickgabewert die Referenz auf die Stelle des Speichers
zuriick, an der er das Objekt erzeugt hat. Dieser Rickgabewert wird im Rahmen
einer Zuweisung in die Referenzvariable p kopiert. Damit kann man im weiteren
Programmverlauf mit Hilfe der Referenz p auf das Objekt zugreifen.

4.4 Initialisierung von Objekten mit Konstruktoren

Das folgende Beispiel zeigt die Klasse Punkt2 und die Klasse TestPunkt2. Bei
professionellen Programmen ist es ublich, fir jede Klasse eine eigene Testklasse zu
schreiben. Die Klasse TestPunkt2 dient also dazu, die Klasse Punkt2 auszu-
testen. Die Testklasse TestPunkt2 ist wieder eine Wrapper-Klasse, die eine einzige
Methode, die Methode main () enthalt. Die Klasse Punkt2 enthalt keine main () -
Methode. Dies bedeutet, dass die Klasse Punkt2 nicht gestartet werden kann. Das
ist vollkommen normal. Ein Punkt stellt ein Objekt dar, das benutzt wird und das nicht
von selbst aktiv handelt. Das Erzeugen von Objekten, d. h. Punkten, und der Aufruf
von Methoden der Punkt-Objekte findet in der main ()-Methode der Testklasse statt.

In der Regel wird jede Klasse in einer eigenen Datei gespeichert. ‘/\

Daher liegt die Klasse Punkt2 in der Datei Punkt2. java und die Klasse Test-
Punkt2 in der Datei TestPunkt2. java.

86 Kapitel 4

NP
e ~
=
Hier das Programm:
// Datei: Punkt2.java
public class Punkt2
{
private int x;
public Punkt2() // Dieser Konstruktor wird
{ // noch erklirt
System.out.println ("Default-Konstruktor");
x = 1;
}
public Punkt2 (int u) // Dieser Konstruktor wird noch
{ // erklért
System.out.print ("Konstruktor mit einem Parameter:");
System.out.println (" x =" + u);
X = u;

}

public void print ()
{
System.out.println ("x = " + x);
}
}

// Datei: TestPunkt2.java

public class TestPunkt2
{
public static void main (String[] args)
{
Punkt2 pl = new Punkt2(); // Erzeugen eines Punktes.
// x wird durch Default-
// konstruktor auf 1 gesetzt
Punkt2 p2 = new Punkt2 (3); // Erzeugen eines Punktes.
// x wird auf 3 gesetzt
Punkt2 p3 = new Punkt2 (10);// Erzeugen eines Punktes.
// x wird auf 10 gesetzt

System.out.println ("Koordinate des Punktes pl:");
pl.print();

System.out.println ("Koordinate des Punktes p2:");
p2.print();
System.out.println ("Koordinate des Punktes p3:");

p3.print();

Einfache Beispielprogramme 87

Die Ausgabe des Programms ist:

Default-Konstruktor

Konstruktor mit einem Parameter: x = 3
Konstruktor mit einem Parameter: x = 10
Koordinate des Punktes pl:

x =1

Koordinate des Punktes p2:

x = 3

Koordinate des Punktes p3:

x = 10

Beachten Sie die Methode Punkt2 ():

public Punkt2()

{
System.out.println ("Default-Konstruktor");
x = 1;

}

Diese Methode ist etwas Besonderes. Sie tragt den gleichen Namen wie die Klasse
und hat keinen Rickgabewert. Eine solche Methode hei3t Konstruktor.

Eine Methode, die gleich heiBt wie die Klasse, heit Konstruktor. Ein — -
Konstruktor dient zur Initialisierung eines Objektes. - ~

Da kein Ubergabeparameter angegeben ist, handelt es sich um einen so genannten
Default-Konstruktor. Jeder Punkt, der mit diesem Default-Konstruktor initialisiert
wird, hat dieselben Koordinaten. Mit Hilfe dieses Default-Konstruktors kann man
nicht jeden Punkt individuell initialisieren. Dieser Konstruktor wird automatisch aufge-
rufen, wenn ein Objekt mit Hilfe des new-Operators erzeugt wird und die Parameter-
liste leer ist, d. h. zwischen den runden Klammern des Konstruktors nichts steht:

Punkt2 pl = new Punkt2();

Die Klasse Punkt 2 enthalt noch einen zweiten Konstruktor:

public Punkt2 (int u)
{

System.out.print ("Konstruktor mit einem Parameter:");
System.out.println (" x =" + u);
X = u;

}

Dieser wird automatisch aufgerufen, wenn ein Objekt mit Hilfe des new-Operators
erzeugt wird und in der Parameterliste ein Parameter des Typs int steht, wie in
folgendem Beispiel:

Punkt2 p2 = new Punkt2 (3);

88 Kapitel 4

Mit Hilfe dieses Parameters ist es nun mdglich, einen jeden Punkt individuell zu
initialisieren. Der Compiler hat keine Schwierigkeiten damit, dass es zwei Methoden
mit demselben Namen gibt. An der Anzahl der Parameter sieht er hier, welche der
beiden Methoden er zu nehmen hat. Man sagt, der Konstruktor ist iiberladen®.

Wenn man selbst keinen Konstruktor schreibt, dann stellt der Compiler einen vorde-
finierten Default-Konstruktor bereit, der es ermdglicht, dass ein Aufruf

Punkt2 pl = new Punkt2();
kompilierbar ist.

Bild 4-5 symbolisiert die Programmstruktur. Neben der Wrapper-Klasse TestPunkt?2
flr die Methode main () existieren 3 Objekte der Klasse Punkt:

TestPunki2
main() : void
{ :Punkt
=
:Punkt
ER g,
Xx=3
N/ Punia
} x =10

Bild 4-5 Wrapper-Klasse TestPunkt2 erzeugt 3 Punkte

4.5 Schreiben von Instanzmethoden

Mit Methoden kann man Objekte bearbeiten. Im Folgenden wird wieder eine Klasse
Punkt behandelt. Punkt-Objekte liegen in einer zweidimensionalen Ebene und wer-
den durch ihre kartesischen Koordinaten x und y charakterisiert. Dabei soll eine
Methode geschrieben werden, um ein Punkt-Objekt zu verschieben. Der Punkt P1
mit den Koordinaten x und y soll um den Vektor (deltax, deltaY), wie in Bild 4-6
gezeigt, verschoben werden.

A
1 P2(x+deltaX.y+deltaY)

P1(xy) } deltaY

»
>

deltaX

b

——
X

v

Bild 4-6 Verschieben eines Punktes (Translation)

% (Jberladen von Methoden wird in Kap. 9.4 behandelt.

Einfache Beispielprogramme

89

Konkret soll der Punkt P1(1,2) um den Vektor (4,1) nach P2(5,3) verschoben werden.
Die bisherige Klasse Punkt3 lautet:

// Datei: Punkt3.java

public class Punkt3

{

private int x; // Datenfeld fir
private int vy; // Datenfeld fir
public int getX() //
{ //

return x;

}

public int getY() //

{ //
return y;

}

public void setX (int i) //

{ //
x = 1i;

}

public void setY (int i) //

{ //
y = 17

// Datei: TestPunkt3.java

public class

{

{
Punkt3

// Deklaration der Klasse Punkt3

die x-Koordinate
die y-Koordinate

eine Methode, um
abzuholen

eine Methode, um
abzuholen

eine Methode, um
zu setzen

vom
vom

den

den

den

Typ int
Typ int

x-Wert

y-Wert

x-Wert

eine Methode, um den y-Wert

zu setzen

TestPunkt3
public static void main (String[] args)
p = new Punkt3(); // hiermit wird ein Punkt
// erzeugt
(1); // Aufruf der Methode setX()

p.setX
p.setY

System
System
System

(2); //

Aufruf der Methode setY()

.out.println ("Die Koordinaten des Punktes p sind: ");

.out.println (p.getX());
.out.println (p.get¥());

Die Ausgabe des Programms ist:

il 2

Im Folgenden soll die Realisierung der Methode verschiebe () betrachtet werden.
Methoden missen in der Lage sein, flr verschiedene Parameter zu funktionieren. Im

Die Koordinaten des Punktes p sind:
1

90 Kapitel 4

vorliegenden Beispiel muss eine Verschiebung eines beliebigen Punktes um einen
beliebigen Vektor realisiert werden kénnen. Ein beliebiger Punkt hat das Datenfeld x,
welches einen konkreten Zahlenwert fiir die Abszisse tragt, und das Datenfeld y flr
die Ordinate. Damit lautet der Algorithmus:

Nimm den aktuellen Wert von x und addiere den Wert von deltaX.
Nimm den aktuellen Wert von v und addiere den Wert von deltay.

Dieser Algorithmus wird programmtechnisch auf jeweils eine Zuweisung abgebildet.
Der Algorithmus lautet:

x = X + deltaX;
y = vy + deltay;

Damit ist der Rumpf der Methode fast schon fertig. Ein Rumpf einer Methode hat
immer eine 6ffnende und eine schlieBende geschweifte Klammer:

{
= x + deltaX;

y + deltayY;

=X
([

}

Es ist Ublich, die Anweisungen gegenlber den geschweiften Klammern einzurlcken,
um die Blockgrenzen* besser zu erkennen.

Aufgerufen wird dieser Algorithmus Uber seinen Namen. Das ist der Methodenname.
Er lautet hier verschiebe. Er stehtim Methodenkopf, welcher vor dem Methoden-
rumpf angeordnet ist. Einen Rickgabewert hat diese Methode nicht. Dies wird durch
das Schliisselwort void*' vor dem Methodennamen beschrieben. Die Methode soll
von auBen aufrufbar sein. Also erhélt sie den Zugriffsmodifikator public. Damit ist
die Definition der Methode schon fast fertig. Der momentane Zwischenstand ist:

public void verschiebe

{
x = X + deltaX;
y =y + deltay;
}

Was noch fehlt, ist der Ubergabemechanismus. SchlieBlich sollen deltax und
deltaY als Parameter an die Methode lbergeben werden. Zu diesem Zweck dient
die Liste der Ubergabeparameter, welche im Methodenkopf hinter dem Methoden-
namen steht. In runden Klammern wird hierbei der Typ und Name eines jeden
Ubergabeparameters aufgefiihrt. Damit lautet die vollstandige Definition der Methode
verschiebe ():

public void verschiebe (int deltaX, int deltay)
{

x = X + deltaX;
% y + deltayY;

}

0 Ein Block enthalt Anweisungen, die zwischen geschweiften Klammern als Blockbegrenzer stehen.
*' void bedeutet "leer™.

Einfache Beispielprogramme 91

Nun zum Aufruf der Methode verschiebe (). Eine Instanzmethode wird fiir einen
konkreten Punkt aufgerufen. In der Methode main () der Klasse TestPunkt3 gibt
es den Punkt p:

public static void main (String[] args)

{
Punkt3 p = new Punkt3(); // hiermit wird ein Punkt erzeugt
p.setX (1); // Aufruf Methode setX() fir den Punkt p
p.setY (2); // Aufruf Methode setY() fir den Punkt p

System.out.println ("Die Koordinaten des Punktes p sind: ");
System.out.println (p.getX());
System.out.println (p.get¥());

Die Koordinaten des Punktes p werden mit Hilfe der Methoden setx () und setY ()
auf x gleich 1 und y gleich 2 gesetzt. Eine Verschiebung um den Vektor (4, 1) erhalt
man durch:

p.verschiebe (4, 1);
Hier das komplette Programm:
// Datei: Punkti4.java

public class Punkt4 // Deklaration der Klasse Punkti4
{

private int x; // Datenfeld fir die x-Koordinate vom Typ int
private int vy; // Datenfeld fir die y-Koordinate vom Typ int
public int getX() // eine Methode, um den x-Wert
{ // abzuholen

return x;

}

public int getY() // eine Methode, um den y-Wert
{ // abzuholen
return y;

}

public void setX (int i) // eine Methode, um den x-Wert
{ // zu setzen

X = 1y
}
public void setY (int i) // eine Methode, um den y-Wert
{ // zu setzen

y = i;

public void verschiebe (int deltaX, int deltaY)

b
|

= x + deltaX;
=y + delta¥Y;

W
|

92 Kapitel 4

Die folgende Klasse TestPunkt soll testen, ob das Verschieben erfolgreich war:

// Datei: TestPunkt4.java

public class TestPunkt4
{

public static void main (String[] args)

{
Punkt4 p = new Punkti4(); // hiermit wird ein Punkt erzeugt
p.setX (1); // Aufruf der Methode setX()
p.setY (2); // Aufruf der Methode setY ()

System.out.println ("Die Koordinaten des Punktes p sind: ");
System.out.println (p.getX());
System.out.println (p.getY());

p.verschiebe (4, 1);

System.out.println ("Die Koordinaten des Punktes p sind: ");
System.out.println (p.getX());

System.out.println (p.get¥Y());

Die Ausgabe des Programms ist:

Die Koordinaten des Punktes p sind:
1

5
3

2

“ Die Koordinaten des Punktes p sind:

Was passiert nun beim Aufruf von verschiebe (4, 1)? Es werden die beiden
lokalen Variablen deltax und deltay angelegt. deltaX und deltayY werden auch
als formale Parameter bezeichnet. Diese werden mit den Werten der aktuellen
Parameter, d. h. mit dem aktuellen Parameter 4 und dem aktuellen Parameter 1
initialisiert. Was programmtechnisch beim Aufruf ablauft, kann man sich am besten
folgendermaBen veranschaulichen:

int deltaX = 4; // Anlegen der Variablen deltaX und Zuweisung der 4
int deltaY = 1; // Anlegen der Variablen deltaY und Zuweisung der 1

Durch diesen Ubergabemechanismus erhalten die lokalen Variablen deltax und
deltay definierte Werte flr die Abarbeitung des Methodenrumpfes.

4.6 Zusammengesetzte Objekte

Unter einem Kreiseck wird hier ein Quadrat — ein rechtwinkliges Viereck mit vier
gleich langen Seiten — verstanden, welches von einem Kreis so ausgeflllt ist, dass
die Seiten des Quadrats Tangenten an den Kreis sind. Mit anderen Worten, der Kreis
soll einen Inkreis darstellen. Der Mittelpunkt des Kreisecks soll im Ursprung eines
kartesischen Koordinatensystems liegen.

Einfache Beispielprogramme 93

Bild 4-7 Kreiseck mit Mittelpunkt im Ursprung des kartesischen Koordinatensystems

In Java wird ein Kreiseck erzeugt durch eine Klasse, die einen Kreis und ein Eck
(Quadrat) aggregiert. Das Eck selbst stellt eine Aggregation von 4 Punkten dar. Sind
die Klassen Eck und Kreis schon bekannt, so kann ein Objekt der Klasse Kreis—
eck aus Objekten der schon bekannten Klassen Kreis und Eck zusammengebaut
werden.

‘Kreiseck
| Referenz auf Kreis |/"\/,| :Kreis |
| Referenz auf Eck |/—\/v :Eck

| Referenz auf Punkt :Punkt

| Referenz auf Punkt :Punkt

| Referenz auf Punkt :Punkt

:Punkt

it

| Referenz auf Punkt

Bild 4-8 "GroB"-Objekt Kreiseck zusammengesetzt aus "Klein"-Objekten Kreis und Eck

Methodenaufrufe einer Anwendung gehen an das zusammengesetzte Objekt der
Klasse Kreiseck, z.B. "skaliere (2)", was eine VergroBerung um den Faktor 2
bedeuten soll. Die entsprechende Methode des zusammengesetzten Objektes leitet
diese Botschaft dann weiter an das aggregierte Objekt der Klasse Kreis und das
aggregierte Objekt der Klasse Eck durch Aufruf deren Skalierungsmethoden. Das
"GroB"-Objekt delegiert also den Aufruf, der an das "GroB"-Objekt selbst gerichtet
war, weiter an seine Komponenten, die "Klein"-Objekte. Dieses Prinzip wird als Dele-
gationsprinzip bezeichnet. Das folgende Java-Programm enthélt die Klassen
Punkt5, Eck, Kreis, KreisEck und KreisEckTest.

// Datei: Punkt5.java

public class Punkt5
{

private double x;
private double y;

94

Kapitel 4

}
!/

public Punkt5

{
this.x =
this.y

}

X7
yi

(double x,

public double getX()

{

return x;

}

public void setX

public double getY()

{

return y;

}

public void setY

{
y = Vi

}

Datei: Eck.java

public class Eck

{

private Punkt5 pl;
private Punkt5 p2;
private Punkt5 p3;
private Punkt5 p4;

public Eck
{

(double u)

System.out.println

pl = new
P2 = new
P3 = new
pr4 = new

}

public void

{
pl.setX
pl.setY
p2.setX
p2.setY
p3.setX
p3.setY
pé.setX
p4.setY

Punkt5 (u
Punkt5 (-
Punkt5 (u
Punkt5 (-

skaliere

// u soll eine halbe Seitenldnge
// des Quadrats darstellen

double vy)

(double u)

(double wv)

("Viereck wird erzeugt aus 4 Eckpunkten");

’
u,
14

u,

(double u)

* ok ok ok k% F %
cccoccocgocgocgocgc

u);

u);
-u);

-u) ;

Ne Ne Ne Ne Ne Ne N

~

Einfache Beispielprogramme 95

public double berechneFlaeche ()
{
return (2 * pl.getX()) * (2 * pl.get¥Y());
}
}

// Datei: Kreis.java

public class Kreis
{
private double radius;
static final double PI = 3.1415; // PI ist eine konstante
// Klassenvariable

public Kreis (double u)
{
radius = u;

}

public void skaliere (double u)
{
radius = radius * uj;

}

public double berechneFlaeche ()
{
return (PI * radius * radius);

}

public double getRadius()
{
return radius;
}
}

// Datei: Kreiseck.java

public class Kreiseck

{
private Kreis kreisref;
private Eck eckref;

public Kreiseck (double alpha) // alpha ist der Radius des
// Inkreises
{
kreisref = new Kreis (alpha);
eckref = new Eck (alpha);
}

public void skaliere (double u)
{
kreisref.skaliere (u); // Delegationsprinzip. Der Aufruf
eckref.skaliere (u); // skaliere (u) wird an die Komponenten
} // weitergeleitet.

96 Kapitel 4

public double flaechendifferenz()
{

return (eckref.berechneFlaeche () -
kreisref.berechneFlaeche());

}

public Kreis getKreis()

{

return kreisref;
}
}

// Datei: KreiseckTest. java

public class KreiseckTest

{

public static void main (String[] args)

{

Kreiseck kreiseckref = new Kreiseck (1);

System.out.println ("Radius = " +
kreiseckref.getKreis () .getRadius());
System.out.println ("Die Flachendifferenz ist " +

kreiseckref.flaechendifferenz());
kreiseckref.skaliere (2);

System.out.println ("Es wurde um den Faktor 2 skaliert");

System.out.println ("Radius = " +
kreiseckref.getKreis () .getRadius());

System.out.println ("Die Flachendifferenz ist " +

kreiseckref.flaechendifferenz());

Die Ausgabe des Programms ist:

Viereck wird erzeugt aus 4 Eckpunkten
Radius = 1.0
“ Die Flichendifferenz ist 0.8584999999999998

Es wurde um den Faktor 2 skaliert
Radius = 2.0
Die Fl&chendifferenz ist 3.4339999999999993

Beachten Sie, dass im Konstruktor des Kreisecks die Referenzen kreisref und
eckref des Kreiseck-Objektes initialisiert werden missen. Die Initialisierung erfolgt
durch Erzeugen eines Objektes der Klasse Kreis bzw. der Klasse Eck mit Hilfe des
new-Operators. Dabei wird der Referenz kreisref die Referenz auf das vom new-
Operator erzeugte Objekt der Klasse Kreis zugewiesen und der Referenz eckRef
die Referenz auf das vom new-Operator erzeugte Objekt der Klasse Eck. Genauso
mussen im Konstruktor von Eck die Referenzen auf die vier Eckpunkte durch Erzeu-
gen der Eckpunkte initialisiert werden.

4.7 Selbst definierte Untertypen durch Vererbung

Das folgende Programm soll eine erste Einfuhrung in die Vererbung sein. Eine
Klasse kann von einer so genannten Basisklasse, von der sie abgeleitet wird, den

Einfache Beispielprogramme 97

gesamten Code, der aus Datenfeldern und Methoden besteht, erben und kann
diesen Code durch zusatzliche Datenfelder und Methoden ergadnzen. Man spricht
dann davon, dass die abgeleitete Klasse die Basisklasse erweitert. Dies dient dazu,
um von einer bereits vorhandenen allgemeineren Klasse eine spezialisierte Klasse
abzuleiten. Mit anderen Worten, Vererbung dient dem Subtyping, d. h. dem Bilden
eines Untertyps flr einen vorhandenen Typ. Als Beispiel fir einen Typ soll die Klasse
Person dienen. Ein Untertyp von Person ist die Klasse student. Ein Objekt eines
Untertyps (einer abgeleiteten Klasse) muss auch als Objekt des allgemeineren Typs
(der Basisklasse) auftreten kénnen. Dies kommt auch darin zum Ausdruck, dass die
Beziehung zwischen den beiden Klassen als "is a"-Beziehung bezeichnet wird.
Eine "is a"-Beziehung ist in Bild 4-9 zu sehen. Sie wird dargestellt durch einen Pfeil
von der abgeleiteten Klasse zu der Basisklasse, wobei die Pfeilspitze ein nicht aus-
gefllltes Dreieck ist.

Durch Ableitung wird ein Untertyp geschaffen. Dies nennt man auch

\
Abgeleitet werden Klassen. Objekte kdnnen nicht abgeleitet werden. _ —
Subtyping. =

Person

nachname
vorname

setNachname()
setVorname()

print()

% "is-a"-Beziehung

Student
matrikelnummer

setMatrikelnummer()
printMatrikelnummer()

Bild 4-9 Ableitung der Klasse Student von der Klasse Person

Der Mechanismus der Vererbung hat auch den Vorteil, dass dem Programmierer
beim Erstellen eines Untertyps ein fehlertrachtiges "Copy and Paste" der Datenfelder
und Methoden des allgemeineren Typs in den Subtyp erspart bleibt.

Nun zum Beispiel des Studenten. Ein Student ist bekanntermaBen eine Person, die
studiert. Wenn man studieren méchte, muss man immatrikuliert werden und erhalt
eine Matrikelnummer. Kurz, wer eine Matrikelnummer hat, ist eingeschrieben und ist
somit ein Student. Also kann man einen Studenten beschreiben als eine Person, die
eine Matrikelnummer hat.

// Datei: Person.java
import java.util.Scanner;

public class Person

{

98 Kapitel 4
private String name; // Namen sind konstante Zeichenketten
private String vorname; // und kdénnen in einer Variable vom

}
/7

// Typ String gespeichert werden. Die
// Klasse String ist eine Bibliotheks-—

// klasse.
public Person ()
{
System.out.print ("\nNachnamen eingeben ");
System.out.print (" (Ende mit <CR>): ");

name = input();

System.out.print ("Vornamen eingeben ");

System.out.print (" (Ende mit <CR>): ");

vorname = input();
}
public String input () // bitte iiberlesen Sie diese Methode
{

Scanner eingabe = new Scanner (System.in);

return eingabe.next () ;

}

public void print ()

{
System.out.print ("\nNachname: " + name);
System.out.print ("\nVorname: " + vorname);

Datei: Student.java

public class Student extends Person

{

private String matrikelnummer;

public Student ()
{

super () ; // Aufruf des Konstruktors der Vaterklasse
System.out.print ("Matrikelnummer eingeben ");
System.out.print (" (Ende mit <CR>): ");

matrikelnummer = input();

}

public void printMatrikelnummer ()

{
System.out.print ("\nMatrikelnummer : " + matrikelnummer) ;

}

public static void main (String[] args)

{
System.out.print ("\nErfasse Person");
Person persl = new Person();

System.out.print ("\nErfasse Student");
Student studl = new Student();

Einfache Beispielprogramme 99

System.out.print ("\nAusgabe Person");
persl.print();

System.out.print ("\n\nAusgabe Student");
studl.print () ;
studl.printMatrikelnummer () ;

Die Ausgabe des Programms ist:

Erfasse Person
Nachnamen eingeben (Ende mit <CR>): Schmidt
Vornamen eingeben (Ende mit <CR>): Georg

Erfasse Student

Nachnamen eingeben (Ende mit <CR>): Meiser
Vornamen eingeben (Ende mit <CR>): Myriam
Matrikelnummer eingeben (Ende mit <CR>): 512346

Ausgabe Person
Nachname: Schmidt
Vorname: Georg

Ausgabe Student
Nachname: Meiser
Vorname: Myriam
Matrikelnummer : 512346

Beachten Sie, dass der Compiler automatisch den Default-Konstruktor der Vater-
klasse als erste Anweisung im Konstruktor der Sohnklasse aufruft, wenn es der Pro-
grammierer nicht durch den Aufruf super () selbst tut. Der Aufruf des Default-Kon-
struktors der Vaterklasse dient dazu, im Sohn-Objekt die Datenfelder, die vom Vater
geerbt sind, zu initialisieren. In Kapitel 11.3.2 wird der Aufruf von Konstruktoren einer
Basisklasse ausfiihrlich behandelt.

4.8 Die Methode printf() und die Klasse Scanner

Das Programm Fahrenheit4 verwendet anstelle der Methode print () die Metho-
de printf (). Die Methode printf () erwartet als ersten Parameter einen Format-
string, der von doppelten Hochkommata begrenzt ist. Innerhalb des Formatstrings
stehen Formatelemente, welche die Formatierung der Ausgabe regeln. Format-
elemente erkennt man an dem Zeichen %. Nach dem Formatstring kommen als wei-
tere Parameter die auszugebenden Variablen bzw. Ausdriicke, jeweils getrennt
durch ein Komma. Fir jeden auszugebenden Wert muss im Formatstring ein Format-
element vorhanden sein.

Vor dem Programm zwei Beispiele:

System.out.printf ("%3d", 10);
System.out.printf ("%6.2f %$6.2f", 1.0f, 2.2f);

100

Kapitel 4

Im ersten Beispiel wird die Zahl 10 rechtsbindig ausgegeben in ein Feld, das 3

Zeichen breit ist. Das d steht fiir dezimal. Da die Zahl 10 nicht die volle Feldbreite

ausfllt, wird links mit einem Leerzeichen aufgefillt. Im zweiten Beispiel werden die

float-Zahlen 1.0 und 2.2 mit jeweils 2 Stellen hinter dem Punkt ausgegeben. Fir

den Punkt selbst wird eines der genannten 6 Zeichen verbraucht. Damit verbleiben

vor dem Punkt noch 3 Zeichen, die von links mit Leerzeichen aufgeflillt werden. Wie

aus dem Formatstring ersichtlich ist, stehen zwischen den beiden Feldern fiir die
beiden Zahlen genau 3 Leerzeichen. Und nun das Programm Fahrenheit4:

// Datei: Fahrenheit4. java

public class Fahrenheit4

{

// Klassenmethode main()

zur Ausgabe der Temperaturtabelle

public static void main (String[] args)

{

// Konstanten
final int UPPER = 300;

final int LOWER
final int STEP = 20;

Il
o
~

// Variablen
int fahr;

int celsius;

// Anweisungen
fahr = LOWER;

while (fahr <= UPPER)
{

//
/7

obere Grenze

UPPER ist eine symbol. Konstante
300 ist eine literale Konstante
untere Grenze

Schrittweite

Definition der lokalen Variablen
fahr fiir die Temperatur in
Fahrenheit

Definition der lokalen Variablen
celsius fiir die Temperatur in
Celsius

als Anfangswert wird fahr
der Wert 0 zugewiesen

// nach dieser Formel berechnet sich der Celsius-Wert aus
// einem Fahrenheit-Wert
celsius = 5 * (fahr - 32)

/9

// die Werte von fahr und celsius werden jeweils rechtsblin-
// dig in einem 3 Zeichen breiten Feld ausgegeben

System.out.printf ("\n%3d

fahr = fahr + STEP;

0 =17
20 -6
40 4

280 137

300 148

/7

%$3d", fahr, celsius);
ndchsten Wert von fahr berechnen

Hier ein Auszug der Programmausgabe:

Einfache Beispielprogramme 101

Neben der einfachen Ausgabemdglichkeit mit printf () gibt es seit dem JDK 5.0
auch eine einfache Méglichkeit fir die Eingabe. Die Klasse Scanner kann aus einer
Instanz vom Typ InputStream (sieche Kap. 16.4.2.1), aber auch aus einer Datei
oder einer Variablen vom Typ String lesen. Dazu bietet sie verschiedene Metho-
den, mit denen Text und Werte primitiver Datentypen eingelesen werden kénnen.
Darliber hinaus bietet die Klasse Scanner die Mdglichkeit, die Eingabedaten mit
Hilfe von reguldren Ausdrlicken nach bestimmten Zeichenmustern zu durchsuchen.
Auf regulare Ausdricke kann an dieser Stelle nicht naher eingegangen werden. Es
wird hier auf die API-Dokumentation verwiesen.

Das folgende Beispiel zeigt das Einlesen einer Zeichenkette und von ganzen Zahlen
mit den Methoden next () und nextInt () der Klasse java.util.Scanner:

// Datei: EingabeTest.java
import java.util.Scanner;

public class EingabeTest
{
public static void main (String[] args)
{
// Erzeugen eines Objektes der Klasse Scanner, um von
// der Standard-Eingabe (Tastatur) einzulesen.
Scanner eingabe = new Scanner (System.in);

System.out.print ("Geben Sie Ihren Namen ein: ");
String name = eingabe.next () ;
System.out.println ("Hallo " + name +
"! Heute wollen wir zwei Zahlen addieren.");

System.out.print (name + ", gib die erste Zahl ein: ");
int zahll = eingabe.nextInt();
System.out.print ("OK. Und nun die zweite Zahl: ");
int zahl2 = eingabe.nextInt();
System.out.println ("Das Ergebnis ist: " + zahll +
"+ " + zahl2 + " =" + (zahll + zahl2));

Die Ausgabe des Programms ist:

Geben Sie Thren Namen ein: Martin
Hallo Martin! Heute wollen wir zwei Zahlen addieren.
II Martin, gib die erste Zahl ein: 5

OK. Und nun die zweite Zahl: 4
Das Ergebnis ist: 5 + 4 = 9

Wie aus dem Programm ersichtlich ist, werden Zeichenketten mit der Methode
next () eingelesen, int-Werte mit der Methode nextInt (). Analog gibt es weitere
Methoden wie nextFloat (), nextDouble () und nextByte ().

Die vollstandigen Mdglichkeiten der Klasse java.util.Scanner kénnen der API-
Dokumentation entnommen werden.

102

Kapitel 4

4.9 Ubungen

Aufgabe 4.1: Schleifen

411

Summe der Zahlen 1 bis 9
Berechnen Sie die Summe der Zahlen 1 bis 9.

Hinweis: Fihren Sie eine Variable summe vom Typ int ein. Diese Variable
soll den Wert der Summe reprasentieren. Setzen Sie den Anfangswert von
summe auf 0. Erhéhen Sie dann den Wert von summe bei jedem Schleifen-
durchgang um 1. Geben Sie bei jedem Durchlauf den Wert der Summe aus,
um zu verfolgen, ob Ihr Programm richtig rechnet.

Fakultat von n berechnen

Schreiben Sie ein Programm, das die Fakultat von n in einer Schleife berech-
net. Die Variable n soll dabei vom Typ int sein. Fir n dirfen Sie einen
beliebigen Wert auswahlen. Geben Sie das Ergebnis am Bildschirm aus.

Hinweis: n!l=1*2*3*...*(n-1) *n
Fibonacci-Folge

Schreiben Sie ein Programm, das die Fibonacci-Folge auf der Konsole aus-
gibt. FUhren Sie hierzu 3 Variablen von Typ int ein. Die Berechnung der
Folgezahlen soll in einer Schleife gemacht werden.

Hinweis: Fir die ersten beiden Zahlen sollen die Werte 0 und 1 ange-
nommen werden. Jede weitere Zahl ist die Summe ihrer beiden Vorganger.
Eine Fibonacci-Folge sieht wie folgt aus: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

GroBter gemeinsamer Teiler

In Kapitel 1.2.1 wurde der Algorithmus von Euklid zur Bestimmung des
gréBten gemeinsamen Teilers vorgestellt. Entwickeln Sie eine Anwendung,
welche diesen Algorithmus implementiert. Berechnen Sie den gr6Bten
gemeinsamen Teiler von:

24 und 9

Beachten Sie, dass das in Kapitel 1.3.4 vorgestellte Nassi-Shneiderman-
Diagramm bei der Implementierung eine zusatzliche Hilfe darstellt.

Aufgabe 4.2: Zeichen

4.21

Zeichen zahlen

Erweitern Sie das Programm Zeichen aus Kapitel 4.2, sodass die Anzahl
der eingegebenen Leerzeichen ermittelt wird.

Einfache Beispielprogramme 103

4.2.2 Zeilen zdhlen

Erweitern Sie das Programm Zeichen aus Kapitel 4.2, sodass die Anzahl
der eingegebenen Zeilen sowie die Anzahl der Zeichen pro Zeile ermittelt
wird.

Aufgabe 4.3: Klassen und Objekte
4.3.1 Erste Versuche mit der Klasse Person

Schreiben Sie eine Klasse Person mit den Datenfeldern:

private String name;
private String vorname;

und mit den Methoden:

public void setName (String n)
public String getName ()

public void setVorname (String n)
public String getVorname ()

Testen Sie diese Klasse mit der Klasse TestPerson:

// Datei: TestPerson.java

public class TestPerson

{

public static void main (String[] args)
{

String vorname;

String name;

Person schoettle;

schoettle = new Person();

schoettle.setName ("Schottle");
schoettle.setVorname ("Lothar");

name = schoettle.getName () ;

vorname = schoettle.getVorname();
System.out.println ("Vorname: " + vorname);
System.out.println ("Name: " + name);

}
4.3.2 Definition einer Klasse flir Schuhe
a) Definieren Sie eine Klasse schuh mit den folgenden Eigenschaften:

® cinem Datenfeld groesse vom Typ int,

® je einem Datenfeld hersteller und modellbezeichnung vom Typ
String,

104

Kapitel 4

® den folgenden Methoden zum Setzen und Lesen der Datenfelder:

public void setGroesse (int groesse)

public void setHersteller (String hersteller)
public void setModellbezeichnung (String modell)
public int getGroesse|()

public String getHersteller ()

public String getModellbezeichnung()

Beachten Sie, dass kein direkter Zugriff auf die Datenfelder eines Objek-
tes durch Methoden auBerhalb der Klasse erfolgen darf.

b) Schreiben Sie eine Testklasse, die nur eine Methode main () enthalt.
Innerhalb dieser Methode soll ein Objekt der Klasse schuh erzeugt wer-
den, auf das mit der Referenz s gezeigt wird. Setzen Sie nun in der Test-
klasse die Daten des Schuhs mit Hilfe obiger Methoden auf folgende Da-
ten (GroBe 42, Hersteller "Mike" und Modellbezeichnung "Air Ultramatic").
Erweitern Sie zusatzlich die Klasse schuh um die Methode print (), um
alle Datenfelder eines Schuhs auf dem Bildschirm auszugeben.

Aufgabe 4.4: Konstruktoren

4.41

442

Konstruktoren filir Schuhe

Erganzen Sie die Klasse schuh um einen Default-Konstruktor. Fligen Sie
zur Kontrolle des Konstruktoraufrufs eine Protokoll-Ausgabe ein. Uberladen
Sie den Default-Konstruktor mit einem (oder mehreren) Konstruktor(en) mit
Parametern. Fligen sie wiederum Protokoll-Ausgaben ein und Uberzeugen
Sie sich, welcher Konstruktor bei der Erzeugung der Schuhe (z. B. durch new
Schuh (), new Schuh (44), new Schuh (41, "Panther")) aufgeru-
fen wird.

Uberladene Konstruktoren fiir die Klasse Punkt2
Schreiben Sie firr die Klasse Punkt2:

® cinen Konstruktor ohne Parameter, der die Koordinaten auf x = 0 und y
= 0 initialisiert,

® einen Konstruktor mit einem Parameter, der den x-Wert des Punktes mit
dem Ubergebenen Wert initialisiert und die y-Komponente auf 0 setzt,

® cinen Konstruktor mit 2 Parametern, der den x-Wert und den y-Wert des

Punktes mit den Gbergebenen Werten initialisiert.
Fehlende Stellen sind durch markiert.

// Datei: Punkt2.java

public class Punkt2
{
private int x;
private int y;

Einfache Beispielprogramme 105

public Punkt2 ()
{

System.out.println ("Konstruktor ohne Parameter");

}

public Punkt2 (int u)
{

System.out.println
("Konstruktor mit einem Parameter: x = " + u);

}

public Punkt2 (int u, int v)
{

System.out.print ("Konstruktor mit zwei Parametern: ");

System.out.println ("x =" + u + "y =" + v);

}

public int getX()
{

return x;

}

public int getY()
{

return y;

}

public void print()
{

="+ x);
"t y)g

System.out.println ("x
System.out.println ("y

}

Schreiben Sie eine Testklasse TestPunkt2, die 3 Punkte in der Methode
main () erzeugt. Der erste Punkt soll mit dem Konstruktor ohne Parameter,
der zweite Punkt mit dem Konstruktor mit 1 Parameter und der dritte Punkt
mit dem Konstruktor mit 2 Parametern initialisiert werden. AnschlieBend sind
die Koordinaten aller 3 Punkte auszugeben.

Aufgabe 4.5: Klasse Scanner

451

Durchschnittsberechnung

Schreiben Sie ein Programm, welches mit Hilfe der Klasse Scanner drei
float-Zahlen von der Tastatur einliest und dann deren Durchschnitt auf
dem Bildschirm ausgibt.

106

Kapitel 4

452

Flachenberechnung — Konstruktor mit Parametern

Schreiben Sie eine Klasse Rechteck mit den Instanz-Variablen a und b und
eine weitere Klasse Quadrat mit der Instanz-Variable a. Beide Klassen
sollen eine Methode zum Berechnen der Flache getFlaeche () haben.

In einer main ()-Methode soll der Benutzer nun die Mdglichkeit haben, fir
ein Rechteck-Objekt und ein Quadrat-Objekt Werte einzugeben. Die
Eingabe soll mittels der bereits bekannten Java-Klasse scanner erfolgen.
Die eingegebenen Werte sollen dem jeweiligen Objekt beim Konstruktor-
aufruf Gbergeben werden.

In der main () -Methode sollen getrennt die beiden Flacheninhalte sowie der
gesamte Flacheninhalt am Bildschirm ausgegeben werden. Hier das Pro-
gramm:

// Datei: Flaechenberechnung.java
import java.util.Scanner;

class Quadrat
{
// Hier sind Sie an der Reihe

}

class Rechteck

{
// Hier sind Sie gefragt
}

public class Flaechenberechnung

{
public static void main (String[] args)
{

System.out.println ("Flaechenprogramm\n") ;
// Hier sind Sie am Zug

}

Aufgabe 4.6: Instanzmethoden

4.6.1

Ein einfacher Taschenrechner

Schreiben Sie einen einfachen Taschenrechner, der die vier Grundrechen-
arten Addition, Subtraktion, Multiplikation und Division unterstutzt. Beim Star-
ten des Taschenrechners wird der Benutzer gefragt, welche Rechenope-
ration er ausfiihren méchte. Die Auswahl der Rechenoperation erfolgt durch
die Eingabe einer ganzen Zahl zwischen 1 und 4.

AnschlieBend werden vom Taschenrechner zwei Zahlen a und b vom Typ
int eingelesen, die als Operanden fir die ausgewahlte Rechenoperation
verwendet werden.

Einfache Beispielprogramme

107

Zum Bestimmen des Ergebnisses missen Sie ein Objekt der Klasse Rech-
ner erzeugen und dort die entsprechende Instanzmethode aufrufen.

Der Taschenrechner wird solange ausgefiihrt, bis der Benutzer die Frage
zum Beenden des Taschenrechners mit der Zahl 0 beantwortet.

Achten Sie bei der Division darauf, ob das richtige Ergebnis zurlickgeliefert

wird.

Fehlende Stellen sind im Programmcode mit .

// Datei Taschenrechner.java

import java.util.Scanner;

public class Taschenrechner

{

public static void main

{

Scanner eingabe =

int
float

do

{
System.
System.
System.
System.

System.
System.
System.
System.
System.
auswahl

System.out.print

out
out
out
out

out
out
out
out
out

’

.println
.println
.println
.println

.println
.println
.println
.println
.print ("Treffen Sie Ihre Auswahl: "
eingabe.nextInt () ;

(String[] args)

. gekennzeichnet.

("\n ");
("Einfacher Taschenrechner");

(" ==\n");
("\nFolgende Operationen sind "
+ "verfuegbar:");
("Addition........ii.. [r1m;
("Subtraktion............ [21");
("Multiplikation......... [31™");
("Division............... [41");

)

("Bitte geben Sie die "

"erste Zahl ein: ");

a = eingabe.nextInt();

System.out.print

("Bitte geben Sie die "

"zweite Zahl ein: ");

b = eingabe.nextInt();

Rechner rechner =

if (auswahl == 1)
{
ergebnis = . ;
System.out.println
(a+"+ " +Db+ " ="+ ergebnis);
}
else if (auswahl == 2)

{

ergebnis

108

Kapitel 4

4.6.2

System.out.println
(a+" -"4+Db+ " ="+ ergebnis);
}
else if (auswahl == 3)

{
ergebnis = ;
System.out.println
(a+"*" + b+ " ="+ ergebnis);

}

else if (auswahl == 4)

{
ergebnis = ;
System.out.println
(a+ "/ "+ b+ " ="+ ergebnis);

}

else

{
System.out.println
("\nUnbekannte Auswahl getroffen !");

}
System.out.println
("\nWollen Sie den Taschenrechner beenden?");

System.out.print ("So geben Sie '0' ein: ");
prgEnde = eingabe.nextInt();
}while (.);

}

class Rechner

{
public int addition (.)
{

}

public int subtraktion (.)
{

}

public int multiplikation (.)
{

}

public float division (.)
{

}

Ein erweiterter Taschenrechner

Erweitern Sie den Taschenrechner aus Aufgabe 4.6.1 um die Funktionalitat
zur Berechnung von Zinseszinsen. Verwenden Sie dazu folgende Formel:

Einfache Beispielprogramme 109

4.6.3

Ko: Anfangskapital (= 0)

Kn: Endkapital nach n Jahren

p: Zinsatz (=0 %)

n: Laufzeit der Verzinsung nach n ganzen Jahren (= 0)

Kn=Ko* (1 +p/100)"
Beachten Sie folgende Punkte:

® Sie missen das Menu der verfligbaren Rechenoperationen erweitern.

® Die Berechnung der Zinseszinsen benétigt 3 anstatt 2 Operanden, d. h.
die Anzahl der einzulesenden Zahlen ist abhangig von der ausgewahlten
Rechenoperation.

® Die obige Zinseszins-Formel enthélt einen Term mit einer Potenz. Ver-
wenden Sie zum Potenzieren NICHT die entsprechende Methode der
Java Bibliotheksklasse Math. Erweitern Sie stattdessen die Klasse
Rechner um eine einfache Hilfsmethode, welche die Potenz mit Hilfe
einer Schleife berechnet. Die Hilfsmethode muss keine Sonderfalle
abdecken, es genlgt wenn sie mit positiven Exponenten und Basen
funktioniert. Tipp: (...)% = (...) * (...) * (...).

® Die Klasse Rechner muss um eine Instanzmethode zum Berechnen von
Zinseszinsen erweitert werden. Diese Methode verwendet die oben ge-
nannte Hilfsmethode.

Ein einfacher Temperaturkonverter

Verwenden Sie den einfachen Taschenrechner aus Aufgabe 4.6.1 als Vor-
lage und schreiben Sie das Programm so um, dass daraus ein einfacher
Temperaturkonverter entsteht. Der Temperaturkonverter liest einen Tem-
peraturwert (Datentyp float) von der Kommandozeile ein. AnschlieBend
kann der Benutzer aus einem Men(auswahlen, ob die Temperatur von Grad
Celsius nach Grad Fahrenheit oder umgekehrt umgerechnet werden soll.
Nach der Umrechnung wird das Ergebnis wieder auf der Kommandozeile
ausgegeben.

Die Temperaturumrechnung erfolgt gemaf den folgenden Formeln:

°C = (°F - 32) * 5/9
°F = °C* 1,8 + 32

Beachten Sie folgende Punkte:

® Das Auswahlmen(der verfigbaren Umrechnungen soll so oft angezeigt
werden bis eine gultige Option ausgewahlt wird.

® Die Klasse Rechner wird durch eine Klasse Konverter ersetzt, welche
die oben genannten Temperaturumrechnungen in Form von Instanz-
methoden bereitstellt.

® Nach der Ausgabe des Ergebnisses wird der Benutzer gefragt, ob das
Programm beendet werden soll. Dieses Mal soll das Programm nicht
durch Eingabe der Zahl 0 beendet werden, sondern durch Eingabe des
Zeichens '5'.

Kapitel 5

Lexikalische Konventionen

5.1
5.2
5.3
5.4

Zeichenvorrat von Java
Der Unicode
Lexikalische Einheiten
Ubungen

5 Lexikalische Konventionen

Nachdem jetzt schon eine gewisse Erfahrung im Programmieren vorliegt, sollen in
den Kapiteln 5.1 bis 5.3 die "Rechtschreibregeln” von Java behandelt werden. Wer
nur fir "die Schule programmiert” und viel Zeit hat, kann sich auch vom Compiler be-
lehren lassen. Da Fehlermeldungen in manchen Fallen wie das Orakel von Delphi
klingen kdnnen, kann die Fehlerbeseitigung durchaus zu einer spannenden Ge-
schichte werden. Wer industriell programmieren méchte und von vornherein még-
lichst keine Fehler machen will, wird sich aus Effizienzgriinden zuerst mit den Regeln
befassen. Es bleiben ihm dann einige langwierige Diskussionen mit dem Compiler
erspart.

"Lexikalisch" bedeutet "ein Wort (eine Zeichengruppe) betreffend", ohne den Textzu-
sammenhang (Kontext), in dem dieses Wort steht, zu berlicksichtigen. Im Folgenden
werden also die Konventionen, um Wérter in der Programmiersprache Java zu
bilden, besprochen.

baut ist, werden als lexikalische Einheiten bzw. als Token bezeich-

\
Die Worter oder Zeichengruppen, aus denen ein Programmtext aufge- _ —
net.

I\

5.1 Zeichenvorrat von Java

Ein Java-Programm wird als Programmtext aus einer Folge von lexikalischen Einhei-
ten geschrieben. In der Regel wird ein solches Programm am Bildschirm erstellt. Es
erhalt damit zwangslaufig eine Zeilenstruktur*?. Eine jede Anweisung endet mit
einem Strichpunkt. Normalerweise schreibt man in eine Zeile nur eine einzige Anwei-
sung. Eine Anweisung kann sich aber auch Uber mehrere Zeilen erstrecken oder
mehrere Anweisungen kénnen in einer Zeile stehen. Jede lexikalische Einheit darf
nur Zeichen aus dem Zeichenvorrat (Zeichensatz) der Sprache umfassen.

Java benutzt den Unicode-Zeichensatz. ‘/\

Der Zeichenvorrat von Java umfasst:

e Buchstaben
lateinische Buchstaben nach ASCIl und ISO-Latin-1*® als GroB- und Kleinbuch-
staben:

ABCDETFGHTIJI KILMNOPORSTUVWIZXYZ
a b cdef ghdijk lmnopdgrs¢tuvwzxy z
den Unterstrich _, das Dollarzeichen $, das Pfundzeichen £ und weitere Wah-

2 Eine Zeile wird vom Programmierer durch Betatigung der <RETURN>-Taste abgeschlossen.

*|SO-Latin-1 ist ein 8 Bit-Zeichensatz.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_5,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Lexikalische Konventionen 113

rungssymbole sowie weitere Buchstaben aus dem Unicode (siehe Kap. 5.2) wie
z. B. griechische Symbole
o Ziffern
Ziffern nach ASCIl und ISO-Latin-1
0123456789
und weitere Ziffern aus dem Unicode wie z. B. thailandische Ziffern

e das Leerzeichen (blank)

e die Steuerzeichen
Zeilenendezeichen, horizontaler Tabulator und Seitenvorschub

® die Sonderzeichen flr die Satzzeichen (Interpunktionszeichen, engl.
separators)
O £y gy
e die Sonderzeichen flr die Operatoren
=>< ! ~?2 & | +-*/ "%
e {(ir Ersatzdarstellungen das Sonderzeichen
\

e flr Zeichen das einfache Anfiihrungszeichen

® und fur Strings (konstante Zeichenketten) das doppelte Anfithrungszeichen

n

In Java gehdren der Unterstrich _ und das $-Zeichen sowie weitere Buchstaben aus
dem Unicode mit zu den Buchstaben des Zeichensatzes von Java. Das Semikolon
; dient als Satzzeichen und dabei hauptsachlich zum Abschluss einer Anweisung.
Die Sonderzeichen fir die Operatoren werden gebraucht, um Operatoren darzu-
stellen wie z. B. den Zuweisungsoperator = oder das logische UND, welches durch
den Operator && bzw. den Operator* s dargestellt wird. Verschiedene Sonderzei-
chen finden sich sowohl bei den Operatoren, als auch bei den Satzzeichen. Ein
Beispiel hierfiir sind die runden Klammern, die als Operator flr einen Methodenaufruf
und als Satzzeichen zum EinschlieBen der Bedingung bei einer Selektion Verwen-
dung finden. Zeichen werden begrenzt durch einfache Hochkommata, wie z. B. 'a".
Konstante Zeichenketten werden begrenzt durch Anflhrungszeichen, wie z.B.
"zeichenkette". Das Sonderzeichen \ wird fir die Ersatzdarstellungen benétigt,
die im Folgenden vorgestellt werden. Dieses Sonderzeichen wird als Backslash
(Gegenschragstrich) bezeichnet.

Java-Programme kann man vollstandig in ASCII-Zeichen schreiben. N

Ist ein gewiinschtes Unicode-Zeichen nicht auf der Tastatur verflg- —
bar —eine Tastatur hat Ublicherweise einen sehr eingeschrankten @

Zeichensatz — so kann dieses Zeichen durch eine Ersatzdarstellung Y
der Form \uxix,x3x4 durch ASCII-Zeichen dargestellt werden. =

Der Backslash \, das u und die Zeichen %1, x,, x5 und x, sind ASCII-Zeichen. x,, x,,
x3 und x4 sind dabei hexadezimale Zeichen, d. h. Zeichen aus dem Wertevorrat 0, 1,
2,...,9,A,B, ..., F. Die Buchstaben 2 ... F sind Abklrzungen. 2 entspricht der 10, B

* Siehe Kap. 7.6.5.

114 Kapitel 5

der 11, ... F der 15. Es spielt dabei keine Rolle, ob die Buchstaben a ... ¥ gro3 oder
klein geschrieben werden. a ist &quivalent zu A, b ist &quivalent zu B, usw.

Die Ersatzdarstellung

\UX1X,X3X4

entspricht dem Unicode-Zeichen, welches an der Position mit der — -
dezimalen Nummer - ~
%0 16% 4+ %, * 162 4+ x5 * 16 + %, * 16° =

des Unicode-Zeichensatzes steht.

GroB- und Kleinschreibung

Java ist case sensitiv. Das bedeutet, dass GroB- und Kleinbuchstaben in Java
streng unterschieden werden. Alle reservierten Wérter missen klein geschrieben
werden. Namen, die sich nur durch GroB- bzw. Kleinschreibung unterscheiden,
stellen verschiedene Namen dar. So ist beispielsweise der Name alpha ein anderer
Name als Alpha.

5.2 Der Unicode

Java basiert auf einem Zeichensatz, der geeignet ist, viele Zeichen aufzunehmen.
Der gewahlte Zeichensatz ist der so genannte Unicode. Unter der Adresse

http://www.unicode.org
kann man im Internet Informationen zu diesem Code abrufen®.

Der Unicode war urspringlich ein 16 Bit-Code, bestehend aus 2 Bytes. Der Unicode-
Standard erlaubt in der Zwischenzeit auch Zeichen, deren Darstellung mehr als 16
Bit erfordert. Der Zahlenraum des Unicode erstreckt sich seit dem Unicode-Standard
2.0 von 0 bis 10FFFF46, wodurch insgesamt 1.114.112 Zeichen méglich sind. Der
Unicode-Standard definiert drei Unicode-Codierformen, namlich UTF-8*, UTF-16
und UTF-32. Java verwendet fir Zeichen die UTF-16-Darstellung, wobei Zeichen, die
einem Wert gréBer als FFFF entsprechen, als ein Paar von Zeichen dargestellt wer-
den. Das heiBt, dass Java mit 16-Bit-Unicode-Zeichen arbeitet. Die ersten 128 Zei-
chen des verwendeten klassischen Unicodes sind die Zeichen des 7-Bit-ASCII-
Zeichensatzes und seine ersten 256 Zeichen die Zeichen des Zeichensatzes 1SO-
Latin-1.

5.3 Lexikalische Einheiten

Ein Programm besteht flr einen Compiler zun&chst nur aus einer Folge von Zeichen.
Der Scanner-Anteil des Compilers hat die Aufgabe, Zeichengruppen zu finden. Zei-

> Der Unicode Standard, Version 5.0, ist als Buch erhaltlich [7].
* UTF = Unicode Transformation Format.

Lexikalische Konventionen 115

chengruppen werden gefunden, indem man nach den Trennern sucht, beispielsweise
einem Leerzeichen (Whitespace-Zeichen) oder einem Kommentar. Whitespace-
Zeichen werden in Kapitel 5.3.1.1, Kommentare in Kapitel 5.3.1.2 behandelt. Stehen
zwischen zwei Trennern noch weitere Zeichen, die keine Trenner enthalten, so ist
eine lexikalische Einheit (Token) gefunden. Diese lexikalischen Einheiten werden
dann vom Parser auf die Einhaltung der Syntax geprift. Lexikalische Einheiten sind
die Worter einer Sprache.

5.3.1 Trenner

Eine lexikalische Einheit wird gefunden, indem man die Trenner findet, die sie be-
grenzen.

\ |
I\\\\\@
/)

Far den Compiler ist beispielsweise s sB das logische UND (s&) zwischen 2 und B,
da Operatoren Trenner sind. Denkt man an den menschlichen Leser des Pro-
gramms, so empfiehlt es sich, nicht die Trenner-Eigenschaft der Operatoren zu ver-
wenden, sondern nach jeder lexikalischen Einheit Leerzeichen einzugeben, damit

116 Kapitel 5

das Programm leichter lesbar ist. Im genannten Beispiel also besser A s& B schrei-
ben!

5.3.1.1 Whitespace-Zeichen

Zu den Whitespace-Zeichen gehoéren Leerzeichen, horizontaler Tabulator, Zei-
lentrenner und Seitenvorschub.

Zwischen zwei aufeinander folgenden lexikalischen Einheiten kann eine beliebige
Anzahl an Whitespaces eingefligt werden. Damit hat man die Mdoglichkeit, ein Pro-
gramm optisch so zu gestalten, dass die Lesbarkeit verbessert wird. Ublicherweise
wird vor jeder Methode mindestens eine Leerzeile eingefligt oder innerhalb eines
Blocks*’ etwas eingeriickt.

5.3.1.2 Kommentare
Java hat drei verschiedene Arten von Kommentaren:

e Kommentarblock,
® Zeilenkommentar
e und Dokumentationskommentar.

Kommentare dienen dazu, die Bedeutung von Anweisungen und Programmeinheiten
schriftlich direkt an der entsprechenden Stelle im Quellcode festzuhalten. Da Kom-
mentare Trenner sind, dirfen sie nicht innerhalb von Zeichenkonstanten (siehe Kap.
5.3.5.4) oder konstanten Zeichenketten (siehe Kap. 5.3.5.5) auftreten.

Kommentarblock

Ein Kommentarblock wird durch die Zeichen /* eingeleitet und durch die Zeichen */
beendet. Der ganze Block zwischen /* und */, der auch Uber mehrere Zeilen gehen
kann, wird vom Compiler als Trenner betrachtet und ignoriert. Kommentarblécke dir-
fen nicht verschachtelt werden.

Beispiel:

/* dies ist ein Kommentar */
/* dieser Unfug /* ist auch ein Kommentar */

Zeilenkommentar

Alle Zeichen von // bis zum Zeilenende werden vom Compiler ignoriert.

// Hier ist die ganze Zeile Kommentar
int x; // Hier ist nur ein Teil der Zeile Kommentar

*” Ein Block wird begrenzt durch die Blockbegrenzer { und }. Die Definition eines Blockes wird in

Kap. 9 behandelt.

Lexikalische Konventionen 117

Dokumentationskommentar

Mit Hilfe des Dokumentationskommentars kann man im Gegensatz zum Kommen-
tarblock und zum Zeilenkommentar nicht nur den Quellcode kommentieren, sondern
es besteht auch die Mdéglichkeit, den Dokumentationskommentar unter Verwendung
eines Werkzeugs zu einer richtigen Dokumentation in Form von HTML-Dateien
aufbereiten zu lassen. Das Werkzeug javadoc, das Teil des JDK ist, filtert alle
Informationen, die sich zwischen den Kommentarsymbolen /** und */ befinden,
heraus und legt diese Information in HTML-Dateien ab. Diese HTML-Dateien kénnen
dann mit einem Web-Browser angesehen werden.

Dokumentationskommentare kdnnen nur direkt vor einer Klassendeklaration,
einem Datenfeld, einer Methode oder einem Konstruktor stehen*®. Das folgende
Beispiel zeigt eine Klasse, die mit Dokumentationskommentaren versehen ist:

// Datei: DocuTestl.java

/** Ich bin ein Kommentar und erldutere die Klasse DocuTestl */
public class DocuTestl

{

/** Ich bin ein Kommentar und erldutere das Datenfeld x */
public int x;

/** Ich bin ein Kommentar und erldutere die Methode
* meth ()
*/

public void meth()

{

// Weitere Anweisungen
}
}

Um die Dokumentationskommentare zu extrahieren, geht man am besten wie im
folgenden Beispiel vor:

® |n das Verzeichnis wechseln, in dem die .java-Datei liegt — hier die Datei
DocuTestl. java.

® |n der Kommandozeile javadoc DocuTestl. java eingeben.

Es ist zu beachten, dass nur aus den Quellcode-Dateien *.java Dokumentations-
kommentare extrahiert werden kénnen, da in den .class-Dateien diese Information
gar nicht mehr vorhanden ist.

Es werden mehrere HTML-Dateien erzeugt, die alle in das aktuelle Verzeichnis
gelegt werden. Es lohnt sich auf jeden Fall, alle diese Dateien mit einem Web-
Browser anzuschauen. Die wesentliche Information steht in der Datei Datei-
name.html — hier also in der Datei DocuTest1.html (siehe Bild 5-1).

*® Sie kénnen auch vor Schnittstellen stehen. Schnittstellen (siehe Kap. 14) sind an dieser Stelle noch
nicht bekannt.

118 Kapitel 5

Package [9JET1] Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES HNO FRAMES AllClasses
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Class DocuTestl

java.lang.Object
L—DocuTestl

public class DocuTestl
extends java.lang.Object

Ich bin ein Kommentar und erlautere die Klasse DocuTestl

DocuTestl ()

void|meth ()

Ich bin ein Kommentar und erlzutere die Methode meth()

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Bild 5-1 Ausschnitt aus der Datei DocuTest1.html in einem Web-Browser

Zusatzlich zu den Kommentaren von Klassen, Datenfeldern, Methoden und
Konstruktoren kénnen noch Ubergabeparameter, Rickgabewerte und vieles mehr
genauer durch so genannte Tags beschrieben werden. Diese Tags werden innerhalb
der Dokumentationskommentare fiir Klassen, Datenfelder, Methoden und
Konstruktoren verwendet. Die folgende Tabelle zeigt einen Ausschnitt der
vorhandenen Tags und beschreibt, mit welchem Kommentartyp (Klasse, Datenfeld
oder Methode) diese eingesetzt werden kénnen:

Lexikalische Konventionen 119

| Tag Bedeutung Kommentartyp

@see erstellt einen Link zu anderen Klassen |Klasse, Datenfeld, Methode
@version gibt die Version an Klasse

@author gibt den Autor an Klasse

@param beschreibt einen Parameter néher Methode

@return beschreibt den Rickgabewert Methode

@exception | beschreibt die Exception naher Methode

@deprecated | markiert ein Element als deprecated®™ |Klasse, Datenfeld, Methode

Tabelle 5-1 Tags zum Einsatz mit Dokumentationskommentaren

Eine ausfuhrliche Beschreibung der oben genannten und eine Auflistung aller verfiig-
baren Tags kann auf der javadoc-Homepage

http://download.oracle.com/javase/1.5.0/docs/guide/javadoc

nachgelesen werden. Im folgenden Beispiel werden einige der aufgelisteten Tags
verwendet:

// Datei: DocuTest2.java

/** Ich bin ein Kommentar und erldutere die Klasse DocuTest?2
* @version 1.0
* @author Rainer Brang
*/

public class DocuTest2

{

/** Ich bin ein Kommentar und erl&utere das Datenfeld x */
public int x;

/** Erlduterung der Methode meth ()
* (@param para Hier die Beschreibung des Parameters
* @return Kein Riickgabewert
*/

public void meth (int para)

{

// Anweisungen
}
}

Dem Werkzeug javadoc kénnen beim Aufruf einige Optionen mitgegeben werden,
mit deren Hilfe sich die Ausgabe in die HTML-Dateien steuern lasst. Wird fir obiges
Beispiel einfach javadoc DocuTest2.java eingegeben, so enthalten die erzeug-
ten HTML-Dateien die Informationen tber Autor und Version nicht. Durch Eingabe
von javadoc -version -author DocuTest2.java werden auch diese Infor-
mationen extrahiert. Wer mehr (ber die Optionen erfahren moéchte, gibt auf der
Kommandozeile einfach nur javadoc ein. Dann wird eine Auflistung der zulassigen
Optionen und deren Beschreibung ausgegeben.

** Engl. fiir missbilligt. Beschreibt, dass das markierte Element nicht mehr verwendet werden soll, da
es in neueren Versionen der Bibliothek nicht mehr vorhanden sein muss.

120 Kapitel 5

5.3.2 Namen
Namen bezeichnen in Java:

Klassen,

Methoden,

Konstruktoren,

Datenfelder,

lokale Variablen,

Parameter (einer Methode, eines Konstruktors oder eines cat ch-Konstruktes®™),
Schnittstellen

und Pakete.

Ein Name (Bezeichner) besteht aus einer beliebig langen Zeichenfolge aus Buch-
staben und Ziffern, die mit einem Buchstaben beginnt. In Java zéhlen — wie bereits
erwadhnt — auch der Unterstrich _ und das $-Zeichen sowie andere Wahrungs-
symbole zu den Buchstaben. Zu den bereits vom ASCII-Code bekannten Zeichen
kommen die Unicode-spezifischen Buchstaben und Ziffern hinzu.

Generell wird in Java und natilrlich auch bei Namen zwischen GroB- und Klein-
buchstaben unterschieden. Reservierte Wérter (siehe Kap. 5.3.4) und die literalen
Konstanten true, false und null dirfen nicht als Namen verwendet werden.

5.3.3 Programmier-Style Guide

Eine Gestaltungsrichtlinie (engl. Style Guide) fur das Erstellen von Programmen
umfasst Darstellungsregeln, welche die Lesbarkeit der Programme erleichtern sollen.
Solche Regeln beruhen immer auf einer gegenseitigen Ubereinkunft (Konvention).
Die Anwendung dieser Regeln ist nicht zwingend, da nicht die Korrektheit, sondern
die Lesbarkeit der Programme von ihrer Einhaltung abhangt. Ein Programmierer, der
sich an den im Projekt vereinbarten Style Guide halt, arbeitet teamorientiert, da seine
Programme Ubersichtlich sind.

Zum Style Guide gehdrt auch eine Konvention Uber das Einrlicken in Blécken oder
dass vor der Definition einer Methode eine Leerzeile stehen soll, damit man leichter
erkennt, dass jetzt eine neue Methode kommt.

Fir Namen hat sich in Java der folgende Programmierstil durchgesetzt:

Name Konvention Beispiel
Variablennamen Kleinbuchstaben variable
Datenfeldnamen Kleinbuchstaben vorname
Methodennamen Kleinbuchstaben methode ()
Klassennamen 1. Buchstaben groB3, Rest klein | Person
symbolische Konstanten® |alle Buchstaben groB MAXIMUM

Tabelle 5-2 Style Guide-Konventionen

% Siehe Kap. 13.2.
" Siehe Kap. 5.3.5.

Lexikalische Konventionen 121

Aus mehreren Wértern zusammengesetzte Namen werden ohne Unterstrich ge-
schrieben. Dabei wird ab dem zweiten Wort jeweils der erste Buchstabe eines
Wortes groB3 geschrieben. Fir das erste Wort gilt die normale Konvention. Beispiele
hierfir sind dritteWurzel als Variablennamen oder verschiebeSchwer-—
punkt () als Methodennamen. Im Falle der symbolischen Konstanten werden, da
alle Buchstaben groB geschrieben sind, zur optischen Trennung der Worter wie im
Falle von MAx_VALUE Unterstriche verwendet.

5.3.4 Reservierte Worter

Die Schliisselwérter in der folgenden Tabelle sind in Java reserviert. Sie missen
stets klein geschrieben werden. Die Bedeutung dieser Schliisselwdrter ist festgelegt
und kann nicht verandert werden. Eine vollstandige Erklarung dieser Schliisselworter
kann erst in spateren Kapiteln erfolgen. Hier die Schliisselwérter:

abstract Dient zur Deklaration abstrakter Klassen und Methoden.

assert Hiermit lassen sich Zusicherungen (Assertions) gezielt Gberprifen.

boolean Einfacher Java-Datentyp, der einen Booleschen Wahrheitswert
enthalt.

break Zum Herausspringen aus Schleifen oder der switch-Anweisung.

byte Einfacher Java-Datentyp, der eine 8-Bit-Zahl enthalt.

case Auswahl-Fall in der switch-Anweisung.

catch Leitet einen Programmblock zur Ausnahmebehandlung ein.

char Einfacher Java-Datentyp, der ein 16-Bit-Unicode-Zeichen enthalt.

class Dient zur Deklaration einer Klasse.

const Dieses Schlisselwort ist reserviert, wird aber nicht benutzt.

continue Starten eines neuen Durchgangs in einer Schleife.

default Standard-Einsprungmarke in einer switch-Anweisung.

do Teil einer Schleifen-Anweisung.

double Einfacher Java-Datentyp, der eine 64-Bit-FlieBkommazahl enthalt.

else Teil einer bedingten Anweisung.

enum Dient zur Definition eines Aufzahlungstyps.

extends Dient zur Angabe der Vaterklasse bei der Klassendeklaration.

final Modifikator fur Klassen, Methoden, Datenfelder und Variablen.

finally Dient zur Einleitung des final1ly-Blocks einer try-Anweisung.

float Einfacher Java-Datentyp, der eine 32-Bit-FlieBkommazahl enthalt.

for Schleifenanweisung.

goto Dieses SchlUsselwort ist reserviert, wird aber nicht benutzt.

if Teil einer bedingten Anweisung.

implements Gibt bei der Klassendeklaration an, welche Schnittstelle imple-
mentiert wird.

import Dient zur Bekanntgabe von Klassen und Schnittstellen aus ande-
ren Paketen.

instanceof Operator, der Uberprift, ob eine Referenz auf ein Objekt zeigt, das
vom Typ einer bestimmten Klasse ist.

int Einfacher Java-Datentyp, der eine 32-Bit-Ganzzahl enthalt.

interface Dient zur Deklaration einer Schnittstelle.

long Einfacher Java-Datentyp, der eine 64-Bit-Ganzzahl enthalt.

native Dient als Modifikator fir Methoden, die in einer anderen Sprache
als Java implementiert sind.

new Erzeugt ein neues Objekt auf dem Heap.

122 Kapitel 5

package Dient zur Deklaration eines Paketes.

private Zugriffsmodifikator fir Methoden, Konstruktoren, Datenfelder und
Elementklassen.

protected Zugriffsmodifikator fir Methoden, Konstruktoren, Datenfelder und
Elementklassen.

public Zugriffsmodifikator fir Methoden, Konstruktoren, Datenfelder, Ele-
mentklassen und Klassen.

return Anweisung fir den Rucksprung aus einer Methode zur aufru-
fenden Methode.

short Einfacher Java-Datentyp, der eine 16-Bit-Ganzzahl enthalt.

static Dient als Modifikator fiir Methoden, Datenfelder und Klassen und
wird auch beim statischen Initialisierungsblock verwendet.

strictfp Kennzeichnet eine Methode, die Zwischenwerte von Operationen
nach IEEE 754 (siehe [10]) berechnet.

super Erlaubt den Zugriff im eigenen Objekt auf Gberschriebene Metho-
den und verdeckte Datenfelder, die von der Vaterklasse geerbt
wurden. Weiterhin wird mit super der Aufruf des Konstruktors der
Vaterklasse ermdglicht.

switch Auswahlanweisung.

synchronized Dient zur Thread-Synchronisation.

this Bezeichnet eine Referenz auf das eigene Objekt oder dient zum
Aufruf eines klasseneigenen Konstruktors.

throw Dient zum Auswerfen einer Ausnahme.

throws Dient zur Auflistung der Ausnahmen bei der Deklaration von
Methoden.

transient Kennzeichnung fur Datenfelder, die bei der Serialisierung nicht
bertcksichtigt werden sollen.

try Kennzeichnet einen Programmblock, in dem eine Ausnahme
auftreten kann.

void Dient zur Anzeige, dass eine Methode keinen Riickgabewert hat.

volatile Kennzeichnet ein Datenfeld, das gleichzeitig von mehreren
Threads verandert werden kann.

while Schleifenanweisung.

Tabelle 5-3 Reservierte Worter

5.3.5 Literale und symbolische Konstanten

In Java gibt es zwei Arten von Konstanten:

® literale Konstanten
® und symbolische (benannte) Konstanten.

Symbolische Konstanten haben einen Namen, der ihren Wert représentiert.
Symbolische Konstanten sind Variablen, die nach ihrer Initialisierung nicht veran-
dert werden diirfen. Zur Definition von symbolischen Konstanten wird in Java das
Schllsselwort £inal verwendet. Im folgenden Beispiel wird die symbolische Kon-
stante UPPER definiert:

final int UPPER = 300;

Lexikalische Konventionen 123

Das Schlisselwort final, welches die Konstanz gewéahrleistet, kann auf Klassenva-
riablen, Instanzvariablen und lokale Variablen (siehe Kap. 9.1.3) in Methoden ange-
wandt werden.

Symbolische Konstanten, die zusammengehéren und oft gebraucht werden, werden
in der Regel in einer Klasse gruppiert wie in folgendem Beispiel:

public final class Math®?

{
public static final double PI = 3.141592654;

public static final double E = 2.718281828;

}

Da es unerwiinscht ist, dass Konstanten als Instanzvariablen angelegt werden —
Konstanten sind fiir jedes Objekt einer Klasse gleich — werden Konstanten als
Klassenvariablen angelegt. Damit werden sie nur einmal angelegt, wie viele Objekte
es auch immer von dieser Klasse gibt. Klassenvariablen werden in Java mit Hilfe des
Schllsselwortes static erzeugt.

Literale Konstanten — oft auch nur Konstanten oder Literale genannt — haben
keinen Namen, sie werden durch ihren Wert dargestellt. So ist im letzten Beispiel die
Zahl 3.141592654 eine literale Konstante. Uberall, wo von der Syntax her Kon-
stanten erlaubt sind, kénnen auch konstante Ausdriicke® stehen. Dies liegt daran,
dass ein konstanter Ausdruck ein Ausdruck ist, an dem nur Konstanten beteiligt sind.
Uberall, wo von der Syntax her Konstanten oder konstante Ausdriicke erlaubt sind,
kann man literale Konstanten oder symbolische Konstanten einsetzen. Es gibt ver-
schiedene Arten von literalen Konstanten:

Ganzzahlige Konstanten,
Gleitpunktkonstanten,

Boolesche Konstanten,
Aufzédhlungskonstanten (bei enum),
Zeichenkonstanten,

String-Konstanten (konstante Zeichenketten)
und die Nullkonstante.

Jede dieser Konstanten hat einen definierten Datentyp. Aufz&hlungskonstanten wer-
den in Kapitel 6.6 besprochen, die anderen werden im Folgenden betrachtet.

5.3.5.1 Ganzzahlige Konstanten

Ganzzahlige Konstanten wie 1234 sind vom Typ int. Wenn der Typ-Suffix 1 oder
L an eine Konstante angehangt ist, so ist sie vom Typ long.

*2 Die Klasse Math stellt eine Bibliotheksklasse dar.

% Ein konstanter Ausdruck ist eine Verkniipfung von Konstanten mit Operatoren und runden Klam-
mern. Konstante Ausdrlcke spielen eine Rolle bei den case-Marken der switch-Anweisung
(siehe Kap. 8.2.3).

124 Kapitel 5

Zahlensysteme

Ganzzahlige Konstanten kénnen in verschiedenen Zahlensystemen aufgeschrieben
werden. Neben der normalen Dezimaldarstellung ist auch die Angabe als oktale
(Basis 8) oder hexadezimale Konstante (Basis 16) mdglich. Eine ganzzahlige dezi-
male Konstante ist die Konstante 0, sowie Konstanten, die mit einer Ziffer zwischen
1 und 9 beginnen. Konstanten, die mit einer 0 beginnen und weitere Ziffern haben,
werden oktal interpretiert. Oktalzahlen haben die Ziffern 0, 1, 2, ..., 7. Beginnt die
Konstante mit 0x oder 0x, also einer Null, gefolgt von einem groBen oder einem
kleinen x, so wird die Zahl hexadezimal interpretiert. Hexadezimale Ziffern sind: 0,
1, ..., 9, a (oder »), b (oder B), c (oder C), d (oder D), e (oder E) und £ (oder F).

Mit Java 7 kénnen ganzzahlige Konstante als bindre Konstante aufgeschrieben
werden. Beginnt eine Konstante mit 0b der 0B, so wird die Zahl binér interpretiert.
Binare Ziffern sind 0 und 1.

Eine allein stehende 0 wird vom Compiler als Dezimalzahl betrachtet, 00 als Oktal-
zahl, 0x0 als Hexadezimalzahl. Alle drei Zahlen haben denselben Wert. Ansonsten
gilt natdrlich, dass mehrstellige, gleichlautende Ziffernfolgen in den drei Zahlen-
systemen unterschiedliche Werte haben. Dezimale Konstanten sind immer positiv
oder null, oktale und hexadezimale Konstanten kénnen positiv, null oder nega-
tiv sein. Der Hintergrund, warum oktale und hexadezimale Konstanten negativ wer-
den kénnen, dezimale Konstanten aber nicht, ist, dass int-Werte in der so genann-
ten Zweierkomplementdarstellung berechnet werden, wobei der Compiler fir oktale
und hexadezimale Konstanten beliebige Werte zuldsst, solange sie sich mit 32 Bit
darstellen lassen, und bei dezimalen Konstanten nur die Werte von 0 bis zur gré3ten
positiven Zahl 2147483647. Beispiele flir ganzzahlige Konstanten sind:

14 int-Konstante in Dezimaldarstellung mit dem Wert 14 dezimal

-14 positive int-Konstante, auf die der Vorzeichenoperator -
angewandt wird

014 int-Konstante in Oktaldarstellung mit dem Wert 12 dezimal

0x14 int-Konstante in Hexadezimaldarstellung mit dem Wert 20 dezimal

14L long-Konstante in Dezimaldarstellung mit dem Wert 14

Die hexadezimale und oktale Schreibweise findet ihren Einsatz bei Bitmustern, an-
sonsten ist die dezimale Schreibweise vorzuziehen. Auf eine Konstante kann der
negative Vorzeichenoperator angewendet werden. Das Ergebnis dieser Operation
ist der mit (-1) multiplizierte Wert der Konstanten.

Den Wert einer oktalen bzw. hexadezimalen Zahl im Dezimalsystem kann man mit
Hilfe einer Stellenwert-Tabelle berechnen. Solange das oberste Bit — bei einer int-
Konstanten das 32. Bit, bei einer 1ong-Konstanten das 64. Bit — auf 0 gesetzt ist, ist
die Berechnung des dezimalen Wertes einer oktalen bzw. hexadezimalen Konstan-
ten ganz einfach, so wie im folgenden Beispiel:

16° 16 16°
2 0 a

Tabelle 5-4 Stellenwert-Tabelle flir Hexadezimalzahlen

Lexikalische Konventionen 125

So berechnet sich der dezimale Wert der in Tabelle 5-4 dargestellten Hexadezimal-
zahl 20a zu 2*16%+0*16'+10*16° = 522. In entsprechender Weise kann auch bei
einer anderen Basis als 16 wie z. B. 8 vorgegangen werden. Ist das oberste Bit in der
Zweierkomplementdarstellung auf 1 gesetzt, so ist es am einfachsten, eine Wand-
lung in Bits durchzufihren. Ein Beispiel hierflr zeigt Bild 5-2:

1111 1111 11141 1111 1111 1111 1111 1111
f f f f f f f f

Bild 5-2 Die Konstante Oxffffffrf

Eine Ziffer einer hexadezimalen Zahl ist eine Folge von 4 Bits. Eine Folge von 4 Bits
wird auch als Halbbyte bezeichnet. 0xf entspricht dem Bitmuster 1111.
OxfEfEfEE£E ist ein Bitmuster aus 8 Halbbytes, welches — wie in Bild 5-2 gezeigt —
eine Folge von 32 Einsern ist.

Bits werden Ublicherweise von rechts nach links durchnummeriert. Das Bit ganz
rechts wird als Bit 0, das Bit ganz links in Bild 5-2 als Bit 31 bezeichnet. Der Stellen-
wert von Bit 31 des Typs int hat im Rahmen der Zweierkomplementdarstellung ein
negatives Vorzeichen. Der Stellenwert ist -2°'. Alle anderen Bits haben den iiblichen
positiven Stellenwert. Wie man aus dem Beispiel mit 8 Bits in Kapitel 6.2.2 ableiten
kann, ist der Wert des angegebenen Bitmusters gleich minus Eins (-1).

Mit Java 7 wird die Angabe von ganzzahligen Konstanten vereinfacht. Als visuelles
Trennglied kann der Unterstrich _ an jeder Stelle in einer Ziffernfolge verwendet wer-
den. So ist die folgende Schreibweise beispielsweise mit Java 7 zulassig:

int personalNummer = 50_775_13;
Durch die Schreibweise mit Unterstrich kann die Lesbarkeit flir den Menschen erhéht

werden. Der Unterstrich darf nur zwischen Ziffern in einer ganzzahligen Konstanten
auftauchen.

5.3.5.2 Gleitpunktkonstanten

Eine Gleitpunktkonstante (FlieBkommakonstante) wird in Dezimalform angegeben
und kann aus

® ciner Mantisse,
® cinem Exponential-Anteil
® und aus einer angehéangten Typkennung fiir einen Gleitpunkttyp (Typ-Suffix)

bestehen, wie das folgende Beispiel zeigt:

1.23 e-8 £

et

Mantisse Exponential- Typ-Suffix
Anteil

126 Kapitel 5

Beispiele fiir Gleitpunktkonstanten sind:

500. .5 -500.6 5E2 5.e2 .5E3 1f

Der Teil einer FlieBkommazahl vor dem E bzw. e ist die Mantisse. Der Exponential-
Anteil besteht aus einem e oder E gefolgt von einer ganzen Zahl, die den Exponen-
ten darstellt. Wird ein Exponent angegeben, so ist die Mantisse mit 10Exponent z
multiplizieren. Der Dezimalpunkt der Mantisse, der Exponent und der Typ-Suffix
kénnen fehlen, aber nicht alle drei zugleich. Entweder der ganzzahlige Anteil vor dem
Punkt oder der Dezimalbruch-Anteil nach dem Dezimalpunkt darf fehlen, aber nicht
beide zugleich.

Eine Gleitpunktkonstante hat den Typ double. Durch die Angabe eines Typ-
Suffixes £ oder F wird sie zu float. Es ist auch mdglich, den Typ-Suffix d oder D
fir double anzuhangen, wie z. B. 1D. Die Gleitpunktkonstanten £1oat und double
werden nach dem Format IEEE 754 reprasentiert®®, wobei der Datentyp float 32
Bits und der Datentyp double 64 Bits hat.

Symbolische Gleitpunkt-Konstanten

In den Wrapper-Klassen® Float und Double gibt es die in Tabelle 5-5 aufgefiihrten
symbolischen Gleitpunkt-Konstanten. In der Wrapper-Klasse Float sind die symbo-
lischen Gleitpunkt-Konstanten dabei vom Typ float und in der Wrapper-Klasse
Double vom Typ double. Dass ein und dieselbe Konstante das eine Mal vom Typ
float und das andere Mal vom Typ double ist, darf nicht verwirren. Angesprochen
werden die Konstanten Uber den Namen der jeweiligen Klasse, also z.B. als
Float.MIN_VALUE bzw. Double.MIN_VALUE. Damit gibt es keine Doppeldeutig-
keit.

Konstanten-Name Bedeutung Wert

MIN_VALUE Kleinster positiver Wert des | 1.4E-45f flr f1oat
Typs float bzw. double, |5E-324 fiir double
der von Null verschieden ist.

MAX_VALUE GroBter positiver endlicher | 3.4028235E+38f flir f1oat
Wert des Typs float bzw. |1.7976931348623157E+308
double. fir double

NEGATIVE_INFINITY |Negativ Unendlich des Typs |-1.0f/0.0f flr f1loat
float bzw. double. -1.0/0.0 fUr double

POSITIVE_INFINITY |Positiv Unendlich des Typs |1.0f/0.0f fiir float
float bzw. double. 1.0/0.0 fir double

NaN Not-a-Number, d. h. eine 0.0f/0.0f flr f1loat

Zahl auBerhalb des Wer- 0.0/0.0 flir double
tebereichs der f1oat- bzw.
double-Zahlen.

Tabelle 5-5 Symbolische Konstanten fir den Typ float und double

% Siehe Kap. 6.2.3.
% Siehe Kap. 6.8.

Lexikalische Konventionen 127

Der Wert NaN kann beispielsweise verwendet werden, um einen nicht zuldssigen
Wert anzuzeigen.

5.3.5.3 Boolesche Konstanten

Logische Ausdriicke wie z. B. a > b (a gréBer b) kdnnen prinzipiell nur zwei Werte
annehmen. Entweder ist ein logischer Ausdruck wahr oder er ist nicht wahr, d. h. er
ist falsch. Die Werte wahr bzw. true und falsch bzw. false werden als Wahr-
heitswerte oder Boolesche Werte® bezeichnet. In Java werden die literalen Kon-
stanten true und false als Wahrheitswerte verwendet. Die Konstanten true und
false tragen keinen numerischen Wert.

5.3.5.4 Zeichenkonstanten

Eine Zeichenkonstante — auch Zeichenliteral genannt — ist ein Zeichen, einge-
schlossen in einfache Anfihrungszeichen.

In Java ist eine Zeichenkonstante vom Typ char. ﬁ/\

Mit Zeichenkonstanten kann man rechnen wie mit ganzen Zahlen. Man kann sie in
ganzzahligen Ausdriicken verwenden. So hat beispielsweise das Zeichen '0' im
Unicode-Zeichensatz den Wert 48. Meistens verwendet man Zeichenkonstanten
jedoch, um Zeichen zu vergleichen.

Das folgende Beispiel zeigt die Ausgabe von Zeichen:

// Datei: Zeichen.java

public class Zeichen
{
public static void main (String[] args)

{

char c;

int d = 0;

c = 131;

System.out.println (c); // Ausgabe des Zeichens 3
c = 49;

System.out.println (c); // Ausgabe des Zeichens 1
System.out.println (d); // Ausgabe der int-Zahl 0
d=d + c;

System.out.println (d); // Ausgabe der int-Zahl 49

% Benannt nach dem engl. Mathematiker George Boole (1815-1864), dem Begriinder der mathema-
tischen Logik.

128 Kapitel 5

Die Ausgabe des Programms ist:
3
1

0

49

In Java reprasentiert ein Zeichenliteral immer genau ein Zeichen. Zeichenkonstanten
dirfen das Zeichen ' sowie Zeilentrenner nicht enthalten. Mit Hilfe von Ersatzdar-
stellungen kann man auch nicht darstellbare Zeichen aufschreiben. So entspricht \n
einem Zeilentrenner. Ein Zeilentrenner ist ein auf dem Papier unsichtbares Zeichen
(white space). \n sorgt daflr, dass die Ausgabe am linken Rand und auf einer neuen
Zeile fortgesetzt wird. Das n in \n kommt von new line = Zeilenendezeichen.

Ersatzdarstellungen in Zeichenkonstanten und konstanten Zeichenketten

Ersatzdarstellungen — auch Fluchtzeichenfolgen (engl. Escape-Sequences) ge-
nannt — wie \n kénnen in Zeichenkonstanten und in konstanten Zeichenketten ver-
wendet werden.

Ersatzdarstellungen werden stets mit Hilfe eines Backslash \ (Gegenschrégstrich)
konstruiert. Mit solchen Ersatzdarstellungen kann man Steuerzeichen oder Zeichen,
die auf dem Eingabegerat nicht vorhanden oder nur schwer zu erhalten sind, dar-
stellen.

Bezeichnung ASCII-Zeichensatz | Erlduterung
Char. Dez.
\n Zeilentrenner NL (LF) 10
(New Line bzw. Line Feed)
\t Tabulatorzeichen HT 9
(Horizontal Tabulator)
\b Backspace BS 8
\r Wagenricklauf CR 13
(Carriage Return)
\f Seitenvorschub FF 12
(Form Feed)
A\ Gegenschragstrich \ 92
(Backslash)
\! Anfuhrungszeichen ' 39 |wird gebraucht fur das
(Einfaches Hochkomma) Zeichen einfaches Hoch-
komma
\" Doppelanfihrungszeichen |" 34 |wird gebraucht fur das
(Doppeltes Hochkomma) Zeichen doppeltes Hoch-
komma in Zeichenketten
\0;0,05 |oktale Zahl 01, 0z, 03 aus {0,...,7}

Tabelle 5-6 Ersatzdarstellungen fiir Zeichenkonstanten und konstante Zeichenketten

Die Ersatzdarstellungen in Tabelle 5-6 werden zwar als zwei Zeichen oder mehr
im Programmcode hingeschrieben, werden aber vom Compiler wie ein Zeichen

Lexikalische Konventionen 129

behandelt. Das erste Zeichen muss immer ein Backslash sein. Das zweite bzw.
die weiteren Zeichen legen die Bedeutung der Ersatzdarstellung fest.

Die Ersatzdarstellung \' stellt ein einfaches Hochkomma dar und die Ersatzdar-
stellung \o;0,0; besteht aus einem Gegenschragstrich \ gefolgt von 1, 2 oder 3
Oktalziffern, die als Wert des gewlinschten Zeichens interpretiert werden. Auf diese
Art kann eine Zeichenkonstante direkt (ber ihre oktale Zahlendarstellung angegeben
werden. Werden drei Oktalziffern angegeben, so kann die erste Ziffer nur eine 0, 1, 2
oder 3 sein. Damit ist 255 die gréBte durch eine Fluchtzeichenfolge darstellbare Zahl.

Unicode-Ersatzdarstellungen

Die Unicode-Ersatzdarstellung \uxix,xs;xs — bestehend aus einem Gegenschrag-
strich \ gefolgt von dem ASCII-Zeichen u und 4 hexadezimalen Ziffern — wird als
Wert des gewlinschten Unicode-Zeichens interpretiert.

Solche Unicode-Ersatzdarstellungen sind nicht beschrankt auf Zei-

chenkonstanten oder konstante Zeichenketten. Sie kénnen auch in ‘/\
Namen (Bezeichnern) auftreten. =

Die Ersatzdarstellung \ux;x,xsx, ermoglicht, dass jedes beliebige

Java-Programm vollstandig durch ASCII-Zeichen geschrieben werden N /\
kann. =)

5.3.5.5 Konstante Zeichenketten

Konstante Zeichenketten (String-Konstanten, String-Literale) sind Folgen von
Zeichen, die in doppelten Anflhrungszeichen eingeschlossen sind. Die Doppelan-
flhrungszeichen sind nicht Teil der Zeichenketten, sondern begrenzen sie nur.
Beispiele fiir konstante Zeichenketten sind etwa "Max" oder "Moritz".

In Java sind konstante Zeichenketten Instanzen der Klasse string. Mit anderen
Worten, wird eine konstante Zeichenkette in Programmen angegeben, so wird bei
der Abarbeitung des Programms ein Objekt der Klasse String erzeugt, das mit den
Zeichen der konstanten Zeichenkette initialisiert wird. Innerhalb einer Zeichenkette
diurfen Zeichen sowie Ersatzdarstellungen stehen.

Mit Hilfe des Verkettungsoperators (Konkatenationsoperators) + kann man
mehrere Zeichenketten verketten. So hat der Ausdruck

"Max & " + "Moritz"
die gleiche Wirkung wie

"Max & Moritz"

130 Kapitel 5

\'/

Ist eine Zeichenkettenkonstante langer als eine Zeile, so stellt man sie
als Summe ihrer Bestandteile verknipft durch den Verkettungsopera-
tor + dar.

e o~

=

In Zeichenketten sollten bei oktalen Ersatzdarstellungen stets drei /A\
Ziffern angegeben werden, z. B. \033 statt \33. Dadurch wird ver- /g sicht!
mieden, dass eine eventuell nachfolgende Ziffer zur Ersatzdarstellung \V/
gerechnet wird. 9

5.3.5.6 Nullkonstante

Die Nullkonstante (nul1-Referenz)

null

ist vom Typ null. Wie noch behandelt wird (siehe Kap. 10.4.1), initialisiert Java
automatisch die Datenfelder von Objekten und Klassen mit Default-Werten. Handelt
es sich bei den Datenfeldern um Referenzen, so werden sie mit der nul1-Referenz
initialisiert.

5.3.6 Satzzeichen

Ein Satzzeichen (Interpunktionszeichen) ist ein Zeichen, das keine Operation spezifi-
ziert. Es hat eine unabhéangige syntaktische und semantische Bedeutung. Dasselbe
Symbol kann auch als Operator oder Teil eines Operators vorkommen. In Java gibt
es die folgenden Satzzeichen:

tr 0O {r ,
Tabelle 5-7 Satzzeichen der Sprache Java

Die Satzzeichen [], () und {} treten dabei stets in Paaren auf. So werden die ecki-
gen Klammern fir die Definition der GroBe eines Arrays, die runden Klammern bei-
spielsweise flr das Aufnehmen einer Bedingung in einer if-Anweisung und die
geschweiften Klammern als Blockbegrenzer und fir Initialisierungslisten gebraucht.
Das Komma wird beispielsweise benétigt als Trenner von Listenelementen etwa in
der Parameterliste von Methoden, der Strichpunkt als Ende einer Anweisung und der
Punkt z. B. zur Trennung eines Pakethamens von einem Unterpaketnamen bzw.
einem Klassen- oder Schnittstellennamen. Satzzeichen wirken als Trenner.

5.3.7 Operatoren

Operatoren werden auf Operanden angewandt, um Operationen durchzufiihren.
Operanden kdnnen beispielsweise Konstanten, Variablen oder auch komplizierte
Ausdriicke sein. Durch Operationen werden in der Regel Werte gebildet, aber auch
so genannte Nebeneffekte (siehe Kap 7.3 und Kap. 7.8) durchgefihrt. In Java gibt es
die folgenden Operatoren:

Lexikalische Konventionen 131

= > < ! ~ ? :

= >= <= lI= && || ++ —-—= () [] .

+ - * / & | ~ % << >> >>>
+= —= *= = &= |= "= %= <KLK= >>= >>>=
(type) instanceof new

Tabelle 5-8 Operatoren der Sprache Java

Operatoren wirken als Trenner. Operatoren werden detailliert in Kapitel 7 bespro-
chen.

5.4 Ubungen

Aufgabe 5.1: Zeichensatz von Java

5.1.1
512

51.4

Auf welchem Zeichensatz basiert Java?

Welche Zeichen verbergen sich hinter folgenden Werten des Unicodes?

a) dezimal 65

b) dezimal 122

c) dezimal 33

Wie kann ein Zeichen eingegeben werden, welches nicht auf der Tastatur

vorhanden ist?

Wie kénnen in Java folgende Zeichen in einem String dargestellt werden?

a) <RETURN>-Steuerzeichen zum Sprung des Cursors in eine neue Zeile

b) <TAB>-Steuerzeichen zur Positionierung des Cursors auf die néchste
Tabulatorposition

c) doppeltes Hochkomma, d. h. das Zeichen "

d) Gegenschragstrich (Backslash), d. h. das Zeichen \

e) eine oktale Zahl

Aufgabe 5.2: Lexikalische Einheiten

5.2.1

5.2.2
5.2.3

524
5.2.5
5.2.6
5.2.7

Nennen Sie verschiedene Arten von literalen Konstanten und jeweils ein
Beispiel.

Was sind symbolische Konstanten?

Nennen Sie alle méglichen Satzzeichen und erklaren Sie kurz, was ein
Satzzeichen ist.

Nennen Sie die zwei literalen Konstanten fir Wahrheitsausdriicke.

Nennen Sie fiinf reservierte Schllisselworter.

Welche drei Arten von Kommentaren gibt es in Java?

In Kapitel 4.6 wurde das Programm Kreiseck vorgestellt. Alle Klassen dieses
Programms sollen in dieser Aufgabe mit Dokumentationskommentaren
versehen werden. Was ein Dokumentationskommentar ist, wurde in Kapitel
5.3.1.2 anhand eines Beispiels erlautert.

Nachdem Sie die einzelnen Klassen und ihre Methoden dokumentiert haben,
erzeugen Sie mit Hilfe des Werkzeugs javadoc eine HTML-Hilfe. Der Aufruf
sollte wie folgt aussehen:

javadoc Punkt5.java Eck.java Kreis.java Kreiseck.java
KreiseckTest. java

Kapitel 6

Datentypen und Variable

6.1 Klassifikation der Datentypen von Java
6.2 Einfache Datentypen

6.3 Klassen-Typ

6.4 Variable

6.5 Array-Typ

6.6 Aufzdhlungstyp

6.7 Zeichenketten

6.8 Wandlung von Datentypen

6.9 Ubungen

6 Datentypen und Variable

Datentypen stellen den Bauplan fiir Variable dar. Alle Variablen eines Datentyps
haben dieselbe Darstellung im Arbeitsspeicher, d. h. dieselbe Anzahl von Speicher-
zellen und dieselbe Interpretation der einzelnen Bits. Verschiedene Variable kénnen
dabei individuelle Werte tragen. Eine Klassifikation der in Java verfugbaren Daten-
typen finden Sie im anschlieBenden Kapitel.

6.1 Klassifikation der Datentypen von Java

Die Datentypen in Java kdnnen, wie in Bild 6-1 dargestellt, klassifiziert werden. Es
wird generell zwischen konkreten und generischen Datentypen unterschieden. Den
Unterschied zwischen konkreten und generischen Datentypen missen Sie an dieser
Stelle noch nicht verstehen. Die generischen Datentypen gibt es in Java erst seit
dem JDK 5.0. Auf generische Datentypen — und damit auch auf den Unterschied zu
den konkreten Datentypen — wird erst in Kapitel 17 eingegangen.

Datentyp

konkreter Typ generischer Typ

einfacher Referenztyp
(elementarer, primitiver) Typ

TN

logischer Typ numerischer Typ Array-Typ Aufzéhlungs- Schnittstellen- Klassen-Typ

boolean ///////\\\\\\\\\ Typ Typ

Integer-Typen Gleitpunkt-Typen

char - float
- byte - double

short

int

long

Bild 6-1 Klassifikation der Datentypen

Es stehen also zuerst die konkreten Datentypen im Vordergrund. Bei den konkreten
Datentypen unterscheidet Java zwischen:

e einfachen (elementaren, primitiven) Datentypen
® und Referenztypen.

Einfache Datentypen sind in Java durch die Sprache vorgegeben. Selbst definierte
einfache Datentypen gibt es in Java nicht.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_6,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Datentypen und Variable 135

In Java gibt es die folgenden einfachen Datentypen: |

® die ganzzahligen Typen byte, short, int, long, char, - -
~
e die Gleitpunkttypen f1oat und double - Y

® und den logischen Typ boolean.

Das Schlisselwort void stellt keinen Datentyp dar, sondern ist lediglich eine Kenn-
zeichnung fir Methoden, die keinen Rickgabewert haben.

Wahrend die einfachen Datentypen in Java durch die Sprache vorgegeben sind, sind
die Referenztypen in Java so genannte selbst definierte Datentypen. Eine Aus-
nahme bildet der so genannte null-Typ, der nur die null-Referenz als Wert
zulasst. Die nul1-Referenz wird durch die Nullkonstante nul1l reprasentiert.

\
Referenztypen sind in Java — bis auf den Typ null — vom Program- _ —
mierer selbst definierte Datentypen oder Datentypen der Klassen- -
bibliothek wie z. B. Bibliotheksklassen.

{ny

Bei den Referenztypen kdnnen Klassen-Typ, Schnittstellen-Typ, Aufzahlungstyp und
Array-Typ unterschieden werden. Nach der Erlauterung der einfachen Datentypen in
Kapitel 6.2 erfolgt in Kapitel 6.3 eine erste Einfuhrung in die Definition der Klassen-
Typen. Schnittstellen-Typen werden erst in Kapitel 14 behandelt. Der Array-Typ wird
in Kapitel 6.5 und der Aufzahlungstyp in Kapitel 6.6 erlautert.

6.2 Einfache Datentypen

Tabelle 6-1 fasst die einfachen Datentypen von Java zusammen und gibt den
zulassigen Wertebereich fiir jeden Typ an:

Typ Inhalt Wertebereich

boolean |true oder false true und false

char 16_Bit-Unicode 0 bis 65535
Zeichen

byte 8 Bit-Ganzzahl 27 bis +27-1
mit Vorzeichen

short 16 Bit-Ganzzahl 215 bis 42151
mit Vorzeichen

int 32 Bit-Ganzzahl 231 pis 42311
mit Vorzeichen

long 64 Bit-Ganzzahl 288 pis 4088 1
mit Vorzeichen

float Gleitpunkttyp 3.4*10% bis +3.4*10%
mit Vorzeichen

double | Gleitpunkttyp 1.7*10% bis +1.7*10%®
mit Vorzeichen

Tabelle 6-1 Einfache Datentypen

136 Kapitel 6

6.2.1 Der logische Typ boolean

Logische Variable sind in Java vom Typ boolean. Der Typ boolean hat die beiden
Werte true und false. Diese Werte stellen Konstanten dar, keine Schlisselwdrter.

6.2.2 Die Integer-Typen byte, short, int, long, char

In Java werden die Datentypen byte, short, int, long, char auf allen Rechnern
gleich dargestellt. Die Typen byte, short, int und long sind ganze Zahlen in der
Zweierkomplementdarstellung und umfassen 8, 16, 32 bzw. 64 Bits. Der Datentyp
char umfasst 16 Bits. Er hat als einziger ganzzahliger Datentyp kein Vorzeichenbit
und dient zur Darstellung von Unicode-Zeichen.

Ganze Zahlen werden meist im so genannten Zweierkomplement gespeichert. Das
héchste Bit der Zweierkomplement-Zahl gibt das Vorzeichen an. Ist es Null, so ist die
Zahl positiv, ist es 1, so ist die Zahl negativ. Zur Erlauterung soll folgendes Beispiel
einer Zweierkomplement-Zahl von der GréBe 1 Byte dienen:

Bitmuster MSB LSB
1 0 1 0 0 1 1 1

Stellen- 27 +2° 425 +24 +28 +22 42! +2°
wertigkeit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bild 6-2 Zweierkomplementdarstellung

Beachten Sie, dass Bit 0 das so genannte least significant bit (LSB) ist. Das héchste
Bit wird als most significant bit (MSB) bezeichnet.
Der Wert dieses Bitmusters errechnet sich aufgrund der Stellenwertigkeit zu:

1727 4 0%2% 4+ 1%2° 4+ 0%2* + 0%2° + 122 4+ 172" 4+ 1%2°
-128 + 0 + 32 + 0 + 0 + 4 + 2 + 1

-89

Die dem Betrag nach gr6éBte positive Zahl in dieser Darstellung ist:
(0111 1111), =64 +32+16 +8+4 +2 + 1 =127

Die dem Betrag nach gréBte negative Zahl in dieser Darstellung ist:
(1000 0000), =-128

Die tief gestellte 2 bedeutet, dass es sich bei der Zahl um ein Bitmuster, welches be-
kanntlich die Basis 2 hat, handelt.

Eine andere (aquivalente) Rechenvorschrift zur Berechnung des Wertes negativer
Zahlen ist:

Schritt 1: Da das héchste Bit 1 ist, ist die Zahl negativ
Schritt 2: Invertiere alle Bits

Datentypen und Variable 137

Schritt 3: Addiere die Zahl 1
Schritt 4: Berechne die Zahl in der iblichen Binardarstellung mit den Stellenwerten 27 ...
2% und fiige anschlieBend das negative Vorzeichen (von Schritt 1) hinzu

Wendet man diese Rechenvorschrift auf das obige Beispiel an, so erhalt man:

Schritt 1: Zahl ist negativ

Schritt 2: 01011000

Schritt 3: 01011001

Schritt4: -(2°+2*+2°+1)=-(64+16+8+1)=-89

6.2.3 Die Gleitpunkttypen float und double

Gleitpunktzahlen sind das computergeeignete Modell der in der Mathematik vorkom-
menden reellen Zahlen. Nach IEEE 754 [10] werden die folgenden internen Darstel-
lungen fir £1oat- und double-Zahlen verwendet:

float: 1 Vorzeichenbit (Bit 31)
8 Bits fur Exponenten (Bit 23 - 30)
23 Bits fuir Mantisse (Bit 0 - 22)

15 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Mantisse
\ Exponent Mantisse
]]]]]]]]]]]]]
31 30 23 22 16

Bild 6-3 Darstellung einer f1oat-Zahl (IEEE-Format)

double: 1 Vorzeichenbit
11 Bits fir Exponenten
52 Bits flir Mantisse

Das Vorzeichenbit hat fiir negative Zahlen den Wert 1, sonst den Wert 0.

Der Wertebereich der £1oat-Zahlen liegt zwischen -10% und 10%, der von double-
Zahlen zwischen -10°%® und 10°%. Die Genauigkeit betragt 7 Stellen bei float-
Zahlen und 15 Stellen bei double-Zahlen.

6.3 Klassen-Typ
Bevor auf die Definition von Klassentypen in Kapitel 6.3.2 eingegangen wird, soll in

Kapitel 6.3.1 das Konzept eines abstrakien Datentyps erldautert werden. Dieses
Kapitel kann beim ersten Lesen lbersprungen werden.

6.3.1 Abstrakte Datentypen und Klassen (o)

Ein groBer Fortschritt in der Geschichte der Programmiersprachen war die Datenab-
straktion. Mit dem Konzept der Datenabstraktion wurde das Ziel verfolgt, die Einzel-
heiten der Datendarstellung von den Beschreibungen der Operationen auf den Daten

138 Kapitel 6

zu trennen, um eine gesteigerte Ubertragbarkeit und Wartbarkeit, sowie héhere
Sicherheit zu erreichen. Bei diesem Konzept ist dem Programmierer die Darstellung
der Daten verborgen, er kennt nur die Operationen zum Zugriff auf die Daten.

Ein abstrakter Datentyp entspricht dem Konzept der Datenabstraktion in vollem
MaBe. Ein abstrakter Datentyp wird spezifiziert durch die Festlegung seiner Operatio-
nen, die 6ffentlich bekannt sind. Die Darstellung des Typs und die Implementierung
der Operationen kennt nur der Ersteller des Typs, dem Benutzer des Typs sind sie
verborgen. Bertrand Meyer [5] symbolisiert einen abstrakten Datentyp (ADT) durch
einen Eisberg, von dem man nur den Teil Uber Wasser — sprich die Aufrufschnitt-
stellen der Operationen — sieht. "Unter Wasser" und damit im Verborgenen liegen die
Reprasentation des Typs und die Implementierung der Operationen.

Sichtbarer Teil des ADT:
Aufrufschnittstellen der
Operationen

P

Unsichtbarer Teil des ADT:
Reprasentation des Typs +
Implementierung der Operationen

Bild 6-4 Verbergen der Implementierung eines abstrakten Datentyps

Als Beispiel fir einen abstrakten Datentyp soll ein Stack von Elementen betrachtet
werden. Ein Stack von Elementen ist eine lineare Datenstruktur. Man kann ihn sich
am besten am Beispiel eines Blicherstapels veranschaulichen. Auf dem Stapel liegt
eine bestimmte Anzahl von Biichern (ibereinander. Mit der Operation put®’ legt man
ein weiteres Buch oben auf den Stapel. Mit der Operation get®® kann man ein Buch
oben an der Spitze des Stapels entnehmen. Ein Buch aus der Mitte des Stapels oder
von ganz unten herauszuziehen, ist jedoch nicht erlaubt.

Mathematisch formulieren kann man den abstrakten Datentyp eines Stacks durch:
STACK|G]. Hierbei kann G ein Element irgendeines beliebigen Typs sein. Die
Operation put lasst sich formulieren durch:

put: STACK[G] x G -> STACK[G]

In Worten ausgedriickt bedeutet dies: Die Operation put hat zwei Parameter, den
Stack aus Instanzen von G und eine Instanz von G. Als Resultat der Operation
(siehe rechts vom Pfeil) resultiert ein neuer Stack. Entsprechendes gilt fiir get.

Eine Klasse, die den abstrakten Datentyp STACK implementiert, muss die Methoden
put () und get () in ausprogrammierter Form zur Verfligung stellen, genauso wie
die Datenstruktur eines Stacks, die beispielsweise durch ein Array oder eine ver-

%7 Statt put wird oft der Name push verwendet.
%8 Wird push verwendet, so tritt pop an die Stelle von get.

Datentypen und Variable 139

kettete Liste realisiert wird. Nach auBen werden nur die Aufrufschnittstellen der
Methoden angeboten. Die Implementierung, d. h. die Datenstruktur und die Metho-
denrimpfe sind verborgen, sodass der Aufrufer gar nicht wissen kann, ob der Stack
als Array oder verkettete Liste implementiert ist.

Erst die Klassen in objektorientierten Programmiersprachen erlauben es, dass Da-
ten und die Operationen, die mit diesen Daten arbeiten, zu Datentypen zusammen-
gefasst werden kénnen.

Die Klasse implementiert die Operationen des abstrakten Datentyps in — o
ihren Methoden. - ~

Abstrakter Datentyp (ADT) Klasse ist Datentyp

Definition der
Aufrufschnittstellen
der Methoden

Operationen

Implementierung der
Datenstrukturen und
der Methoden

Bild 6-5 Eine Klasse implementiert einen abstrakten Datentyp

Objekte sind die Variablen der Klassen. Ein Ersteller eines objektorientierten Pro-
gramms konzipiert Klassen, die seine Anwendungswelt widerspiegeln.

Im Falle von Klassen kann ein Programmierer — wie bei Java — im Idealfall auf die
Daten eines Objektes nicht direkt zugreifen, sondern nur Uber die Methoden eines
Objektes. Zu einer Klasse gehéren die Methoden, die beschreiben, was man mit
einem Objekt der Klasse tun kann. Dabei kann man nur auf jene Daten zugreifen, fir
die explizit eine Methode zur Verfligung gestellt wird. Daten, fir die es keine
Methode gibt, dienen zu internen Berechnungen und bleiben nach auBen verborgen.

6.3.2 Definition eines Klassen-Typs

Wie in Kapitel 6.3.1 erlautert, implementiert eine Klasse einen abstrakten Datentyp.
Die Realisierung des abstrakten Datentyps beschreibt man in der Klassendefinition.

Eine Klassendefinition gibt den Namen eines neuen Datentyps be- —
kannt und definiert zugleich dessen Methoden und Datenfelder. - ~

Das Schllsselwort zur Definition einer neuen Klasse ist class. Auf das Schlissel-
wort class folgt der Klassenname. Der Klassenname stellt den Namen fiir den

140 Kapitel 6

neuen Datentyp dar. Er muss ein giltiger Java-Namen sein. Er sollte, wie in der
Java-Welt allgemein Ublich, mit einem GroBbuchstaben beginnen. Hier ein Beispiel:

class Punkt // Deklaration des neuen Klassennamens Punkt
{ // Der Klassenrumpf enthalt

e // Datenfelder
} // und Methoden

Eine Deklaration gibt dem Compiler einen neuen Namen bekannt. -
Die Definition einer Klasse, d. h. die Festlegung ihrer Datenfelder und —
die Definition ihrer Methoden erfolgt innerhalb der geschweiften Klam- -~ -

mern des Klassenrumpfes.

6.3.2.1 Methoden
Eine Methode ist eine Anweisungsfolge, die unter einem Namen abge- — -
legt ist und Uber ihren Namen aufrufbar ist. - ~

Eine Methode muss in einer Klasse definiert werden. Eine Methode besteht aus der
Methodendeklaration und dem Methodenrumpf. Die Methodendeklaration gibt
dem Compiler die Aufrufschnittstelle der Methode bekannt. Die Methodendeklaration
wird auch als Methodenkopf bezeichnet.

Methodendeklaration // Methodenkopf

{ //
// Methodenrumpf
} //

Die Methodendeklaration beinhaltet im Minimalfall den Namen der Methode, dahinter
eine 6ffnende und eine schlieBende runde Klammer und vor dem Methodennamen
den Ruickgabetyp der Methode oder das Schliisselwort void.

Im folgenden Beispiel wird die Definition der Klasse Punkt betrachtet:

public class Punkt
{ // Mit der dffnenden geschweiften Klammer
// beginnt der Klassenrumpf

private int x; // x-Koordinate vom Typ int

public int getX() // getX ist der Name der Methode. Die runden
// Klammern ohne Inhalt besagen, dass die
// Methode ohne Ubergabeparameter aufgerufen
// wird. Das vor den Methodennamen gestellte
// int bedeutet, dass die Methode an der Stelle
// ihres Aufrufs einen int-Wert zurilickliefert.

{ // Der Methodenrumpf beginnt mit einer &ffnen-
// den geschweiften Klammer.

Datentypen und Variable

141

/7
/7
//

return x; //

/7

Zwischen den geschweiften Klammern, die den
Beginn und das Ende des Methodenrumpfes
bilden, stehen die Anweisungen der Methode.

Die einzige Anweisung hier ist: return x.
return x gibt an den Aufrufer der Methode

// den Wert des Datenfeldes x zurick.

} /7
/7

//
/7

} //
//

Die Methoden eines Objektes haben direkten Zugriff auf die Daten- — -
felder und Methoden desselben Objektes. -

Der Methodenrumpf endet mit der
schlieBenden geschweiften Klammer.

Die weiteren Methoden dieser Klasse werden
hier nicht betrachtet.

Mit der schlieBenden geschweiften Klammer
endet der Klassenrumpf.

Das folgende Beispiel zeigt den Zugriff einer Methode eines Objektes auf eine
Methode desselben Objektes, namlich den Zugriff der Methode print () auf die
Methode printSterne (), und den Zugriff einer Methode eines Objektes auf ein
Datenfeld desselben Objektes, namlich den Zugriff auf das Datenfeld x durch die
Methoden getX () und setX () °°.

// Datei: Punkté6.java

public class Punkté6
{

private int x;

public int getX()
{
return x;

}

// x-Koordinate vom Typ int

// Zugriff der Methode getX() auf das
// Datenfeld x desselben Objektes.

public void setX (int i)// Eine Methode, um den x-Wert zu setzen.

// Zugriff der Methode setX() auf das
// Datenfeld x desselben Objektes.

public void printSterne()

{

System.out.println

}

("**‘k‘k‘k*‘k**‘k‘k************************") ;

% Werden Methoden im Text zitiert, so kdnnen die runden Klammern () nach dem Methodennamen
leer bleiben, obwohl die Methode Parameter hat.

142 Kapitel 6

public void print ()
{
printSterne(); // Zugriff der Methode print () auf die
// Methode printSterne() desselben
// Objektes.
System.out.println ("Die Koordinate des Punktes ist: " + x);
printSterne();

}
// Datei: Punkt6Test.java

public class Punkt6Test
{
// mit main() beginnt eine Java-Anwendung ihre Ausfiihrung.
public static void main (String[] args)
{
Punkt6 p = new Punkt6(); // Hiermit wird ein Punkt erzeugt.
p.setX (3); // Setzen der x-Koordinate auf 3.
p.print () // Aufruf der Methode print ().

’

Die Ausgabe des Programmes ist:

AKAAKRKAAAKAFA KA A A AR A AR AR AAKN A AR A A h kA * kK

Die Koordinate des Punktes ist: 3
II hAhkhhkhkkhkkhk Ak rhhhkhkhkhk A vk hkhkhkhkhhhhkhkkhkkxxh*k*

In Java werden konventionsgemaB die Namen von Methoden kleingeschrieben. Bei
zusammengesetzten Namen beginnt jedes Wort bis auf das erste mit einem GroB-
buchstaben. Wird das Schlisselwort void anstelle des Rickgabetyps angegeben,
so gibt die Methode nichts zuriick und deshalb ist kein return notwendig®®, ansons-
ten muss immer ein Wert mit Hilfe einer return-Anweisung zuriickgegeben werden.

Klassen-Typen sind Referenztypen (siehe Bild 6-1). Eine Variable eines Klassen-
Typs ist eine Referenz auf ein Objekt dieser Klasse.

Referenztypen haben als Variablen Zeiger auf Objekte. ‘/\

Von einem fremden Objekt aus wird eine Methode ohne Parameter N

eines anderen Objektes aufgerufen, indem das fremde Objekt auf eine _
Referenz auf das andere Objekt den Punktoperator anwendet und @

den Methodennamen gefolgt von einem leeren Klammerpaar ()
angibt.

€ Eine return-Anweisung ist nicht erforderlich, aber méglich. Die return-Anweisung gibt hier aber
keinen Wert zurlick, sondern bedeutet nur einen Riicksprung (siehe Kap. 9.2.3).

Datentypen und Variable 143

Von einem fremden Objekt aus wird eine Methode mit Parametern® N
eines anderen Objektes aufgerufen, indem das fremde Objekt auf eine _
Referenz auf das andere Objekt den Punktoperator anwendet und
den Methodennamen gefolgt von den benétigten Parametern der Y
Methode in runden Klammern () angibt. =

Jede Operation auf einer Referenz erfolgt tatsachlich auf dem referenzierten Objekt.
Die Methode print () wird Uber die Referenzvariable p folgendermaBen aufgerufen:

p.print();
Die Notation p.print () bedeutet, dass die Methode print () des — -
Objektes, auf das die Referenz p zeigt, aufgerufen wird. - ~

6.3.2.2 Datenfelder

Die Datenfelder (Variablen) einer Klasse werden im Klassenrumpf definiert. Die De-
finition kann an jeder Stelle des Klassenrumpfes erfolgen. Es empfiehlt sich jedoch —
aus Grunden der Ubersichtlichkeit — die Variablen am Anfang einer Klasse zu defi-
nieren. Die Vereinbarung einer Variablen im Klassenrumpf erfolgt durch:

datentyp name;

In Java werden konventionsgemaR die Namen von Variablen kleingeschrieben. Bei
zusammengesetzten Namen beginnt jedes Wort bis auf das erste mit einem GroB-
buchstaben.

Der Zugriff auf ein Datenfeld eines fremden Objektes erfolgt ebenfalls mit der Punkt-
notation wie der Zugriff auf Methoden. So sei p eine Referenz auf ein Objekt der
Klasse punkt. Der Zugriff auf das Datenfeld x des Objektes, auf das die Referenz p
zeigt, erfolgt dann mit®:

p.x;

6.4 Variable

Prinzipiell unterscheidet man bei Programmiersprachen zwischen statischen®® und
dynamischen Variablen. Im Folgenden werden an einem Beispiel eine statische
und eine dynamische Variable in Java gezeigt:

61
62
63

Auf die Parameter von Methoden wird ausfihrlich in Kapitel 9.2 eingegangen.

Unter der Voraussetzung, dass der Zugriff erlaubt ist (siehe Kap. 12.7.2).

Statisch im Sinne des Unterschieds zwischen statisch und dynamisch hat Gberhaupt nichts mit den
static-Variablen (Klassenvariablen) von Java zu tun. In diesem Kapitel kommen statische
Variablen nur in ihrer allgemeinen Bedeutung als Gegensatz zu dynamischen Variablen vor.

144 Kapitel 6
// Datei: Punkt7.java
public class Punkt? // Deklaration der Klasse Punkt?7
{
private int x; // Datenfeld fiir die x-Koordinate
// vom Typ int

public int getX() //
{ //

return x;

}
//

public void setX (int i)

// TestPunkt7.java

public class TestPunkt?
{

eine Methode, um den Wert
von x abzuholen

eine Methode, um den Wert
von x zu setzen

public static void main (String[] args)
{
int x = 35 // x 1st eine statische Variable
// eines einfachen Datentyps
Punkt7 p; // Die Referenzvariable p ist
// eine statische Variable
p = new Punkt7(); // Erzeugen einer dynamischen
// Variablen mit dem new-Operator
p.setX (x); // Aufruf der Methode setX()

System.out.println
System.out.println

3
]]

("Die Koordinate des Punktes p ist:
(p.getX());

")

Die Ausgabe des Programmes ist:

Die Koordinate des Punktes p ist:

Im obigen Beispiel stellen die lokalen Variablen®* x und p statische Variablen dar.
Mit new Punkt7() wird auf dem Heap® ein namenloses Objekt der Klasse
Punkt7 als dynamische Variable mit Hilfe des new-Operators erzeugt. Der
Rickgabewert des new-Operators ist eine Referenz auf die dynamische Variable.
Die zurlickgegebene Referenz wird der statischen Referenzvariablen mit dem
Namen p zugewiesen. Die statische Referenzvariable p stellt im obigen Beispiel die
einzige Mdglichkeit dar, auf das namenslose Objekt vom Typ Punkt 7 zuzugreifen.

& | okale Variablen sind Variablen, die innerhalb von Methoden definiert werden.
% Der Heap ist ein von der virtuellen Maschine verwalteter Speicherbereich, in welchem die mit dem
new-Operator dynamisch erzeugten Objekte abgelegt werden (siehe Kap. 6.4.5.2).

Datentypen und Variable 145

\'/

Eine Variable, die in einer Methode definiert wird, ist sowohl eine — o
lokale Variable als auch eine statische Variable. s ~

Eine statische Variable hat immer einen Typ und einen Namen (Bezeichner). Bei
einer Definition — hier wird die Variable angelegt — muss der Typ und der Variablen-
name wie in folgendem Beispiel angegeben werden:

|

int x;

Nach der Definition kann auf die Variable Uber ihren Namen zugegrif- |
fen werden. Eine solche Variable heiBt statisch, weil ihr Glltigkeits- /

bereich und ihre Lebensdauer durch die statische Struktur des — -
Programms festgelegt ist. Der Giiltigkeitsbereich einer lokalen, - ~
statischen Variablen umfasst alle Stellen im Programm, an denen ihr =
Name durch die Vereinbarung bekannt ist. -

Die Lebensdauer einer lokalen, statischen Variablen erstreckt sich Uber den Zeit-
raum der Abarbeitung der Methode bzw. des Blocks®®, zu dem sie gehért. Das
heiBt, wahrend dieser Zeit ist fir sie Speicherplatz vorhanden.

\
Die Giltigkeit und Lebensdauer einer dynamischen Variablen wird _ —
nicht durch die statische Struktur des Programms, wie z. B. die -

Blockgrenzen, bestimmt.

Dynamische Variablen erscheinen nicht explizit in einer Definition.
Sie tragen keinen Namen. Daher kann auf sie nicht Uber einen Be-

zeichner zugegriffen werden. Dynamische Variablen werden mit dem R/:
Operator new im Heap angelegt. Der Zugriff auf dynamische Variable =

erfolgt mit Hilfe von Referenzen.

Statische Variablen sind entweder Variablen einfacher Datentypen —
oder Referenzvariablen. Dynamische Variablen sind in Java immer -
Objekte. =

6.4.1 Variable einfacher Datentypen

Von einfachen Datentypen kann man eine Variable erzeugen, die einen einfachen
Wert in der ihr zugeteilten Speicherstelle aufnehmen kann. So enthélt eine Variable
vom Typ int genau einen int-Wert wie z. B. die Zahl 3.

% Ein Block (siehe Kap. 9) stellt eine zusammengesetzte Anweisung dar. Als Blockbegrenzer dienen
die geschweiften Klammern. In jedem Block kdnnen Variablen definiert werden.

146 Kapitel 6

Eine Definition einer Variablen

® |egt den Namen und die Art einer Variablen _ —
— namlich ihren Typ _ ~

— und Modifikatoren wie public, static etc. fest
® und sorgt gleichzeitig fir die Reservierung des Speicherplatzes.

Mit einer Definition ist stets auch eine Deklaration verbunden. Die . |
Deklaration einer Variablen umfasst den Namen einer Variablen, _
ihren Typ und ggf. ihren Typmodifikator. Mit der Deklaration wird
dem Compiler bekanntgegeben, mit welchem Typ und mit welchem >
Typmodifikator er einen Namen verbinden muss. 2

Kurz und blndig ausgedriickt, bedeutet dies:

Definition = Deklaration + Reservierung des Speicherplatzes. ‘/@\

In Java ist es nicht mdglich, Variable nur zu deklarieren und sie an anderer Stelle zu
definieren, wohl aber in der Programmiersprache C.

Eine einzige Variable eines einfachen Datentyps wird definiert zu

datentyp name;
also beispielsweise durch
int x;

Mehrere Variablen vom selben Typ kdnnen in einer einzigen Vereinbarung defi-
niert werden, indem man wie im folgenden Beispiel die Variablennamen durch
Kommata trennt:

int x, vy, z;

Die Namen der Variablen missen den Namenskonventionen (siehe Kap. 5.3.2) ge-
nigen. Ein Variablenname darf nicht identisch mit einem Schliisselwort sein.

6.4.2 Referenzvariable von Klassen-Typen

Referenzvariable ermdglichen den Zugriff auf Objekte im Heap. Als Wert enthalten
sie die Adresse®’, an der sich das Objekt im Heap befindet.

% Es handelt sich hierbei nicht um die physikalische Adresse im Arbeitsspeicher des Rechners, son-

dern um eine logische Adresse, die von der virtuellen Maschine in die physikalische Adresse um-
gesetzt wird. Dass die Referenz nicht die physikalische Adresse enthalt, hat Sicherheitsgriinde.

Datentypen und Variable 147

Referenzvariable zeigen in Java entweder auf: N B
® Objekte, /\

® oder nichts, wenn sie die null-Referenz als Wert enthalten.

Referenzvariable kénnen auch auf Arrays, Aufzahlungskonstanten und auf Objekte,
deren Klassen Schnittstellen implementieren, zeigen, da es sich hierbei auch um
Objekte handelt. Arrays werden in Kapitel 6.5 vorgestellt, Aufzéhlungstypen in
Kapitel 6.6 und Schnittstellen in Kapitel 14.

Eine Referenzvariable kann als Wert enthalten:

¢ die Adresse eines Objektes, dessen Klasse zuweisungskompatibel®® zum Typ der
Referenzvariablen ist,

® die null-Referenz.

In Java gibt es — wie bereits erwéhnt — den so genannten nul1-Typ. Von diesem
Typ gibt es nur einen einzigen Wert, die Konstante null. Diese Konstante wird
verwendet als null-Referenz flir Referenzvariable, die noch auf kein Objekt
zeigen. Die Referenz null ist eine vordefinierte Referenz, deren Wert sich von
allen regularen Referenzen unterscheidet. Wird einer Referenzvariablen, die auf
ein gultiges Objekt im Speicher zeigt, die nul1-Referenz zugewiesen, so kdnnen
keine Methoden und keine Datenfelder Uber diese Referenzvariable mehr ange-
sprochen werden. Eine null-Referenz ist zu allen anderen Referenztypen zu-
weisungskompatibel, d. h. jeder Referenzvariablen kann die Referenz null
zugewiesen werden.

Objekte und Referenzvariablen haben einen Datentyp. Will man mit einer Referenz-

variablen auf ein Objekt zeigen, so muss die Klasse des Objektes zuweisungskom-

patibel® zum Typ der Referenzvariablen sein. Vereinfacht ausgedriickt bedeutet
dies: Ist ein Objekt vom Typ Klassenname, s0O braucht man eine Referenzvariable
vom Typ Klassenname, um auf dieses Objekt zeigen zu kénnen.

Eine Referenzvariable wird formal wie eine einfache Variable definiert:
Klassenname referenzName; |
Die Definition wird von rechts nach links gelesen zu: "referenzName “/:
ist vom Typ Klassenname und ist eine Referenz auf ein Objekt der

Klasse Klassenname".

iy

Durch diese Definition wird eine Referenzvariable referenzName vom Typ Klas-
senname definiert, wobei der Compiler fir diese Referenzvariable Platz vorsehen
muss. Beispiele flr die Definition von Referenzvariablen sind:

88 Zuweisungskompatibilitit wird in Kap. 11.3.1 erlautert.

148 Kapitel 6

ClassA refAh;
ClassB refB;
ClassC blubb; //damit niemand meint, es miisse immer ref heiRen

Durch die Definition sind Referenz und zugeordneter Typ miteinander verbunden.
Durch die Definition einer Referenzvariablen wird noch kein Speicherplatz fir ein
Objekt vorgesehen, sondern nur fir die Referenzvariable. Ebenso wie bei jeder
anderen Variable ist der Wert einer Referenzvariablen nach der Variablendefinition
zunéchst unbestimmt®. Der Wert ist noch nicht definiert! Die Referenz zeigt auf
irgendeine Speicherstelle im Adressraum des Programms.

Wie bei einfachen Datentypen kann man mehrere Referenzvariable vom selben
Typ in einem Schritt definieren, indem man in der Definition eine Liste von
Variablennamen angibt, wobei die verschiedenen Variablennamen durch Kommata
voneinander getrennt sind wie im folgenden Beispiel:

Punkt pl, p2, p3;

Eine Referenzvariable ist also in Java eine Variable, die eine Verkniipfung zu
einem im Speicher befindlichen Objekt beinhaltet. Die Verknipfung mit dem
referenzierten Objekt erfolgt durch einen logischen Namen. Eine Referenzvariable
enthalt als Variablenwert also einen logischen Namen, der auf das entsprechende
Objekt verweist. Dieser logische Name wird von der virtuellen Maschine in eine
Adresse umgesetzt. Von Java aus sind also die physikalischen Adressen des Ar-
beitsspeichers nicht direkt sichtbar. In Java kann damit die Adresse einer Variablen
nicht ermittelt werden.

Referenzen gibt es in Java nur auf Objekte, nicht auf Variable ein- — -
facher Datentypen. - ™~

Arbeitsspeicher

Objekt vom Typ

Klasse.

A 4

Referenzvariable vom
ref Typ Klasse. Auf das
namenlose Objekt vom
Typ Klasse kann mit
Hilfe der Referenz-
variablen ref zuge-
Adresse 0 griffen werden.

Bild 6-6 Referenzvariable kénnen auf Objekte zeigen

Bruce Eckel [11] verwendet fir Referenzen ein treffendes Beispiel. Er vergleicht das
Objekt mit einem Fernseher und die Referenz mit der Fernsteuerung, die auf den
Fernseher zugreift. Will man den Fernseher bedienen, so bedient man direkt die

% Es sei denn, die Referenz stellt eine Instanz- oder Klassenvariable dar. Hierfir gibt es eine Default-
Initialisierung.

Datentypen und Variable 149

Fernsteuerung und damit indirekt den Fernseher. Wahrend man jedoch bei Fern-
sehgeréaten oftmals auch ohne Fernsteuerung auskommen und den Fernsehapparat
direkt einstellen kann, ist dies bei Objekten in Java nicht méglich. Objekte tragen in
Java keinen Namen. Werden sie erzeugt, so erhdlt man eine Referenz auf das
entsprechende Objekt. Diese Referenz muss man einer Referenzvariablen zuweisen,
um den Zugriff auf das Objekt nicht zu verlieren.

\
Objekte kénnen in Java nicht direkt manipuliert werden. Sie kébnnen _ —
nur “ferngesteuert bedient” werden. Mit anderen Worten, man kann -

auf Objekte nur indirekt mit Hilfe von Referenzen zugreifen.

]

Eine Referenzvariable muss nicht immer auf das gleiche Objekt zeigen. Der Wert
einer Referenzvariablen kann durch eine erneute Zuweisung auch veréndert werden.
Bei der Zuweisung

a = b; // a und b sollen Variable vom selben Typ sein

findet im Falle von einfachen Datentypen ein Kopieren des Wertes von b in die
Variable a statt. Sind a und b Referenzvariable, so wird der Wert der Referenz-
variable b in die Referenzvariable a kopiert. Nach einer solchen Zuweisung zeigen
die Referenzvariablen a und b auf dasselbe Objekt. Das folgende Beispiel zeigt die
Zuweisung des Werts einer Referenzvariable p1 an eine andere Referenzvariable
p2. Nach dieser Zuweisung zeigt die Referenzvariable p2 auf dasselbe Objekt wie
pl, um dann nach der Zuweisung p2 = p3 auf dasselbe Objekt wie p3 zu zeigen:

p2 = pl;
Punkt
Xx=1
” /__/
:Punkt
p3 /\/V X=23
Bild 6-7 Nach der Zuweisung p2 = pl
p2 = p3;
Punkt
Xx=1

p2 '—__>
:Punkt

pP3 T X=3

Bild 6-8 Nach der Zuweisung p2 = p3

150

Kapitel 6

// Datei: Punkt8.java

public class Punkt8
{

private int x;

public int getX()
{

return x;

}

public void setX (int u)
{
X = u;
}
}
// Datei: TestPunkt8.java

public class TestPunkt8
{

public static void main (String[] args)
{
Punkt8 pl = new Punkt8(); // Anlegen eines Punkt-Objektes
pl.setX (1); // Dieses enthdlt den Wert x =1
Punkt8 p2; // Anlegen einer Referenzvariablen
// vom Typ Punkt
Punkt8 p3 = new Punkt8(); // Anlegen eines Punkt-Objektes
p3.setX (3); // x wird 3
p2 = pl; // Nun zeigt p2 auf dasselbe Objekt
// wie pl
System.out.println ("pl.x hat den Wert " + pl.getX());
System.out.println ("p2.x hat den Wert " + p2.getX());
System.out.println ("p3.x hat den Wert " + p3.getX());
P2 = p3; // Nun zeigt p2 auf dasselbe
// Objekt wie p3
System.out.println ("p2.x hat den Wert " + p2.getX());
p2.setX (20);
System.out.println ("p2.x hat den Wert " + p2.getX());
System.out.println ("p3.x hat den Wert " + p3.getX());

-

pl.x hat den Wert 1
p2.x hat den Wert 1
p3.x hat den Wert 3
p2.x hat den Wert 3
p2.x hat den Wert 2
p3.x hat den Wert 2

[oNe}

Die Ausgabe des Programmes ist:

Datentypen und Variable 151

6.4.3 Dynamische Variablen — Objekte

Referenzen auf Objekte — die Referenzvariablen — kdnnen in Java als statische Vari-
able angelegt werden. Die Objekte selbst werden mit Hilfe des new-Operators als
dynamische Variable auf dem Heap angelegt.

Ein Objekt wird in Java erzeugt durch die Anweisung: _ —
new Klassenname () ; - h

\
Ein Objekt wird vom Laufzeitsystem als dynamische Variable auf —
dem Heap, der ein Speicherreservoir fir dynamische Variablen dar-

stellt, angelegt.

(N

Ist nicht genug Platz zum Anlegen des Objektes vorhanden, so muss das Laufzeit-
system versuchen, (ber eine Speicherbereinigung (Garbage Collection) Platz zu ge-
winnen. Schlégt dies fehl, so wird eine Exception vom Typ OutOfMemoryError '’
ausgelodst.

Dynamische Variable erscheinen nicht in einer Variablendefinition. Auf dynamische
Variable kann man nicht Uber einen Bezeichner zugreifen. Der Zugriff auf dyna-
mische Variable erfolgt in Java mit Hilfe von Referenzen, den Referenzvariablen.

|
Die Definition einer Referenzvariablen und die Erzeugung eines Ob- A //
jektes lassen sich in einem Schritt wie folgt durchfihren: -
e ~
Klassenname var = new Klassenname () ; =

Oftmals — wenn es nicht so genau darauf ankommt, oder wenn man mit der Sprache
etwas nachlassig ist — verwendet man statt "Referenz auf ein Objekt" auch das Wort
"Objekt". Liest man dann an einer Stelle das Wort "Objekt", so muss man aus dem
Zusammenhang erschlieBen, ob das Objekt im Heap oder die Referenz auf das
Objekt gemeint ist — denn woher soll man wissen, ob sich der Autor gerade "locker"
oder prazise ausdrickt.

Bei einer exakten Sprechweise werden "Referenz auf ein Objekt" und —
"Objekt" unterschieden. -

Objekte werden in der Regel mit new auf dem Heap angelegt. Es gibt noch einen
zweiten Weg, Objekte zu schaffen. Dies erfolgt mit Hilfe der Methode newIn-
stance () der Klasse Class<T> und wird in Kapitel 17 erklart. Im Weiteren soll je-

® Siehe Kap. 13.4.

152 Kapitel 6

doch die Erzeugung eines Objektes mit dem new-Operator am Beispiel der Klasse
Punkt betrachtet werden:

public class Punkt
{

private int x; // x-Koordinate vom Typ int

public static void main (String[] args)

{
Punkt p = null;
p = new Punkt(); // hiermit wird ein Punkt erzeugt
// weitere Anweisungen

}

Die Definition Punkt p; erzeugt die Referenzvariable p, die auf ein Objekt der
Klasse Punkt zeigen kann. Mit new Punkt () wird ein Objekt ohne Namen auf dem
Heap angelegt. Der new-Operator gibt eine Referenz auf das erzeugte Objekt
zuriick. Diese Referenz wird der Referenzvariablen p zugewiesen.

Stack Stack
Das im Heap
geschaffene Objekt
wird referenziert.
11
Punkt p; p | p = new p
Heap Heap

A

Punkt-Objekt

Bild 6-9 nul1-Referenz und Referenz auf ein Objekt

Eine Referenzvariable als lokale Variable in einer Methode wird vom — -
Compiler nicht automatisch initialisiert. - ~

Wird versucht, mit dem Punktoperator auf eine nicht initialisierte lokale Referenz-
variable zuzugreifen, so meldet der Compiler einen Fehler. Dies soll anhand des
folgenden Beispiels erlautert werden:

// Datei: CompilerTest.java

class Punkt
{
private int x;
public void print()
{
System.out.println ("x: " + x);

}

Datentypen und Variable 153

public class CompilerTest

{
public static void main (String[] args)
{
// Anlegen der nicht initialisierten lokalen Variablen p
Punkt p;

// Zugriff auf die nicht initialisierte lokale Variable p
p.print () ;

Der Aufruf des Compilers lautet:

javac CompilerTest. java

CompilerTest.java:21l: wvariable p might not have
been initialized

Die Ausgabe des Compilers ist:
p.print ();

Um das obige Beispielprogramm fiir den Compiler akzeptabel umzuschreiben, wird
im folgenden Beispiel die lokale Variable p vom Typ Punkt mit der null-Referenz
initialisiert. Wird das Programm nach der erfolgreichen Ubersetzung gestartet, gene-
riert das Laufzeitsystem jedoch eine Exception vom Typ NullPointerException.
Dies bedeutet, dass wir wieder nichts gedacht haben. Das Programm ist also immer
noch falsch. Es gibt zwar keinen Kompilierfehler mehr, aber einen Laufzeitfehler.
Was ist los? Die Antwort ist klar. Wir haben vergessen, der Variablen p eine
Referenz auf ein Objekt der Klasse Punkt zuzuweisen. Eine NullPointer-—
Exception wird immer dann geworfen, wenn auf eine mit der null-Referenz
initialisierte Referenzvariable zugegriffen wird, beispielsweise durch einen Methoden-
aufruf. Das folgende Beispielprogramm verdeutlicht den Zusammenhang:

// Datei: CompilerTest2.java

class Punkt

{

private int x;

public void print ()
{

System.out.println ("x: " + x);
}
}

public class CompilerTest2
{
public static void main (String[] args)
{
// Anlegen einer mit null initialisierten lokalen Variablen
Punkt p = null;

154 Kapitel 6

// Zugriff auf die mit null initialisierte lokale Variable p
p.print () ;

Die Ausgabe des Programms ist:

at CompilerTest2.main(CompilerTest2.java:21)

Um das Beispielprogramm nun zu korrigieren und eine fehlerfreie Ubersetzung und
Ausfiihrung zu ermdglichen, wird die Referenzvariable p durch

P = new Punkt();

mit einer Referenz auf ein Objekt vom Typ Punkt initialisiert. Danach kann der
Aufruf

p.print();

problemlos durchgefiihrt werden. Mit dieser Korrektur 1duft dann das Programm ohne
Fehler.

6.4.4 Klassenvariable, Instanzvariable und lokale Variable

Neben der Unterscheidung zwischen statischen und dynamischen Variablen (den
Objekten) ist die Unterscheidung zwischen lokalen Variablen, Instanzvariablen und
Klassenvariablen von Bedeutung.

Exception in thread "main" java.lang.NullPointerException

Datentypen und Variable 155

Ubergabeparameter sind spezielle lokale Variable. Ubergabeparameter gibt es bei
Methoden, Konstruktoren (sieche Kap. 10.4.4) und catch-Konstrukten. catch-
Konstrukte dienen zur Behandlung von Ausnahmen (siehe Kap. 13.5). Ubergabe-
parameter werden noch ausfihrlich in Kapitel 9.2.5 behandelt.

Das folgende Beispiel zeigt die Verwendung von Klassenvariablen, Instanzvariablen
und lokalen Variablen:

// Datei: VariablenTypen.java

public class VariablenTypen

{
private int x; // dies ist eine Instanzvariable
private static int y; // dies ist eine Klassenvariable

public void print()
{
int z = 0; // dies ist eine lokale Variable
}
}

In Java werden Klassenvariable und Instanzvariable (Datenfelder eines Objektes)
automatisch mit einem Default-Wert initialisiert (siehe Kap. 10.4.1). Lokale Variable
hingegen werden nicht automatisch initialisiert.

Dabei kann eine lokale Variable, eine Instanzvariable und eine Klassenvariable
entweder einen einfachen Datentyp haben oder eine Referenzvariable darstellen.

156 Kapitel 6

Die Speicherbereiche flir Variable — Stack, Heap und Method-Area — werden im
nachsten Kapitel genauer erldutert.

6.4.5 Speicherbereiche fiur Variable

Die drei Variablenarten — lokale Variable, Instanzvariable und Klassenvariable — wer-
den in verschiedenen Speicherbereichen abgelegt. Diese Speicherbereiche — Stack,
Heap und Method Area — werden alle von der virtuellen Maschine verwaltet. In den
néachsten drei Abschnitten folgt deren kurze Vorstellung.

6.4.5.1 Der Stack

Als Stack wird ein Speicherbereich bezeichnet, auf dem Informationen temporéar ab-
gelegt werden kdnnen. Ein Stack wird auch als Stapel bezeichnet. Ganz allgemein
ist das Typische an einem Stack, dass auf die Information, die zuletzt abgelegt
worden ist, als erstes wieder zugegriffen werden kann. Denken Sie z. B. an einen
Bucherstapel. Sie beginnen mit dem ersten Buch, legen darauf das zweite, dann das
dritte und so fort. In diesem Beispiel soll beim flnften Buch Schluss sein. Beim
Abrdumen nehmen Sie erst das flinfte Buch weg, dann das vierte, dann das dritte,
und so weiter, bis kein Buch mehr da ist. Bei einem Stack ist es nicht erlaubt,
Elemente von unten oder aus der Mitte des Stacks wegzunehmen.

Eine solche Datenstruktur wird als LIFO-Datenstruktur bezeichnet. LIFO bedeutet
"Last in first out"”, d. h. das, was als Letztes abgelegt wird, wird als Erstes wieder
entnommen. Das Ablegen eines Elementes auf dem Stack wird als push-Operation,
das Wegnehmen eines Elementes als pop-Operation bezeichnet. Ein Stack wird
damit durch seine beiden Operationen push und pop gekennzeichnet und der Ein-
schréankung, dass die Zahl der Elemente auf dem Stack nicht kleiner als Null werden
kann und auch nicht héher als die StackgréBe.

a) Stapel vor push d) nach zweitem push und vor pop
¢) nach push

Bild 6-10 Auf- und Abbau eines Blicherstapels

In Programmen wird eine solche Datenstruktur dazu benutzt, um die Daten eines
Programms zu organisieren. Auf einem Programmstack werden zum Beispiel lokale
Variable einer Methode gespeichert. Ruft eine Methode eine weitere Methode auf, so
muss auch der Befehlszeiger der aufrufenden Methode zwischengespeichert wer-

Datentypen und Variable 157

den, damit — wenn die aufgerufene Methode fertig ist — an der richtigen Stelle der
aufrufenden Methode weiter gearbeitet werden kann. Dass auch die Ubergabewerte
fir eine Methode sowie der Riickgabewert einer aufgerufenen Methode und der In-
halt der Prozessorregister voribergehend auf dem Stack abgelegt werden, soll hier
nur beildufig erwéhnt und nicht vertieft werden.

Der Stack dient bei Programmen als Speicherbereich, um Daten zu . |
organisieren. Bei einem Methodenaufruf werden auf dem Stack die —
lokalen Variablen einer Methode und die Ricksprungadresse einer /\
Methode hinterlegt, die durch den Aufruf einer anderen Methode in =

ihren eigenen Anweisungen unterbrochen wurde.

6.4.5.2 Der Heap

Aufgabe des Heap ist es, Speicherplatz fiir die Schaffung dynamischer Variablen
bereit zu halten. Der new-Operator, der vom Anwendungsprogramm aufgerufen wird,
um eine Variable auf dem Heap anzulegen, gibt dem Anwendungsprogramm eine
Referenz auf die im Heap erzeugte dynamische Variable zurlick. Die erhaltene
Referenz ermdglicht den Zugriff auf die dynamische Variable im Heap. An welcher
Stelle des Heap die dynamische Variable angelegt wird, entscheidet nicht der Pro-
grammierer, sondern die virtuelle Maschine.

Die dynamischen Variablen stehen von ihrer Erzeugung bis zum Programmende zur
Verfligung, es sei denn, der Programmierer bendtigt diese Variablen nicht mehr.
Dann kann der Programmierer die Referenz aufheben — dies erfolgt in Java, indem
der Referenzvariablen die nul1-Referenz zugewiesen wird. Dies ist fir den Garbage
Collector in Java ein Zeichen, dass er das nicht mehr referenzierte Objekt aus dem
Heap entfernen kann, sofern keine weitere Referenz mehr auf das entsprechende
Objekt zeigt. Damit kann der Speicherplatz im Heap flr andere dynamische Variable
benutzt werden. Die GréBe des Heap ist beschrankt. Daher kann es zu einem
Uberlauf des Heap kommen, wenn standig nur Speicher angefordert und nichts
zurlickgegeben wird. Ein solcher Uberlauf resultiert in einer Exception vom Typ
OutOfMemoryError (siehe Kap. 13.4).

In Java werden Objekte im Heap nicht explizit freigegeben. Es wird vielmehr in
unregelmaBigen Abstanden durch die virtuelle Maschine der so genannte Garbage
Collector aufgerufen. Der Garbage Collector gibt den Speicherplatz, der nicht mehr
referenziert wird, frei.

Der Heap ist ein Speicherbereich, in dem von der virtuellen Maschine . |,
die dynamisch erzeugten Objekte abgelegt werden. Wird ein Objekt _
auf dem Heap von keiner Referenzvariablen mehr referenziert, so wird @\
der von dem Objekt belegte Speicherbereich durch den Garbage Y
Collector wieder freigegeben. £

158 Kapitel 6

6.4.5.3 Die Method-Area

In der Method-Area befindet sich der Speicherbereich fiir die Klassenvariablen.
Klassenvariable sind durch die Summe ihrer Eigenschaften statische Variable — denn
sie tragen einen Namen und ihr Giltigkeitsbereich und ihre Lebensdauer ist durch
die statische Struktur des Programms bestimmt. Der Gultigkeitsbereich einer
Klassenvariablen hangt von ihrem Zugriffsmodifikator (siehe Kap. 6.4.7) ab. Die
Lebensdauer einer Klassenvariablen beginnt mit dem Laden der Klasse und endet,
wenn die Klasse vom Programm nicht mehr benétigt wird. Nicht nur Klassenvariable
liegen in der Method-Area, sondern der gesamte Programmcode einer Klasse. Damit
der Programmcode einer Klasse ausgefuhrt werden kann, muss die Klasse erst
einmal in die Method-Area geladen werden.

\
Den Speicherbereich, in den die virtuelle Maschine den Programm- —
code einer Klasse und die Klassenvariablen ablegt, bezeichnet man -
als Method-Area.

(N

6.4.6 Konstante Variablen

Mit dem Modifikator final kann jede Variable — Klassenvariable, Instanzvariable
und lokale Variable — unabhangig davon, ob es nun eine Referenzvariable oder eine
Variable eines einfachen Datentyps ist, konstant gemacht werden. Das heiBt, ihr
Wert ist konstant und kann nicht mehr verandert werden. Mit

final int konstantVar = 1;

wird eine Variable vom Typ int angelegt. Nach der Initialisierung mit dem Wert 1
kann keine weitere Zuweisung an die konstante Variable konstantvar erfolgen.
Das Gleiche gilt fir Referenzvariable. Wird eine Referenzvariable mit Hilfe des
Modifikators final zu einer konstanten Referenzvariablen gemacht, so muss diese
Referenz immer auf das Objekt zeigen, mit dessen Adresse die Referenzvariable
initialisiert wurde. Die folgende Codezeile legt eine konstante Referenz p an, die
immer auf dasselbe Objekt der Klasse Punkt zeigt, mit dessen Referenz es initiali-
siert wurde:

final Punkt p = new Punkt();

koénnen problemlos verandert werden, da ja nur die Referenz
konstant ist. Es gibt in Java keine Méglichkeit, ein Objekt konstant -~

Die Inhalte eines Objektes, auf das eine konstante Referenz zeigt, @
zu machen. E

Wird mit dem Schlusselwort £inal eine Variable zur Konstanten ge- . |
macht, so ist immer ihr Wert konstant. Im Falle von Referenzvariablen —
bedeutet dies, dass die Referenz als Wert immer die gleiche Adresse
auf ein Objekt beinhalten muss und damit nie auf ein anderes Objekt Y
zeigen kann. z

Datentypen und Variable 159

6.4.7 Modifikatoren

Bei der Deklaration von Datenfeldern kénnen zusatzlich Modifikatoren (engl. modi-
fier) angegeben werden. Es gibt aber nicht nur Modifikatoren fiir Datenfelder, son-
dern auch fir Methoden, Konstruktoren, Klassen und Schnittstellen. Im Folgenden
werden alle Modifikatoren aufgelistet:

public, private, protected fUr die Zugriffsrechte (siehe Kap. 12.7),

static flr Klassenvariablen, Klassenmethoden, geschachtelte Klassen und
Schnittstellen.

final flr benannte (symbolische) Konstanten,

transient fir Datenfelder, die nicht serialisiert werden sollen (siehe Kap.
16.7.3),

volatile flr Datenfelder, die von mehreren Threads gleichzeitig benutzt werden
kénnen,

abstract fir die Kennzeichnung von abstrakten Klassen und Methoden,
native fir die Kennzeichnung von Methoden, die in einer anderen Sprache als
Java implementiert sind,

synchronized flr den wechselseitigen Ausschluss von Methoden bzw. Blécken
(siehe Kap. 19).

Die Definition einer konstanten Klassenvariablen kénnte zum Beispiel folgenderma-
Ben aussehen:

final static float PI = 3.14f;

Die folgende Tabelle zeigt, welcher Modifikator mit einem Datenfeld, einer Methode,
einem Konstruktor, einer Klasse oder einer Schnittstelle eingesetzt werden darf:

Datenfeld | Methode | Konstruktor | Klasse | Schnittstelle
abstract ja ja
final ja ja ja
native ja
private ja ja ja ja ja
protected ja ja ja ja ja
public ja ja ja ja ja
static ja ja ja ja
synchronized ja
transient ja
volatile ja

Tabelle 6-2 Verwendung von Zugriffsmodifikatoren

6.5 Array-Typ

Eine Variable eines Array-Typs ist eine Referenz auf ein Array-Objekt. Arrays sind
in Java immer Objekte — es geht gar nicht anders!

160 Kapitel 6

Ein Array ist ein Objekt, das aus Komponenten (Elementen) zusam- _ —
mengesetzt ist, wobei jedes Element eines Arrays vom selben Daten- -
typ sein muss. =

int int int int int

Bild 6-11 Ein Array aus 5 int-Elementen

Man kann in Java Arrays aus Elementen eines einfachen Datentyps -
oder aus Elementen eines Referenztyps anlegen. Ein Element eines — @
Arrays kann auch selbst wieder ein Array sein. Dann entsteht ein ~
mehrdimensionales Array. =

Im Folgenden werden zun&chst eindimensionale Arrays betrachtet. Mehrdimen-
sionale Arrays werden in Kapitel 6.5.4 besprochen. Die Lange oder GréBe eines
Arrays legt die Anzahl der Elemente des Arrays fest. Die Lange muss als Wert immer
eine positive ganze Zahl haben. Ist 1aenge die Ldnge des Arrays, so werden die
Elemente von 0 bis 1aenge - 1 durchgezahlt. Die Nummer beim Durchz&hlen wird
als Index des Arrays bezeichnet. Uber den Index kann man auf ein Element zu-
greifen. Der Zugriff auf das i-te Element des Arrays mit dem Namen arrayName er-
folgt durch arrayName [i - 1].

Der Zugriff auf ein Element eines Arrays erfolgt Gber den Array-Index. -
Hat man ein Array mit n Elementen definiert, so ist darauf zu achten, —
dass in Java die Indizierung der Arrayelemente mit 0 beginnt und -~ -

bei n - 1 endet.

Der Vorteil von Arrays gegentiber mehreren einfachen Variablen ist, B
dass Arrays sich leicht mit Schleifen bearbeiten lassen, da der Index
einer Array-Komponente eine Variable sein kann und als Laufvariable -~ =

in einer Schleife benutzt werden kann.

In Java sind Arrays stets Objekte, auch wenn man Arrays aus einfachen Daten-
typen anlegt. Arrays werden zur Laufzeit im Heap angelegt. Dabei kann die Lange
des anzulegenden Arrays zur Laufzeit berechnet werden. Ist das Array angelegt, so
kann seine Lange nicht mehr verandert werden. Der Zugriff auf die Komponenten
des Arrays erfolgt Uber die Referenz auf das Array-Objekt.

Die Definition einer Array-Variable bedeutet in Java nicht das Anle- L/ -
gen eines Arrays, sondern die Definition einer Referenzvariablen, die —

auf ein Array-Objekt zeigen kann. Dieses Array-Objekt muss im -~ >
Heap angelegt werden.

(i

Datentypen und Variable 161

Die allgemeine Form der Definition einer Referenzvariablen zum Zugriff auf ein
eindimensionales Array ist:

Typname[] arrayName;
Ein konkretes Beispiel hierfir ist:
int[] alpha;

wobei alpha eine Referenzvariable ist, die auf ein Array aus Elementen vom Typ
int zeigen kann.

int int int int int

/

alpha

Bild 6-12 Ein Array-Objekt im Heap, auf das die Referenzvariable alpha zeigt

Die Referenzvariable alpha kann auf ein Array-Objekt aus beliebig vielen Kompo-
nentenvariablen vom Typ int verweisen.

Die Namensgebung Array ist nicht einheitlich. In der Literatur findet man die syno-
nyme Verwendung der Namen Feld und Array. Fir Arrays in Java gibt es kein spe-
zielles Schliisselwort. Der Java-Compiler erkennt ein Array an den eckigen Klam-
mern.

Wie in Kapitel 6.5.1 gezeigt wird, kdnnen diese Schritte auch zusammengefasst
werden.

Eine weitere Eigenschaft von Arrays in Java ist, dass eine genaue Uberwachung
der Grenzen des Arrays durchgefiihrt wird.

162 Kapitel 6

7\

Vorsicht!

N\ 4

6.5.1 Arrays aus Elementen eines einfachen Datentyps

Zunéchst muss eine Referenzvariable fur ein Array-Objekt definiert werden. Dies
erfolgt, ohne die Lange anzugeben:

byte[] bArray;

Damit wird eine Referenzvariable bArray angelegt.

Bild 6-13 Die Referenzvariable bArray

Erzeugen des Array-Objektes

e
AN

\ |
I\\\\\@
/o

7
AN

N |
h\\\\@
a

7
N

\ |
l\\\\\@
/)

Datentypen und Variable 163

Im Folgenden werden die beiden Mdglichkeiten, ein Array-Objekt zu schaffen, vorge-
stellt:

® Erzeugung mit dem new-Operator

Zunédchst die erste Mdglichkeit, d. h. die Verwendung von new, anhand eines
Beispiels:

bArray = new byte [4];
Mit new byte [4] wird ein neues Array-Objekt erstellt, das Werte vom Typ

byte aufnehmen kann. Es hat vier Komponenten, die beim Erstellen des Objektes
mit dem Default-Wert”" 0 initialisiert werden.

bArray[0] | bArray[1] | bArray[2] | bArray[3]
Wert: 0 Wert: 0 Wert: 0 Wert: 0

Bild 6-14 Mit 0 initialisiertes byte-Array

Es ist auch mdglich, beide Schritte auf einmal durchzuflhren:

byte[] bArray = new byte [4];

Die Lange des Arrays kann auch durch eine Variable angegeben werden. Damit
kann die Lange des anzulegenden Arrays zur Laufzeit festgelegt werden:

int 1 = 5;

byte[] bArray = new byte [i];

Der Wert der Variablen i kdnnte somit auch von der Tastatur eingegeben oder mit
Hilfe einer Berechnung bestimmt werden.
Initialisierung

Durch Zuweisung von Werten an die Komponenten kénnen dann die Default-
Werte mit sinnvollen Werten Uberschrieben werden, z. B.:

bArray [2] = 6;

® |mplizites Erzeugen lber eine Initialisierungsliste

Die andere Mdoglichkeit, das Array anzulegen, ist, das Array implizit Gber eine
Initialisierungsliste zu erzeugen und gleichzeitig zu initialisieren:

byte[] bArray = {1, 2, 3, 4};

Das Erzeugen des Array-Objektes wird hier vom Compiler im Verborgenen durch-
geflhrt. Hierbei wird also die Definition der Referenzvariablen bArray, das Anle-

" Bei Array-Komponenten gelten dieselben Default-Werte wie bei Datenfeldern (siehe Kap. 10.4.1).

164 Kapitel 6

gen des Array-Objektes und die Initialisierung der Array-Elemente in einem Schritt
durchgefiihrt. Dabei wird das in Bild 6-15 dargestellte Array angelegt.

bArray[0] | bArray[1] | bArray[2] | bArray[3]
Wert: 1 Wert: 2 Wert: 3 Wert: 4

Bild 6-15 Mit einer Initialisierungsliste erzeugtes und initialisiertes byt e-Array

Hervorzuheben ist, dass die Initialisierungsliste auch Ausdriicke und Variable
enthalten darf wie in folgendem Beispiel:

byte 1 = 1;
byte[] bArray = {i, i + 1, i + 2, 1 * 4};

6.5.2 Arrays aus Referenztypen

Zunachst muss die Referenzvariable, die auf das noch anzulegende Array-Obijekt
zeigen soll, definiert werden. Dies erfolgt, ohne die Lange des Arrays anzugeben:

Klasse[] kArray;

Damit wird eine Referenzvariable kArray angelegt. Das Array-Objekt selbst ist
jedoch noch nicht angelegt. Wenn das Array-Objekt angelegt ist, kann man Uber das
Datenelement 1ength, welches jedes Array-Objekt hat, dessen Lange ermitteln.

Bild 6-16 Die Referenzvariable kArray

Erzeugen des Array-Objektes

Auch hier gibt es die beiden schon bei den Arrays aus einfachen Datentypen gezeig-
ten Mdoglichkeiten, namlich die Array-Elemente mit new zu erzeugen oder eine
Initialisierungsliste zu verwenden:

® Erzeugen mit dem new-Operator
Zunéchst die Verwendung von new anhand eines Beispiels:

kArray = new Klasse [4];

Mit new Klasse [4] wird ein neues Array-Objekt erstellt. Die vier Komponenten
sind Referenzvariablen vom Typ Klasse.

Datentypen und Variable 165

null null null null

g

kArray[0] | KArray[1] | KkArray[2] | KArray[3]

Bild 6-17 Mit nul1 initialisiertes Array aus Referenzvariablen

Jede angelegte Referenzvariable vom Typ Klasse wird mit dem Default-Wert
null initialisiert.

Es ist auch mdglich, beide Schritte auf einmal durchzufiihren:

Klasse[] kArray = new Klasse [4];

Initialisierung

Durch Zuweisung von Werten an die Komponenten kénnen die Default-Werte mit
sinnvollen Werten Uberschrieben werden, z. B.:

Klasse refAufObj = new Klasse();

kArray [2] = refAufObj;

Das folgende Bild zeigt eine mit einer Referenz auf ein Objekt der Klasse Klasse
initialisierte Referenzvariable kArray [2] des Arrays:

Klasse

null null null

A

kArray[0] | KkArray[1] | kArray[2] | KkArray[3]

Bild 6-18 Initialisierung der Referenzvariablen kArray [2]

Das folgende Beispiel zeigt die Initialisierung des Arrays mit Hilfe von Objekten
der Klasse Klasse:

for (int 1v = 0; 1lv < kArray.length; 1lv = 1lv + 1)
kArray [lv] = new Klasse();

166 Kapitel 6

Klasse Klasse Klasse Klasse

O

kArray[O] | KArray[1] | kArray[2] | kArray[3]

Bild 6-19 Mit Referenzen auf Instanzen initialisiertes Array aus Referenzvariablen

® Implizites Erzeugen uber eine Initialisierungsliste

Die andere Mdglichkeit, das Array implizit Gber eine Initialisierungsliste anzulegen
und gleichzeitig zu initialisieren, funktioniert auch bei Arrays aus Referenz-
variablen:

Klasse[] kArray = {refKl, refK2, refK3, new Klasse() };
// dabei miissen refKl, refK2 und refK3
// Referenzen auf vorhandene Objekte
// vom Typ Klasse sein

In der Initialisierungsliste kdnnen entweder Referenzvariablen angegeben, oder
direkt Objekte eines bestimmten Typs mit Hilfe des new-Operators erzeugt
werden.

Die Erzeugung des Array-Objektes wird dabei implizit von der virtuellen Maschine
durchgefiihrt. Mit einem Programmausschnitt soll das Anlegen eines Arrays Uber
eine Initialisierungsliste und der Zugriff auf die in den Array-Elementen referen-
zierten Objekte demonstriert werden:

// Die Referenzen pl und p2 sollen auf Objekte der Klasse

// Person zeigen. Die folgende Codezeile legt eine Referenz-
// variable arr fiir ein Array von Personen an. Es wird ein
// Array-Objekt mit 2 Elementen auf dem Heap angelegt und

// mit den Referenzvariablen pl und p2 initialisiert.
Person|[] arr = {pl, p2};

// Die folgende Codezeile zeigt einen Aufruf der Methode
// print () fir das erste Array-Element.
arr [0].print();

6.5.3 Objektcharakter von Arrays

Arrays sind Objekte. Array-Variablen sind Referenzen auf Array-Objekte, die zur
Laufzeit des Programms dynamisch auf dem Heap angelegt werden. Jedes Array
wird implizit, d. h. ohne eine explizite Angabe des Programmierers, von der Klasse
Object abgeleitet. Damit beinhaltet jedes Array automatisch alle Methoden der

Datentypen und Variable

167

Klasse Object. Zusétzlich enthalt jedes Array das konstante Datenfeld 1ength vom
Typ int, das die Anzahl der Array-Elemente als Wert beinhaltet.

Object

int[]

Person|]

Bild 6-20 Arrays als implizite Subklassen von Ob ject

Das folgende Beispiel demonstriert den Aufruf der Methode equals () der Klasse
Object flr Arrays sowie die Verwendung des Datenfeldes 1ength. Die Methode

equals () hat die Schnittstelle

public boolean equals (Object ref)

Diese Methode gibt bei einem Aufruf

x.equals (y)

true zurlck, wenn x und y Referenzen auf dasselbe Objekt sind.

Beispiel:
// Datei: Arrays.java

public class Arrays
{
public static void main
{
int[] alpha = new int
int[] beta;
beta = alpha;

(String[] args)
[21;

// beta zeigt auf dasselbe
// Array-Objekt wie alpha

System.out.println ("alpha equals beta ist " +
alpha.equals (beta));

System.out.println ("alpha hat " + alpha.length +
" Komponenten") ;

Die Ausgabe des Programms ist:

alpha equals beta ist true
alpha hat 2 Komponenten

168 Kapitel 6

Arrays aus Basisklassen dienen zur flexiblen Speicherung von Objekten verschie-
denster abgeleiteter Klassen. Arrays aus Basisklassen werden in Kapitel 11.4.2
behandelt.

6.5.4 Mehrdimensionale Arrays

Mehrdimensionale Arrays stellen Arrays aus Arrays dar und werden wie in folgendem
Beispiel erzeugt:

int[][][] dreiDimArray = new int [10][20][30];

Es kénnen auch offene Arrays erzeugt werden. Offene Arrays sind Arrays, bei
denen die Lange einzelner Dimensionen nicht angegeben wird. Hierflr I&sst man
einfach bei der Speicherplatz-Allokierung mit new die eckigen Klammern leer. Dies
ist jedoch nur bei mehrdimensionalen Arrays moglich, da der ersten Dimension eines
Arrays immer ein Wert zugewiesen werden muss. Es ist allerdings nicht erlaubt, nach
einer leeren eckigen Klammer noch einen Wert in einer der folgenden Klammern
anzugeben.

So ist beispielsweise

int[J[]1[][] matrix = new int[5][3]1[][];

erlaubt, aber

int[J[]1[][] matrix = new int[5][][][4];

nicht und genauso wenig die folgende Codezeile:

int[1[]1[]1[] matrix = new int[][]1[]1[];

Mehrdimensionale Arrays missen nicht unbedingt rechteckig sein. Es spricht nichts
dagegen, die Elemente eines mehrdimensionalen Arrays einzeln mit unterschiedlich
langen Arrays zu initialisieren.

Das folgende Beispielprogramm wendet dies an. Es legt ein dreiecksférmiges Array
an, fillt es mit den Werten des Pascalschen Dreiecks bis zur zehnten Ebene und gibt
dieses am Bildschirm aus.

// Datei: PascalDreieck.java

public class PascalDreieck
{
public static void main (String[] args)

{
final int EBENE = 10;

int i, j;
int [][] binom = new int [EBENE][];
for (i = 0; i < binom.length; i++)

{

// Anlegen eines Arrays mit der GroBe der entsprechenden
// Ebene.
binom [i] = new int [i + 17;

Datentypen und Variable

169

// Erstes Element einer Ebene mit 1 belegen.

binom [1][0] =

1;

// Letztes Element einer Ebene mit 1 belegen.

binom [i] [binom [i].length - 1]
System.out.printf ("%1d ", binom
for (j = 1; j < binom

{

binom [i][7]
System.out.printf ("%3d ",

}

if (1 > 0)
{

= binom

= 1;

[1]1001);

[i].1length - 1; J++)

[i - 1][J - 1] + binom

binom [i][]]);

(i - 11([3]

// Flur alle Ebenen ausser der ersten wird zum Schluss

// noch eine 1 ausgegeben.
System.out.printf

}

("%3d",

binom[i] [binom[i].length-1]

// Ausgabe eines Zeilenumbruchs nach jeder Ebene.
System.out.println();

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5

1 6 15 20 15

1 7 21 35 35

1 8 28 56 70

1 9 36 84 126
Mit int[][] binom = new int

null

/

1

6
21
56
126

1
7
28
84

Die Ausgabe des Programms ist:

1
8
36

’

)i

[EBENE] [] wird ein Array mit 2 Dimensionen
angelegt. Dabei sind in der ersten Dimension 10 Elemente vorhanden. Die zweite
Dimension wird noch nicht mit Elementen belegt. Bild 6-21 zeigt diesen Sachverhalt:

null

null

/

binom[0]

binom[1]

binom[9]

Bild 6-21 Ein zweidimensionales Array mit 10 Elementen in der ersten Dimension

170 Kapitel 6

Man beachte, dass in der zweiten Dimension int-Arrays mit unterschiedlichen
GrdBen angelegt werden kénnen. Da diese aber noch nicht angelegt wurden, zeigen
alle Array-Elemente der ersten Dimension auf null.

Danach wird das Array — auf das binom zeigt — vom ersten Element an durchlaufen
und jedem Element wird mit der Anweisung binom [i] = new int [i + 1];
ein int-Array von der GroBe der Variablen i + 1 zugewiesen. Das int-Array, das
binom [0] zugewiesen wird, hat also die GroBe 1. Nach dem zweiten Schleifen-
durchlauf sieht der Sachverhalt folgendermaBen aus:

binom[1][1]
Wert: 1
binom[0][0] || binom[1][0]
Wert: 1 Wert: 1 null null
binom[0] | binom[1] | binom[2] binom[9]

Bild 6-22 Von der Referenzvariable binom referenziertes Array nach dem
zweiten Schleifendurchlauf

Entsprechend werden die weiteren int-Arrays flr die zweite Dimension angelegt.

6.5.5 Schreibweise von Arrays

Java erlaubt mehrere Syntax-Varianten bei der Definition von Referenzvariablen auf
Arrays.

Die Array-Klammern kénnen entweder hinter oder vor dem Namender |

Referenzvariablen angegeben werden: _ —
int zahl[]; - -

char[] buffer;

Die zweite Variante bedeutet zwar eine Umstellung zu der von C gewohnten Schreib-
weise, sie entspricht aber der von den einfachen Datentypen bekannten Form:

datentypname variablenname;

Es ist auch eine gemischte Schreibweise mdglich:

byte[] zeile, spalte, matrix[];

Von der gemischten Schreibweise ist jedoch abzuraten.

Datentypen und Variable 171

6.6 Aufzahlungstyp

Mit dem JDK 5.0 sind in Java Aufz&hlungstypen hinzugekommen, die in der Ver-
gangenheit schmerzlich vermisst wurden. Aufz&hlungstypen sind vom Prinzip her
einfache Datentypen — wie in Pascal oder C. Zur Erlauterung, was ein Aufzéhlungs-
typ prinzipiell ist, hier ein Beispiel in der Programmiersprache Pascal:

type werktag = (Mo, Di, Mi, Dn, Fr, Sa);
var x: werktag;

Mit dem Typ werktag wird festgelegt, dass eine Variable x dieses Typs als Wert
genau eine der Aufzahlungskonstanten Mo (steht fir Montag), Di (Dienstag), etc.
annehmen kann. Die Zuweisung anderer Werte an eine Variable, als in der Liste der
Aufzéhlungskonstanten aufgefthrt, wird vom Compiler abgelehnt. Damit wird die
Typsicherheit bereits beim Kompilieren garantiert. Hatte man stattdessen die Wo-
chentage durch ganze Zahlen beschrieben, kdnnten einer solchen Variablen
beliebige ganze Zahlen zugewiesen werden, die keinen Wochentagen entsprechen
wirden — und der Compiler hatte keine Mdglichkeit, solche Fehler zu verhindern.

Eine Variable eines Aufzéhlungstyps enthélt nur einen einzigen Wert, der sich nicht
aus weiteren Werten zusammensetzt. Mit anderen Worten, der Wert einer Variablen
eines Aufzahlungstyps ist atomar. Daher sind Aufzahlungstypen in ihrer urspring-
lichen Form wie in Pascal oder C einfache Datentypen.

In Java werden die Aufzahlungstypen jedoch zu selbst definierten Klassen. Damit
gehdren sie in Java zu den Referenztypen und sind im Unterbaum Referenztypen in
Bild 6-1 eingeordnet.

Aufzahlungstypen — auch enums genannt — sind Datentypen, die als Wertebereich
eine endliche geordnete Menge von Konstanten zulassen. Da die Elemente einer
endlichen geordneten Menge abzahlbar sind, erhielten diese Datentypen den Namen
Aufzahlungstypen (engl. enumeration type). Die Konstanten werden als Auf-
zahlungskonstanten bezeichnet. Eine Variable eines Aufzahlungstyps kann als
Wert eine dieser Aufzahlungskonstanten besitzen.

@~
Enums wurden in Java mit dem JDK 5.0 eingeflihrt und funktionieren V/orsicht'
mit <eren Versionen des Compilers nicht. \v /

Ein Aufzahlungstyp trdgt einen Namen. Bei der Definition des Typs werden die
Aufzéhlungskonstanten in Form einer Liste wie im folgenden Beispiel angegeben:

enum AmpelFarbe {ROT, GELB, GRUEN}

AmpelFarbe ist hier der Name des Aufzahlungstyps und ROT, GELB und GRUEN sind
Aufzéhlungskonstanten. Durch die Angabe der Aufzéhlungskonstanten in Form einer
Liste entsteht eine Reihenfolge. Ein Aufz&hlungstyp ist daher ein ordinaler Datentyp.
Das bedeutet, dass den Aufzéhlungskonstanten vom Compiler Werte in aufsteigen-
der Reihenfolge zugeordnet werden. Hier ein Programmbeispiel, das den Aufzéh-
lungstyp Ampel1Farbe definiert und verwendet:

172

Kapitel 6

// Datei: Ampel.java

public class Ampel

{

// Der Aufzédhlungstyp wird hier in der Klasse definiert, in der
// er verwendet wird. Die Ampel kann ROT, GELB oder GRUEN sein.
public enum AmpelFarbe {ROT, GELB, GRUEN}

// Instanzvariable des Aufzédhlungstyps Ampelfarbe
private AmpelFarbe farbe;

public void setAmpelFarbe (AmpelFarbe ampelFarbe)
{
farbe = ampelFarbe;

}

public AmpelFarbe getAmpelFarbe ()
{
return farbe;

}

// main()-Methode zum Testen
public static void main (String[] args)
{

Ampel ampel = new Ampel () ;

// funktioniert
ampel.setAmpelFarbe (AmpelFarbe.ROT);

// Das Folgende geht nicht! Es kdnnen nur die Aufzdhlungs-—
// konstanten des Aufzdhlungstyps AmpelFarbe verwendet werden
// ampel.setAmpelFarbe (3);

System.out.println ("Die Ampel ist: "

+ ampel.getAmpelFarbe());
System.out.println ("Die Ordinalzahl ist: "

+ ampel.getAmpelFarbe () .ordinal());

ampel.setAmpelFarbe (AmpelFarbe.GELB);
System.out.println ("Der Name ist: "

+ ampel.getAmpelFarbe () .name());
System.out.println ("Die Ordinalzahl ist: "

+ ampel.getAmpelFarbe () .ordinal());

Die Ausgabe des Programms ist:

Die Ampel ist: ROT
Die Ordinalzahl ist: O

Der Name ist: GELB
Die Ordinalzahl ist: 1

Wie im obigen Beispiel zu sehen ist, sind Aufzdhlungstypen typsicher, d. h. der
Compiler I&sst keine ungultigen Zuweisungen zu.

Datentypen und Variable 173

Einer Variablen eines Aufzéhlungstyps kénnen nur Werte aus der — -
Menge der Aufzahlungskonstanten zugewiesen werden. - ~

Die einfache Notation

public enum AmpelFarbe {ROT, GELB, GRUEN}

setzt der Compiler in eine Notation der folgenden Art um:

public final class AmpelFarbe extends Enum

{
public static final AmpelFarbe ROT = new AmpelFarbe ("ROT", 0);
public static final AmpelFarbe GELB = new AmpelFarbe ("GELB", 1)
public static final AmpelFarbe GRUEN =new AmpelFarbe ("GRUEN", 2)

’
’

private AmpelFarbe (String s, int 1)
{
super (s, 1);

}

Ein Aufzéhlungstyp ist in Java eine Klasse und die Aufzahlungs- B
konstanten sind Referenzvariable auf Objekte des Aufzdhlungs- —

typs. Dem Aufzahlungstyp kénnen deshalb auch Methoden und Da- ~
tenfelder hinzugefligt werden. =

Die Klasse Enum ist in der Java-Klassenbibliothek im Paket java.lang zu finden. In
der Klasse Enum werden auch die Methoden ordinal () und name () definiert, die
damit zu jedem Aufzahlungstyp aufgerufen werden kénnen.

Wird eine Referenzvariable als final deklariert, so kann dieser Variablen kein an-
derer Wert zugewiesen werden und damit zeigt diese Referenzvariable immer auf
dasselbe Objekt. Des Weiteren ist zu beachten, dass der Compiler fir jede Auf-
zahlungskonstante genau ein Objekt des Aufzdhlungstyps anlegt. Es ist nicht még-
lich, dass der Programmierer selbst mit Hilfe des new-Operators weitere Objekte
eines Aufzdhlungstyps anlegt. Der Programmierer kann nur Referenzvariable des
Aufzahlungstyps anlegen, die auf eine der definierten Aufzéhlungskonstanten zeigen
kénnen.

Jede Aufzahlungskonstante zeigt auf ein Objekt des Aufzahlungstyps,

welches den Namen der Aufzdhlungskonstante als String und auch ﬁ/@\
den Ordinalwert der Aufzahlungskonstante als Instanzvariable enthalt. =

Da fir jede Aufzahlungskonstante nur ein einziges Objekt existiert,

kann der Operator == verwendet werden, um Aufzéhlungskonstanten ‘/@\
zu vergleichen. =

174 Kapitel 6

Da ein Aufzahlungstyp eine Klasse darstellt, kénnen die Aufzéhlungstypen auch
Datenfelder und Methoden haben, wie folgendes Beispiel zeigt:

// Datei: Namel.java

public enum Namel
{
// Definition der Aufzdhlungskonstanten
PETER,
HANS,
JULIA,
ROBERT;

// Datenfeld
private int note;

// Methoden, um auf das Datenfeld zuzugreifen
public int getNote()

{

return note;

}

public void setNote (int var)

{

note = var;

}

Die folgende Klasse holt die Aufzdhlungskonstante HANS des Aufzahlungstyps
Namel und setzt die Note dieses Objektes. AnschlieBend wird die Note ausgelesen
und ausgegeben:

// Datei: NameTest.java

public class NameTest
{
public static void main (String[] args)
{
// Zuweisen des Elementes HANS aus dem Aufzadhlungstyp Namel
// an die Variable des Aufzé&hlungstyps Namel.
Namel name = Namel.HANS;

// Aufrufen von Methoden des Objektes des Aufzahlungstyps
name.setNote (2);
System.out.println ("Hans hat die Note: " + name.getNote());

Die Ausgabe des Programms ist:

Hans hat die Note: 2

Datentypen und Variable

175

Ebenso wie normale Methoden kénnen die Aufzahlungstypen auch Konstruktoren
enthalten. Um dies zu zeigen, wird dem obigen Beispiel noch ein Konstruktor hinzu-
gefligt und entsprechend verwendet:

// Datei: NameZ2.java

public enum Name?2

{

// Definition der Aufzdhlungskonstanten

PETER (2), // In den runden Klammern steht der Parameter,
HANS (4), // der an den Konstruktor ibergeben wird.

JULIA (1),
ROBERT (2);

// Datenfeld
private int note;

// Konstruktor
Name2 (int wvar)
{

note = wvar;

}

// Methoden, um auf das Datenfeld zuzugreifen
public int getNote ()
{

return note;

}

public void setNote (int wvar)
{
note = var;

}

Wird der Konstruktor — wie oben gezeigt — verwendet, wird das Datenfeld note flr
alle Elemente der Menge entsprechend initialisiert. Es gelten dieselben Regeln wie
bei normalen Klassen: Wird ein eigener Konstruktor bereitgestellt, wird dadurch der
Default-Konstruktor, der durch den Compiler bereitgestellt wird, unsichtbar und kann
nicht mehr verwendet werden.

Jede Aufzahlungskonstante kann die Methoden, welche im Aufzahlungstyp definiert
sind, Uberschreiben. Dies ist zunachst etwas gewdhnungsbedurftig. Das folgende
Beispiel soll den Sachverhalt veranschaulichen: Hans méchte immer der Beste sein
und behauptet daher, immer eine 1 geschrieben zu haben.

// Datei: Name3.java

public enum Name3

{

// Definition der Aufzdhlungskonstanten
PETER (1),

// Uberschreiben der Methode getNote ()

// fir die Aufzdhlungskonstante HANS

HANS (5) {public int getNote() {return 1;}},

176

Kapitel 6

JULIA (1),
ROBERT (2);

// Datenfeld
private int note;

Name3 (int wvar)

{

note = var;

}

// Methoden, um auf das Datenfeld zuzugreifen
public int getNote()
{

return note;

}

public void setNote (int wvar)

{

note = var;

}

In diesem Fall wird der Methodenaufruf getNote () flir Hans immer 1 zurlickliefern.
Werden Methoden eines Aufzahlungstyps als abstract definiert, missen sie von

allen Aufzahlungskonstanten des Aufzéhlungstyps Uberschrieben werden.

Methoden kdénnen bei Aufzéhlungstypen fir jede Aufzahlungskon-
stante Uberschrieben werden. Dies geschieht an der Stelle, an der die
Aufzéhlungskonstanten erzeugt werden.

(i

Das folgende Beispielprogramm verwendet den oben angegebenen Aufzahlungstyp

Name3:

// Datei: NameTest2.java

public class NameTest2
{
public static void main (String[] args)

{

// Zuweisen der Objekte JULIA und HANS aus der Menge der Auf-
// zdhlungskonstanten an lokale Variablen des Aufzdhlungstyps.

Name3 julia = Name3.JULIA;

Name3 hans = Name3.HANS;

// Beide bekommen ihre Note mitgeteilt
System.out.println ("Professor: Julia hat die Note 2");
julia.setNote (2);

System.out.println ("Professor: Hans hat die Note 5");
hans.setNote (5);

// Beide werden nach ihren Noten gefragt

System.out.println ("Julia: Ich habe eine "+ julia.getNote());
System.out.println ("Hans: Ich habe eine " + hans.getNote())

’

Datentypen und Variable 177

Die Ausgabe des Programms ist:

Professor: Julia hat die Note 2
Professor: Hans hat die Note 5
Julia: Ich habe eine 2
Hans: Ich habe eine 1

Da die Aufzahlungskonstante HANS die Methode getNote () Uberschrieben hat,
wird immer seine Wunschnote, die 1, zurlickgegeben.

Neben den schon vorgestellten Instanzmethoden name () und ordinal (), die jeder
Aufzahlungstyp von der Klasse Enum erbt, werden vom Compiler beim Ubersetzen
des Aufzahlungstyps automatisch die folgenden Klassenmethoden hinzugefligt:

public static E[] wvalues()
public static E valueOf (String name)

Hierbei ist £ der Name eines Aufzahlungstyps. So liefert der Aufruf

Name3.values () ;

ein Array von Referenzvariablen, die auf alle Aufzahlungskonstanten zeigen, die
innerhalb des Aufzahlungstyps Name3 definiert sind, zurlick. Die Reihenfolge der
Definition innerhalb des Arrays wird eingehalten. Dahingegen liefert der Aufruf

Name3.valueOf ("HANS");

eine Referenz auf die Aufzdhlungskonstante HANS zurlck. Das folgende Beispiel
zeigt die Verwendung der Methoden values () und valueOf () am Beispiel des
Aufzahlungstyps Name3:

// Datei: NameTest3.java

public class NameTest3
{
public static void main (String[] args)
{
// Abfragen aller in Name3 definierten Konstanten
Name3[] alleNamen = Name3.values();
System.out.println
("Folgende Konstanten sind in Name3 definiert:");

// Ausgabe aller Namen auf dem Bildschirm
// mit Hilfe einer for-Schleife.
for (int i = 0; i < alleNamen.length; i++)
{
System.out.println (alleNamen [i].name());

}

// Beschaffen einer Referenz auf die Konstante HANS in Name3
Name3 hans = Name3.valueOf ("HANS");
System.out.println (hans + " ist in Name3 definiert.");

178 Kapitel 6

Die Ausgabe des Programms ist:

Folgende Konstanten sind in Name3 definiert:
PETER

HANS

JULIA

ROBERT

HANS ist in Name3 definiert.

6.7 Zeichenketten

Strings sind in Java — wie auch in anderen Programmiersprachen — Zeichenketten,
d. h. Folgen von Zeichen. In Java sind Strings Objekte.

In Java gibt es drei verschiedene String-Klassen: N

e die Klasse string fiir konstante Zeichenketten - '@:

5 q q e

® und die Klasse stringBuffer, sowie die Klasse StringBuilder =
fur variable Zeichenketten. =

Diese Datentypen sollen in den nachsten Unterkapiteln néher erlautert werden.

6.7.1 Konstante Zeichenketten

Eine konstante Zeichenkette ist eine Folge von Zeichenkonstanten, die nicht abge-
andert werden kann. Sie kann also nur gelesen werden (engl. read only). Tabelle
6-3 zeigt exemplarisch den Aufbau konstanter Zeichenketten aus Zeichenkon-
stanten.

konstante Zeichenkette (Objekt) | Enthalt
"alpha" lalllllpllhllal
"Pia!l lP'lilla!

Tabelle 6-3 Beispiel fiir den Aufbau konstanter Zeichenketten

Konstante Zeichenketten sind in Java Objekte der Klasse String. Die Klasse
String reprasentiert eine Zeichenkette mit folgenden Eigenschaften:

® Die Lénge eines Strings steht fest und kann auch nicht veréandert werden.
® Der Inhalt des Strings kann nicht verandert werden.

Kurz und gut, der String ist eine Konstante. Ziel dieser zwei Eigenschaften ist es, ein
ungewolltes Uberschreiben von Speicherinhalten in Programmen zu vermeiden und
die Programme dadurch sicherer zu machen.

|

\ /
Eine konstante Zeichenkette "Peter" ist ein Ausdruck und hat als —
Rickgabewert eine Referenz auf das String-Objekt, das den Inhalt @
TPligl i lgl iyt hat

~

(i

Datentypen und Variable 179

Um das Ende eines Strings bei vorgegebener Anfangsposition des Strings zu finden,
gibt es zwei prinzipielle Mdglichkeiten:

® Erstens, sich die Lange des Strings zu merken. Dann wei3 man, an welcher
Position das letzte Zeichen des Strings steht.

® Zweitens, ein besonderes Zeichen zu verwenden, das unter den Buchstaben und
Ziffern des Alphabets nicht vorkommt und das an das letzte Zeichen des Strings
angehangt wird, um das Ende anzuzeigen.

AR L R S L R N L LR G LR L

erstes Zeichen

»

Anzahl Zeichen

AN I B NG ER SR L BE CN F LP N BLE GELLIE GRL BLPNL I)

erstes Zeichen Endezeichen

Bild 6-23 Erkennen des Stringendes mit Stringldnge oder speziellem Endezeichen
In Java wird die erste Methode angewandt.

|
\ /
Das Datenfeld, in dem die Lange eines Strings abgelegt ist, lasst sich —
mit der Methode 1ength () der Klasse String abfragen. Beim Aufruf @

gibt sie die Anzahl der Zeichen des Strings zurlck.

~

]

6.7.1.1 Erzeugung von Strings
Fir die Erzeugung von Strings gibt es zwei prinzipielle Mdglichkeiten:

® Erzeugung eines Objektes vom Typ String mit dem new-Operator und
Initialisierung mit einem Konstruktor’®

Durch die Erzeugung eines Strings mit new wird ein neues Objekt vom Typ
String im Heap angelegt. Zur Initialisierung bietet die Klasse String ver-
schiedene Mdglichkeiten. So kann das Objekt vom Typ String mit einer kon-
stanten Zeichenkette initialisiert werden wie in folgendem Beispiel:

String namel = new String ("Anja");
Der new-Operator gibt dabei einen Zeiger auf das auf dem Heap angelegte

String-Objekt "Anja" zurlck, welcher in der Referenzvariablen namel abge-
speichert wird.

2 Konstruktor siche Kap. 10.4.4.

180 Kapitel 6

In Analogie dazu zeigt die Referenzvariable name2 auf das String-Objekt
"Herbert" auf dem Heap:

String name2 = new String ("Herbert");

Objekte vom Typ string kdnnen nicht abgeandert werden. ‘/\

Durch die Zuweisung

namel = name2;

zeigt nun die Referenzvariable name1 auch auf das String-Objekt "Herbert™".

Heap

| namef F——~_1»[String"Anja" |
| name2 F——~—1» String "Herbert" |

Bild 6-24 Referenzen und st ring-Objekte vor der Zuweisung namel = name2

Heap

\ name1 }-\ | String "Anja" |

\ name2 F——~_13[String "Herbert" |

Bild 6-25 Referenzen und st ring-Objekte nach der Zuweisung namel = name2

Einer Referenzvariablen vom Typ string kann eine Referenz auf . |
ein anderes String-Objekt zugewiesen werden. Die auf dem Heap _
angelegten String-Objekte sind also unveranderlich, den Referenz- \
variablen vom Typ String kénnen jedoch neue Werte zugewiesen =
werden. E

Im nachsten Beispiel erfolgt die Initialisierung mit Hilfe einer Referenzvariablen,
die auf ein Array von Zeichen zeigt, das mit Hilfe einer Initialisierungsliste angelegt
wurde:

char[] data = {'A', 'n', 'j', 'a'}; // Array von Zeichen
String name = new String ("Anja");
String gleicherName = new String (data);

Datentypen und Variable 181

Fur mit new erzeugte Strings wird immer ein neues String-Objekt — -
im Heap erzeugt. - ™~

Heap

| name F—~_|»| String "Anja" |
[gleicherName "~ Ly String "Anja" |

Bild 6-26 Heap nach der Erzeugung zweier Strings mit new

¢ Implizites Erzeugen eines Objektes vom Typ String

Strings kénnen — wie Arrays — auch ohne expliziten Aufruf von new erzeugt wer-
den. Die Erzeugung erfolgt implizit, wenn im Programm eine konstante Zeichen-
kette verwendet wird. Allerdings wird dabei nicht immer im Heap ein neues Objekt
vom Typ string angelegt.

Bei optimierenden Compilern kénnen Objekte vom Typ String, die
den gleichen Inhalt haben und implizit erzeugt werden, wieder ver-
wendet werden.

AN ! /
1\\\\\@ —
/ \ ~

Durch diese Wiederverwendung werden die .class-Dateien kleiner und es ist
eine Einsparung von Speicher im Heap méglich. Im folgenden Beispiel werden
zwei Referenzvariablen name und gleicherName vom Typ String angelegt und
mit "Anja" initialisiert:

String name = "Anja";
String gleicherName = "Anja";

Der Compiler kann beiden Referenzvariablen die Adresse auf dasselbe Objekt
vom Typ String zuweisen. Da die .class-Datei kleiner wird, ist sie fur eine
eventuelle Ubertragung Uber ein Netzwerk optimiert.

Heap

[name V\—ﬂ String "Anja" |

| gleicherName |/\/

Bild 6-27 Heap nach der impliziten Erzeugung zweier Strings

Nicht nur der Compiler kann Optimierungen durchfiihren, auch der Interpreter hat
die Mdglichkeit, eine ahnliche Speicherplatzoptimierung durchzufihren. Wahrend

182 Kapitel 6

der Compiler die Optimierung einer einzelnen .class-Datei durchfihrt, kann
der Interpreter zur Laufzeit klasseniibergreifend optimieren. Werden in zwei
unterschiedlichen Klassen die gleichen konstanten Zeichenketten verwendet, hat
der Compiler keine Mdglichkeit zu optimieren. Dagegen kann der Interpreter beim
Laden einer Klasse prlfen, ob schon ein Objekt vom Typ string mit dieser kon-
stanten Zeichenkette existiert. Existiert schon ein Objekt vom Typ String mit
dem Inhalt der konstanten Zeichenkette, muss kein neues Objekt angelegt wer-
den.

6.7.1.2 Vergleichen von Strings

Wenn zwei Referenzvariablen, die auf ein Objekt vom Typ string zeigen, mit Hilfe
des == Operators verglichen werden, so werden ihre Werte, d. h. die Referenzen,
verglichen. Mit anderen Worten, es wird verglichen, ob sie auf das gleiche Objekt
vom Typ String zeigen. Es wird jedoch nicht geprift, ob der Inhalt der Objekte
Ubereinstimmt. Wirden die in Kapitel 6.7.1 angesprochenen Optimierungen in jedem
Fall greifen, so wirde dieser Vergleich tats&chlich funktionieren. Da jedoch die Opti-
mierung zumindest bei mit new erzeugten Strings nicht durchgefihrt wird und bei
implizit erzeugten Objekten vom Typ String nicht zwingend vorgeschrieben ist,
muss zum Vergleich des Inhalts zweier Objekte vom Typ String die Methode
equals () der Klasse string verwendet werden.

Zeigen namel und name?2 auf Objekte vom Typ String, so wird der Vergleich

if (namel.equals (name2))

korrekt durchgefiihrt, ungeachtet dessen, ob die Objekte vom Typ String explizit
oder implizit erzeugt wurden.

6.7.1.3 Stringverarbeitung — Methoden der Klasse String

Da eine konstante Zeichenkette ein Objekt der Klasse String ist, kdnnen auch alle
Methoden dieser Klasse angewendet werden. Zu beachten ist:

Jede Methode der Klasse string, die eine Veranderung der Zei-
chenkette zur Folge hat, z. B. der Aufruf der Methode substring(), _
liefert ein neues Objekt der Klasse String zurlick und nicht das glei-
che Objekt mit einem geanderten Inhalt. Objekte vom Typ String =
kdnnen nicht geandert werden. =

Die Klasse string ist im Paket java.lang definiert. Eine ausflhrliche Beschrei-
bung aller Methoden kann in der Dokumentation der Java-API (siehe Kap. 3.3.2)
gefunden werden. Im Folgenden sind kurz die gebrauchlichsten Methoden und ihre
Aufgaben aufgezahlt:

® public int length()
Gibt die Anzahl der Zeichen einer Zeichenkette zuriick.

Datentypen und Variable 183

public boolean equals (Object obj)

Vergleicht zwei Zeichenketten miteinander und gibt true zuriick, falls die Zei-
chenketten den gleichen Inhalt haben. Ansonsten wird false zuriickgegeben. Die
Methode equals (), die in der Klasse string implementiert ist, unterscheidet
sich von der Methode equals () der Klasse Object. Die Methode equals () der
Klasse Object Uberprift nur, ob die beiden Referenzen, die am Vergleich betei-
ligt sind, auf das gleiche Objekt zeigen. Bei zwei unterschiedlichen Objekten mit
gleichem Inhalt gibt diese Methode immer false zuriick.

public String substring (int anfang, int ende)

Schneidet eine Zeichenkette zwischen anfang und ende - 1 aus und gibt den
ausgeschnittenen Teil als neues Objekt vom Typ String zurlick. Beachten Sie,
dass das erste Zeichen den Index O hat. Ist der Wert von anfang negativ oder
geht der Wert von ende Uber die tatsachliche Lange hinaus, so wird eine
Exception vom Typ StringIndexOutOfBoundsException’ geworfen.

public String trim()
Entfernt alle Leerzeichen am Anfang und am Ende der Zeichenkette und gibt den
bearbeiteten String als neues Objekt vom Typ string zurlick.

Im folgenden Beispiel werden diese Methoden verwendet:

// Datei: Zeichenkette. java

public class Zeichenkette
{
public static void main (String[] args)
{
String buchtitel = "Java als erste Programmiersprache";
String buchtitelAnfang;
System.out.println (buchtitel);
System.out.println ("Anzahl der Zeichen des Buchtitels: "
+ buchtitel.length());

// Zuweisung eines Teilstrings an buchtitelAnfang
buchtitelAnfang = buchtitel.substring (0, 5);
System.out.println ("Anzahl der Zeichen des Buchtitel"

+ "anfangs vor trim(): " + buchtitelAnfang.length());

// Entfernen der Leerzeichen von beiden Enden des Strings
buchtitelAnfang = buchtitelAnfang.trim();
System.out.println ("Anzahl der Zeichen des Buchtitel"

+ "anfangs nach trim(): " + buchtitelAnfang.length());

if (buchtitelAnfang.equals ("Java"))
{
System.out.println ("Buchtitel fé&ngt mit Java an");

}

8 Exceptions siehe Kap. 13.

184 Kapitel 6

Anzahl der Zeichen des Buchtitels: 33

Anzahl der Zeichen des Buchtitelanfangs vor trim(): 5
Anzahl der Zeichen des Buchtitelanfangs nach trim(): 4
Buchtitel fdangt mit Java an

Hier die Ausgabe des Programms:
Java als erste Programmiersprache

6.7.2 Variable Zeichenketten mit der Klasse StringBuffer

Die Klasse stringBuffer gehoért auch zum Paket java.lang und représentiert
eine Zeichenkette mit den folgenden Eigenschaften:

® Die Lange der Zeichenkette in einem stringBuffer-Objekt ist nicht festgelegt.

® Die Lange vergrdBert sich automatisch, wenn im stringBuffer-Objekt weitere
Zeichen angeflgt werden und der vorhandene Platz nicht ausreicht.

® Der Inhalt eines Objektes der Klasse stringBuffer lasst sich verandern.

Die Lange der Zeichenkette in einem Objekt vom Typ StringBuffer wird — wie
auch bei der Klasse string — in einem zusatzlichen Datenfeld des Objektes abge-
legt.

6.7.2.1 Erzeugung eines StringBuffer-Objektes

Im Gegensatz zur Klasse String gibt es bei der Klasse StringBuffer nicht die
Méglichkeit, ein Objekt implizit zu erzeugen. Die Erzeugung ist nur mit dem Ope-
rator new mdoglich. Die Initialisierung eines Objektes der Klasse stringBuffer er-
folgt durch Aufruf des Konstruktors, der im Anschluss an den new-Operator folgt und
durch den Klassennamen, die runden Klammern und ihren Inhalt gegeben ist. Im
Folgenden werden die Konstruktoren

StringBuffer ()
StringBuffer (int length)
StringBuffer (String str)

vorgestellt. Dem ersten Konstruktor werden keine Parameter zur Initialisierung Uber-
geben. Es wird ein stringBuffer-Objekt auf dem Heap angelegt, das 16 Zeichen
aufnehmen kann. Hierbei wird — fiir den Programmierer unsichtbar — innerhalb des
Konstruktors ein zweites Mal mit dem new-Operator Speicher auf dem Heap allokiert
und die Referenz auf diesen Speicher dem privaten Datenfeld value vom Typ
private char[] des StringBuffer-Objektes zugewiesen:

value = new char [16];

Ein stringBuf fer-Objekt, das mit folgender Anweisung

StringBuffer strl = new StringBuffer();

erzeugt wird, ist in folgendem Bild zu sehen:

Datentypen und Variable 185

Heap
stri T — :StringBuffer

private char[] value; ———
>

private int count = 16;

<| char-Array der Lange 16|

Bild 6-28 Mit dem parameterlosen Konstruktor initialisiertes St ringBuf fer-Objekt

Wird als aktueller Parameter des Konstruktors ein int-Wert Ubergeben, so wird ein
StringBuffer-Objekt der Lange des Ubergebenen int-Wertes angelegt. Die An-
weisung

StringBuffer str2 = new StringBuffer (10);

legt also ein StringBuffer-Objekt an, das 10 Zeichen aufnehmen kann. Man
beachte, dass auch hier innerhalb des Konstruktors noch einmal vom new-Operator
Gebrauch gemacht wird, um ein char-Array der entsprechenden L&nge auf dem
Heap zu allokieren.

Heap
str2 F—~— > :StringBuffer

private charf] value; ———
>

private int count = 10;
<| char-Array der Lange 10 |

Bild 6-29 Erzeugtes st ringBuf fer-Objekt, das 10 Zeichen aufnehmen kann

StringBuffer-Objekte, die mit dem Konstruktor ohne Parameter bzw. mit dem
Konstruktor, der die Lange eines stringBuffer-Objektes entgegennimmt, initiali-
siert werden, haben noch keine Zeichenkette, die sie beinhalten. Um ein string-
Buf fer-Objekt nach der Erzeugung mit einer Zeichenkette zu flllen, existieren die
Methoden append() und insert () in unterschiedlichen Auspragungen in der
Java-API. Genauso kann nachtraglich der schon bestehende Inhalt eines string-
Buf fer-Objektes durch Methoden wie insert (), delete() und setCharAt ()
verandert werden. Der volle Umfang der Methoden der Klasse StringBuffer und
deren detaillierte Beschreibung kann der Dokumentation der Java-Klassenbibliothek
enthommen werden.

Wird als aktueller Parameter des Konstruktors eine konstante Zeichenkette angege-
ben, so wird damit das stringBuf fer-Objekt initialisiert. Mit der Codezeile

StringBuffer name = new StringBuffer ("Anja");

wird also ein stringBuffer-Objekt auf dem Heap angelegt und zusétzlich mit der
konstanten Zeichenkette "Anja™" initialisiert (siehe Bild 6-30).

186 Kapitel 6

Heap
name S :StringBuffer

private char[] value; \>

private charf] value; ———

WA;———>

———

Bild 6-30 Mit "Anja" initialisiertes St ringBuf fer-Objekt und st ring-Objekt "Anja"

Auch hier wird innerhalb des Konstruktors vom new-Operator Gebrauch gemacht und
ein entsprechendes char-Array auf dem Heap angelegt, das mit den Zeichen 'a"
'n' 'j' 'a' initialisiert wird. Dabei wird in das private Datenfeld count die Lange
der Zeichenkette "Anja", d. h. die Zahl 4, eingetragen.

Da bei der Erzeugung des Objektes der Klasse stringBuffer eine Referenz auf
ein Objekt vom Typ String Ubergeben wird, kommt die Zeichenkette "Anja"
zweimal im Heap vor, einmal als Objekt vom Typ Sstring und einmal als Objekt vom
Typ stringBuffer. Die Darstellung eines Strings im Arbeitsspeicher wurde bis zu
Bild 6-30 noch nicht vorgestellt. Obwohl Objekte vom Typ String konstant und
Objekte vom Typ stringBuffer variabel sind, sind ihre Datenfelder gleich, aller-
dings sind ihre Methoden verschieden.

Bei Objekten vom Typ stringBuffer wird in keinem Fall eine Speicherplatz-
optimierung wie bei Objekten vom Typ String vorgenommen. Es wird stets ein
neues Objekt vom Typ stringBuffer im Heap angelegt.

6.7.2.2 Vergleichen von Objekten vom Typ StringBuffer

Da fir jede Zeichenkette ein neues Objekt der Klasse StringBuffer erzeugt wird,
sollte man meinen, dass auch in diesem Fall ein Vergleich zweier Zeichenketten mit
der Methode equals () erfolgt. Die Klasse stringBuffer erbt zwar wie jede Klas-
se die Methode equals () von der Klasse Object, allerdings wird sie jedoch nicht
wie bei der Klasse string Uberschrieben und kann daher nicht sinnvoll eingesetzt
werden. Wird sie fir den Vergleich von StringBuffer-Objekten verwendet, so
liefert sie ein unbrauchbares Ergebnis. Ein Vergleich der Zeichenketten zweier
Objekte vom Typ stringBuffer ist nur Uber den Umweg der Konvertierung
beider Objekte in zwei Objekte vom Typ String moglich. Die Konvertierung
erfolgt mit der Methode toString (). Dies wird in folgendem Beispiel vorgestellt:

StringBuffer namel new StringBuffer ("Anja");
StringBuffer name2 = new StringBuffer ("Peter");

Datentypen und Variable 187

namel.toString() ;
name2.toString () ;

String namelString
String name2String

if (namelString.equals (name2String)).

6.7.3 Verkettung von Strings und StringBuffern

Die Verkettung von Zeichenketten aus Objekten der Klassen String und String-
Buffer wird in diesem Kapitel zusammengefasst, da die Verkettung von String-
Objekten auf der Verkettung von stringBuf fer-Objekten aufsetzt.

6.7.3.1 Anhangen von Zeichenketten an einen StringBuffer

Das Anhangen einer konstanten Zeichenkette an ein Objekt der Klasse String-
Buffer erfolgt mit der Methode append() der Klasse StringBuffer wie in
folgendem Beispiel:

StringBuffer name = new StringBuffer ("Anja");
name.append (" Christina");

Heap

|y StringBuffer "Anja Christina" |

name In/a(:P;r/ | String "Anja" |

Operation

| String " Christina" |

Bild 6-31 Anhdngen einer Zeichenkette

Die beiden String-Objekte "Anja"™ und " Christina™ werden, sofern sie nicht von
anderen Stellen in der virtuellen Maschine referenziert werden, zur gegebenen Zeit
durch den Garbage Collector entfernt.

Die Verkettung von stringBuffer-Objekten erfolgt analog, wie im folgenden Bei-
spiel gezeigt wird:

StringBuffer namel = new StringBuffer ("Anja");
StringBuffer namel = new StringBuffer (" Christina");
namel.append (name?2);

6.7.3.2 Verkettung von String-Objekten

Zur Verkettung von string-Objekten gibt es in Java den Operator + als Ver-
kettungsoperator. Da Objekte der Klasse string unveranderlich sind, wird hierbei
eine neues string-Objekt erzeugt, welches die neue, verkettete Zeichenkette
aufnimmt. Dies ist im folgenden Beispiel zu sehen:

188 Kapitel 6

String name = "Anja";
name = name + " Christina";

Lassen Sie sich hier nicht verbliffen. Objekte vom Typ String kdénnen tatsachlich
nicht verandert werden. Mit name + " Christina" wird ein neues Objekt vom Typ
String geschaffen. Mit name = name + " Christina" wird die Referenz-
variable name auf das neu erzeugte Objekt gerichtet.

Der Operator + wird dabei vom Compiler in einen append ()-Aufruf der Klasse
StringBuffer Ubersetzt. Die zwei Codezeilen des vorherigen Beispiels werden
dabei sinngeman in die folgenden Anweisungen Ubersetzt:

String name = "Anja";

StringBuffer b = new StringBuffer (name);
b.append (" Christina");

name = b.toString();

Im Heap werden mit diesen Anweisungen die in Bild 6-32 gezeigten String- und
StringBuf fer-Objekte angelegt.

Heap
vor der : :
Operation | 4 String "Anja” |

/

| String " Christina” |

name

| StringBuffer "Anja Christina" |

nach der T String "Anja Christina" |
Operation

Bild 6-32 Zeichenketten im Heap vor und nach der Verkettung

Es werden also zwei Objekte vom Typ String erzeugt und miteinander Gber Um-
wege zu einem neuen Objekt vom Typ String verkettet. Die String-Objekte
" Christina" und "Anja" sowie das StringBuffer-Objekt "Anja Christi-
na" kénnen, wenn sie nicht mehr durch eine andere Referenzvariable referenziert
werden, vom Garbage Collector entfernt werden. Dieses Vorgehen ist, da die Erzeu-
gung von Objekten viel Rechenzeit verbraucht, nicht besonders effizient. In Schleifen
sollte deshalb die Verkettung von Strings vermieden werden. Stattdessen sollten
besser stringBuf fer-Objekte verwendet werden. Das folgende Beispiel zeigt, wie
in einer for-Schleife der bestehende String jedesmal um ein Sternchen erweitert
wird:

String s = "*";
for (int i = 0; 1 < 5000; i++)

s =s + "*"; // Dies sollte vermieden werden

Datentypen und Variable 189

Fir das vorangehende Beispiel empfiehlt sich daher die folgende Optimierung:

String s = "*";
StringBuffer tmp = new StringBuffer (s);
for (int 1 = 0; 1 < 5000; 1i++)
{
tmp.append ("*"); // So ist es besser

}
s = tmp.toString();

Durch dieses Vorgehen ergibt sich eine Geschwindigkeitserhdhung.

6.7.4 Variable Zeichenketten mit der Klasse StringBuilder

Seit dem JDK 5.0 stellt das Paket java.lang auch eine Klasse StringBuilder
zur Verflgung. Bisher war die Klasse stringBuffer die einzige Mdéglichkeit, um
Zeichenketten zu verandern. Die Klasse StringBuilder ist eine neue Klasse mit
einer hoheren Performanz, die jedoch nicht verwendet werden darf, wenn eine
Zeichenkette von mehreren Threads (siehe Kap. 19) parallel bearbeitet wird.

Die Klassen stringBuffer und StringBuilder werden hauptsachlich dazu
verwendet, Zeichenketten aufzubauen oder abzué&ndern. Bestehende Zeichenketten,
die in einem Objekt der Klasse stringBuilder oder StringBuffer gespeichert
sind, werden dabei durch Anfligen oder Einfligen von neuen Zeichen oder Ab&ndern
von bestehenden Zeichen modifiziert.

Zu diesem Zweck bietet die Klasse StringBuilder die Methoden append(),
insert () und setCharAt () an. Diese Methoden sind Uberladen, sodass sie Para-
meter verschiedener Datentypen entgegennehmen kénnen. Die Ubergebenen Para-
meter werden gegebenenfalls in Strings konvertiert. Die Methode append () hangt
die Stringreprasentation ihres Parameters an das Ende einer Zeichenkette an. Im
Gegensatz dazu wird der Parameter der Methode insert () an einer definierbaren
Stelle in eine Zeichenkette eingefligt. Mit der Methode setCharat () kann an einer
bestimmten Stelle in der Zeichenkette ein Zeichen verandert werden. Die Methode
erwartet als ersten Parameter einen int-Wert, der die Stelle in der Zeichenkette
angibt, und als zweiten Parameter das neu zu setzende Zeichen vom Typ char.

Hierzu ein Beispiel:

// Datei: StringBuilderTest.java

public class StringBuilderTest
{
public static void main (String[] args)
{
StringBuilder sb = new StringBuilder ("Wilhelm Rontgen");
System.out.println (sb);

sb.insert (7, " Konrad");
sb.append (", Matrikelnummer: ");
sb.append (123456);
System.out.println (sb);

190 Kapitel 6

System.out.println();
// Ein neues StringBuilder-Objekt erzeugen
sb = new StringBuilder ("Tasse");

System.out.println (sb);

sb.setCharAt (0, 'K');
System.out.println (sb);

sb.setCharAt (0, 'M');
System.out.println (sb);

Die Ausgabe des Programms ist:
Wilhelm Réntgen

Wilhelm Konrad Rontgen, Matrikelnummer: 123456

Tasse
Kasse
Masse

Die Konstruktoren und Methoden der Klasse sStringBuilder entsprechen den
Konstruktoren und Methoden der Klasse stringBuffer (siehe Kap. 6.7.2).

6.8 Wandlung von Datentypen

In diesem Kapitel steht die Wandlung von Variablen eines einfachen Datentyps in
Variablen eines Klassen-Typs und umgekehrt, sowie die Wandlung von Variablen
beliebiger Datentypen in Zeichenketten im Fokus. Typkonvertierungen von Referenz-
typen in andere Referenztypen sowie Typkonvertierungen einfacher Datentypen in
andere einfache Datentypen werden hierbei gesondert in den Kapiteln 7.7 und 11.3.1
behandelt. FUr die Wandlung von Variablen eines einfachen Datentyps in Variable
eines Klassen-Typs werden lhnen Wrapper-Klassen sowie die Bedeutung von
Boxing und Unboxing in Kapitel 6.8.1 vorgestellt. Die Wandlung von Variablen belie-
biger Datentypen in Zeichenketten wird aufbauend auf den Konzepten der Wrapper-
Klassen und des Boxing und Unboxing in Kapitel 6.8.2 erlautert.

6.8.1 Wrapper-Klassen mit Boxing und Unboxing

Wrapper-Klassen sind Klassen, die dazu dienen, um eine Anweisungsfolge oder
einen einfachen Datentyp in die Gestalt einer Klasse zu bringen.

Wrapper-Klassen dienen dazu, ein nicht-objektorientiertes Konstrukt in —
die Form einer Klasse einzubetten. - ~

Datentypen und Variable 191

Wrapper-Klassen, die nur eine Methode main () enthalten, wurden in Kapitel 4 vor-
gestellt. Die Wrapper-Klassen in diesem Kapitel sind Bibliotheksklassen, die geschaf-
fen wurden, um einfache Datentypen aufzunehmen. Fir alle einfachen Datentypen
gibt es in Java im Paket java. lang die folgenden Wrapper-Klassen:

Einfache Wrapper-Klassen
Datentypen
Char Character
Boolean Boolean
Byte Byte
Short Short
Int Integer
Long Long
Double Double
Float Float

Tabelle 6-4 Einfache Datentypen und die zugehdrigen Wrapper-Klassen

Es gibt auch eine Wrapper-Klasse void, obwohl void in Java kein Datentyp ist. Da
void eine leere Menge bedeutet und keine Informationen enthalt, besitzt die Klasse
Void weder Konstruktoren noch Methoden.

Die in Tabelle 6-4 aufgefuhrten Wrapper-Klassen stellen Methoden zur Bearbeitung
der entsprechenden einfachen Datentypen bereit. Beispiele hierfir sind Methoden
zum Umwandeln von Zahlen in Strings und von Strings in Zahlen. Viele der
vorhandenen Methoden sind static, sodass sie auch benutzt werden kénnen, chne
dass ein Objekt einer Wrapper-Klasse gebildet werden muss. Die Wrapper-Klassen
Float, Double, Byte, Short, Integer und Long stellen Klassenmethoden bereit,
um ein Objekt vom Typ string in die einfachen Datentypen f1loat, double, byte,
short, int und long zu wandeln. So stellt die Wrapper-Klasse Integer die Klas-
senmethode parselInt () zur Verfligung, die den Inhalt eines Objektes vom Typ
String als int-Wert zurlickgibt. Das folgende Beispielprogramm zeigt, wie aus
einem string-Objekt mit Hilfe der Klassenmethode parselInt () der Wrapper-
Klasse Integer eine Wandlung eines string-Objektes in den Datentyp int durch-
gefihrt werden kann:

// Datei: WrapperTest.java

public class WrapperTest
{
public static void main (String[] args)
{
String sl = "100";
System.out.println ("100 im Dezimalsystem hat den Wert: "
+ Integer.parselInt (sl));
System.out.println ("100 im Oktalsystem hat den Wert: "
+ Integer.parselInt (sl, 8));
System.out.println ("100 im Hexadezimalsystem hat den Wert: "
+ Integer.parselnt (sl, 16));

192 Kapitel 6

Hier die Ausgabe des Programms:

100 im Dezimalsystem hat den Wert: 100
100 im Oktalsystem hat den Wert: 64
II 100 im Hexadezimalsystem hat den Wert: 256

Die Werte von einfachen Datentypen kénnen in Objekte der entsprechenden
Wrapper-Klassen verpackt werden. Entsprechend gibt es auch eine Mdglichkeit,
Werte von einfachen Datentypen, die in Objekten von Wrapper-Klassen verpackt
sind, wieder herauszuholen. Das folgende Beispiel zeigt das "Verpacken" und das
"Auspacken”. Mit den "ausgepackten" Werten der einfachen Datentypen werden
dann Berechnungen durchgefuhrt.

// Datei: Wrapper.java

public class Wrapper
{

public static void main (String[] args)
{
Integer il = new Integer (1);
Integer 12 = Integer.valueOf (2);
Double d = new Double (2.2);

int summe = il.intValue() + i2.intValue();
double produkt = d.doubleValue() * 2;

System.out.println ("Wert der Variablen summe: " + summe);
System.out.println ("Wert der Variablen produkt: " + produkt);

Hier die Ausgabe des Programms:

Wert der Variablen summe: 3
Wert der Variablen produkt: 4.4

Um einen Ausdruck eines einfachen Datentyps in ein Objekt vom Typ einer Wrapper-
Klasse zu verpacken, kann entweder der new-Operator oder die Klassenmethode
valueOf () der entsprechenden Wrapper-Klasse verwendet werden. Im obigen Pro-
grammbeispiel sind beide Mdglichkeiten zu sehen. Jede Wrapper-Klasse besitzt eine
Klassenmethode valueOf£ (), die eine Referenz auf ein Objekt vom Typ der jewei-
ligen Wrapper-Klasse zurlckgibt. Die folgenden Zeilen zeigen die beiden Alter-
nativen:

Integer i = Integer.valueOf (2); // Aquivalente Alternativen
Integer j = new Integer (2); // zur Objekterzeugung

Um einen Wert wieder aus einem Objekt einer Wrapper-Klasse "auszupacken",
stellen Wrapper-Klassen entsprechende Methoden bereit. Im Falle der Wrapper-
Klasse Integer ist dies die Methode intvalue (), die den einfachen Datentyp int
als Riickgabewert liefert.

Datentypen und Variable 193

Vor dem JDK 5.0 war es nicht mdglich, mit den Objekten von Wrapper-Klassen zu
rechnen wie mit den Variablen einfacher Datentypen. Auf Variable einfacher Daten-
typen kann man zum Beispiel die Operatoren + und - anwenden. In der alten Tech-
nik des JDK 1.4 und é<eren Versionen musste man, um mit den Werten, die in
Objekten von Wrapper-Klassen gespeichert sind, rechnen zu kénnen, diese wie im
vorangegangenen Beispielprogramm zuerst "auspacken". Ab dem JDK 5.0 wird das
"Verpacken" und "Auspacken" automatisch durch den Compiler durchgefiihrt. Das
"Verpacken" bezeichnet man als Boxing, das "Auspacken" als Unboxing.

Boxing (in eine Schachtel packen) bedeutet, dass ein Wert eines o
einfachen Typs in ein Objekt einer Wrapper-Klasse umgewandelt wird. —
Bildlich gesehen stellt das Objekt der Wrapper-Klasse eine Box dar, in ~ -~

welche die Variable des einfachen Typs hineingelegt wird.

Unboxing ist genau das Gegenteil von Boxing. Bildlich gesehen wird

hier die Variable des einfachen Typs aus der Schachtel (dem Objekt —/\
der Wrapper-Klasse) wieder herausgenommen. =

Da der ganze Mechanismus von Boxing und Unboxing vom Compiler automatisch
umgesetzt wird, spricht man auch von Auto-Boxing und Auto-Unboxing. Durch das
Auto-Boxing wird es auch mdglich, fast alle Operatoren, die bisher nur auf einfache
numerische Datentypen anwendbar waren, auch fir die entsprechenden Wrapper-
Klassen zu verwenden. Beispielsweise kdnnen die Werte von zwei Objekten der
Wrapper-Klasse Integer mit dem Operator + addiert werden, ohne sie vorher
manuell auszupacken:

// Datei: AutoBoxing2.java

public class AutoBoxing2
{
public static void main (String[] args)
{
// Anlegen von zweil Objekten der Wrapper-Klasse Integer
// und Zuweisen von Werten eines einfachen Typs (der Compiler
// figt Boxing-Code ein).
Integer il 10;
Integer i2 5;

// Auto-Unboxing von il und 12, Addieren der Werte, danach
// Auto-Boxing des Wertes fiir die Zuweisung an 1i3.
Integer i3 = il + 12;

// Ausgeben der einzelnen Werte und des Ergebnisses
System.out.println (i1 + " + " + i2 + " =" + i3);

194 Kapitel 6

Die Ausgabe des Programms ist:
10 + 5 = 15

Die folgende Tabelle zeigt Boxing und Unboxing jeweils manuell und automatisch fir
den einfachen Datentyp int und die entsprechende Wrapper-Klasse Integer.
Dabei ist die Variable i vom Typ int und die Variable wi vom Typ Integer.

Boxing Unboxing

Manuell Automatisch Manuell Automatisch
Integer wi = Integer wi = i; |int 1 = int 1 = wij
new Integer (i); wi.intValue () ;

Tabelle 6-5 Beispiele fiir Boxing und Unboxing

Durch das Auto-Unboxing kénnen Referenzvariablen auf Objekte von Wrapper-
Klassen numerischer Datentypen auch als Operanden der Postfix- und Prafix-
Operatoren ++ und —- verwendet werden, genauso wie als Operanden der binaren
arithmetischen Rechenoperationen (+, -, / ,*, %) oder der bitweisen Operationen (s,
Mol >, << >,

Referenzvariablen auf Objekte der Wrapper-Klasse Boolean kénnen Operanden
von bestimmten relationalen Operationen werden oder in die Bedingung des Be-
dingungsoperators eingesetzt werden. Genauso kénnen die logischen Operatoren
nicht nur auf Boolesche Ausdriicke, sondern auch auf Referenzvariablen, die auf
Objekte vom Typ der Wrapper-Klasse Boolean zeigen, angewendet werden.

\'/

Zahlreiche Operatoren, die auf Variablen einfacher Datentypen ange-
wandt werden kénnen, kdnnen auch auf Referenzvariablen, die auf
Objekte von Wrapper-Klassen zeigen, angewandt werden.

e o~

o)

Werden die relationalen Operatoren == und ! = bei Referenzvariablen, /A
die auf Objekte von Wrapper-Klassen zeigen, verwendet, so werden \/osicht!
aber — wie bei Referenzvariablen Ublich — die Referenzen verglichen \v/
und nicht die Inhalte! =

Das folgende Beispiel zeigt die Verwendung von Wrapper-Klassen, wenn an eine
Methode Referenzen als Parameter Ubergeben werden missen, der Aufrufer aber
einen einfachen Zahlenwert (bergeben méchte. Die Methode push () der Klasse
EasyStack erwartet als Ubergabeparameter eine Referenzvariable auf die Wrap-
per-Klasse Integer. Beim Aufruf der Methode push () wird allerdings eine Variable
des einfachen Datentyps int Ubergeben. Der Compiler fligt automatisch den
Boxing-Code ein. Entsprechend gibt die Methode pop () eine Referenz vom Typ der
Wrapper-Klasse Integer zurlick. Die zurlickgegebene Referenz wird automatisch in
den einfachen Datentyp int gewandelt.

Datentypen und Variable 195

// Datei: EasyStack.java

public class EasyStack

{
// Anlegen eines Integer-Arrays, das 3 Elemente aufnehmen kann.
private Integer[] stack = new Integer [3];
private int top = -1;

public void push (Integer i) // Methode zum Ablegen eines Elemen-—
{ // tes auf dem Stack.

top = top + 1;

stack [top] = i;
}

public Integer pop () // Methode, um ein Element vom Stack
{ // abzuholen.

top = top - 1;

return stack [top + 1];

}
// Datei: EasyStackTest.java

public class EasyStackTest
{
public static void main (String[] args)
{
// Ein Objekt der Klasse EasyStack erzeugen.
EasyStack arr = new EasyStack();

arr.push (1); // Stack befiillen. Der Compiler
arr.push (2); // fligt automatisch den Boxing-Code
arr.push (3); // ein.

int wertl arr.pop(); // Daten vom Stack abholen.
int wert2 arr.pop(); // Der Compiler fiigt automatisch
int wert3 = arr.pop(); // Unboxing-Code ein.

// Daten ausgeben

System.out.println ("Wert 1. Element: " + wertl);
System.out.println ("Wert 2. Element: " + wert2);
System.out.println ("Wert 3. Element: " + wert3);

Hier die Ausgabe des Programms:

Wert 1. Element: 3
Wert 2. Element: 2
II Wert 3. Element: 1

196 Kapitel 6

Die Starke der Wrapper-Klassen in der Kombination mit dem automa- . |
tischen Boxing und Unboxing liegt darin, dass man Variable einfacher _
Datentypen in der Hille eines Objektes einer Wrapper-Klasse an Me-
thoden Ubergeben kann, die als Ubergabeparameter einen Referenz- =

typ erwarten. =

Das Auto-Boxing kann jedoch auch Probleme verursachen: Existieren beispielsweise
in einer Klasse zwei tiberladene Methoden’, deren Methodenkdpfe sich nur dadurch
unterscheiden, dass einmal einfache Typen verwendet werden und einmal die
entsprechenden Wrapper-Klassen, ist fir den Compiler nicht klar, welche Methode
aufgerufen werden soll. Dies wird durch einen Fehler beim Kompilieren angezeigt.
Das folgende Beispiel zeigt diese Situation:

public void testMethode (int x)
{

..// nicht relevant

}
public void testMethode (Integer x)

{

..// nicht relevant

}

// Welche Methode soll der Compiler aufrufen?
// Durch Auto-Boxing ist der folgende Aufruf nicht mehr eindeutig.
testMethode (1)

Solche Mehrdeutigkeiten treten vor allem in Code auf, der vor dem JDK 5.0 ge-
schrieben wurde, da dort noch kein Auto-Boxing enthalten war und sich viele Ent-
wickler mit entsprechenden Uberladenen Methoden behalfen. Durch eine explizite
Typkonvertierung beim Aufruf kann dieses Problem umgangen werden.

Bei der Deklaration von tberladenen Methoden muss darauf geachtet /A
werden, dass keine Mehrdeutigkeiten auftreten. Beim Uberladen einer /o gicht
Methode sollte kein einfacher Typ in der Parameterliste durch einen \v
Typ der Wrapper-Klasse ersetzt werden (und umgekehrt). =~

Auch bei Kontrollflusskonstrukten (siehe Kap. 8.2 und 8.3) kann dieser neue Mecha-
nismus hilfreich sein. Es besteht nun auch die Mdglichkeit, bei i f-Anweisungen als
Ausdruck eine Referenzvariable auf ein Objekt der Klasse Boolean zu verwenden.
Gleiches gilt ebenfalls fiir while-, do-while- oder for-Schleifen, die nun in ihrem
Ausdruck auch eine Referenzvariable auf ein Objekt der Klasse Boolean akzep-
tieren.

Der Ausdruck der switch-Anweisung (siehe Kap. 8.2.3) kann wie bisher vom Typ
char, byte, short, int sein oder aber nun auch vom Typ String, Character,
Byte, Short oder Integer.

™ Was das Uberladen einer Methode genau bedeutet, wird in Kapitel 9.4 noch ausfiihrlich behandelt.

Datentypen und Variable 197

6.8.2 Wandlung beliebiger Datentypen in Zeichenketten

In Java existieren Mechanismen, die es ermdglichen, Variable beliebiger Datentypen
in Zeichenketten zu wandeln. Bei vielen Programmausgaben ist dieser Mechanismus
bei der Verkettung von Zeichenketten mit Variablen anderer Datentypen schon oft
verwendet worden. Die folgende Programmzeile ist aus der Klasse Punkt ent-
nommen:

System.out.println ("Die Koordinate des Punktes ist: " + x);

Die Variable x ist dabei vom Typ int. Um die Ausgabe zu bewerkstelligen, muss die
Variable x vom Typ int in ein Objekt vom Typ String gewandelt werden und
danach an den vorangehenden String angehangt werden. Die Umwandlung eines
einfachen Datentyps in ein Objekt vom Typ string erfolgt dabei lber die Verwen-
dung der entsprechenden Wrapper-Klasse. Die obige Variable x wird somit in einen
Aufruf new Integer (x) verpackt. Natdrlich hat man durch diese Umsetzung noch
keine String-Reprasentation der einfachen Datentypen erlangt — aber da jeder
einfache Datentyp nun in einem Objekt eines Referenztyps gekapselt ist, wird jetzt
einfach die tostring ()-Methode der entsprechenden Wrapper-Klasse verwendet.
Jede Klasse in Java erbt die toString ()-Methode der Klasse Object. Die Wrap-
per-Klassen stellen fiir diese Methode jeweils eine spezielle Implementierung bereit,
die daflr sorgt, dass die einfachen Datentypen richtig in ein Objekt vom Typ String
konvertiert werden.

Die folgende Tabelle zeigt, welche Umsetzung bei den restlichen einfachen Daten-
typen erfolgt:

Datentyp Umsetzung Uber Wrapper-Klasse
Boolean new Boolean (Xx)

Char new Character (x)

byte, short, int |new Integer (x)

Long new Long (x)

Float new Float (x)

Double new Double (x)

Tabelle 6-6 Wandlung von einfachen Datentypen in einen Referenztyp

Wird auf einen Referenztyp der Zeichenverkettungsoperator ange- —
wandt, so wird die tostring ()-Methode des entsprechenden Objek- -
tes aufgerufen. =

Wird an println() eine Referenzvariable ref Ubergeben:

System.out.println (ref);

so wird

System.out.println (ref.toString());

aufgerufen.

198

Kapitel 6

6.9 Ubungen

Aufgabe 6.1: Arrays

6.1.1

int-Array als Stack

Die Klasse stack soll ein int-Array kapseln, welches als Stack dienen soll.
Die Funktionsweise eines Stack wird in Kapitel 6.4.5.1 erklart. Zum Zugriff
auf den Stack sollen die Methoden

public void push (int u)
public int pop/()

bereitgestellt werden. Die Methode

public boolean isEmpty ()

Uberprift, ob der Stack leer ist, und liefert in diesem Fall true zurlck, an-
sonsten wird false zurlickgeliefert. Die Methode

public void stackPrint ()

soll zu Testzwecken dienen und den Inhalt des gesamten Stacks ausgeben.
Die GréBe des Stacks soll dem Konstruktor Ubergeben werden kdénnen.
Testen Sie die Klasse stack mit Hilfe der folgenden Wrapper-Klasse:

// Datei: TestStack.java

public class TestStack
{
public static void main (String[] args)
{

Stack stackRef = new Stack (5);
stackRef.push (7)
stackRef.push (3)
stackRef.push (4);
stackRef.push (9)
stackRef.push (1)

stackRef.stackPrint () ;

System.out.println ("\nAusgabe der Zahlen: ");
while (stackRef.isEmpty() == false)
{

int riickgabe;

// oberste Zahl des Stacks wird

// mit pop() vom Stack geholt

rickgabe = stackRef.pop();

System.out.println ("Die Zahl war " + rilickgabe);

Datentypen und Variable 199

6.1.2

Array mit einfachen Datentypen — FloatQueue

Die Klasse FloatQueue ist eine Warteschlange fir f1oat-Werte. In dieser
Warteschlange kdnnen sich mehrere £1oat-Werte befinden. Es kann jeweils
nur ein Element gleichzeitig in die Warteschlange (hinten) eingereiht werden
(enqueue () -Methode) oder aus der Warteschlange (vorne) entnommen
werden (dequeue ()-Methode). Im Gegensatz zu einem Stapelspeicher
(Stack) handelt es sich bei einer Warteschlange um einen FIFO-Speicher
("First In First Out").

Die Klasse FloatQueue soll folgende Methoden beinhalten:

Konstruktor: public FloatQueue (int laenge)

Der Ubergabeparameter int laenge gibt die Anzahl der maximalen
Speicherstellen der Warteschlange an.

In Warteschlange einfiigen: public void enqueue (float wert)
Diese Methode fligt den Wert am Ende der Warteschlange ein.

Aus Warteschlange entnehmen: public float dequeue ()

Diese Methode entfernt den ersten Wert aus der Warteschlange und gibt
diesen an den Aufrufer zuriick. Ist die Warteschlange leer, so wird der
Wert -1 zuriickgegeben.

Ausgabe des Inhalts der Warteschlange: public void queuePrint ()
Diese Methode gibt alle in der Warteschlange enthaltenen Werte aus.
Uberpriifen, ob Warteschlange leer ist: public boolean isEmpty ()
Diese Methode liefert true zurlick, falls die Warteschlange leer ist. An-
dernfalls gibt die Methode false zurick.

Leeren der Warteschlange: public void clear ()
Diese Methode I6scht alle in der Warteschlange enthaltenen Werte.

Testen Sie die Klasse FloatQueue mit Hilfe folgender Testklasse:

// Datei: TestFloatQueue.java

public class TestFloatQueue

{

public static void main (String[] args)
{
FloatQueue queue = new FloatQueue(5);
queue.enqueue (2.45f)
queue.enqueue (1.29f)
queue.enqueue (4.31f)
queue.enqueue (7.85f)

’
r
’

queue.queuePrint () ;

System.out.println ("\nAusgabe der Zahlen: ");
while (queue.isEmpty () == false)
{
float rueckgabe;
rueckgabe = queue.dequeue();
System.out.println ("Die Zahl war " + rueckgabe);

200

Kapitel 6

queue.enqueue (1.11f);
queue.queuePrint () ;
queue.clear () ;
queue.queuePrint () ;

}
GroBte Entfernung zwischen Punkten

Es soll ein Programm geschrieben werden, welches es erlaubt, die groBte
Entfernung zwischen beliebigen Punkten in einer Ebene zu berechnen.

Der Einfachheit halber beschrankt sich das folgende Programm auf 3 belie-
bige Punkte. Die Koordinaten dieser Punkte kénnen im Dialog eingegeben
werden.

Das Programm besteht aus drei Klassen:

® der schon bekannten Klasse pPunkt,
® ciner Klasse PunktArray,
® und einer Testklasse TestPunktArray.

Die Klasse Punkt ist bereits bekannt.

//Datei Punkt.java
import java.util.Scanner;

public class Punkt

{
double x;
double y;

double getX ()
{

return x;

}

void setX (double u)

double getY ()
{

return y;

}

void setY (double v)

Datentypen und Variable 201

void print ()

{

System.out.println ("x = " + x);
System.out.println ("y =" + vy);

}

public Punkt ()

{
Scanner eingabe = new Scanner (System.in);
System.out.println ("\nGib den x-Wert ein: ");
x = eingabe.nextDouble() ;
System.out.println ("Gib den y-Wert ein: ");

y = eingabe.nextDouble();

}

Die Klasse TestPunktArray soll ein Objekt der Klasse PunktArray er-
zeugen. Dem Konstruktor wird der Parameter 3 mitgegeben. Dies bedeutet,
dass das erzeugte Objekt der Klasse PunktArray 3 Punkte enthalten soll.

class TestPunktArray

{

public static void main (String args([])

{

PunktArray arrayref = new PunktArray (3);

System.out.println ("Maximale Entfernung: " +
arrayref.maximum());
}
}
Objekt der Klasse Array-Objekt aus
PunktArray Referenzen
Referenz //\/ Referenz Objekt der
ref Klasse Punkt
Referenz Objekt der
’ R Klasse Punkt

Klasse Punkt

Die Klasse punktArray soll in ihrem Konstruktor die geforderte Anzahl von
Punkten erzeugen und eine Methode maximum () fUr die Berechnung der
gréBten Entfernung zwischen beliebigen 2 dieser Punkte bereit stellen. Diese
Methode soll die schon bekannte Methode ent fernung () verwenden.

Erganzen Sie die fehlenden Teile:
//Datei PunktArray.java
public class PunktArray

{
Punkt [] ref;

202 Kapitel 6

PunktArray (int anzahl)
{

}

double entfernung (Punkt gl, Punkt g2)
{

return Math.sgrt ((double)
(ql.getX() - g2.getX())
(gl.getX () - g2.getX()) +
(gql.getY() - gZ2.get¥()) *
(gql.get¥ () - g2.get¥()));

}

public double maximum /()

{

double max = 0;
for (int i = 0; i < ref.length; i++)
for (int j = 0; j < ref.length; j++)

{

}

return max;

Aufgabe 6.2: Strings
6.2.1 Performance

Fihren Sie die folgende Klasse TestString aus, welche zum Testen der
Performance des Verkettungsoperators + von Strings dient. Die Zeit, welche
die for-Schleife bendtigt, wird in Millisekunden gemessen. Die Zeitmessung
erfolgt mit Hilfe der Klasse System (siehe Anhang C).

// Datei: TestString.java

public class TestString
{
public static void main (String[] args)
{
String s = "Hello";
System.out.println ("Starte Schleife, Bitte warten");
long startTime = System.currentTimeMillis();

for (int n = 0; n < 10000; n++)
{
s += "World";

}

long endTime = System.currentTimeMillis();

System.out.println ("Mit dem + Operator braucht man " +
(endTime-startTime) +
" Millisekunden");

Datentypen und Variable 203

6.2.2

System.out.println ("Der zusammengesetzte String hat " +
"eine Ldnge von " + s.length () +
" Zeichen");

}

Die gemessene Zeit erscheint recht hoch. Wir bendétigen allerdings einen
Vergleich. Flgen Sie einen Block an, in dem der String "Hello" in einem
Objekt der Klasse stringBuffer steht und der String "Wor1d™" nicht Gber
den Verkettungsoperator, sondern Uber die Methode append () der Klasse
StringBuffer hinzugeflgt wird. Sie kénnen natirlich auch andere oder
weitere Mdglichkeiten programmieren und die Zeit messen.

Um welchen Faktor unterscheiden sich die Laufzeiten der beiden Mdglich-
keiten? Geben Sie eine Erklarung flr die Laufzeitunterschiede an.

Dateiname

Benutzen Sie die Methoden der Klasse string, um eine Klasse Parser zu
schreiben. Diese Klasse hat die Aufgabe, aus einem vollstédndigen Pfad in
Form eines Strings das Verzeichnis, den Dateinamen und die Extension der
Datei zu ermitteln. Lautet zum Beispiel der gesamte Pfad:

C:\Eigene Daten\Javatest\Beispiel. java

dann soll das Programm folgendes extrahieren:

Extension: java
Dateiname: Beispiel

Verzeichnis: C:\Eigene Daten\Javatest

Aufgabe 6.3: Aufzdhlungstypen

6.3.1

Wochentage

Definieren Sie einen Aufzahlungstyp Wochentag, der die Tage der Woche
reprasentiert, und eine Klasse WochentagAusgabe. In der main () -Metho-
de der Klasse WochentagAusgabe soll die Methode values () des Auf-
zahlungstyps verwendet werden, um alle Wochentage auszugeben. Zu je-
dem Wochentag soll die jeweilige Ordinal-Zahl ausgegeben werden. Die
Ausgabe soll folgendermaBen aussehen:

MONTAG ist der 1. Tag der Woche.
DIENSTAG ist der 2. Tag der Woche.
MITTWOCH ist der 3. Tag der Woche.
DONNERSTAG ist der 4. Tag der Woche.
FREITAG ist der 5. Tag der Woche.
SAMSTAG ist der 6. Tag der Woche.
SONNTAG ist der 7. Tag der Woche.

204

Kapitel 6

6.3.2

6.3.3

Rechenmaschine

Definieren Sie einen Aufzahlungstyp Operation mit den Aufzdhlungskon-
stanten PLUS, MINUS, TIMES und DIVIDE. Der Aufzdhlungstyp soll die
Methode eval (double arg0, double argl) haben, die fir jede Auf-
zahlungskonstante entsprechend Uberschrieben werden muss. Implemen-
tieren Sie ein Klasse Rechenmaschine, die ein privates Datenfeld vom Typ
Operation hat. Die Rechenmaschine soll so funktionieren, dass zuerst eine
Operation gesetzt wird, dann werden zwei Parameter vom Typ double Uber-
geben. AbschlieBend wird die Methode ausfuehren () aufgerufen, die das
Ergebnis berechnet und ausgibt. Schreiben Sie eine main ()-Methode, um
die Klasse Rechenmaschine und den Aufzahlungstyp zu testen. Nutzen Sie
die Methode values () des Aufzdhlungstyps, um alle Operationen in einer
Schleife zu testen.

Die Ausgabe soll folgendermafBen aussehen:

Die Operation PLUS ergibt fir die Parameter 2.0 und 3.0

das Ergebnis 5.0.

Die Operation MINUS ergibt fiir die Parameter 2.0 und 3.0

das Ergebnis -1.0.

Die Operation TIMES ergibt fiir die Parameter 2.0 und 3.0

das Ergebnis 6.0.

Die Operation DIVIDE ergibt fiir die Parameter 2.0 und 3.0
das Ergebnis 0.6666666666666666.

Miinzen

Erganzen Sie die Klasse Muenze, die einen Aufzdhlungstyp darstellt, mit
dem alle Minzen der Euro-Wahrung abgebildet werden kénnen. Jeder de-
finierten Aufzéhlungskonstanten von diesem Typ soll als Wert der entspre-
chende Minzbetrag in Cent zugewiesen werden, d. h. der Aufzahlungskon-
stanten flur das Ein-Cent-Stick der Wert 1, der Aufzahlungskonstanten fir
das Zwei-Cent-Stlick der Wert 2 usw.

// Datei: Muenze.java

public enum Muenze

{
// Definition der Aufzdhlungskonstanten
EinCent,
ZweiCent,
FuenfCent,
ZehnCent,
ZwanzigCent,
FuenfzigCent,
EinEuro,
ZweiEuro;

// Datenfeld
private int wert;

Datentypen und Variable 205

// Konstruktor
Muenze (int wert)

{

this.wert = wert;

}

// Methode zum Auslesen des Wertes
public int wvalue()

{

return wert;
}
}

Definieren Sie auBerdem einen Aufzahlungstyp, der alle Metalle enthalt, aus
denen die Euro-Milnzen hergestellt sind. Die Ein-, Zwei und Finf-Cent-
Minzen bestehen auf Kupfer, die Zehn-, Zwanzig- und Fiinfzig-Cent-Miinzen
bestehen aus Messing und die Ein- und Zwei-Euro-Mlnzen sind aus den
Metallen Messing und Nickel zusammengesetzt. Schreiben Sie hierzu den
Aufzdhlungstyp Metall, in dem die Aufzahlungskonstanten Kupfer, Mes-
sing und MessingUndNickel definiert sind.

Die beiden Aufzahlungstypen Muenze und Metall werden mit der Test-
klasse Kleingeld getestet. Ergdnzen Sie die fehlenden Stellen im Quell-
code der Testklasse.

// Datei: Kleingeld.java

public class Kleingeld
{

public static void main (String [] args)

{

System.out.println ("Es gibt die folgenden Muenzen:");
Muenze|[] euroMuenzen =;
for (int i = 0; 1 < euroMuenzen.length; i++)
{
System.out.print (euroMuenzen [i] + " ");

}
System.out.println();

for (int i = 0; 1 < euroMuenzen.length; i++)
{
switch (.)
{
case
case
case
{

System.out.println ("Die Muenze " +

euroMuenzen[i]. + " ist aus " +
Metall.Kupfer. + " und hat den Wert " +
euroMuenzen[i]. 4+ " Cent");
break;

}

case

case

206

Kapitel 6

case

{
System.out.println ("Die Muenze " +
euroMuenzen[i]. 4+ " ist aus " +
Metall.Messing. +" und hat den Wert " +
euroMuenzen[i]. 4+ " Cent");
break;

}

case

case

{

System.out.println ("Die Muenze " +

euroMuenzen(i]. 4+ " ist aus " +
Metall.MessingUndNickel. +

" und hat den Wert " +

euroMuenzen{i]. + " Cent");
break;

}
Die Ausgabe der Testklasse K1eingeld sieht folgendermaBen aus:

Es gibt die folgenden Miinzen:

EinCent ZweiCent FuenfCent ZehnCent ZwanzigCent FuenfzigCent
EinEuro ZweiEuro

Die Muenze EinCent ist aus Kupfer und hat den Wert 1 Cent
Die Muenze ZweiCent ist aus Kupfer und hat den Wert 2 Cent
Die Muenze FuenfCent ist aus Kupfer und hat den Wert 5 Cent
Die Muenze ZehnCent ist aus Messing und hat den Wert 10 Cent
Die Muenze ZwanzigCent ist aus Messing und hat den Wert 20
Cent

Die Muenze FuenfzigCent ist aus Messing und hat den Wert 50
Cent

Die Muenze EinEuro ist aus MessingUndNickel und hat den Wert
100 Cent

Die Muenze ZweiEuro ist aus MessingUndNickel und hat den Wert
200 Cent

Aufgabe 6.4: Boxing und Unboxing

6.4.1

Auto-Boxing und Auto-Unboxing von aktuellen Parametern

Erstellen Sie eine Klasse BoxingUnboxing mit zwei Methoden. Die eine
Methode soll einen Ubergabeparameter vom Typ int und die andere einen
Ubergabeparameter vom Typ Integer haben. Erstellen Sie eine main ()-
Methode, in der sie eine Variable vom Typ int und eine andere Variable
vom Typ Integer anlegen. Rufen Sie die Methoden so auf, dass der Com-
piler Auto-Boxing bzw. Auto-Unboxing durchfiihren muss.

Datentypen und Variable 207

6.4.2

Operatoren mit Auto-Boxing und Auto-Unboxing

Erstellen Sie eine Klasse BoxingUnboxing2 mit einer main ()-Methode.
Legen Sie in dieser Methode zwei Variablen vom Typ Integer an und ini-
tialisieren Sie diese mit Hilfe von Auto-Boxing.

Andern Sie den Wert der beiden Variablen mit Hilfe der undren Operatoren
++und —-.

Legen Sie eine dritte Variable vom Typ int an und initialisieren Sie diese mit
der Differenz der Werte von Variable1 und Variable2.

Vergleichen Sie den Wert zweier Variablen vom Typ Integer mit Hilfe der
relationalen Operatoren. Uberlegen Sie, welche relationalen Operatoren nicht
verwendet werden dirfen, da damit nicht die Werte verglichen werden.

Nutzen Sie einen Bit-Operator, um den Wert einer der Variablen vom Typ
Integer zu verdoppeln.

Legen Sie eine Variable vom Typ Boolean an und verwenden Sie diese mit
dem Bedingungsoperator 2 :, um den jeweiligen Wert mit den Strings "wahr"
oder "falsch" auszugeben.

Schreiben Sie eine switch-Anweisung, wobei Sie nach dem Wert einer
Variablen vom Typ Character unterscheiden.

Die Ausgabe des Programms soll folgendermafBen aussehen:

Der Wert von i3 ist: 3

il > i2 : true

il < i2 : false
il == i2 : false
il !'= 12 : true

il vor der Bit-Operation: 4

il nachher: 8

b ist wahr

Der Ausdruck der switch-Anweisung hat den Wert 'c'.

Kapitel 7

Ausdricke und Operatoren

71
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

X=(A+B)*C

Operatoren und Operanden

Ausdricke und Anweisungen
Nebeneffekte

Auswertungsreihenfolge

L-Werte und R-Werte
Zusammenstellung der Operatoren
Konvertierung von Datentypen
Ausfiihrungszeitpunkt von Nebeneffekten
Ubungen

7 Ausdriicke und Operatoren

Ein Ausdruck ist in Java im einfachsten Falle der Bezeichner (Name) einer Variab-
len oder einer Konstanten. Meist interessiert der Wert eines Ausdrucks. So hat eine
Konstante einen Wert, eine Variable kann einen Wert liefern, aber auch der Aufruf
einer Instanz- oder Klassenmethode kann einen Wert liefern. Der Wert eines Aus-
drucks wird oft auch als Rlickgabewert des Ausdrucks bezeichnet. Alles das, was
einen Wert zuriickliefert, stellt einen Ausdruck dar.

Verkniipft man Operanden — ein Operand ist selbst ein Ausdruck — durch Operatoren
und gegebenenfalls auch runde Klammern, so entstehen komplexe Ausdriicke.
Runde Klammern beeinflussen dabei die Auswertungsreihenfolge. Das Ziel dieser
VerknUpfungen ist die Berechnung neuer Werte oder auch das Erzeugen von ge-
wollten Nebeneffekten (siehe Kap. 7.3).

7.1 Operatoren und Operanden

Um Verknlpfungen mit Operanden durchzufiihren, braucht man Operatoren (siehe
Kap. 5.3.7).

Es gibt in Java die folgenden Arten von Operatoren:

® cinstellige (unare, monadische) _ —
e zweistellige (bindre, dyadische) - ~

® und einen einzigen dreistelligen (ternaren, tryadischen), namlich
den Bedingungsoperator ? :

Ein einstelliger (unéarer) Operator hat einen einzigen Operanden. Ein Beispiel hier-
fUr ist der Minusoperator als Vorzeichenoperator, der auf einen einzigen Operanden
wirkt und das Vorzeichen des Wertes des Operanden andert. So ist in —a das - ein
Vorzeichenoperator, der das Vorzeichen des Wertes von a umkehrt.

Ausdruck

einstelliger (unérer) m

Operator Operand

Bild 7-1 Ein undrer Operator angewandt auf einen Operanden

Bendtigt ein Operator 2 Operanden fir die Verknipfung, so spricht man von einem
zweistelligen (bindren) Operator. Ein vertrautes Beispiel flr einen bindren Operator
ist der Additionsoperator, der hier zur Addition der beiden Zahlen 3 und 4 verwendet
werden soll:

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_7,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Ausdriicke und Operatoren 211

Ausdruck

1. Operand 2. Operand

zweistelliger
arithmetischer Operator

Bild 7-2 Ein bindrer Operator verbindet zwei Operanden zu einem Ausdruck

Operatoren kann man auch nach ihrer Wirkungsweise klassifizieren. So gibt es
auBer den arithmetischen Operatoren beispielsweise auch logische Operatoren,
Zuweisungsoperatoren oder Vergleichsoperatoren (relationale Operatoren).

Unére Operatoren — Postfix- und Préafixoperatoren
Unéare Operatoren kénnen vor oder hinter ihren Operanden stehen. Der Ausdruck

u++

stellt die Anwendung des Postfix-Operators ++ auf seinen Operanden u dar.

Operanden stehen. Préafix-Operatoren sind unare Operatoren, die

\
Postfix-Operatoren sind unéare Operatoren, die hinter (post) ihrem _ @ —
vor (prd) ihrem Operanden stehen. g =

Ein Beispiel fur einen Préafix-Operator ist das unare Minus (Minus als Vorzeichen),
ein anderes Beispiel ist der Préfix-Operator ++, siehe folgendes Beispiel:

++u

Der Rickgabewert des Ausdrucks ++u ist u+1. Zusatzlich wird als Nebeneffekt die
Variable u inkrementiert’” und erhalt den Wert u+1.
7.2 Ausdriucke und Anweisungen

Anweisungen und Ausdriicke sind nicht das Gleiche. Sie unterscheiden sich durch
den Rickgabewert:

\
Ausdriicke in Java haben stets einen Riickgabewert. Alles das, was _ —
einen Wert zuriickliefert, stellt einen Ausdruck dar. Anweisungen -
haben keinen Riickgabewert. =
Was ist aber nun genau der Rickgabewert? Das soll anhand des Ausdrucks 3 + 4

erklart werden. Durch die Anwendung des Additionsoperators + auf seine Operanden
3 und 4 ist der Rickgabewert des Ausdrucks 3 + 4 eindeutig festgelegt. Aus den

® Siehe Kap. 7.3.

212 Kapitel 7

Typen der Operanden ergibt sich immer eindeutig der Typ des Riickgabewertes.
Da beide Operanden vom Typ int sind, ist der Rickgabewert der Addition ebenfalls
vom Typ int und hat den Wert 7.

e
N

\ |
h\\\\@
/|

Es werden die folgenden Anweisungen unterschieden:

Selektionsanweisungen (siehe Kapitel 8.2),
Iterationsanweisungen (siehe Kapitel 8.3),
Sprunganweisungen (siehe Kapitel 8.4),

die leere Anweisung (siehe Kapitel 9.1.2),

die try-Anweisung (siehe Kapitel 13.2),

die throw-Anweisung (siehe Kapitel 13.3),

die assert-Anweisung (siehe Kapitel 13.7.1),
die synchronized-Anweisung (siehe Kapitel 19)
und Ausdrucksanweisungen.

Ausdrucksanweisungen werden sogleich im Folgenden behandelt.

Ausdrucksanweisungen

In einer solchen Ausdrucksanweisung wird der Riickgabewert eines Ausdrucks
nicht verwendet. Lediglich wenn Nebeneffekte zum Tragen kommen, ist eine Aus-
drucksanweisung sinnvoll.

Ausdriicke und Operatoren 213

Das folgende Beispiel zeigt eine zuldssige und eine unzuldssige Ausdrucksanwei-
sung:

int ¢ = 05

// 5 * 5; // nicht zuldssige Ausdrucksanweisung
c++; // zuldssige Ausdrucksanweisung

7.3 Nebeneffekte

Nebeneffekte werden auch als Seiteneffekte oder als Nebenwirkungen bezeich-
net. Es gibt Operatoren, die eine schnelle und kurze Programmierschreibweise erlau-
ben. Es ist ndmlich mdglich, wéhrend der Auswertung eines Ausdrucks Programm-
variablen nebenbei zu verandern. Ein Beispiel dazu ist:

int u = 1;
int v;
vV = ut+ty

Der Ruckgabewert des Ausdrucks u++ ist hier der Wert 1. Mit dem Zuweisungs-
operator wird der Variablen v der Riickgabewert von u++, d. h. der Wert 1, zuge-
wiesen. Die Zuweisung v = u++ ist ebenfalls ein Ausdruck und v = u++; stellt
eine Ausdrucksanweisung dar. Als Nebeneffekt des Operators ++ wird die Variable
u inkrementiert und hat nach der Inkrementierung den Wert 2. Man sollte aber mit
Nebeneffekten sparsam umgehen, da sie leicht zu unleserlichen und fehlertrachtigen
Programmen fUhren.

In Java gibt es zwei Sorten von Nebeneffekten: N

® Nebeneffekte von Operatoren - :
e und Nebeneffekte bei Methoden, die nicht nur lesend, sondern auch g

schreibend auf Variable zugreifen.

7.4 Auswertungsreihenfolge

Wie in der Mathematik spielt es auch bei Java eine Rolle, in welcher Reihenfolge ein
Ausdruck berechnet wird. Genau wie in der Mathematik gilt auch in Java die Regel
"Punkt vor Strich", weshalb 5 + 2 * 3 gleich 11 und nicht 21 ist. Allerdings gibt es in
Java sehr viele Operatoren. Daher muss fir alle Operatoren festgelegt werden,
welcher im Zweifelsfall Prioritat hat.

7.4.1 Einstellige und mehrstellige Operatoren

Die Auswertung eines Ausdrucks mit Operatoren’® wie ++, +, * etc. wird nach
folgenden Regeln durchgefiihrt:

7® Methodenaufruf-, Array-Index- und Punktoperator werden hier noch nicht betrachtet.

214 Kapitel 7

1. Wie in der Mathematik werden als erstes Teilausdriicke in Klam-
mern ausgewertet. Der Wert und Typ eines Ausdrucks andert sich
nicht, wenn er in Klammern gesetzt wird. So sind beispielsweise die
beiden Zuweisungen a = bund a = (b) identisch.

2. Dann werden Ausdriicke mit unéren Operatoren ausgewertet. _
Unére Operatoren werden von rechts nach links angewendet. /@\
Dies bedeutet, dass -~x gleichbedeutend ist mit — (~x). Anzumer- =
ken ist, dass der hier verwendete unare Operator ~ alle Bits seines =
Operanden invertiert.

3. AbschlieBend werden Teilausdriicke mit mehrstelligen Operatoren
ausgewertet.

Unéare Operatoren haben alle dieselbe Prioritat. Die Abarbeitung mehrstelliger Ope-
ratoren erfolgt nach der Prioritétstabelle der Operatoren (siehe Kap. 7.6.8), wenn
Operatoren verschiedener Prioritdten nebeneinander stehen. Bei Operatoren ver-
schiedener Prioritat erfolgt zuerst die Abarbeitung der Operatoren mit héherer Priori-
tat. Bei gleicher Prioritat entscheidet die Assoziativitét (siehe Kap. 7.4.2) der Opera-
toren, ob die Verknlpfung von links nach rechts oder von rechts nach links erfolgt.

Durch das Setzen von Klammern (Regel 1) kann man von der festgelegten Reihen-
folge abweichen.

7.4.2 Mehrstellige Operatoren gleicher Prioritat

und Operanden verknilipft werden, wenn Operanden durch Opera-

\
Unter Assoziativitdt versteht man die Reihenfolge, wie Operatoren @ —
toren derselben Prioritédt (Vorrangstufe) verknlpft werden.

i

Ist ein Operator rechtsassoziativ, so wird eine Verkettung von Operatoren und
Operanden von rechts nach links abgearbeitet, bei Linksassoziativitdit dementspre-
chend von links nach rechts.

1.
A op B |op C

Bild 7-3 Verkniipfungsreihenfolge bei einem linksassoziativen Operator op

Im Beispiel von Bild 7-3 wird also zuerst der linke Operator op auf die Operanden a
und B angewendet, als zweites wird dann die VerknUpfung op mit ¢ durchgefiihrt.

Da Additions- und Subtraktionsoperator linksassoziativ sind und dieselbe Prioritat
haben, wird beispielsweise der Ausdruck a - b + ¢ wie (a - b) + c verknlpft
und nicht wie a - (b + c). Es gibt zwei Méglichkeiten fir die Verkniipfung des
Ausdrucks a - b + c:

Ausdriicke und Operatoren 215

Fall 1: a - b + c wird verknilpft wie (a - b) + c.
Also erst a und b verknlpfen zu a - b, dann (a - b) und c ver-
knipfenzu (a - b) + c. Damit kam der linke Operator vor dem rech-
ten an die Reihe. Die Linksassoziativitat wurde nicht verletzt.

Fall 2: a - b + c wirdverknlpftwiea - (b + c).
Hier werden zuerst die Operanden b und ¢ durch den Additionsoperator
verknipft. Die Linksassoziativitdt ist damit verletzt, da als erstes der
Operator - hatte dran kommen missen.

Einige der in Java vorhandenen Operatoren sind jedoch nicht links-, sondern rechts-
assoziativ (siehe Zuweisungsoperator).

7.4.3 Bewertungsreihenfolge von Operanden

In Java werden die Operanden eines Operators strikt von links — -
nach rechts ausgewertet. - ™~

Da in Java die Bewertungsreihenfolge von Operanden definiert ist, ist in Java auch
ein Ausdruck

at+ — a

zulassig. Vor der bindren Operation muss der linke Operand vollsténdig bewertet
sein, d. h. der Nebeneffekt muss stattgefunden haben. Dass der linke Operand voll-
standig bewertet sein muss, bedeutet, dass sein Wert zwischengespeichert werden
muss, um anschlieBend in einer Operation — hier der Subtraktion — verwendet zu
werden. Der Rickgabewert des Operanden a++ ist a, nach Abarbeitung des
Nebeneffekts ist der Wert von a um 1 erhdht. Dies bedeutet, dass a++ - a den
Wert -1 hat.

\
In Java ist festgelegt, dass jeder Operand eines Operators mit Aus- —
nahme der Operatoren &&, | | und 2 : vollstandig ausgewertet wird, -

bevor irgendein Teil der Operation begonnen wird.

N\

7.5 L-Werte und R-Werte

Die Begriffe L-Wert und R-Wert sind in C geldufig. Gosling [12] spricht statt von L-
Wert von Variablen, statt R-Wert von Wert. Aus Griinden der Prazision behalten wir
die Begriffe L- und R-Wert bei.

Einen Ausdruck, der eine Variable im Speicher bezeichnet, nennt man —
einen L-Wert (lvalue oder left value). - ~

216 Kapitel 7

In Java stellt der Name var einer lokalen Variablen einen solchen Ausdruck dar.
Andere Méglichkeiten fir L-Werte sind der Name einer Instanzvariablen oder einer
Klassenvariablen, der Zugriff auf ein Arrayelement, eine Variable eines Schnitt-
stellentyps oder eine Variable eines Aufzdhlungstyps.

Das 'L’ steht fiir links (left) und deutet darauf hin, dass dieser Ausdruck links vom
Zuweisungsoperator = stehen kann. Natirlich kann ein L-Wert auch rechts vom
Zuweisungsoperator stehen wie in

a=>

wobei a und b Variablen sind.

Ein L-Wert zeichnet sich dadurch aus, dass er einen Speicherplatz —
irgendwo im Arbeitsspeicher besitzt. -

Steht ein Variablenname rechts neben dem Zuweisungsoperator, so wird Uber den
Variablennamen der Wert an der entsprechenden Speicherstelle ausgelesen, d. h. es
interessiert hier nur sein R-Wert. Links neben dem Zuweisungsoperator muss immer
ein L-Wert stehen, da man eine Speicherstelle benétigt, die den Wert der Zuweisung
aufnehmen kann.

|
Ist ein Ausdruck kein L-Wert, so ist er ein R-Wert (rvalue oder right / /
value) und kann nicht links, sondern nur rechts vom Zuweisungs- ‘@
e ~

operator stehen. Einem R-Wert kann man keinen Wert zuweisen, da
er keine feste Speicherstelle besitzt.

|

int i;
int k;
L-Wert R-Wert L-Wert _\ R-Wert
R-Wert L-Wert L-Wert

Bild 7-4 Beispiele fiir L- und R-Werte

Des Weiteren wird zwischen modifizierbarem und nicht modifizierbarem L-Wert
unterschieden. Das oben aufgeflihrte Beispiel beschreibt modifizierbare L-Werte. Ein
Ausdruck, welcher eine final-Variable bezeichnet, ist zwar ein L-Wert, jedoch nur
ein nicht modifizierbarer L-Wert. Auf der linken Seite einer Zuweisung darf also nur
ein modifizierbarer L-Wert stehen, jedoch weder ein R-Wert noch ein nicht modifizier-
barer L-Wert. Bestimmte Operatoren kénnen nur auf modifizierbare L-Werte ange-
wendet werden, wie z. B. der Inkrementoperator ++ oder der Dekrementoperator —-.
5++ ist falsch, i++, wobei i eine Variable darstellt, ist jedoch korrekt.

Ausdriicke und Operatoren 217

7.6 Zusammenstellung der Operatoren
In den folgenden Kapiteln wird ein unarer Operator stets mit seinem Operanden bzw.

bindre und tertidare Operatoren mit ihren Operanden gezeigt. Es wird also stets die
ganze Operation vorgestellt.

7.6.1 Einstellige arithmethische Operatoren

Im Folgenden werden die einstelligen (unéren) Operatoren

® positiver Vorzeichenoperator: +A
® negativer Vorzeichenoperator: -A
® Postfix-Inkrementoperator: A++
® Préafix-Inkrementoperator: ++A
® Postfix-Dekrementoperator: A——
® Prifix-Dekrementoperator: --A

anhand von Beispielen vorgestellt. Die Inkrement- und Dekrementoperatoren kdnnen
seit dem JDK 5.0 auch auf Referenzen auf Objekte numerischer Wrapper-Klassen
angewendet werden.

Positiver Vorzeichenoperator: +A

Der positive Vorzeichenoperator wird selten verwendet, da er lediglich den Wert
seines Operanden wiedergibt. Es gibt keine Nebeneffekte.

Beispiel:

+a // +a hat denselben Rickgabewert wie a.

Negativer Vorzeichenoperator: -A

Will man den Wert des Operanden mit umgekehrtem Vorzeichen erhalten, so ist der
negative Vorzeichenoperator von Bedeutung. Es gibt keine Nebeneffekte.

Beispiel:

-a // —a hat vom Betrag denselben Riickgabe-
// wert wie a. Der Rickgabewert hat aber
// das umgekehrte Vorzeichen.

Postfix-Inkrementoperator: A++

Der Riickgabewert ist der unveranderte Wert des Operanden. Als Nebeneffekt wird
der Wert des Operanden um 1 inkrementiert. Der Inkrementoperator kann auf
modifizierbare L-Werte eines ganzzahligen oder eines Gleitpunkt-Typs — nicht jedoch
auf nicht modifizierbare L-Werte und R-Werte — angewandt werden.

218 Kapitel 7

Beispiele:
a=1
b = a++ // Erg.: b = 1, Nebeneffekt: a = 2

Préafix-Inkrementoperator: ++A

Der Ruckgabewert ist der um 1 inkrementierte Wert des Operanden. Als Neben-
effekt wird der Wert des Operanden um 1 inkrementiert. Der Inkrementoperator kann
nur auf modifizierbare L-Werte eines ganzzahligen oder eines Gleitpunkt-Typs ange-
wandt werden.

Beispiele:
a =1
b = ++a // Erg.: b = 2, Nebeneffekt: a = 2

Postfix-Dekrementoperator: A--

Der Riickgabewert ist der unveranderte Wert des Operanden. Als Nebeneffekt wird
der Wert des Operanden um 1 dekrementiert. Der Dekrementoperator kann nur auf
modifizierbare L-Werte eines ganzzahligen oder eines Gleitpunkt-Typs angewandt
werden.

Beispiele:
a=1
b = a—- // Erg.: b = 1, Nebeneffekt: a = 0

Prafix-Dekrementoperator: --A

Der Rickgabewert ist der um 1 dekrementierte Wert des Operanden. Als Neben-
effekt wird der Wert des Operanden um 1 dekrementiert. Der Dekrementoperator
kann nur auf modifizierbare L-Werte eines ganzzahligen oder eines Gleitpunkt-Typs
angewandt werden.

Beispiele:
a =1
b = --a // Erg.: b = 0, Nebeneffekt: a = 0

7.6.2 Zweistellige arithmetische Operatoren
Im Folgenden werden die zweistelligen Operatoren

® Additionsoperator:
Subtraktionsoperator:
Multiplikationsoperator:
® Divisionsoperator:

® Restwertoperator:

+

e A
~ *
W w w w w

o\

Ausdriicke und Operatoren 219

anhand von Beispielen vorgestellt. Seit dem JDK 5.0 gelten diese Operatoren auch
fir Referenzen auf Objekte numerischer Wrapper-Klassen, da hier beim Anwenden
der arithmetischen Operatoren ein automatisches Unboxing erfolgt.

Additionsoperator: A + B

Wendet man den zweistelligen Additionsoperator auf seine Operanden an, so ist der
Rickgabewert die Summe der Werte der beiden Operanden. Es gibt hier keine
Nebeneffekte.

Beispiele:

6 + (4 + 3)

a + 1.1E1

PI + 1 // PI ist eine symbolische Konstante.

ref.meth() + 1 // Hier muss der Aufruf der Methode meth()
// einen arithmetischen Wert zuriickgeben.

Subtraktionsoperator: A - B

Wendet man den zweistelligen Subtraktionsoperator auf die Operanden A und B an,
so ist der Riickgabewert die Differenz der Werte der beiden Operanden. Es gibt
keine Nebeneffekte.

Beispiel:

6 — 4
Multiplikationsoperator: A * B

Es wird die Multiplikation des Wertes von A mit dem Wert von B durchgefiihrt. Es
gelten hier die "Ublichen" Rechenregeln, d. h. Klammerung vor Punkt und Punkt vor
Strich. Deshalb wird im Beispiel 3 * (5 + 3) zuerst der Ausdruck (5 + 3) aus-
gewertet, der dann anschlieBend mit 3 multipliziert wird. Es gibt keine Nebeneffekte.

Beispiele:
3 x 5 + 3 // Erg.: 18
3 * (5 + 3) // Erg.: 24

Divisionsoperator: A/ B

Bei der Verwendung des Divisionsoperators mit ganzzahligen Operanden ist das Er-
gebnis wieder eine ganze Zahl. Der Nachkommateil des Ergebnisses wird abge-
schnitten.

In Java flihrt die Division durch 0 nicht wie in vielen anderen Sprachen
zum Absturz des Programms. Bei der Ganzzahldivision durch 0 wird

eine Ausnahme vom Typ ArithmeticException ausgeldst. Bei der ‘/\
Gleitpunktdivision wird als Ergebnis Infinity mit Berlicksichtigung =)

des Vorzeichens geliefert.

220 Kapitel 7

Ist bei einer ganzzahligen Division entweder der Zahler oder der Nenner negativ,
so ist das Ergebnis negativ. Dabei bestimmt sich der Quotient vom Betrag her nach
der Vorschrift, dass der Quotient die groBtmégliche Ganzzahl ist, fir die gilt:
|Quotient * Nenner| <= |Zahler|. Wird also —7 durch 2 geteilt, so ist das Ergebnis -3
mitdem Rest -1,da |-3 * 2| <= [-7] ist.

Ist mindestens ein Operand eine double- oder £loat-Zahl, d. h. eine Gleitpunkt-
Zahl, so ist das Ergebnis eine Gleitpunktzahl. Es gibt keine Nebeneffekte.

Beispiele:

5/ 5 // Erg.: 1
5/ 3 // Erg.: 1
2

11.0 / 5 // Erg.: 2.2

Beispiel fur die Division durch 0:

// Datei: DivisionTest. java

public class DivisionTest
{
public static void main (String[] args)
{
float ergebnis;
float nenner;
float zaehler;
zaehler = 20;
nenner = 0;
ergebnis = zaehler / nenner;
System.out.println (zaehler + " / " + nenner + " ="
+ ergebnis);
zaehler = 0;
nenner = 0;
ergebnis = zaehler / nenner;
System.out.println (zaehler + " / " + nenner + " ="
+ ergebnis);

Die Ausgabe des Programms ist:

20.0 / 0.0 = Infinity
0.0 / 0.0 = NaN

Die Division durch 0 ergibt mathematisch korrekt Unendlich (Infinity). Das Ergeb-
nis der Division von 0 durch 0 ergibt keine Zahl (Nan — Not a Number).

Restwertoperator: A % B

Der Restwertoperator oder Modulo-Operator gibt fir ganzzahlige Operanden A und B
den Rest bei der ganzzahligen Division des Operanden 2 durch den Operanden B
an. Das Ergebnis der Restwert-Operation 2 % B ergibt sich aus: A - (A / B) *
B. Es gibt keine Nebeneffekte.

Ausdriicke und Operatoren 221

Beispiele:
5 % 3 = 2
8 % 4 0
3 % 7 = 3
(=7) % 2 = -1 // denn (-7) / 2 ergibt -3
(=7) 5 (=2) -1 // denn (-7) / (-2) ergibt 3
T % (=2) 1 // denn 7 / (-2) ergibt -3
7% 2 = 1 // denn 7 / 2 ergibt 3

Die Restwertbildung fir den Nenner O fihrt nicht zum Absturz des ;\ _
Programms. Es wird eine Ausnahme vom Typ ArithmeticExcep-— /
tion ausgeldst. =

In Java gibt es den Restwertoperator nicht nur fir ganzzahlige Operanden, sondern
auch fir Gleitpunktoperanden. Hierflr wird auf [12] verwiesen.

7.6.3 Zuweisungsoperatoren

Zu den Zuweisungsoperatoren gehdren

der einfache Zuweisungsoperator: A = B

sowie die kombinierten Zuweisungsoperatoren:

Additions-Zuweisungsoperator: A
Subtraktions-Zuweisungsoperator: A
Multiplikations-Zuweisungsoperator: A
Divisions-Zuweisungsoperator: A
Restwert-Zuweisungsoperator: A
Bitweises-UND-Zuweisungsoperator: A &=
Bitweises-ODER-Zuweisungsoperator: A
Bitweises-Exklusiv-ODER-Zuweisungsoperator: A
Linksschiebe-Zuweisungsoperator: A
Rechtsschiebe-Zuweisungsoperator: A
Vorzeichenloser Rechtsschiebe-Zuweisungsoperator A

W oW wowwowwwoww

\
\4
W

Dabei darf zwischen den Zeichen eines kombinierten Zuweisungsoperators kein
Leerzeichen stehen. Die Operanden eines kombinierten Zuweisungsoperators
mussen einen einfachen Datentyp haben oder Referenzen auf Objekte numerischer
Wrapper-Klassen sein. Die einzige Ausnahme ist der Operator +=. Hier kann der
linke Operand vom Typ string — und in diesem Fall — der rechte Operand von
jedem beliebigen Typ sein.

Zuweisungsoperator A = B

Der Zuweisungsoperator wird in Java als binédrer Operator betrachtet und liefert als
Riickgabewert den Wert des rechten Operanden — es handelt sich bei einer
Zuweisung also um einen Ausdruck. Zuweisungen kdénnen wiederum in Aus-

222 Kapitel 7

driicken weiter verwendet werden. Bei einer Zuweisung wird zusatzlich zur Erzeu-
gung des Ruckgabewertes — und das ist der Nebeneffekt — dem linken Operanden
der Wert des rechten Operanden zugewiesen. Sonst ware es ja auch keine Zuwei-
sung! Im Ubrigen muss der linke Operand 2 ein modifizierbarer L-Wert sein. Wie zu
sehen ist, sind dadurch auch Mehrfachzuweisungen mdéglich. Da der Zuweisungs-
operator rechtsassoziativ ist, wird der Ausdruck a = b = c von rechts nach links
verknipft. Er wird also abgearbeitet wiea = (b = c).

1. Schritt: a = (b = c)
Ruckgabewert ¢
Nebeneffekt: in der Speicherstelle b
wird der Wert von c abgelegt, d. h. b
nimmt den Wert von c an
)

\/
2. Schritt: a = c

Rickgabewert ¢
Nebeneffekt: in der Speicherstelle a
wird der Wert von ¢ abgelegt

Zuweisungsoperatoren haben eine geringe Prioritat (siehe Kap. 7.6.8), sodass man
beispielsweise bei einer Zuweisung b = x + 3 den Ausdruck x + 3 nicht in
Klammern setzen muss. Erst erfolgt die Auswertung des arithmetischen Ausdrucks,
dann erfolgt die Zuweisung.

\'/

Der Ausdruck rechts des Zuweisungsoperators wird implizit in den
Typ der Variablen links des Zuweisungsoperators gewandelt, es
sei denn, die Typen sind identisch oder die implizite Typkonvertierung -~
ist nicht méglich.

~

I\\\\\@
|

Die implizite Typkonvertierung wird in Kapitel 7.7.2 behandelt.

Beispiele:
b=1+3
c =Db=a // Mehrfachzuweisung
Math.abs (x = 1.4) // Zuweisung als aktueller Parameter
// beim Aufruf der Klassenmethode
// abs () der Klasse Math
Additions-Zuweisungsoperator: A += B

Der Additions-Zuweisungsoperator ist — wie der Name schon verrat — ein zusammen-
gesetzter Operator. Zum einen wird die Addition o + (B) durchgefihrt. Der Rick-
gabewert dieser Addition ist 2 + (B). Zum anderen erhalt die Variable A als Ne-
beneffekt den Wert dieser Addition zugewiesen. Damit entspricht der Ausdruck
A += B semantisch genau dem Ausdruck 2 = A + (B). Die Klammern sind nétig,
da B selber ein Ausdruck wie z. B. b = 3 sein kann. Es wird also zuerst der Aus-
druck B ausgewertet, bevor A + (B) berechnet wird.

Ausdriicke und Operatoren 223

Beispiel:

a += 1 // hat den gleichen Effekt wie ++a

Wie zuvor erwahnt, kann der Additions-Zuweisungsoperator auf Referenzen auf
Objekte der Klasse string angewandt werden. Es kénnen Ausdriicke einfacher
Datentypen wie int, float oder boolean Uber den Operator += mit einer Referenz
auf ein sString-Objekt verknlpft werden.

Beispiel:
sl = "Hallo " // sl zeigt auf den String "Hallo "
s2 = "Myriam " // s2 zeigt auf den String "Myriam "
sl += s2 // sl zeigt jetzt auf den neuen
// String "Hallo Myriam ".
sl += 2 // sl zeigt jetzt auf den neuen
// String "Hallo Myriam 2".
Sonstige kombinierte Zuweisungsoperatoren

Far die sonstigen kombinierten Zuweisungsoperatoren gilt das Gleiche wie fiir den
Additions-Zuweisungsoperator. AuBer der konventionellen Schreibweise:

A = A op (B)

gibt es die zusammengesetzte kurze Schreibweise:

A op= B

Beispiele:

a =1 // a=a-1

b *= 2 // b =Db* 2

c /=5 // c¢c=c¢/ 5

d $=5 // d=d %5

a &= 8 // a=a & 8 Bitoperator
b |= 4 // b =Db | 4 Bitoperator
c *=d // ¢ =c¢c ™ d Bitoperator
a <<= 1 // a = a << 1 Bitoperator
b >>= 1 // b =Db > 1 Bitoperator
b >>>= 5 // b =Db >>> 5 Bitoperator

Bit-Operatoren werden in Kapitel 7.6.6 besprochen.

7.6.4 Relationale Operatoren

In diesem Kapitel werden anhand von Beispielen die folgenden zweistelligen
relationalen Operatoren vorgestellt:

Gleichheitsoperator: A== B
Ungleichheitsoperator: A l=B
GréBeroperator: A >B

224 Kapitel 7

A

B

Kleineroperator:
GroBergleichoperator:
Kleinergleichoperator:

=
AN

B
= B
Relationale Operatoren werden auch als Vergleichsoperatoren bezeichnet. Ne-
beneffekte treten bei Vergleichsoperationen nicht auf. Die Prioritat der Operatoren ==
und != ist kleiner als die der Operatoren >, >=, < und <=. Besitzen die Operanden
unterschiedliche, aber vertragliche Datentypen, werden implizite Typkonvertierungen
durchgefiihrt. Bei den Vergleichsoperatoren >, >=, < und <= ist darauf zu achten,
dass der Typ der Operanden nur ein numerischer Typ bzw. eine numerische
Wrapper-Klasse sein darf. Hat einer der Operanden einen anderen Typ, so gibt der
Compiler eine Fehlermeldung aus. Der Rickgabewert von Vergleichsoperationen ist
immer vom Datentyp boolean. Wenn ein Vergleich falsch ist, ist der Riickgabewert
false, wenn er wahr ist, ist er true.

Gleichheitsoperator: A == B

Mit dem Gleichheitsoperator wird Uberprift, ob der Wert des linken Operanden mit
dem Wert des rechten Operanden (bereinstimmt. Verglichen werden kénnen zwei
Operanden von einem numerischen Typ, zwei Operanden vom Typ boolean oder
zwei Operanden eines Referenztyps bzw. vom Typ null. Bei Referenztypen (auch
bei Referenzen auf Objekte von Wrapper-Klassen) wird verglichen, ob die Referen-
zen gleich sind — mit dem Vergleichsoperator 1&sst sich also nicht prifen, ob zwei
Objekte inhaltlich gleich sind. Im Falle von Aufz&hlungstypen kénnen Aufz&hlungs-
konstanten mit dem Gleichheitsoperator verglichen werden. Ist ein Vergleich wahr,
hat der Riickgabewert den Wert true. Andernfalls, d. h., wenn ein Vergleich falsch
ist, hat der Riickgabewert den Wert false.

Beispiele:
3 == 3 // Erg.: true
2 == // Erg.: false

Ein folgenschwerer Fehler ist in Java, statt des Gleichheitsoperators
== versehentlich den Zuweisungsoperator = anzuschreiben. Ein sol-
ches Programm ist oft kompilier- und laufféhig, erzeugt aber andere
Ergebnisse als erwartet. Programmiert man aber defensiv und

schreibt bei einem Vergleich einer Konstanten mit einer Variablen die A
Konstante stets links und die Variable rechts, also z. B. {Orsy
W

true == a

so merkt der Compiler den Fehler, da einer Konstanten kein Wert
zugewiesen werden kann, weil sie kein L-Wert ist.

Im folgenden Beispiel wird dieser Umstand nochmals verdeutlicht:

Der Ausdruck in der i £-Anweisung

if (Ausdruck)
{.}

Ausdriicke und Operatoren 225

muss zu einem Booleschen Wert — also zu true oder zu false — auswertbar sein.
Beispielsweise wird der Ausdruck

boolValue == true

zu false ausgewertet, wenn die Boolesche Variable boolvalue den Wert false
hat. Passt der Programmierer jedoch nicht auf und schreibt den Vergleichsoperator
== nur mit einem Gleichheitszeichen, so hat der Compiler keine Chance, denn ein
Gleichheitszeichen bedeutet Zuweisung.

boolean boolValue = false;
if (boolValue = true)
{
//
}

Die Anweisungen im if-Block werden immer ausgeflhrt, da zuerst die Zuweisung
boolvalue = true erfolgt und danach der Ausdruck ausgewertet wird.

Vermeiden lassen sich solche ungewollten semantischen Fehler, indem auf der
linken Seite des Vergleichs-Ausdrucks die Konstante steht — beispielsweise true —
und die Variable, deren Inhalt Uberpruft werden soll, sich auf der rechten Seite des
Ausdrucks befindet. Der Compiler wird die Zeile

if (true = boolValue)

nicht Ubersetzen, weil hier versucht wird, einem R-Wert einen neuen Wert zuzu-
weisen.

Die defensive Programmierung beschreibt einen Ansatz, um die Qualitat des
Quellcodes zu verbessern. Dabei setzt man sich das Ziel, die Robustheit des Codes
zu erh6hen und zufallige Fehler bei Programmanderungen zu verhindern.

Die defensive Programmierung definiert Techniken und Richtlinien, welche helfen,
die oben aufgefiihrten Ziele zu erreichen. Dazu gehdrt unter anderem, dass unzu-
lassige Benutzereingaben konsequent abgewiesen werden, was ein Abstlrzen ver-
hindert (Robustheit), und dass man Code-Konstrukte so formuliert, dass sie nicht
fehlertrachtig sind und leicht erweitert werden kdnnen. Beispiele fur defensiv for-
mulierte Code-Konstrukte sind:

® Bei Vergleichen mit Konstanten die Konstante als linken Operanden anschreiben,
was eine versehentliche Zuweisung statt eines Vergleichs verhindert, z. B. true
== boolValue.

® Bei Selektionen und lterationen stets einen Block verwenden, auch wenn der
Block nur eine einzige Anweisung enthélt. Damit sind Erweiterungen um Anwei-
sungen nicht fehlertrachtig, da die Klammern schon da sind. Ein Beispiel fiir eine
Selektion befindet sich im Kapitel 8.2.1.

Ungleichheitsoperator: A !=B

Mit dem Ungleichheitsoperator wird Uberprift, ob der Wert des linken Operanden
ungleich dem Wert des rechten Operanden ist. Es kénnen dieselben Operanden wie

226 Kapitel 7

im Falle des Gleichheitsoperators verwendet werden. Bei Ungleichheit hat der Ruck-
gabewert den Wert true. Andernfalls hat der Riickgabewert den Wert false.

Beispiele:
5 1=5 // Erg.: false
3 =5 // Erg.: true

GroBeroperator: A>B

Mit dem GroBeroperator wird Uberprift, ob der Wert des linken Operanden grdBer als
der Wert des rechten Operanden ist. Ist der Vergleich wahr, so hat der Rick-
gabewert den Wert t rue. Andernfalls hat der Riickgabewert den Wert false.

Beipiele:
5 >3 // Erg.: true
3 >3 // Erg.: false
Kleineroperator: A<B

Mit dem Kleineroperator wird Uberprift, ob der Wert des linken Operanden kleiner als
der Wert des rechten Operanden ist. Ist der Vergleich wahr, hat der Riickgabewert
den Wert true. Andernfalls hat der Rickgabewert den Wert false.

Beispiel:
5 <5 // Erg.: false
GroBergleichoperator: A>=B

Der GréBergleichoperator ist aus den Zeichen > und = zusammengesetzt. Der Gro-
Bergleichoperator liefert genau dann den Rickgabewert true, wenn entweder der
Wert des linken Operanden gréBer als der Wert des rechten Operanden ist oder der
Wert des linken Operanden dem Wert des rechten Operanden entspricht.

Beispiele:

2 >=1 // Erg.: true
1 >=1

// Erg.: true

Kleinergleichoperator: A<=B

Der Kleinergleichoperator ist aus den Zeichen < und = zusammengesetzt. Der Klei-
nergleichoperator liefert genau dann den Rlckgabewert true, wenn entweder der
Wert des linken Operanden kleiner als der Wert des rechten Operanden ist oder der
Wert des linken Operanden dem Wert des rechten Operanden entspricht. Ansonsten
ist der Ruckgabewert false.

Beispiele:

10 <= 11 // Erg.: true
11 <= 11 // Erg.: true

Ausdriicke und Operatoren 227

7.6.5 Logische Operatoren

In diesem Kapitel werden anhand von Beispielen die folgenden logischen Ope-
ratoren vorgestellt:

® QOperatoren fiir das logische UND: A && Bbzw.A & B
e QOperatoren fiir das logische ODER: A || Bbzw.A | B
® | ogischer Exklusiv-ODER-Operator: A~ B

® | ogischer Negationsoperator (unar): 1A

Die Operatoren fir das logische UND/ODER sowie das logische Exklusiv-ODER sind
zweistellig, der logische Negationsoperator ist einstellig. Mit diesen Operatoren
lassen sich logische Verknipfungen von Ausdricken durchfihren. Wie schon
erwahnt, kdnnen die Operanden selber zusammengesetzte Ausdriicke sein. Von den
logischen Operatoren hat der Negationsoperator die hdchste Prioritét, der Operator
| | fOr das logische ODER die geringste (siehe Kap. 7.6.8).

Die logischen Operatoren ss&, | |, ! kdnnen nur auf Operanden vom G
Typ boolean — und seit JDK 5.0 auch vom Typ Boolean — — o
angewandt werden. Andere Typen flhren zu einer Fehlermeldung des -~ o~

Compilers. Der Ergebnistyp ist ebenfalls vom Typ boolean.

Die Operatoren &, |, ~ konnen als logische Operatoren auf Operan- |/ B
den vom Typ boolean (bzw. Boolean) und als logische Bit-Operato- —
ren (siehe Kap. 7.6.6.1) auch auf Operanden numerischer Datentypen -

(bzw. numerischer Wrapper-Klassen) angewandt werden.

Operatoren fiir das logische UND: A && B und A & B

Java bietet zwei verschiedene Operatoren fiir das logische UND an: Den Operator
&& und den Operator «. Beide Operatoren haben eine identische Wahrheitstabelle.
Sie liefern genau dann den Rickgabewert true, wenn beide Operanden den Wahr-
heitswert true haben. Ansonsten ist der Rickgabewert false.

A B A && B
false false false
false true false
true false false
true true true

Tabelle 7-1 Wahrheitstabelle fiir das logische UND A <& B

Die Wahrheitstabelle in Tabelle 7-1 wird wie folgt interpretiert: Der logische Ausdruck
A && B ist nur dann true, wenn der Ausdruck A und der Ausdruck B gleich true ist.
Beispiele:

true && false // Erg.: false
true && true // Erg.: true

228 Kapitel 7

Wird der Operator & zwischen zwei Operanden verwendet, so wird der

rechte Operand immer ausgewertet, egal ob der linke Operand true N
oder false ist. Wird dagegen der Operator &« & verwendet, so wird der — -
rechte Ausdruck nur dann ausgewertet, wenn der linke Ausdruck - ~
true ist. Dies ist zu beachten, wenn die Operanden Nebeneffekte =
beinhalten. -

Operatoren fiir das logische ODER: A||Bund A | B

Java bietet zwei verschiedene Operatoren fiir das logische ODER an: Den Operator
| | und den Operator |. Beide Operatoren haben eine identische Wahrheitstabelle.
Ein Operator fir das logische ODER liefert genau dann den Riickgabewert true,
wenn der linke oder der rechte Operand oder beide Operanden den Wahrheitswert
true haben. Ansonsten ist der Rickgabewert false.

A B A || B
false false false
false true true
true false true
true true true

Tabelle 7-2 Wahrheitstabelle fir das logische ODER 4 | | B

Beispiele:
false || true // Erg.: true
false || false // Erg.: false

Wird der Operator | zwischen zwei Operanden verwendet, so wird der

rechte Operand immer ausgewertet, egal ob der linke Operand true |/
oder false ist. Wird dagegen der Operator | | verwendet, so wird der — -
rechte Ausdruck nur dann ausgewertet, wenn der linke Ausdruck -~ ~
false ist. Dies ist zu beachten, wenn die Operanden Nebeneffekte =
beinhalten.

Logischer Exklusiv-ODER-Operator: A A B

Ein Operator fiir das logische Exklusiv-ODER liefert genau dann den Rickgabewert
true, wenn entweder der linke oder der rechte Operand den Wert true haben.
Haben beide Operanden denselben Wert (beide true oder beide false), so ist das
Ergebnis false.

A B A "B
false false false
false true true
true false true
true true false

Tabelle 7-3 Wabhrheitstabelle fir das logische Exklusiv-ODER A ~ B

Ausdriicke und Operatoren 229

Beispiele:

false ~ true // Erg.: true
false ~ false // Erg.: false
true © true // Erg.: false

Logischer Negationsoperator: !A

Mit dem einstelligen Negationsoperator werden Wahrheitswerte negiert, d. h. aus
true wird false und aus false wird true. Wird der Negationsoperator zweimal
auf seinen Operanden angewendet, bleibt der Wahrheitswert unverandert.

A 'A
true false
false true

Tabelle 7-4 Wahrheitstabelle fir die Negation

Die Wahrheitstabelle wird folgendermaBen interpretiert: Der logische Ausdruck ! A ist
nur dann true, wenn der Ausdruck A false ist.

Beispiele:
Ifalse // Erg.: true
I'ltrue // Erg.: true

Prioritat der logischen Operatoren

Die Operatoren fiir das logische UND/ODER haben eine sehr geringe Bindekraft. Die
Vergleichsoperatoren haben eine hdhere Prioritdt als die logischen Operatoren.
Deshalb sind Klammern flr die Bewertung der Ausdriicke oft nicht notwendig. So
entspricht (a < b) && (¢ == d) dem Ausdruck a < b && ¢ == d. Die Klam-
mern erhdhen lediglich die Ubersichtlichkeit der Programme.

Verkniipfungsreihenfolge

Ausdriicke, die durch den UND-Operator &s& verknipft sind, werden
von links nach rechts zusammengefasst. Dasselbe gilt fir Ausdriicke, _
die durch den ODER-Operator | | verknlpft sind. Dies gilt nicht, wenn
&& oder | |-Operatoren gemischt sind, da der Operator s& eine =
héhere Prioritat hat als der | | -Operator. =

Nebeneffekte

Nebeneffekte des rechten Operanden kommen bei den Operatoren & und | immer
zum Tragen, bei den Operatoren ss und || nur, wenn der rechte Operand ausge-
wertet wird. Das kann dazu fiihren, dass Nebeneffekte der weiter rechts stehenden
Ausdriicke nicht mehr ausgefuhrt werden:

1 <0 && 2 < a++ // a++ wird nie ausgefihrt, da die
// Auswertung vorher beendet ist.

230 Kapitel 7

7.6.6 Bit-Operatoren

Java besitzt auch Operatoren zur Bit-Manipulation. Im Folgenden werden die vier
logischen Bit-Operatoren:

e UND-Operator fiir Bits: A& B
o ODER-Operator fir Bits: A | B
® Exklusiv-ODER-Operator fir Bits: A~ B
® Negationsoperator fur Bits (unar): ~A

und die drei Shift-Operatoren fiir Bits:

® Vorzeichenbehafteter Rechtsshift-Operator: A >> B
® Vorzeichenloser Rechtsshift-Operator: A >>> B
® | inksshift-Operator: A << B

anhand von Beispielen vorgestellt. Mit Einflhrung des JDKs 5.0 kénnen diese Ope-
ratoren auch auf Referenzen auf Objekte vom Typ einer numerischen Wrapperklasse
angewendet werden. Dabei findet ein automatisches Unboxing und Boxing statt.

7.6.6.1 Logische Bit-Operatoren

\ /
Bit-Operationen finden auf allen Bits der Operanden statt. Bei den Bit- —
Operationen werden jeweils die Bits der entsprechenden Position mit-

einander verknUpft.

~

]

Bits kénnen bekanntermaBen zwei Zustdnde annehmen: 0 oder 1. Die 1 wird bei Bits
in Java als true interpretiert, die 0 als £alse. Nebeneffekte treten bei den logischen
Bit-Operatoren nicht auf.

UND-Operator fiir Bits: A & B

Die Operation bitweises UND findet auf allen Bits der Operanden statt. Dabei werden
jeweils die Bits der entsprechenden Position miteinander verknupft.

Bitnvona | BitnvonB | Bitnvona & B
0 0 0
0 1 0
1 0 0
1 1 1

Tabelle 7-5 Wahrheitstabelle fiir das bitweise UND

Die Wahrheitstabelle wird folgendermaBen interpretiert: Bei der UND-Verknipfung ist
die 0 dominant, d. h. ist mindestens eines der Bits (Bit n von A oder Bit n von B) eine
0, so ist das Ergebnis 0 (false). Damit kann man Bits in Bitmustern ausblenden.
Der logische UND-Operator fir Bits hat eine héhere Prioritat als der logische ODER-
Operator fir Bits.

Ausdriicke und Operatoren 231

Beispiele:

0 &1 // 0 &1 =0

14 & 1 // 1110 & 0001 = 0000
var & var // var & var = var

ODER-Operator fiir Bits: A|B

Die Operation bitweises ODER findet auf allen Bits der Operanden statt, dabei
werden jeweils die Bits der entsprechenden Position miteinander verknilpft.

Bitnvona | BinvonB | Bitnvona | B
0 0 0
0 1 1
1 0 1
1 1 1

Tabelle 7-6 Wahrheitstabelle fiir das bitweise ODER

Die Wahrheitstabelle wird folgendermaBen interpretiert: Bei der ODER-Verknlpfung
ist die 1 dominant, d. h. ist mindestens eines der Bits (Bit n von A oder Bit n von B)
eine 1, so ist das Ergebnis 1 (true). Damit kann man Bits in Bitmustern einblenden.

Beispiele:

01 1 // 0 | 1=1

14 | 1 // 1110 | 0001 = 1111 = 15
var | 0O // wvar | 0 = var

Exklusiv-ODER-Operator fiir Bits: A* B

Die Operation bitweises Exklusiv-ODER findet auf allen Bits der Operanden statt,
dabei werden jeweils die Bits der entsprechenden Position miteinander verkniipft.

Bitnvona |BitnvonB Bitnvona ~ B
0 0 0
0 1 1
1 0 1
1 1 0

Tabelle 7-7 Wahrheitstabelle fiir das bitweise Exklusiv-ODER

Die Wahrheitstabelle wird folgendermaBen interpretiert: Bei der Exklusiv-ODER-
Verknupfung ist das Ergebnis 1 (true), wenn entweder Bit n von Operand 2 oder
Bit n von Operand B eine 1 ist. Haben beide zu vergleichende Bits denselben Wert
(beide 0 oder beide 1), so ist das Ergebnis der Exklusiv-ODER-Verkniipfung gleich 0.

Beispiele:

0o~ 1 // 0~ 1 =1

14 ~ 1 // 1110 ~ 0001 = 1111 = 15
var ~ 0 // wvar ~ 0 = var

14 ~ 3 // 1110 ~ 0011 = 1101 = 13

// Bit 0 und Bit 1 von 1110 invertieren

232 Kapitel 7

Negationsoperator fir Bits: ~A

Die Operation einer bitweisen Negation findet auf allen Bits des Operanden statt.

Bit n von A | Bit n von ~A
0 1
1 0

Tabelle 7-8 Wahrheitstabelle fir die bitweise Negation

Die Wahrheitstabelle wird folgendermaBen interpretiert: Bei der Negation fiir Bits wird
jedes Bit invertiert. Aus der 0 wird durch Negation eine 1 und aus der 1 eine 0.

Beispiel:
int a = 9; // a = 00000000 00000000 00000000 00001001
int b = ~aj; // b = 11111111 11111111 11111111 11110110

// b hat den Wert -10

7.6.6.2 Shift-Operatoren fiir Bits

Shift-Operatoren (Verschiebeoperatoren) kénnen nur auf ganzzahlige Werte bzw.
auf Objekte der entsprechenden Wrapper-Klassen angewandt werden. Mit dem Shift-
Operator << werden Bits nach links, mit dem Shift-Operator >> nach rechts mit
Beachtung des Vorzeichens verschoben (engl. shift). Der Operator >>> wurde in
Java eingeflhrt. Er verschiebt nach rechts ohne Beachtung des Vorzeichens.

Der linke Operand eines Shift-Operators ist stets der zu verschiebende Wert. Der
rechte Operand gibt die Anzahl der Stellen an, um die verschoben werden soll.

Obwohl Verschiebeoperatoren binar sind, wird auf ihre Operanden nicht die Typan-
passung fir bindre Operatoren (siehe Kap. 7.7.3.4), sondern die Typanpassung flr
unare Operatoren (siehe Kap. 7.7.3.3) in impliziter Weise angewandt. Der Rickga-
betyp eines Shift-Ausdrucks ist der angepasste Typ des linken Operanden.

Wenn der (implizit angepasste) Typ des linken Operanden der Typ int ist, so wer-
den nur die 5 niederwertigsten Bits des rechten Operanden als Verschiebe-
Distanz interpretiert. Mit den 5 niederwertigsten Bits kann maximal die Zahl 32 dar-
gestellt werden, denn 2° ergibt 32. Daher kann nur um 0 bis 31 Stellen verschoben
werden. Wird als Verschiebung beispielsweise -1 angegeben, so wird tatsachlich um
(2° + 2" + 22 + 22 + 2% = 31 verschoben. Dies bedeutet, dass alle Verschiebungen —
auch bei Angabe negativer Zahlen — um ganzzahlige positive Stellen von Bits erfol-
gen.

angegebene Verschiebung
A
~— ™

|1lll11111lllllllllllllllllllllll

H_/
nur die untersten 5 Bits werden akzeptiert

Bild 7-5 Verschiebealgorithmus

Ausdriicke und Operatoren 233

Ist der angepasste Typ des linken Operanden der Typ 1ong, so werden die nieder-
sten 6 Bits des rechten Operanden interpretiert. Mit anderen Worten, es kann
zwischen 0 und 63 Stellen verschoben werden (2* ergibt 64). Die Verschiebe-Ope-
rationen werden auf der Basis der Zweierkomplement-Darstellung des linken
Operanden durchgefihrt.

Vorzeichenbehafteter Rechtsshift-Operator: A >> B

Mit dem Rechtsshift-Operator o >> B werden B Bitstellen von 2 nach rechts gescho-
ben. Dabei gehen die B niederwertigen Bits von a verloren. Ist die Zahl A positiv, so
werden von links Nullen nachgeschoben, ist A negativ, werden Einsen nachge-
schoben.

Beispiel:
int a;
verloren
a = 8; // [00000000 00000000 00000000 00001]000;
e e = = = — —>
a=a>>3; // 00000000 00000000 00000000 00000001]
aufgefillt
verloren
a = -7; // 11111111 11111111 11111111 11111001
______________________ _>
a=a>> 3; // 11111111 11111111 11111111 1111111]]
aufgefillt

Fir nicht negative Werte entspricht eine Verschiebung um 3 Bits nach rechts einer
abschneidenden Ganzzahl-Division durch 2° = 8.

Vorzeichenloser Rechtsshift-Operator: A >>> B

Mit dem Rechtsshift-Operator o >>> B werden B Bitstellen von A nach rechts
geschoben. Dabei gehen die B niederwertigen Bits von A verloren. Es werden stets
Nullen von links nachgeschoben, egal ob die Zahl negativ oder positiv ist.

Beispiel:
int aj;
verloren
a = 8; // [00000000 00000000 00000000 00001}000;
a =a >>> 3; // 00000000 00000000 00000000 00000001
aufgeflllt
verloren
a=-7; // [L1111111 11111111 11111111 11111}001
_______________________________ _>
a=a >>3; // 00011111 11111111 11111111 11111117

aufgeflllt

234 Kapitel 7

Linksshift-Operator: A << B

Bei dem Linksshift-Operator A << B werden B Bitstellen von a nach links geschoben.
Dabei gehen die B héherwertigen Bits von A verloren.

Beispiel:
int a;
verloren
a = 8; // 1000[00000 00000000 00000000 00001000
D e ————————— -
a =a << 3; //[00000000 00000000 00000000 01000}000C:

aufgefullt

Die Verschiebung um 3 Bits nach links entspricht (auch bei einem Uberlauf) einer
Multiplikation mit 2°.

7.6.7 Der Bedingungsoperator: A?B:C

Eine echte "Raritat" ist der Bedingungsoperator. Er ist ndmlich der einzige Operator,
der drei Operanden verarbeitet. In einem bedingten Ausdruck 2 ? B : C wird
zuerst der Boolesche Ausdruck A ausgewertet. Der Ausdruck A kann seit JDK 5.0
auch eine Referenz auf ein Objekt der Wrapper-Klasse Boolean sein. Ist der Rick-
gabewert von Ausdruck A true, also wahr, so wird der Ausdruck B ausgewertet. Das
Ergebnis von B ist dann der Riickgabewert des Bedingungsoperators. Ist jedoch der
Ausdruck A gleich false, also falsch, so wird der Ausdruck C ausgewertet. Die
Ausdricke B und C mulssen beide von einem numerischen Typ, beide vom Typ
boolean oder beide jeweils entweder von einem Referenztyp oder vom null-Typ
sein. Die Typen der Ergebnisausdriicke B bzw. ¢ missen zueinander zuweisungs-
kompatibel (siehe Kap. 7.7.2) sein. Eine Methode kann (siehe Kap. 9.2.3) mit der
return-Anweisung einen Wert an den Aufrufer zuriickliefern. Soll je nach dem
Wahrheitswert von A der Wert von B bzw. C zurlickgegeben werden, so kann statt

if (A)
return B;
else
return C;

knapper

return A ? B : C;
geschrieben werden.

Der Typ des bedingten Ausdrucks 2 ? B : C ist —unabhangig davon, ob der Riick-
gabewert dieses Ausdrucks B oder C ist — stets der breitere Typ (siehe Kap. 7.7.3)
der beiden Ausdriicke B und C. So ist beispielsweise der Rickgabetyp von

(3 >4) 2 5.0 : 6

vom Typ double und der Rickgabewert ist 6 . 0.

Ausdriicke und Operatoren 235

Bedingte Ausdriicke enthalten Ausdriicke, die selbst wieder bedingt sein kénnen. Die
Abarbeitungsreihenfolge ist von rechts her (Rechtsassoziativitat). So wird

A?B:C?D :E?F : G

abgearbeitet wie

A?B: (C?D¢: (E?F : G))

7.6.8 Prioritatentabelle der Operatoren

Die in Tabelle 7-9 gezeigte Vorrangtabelle enthalt die Prioritat (Rangfolge) und die
Assoziativitat der Operatoren. Grau hinterlegt in Tabelle 7-9 sind die unaren Operato-
ren.

Prioritét Operatoren Bedeutung Assoziativitat

Prioritat 1 [] Array-Index links
0 Methodenaufruf links
. Komponentenzugriff links
++ Postinkrement links
- Postdekrement links
Prioritat 2 | ++ Prainkrement rechts
== Pradekrement rechts
+ = Vorzeichen (unar) rechts
bitweises Komplement rechts
! logischer Negationsoperator rechts
Prioritat 3 (type) Typ-Umwandlung rechts
new Erzeugung rechts
Prioritat 4 * /% Multiplikation, Division, Rest links
Prioritat 5 + - Addition, Subtraktion links
+ Stringverkettung links
Prioritdt 6 | << Linksshift links
>> Vorzeichenbehafteter Rechtsshift links
>>> Vorzeichenloser Rechtsshift links
Prioritat 7 |< <= Vergleich kleiner, kleiner gleich links
> >= Vergleich gréBer, gréBer gleich links
instanceof | TypuUberprifung eines Objektes links
Prioritdt 8 |== Gleichheit links
= Ungleichheit links
Prioritdt9 | & bitweises/logisches UND links
Prioritat 10 | * bitweises/logisches Exclusiv-ODER links
Prioritat 11 | | bitweises/logisches ODER links
Prioritdt 12 | && logisches UND links
Prioritdt 13 | | | logisches ODER links
Prioritdt 14 |2 : Bedingungsoperator rechts
Prioritdt 15 |= Wertzuweisung rechts
*= /= %= +=|kombinierter Zuweisungsoperator rechts

—-= <<= >>=

>>>= &= "=

Tabelle 7-9 Prioritdt und Assoziativitét der Operatoren von Java

236 Kapitel 7

Prioritét 1 ist die héchste Prioritat. So hat beispielsweise der Multiplikations- bzw.
der Divisionsoperator eine héhere Prioritat als der Additions- bzw. der Subtraktions-
operator. Durch gezielte Klammerungen () lasst sich die Abarbeitungsreihenfolge
verandern. Das wird im nachsten Beispiel ersichtlich:

5 * (3 + 4) das Ergebnis ist 35
A g&& (B || Q) dieser Ausdruck ist true, wenn die Bedingung A und B er-
fOllt ist, oder wenn A und ¢ erflllt ist.

Wie man der Tabelle 7-9 entnehmen kann, gilt die folgende Aussage bezlglich der
Assoziativitat:

tor und unare Operatoren. Alle anderen Operatoren sind linksasso-

\
Rechtsassoziativ sind Zuweisungsoperatoren, der Bedingungsopera- _ —
ziativ.

(i

7.7 Konvertierung von Datentypen

In Java ist es nicht notwendig, dass die Operanden eines arithmetischen Ausdrucks
vom selben Typ sind. Genauso wenig muss bei einer Zuweisung der Typ der Ope-
randen (ibereinstimmen’’. In solchen Fallen kann der Compiler selbsttatig implizite
(automatische) Typkonvertierungen durchfliihren, die nach einem von der Sprache
vorgeschriebenen Regelwerk ablaufen. Diese Regeln sollen in diesem Kapitel vorge-
stellt werden. Wenn man selbst dafir sorgt, dass solche Typverschiedenheiten nicht
vorkommen, braucht man sich um die implizite Typkonvertierung nicht zu kimmern.
Insbesondere kann man auch selbst mit Hilfe des cast-Operators explizite Typkon-
vertierungen durchfiihren.

7.7.1 Der cast-Operator

Eine explizite Typumwandlung eines beliebigen Ausdrucks kann man mit dem
cast-Operator (Typkonvertierungsoperator) durchfiihren. Das englische Wort cast
heiBt unter anderem "in eine Form gieBen". Durch (Typname) Ausdruck wird der
Wert des Ausdrucks in den Typ gewandelt, der in den Klammern eingeschlossen ist.
Der Typkonvertierungsoperator hat einen einzigen Operanden und ist damit ein
unérer Operator.

Es kann nicht jeder Typ eines Operanden explizit in einen beliebigen N
anderen Typ gewandelt werden. Mdglich sind Wandlungen B @ _
e zwischen numerischen Datentypen - O\

® und zwischen Referenztypen.

7 Auch bei der Ubergabe von Werten an Methoden und bei Riickgabewerten von Methoden (siehe

Kap. 9.2.3) kann der Typ der Ubergebenen Ausdriicke bzw. des riickzugebenden Ausdrucks vom
Typ der formalen Parameter bzw. vom Riickgabetyp verschieden sein.

Ausdriicke und Operatoren 237

Die explizite Typkonvertierung soll anhand eines Beispiels veranschaulicht werden:

int a = 1; // a hat den Wert 1
double b = 3.5; // b hat den Wert 3.5
a = (int) b; // Explizite Typkonvertierung in den Typ int

Der Ausdruck (int) b hat den Riickgabewert 3 (die 0.5 wird abgeschnitten). Der
Variablen a wird dann der Rickgabewert 3 zugewiesen.

Vor Cast:
| 3.5
Typ int b vom Typ double
Casten: 3.5

<<
I 35 |

Nach Cast:
3 | 3.5 |

Bild 7-6 Typkonvertierung

Ein weiteres Beispiel ist:

a = (int) 4.1 // a bekommt den Wert 4 zugewiesen.
a = (int) 4.9 // a bekommt ebenfalls den Wert 4 zugewiesen.
7.7.2 Implizite und explizite Typkonvertierungen

Eine implizite Typumwandlung hat dasselbe Resultat wie die entsprechende explizite
Typumwandlung. Allerdings sind bei Zuweisungen, wenn auf der rechten Seite Vari-
able stehen, nur implizite Typumwandlungen in einen "breiteren” Typ mdglich.
Mit dem cast-Operator sind auch Wandlungen in einen "schmaéleren™ Typ mdg-
lich. Allerdings sind solche Wandlungen potentiell sehr geféhrlich, da nicht nur die
Genauigkeit, sondern auch das Vorzeichen und die GréBe verloren gehen kdnnen
(far Beispiele siehe Kap. 7.7.4).

Typkonvertierungen erfolgen in Java prinzipiell nur zwischen vertraglichen Da-
tentypen. Zwischen nicht vertraglichen Datentypen gibt es keine Umwandlungen.
Hier muss der Compiler bzw. das Laufzeitsystem einen Fehler melden.

Kann ein Ausdruck in den Typ einer Variablen durch Zuweisung um- | //
gewandelt werden, so ist der Typ des Ausdrucks zuweisungskom- —
patibel mit dem Typ der Variablen. Es findet eine implizite Typkon- -~
vertierung statt.

i

Implizite Typkonvertierungen gibt es:

e zwischen einfachen, numerischen (arithmetischen) Typen,
e zwischen Referenztypen,

238 Kapitel 7

® pbei Verknlipfungen von Objekten der Klasse string mit Operanden anderer
Datentypen

® und seit JDK 5.0 durch das automatische Boxing bzw. Unboxing zwischen ein-
fachen numerischen Typen und Referenztypen numerischer Wrapper-Klassen.

\
Explizite Umwandlungen funktionieren wie implizite Umwandlungen, —
allerdings kénnen mit expliziten Typumwandlungen auch Wandlungen P -

durchgefuhrt werden, die implizit nicht zulassig sind.

Das folgende Kapitel 7.7.3 behandelt die Typkonvertierung von einfachen Daten-
typen. Typkonvertierungen bei der Verknipfung von String-Objekten mit Operanden
anderer Datentypen wurden bereits in Kapitel 6.8.2 behandelt. Das explizite und
implizite Casten — d. h. die explizite und implizite Typumwandlung — bei Referenzen
wird in Kapitel 11.3.1 behandelt.

7.7.3 Typkonvertierungen bei einfachen Datentypen

Zu den einfachen Datentypen gehdren der Typ boolean und die numerischen Da-
tentypen. Zwischen dem Typ boolean und den numerischen Datentypen kann
weder explizit noch implizit gecastet werden. Somit kann eine Typkonvertierung von
einfachen Datentypen nur innerhalb der numerischen Datentypen erfolgen. Typum-
wandlungen in einen "breiteren” Typ bzw. mit anderen Worten "erweiternde Um-
wandlungen" sind in Bild 7-7 dargestellt:

‘double

float

long

int

short char

byte

Bild 7-7 Erweiternde Umwandlungen numerischer Datentypen

Bei erweiternden Umwandlungen ist der Wert immer darstellbar. Allerdings kann man
an Genauigkeit verlieren, z. B. bei der Wandlung von int nach float, da die Gleit-
punktzahlen nicht unendlich dicht aufeinander folgen. Typumwandlungen in einen
"schméaleren" Typ bzw. mit anderen Worten "einschrankende Umwandlungen" sind in
Bild 7-8 dargestellt. Bei Wandlungen in einen "schméaleren" Typ kann es zu Informa-
tionsverlusten in der GrdBe, dem Vorzeichen und der Genauigkeit kommen. Wand-
lungen in einen "schmaleren” Typ sind in der Regel bei der impliziten Typkon-
vertierung nicht méglich und miissen explizit mit dem cast-Operator durchgefiihrt
werden.

Ausdriicke und Operatoren 239

double

float

long

int =

short

char
<+

byte

Bild 7-8 Einschrdnkende Umwandlungen numerischer Datentypen

7.7.3.1 Implizite Typkonvertierungen bei numerischen Datentypen
Welche Wandlung wann vorgenommen wird, hangt davon ab, ob es sich:

® um eine Typkonvertierung von numerischen Operanden bei unéren Operatoren,
® um eine Typkonvertierung von numerischen Operanden bei bindren Operatoren,
® bzw. um eine Zuweisung

handelt.

Das Ergebnis einer bestimmten Typwandlung, die sowohl bei numerischen Operan-
den als auch bei Zuweisungen vorkommt, ist stets dasselbe. Bei numerischen Ope-
randen gilt generell, dass der "kleinere" ("schmalere") Datentyp in den "grdBeren”
("breiteren™) Datentyp umgewandelt wird. Bei Zuweisungen ist dies auch die Regel,
es gibt jedoch einen Fall — siehe Kap. 7.7.3.5 — wo vom "gréBeren” in den "kleineren”
Datentyp gewandelt wird.

7.7.3.2 Die Integer-Erweiterung

Mit byte-, short- oder char-Werten werden in Java in der Regel keine Ver-
knupfungen zu Ausdriicken durchgefiihrt. Operanden dieser Typen werden oftmals
vor der Verknipfung mit einem Operator in den Datentyp int konvertiert. Dies gilt fir
undre und bindre Operatoren (siehe Kap. 7.7.3.3 und Kap. 7.7.3.4). Dieser Vorgang
wird als Integer-Erweiterung (integral promotion) bezeichnet.

7.7.3.3 Anpassungen numerischer Typen bei unaren Operatoren
Die Integer-Erweiterung eines einzelnen Operanden wird angewandt auf:

® den Dimensionsausdruck bei der Erzeugung von Arrays (siehe Kap. 6.5),
den Indexausdruck in Arrays (siehe Kap. 6.5),

Operanden der unaren Operatoren + und -,

den Operanden des Negationsoperators fir Bits ~,

jeden Operanden separat der Schiebeoperatoren >>, >>> und >>.

240 Kapitel 7

7.7.3.4 Anpassungen numerischer Typen bei bindren Operatoren

Bei bindren Operatoren mit Ausnahme von Zuweisungen, logischen Operatoren
und Bitshift-Operatoren werden implizite Typkonvertierungen von numerischen
Typen durchgefuhrt mit dem Ziel, einen gemeinsamen numerischen Typ der Operan-
den des bindren Operators zu erhalten, der auch der Typ des Ergebnisses ist. Diese
Typkonvertierungen finden bei den folgenden bindren Operatoren statt: *, /, %, +,
-, <, <=, >, >=, != == den bitweisen Operatoren &, ~ und |, sowie in gewissen
Féllen (siehe [12]) beim terndren Bedingungsoperator 2 :.

Wird beispielsweise eine Temperaturangabe von Grad Fahrenheit — hinterlegt in der
Variablen fahr — nach Grad Celsius — abzuspeichern in der Variablen celsius vom
Typ double —umgerechnet, wobei die Rechenvorschrift

celsius = (5.0 / 9) * (fahr - 32);

lautet, so werden bei der Berechnung der rechten Seite der Zuweisung automatisch
die int-Konstante 9 und der Ausdruck (fahr - 32) in die double-Darstellung
gewandelt, da 5.0 eine double-Zahl ist. Dieses Beispiel ist eine Anwendung der
folgenden Regel:

Verkniipft ein binarer Operator einen ganzzahligen und einen Gleit- L/ B
punktoperanden, so erfolgt eine Umwandlung des ganzzahligen Ope- —

randen in einen Gleitpunktwert. AnschlieBend wird eine Gleitpunkt- -~ -
operation durchgefihrt.

|

Allgemeines Regelwerk

Bei bindren Operatoren werden — bis auf die bereits genannten Ausnahmen — arith-
metische Operanden in einen gemeinsamen Typ umgewandelt. D. h. in

Ausdruckl Operator Ausdruck?2

werden Ausdruckl und Ausdruck?2 auf den gleichen Typ gebracht. Von diesem
Typ ist auch das Ergebnis. Die Umwandlung erfolgt in den héheren Typ der folgen-
den Hierarchie:

double

float

long

int

Bild 7-9 Wandlungen bei bindren Operatoren

Das allgemeine Regelwerk fiir diese Konvertierung lautet dabei:

1. Zun&chst wird gepriift, ob einer der beiden Operanden vom Typ double ist. Ist
einer von diesem Typ, dann wird der andere ebenfalls in double umgewandelt.

Ausdriicke und Operatoren 241

2. Ist dies nicht der Fall, so wird, wenn einer der beiden Operanden vom Typ float
ist, der andere in £1oat umgewandelt.

3. Ist dies nicht der Fall, so wird, wenn einer der beiden Operanden vom Typ long
ist, der andere in 1ong umgewandelt.

4. Ist dies nicht der Fall, so werden beide der Integer-Erweiterung unterworfen und
in den Typ int umgewandelt.

Beispiel:

2 * 3L + 1.1

Die Multiplikation wird vor der Addition ausgefiihrt. Bevor die Multiplikation durch-
gefuhrt wird, wird die 2 in den Typ long gewandelt. Das Ergebnis der Multiplikation
wird in den Typ double gewandelt und anschlieBend wird die Addition ausgefiihrt.

7.7.3.5 Implizite Typkonvertierung von numerischen Typen bei Zuweisungen,
Riickgabewerten und Ubergabeparametern von Methoden

Stimmt der Typ der Variablen links des Zuweisungsoperators = nicht mit dem Typ
des Ausdrucks auf der rechten Seite des Zuweisungsoperators Uberein, so findet
eine implizite Konvertierung statt, wenn die Typen links und rechts "vertraglich" sind.
Bei nicht vertraglichen Typen wird eine Fehlermeldung generiert. Numerische Typen
sind vertragliche Typen. Zuldssig bei einer Zuweisung sind erweiternde Umwand-
lungen in einen "breiteren” Typ. Eine implizite Umwandlung in einen schméleren
Typ ist nur zulassig, wenn auf der rechten Seite der Zuweisung ein konstanter Aus-
druck vom Typ int steht und auf der linken Seite eine Variable vom Typ byte,
short oder char und wenn der Wert des Ausdrucks im Typ der Variablen darstell-
bar ist.

Bei der Zuweisung wird — wenn zulassig — der rechte Operand in den L/ B
Typ des linken Operanden umgewandelt, d. h. der Resultattyp einer —

Zuweisung ist der Resultattyp des linken Operanden, und der Wert ist -~ o
der, der sich nach der Zuweisung im linken Operanden befindet.

(N

Bei Ruckgabewerten von Methoden wird der Ausdruck, der mit return zurlck-
gegeben wird — wie bei einer Zuweisung — in den Rlckgabetyp der Methode umge-
wandelt. Dies gilt auch fur einen konstanten Ausdruck vom Typ int als Rickgabe-
wert, der passend in den Typ byte, short oder char gewandelt wird (sofern der
konstante Ausdruck vom Typ int im jeweiligen Typ dargestellt werden kann). Im
Falle von Ubergabeparametern bei Methodenaufrufen ist das jedoch nicht zuge-
lassen.

Verlangt eine Methode einen Parameter vom Typ byte, short oder /A
char, so darf kein konstanter Ausdruck vom Typ int GObergeben g sichtl
werden. Es ist in diesen Fallen immer eine explizite Typkonvertierung \v
erforderlich. =

242 Kapitel 7

7.7.4 Konvertiervorschriften flir einfache Datentypen

Im Folgenden werden die Wandlungsvorschriften zwischen verschiedenen Typen
behandelt.

Umwandlungen eines vorzeichenbehafteten Integer-Typen in den breiteren Typ

Wird ein Integer-Wert in einen gréBeren Integer-Typ mit Vorzeichen’® gewandelt, so
bleibt sein Wert unverandert. Es wird dabei links mit Nullen aufgeflllt und das
Vorzeichenbit wird passend gesetzt.

Umwandlungen eines vorzeichenbehafteten Integer-Typen in den Typ char

Wird ein Integer-Wert vom Typ short in den Typ char gewandelt, so bleibt das Bit-
muster erhalten, jedoch nicht die Bedeutung des Bitmusters. Dies bedeutet, dass
eine negative Zahl als positive Zahl interpretiert wird. Ein korrekies Resultat ist
deshalb nur fir positive Zahlen mdglich. Dies zeigt das folgende Beispiel:

// Datei: Short2Char.java
public class Short2Char
{
public static void main (String[] args)
{
char posChar, negChar;
short posShort = 1;
short negShort = -1;
posChar (char) posShort; // explizites Casten
negChar (char) negShort; // explizites Casten

// Bel der Ausgabe muss vom Typ char nach int konvertiert wer-
// den, da sonst ein entsprechendes Zeichen angezeigt wird.
System.out.println ("positiver Short: " + posShort

+ " hat als Char den Dezimalwert " + (int) posChar);
System.out.println ("negativer Short: " + negShort

+ " hat als Char den Dezimalwert " + (int) negChar);

Die Ausgabe des Programms ist:

positiver Short: 1 hat als Char den Dezimalwert 1
negativer Short: -1 hat als Char den Dezimalwert 65535

Wird ein Integer-Wert vom Typ byte in den Typ char gewandelt, so wird von links
mit Null-Bits aufgeflllt und das Vorzeichen propagiert. Da sich die Interpretation
andert, bleibt der Wert einer negativen Zahl nicht erhalten, jedoch der Wert einer
positiven Zahl. Dies ist im folgenden Programm zu sehen:

// Datei: Byte2Char.java

public class Byte2Char
{

’® Die Integer-Typen byte, short, int und long haben ein Vorzeichen, der Typ char nicht.

Ausdricke und Operatoren

243

public static void main (Stringl]

{

args)

char posChar, negChar;
byte posByte = 3;
byte negByte = -1;

Ausgabe muss vom Typ char nach int konvertiert wer-—

posByte
Dezimalwert "

negByte
Dezimalwert "

posChar = (char) posByte;
negChar = (char) negByte;
// Bei der
// den, da sonst ein entsprechendes Zeichen angezeigt wird.
System.out.println ("positives Byte: " +
+ " hat als char den
+ (int) posChar);
System.out.println ("negatives Byte: " +
+ " hat als char den
+ (int) negChar);

Die Ausgabe des Programms ist:

positives Byte:
negatives Byte:

3 hat als char den Dezimalwert 3
-1 hat als char den Dezimalwert 65535

Wird ein Integer-Wert vom Typ int oder long in den Typ char gewandelt, so ist ein
korrektes Resultat fiir groBe Zahlen nicht gegeben, was in folgendem Programm

demonstriert wird:

// Datei: Int2Char.java
public class Int2Char
{
public static void main (Stringl[]

{

args)

int wertl = 65535;
int wert2 = 65536;
char wertlChar = (char) wertl;
char wert2Char = (char) wert2;

Ausgabe muss vom Typ char nach int konvertiert wer-—
hat als char den Dezimalwert "

" hat als char den Dezimalwert "

// Bei der
// den, da sonst ein entsprechendes Zeichen angezeigt wird.
System.out.println (wertl + "
+ (int) wertlChar);
System.out.println (wert2 +
+ (int) wert2Char);

Die Ausgabe des Programms ist:

65535 hat als char den Dezimalwert 65535
65536 hat als char den Dezimalwert O

244 Kapitel 7

Umwandlungen zwischen Integer- und Gleitpunkt-Typen

® Integer nach Gleitpunkt

Wenn ein Wert aus einem Integer-Typ in einen Gleitpunkttyp umgewandelt wird,
so werden als Nachkommastellen Nullen eingesetzt. In der Realitdt kann eine
solche Zahl jedoch nicht exakt dargestellt werden. Das Resultat ist dann entweder
der nachst héhere oder der nachst niedrigere darstellbare Wert.

e Gleitpunkt nach Integer

Bei der Wandlung einer Gleitpunktzahl in eine Integerzahl werden die Stellen
hinter dem Komma abgeschnitten. Bei zu groBen Zahlen ist ein korrektes Ergebnis
nicht méglich, wie folgendes Beispiel zeigt:

// Datei: Double2Int.java

public class Double2Int
{
public static void main (String[] args)
{
double d = 2147483642d;
int 1i;

for (int count = 0; count < 10; count++)

{
i = (int) d;
System.out.println("Double " + d + " ist als int " + 1);
d++;

Die Ausgabe des Programms ist:

Double 2.147483642E9 ist als int 2147483642
Double 2.147483643E9 ist als int 2147483643
Double 2.147483644E9 ist als int 2147483644
Double 2.147483645E9 ist als int 2147483645
Double 2.147483646E9 ist als int 2147483646
Double 2.147483647E9 ist als int 2147483647
Double 2.147483648E9 ist als int 2147483647
Double 2.147483649E9 ist als int 2147483647
Double 2.14748365E9 ist als int 2147483647
Double 2.147483651E9 ist als int 2147483647

Umwandlungen zwischen Gleitpunkttypen

Wenn ein Gleitpunktwert mit niedrigerer Genauigkeit in einen Gleitpunkityp mit einer
héheren Genauigkeit umgewandelt wird, so gibt es keine Probleme. Die GréBe bleibt
selbstverstandlich unverandert. Wenn ein Gleitpunktwert mit héherer Genauigkeit in
einen Gleitpunkityp mit einer niedrigeren Genauigkeit umgewandelt wird, so kann —
wenn der Wert im zulassigen Wertebereich liegt — der neue Wert wegen der unter-
schiedlichen Genauigkeit der beteiligten Typen der nachst héhere oder der nachst

Ausdriicke und Operatoren 245

niedrigere darstellbare Wert sein. Liegt der Wert nicht im zuldssigen Wertebereich,
so ist ein korrektes Ergebnis nicht méglich. Dies ist in folgendem Beispiel zu sehen:

// Datei: Double2Float.java

public class Double2Float
{
public static void main (String[] args)
{
double smallDouble = 9.999999999d;

double bigDouble = 1.23E145;

float smallFloat = (float) smallDouble;

float bigFloat = (float) bigDouble;

System.out.println ("kleiner Double-Wert: " + smallDouble
+" wird zu " + smallFloat);

System.out.println ("grosser Double-Wert: " + bigDouble
+" wird zu " + bigFloat);

Die Ausgabe des Programms ist:

kleiner Double-Wert: 9.999999999 wird zu 10.0
grosser Double-Wert: 1.23E145 wird zu Infinity

7.8 Ausfuhrungszeitpunkt von Nebeneffekten

Die Berechnung von Ausdriicken kann mit Nebeneffekten verbunden sein.

In Java wird jeder Operand eines Operators vollstédndig ausgewertet, -
bevor irgendein Teil der Operation begonnen wird. Damit haben (mit —
Ausnahme der Operatoren s&, || und ? :) vor einer Operation die -~ o~

Nebeneffekte der Operanden stattgefunden.

In Java werden die Operanden eines Operators strikt von links .
nach rechts ausgewertet. Dies bedeutet, dass der Nebeneffekt des —

linken Operanden vor der Bewertung des rechten Operanden -~

erfolgt ist. 2

In Java werden die aktuellen Parameter eines Methodenaufrufs von . |
links nach rechts bewertet. Dies bedeutet, dass nach der Bewertung _
eines aktuellen Parameters ein Nebeneffekt dieses aktuellen Para- /\
meters stattgefunden hat und erst dann der rechts davon stehen- =

de aktuelle Parameter bewertet wird.

Ein Beispiel fir die Auswertungsreihenfolge der aktuellen Parameter bei einem
Methodenaufruf wird in Kapitel 9.2.6 gegeben.

246

Kapitel 7

Ein Nebeneffekt hat stattgefunden nach der Auswertung der folgenden Ausdriicke:

® |nitialisierungsausdruck einer manuellen Initialisierung,

® Ausdruck in einer Ausdrucksanweisung,

® Bedingung in einer if-Anweisung (siehe Kap. 8.2.1),

® Selektionsausdruck in einer switch-Anweisung (siehe Kap. 8.2.3),
® Bedingung einer while- oder do while-Schleife (siehe Kap. 8.3.5),

® Tnitialierungsklausel in Form eines einzelnen Ausdrucks oder einer Aus-

drucksliste, Booolescher Ausdruck, Aktualisierungs-Ausdrucksliste
der for-Schleife (siehe Kap. 8.3.2),

® Ausdruck einer return-Anweisung (siehe Kap. 9.2.3).

7.9 Ubungen

Aufgabe 7.1: Operatoren, Ausdriicke und Anweisungen

7.11

Verstéandnisfragen

a) Welche Arten von Operatoren gibt es in Java:
® nach Anzahl der Operatoren?
® nach Art der Wirkungsweise?

b) Was sind Ausdriicke?
¢) Was sind Anweisungen?
d) Was sind Nebeneffekte?

Zuordnen von Operatoren

Ordnen Sie die folgenden Operatoren den Operator-Arten zu, nach denen
Sie in Aufgabe 7.1.1 a) gefragt wurden:

a) i++
b)if (x && vy)
C) a?b:c

Aufgabe 7.2: Verwendung von Operatoren

7.21

Zahlen vergleichen mit Vergleichsoperatoren

Gegeben ist eine Klasse ZahlenVergleich, welche die Methode einga-
bezahl () enthélt. Diese Methode ermdglicht es Ihnen, eine int-Zahl von
der Tastatur einzulesen:

//Datei: ZahlenVergleich. java

public class ZahlenVergleich
{
public int eingabeZahl ()
{

Ausdriicke und Operatoren 247

7.2.2

7.2.3

try
{
java.util.Scanner scanner =
new java.util.Scanner (System.in);
System.out.print ("Gib einen Wert ein: ");
return scanner.nextInt();

}

catch (Exception e)

{
System.out.println (e);

}

return -1;

}

Erganzen Sie die fehlende Stelle im Programm (.), sodass mit Hilfe der
Methode eingabezahl () zwei Zahlen von der Tastatur eingelesen werden.
AnschlieBend vergleichen Sie die Zahlen miteinander auf Gleichheit (==).
Sind die Zahlen gleich, so wird folgender Text ausgegeben:

Die Zahlen sind gleich!

Bei Ungleichheit der Zahlen ermitteln Sie die groBere Zahl. Eine mdégliche
Ausgabe wirde folgendermafBen aussehen:

Die Zahl 5 ist grdBer als die Zahl 2!
Bedingungen auswerten mit dem Bedingungsoperator

Gegeben seien folgende Codezeilen:

int x = 5;
int vy = 7;
int i = (x ==vy) 2 1 : 0;

a) Welchen Wert hat i?
b) Wie wiirden obige Codezeilen mit Hilfe einer if-else-Abfrage ausse-
hen?

Modulo-Operator

Vervollstidndigen Sie das folgende Code-Fragment, um die Funktion des
Modulo-Operators (Restwert-Operator) nachzubilden:

// Datei: ZuweisungsOperator.java

public class ZuweisungsOperator
{
public static void main (String[] args)
{
int a = 39;
int b 5;

248

Kapitel 7

while (a b) a .

System.out.println ("39 Modulo 5 ist:

}

Aufgabe 7.3: Auswertungsreihenfolge

7.3.1

7.3.2

Erlautern Sie folgende Begriffe:

a) Operatorprioritat
b) Operatorassoziativitat
¢) Bewertungsreihenfolge

Operatorprioritat und - assoziativitat

Vor jeder Anweisung seien folgende Werte gegeben:

int a = 2;
int b = 1;

. b;

"+a);

Finden Sie ohne Java-Compiler heraus, welchen Wert die Variablen a und b
nach den einzelnen Anweisungen a) bis m) haben. Beachten Sie hierbei ge-
nau die Prioritat und Assoziativitat der entsprechenden Operatoren. Erlautern
Sie, wie Sie auf das Ergebnis kommen. Verifizieren Sie ihr theoretisch er-
mitteltes Ergebnis gegebenenfalls durch einen Programmlauf:

a) a=b=2;

b) a=b* 3+ 2;
C) a=Db* (3 + 2);
d a *=Db + 5;

e) b %= 2 * a;

fy a=--b;

g9 b= ~a;

h) b = b++ * a;

i) a=-5-75;

) b=b<<2;

Kl b= (a==Db) 2?25 : 7;
) a = —b * b++;
m) a=a " b;

Aufgabe 7.4: L-Werte und R-Werte

7.41
7.4.2

Was versteht man unter L-Werten und R-Werten?

Ist das folgende Code-Fragment korrekt?

int x = 5;
final int y = 2;
y = %

Ausdriicke und Operatoren 249

Aufgabe 7.5: Konvertierung von Datentypen
7.5.1 Implizite Konvertierung bei numerischen Datentypen

Welche Ausgabe erhalten Sie von folgendem Programm? Begriinden Sie
Ihre Antwort! Hier das Programm:

// Datei: ImpliziteKonvertierung.java

public class ImpliziteKonvertierung
{
public static void main (String[] args)
{
System.out.println ("Division von 10 durch 12: "
+ (10/12));
System.out.println ("Division von 10. durch 12:
+ (10./12));
System.out.println ("Division von 10 durch 12.:
+ (10/12.));

"

7.5.2 Explizite Konvertierung bei numerischen Datentypen

Welche Ausgabe erhalten Sie von folgendem Programm? Begriinden Sie
Ihre Antwort! Hier das Programm:

// Datei: ExpliziteKonvertierung.java

public class ExpliziteKonvertierung
{
public static void main (String[] args)
{
int k;
float £ = 1.5f, g;
k =10 * (int) £;
g =10 * £;

System.out.println ("Multiplikation (int)1.5f * 10: "
+ k);
System.out.println ("Multiplikation 1.5f * 10: " + qg);

Kapitel 8

Kontrollstrukturen

8.1
8.2
8.3
8.4
8.5

Bldcke — Kontrollstrukturen fir die Sequenz
Selektion

lteration
Sprunganweisungen
Ubungen

8 Kontrollstrukturen

Kontrollstrukturen steuern den Kontrollfluss eines sequenziellen Programms. So
kdénnen beispielsweise in Abhangigkeit von der Bewertung von Ausdriicken gewisse
Anweisungen Ubergangen oder ausgefihrt werden. Da Kontrollstrukiuren einen
einzigen Eingang und einen einzigen Ausgang haben, bleibt der Kontrollfluss einer
Methode dennoch sequenziell.

8.1 Blocke — Kontrolistrukturen fiir die Sequenz

Erfordert die Syntax genau eine Anweisung, so kénnen dennoch mehrere Anwei-
sungen geschrieben werden, wenn man sie in Form eines Blockes’® zusammenfasst:

{
Anweisung_1
Anweisung_2

Anweisung_n

}

Die geschweiften Klammern { und } stellen die Blockbegrenzer dar. Die Anwei-
sungen zwischen den Blockbegrenzern werden sequenziell abgearbeitet. Ein Block
wird deshalb auch als Kontrollstruktur fiir die Sequenz bezeichnet. Bild 8-1 zeigt
mehrere Anweisungen, die zu einem Block gruppiert sind.

I\
~

Anweisungen
—1

1d

Bild 8-1 Ein Block ist eine Sequenz von Anweisungen

|

\ /
Ein Block (eine zusammengesetzte Anweisung) kann an jeder _ —
Stelle stehen, an der eine einzelne Anweisung angeschrieben werden -

kann.

i

8.2 Selektion

Die Selektion ermdglicht die Abarbeitung von Anweisungen abhangig von einer Be-
dingung. In Java gibt es die bedingte Anweisung, die einfache Alternative mit i f und
else und die mehrfache Alternative in den Ausprdgungen else-if und switch.

™ Blacke werden in Kap. 9 behandelt.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_8,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Kontrollstrukturen 253

8.2.1 Bedingte Anweisung und einfache Alternative

Die Syntax der einfachen Alternative ist:

if (Ausdruck)
Anweisungl

else
Anweisung2

Ausdruck
wahr falsch

Anweisung1 Anweisung2

Bild 8-2 Struktogramm der einfachen Alternative (i f—e1se-Anweisung)

Der Ausdruck in Klammern wird berechnet und ausgewertet. Trifft die Bedingung zu
(hat also Ausdruck den Wert true), so wird Anweisungl ausgefuhrt. Trifft die
Bedingung nicht zu (hat also Ausdruck den Wert false), so wird Anweisung?2
ausgefuhrt, falls ein e1se-Zweig vorhanden ist. Soll mehr als eine einzige Anweisung
ausgefuhrt werden, so ist ein Block zu verwenden, der syntaktisch als eine einzige
Anweisung zahlt. Der else-Zweig ist optional. Entfallt der e1se-Zweig, so spricht
man von einer bedingten Anweisung.

Ausdruck
wahr

Anweisung1

Bild 8-3 Struktogramm der bedingten Anweisung mit i £

Die Syntax der bedingten Anweisung ist:

if (Ausdruck) Anweisungl

Fallt einem jetzt plétzlich ein, dass man eigentlich zwei Anweisungen ausfihren
wollte, wenn die Bedingung zutrifft, so darf man nicht die zweite Anweisung Anwei-
sung?2 einfach hinter Anweisungl notieren. Bei

if (Ausdruck) Anweisungl
Anweisung2

wird namlich die Anweisung2 stets ausgeflihrt, auch wenn die Bedingung Aus-
druck nicht zutrifft. Hier ist ein Block zu verwenden:

if (Ausdruck)
{
Anweisungl
Anweilsung?2

254 Kapitel 8

Fir eine defensive Programmierung (siehe Kap. 7.6.4) sollten stets
geschweifte Klammern verwendet werden, damit der Handlungsablauf
leicht um weitere Anweisungen ergénzt werden kann: 7\

if (Ausdruck)
{ \'_/

Anweisungl

}

Geschachtelte if-else-Anweisungen

Da der e1se-Zweig einer i f-else-Anweisung optional ist, entsteht eine Mehrdeutig-
keit, wenn ein else-Zweig in einer verschachtelten Folge von if-else-Anwei-
sungen fehlt. Der letzte else-Zweig wird deshalb immer mit dem letzten if ver-
bunden, fir das noch kein else-Zweig existiert. So gehért im folgenden Beispiel

if (n > 0)
if (a > b)

z = aj;
else
z = b;

der else-Zweig — wie die Regel oben aussagt — zum letzten, inneren if. Eine von
Programmierern eventuell versuchte Umgehung der Zuordnung der if- und else-
Zweige durch EinrlGcken (z. B. mit Tabulator) kann der Compiler nicht erkennen, da
far ihn Whitespaces nur die Bedeutung von Trennern haben, aber sonst vollkommen
bedeutungslos sind. Um eine andere Zuordnung zu erreichen, missen entsprechen-
de geschweifte Klammern gesetzt und somit Bl6cke definiert werden:

if (n > 0)
{

if (a > b)
z = aj;
}
else
z = b;

8.2.2 Mehrfache Alternative — else-if

Die else-if-Anweisung ist die allgemeinste Mdglichkeit fir eine Mehrfach-Selek-
tion, d. h., um eine Auswahl unter verschiedenen Alternativen zu treffen. Die Syntax
dieser Anweisung ist:

if (Ausdruck_1)
Anweisung_1

else if (Ausdruck_2)
Anweisung_2

Kontrollstrukturen 255

else if (Ausdruck_n)
Anweisung_n

else // der else-Zweig
Anweisung_else // ist optional

In der angegebenen Reihenfolge wird ein Vergleich nach dem anderen durchgeflhrt.
Bei der ersten Bedingung, die true ist, wird die zugehdérige Anweisung abgearbeitet
und die Mehrfach-Selektion abgebrochen. Dabei kann statt einer einzelnen Anwei-
sung stets auch ein Block von Anweisungen stehen, da ein Block syntaktisch einer
einzigen Anweisung gleichgestellt ist. Der letzte e1 se-Zweig ist optional. Hier kbnnen
alle anderen Falle behandelt werden, die nicht explizit aufgefiihrt wurden. Ist dies
nicht notwendig, so kann der e1se-Zweig entfallen. Dieser e1se-Zweig wird oft zum
Abfangen von Fehlern, z. B. bei einer Benutzereingabe, verwendet. Betétigt der Be-
nutzer eine unglltige Taste, kann er in diesem else-Teil "héflichst" auf sein Ver-
sehen hingewiesen werden.

Ausdruck_1
wahr falsch
Ausdruck_2
wahr falsch
Anweisung_1 Ausdruck_3
wahr falsch
Anweisung_2 [Anweisung_3 Anweisung_else

Bild 8-4 Beispiel fiir ein Struktogramm der e1se-i £-Anweisung

8.2.3 Mehrfache Alternative — switch

Fir eine Mehrfach-Selektion, d. h. eine Selektion unter mehreren Alternativen, kann
auch die switch-Anweisung verwendet werden. Der Ausdruck in der switch-An-
weisung muss vom Typ char, byte, short, int, Character, Byte, Short, In-
teger, einem Aufzdhlungstyp oder — seit JDK 7 — vom Typ String sein. Ferner
muss jeder konstante Ausdruck konstanter_ Ausdruck_n dem Typ von Aus-
druck zuweisbar sein®®. Die Syntax der switch-Anweisung lautet:

switch (Ausdruck)
{
case konstanter_ Ausdruck_1:
Anweisungen_1
break; // ist optional
case konstanter_Ausdruck_2:
Anweisungen_2
break; // ist optional

8 Siehe Kap. 7.7.3.5. Ist beispielsweise Ausdruck vom Typ byte, so kann konstanter_Aus-
druck_1 z. B. nicht den Wert 1000 annehmen.

256 Kapitel 8

case konstanter_Ausdruck_n:
Anweisungen_n

break; // 1st optional
default: // ist
Anweisungen_default // optional

Das Struktogramm der vorangegangenen switch-Anweisung sieht wie folgt aus:

casei Q\ Ausdruck

..... caseN default

Bild 8-5 Struktogramm einer swi t ch-Anweisung

Jeder Alternative geht eine einzige oder eine Reihe von case-Marken mit ganz-
zahligen Konstanten oder konstanten Ausdriicken voraus. Ein Beispiel fir eine ein-
zige case-Marke ist:

case 5:

Ein Beispiel fir eine Reihe von case-Marken ist:

case 1: case 3: ~case 5:

Eine Konstante kann eine literale Konstante oder eine symbolische Konstante sein.
Die symbolische Konstante wird meist mit £inal deklariert, kann aber auch als Auf-
zahlungskonstante festgelegt werden. Dies wird in den folgenden Beispielprogram-
men demonstriert.

// Datei: SwitchTest.java

public class SwitchTest
{
private static final int EINS = 1; //symbolische Konstante mit
//dem Namen EINS
public void testSwitch (int zahl)
{
switch (zahl)
{
case EINS:
{
System.out.println ("Testergebnis: " + EINS);
break;

Kontrollstrukturen 257

case 2:

{
System.out.println ("Testergebnis: " + 2);
break;

}

public static void main (String[] args)

{

SwitchTest test = new SwitchTest();
test.testSwitch (1);
test.testSwitch (2);
test.testSwitch (EINS);

Die Ausgabe des Programms ist:

Testergebnis: 1
Testergebnis: 2
II Testergebnis: 1

Ist der Wert des Ausdrucks einer switch-Anweisung identisch mit dem Wert eines
der konstanten Ausdriicke der case-Marken, wird die Ausfihrung des Programmes
dort weitergeflihrt. Stimmt keiner der konstanten Ausdriicke im Wert mit dem
switch-Ausdruck Uberein, wird zu default gesprungen. default ist optional.
Bendtigt die Anwendung keinen default-Fall, kann dieser entfallen und das
Programm wird beim Nichtzutreffen aller aufgefiihrten konstanten Ausdriicke nach
der switch-Anweisung fortgeflhrt. Die Reihenfolge der case-Marken ist beliebig.
Auch die default-Marke muss nicht als letzte stehen. Am Ubersichtlichsten ist es
allerdings, wenn die case-Marken nach aufsteigenden Werten geordnet sind und
default am Schluss steht.

Soll eine switch-Anweisung auf Aufzdhlungskonstanten angewendet werden, so
muss der Ausdruck in der switch-Anweisung dem Aufzdhlungstyp entsprechen. Die
konstanten Ausdriicke der case-Marken muissen die Aufzahlungskonstanten des
verwendeten Typs sein, da sie dem Ausdruck zuweisbar sein missen.

// Datei: Richtungsweiser. java

public class Richtungsweiser

{
public enum Richtung {LINKS, RECHTS}

public static void main (String[] args)
{
Richtung ref = Richtung.RECHTS;
switch (ref)
{
case LINKS:
System.out.println ("LINKS");
break;

258 Kapitel 8

case RECHTS:
System.out.println ("RECHTS");
break;

Die Ausgabe des Programms ist:

RECHTS
il
: . : P |/
Beachten Sie, dass Aufzahlungskonstanten nicht qualifiziert sein dur- —
fen, wenn sie als case-Marken verwendet werden. An allen anderen -

Stellen sind qualifizierte Namen (siehe Kap. 12.4) erforderlich.

iy

Im Falle der Marken geht der Typ der Aufzahlungskonstanten aus dem Ausdruck der
switch-Anweisung hervor. Eine wichtige Bedingung flr die switch-Anweisung ist,
dass alle case-Marken unterschiedlich sein missen. Vor einer einzelnen Befehls-
folge kdnnen — wie bereits erwadhnt — mehrere verschiedene case-Marken stehen:

// Datei: ZeichenTester.java

public class ZeichenTester
{
public void testeZeichen (char c)
{
switch (c)
{
case '\t':
case '\n':
case '\r':
System.out.println ("Steuerzeichen");
break;
default:
System.out.println ("Kein Steuerzeichen: " + c);
}
}
public static void main (String[] args)

{

ZeichenTester pars = new ZeichenTester();
pars.testeZeichen ('\t');
pars.testeZeichen ('A');
pars.testeZeichen ('\r');

Die Ausgabe des Programms ist:

Steuerzeichen
Kein Steuerzeichen: A
II Steuerzeichen

Kontrollstrukturen 259

Wird in der switch-Anweisung eine passende case-Marke gefunden, werden hinter
dieser Marke die anschlieBenden Anweisungen bis zum break ausgeflhrt. break
springt dann an das Ende der switch-Anweisung (siehe auch Kapitel 8.4.2).

Fehlt die break-Anweisung, so werden die Anweisungen nach der |/
nachsten case-Marke abgearbeitet. Dies geht so lange weiter, bis ein —
break gefunden wird oder bis das Ende der switch-Anweisung -~
erreicht ist.

~

=

Im Gegensatz zur if-Anweisung prift die switch-Anweisung nur auf die Gleichheit
von Werten. Bei der i £-Anweisung wird ein logischer Ausdruck ausgewertet

8.3 lteration

Eine lteration ermdglicht das mehrfache (iterative) Ausfiihren von Anweisungen. In
Java gibt es abweisende Schleifen, annehmende Schleifen und die Endlos-Schleife.
8.3.1 Abweisende Schleife mit while

Die Syntax der while-Schleife lautet:

while (Ausdruck)
Anweisung

solange Ausdruck

Anweisung

Bild 8-6 Struktogramm der whi1e-Schleife

In einer while-Schleife kann eine Anweisung in Abhangigkeit von der Bewertung
eines Ausdrucks wiederholt ausgeflihrt werden. Da der Ausdruck vor der Aus-
fihrung der Anweisung bewertet wird, spricht man auch von einer "abweisenden"
Schleife. Der Ausdruck wird berechnet und die Anweisung dann und nur dann
ausgefiihrt, wenn der Ausdruck true ist. Danach wird die Berechnung des Aus-
drucks und die eventuelle Ausfiihrung der Anweisung wiederholt. Um keine Endlos-
Schleife zu erzeugen, muss daher ein Teil des Bewertungsausdrucks im Schleifen-
rumpf, d. h. in der Anweisung, manipuliert werden. Sollen mehrere Anweisungen
ausgefuhrt werden, so ist ein Block zu verwenden. Das folgende Beispiel zeigt die
Manipulation der Abbruchbedingung im Schleifenrumpf:

while (i1 < 100)
{

i++; // manipuliert Variable i der Abbruchbedingung i < 100

260 Kapitel 8

8.3.2 Abweisende Schleife mit for

Erste Erfahrungen mit der for-Schleife wurden bereits in Kapitel 4.1 gewonnen. Ein
Beispiel fur eine einfache f£or-Schleife ist:

for (int 1lv = 1; 1v <= 5; 1lv++)
System.out.println (1lv);

Hierbei werden die Zahlen 1 bis 5 nacheinander jeweils in einer eigenen Zeile ausge-
geben. Die for-Schleife ist wie die while-Schleife eine abweisende Schleife, da
erst gepriift wird, ob die Bedingung fur ihre Ausflihrung zutrifft. Die Syntax der for-
Schleife lautet:

for (Initialisierungsklausel; BoolescherAusdruck;
Aktualisierungs—-Ausdrucksliste)
Anweisung

Die for-Anweisung ist per Sprachdefinition dquivalent zu®':

{
Initialisierungsklausel;
while (BoolescherAusdruck)
{

Anweisung
Aktualisierungs-Ausdrucksliste

}

Beachten Sie die erste und die letzte geschweifte Klammer. Durch den umfassenden
Block wird in Java eine Schleifenvariable, die in der Initialisierungsklausel
definiert wurde, beim Verlassen der for-Schleife ungiltig. Das Struktogramm sieht
wie folgt aus:

Initialisierungsklausel

solange BoolescherAusdruck

Anweisung

Aktualisierungs-
Ausdrucksliste

Bild 8-7 Struktogramm der zur for-Anweisung dquivalenten whi1e-Schleife

8 Vorausgesetzt, der bei der for-Schleife optionale Boolescherausdruck ist tatsichlich vorhan-
den. Die Aquivalenz ist auch gegeben, wenn die optionale Tnitialisierungsklausel bzw. die
Aktualisierungs-Ausdrucksliste fehlen. Fehlt BoolescherAusdruck, so entsteht eine
Endlos-Schleife, da in der quivalenten while-Schleife anstelle von BoolescherAusdruck die
Konstante true tritt.

Kontrollstrukturen 261

Die Initialisierungsklausel

Zu Beginn der Schleife wird einmalig die Tnitialisierungsklausel zur Initiali-
sierung der Schleife berechnet. In der Regel stellt die Tnitialisierungsklausel
die Definition und Initialisierung einer lokalen Variablen dar, die als Lauf-
variable®” verwendet wird und nach der Beendigung der for-Schleife ungiiltig
ist. Eine Initialisierungsklausel kann bestehen aus:

® einem einzelnen Ausdruck
® oder einer Ausdrucksliste als Folge von Ausdriicken, getrennt durch Kommata.

Wird eine Ausdrucksliste verwendet, so kénnen die Laufvariablen einzeln vor der
for-Schleife definiert werden. Sind die Laufvariablen vom gleichen Typ — z. B. es
werden nur Laufvariablen vom Typ int verwendet — so kénnen diese innerhalb der
Initialisierungsklausel in einer einzelnen Vereinbarung definiert werden
(siehe Kap. 6.2), beispielsweise wie folgt:

for (int 1 = 0, §J = 0; 1 < 10, J < 10; i++, Jj++)

BoolescherAusdruck, Anweisung und Aktualisierungs-Ausdrucksliste

Nach der Auswertung der Initialisierungsklausel wird der Ausdruck Boole-
scherAusdruck berechnet. Ist dieser Ausdruck true, wird die Anweisung ausge-
fihrt und anschlieBend die Aktualisierungs—Ausdrucksliste berechnet. Die
Bewertung von BoolescherAusdruck, die Ausflhrung von Anweisung und die
Berechnung von Aktualisierungs-Ausdrucksliste werden solange wieder-
holt, bis der Ausdruck BoolescherAusdruck false wird.

Gebrauchliche Form der for-Schleife in Java

In einer gebrauchlichen Form wird die for-Schleife so verwendet, dass die Ini-
tialisierungsklausel eine Laufvariable definiert und initialisiert und dass die
Aktualisierungs-Ausdrucksliste ein einzelner Ausdruck in Form einer Zu-
weisung an die Laufvariable ist. Dies wird im folgenden Beispiel gezeigt, in welchem
ein int-Array mit dem Wert der Laufvariablen initialisiert wird:

int[] a = new int [20];
for (int 1 = 0; 1 < 20; 1 =1 + 1)
a [1] = 1i;

Die Variable i in diesem Beispiel zahlt die Zahl der Schleifendurchldufe hoch. Sie
wird als Laufvariable bezeichnet. Fir die Erhdhung des Wertes der Laufvariablen
kann statt i = 1 + 1 auch genauso gut i++ oder ++1i geschrieben werden. Alle
drei Schreibweisen sind hier aquivalent. Entscheidend ist nur, dass die Laufvariable
erhodht wird. Der Rickgabewert von Aktualisierungs-Ausdrucksliste wird ja
nicht abgeholt. Natiirlich ist es von der Syntax her méglich, dass statt i ++ beispiels-
weise auch x = i++% geschrieben wird, wobei x eine bereits definierte Variable
sein soll. Dann wird ebenfalls der Schieifenindex (die Laufvariable) erhéht, aber

82
83

Die Laufvariable kann nattirlich auch vor der for-Schleife definiert werden.
x = i++ stellt ja — wie bereits in Kap. 7.2 vorgestellt — einen Ausdruck dar.

262 Kapitel 8

dariiber hinaus noch der Wert der Variablen x verandert. Solche Kunststiicke kdnnen
leicht Ubersehen werden und machen deshalb das Programm schlecht lesbar.

Ausdruckslisten aus Folgen von Ausdriicken

In Java kann eine Tnitialisierungsklausel der for-Schleife entweder die De-
finition einer Laufvariablen mit Initialisierung sein oder ein einzelner Ausdruck oder
eine Liste von Ausdrlcken, die durch Kommata getrennt sind. Die Aktualisie-—
rungs-Ausdrucksliste kann ein einzelner Ausdruck sein oder eine Liste von
Ausdriicken. Mit Hilfe dieser Listen von Ausdriicken ist es mdglich, mehrere Lauf-
variablen gleichzeitig zu bearbeiten. Im Folgenden einige Beispiele:

// Datei: Schleifen.java

public class Schleifen

{
public static void main (String[] args)

{

//Dieses Beispiel funktioniert

int 1 = 0;
int § = 0;
for (i =0, j=1; j >= 0; i++, j—--) //Liste von Ausdrilicken
{
System.out.println ("i: " + 1);
System.out.println ("j: " + J);

}

// Dieses Beispiel funktioniert auch
for (int k =0, 1 =1; 1 >= 0; k++, 1--)
{
System.out.println ("k: " + k);
System.out.println ("1: " + 1);

// Dieses Beispiel funktioniert nicht.
// Es ist nur eine Liste von Ausdriicken zuldssig, nicht
// aber eine Liste von Definitionen von Laufvariablen.

// for (int m = 0, int n = 2; n >= 0; m++, n—-)
// A

// System.out.println ("m: " + m);

// System.out.println ("n: " + n);

// 0}

Die Ausgabe des Programms ist:

e SR
ORrRrPFrRrOoOORr RO

Kontrollstrukturen 263

Beachten Sie, dass int k = 0, 1 = 1; eine einzige Definition darstellt. Es ent-
spricht von der Wirkung her

int k = 0;
int 1 = 1;

Allerdings ist in der £or-Schleife eine Liste von Definitionen nicht zugelassen.

8.3.3 For-each-Schleife

Die for-Schleife wird besonders gerne verwendet, um Uber Arrays oder die Elemen-
te von Collection-Klassen (siehe Kap. 18) zu iterieren. Bei Arrays war dazu bisher
immer die Einflihrung einer Laufvariablen (meist i genannt) notwendig. Mit der
erweiterten for-Schleife, die seit dem JDK 5.0 Bestandteil von Java ist, wird der-
selbe Code wesentlich kirzer und pragnanter. Das folgende Beispiel zeigt das lterie-
ren Uber ein Array:

// Datei: ForEachTest.java

public class ForEachTest
{

public static void main (String[] args)

{
String[] testArray =

new String[] {"Hallo", "for-each", "Schleife"};
// Array mit Hilfe der erweiterten for-Schleife auslesen.
for (String element : testArray)

{
// Zugriff auf das Element des Arrays
System.out.println (element);

Hier die Ausgabe des Programms:

Hallo
for-each
II Schleife

In der erweiterten for-Schleife wird zuerst eine Variable vom Typ eines Elements
des Arrays definiert, im obigen Beispiel durch string element. Nach dem Doppel-
punkt steht der Name des zu durchlaufenden Arrays. Das obige Beispiel for
(string element : testArray) kann gelesen werden als: "Fir alle Elemente
des Arrays testarray, das aus Referenzen auf Objekte vom Typ string besteht".

Die erweiterte for-Schleife wird auch for-each Schleife genannt, da sie immer Uber
alle Elemente eines Arrays lauft. Sie kann durch eine break-Anweisung abge-
brochen werden. Zudem kann die Reihenfolge, in der Uber die Elemente iteriert wird,
nicht beeinflusst werden. Arrays werden immer in aufsteigender Reihenfolge durch-
laufen. Damit ist die erweiterte for-Schleife nicht fir Aufgaben geeignet, die eine
andere als die aufsteigende Reihenfolge ohne Auslassungen verlangen.

264 Kapitel 8

8.3.4 Endlos-Schleife

Fehlt der Ausdruck BoolescherAusdruck in einer for-Schleife, so gilt die Bedin-
gung immer als true und die Schleife wird nicht mehr automatisch beendet. Durch
Weglassen von BoolescherAusdruck kann somit in einfacher Weise eine Endlos-
Schleife programmiert werden. Die geldufigste Form ist dabei, alle drei Ausdriicke
wegzulassen, wie im folgenden Beispiel:

for (; ;) // Endlosschleife
{

}

Beachten sie hierbei, dass die beiden Semikolon trotzdem hingeschrieben werden
muissen. Eine schdnere Mdglichkeit ist, die while-Schleife zu verwenden und die
Bedingung auf true zu setzen:

while (true) // Endlosschleife
{

}

8.3.5 Annehmende Schleife mit do-while

Die Syntax der do-while-Schleife ist:

do
Anweisung
while (Ausdruck);

Anweisung

solange Ausdruck

Bild 8-8 Struktogramm der do-whi 1e-Schleife

Die do-while-Schleife ist eine "annehmende Schleife". Zuerst wird die Anweisung
der Schleife einmal ausgefihrt. Danach wird der Ausdruck bewertet. Ist er true,
wird die Ausfihrung der Anweisung und die Bewertung des Ausdrucks solange
fortgeflhrt, bis der Ausdruck zu false ausgewertet wird.

Die do-while-Schleife wird somit auf jeden Fall mindestens einmal durchlaufen, da
die Bewertung des Ausdrucks erst am Ende der Schleife erfolgt. Das folgende Pro-
gramm gibt zu einer Zahl in Dezimaldarstellung den entsprechenden Wert in der Bi-
nardarstellung aus:

// Datei: BinaerWandler.java

public class BinaerWandler

{

Kontrollstrukturen 265

public static void main (String[] args)
{
int zahl = 100;
String binaer = "";
// Variable, die den Rest der Division durch 2 speichert
int rest;

do
{
// Der Rest kann immer nur 1 oder 0 sein.
rest = zahl % 2;
zahl = zahl / 2;
// Zusammensetzen des Strings zur Bindrdarstellung

binaer = rest + binaer;
}while (zahl > 0);

System.out.println ("100 dezimal ist: " + binaer + " binar");

Die Ausgabe des Programms ist:

100 dezimal ist: 1100100 binéar

8.4 Sprunganweisungen

Mit der break-Anweisung (siche Kap. 8.4.2) kann eine while-, do-while-, for-
Schleife und switch-Anweisung abgebrochen werden. Die continue-Anweisung
(siehe Kap. 8.4.3) dient zum Sprung in den n&chsten Schleifendurchgang bei einer
while-, do-while- und for-Schleife. Sowohl bei break- als auch bei continue-
Anweisungen kdénnen Marken verwendet werden. Eine Marke hat die gleiche Form
wie ein Variablenname. AnschlieBend folgt ein Doppelpunkt. Eine Marke steht
vor einer Anweisung. Zu den Sprunganweisungen zahlt auch die return-Anwei-
sung. Mit return springt man aus einer Methode an die aufrufende Stelle zurlck.
Die return-Anweisung wird in Kapitel 9.2.3 behandelt.

8.4.1 Marken

In Java kénnen Anweisungen mit Marken versehen werden:

int a 0;
int b = 1;
marke: if (a < b)

Hierbei trennt ein Doppelpunkt die Marke von der ihr zugeordneten Anweisung. Dass
eine Marke vor der Anweisung steht, &ndert nichts an dem Charakter der Anweisung.
Anweisungen oder Blocke mit Marken kénnen bei break- und continue-Anwei-
sungen eingesetzt werden. Ein Programm ist aber besser lesbar, wenn Marken ver-
mieden werden. Flr die Syntax einer Marke gelten dieselben Konventionen wie fiir

266 Kapitel 8

einen Bezeichner (Namen). Der Glltigkeitsbereich einer Marke ist der Block, in dem
sie enthalten ist. Eine Marke in einem &uBeren Block darf denselben Namen tragen
wie eine Marke in einem inneren Block. Wird zu einer Marke gesprungen, so wird zur
innersten Marke mit diesem Namen gesprungen.

8.4.2 break

Die break-Anweisung ohne Marke erlaubt es, eine for-, do-while- und while-
Schleife sowie die switch-Anweisung vorzeitig zu verlassen. Bei geschachtelten
Schleifen bzw. switch-Anweisungen wird jeweils nur die Schleife bzw. switch-
Anweisung verlassen, aus der mit break herausgesprungen wird. Die Abarbeitung
des Programms wird mit der Anweisung fortgesetzt, welche direkt der verlassenen
Schleife bzw switch-Anweisung folgt. Bild 8-9 zeigt die Anwendung der break-
Anweisung bei zwei ineinander verschachtelten £or-Schleifen.

for (.)

{ Ce
for (.)

{ ...
if (Bedingung)| break;

}
Bild 8-9 Beispiel einer break-Anweisung bei geschachtelten for-Schleifen

Beachten Sie, dass die Abarbeitung des Programms nach der schlieBenden Klam-
mer der inneren for-Schleife fortgesetzt wird.

Im folgenden Beispiel wird eine Endlosschleife mit Hilfe von break verlassen. Der
gezeigte Anmeldevorgang ist nur dann erfolgreich, wenn exakt "Anja" gefolgt von
<RETURN> eingegeben wird. Bei korrekter Eingabe wird die Meldung "anmelde-
vorgang erfolgreich!" ausgegeben. Bei einer Falsch-Eingabe wird der Benut-
zer aufgefordert, einen erneuten Anmeldeversuch zu starten.

// Datei: Login.java
import java.util.Scanner;

public class Login
{
public static void main (String[] args)
{
Scanner scanner = new Scanner (System.in);
String eingabe = null;

while (true)

{
System.out.print ("Bitte geben Sie Ihr Login ein: ");
eingabe = scanner.next();

Kontrollstrukturen 267

if (eingabe.equalsIgnoreCase ("Anja"))

{
System.out.println ("Anmeldevorgang erfolgreich!");
break;

}

else

{
System.out.println ("Falsche Eingabe!");

}

Der folgende Dialog wurde gefihrt:

Bitte geben Sie Thr Login ein: Mathias
Falsche Eingabe!

II Bitte geben Sie Thr Login ein: Anja
Anmeldevorgang erfolgreich!

8.4.3 continue

Die continue-Anweisung ist wie die break-Anweisung eine Sprung-Anweisung. Im
Gegensatz zu break wird aber eine Schleife nicht verlassen, sondern der Rest der
Anweisungsfolge der Schleife Ubersprungen und ein neuer Schleifendurchgang ge-
startet. Die continue-Anweisung kann auf die for-, die while- und die do-while-
Schleife angewandt werden. Bei while und do-while wird nach continue direkt
zum Bedingungstest der Schleife gesprungen. Bei der for-Schleife wird zuerst
noch die Aktualisierungs-Ausdrucksliste (siehe Kap. 8.3.2) bewertet.

Angewandt wird die continue-Anweisung zum Beispiel, wenn an einer gewissen
Stelle des Schleifenrumpfes mit einem Test festgestellt werden kann, ob der "um-
fangreiche" Rest noch ausgefuhrt werden muss.

2 [0

for (z = 0; |z < 50f;|z++)

while |(z < 50)

.continue; ..
..continue;

...continue; :|

} while |(z < 50)f;

Bild 8-10 Kontrollfluss bei der cont i nue-Anweisung fir eine for-Schleife (a),
eine while-Schleife (b) und eine do-while-Schleife (c)

268 Kapitel 8

Das folgende Beispiel zeigt die Verwendung der continue-Anweisung in einer
while-Schleife. Es wird wiederum — wie im Beispiel mit der break-Anweisung — die
Eingabe des Benutzers auf die Ubereinstimmung mit "Anja" Uberprdft.

// Datei: Login2.java
import java.util.Scanner;

public class Login2
{
public static void main (String[] args)
{
Scanner scanner = new Scanner (System.in);
String eingabe = null;

while (true)
{
System.out.print ("Bitte geben Sie Ihr Login ein: ");
eingabe = scanner.next();
if ('eingabe.equalsIgnoreCase ("Anja"))
{
System.out.println ("Falsche Eingabe!");
continue;
}
System.out.println ("Anmeldevorgang erfolgreich!");
break;

Der folgende Dialog wurde geflhrt:

Bitte geben Sie IThr Login ein: anja
Anmeldevorgang erfolgreich!

Es gibt die Mdéglichkeit, in Verbindung mit der continue-Anweisung Marken zu
verwenden. Soll nicht zum Bedingungstest des innersten Blocks mit der continue-
Anweisung gesprungen werden, sondern zum Bedingungstest eines duBeren Blocks,
so ist die Anweisung, die den Bedingungstest enthéalt, mit einer Marke amarke zu
versehen. Mit continue amarke kann dann dieser Bedingungstest angesprungen
werden. Da jedoch bei einer disziplinierten Programmierung das Springen an Marken
vermieden werden kann, wird hierzu kein Beispiel gezeigt.

Kontrollstrukturen 269

8.5 Ubungen

Aufgabe 8.1: Iteration

8.1.1

Rechteck zeichnen

Das folgende Programm wurde umstandlicherweise nur mit while- und do-
while-Schleifen geschrieben. Schreiben Sie das Programm so um, dass es
Ubersichtlicher wird. Verwenden Sie hierzu die for-Schleife.

// Datei: RechteckZeichnen. java

public class RechteckZeichnen

{
static final int BREITE = 20;

static final int HOEHE = 10;

public static void main (String[] args)

{

int hoehe; // Zaehlvariable flur die Hoehe
int breite; // Zaehlvariable flur die Breite
breite = 0;
do
{

System.out.print ("*");

breite++;

}
while (breite < BREITE);

System.out.println();
hoehe = 0;

while (hoehe < HOEHE - 2)
{

System.out.print ("*");

breite = 1;
do
{
System.out.print (" ");
breite++;
}
while (breite < BREITE - 1);
System.out.println ("*");
hoehe++;

}

breite = 0;

while (breite < BREITE)

{
System.out.print ("*");
breite++;

}

System.out.println();

270

Kapitel 8

Dreieck zeichnen

Schreiben Sie ein Programm, das ein gefllltes Dreieck auf dem Bildschirm
ausgibt. Geben Sie hierzu in jeder Zeile mit Hilfe einer Schleife zuerst die
entsprechende Anzahl von Leerzeichen aus. Verwenden Sie dann eine
zweite Schleife, um die entsprechende Anzahl von Sternchen ' aus-
zugeben. Verwenden Sie zur Ausgabe der einzelnen Zeichen die Methode
System.out.print (). Eine Beispielausgabe kénnte z. B. so aussehen:

*
* kK
* ok Kk Kk k
Kk kK Kk Kk kK

kK kKhkkKkkKkk Kk

Aufgabe 8.2: Selektion

8.2.1

Mehrfache Alternative

Analysieren Sie das unten stehende Programm. Was erwarten Sie als Aus-
gabe? Schreiben Sie das Programm so um, dass es anstatt der if-else-
Anweisungen eine switch-Anweisung verwendet. Hier das Programm:

// Datei: Zahlen. java

import java.io.BufferedReader;
import java.io.InputStreamReader;

public class Zahlen
{
// Verwenden Sie die Methode eingabeZahl (),
// ohne sie genauer zu studieren
public static int eingabeZahl ()
{
int wert = -1;
try
{
java.util.Scanner scanner =
new java.util.Scanner (System.in);
System.out.print ("Gib einen Wert ein: ");
wert = scanner.nextInt();
}
catch (Exception e)
{
e.printStackTrace();
System.exit (-1);
}
return wert;

}
public static void main (String[] args)
{

int zahl = eingabeZahl();

System.out.print ("Die eingegebene Zahl ist ");

Kontrollstrukturen 271

8.2.2

if (zahl == 1)
{

System.out.println ("EINS");
}
else if (zahl == 2)
{

System.out.println ("ZWEI");
}
else if (zahl == 3)
{

System.out.println ("DREI");
}
else if (zahl == 4)
{

System.out.println ("VIER");
}
else if (zahl == 5)
{

System.out.println ("FUENE");
}
else
{

System.out.println ("UNBEKANNT") ;
}

Vereinfachen einer i f-else-Anweisung

Wie lassen sich folgende Codezeilen vereinfachen?

if (wert > 0)
{
if (wert < 5)
{
System.out.println ("Der Wert ist innerhalb 0 und 5");
}
else
{
System.out.println ("Der Wert ist ausserhalb 0 und 5");
}
}
else
{
System.out.println ("Der Wert ist ausserhalb 0 und 5");

}

Aufgabe 8.3: Sprunganweisungen

8.3.1

Endlosschleife

Ein Programmierer hat im folgenden Programmcode einen Fehler eingebaut,
wodurch das Programm in einer Endlosschleife hangen bleibt. Eigentlich
sollte das Programm beim Erreichen des Werts 10 beendet werden. Behe-

272

Kapitel 8

ben Sie den Fehler mit Hilfe einer bedingten Sprunganweisung. Hier ist das
fehlerhafte Programm:

// Datei: Endlos.java

public class Endlos

{

public static void main (String[] args)

int 1 = 0;
while (true)

i++;
System.out.println (1i);

8.3.2 Ungerade Zahlen ausgeben

a) Erganzen Sie das folgende Programmfragment unter Verwendung einer
continue-Anweisung, sodass nur die ungeraden Zahlen ausgegeben
werden. Die fehlenden Stellen sind mit markiert.

// Datei: UngeradeZahlen. java

import java.io.BufferedReader;
import java.io.InputStreamReader;

public class UngeradeZahlen

{

// Verwenden Sie die Methode eingabeZahl (),
// ohne sie genauer zu studieren
public static int eingabeZahl ()

{

}

{

int wert = -1;

try

{
java.util.Scanner scanner =

new java.util.Scanner (System.in);

wert = scanner.nextInt();

}

catch (Exception e)

{
e.printStackTrace();
System.exit (-1);

}

return wert;

public static void main (String[] args)

int startwert = -1;
int endwert = -1;

Kontrollstrukturen 273

System.out.println ("Dieses Programm gibt alle " +
"ungeraden Zahlen zwischen " +
"dem Startwert und Endwert aus.");
System.out.print ("Gib den Startwert ein: ");
startwert = eingabeZahl();
do
{
System.out.print ("Gib den Endwert ein: ");
endwert = eingabeZahl () ;

System.out.println() ;
} while (endwert < startwert);

for (int i1 = startwert; 1 <= endwert; 1i++)

{

System.out.println
("Die Zahl " + i + " ist ungerade!");

b) Verandern Sie |hre Lésung aus Teilaufgabe a), indem Sie die for-Schlei-
fe durch eine while-Schleife ersetzen. Wie verhélt sich eine continue-

Anweisung bei einer while-Schleife? An welcher Stelle miissen Sie auf-
passen?

Kapitel 9

Blocke und Methoden

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Methoden

Methodenkopf
Block

Block

Methoden -

Blécke und ihre Besonderheiten
Methodendefinition und -aufruf
Polymorphie von Operationen

Uberladen von Methoden

Parameterliste variabler Lange
Parameteribergabe beim Programmaufruf
lteration und Rekursion

Ubungen

9 Blocke und Methoden

Ein Block ist eine Folge von Anweisungen, die sequenziell hintereinander ausgefihrt
wird. Eine Methode ist eine Folge von Anweisungen, die unter einem Namen aufge-
rufen werden kann. Diese beiden Satze enthalten bereits die Definition von Block
und Methode. Den Aufbau von Blécken und Methoden und die Verwendung lokaler
Variablen als Zwischenspeicher fiir Daten bendtigen Sie als grundlegendes Hand-
werkszeug beim Programmieren.

9.1 Blocke und ihre Besonderheiten

Der Block als Kontrollstruktur fiir die Sequenz wurde bereits in Kapitel 8.1 vorge-
stellt. Die Anweisungen eines Blockes werden durch Blockbegrenzer —in C, C++ und
Java sind dies die geschweiften Klammern — zusammengefasst. Statt Block ist auch
die Bezeichnung zusammengesetzte Anweisung Ublich.

Einen Block bendtigt man aus zwei Griinden:

e zum einen ist der Rumpf einer Methode ein Block, -

® zum anderen gilt ein Block syntaktisch als eine einzige Anweisung. ‘/\
Daher kann ein Block auch da stehen, wo von der Syntax her nur s
eine einzige Anweisung zugelassen ist, wie z. B. im i£- oder else- =
Zweig einer if-else-Anweisung.

Ein Block in Java hat den folgenden Aufbau:

{

Anweisungen

}

Nach dem Blockbegrenzer, der schlieBenden geschweiften Klammer, kommt kein
Strichpunkt.

9.1.1 Die Deklarationsanweisung

Wahrend in einem Block in der Programmiersprache C zuerst alle Vereinbarungen
angeschrieben werden mussten und erst dahinter die Anweisungen:

{
Vereinbarungen /* Aufbau eines */
Anweilsungen /* Blockes in C */

}

kénnen seit C++ in einem Block Vereinbarungen und Anweisungen "wild" gemischt
werden. Mdglich wurde dies durch das von Stroustrup — dem Vater von C++ — aus-
gedachte Konzept der Deklarationsanweisung. Mit diesem Konzept wird jede Ver-
einbarung als Anweisung gesehen und daher ist die Reihenfolge von Vereinba-
rungen und "echten" Anweisungen nicht mehr fest vorgegeben. Java folgt hier C++

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_9,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Blocke und Methoden 277

und daher ist es nicht erforderlich, dass zu Beginn eines Blockes erst alle Verein-
barungen angeschrieben werden, auch wenn dies tbersichtlicher ware. In Bild 9-1 ist
die zulassige Blockstruktur fir Java dargestellt:

Bild 9-1 Zuldssige Blockstruktur in Java

s
N

N |
I\\\\\@
/|

9.1.2 Die leere Anweisung und der leere Block

Eine so genannte leere Anweisung besteht nur aus einem leeren Block {} oder
einem Strichpunkt wie in folgendem Beispiel:

// primitive Warteschleife des Programmes
for (int 1 = 0; 1 < 100000; i++)
; // Der Strichpunkt ist fett gedruckt,
// damit er aufféallt.

Damit man ein Semikolon als leere Anweisung besser erkennt, wird Ublicherweise
das Semikolon fUr sich auf eine eigene Zeile geschrieben.

9.1.3 Lokale Variable

Variable, die innerhalb eines Blockes vereinbart werden, sind lokal flr diesen Block
und werden lokale Variable genannt. Sie werden angelegt, wenn der entsprechende
Block aufgerufen wird und im Programmcode des Blocks die Definition® der Variab-
len erreicht wird.

8 |n Java bedeutet die Vereinbarung einer Variablen stets die Definition dieser Variablen.

278 Kapitel 9

Lokale Variable werden durch das Laufzeitsystem auf dem Stack angelegt. Beim
Verlassen des Blocks, d. h. beim Erreichen der schlieBenden geschweiften Klammer,
werden die lokalen Variablen wieder ungultig und werden auf dem Stack zum Uber-
schreiben freigegeben.

9.1.4 Schachtelung von Blécken

Da eine Anweisung eines Blocks selbst wieder ein Block sein kann, kdnnen Blécke
geschachtelt werden.

Innerer | AuBerer
Block Block

Bild 9-2 Schachtelung von Blécken

Das folgende Programm demonstriert die Sichtbarkeit von Variablen in inneren und
auBeren Blocken. Auf Variable, die in duBeren Blécken definiert wurden, kann in
inneren Blocken zugegriffen werden.

// Datei: BlockTest.java

public class BlockTest
{

Blécke und Methoden 279

public void zugriff ()
{
int aussen = 7;
if (aussen == 7)
{
int innen = 8;
System.out.print ("Zugriff auf die Variable");

System.out.println (" des &uBeren Blocks: " + aussen);
System.out.print ("Zugriff auf die Variable");
System.out.println (" des inneren Blocks: " + innen);
}
}
public static void main (String[] args)

{
BlockTest ref = new BlockTest();
ref.zugriff();

Die Ausgabe des Programms ist:

Zugriff auf die Variable des duberen Blocks: 7
Zugriff auf die Variable des inneren Blocks: 8

9.1.5 Giltigkeit, Sichtbarkeit und Lebensdauer

Im Folgenden werden neben lokalen Variablen auch Datenfelder betrachtet.

Die Lebensdauer ist die Zeitspanne, in der die virtuelle Maschine der o
Variablen einen Platz im Speicher zur Verfligung stellt. Mit anderen —
Worten, wahrend ihrer Lebensdauer besitzt eine Variable einen Spei- ~

cherplatz.

Die Giiltigkeit einer Variablen bedeutet, dass an einer Programm- —
stelle der Namen einer Variablen dem Compiler durch eine Verein- -
barung bekannt ist. =

Die Sichtbarkeit einer Variablen bedeutet, dass man von einer Pro- _ —
grammstelle aus die Variable sieht, das heiBt, dass man auf sie tber -
ihren Namen zugreifen kann. =

Eine Variable kann aber glltig sein und von einer Variable desselben Namens ver-
deckt werden und deshalb nicht sichtbar sein. Ein lokaler Variablenname kann ein
Datenfeld mit demselben Namen verdecken. Dann ist das Datenfeld zwar giiltig,
aber nicht sichtbar. Es ist aber mdglich, mit Hilfe der this-Referenz (siehe Kap.
10.3) auf eine verdeckte Instanzvariable zuzugreifen. Auf eine verdeckte Klassen-

280 Kapitel 9

variable kann Uber den Klassennamen oder die this-Referenz zugegriffen werden.
Das folgende Programm zeigt den Zugriff auf ein verdecktes Datenfeld:

// Datei: Sichtbar.java

public class Sichtbar

{
private int x = 0; // Datenfeld x

public void zugriff ()

{
int x = 7; // lokale Variable x

// RAusgabe der lokalen Variablen x
System.out.println ("Lokale Variable x: " + x);

// this zeigt auf das aktuelle Objekt und damit ist this.x die
// x-Komponente des aktuellen Objektes

// Ausgabe des Datenfeldes x

System.out.println ("Datenfeld x: " + this.x);

}

public static void main (String[] args)

{
Sichtbar sicht = new Sichtbar();
sicht.zugriff();

Die Ausgabe des Programms ist:

Lokale Variable x: 7
Datenfeld x: O

Wird das Verdecken von Datenfeldern durch lokale Variablen auBer Acht gelassen,
sind in Java Sichtbarkeits- und Gultigkeitsbereich identisch, wie in folgender Tabelle
zu sehen ist:

Variable Sichtbarkeits- und Lebensdauer
Gltigkeitsbereich
Lokal im Block einschlieBlich inneren Block ab Definition
Blocken
vom Anlegen des Objektes
Instanzvariable |im Objekt selbst® bis das Objekt nicht mehr
referenziert wird
in allen Objekten der entspre- vom Laden der Klasse bis
Klassenvariable | chenden Klasse und in allen die Klasse nicht mehr

zugehérigen Klassenmethoden® | benétigt wird
Tabelle 9-1 Sichtbarkeit, Gliltigkeit und Lebensdauer

® Bei entsprechenden Zugriffsmodifikatoren kann auch aus anderen Klassen zugegriffen werden.
Darauf wird an spaterer Stelle eingegangen.

Blécke und Methoden 281

\ /
Bei lokalen Variablen fallen Giltigkeit und Sichtbarkeit zusammen. Bei —
Datenfeldern muss man prinzipiell zwischen Gltigkeit und Sichtbar-

keit unterscheiden.

~

|

9.2 Methodendefinition und -aufruf

Methoden stellen Anweisungsfolgen dar, die unter einem Namen aufgerufen werden
kénnen. Methoden werden stets flir Objekte — im Falle von Instanzmethoden — bzw.
Klassen — im Falle von Klassenmethoden — aufgerufen.

Wie aus Kapitel 6.3.2.1 bekannt, besteht die Definition einer Methode in Java aus der
Methodendeklaration und dem Methodenrumpf:

Methodendeklaration // Methodenkopf

{ //
// Methodenrumpf
} //

Methoden kdénnen einen Riickgabewert haben. Sie kénnen auch Ubergabeparameter
besitzen. Der Methodenrumpf stellt einen Block dar. Im Methodenrumpf stehen die
Anweisungen der Methode.

Die Methodendeklaration sieht im allgemeinen Fall folgendermaBen aus:

Modifikatoren Riickgabetyp Methodenname (Typl formalerParameterl,
Typ2 formalerParameter?2,

TypN formalerParameterN)

Ein Beispiel fir einen Modifikator ist das Schliisselwort static. Ein Beispiel fir
einen Rickgabetyp ist int.

9.2.1 Parameterlose Methoden

Bei parameterlosen Methoden wie z. B.:

int getX() // Deklaration

{ // Definition des Rumpfes
return x; // der parameterlosen

} // Methode getX()

folgt in der Deklaration ein leeres Paar runder Klammern dem Methodennamen.
Der Aufruf erfolgt durch Anschreiben des Methodennamens, gefolgt von einem
leeren Paar runder Klammern, z. B.:

alpha = ref.getX(); // Aufruf

Dabei stellt ref eine Referenz auf ein Objekt dar®®.

8 Klassenmethoden kannen auch tiber den Klassennamen aufgerufen werden.

282 Kapitel 9

9.2.2 Methoden mit Parametern

Hat eine Methode formale Parameter — das sind die Parameter in den runden
Klammern der Deklaration der Methode — so muss der Aufruf mit aktuellen Para-
metern erfolgen (siehe auch Kap. 9.2.4).

Beispiel:
void setX (int wvar) // var ist der Name des formalen Parame-—
{ // ters. Der Typ von var ist int.

X = var;

}

Der Aufruf von setx () kann beispielsweise erfolgen durch:
ref.setX (intAusdruck);

Hier ist intAusdruck der aktuelle Parameter.

9.2.3 Der Riickgabewert — die return-Anweisung

Die Methodendeklaration einer parameterlosen Methode beinhaltet im Minimalfall
den Rlckgabetyp sowie den Namen der Methode und ein Paar runder Klammern.
Anstelle eines Rickgabetyps kann auch das Schlisselwort void stehen. Eine
Methode zur Riickgabe des Wertes eines Datenfeldes x kénnte wie folgt aussehen:

int getX()
{

return x;

}

Mit Hilfe der return-Anweisung ist es mdglich, den Wert eines Ausdrucks an den
Aufrufer der Methode zurlickzugeben. Nach return kann ein Ausdruck stehen:

return expression;

Im obigen Beispiel steht x als Ausdruck hinter return. Es kann aber auch ein belie-
biger anderer Ausdruck wie beispielsweise x * x hinter return stehen. Der Typ
des zurlickzugebenden Wertes steht vor dem Methodennamen. Der zurlickgegebene
Wert ist im Beispiel also vom Typ int. Zurlickgegeben wird der Wert des Ausdrucks
hinter dem return, im Beispiel also der Wert von x. Stimmen Rickgabetyp und Typ
des zuriickzugebenden Ausdrucks nicht Uberein, so erfolgt eine implizite Typkon-
vertierung in den Rickgabetyp der Methode, wenn die Typen vertraglich sind (siehe
Kap. 7.7.3.5). Sind die Typen nicht vertraglich, so resultiert ein Kompilierfehler.

Wird das Schliisselwort void statt eines Riickgabetyps angegeben, N
so ist kein return notwendig. Es kann aber jeder Zeit mit return die _
Abarbeitung der Methode abgebrochen werden. Damit wird ein so- /\
fortiger Ricksprung zur Aufrufstelle bewirkt. In diesem Fall darf mit der
return-Anweisung kein Wert zurlickgegeben werden.

iy

Blécke und Methoden 283

Wird keine return-Anweisung angegeben, so wird der Methodenrumpf bis zu
seinem Ende abgearbeitet. Ist nicht void, sondern ein Rickgabetyp angegeben, so
ist ein return erforderlich und es muss immer ein zum Rickgabetyp kompatibler
Ausdruck hinter return stehen.

Eine return-Anweisung ohne einen nachfolgenden Ausdruck beendet die Ausfiih-
rung einer Methode, liefert aber keinen Wert an den Aufrufer. Gleiches gilt, wenn das
Ende des Programmtextes einer Methode — also die abschlieBende geschweifte
Klammer des Methodenrumpfes — erreicht wird.

Eine Methode kann mit return nur einen einzigen Wert zuriick- N
geben. Méchte man mehrere Werte zuriickgeben, so kann dies Uber

Referenzen auf Objekte in der Parameterliste gehen oder (ber die ‘/\
Schaffung eines Objektes mit mehreren Datenfeldern, auf das mit S

return eine Referenz zurlickgegeben wird.

Gibt die Methode einen Wert zurlick, so kann er — muss aber nicht — abgeholt wer-
den, z. B. indem man den Rickgabewert einer Variablen zuweist:

alpha = ref.getX();

oder an eine andere Methode Ubergibt:

System.out.println (ref.getX());

Ebenso ist es erlaubt, den Rickgabewert wie in folgendem Beispiel zu ignorieren.
Die Methodendeklaration soll

boolean insert (String s)

lauten. Dabei soll insert () die Instanzmethode eines Objektes sein, auf das ref
zeigt. Der folgende Methodenaufruf ist dann erlaubt:

ref.insert ("Hanna");

ignoriert werden. Mit anderen Worten, man kann eine Methode, die
einen Rickgabewert hat, einfach aufrufen, ohne den Ruckgabewert -~

An der aufrufenden Stelle darf der Wert, den eine Methode liefert, @
abzuholen. E

9.2.4 Formale und aktuelle Parameter

In der Parameterliste der Methodendeklaration werden so genannte formale Para-
meter aufgelistet:

Modifikatoren Riickgabetyp Methodenname (Typl formalerParameterl,
Typ2 formalerParameter?2,

TypN formalerParameterN)

284 Kapitel 9

|

.. \ /

Mit den formalen Parametern wird festgelegt, wie viele Ubergabe- —

parameter existieren, von welchem Typ diese sind und welche Rei- -
henfolge sie haben. Y

Die Bezeichnung formal soll andeuten, dass sie zur Beschreibung der Methode

verwendet werden.

Beim Aufruf werden den formalen Parametern die Werte der aktuel- — -
len Parameter zugewiesen. ~ ~

Die formalen Parameter sind Variablen, welche die Werte der aktuellen Parameter
entgegennehmen. Mit den Werten der aktuellen Parameter wird dann die Methode
ausgefihrt.

|
Beim Aufruf einer Methode mit Parametern finden Zuweisungen statt. ©/
e

Der Wert eines aktuellen Parameters wird dem entsprechenden for- -
malen Parameter zugewiesen. Eine solche Aufrufschnittstelle wird XZ =

als call by value-Schnittstelle bezeichnet.

T

Die Namen der formalen Parameter kénnen véllig frei vereinbart werden. Sie sind nur
lokal in der jeweiligen Methode sichtbar. Der formale Parameter kann denselben
Namen wie der aktuelle Parameter haben, muss es aber nicht.

Hat beispielsweise die Methode setx () den formalen Parameter newX vom Typ
int, wie aus der Methodendeklaration void setX (int newX) ersichtlich ist, so
wird der aktuelle Parameter, der beim Methodenaufruf ref.setX (intAusdruck)
Ubergeben wird, dem formalen Parameter beim Aufruf zugewiesen. Beim Aufruf
wird der formale Parameter als spezielle lokale Variable angelegt und mit dem
Wert des aktuellen Parameters initialisiert. Dies kann man sich flr das obige
Beispiel so vorstellen, als ob quasi eine manuelle Initialisierung der lokalen Variablen
newX bei ihrer Definition durchgefihrt wirde:

int newX = intAusdruck;

Ein formaler Parameter hat den Charakter einer lokalen Variablen. Mit
anderen Worten, ein formaler Parameter stellt eine spezielle lokale _
Variable dar. Dies hat zur Konsequenz, dass eine im Methodenrumpf
definierte lokale Variable nicht gleich heiBen darf wie ein formaler s
Parameter. =

Ein formaler Parameter stellt stets eine Variable dar. Ein aktueller
Parameter muss keine Variable sein. Ein aktueller Parameter ist

irgendein Ausdruck eines passenden Typs, den der Aufrufer an /\
den formalen Parameter Ubergibt. E

Blécke und Methoden 285

9.2.5 Ubergabe von einfachen Datentypen und Referenzen

Generell finden bei Ubergabeparametern und Riickgabewerten Kopiervorgéinge
statt. Unabhangig davon, ob es sich um einfache Datentypen oder Referenzen han-
delt, werden Werte kopiert. Bei einfachen Datentypen stellen die Werte Zeichen,
Zahlen oder Boolesche Werte der Anwendung dar, im Falle von Referenzen werden
Adressen kopiert. Adressen sind fir den Anwender unsichtbare GréBen. Sie stellen
Verweise dar und erlauben den Zugriff auf Objekte.

Dies soll das nachfolgende Beispielprogramm fiir Ubergabeparameter verdeutlichen.
Der formale Parameter par der Methode methodel () ist von einem einfachen
Datentyp, der formale Parameter refPara der Methode methode2 () stellt eine
Referenz auf ein Objekt der Klasse RefTyp dar. In beiden Fallen wird der Wert des
aktuellen Parameters in den formalen Parameter kopiert. Die Anderungen, welche
die Methode methodel () an der Variablen par vornimmt, haben keine Auswirkung
auf den aktuellen Ubergabeparameter var. Genauso hat eine Anderung an der Re-
ferenzvariablen refPara keine Auswirkung auf die Referenzvariable ref. Das Ent-
scheidende jedoch ist, dass Uber refPara auf ein Objekt zugegriffen werden kann
und Gber diese Referenz die Datenfelder dieses Objektes gedndert werden kénnen.
Hier das Beispiel:

// Datei: Parameter.java

class RefTyp
{
int x;

}

public class Parameter

{
public static void methodel (int par)

{
par = 2; // Anderung an der Kopie
}

public static void methode2 (RefTyp refPara)
{ // Anderung an dem Datenfeld x des Objektes,
refPara.x = 2; // auf das refPara zeigt

}

public static void main (String[] args)

{

int var = 1;
RefTyp ref = new RefTyp();
ref.x = 1;

System.out.println ("Ubergabeparameter ist von einem" +
" einfachen Datentyp");

System.out.println ("aktueller Parameter vor Aufruf : "+ var);
methodel (var);

System.out.println ("aktueller Parameter nach Aufruf: "+ var);
System.out.println ("Ubergabeparameter ist ein Referenztyp");

System.out.println ("Datenfeld vor Aufruf : " + ref.x);

286 Kapitel 9

methode2 (ref);
System.out.println ("Datenfeld nach Aufruf: " + ref.x);

Die Ausgabe des Programms ist:

Ubergabeparameter ist von einem einfachen Datentyp

aktueller Parameter vor Aufruf : 1
aktueller Parameter nach Aufruf: 1
Ubergabeparameter ist ein Referenztyp
Datenfeld vor Aufruf : 1

Datenfeld nach Aufruf: 2

Bei einfachen Datentypen als Ubergabeparameter wirken sich Anderungen am Wert
des formalen Parameters — genauso wie bei Referenztypen — nur auf die Kopie aus —
es gibt keinerlei Rickwirkungen auf das Original.

Da jedoch im Falle von Referenzen Kopie und Original dasselbe Objekt referen-
zieren, kann aus der Methode heraus Uber den Zugriff mit Hilfe des formalen Para-
meters das Original verandert werden. Das Bild 9-3 zeigt, wie die Referenz ref auf
das Objekt der Klasse RefTyp zeigt. Beim Aufruf der Methode methode?2 () wird
dem formalen Parameter refPara der Wert des aktuellen Parameters ref zuge-
wiesen. Nach dieser Zuweisung zeigen beide Referenzen auf das gleiche Objekt.

Heap
| ref .
Objekt der
refPara = ref Klasse
| refPara RefTyp

Bild 9-3 Der formale Parameter referenziert dasselbe Objekt wie der aktuelle Parameter

Ist der formale Parameter von einem einfachen Datentyp, so wird der Wert des
aktuellen Parameters in den formalen Parameter kopiert. Damit sind formaler und ak-
tueller Parameter vollstéandig entkoppelt. Anderungen am formalen Parameter haben
keine Auswirkungen auf den aktuellen Parameter. Da der Wert des aktuellen Para-
meters zugewiesen wird, braucht der aktuelle Parameter keine Variable zu sein,
sondern kann ein beliebiger Ausdruck sein. Da der Wert Ubergeben wird, spricht
man auch von einem call by value.

Auf Objekte wird in Java Uber Referenzen zugegriffen. Beim Aufruf einer Methode
wird dem formalen Parameter der Wert des aktuellen Parameters zugewiesen (call
by value), d. h. eine Referenzvariable als formaler Parameter erhélt als Kopie die Re-
ferenz auf das Objekt, das der akiuelle Parameter referenziert. Es gilt auch hier, dass
formaler und aktueller Parameter entkoppelt sind. Anderungen am formalen Para-
meter haben keine Auswirkungen auf den aktuellen Parameter. Der aktuelle Para-
meter kann ein Ausdruck sein. Dieser Ausdruck muss aber eine Referenz als Ruiick-
gabewert haben.

Blécke und Methoden 287

Da eine Referenz kopiert wird und man mit Hilfe dieser Referenz auf ein Objekt zu-
greifen kann, spricht man auch von einem simulierten call-by-reference. Tatsé&ch-
lich liegt jedoch wie bei einfachen Datentypen eine call-by-value Schnittstelle vor,
da der Wert des aktuellen Parameters in den formalen Parameter kopiert wird.

\
Sowohl einfache Datentypen (int, char, ...) als auch Referenzen _ —
werden "by value" Ubergeben. Da Referenzen aber auf Objekte zei- -

gen, wird quasi ein "call by reference" simuliert.

dasselbe Objekt wie der aktuelle Parameter. Eine Operation auf dem
formalen Referenzparameter erfolgt auf dem Objekt, auf das die ~

|
Werden Referenzen (ibergeben, so referenziert der formale Parameter -
Referenz zeigt, in anderen Worten auf dem referenzierten Objekt. £

9.2.6 Auswertungsreihenfolge der aktuellen Parameter

Die Auswertung der aktuellen Parameter in der Parameterliste erfolgt von links nach
rechts. Die genauen Ablaufe beim Aufruf einer Methode sollen am folgenden Beispiel
erklart werden:

// Datei: Auswertung.java

public class Auswertung
{
public static void main (String[] args)

{
int aktuell = 1;

methode (aktuell++, aktuell);

System.out.println ("Nach Methodenaufruf:");

System.out.println ("Wert von aktuell: " + aktuell);
}

public static void methode (int formalA, int formalB)
{
System.out.println ("Innerhalb der Methode:");
System.out.println ("Wert von formalA: " + formalAd)
System.out.println ("Wert von formalB: " + formalB)

’
’

—-—

Die Ausgabe des Programms ist:

Innerhalb der Methode:
Wert von formalA: 1
Wert von formalB: 2
Nach Methodenaufruf:
Wert von aktuell: 2

288 Kapitel 9

Beim Aufruf der Methode methode () laufen folgende Zuweisungen ab:

formalA = aktuell++;
formalB = aktuell;

Als aktuelle Werte werden die Rickgabewerte der Ausdriicke aktuell++ und
aktuell an die formalen Parameter der Methode methode () zugewiesen. In Java
werden die aktuellen Parameter von links nach rechts bewertet. Zuerst wird also
der erste aktuelle Parameter ausgewertet. Der Rickgabewert 1 des Ausdrucks
aktuell++ wird dem ersten formalen Parameter zugewiesen. Nach der Bewertung
des ersten aktuellen Parameters hat die Variable aktuel1 den Wert 2. Dieser Wert
wird dem zweiten formalen Parameter zugewiesen.

9.2.7 Beispielprogramm fiir die Verwendung von Methoden

Im Folgenden soll ein groBeres Beispiel die Verwendung von verschiedenen Metho-
den zeigen. Die Klasse IntArray hat die Aufgabe, ein int-Array zu kapseln und
komfortable Methoden bereitzustellen:

® Die beiden Methoden min () und max () geben jeweils den minimalen bzw. maxi-
malen Wert im Array zurlck.

® Die Methode average () hat die Aufgabe, den Durchschnitt aller Arraywerte zu
berechnen.

¢ Die Methode expand () hat die Aufgabe, das Array zu vergroBern. Die Zahl der
zusatzlich anzulegenden Array-Elemente wird durch den Wert des Ubergabepara-
meters festgelegt.

® Die Methode sort () hat die Aufgabe, das Array zu sortieren. Der kleinste Wert
soll sich nach dem Sortieren im Element mit dem Index 0 befinden. Als Sortier-
verfahren wird der "Bubble Sort"-Algorithmus benutzt. Beim Bubble Sort werden
jeweils benachbarte Elemente vertauscht, wenn sie nicht wie gewlinscht geordnet
sind. Dabei steigt das jeweils gréBte Element wie eine Blase im Wasser auf, was
dem Verfahren seinen Namen gegeben hat.

Die Methode swap () tauscht den Inhalt von zwei Array-Elementen mit gegebenen
Indexwerten.

Hier das Programm:

// Datei: IntArray.java

public class IntArray

{
private int([] arrayOfInt = null;

public IntArray()
{

arrayOfInt = new int [1];

}

Blécke und Methoden

289

// Erweitern der ArraygrdBe um anzahlElemente Array-Elemente.
public void expand (int anzahlElemente)

{

}

int size = arrayOfInt.length;

// neues grdBeres Array anlegen

int[] tmp = new int [size + anzahlElemente];
// bestehendes zu kleines Array umkopieren
for (int 1 = 0; 1 < size; 1i++)

{

tmp [i] = arrayOfInt [i];
}
arrayOfInt = tmp;

public int max()

{

}

int max = arrayOfInt [0];
for (int element : arrayOfInt)

{

// Ist ein Element grdBer als das vorliegende Maximum,

// wird sein Wert zum neuen Maximum.
if (element > max)
max = element;
}

return max;

public int min()

{

}

int min = arrayOfInt [O0];
for (int element : arrayOfInt)
{
if (element < min)
min = element;
}

return min;

public void put (int index, int newValue)

{

}

SO

// Liegt die Position, an die der neue Wert geschrieben werden

// soll, auBerhalb der aktuellen Dimension,
// Array vergrobert werden.
if (arrayOfInt.length <= index)

expand (index - arrayOfInt.length + 1);
arrayOfInt [index] = newValue;

public int get (int index)

{

if (arrayOfInt.length > index)
return arrayOfInt [index];

dann muss dass

// Fehlerfall, der angegebene Index ist zu grob.

return -1;

290 Kapitel 9

public void swap (int indexl, int index2)
{
if ((indexl < 0) || (index2 < 0))
return;

int size = arrayOfInt.length;

if ((indexl > size) || (index2 > size))
return;

int hilf = arrayOfInt [indexl];
arrayOfInt [indexl] = arrayOfInt [index2];
arrayOfInt [index2] = hilf;

}

public float average()

{
// Es ist ein Cast erforderlich, da Gleitpunktkonstanten vom
// Typ double sind.
float average = (float) 0.0;

for (int element : arrayOfInt)
{
average += element;

}

average = average / arrayOfInt.length;
return average;

}

public void sort()
{
// Anmerkung: Zu Beginn des bubblesort-Algorithmus ist die
// Obergrenze gleich der Dimension des zu sortierenden
// Arrays, d. h. gleich der Anzahl seiner Elemente
// Hier der bubblesort-Algorithmus:
// while Obergrenze > Index des 2. Feldelementes:
// Gehe in einer Schleife vom 2. bis zum letzten zu sortie-—
// renden Array-Element (dessen Array-Index ist um 1 geringer
// als die Obergrenze). Wenn ein Element kleiner ist als sein
// Vorganger, werden beide vertauscht. (Hinweis: Nach dem
// ersten Durchlauf steht das grdBte Element am Ende). Nun
// wird die Obergrenze um 1 verringert.

int obergrenze = arrayOfInt.length;
while (obergrenze > 1)
{

for (int lauf = 1; lauf < obergrenze; lauf++)

{

if (arrayOfInt [lauf] < arrayOfInt [lauf - 1])
swap (lauf, lauf - 1);
}

obergrenze——;

Blocke und Methoden 291

public void print ()
{
System.out.println ("Ausgabe des Array-Inhaltes: ");
for (int 1 = 0; i < arrayOfInt.length; i++)
{
System.out.print ('\t' + "Index: " + i + " Wert: ");
System.out.println (arrayOfInt [i]);

}
// Datei: IntArrayTest.java

public class IntArrayTest
{
public static void main (String[] args)
{
int[] array = {4, 19, 20, 7, 36, 18, 1, 5};
IntArray intArray = new IntArray();

// Das intArray mit den Werten von array fillen
for (int 1 = 0; 1 < array.length; i++)
{
intArray.put (i, array [i]);
}

intArray.print () ;

System.out.println ("Minimum: " + intArray.min());
System.out.println ("Maximum: " + intArray.max());
System.out.println ("Average: " + intArray.average());

intArray.sort () ;
intArray.print () ;

Die Ausgabe des Programms ist:

Ausgabe des Array-Inhaltes:
Index: O Wert: 4

Index: 1 Wert: 19
Index: 2 Wert: 20
Index: 3 Wert: 7
Index: 4 Wert: 36
Index: 5 Wert: 18
Index: 6 Wert: 1
Index: 7 Wert: 5

Minimum: 1

Maximum: 36

Average: 13.75

Ausgabe des Array-Inhaltes:
Index: 0 Wert: 1

Index: 1 Wert: 4
Index: 2 Wert: 5
Index: 3 Wert: 7
Index: 4 Wert: 18
Index: 5 Wert: 19
Index: 6 Wert: 20
Index: 7 Wert: 36

292 Kapitel 9

9.3 Polymorphie von Operationen

Es ist problemlos méglich, dass Methoden in verschiedenen Klassen mit gleichen
Methodenkdpfen existieren. Dies liegt daran, dass eine Methode ja zu einer Klasse
gehdrt und jede Klasse einen eigenen Namensraum darstellt.

Eine Klasse stellt einen Namensraum dar. Damit ist es moglich, dass -
verschiedene Klassen dieselbe Operation implementieren, in anderen
Worten, derselbe Methodenkopf kann in verschiedenen Klassen auf- -~ >

treten.

Je nach Klasse kann eine Operation in verschiedenen Implementie- —
rungen — sprich in verschiedener Gestalt — auftreten. Man spricht hier- /\
bei auch von der Vielgestaltigkeit (Polymorphie) von Operationen. =

Ein einfaches Beispiel ist die Methode print (). Alle Klassen, die ihren Objekten die
Maoglichkeit geben wollen, auf dem Bildschirm Informationen Gber sich auszugeben,
stellen eine print ()-Methode zur Verfigung. Von auBen betrachtet macht die
print ()-Methode — unabhéngig davon, zu welcher Klasse sie gehdrt — immer das
Gleiche — sie gibt Informationen auf dem Bildschirm aus. Vom Standpunkt der Imple-
mentierung aus sind die Methoden grundverschieden, weil jede print ()-Methode
einen fur die Klasse spezifischen Methodenrumpf hat. Das folgende Beispiel zeigt die
Polymorphie von Methoden anhand der Klasse Person2 und der Klasse Bruch?2.
Beide Klassen implementieren jeweils eine print ()-Methode. Die Klasse Poly-
morphie dient als Testklasse. In der main ()-Methode wird ein Objekt von beiden
Klassen erzeugt und die print ()-Methode fir jedes erzeugte Objekt aufgerufen.

// Datei: Person2.java

public class Person2

{
private String name;
private String vorname;
private int alter;

// Konstruktur flir die Initialisierung der Datenfelder
public Person2 (String name, String vorname, int alter)
{

this.name = name;

this.vorname = vorname;

this.alter = alter;

}

public void print ()

{
System.out.println ("Name : " + name);
System.out.println ("Vorname : " + vorname);
System.out.println ("Alter : " + alter);

Blocke und Methoden 293

// Datei: Bruch2.java

public class Bruch?2
{

private int zaehler;
private int nenner;

public Bruch2 (int zaehler, int nenner)

{
this.zaehler = zaehler;
this.nenner = nenner;

}

public void print ()

{
System.out.print ("Der Wert des Quotienten von " + zaehler);
System.out.print (" und " + nenner + " ist " + zaehler
+ n / ") ;
System.out.println (nenner);
}

}
// Datei: Polymorphie.java

public class Polymorphie
{

public static void main (String[] args)

{

Bruch2 b;
b = new Bruch2 (1, 2);
b.print();

Person2 p;
p = new Person2 ("Miller", "Fritz", 35);

p.print();

—

Die Ausgabe des Programms ist:

Der Wert des Quotienten von 1 und 2 ist 1 / 2

Name : Miller
Vorname : Fritz
Alter : 35

294 Kapitel 9

9.4 Uberladen von Methoden

In der Regel gibt man verschiedenen Methoden verschiedene Namen. Oftmals ver-
richten aber verschiedene Methoden dieselbe Aufgabe, allerdings fiir verschiedene
Datentypen der Ubergabeparameter Denken Sie z. B. an eine Ausgabe-Methode,
welche die Ausgabe eines Ubergabeparameters auf den Bildschirm bewerkstelligt.
Je nach Datentyp des Parameters braucht man eine andere Methode. Jede der
Methoden muss dabei im Detail etwas anderes tun, um die Ausgabe durchzufiihren.
Erlaubt eine Sprache das Uberladen von Methoden (engl. overloading), so kénnen
jedoch alle diese Methoden denselben Namen tragen. Anhand des Datentyps des
Ubergabeparameters erkennt der Compiler, welche der Methoden gemeint ist. Der
Nutzen ist, dass man gleichartige Methoden mit dem gleichen Namen ansprechen
kann. Die Versténdlichkeit der Programme kann dadurch erhéht werden.

- \
Ein Uberladen erfolgt durch die Definition verschiedener Methoden —
mit gleichem Methodennamen, aber verschiedenen Parameter- -

listen. Der Aufruf der richtigen Methode ist Aufgabe des Compilers.

iy

Uberladen wird der Methodenname, da er nun fir verschiedene Methoden verwendet
wird. Der Methodenname allein ist also mehrdeutig. Uberladene Methoden missen
sich deshalb in der Liste ihrer formalen Parameter unterscheiden, um eindeutig iden-
tifizierbar zu sein. Mit anderen Worten: Die Signatur einer Methode muss eindeutig
sein.

Die Signatur setzt sich zusammen aus dem Methodennamen und der |

Parameterliste: \ B
Signatur = Methodenname + Parameterliste /@\

Der Riickgabetyp ist in Java nicht Bestandteil der Signatur!

Beachten Sie,

® dass es nicht mdglich ist, in der gleichen Klasse zwei Methoden mit
gleichem Methodennamen und gleicher Parameterliste — d. h. glei- 7\
cher Signatur — aber verschiedenen Rlckgabetypen zu verein- .
baren ‘\/QS'C}J

e dass, wenn keine exakte Ubereinstimmung gefunden wird, vom W

Compiler versucht wird, die spezifischste Methode zu finden. Bes-

ser ist es jedoch stets, selbst flir passende aktuelle Parameter zu

sorgen, gegebenenfalls durch eine explizite Typkonvertierung.

Dass zwei Methoden mit identischer Signatur und verschiedenem Rickgabetyp in
Java nicht zulassig sind, liegt daran, dass der Compiler keine Chance hat, die rich-
tige Methode aufzurufen, wenn der Rickgabewert gar nicht abgeholt wird. Dass der
Ruckgabewert nicht abgeholt wird, ist zulé&ssig.

Blécke und Methoden 295

Ein Uberladen mit gleicher Signatur, aber verschiedenem Riickgabe- — -
typ ist nicht méglich. ~ ~

Die Methode static int parse (String wvar) kann deshalb nicht in derselben
Klasse wie die Methode static float parse (String var) vorkommen. Der
Compiler kénnte an dieser Stelle nicht unterscheiden, ob der Methodenaufruf
Klasse.parse ("7.7") die Methode mit f1oat als Riickgabetyp oder die Metho-
de mit int als Rickgabetyp bezeichnet. Deshalb sind Methoden mit gleicher Signa-
tur, aber unterschiedlichem Rickgabetyp in der gleichen Klasse in Java nicht erlaubt.

Als erstes Beispiel soll die in der java.lang.Math-Klasse in Uberladener Weise
definierte Methode abs () zur Ermittlung des Betrags eines arithmetischen Aus-
drucks erwahnt werden. Die Methode abs () liefert den absoluten Wert im Format
des jeweiligen Datentyps zurilick. Die Methoden abs () sind wie folgt deklariert:

public static int abs (int)
public static float abs (float)
public static long abs (long)

public static double abs (double)

Das néachste Beispiel zeigt eine Klasse Parser, die Uberladene Methoden mit unter-
schiedlichen Parameterlisten fir das Umwandeln von Strings in int-Werte zur Ver-
figung stellt. Alle diese Methoden sind als Klassenmethoden realisiert, da sie auch
ohne die Existenz eines Objektes zur Verfligung stehen sollen:

// Datei: Parser.java

public class Parser
{
// Wandelt den String var in einen int-Wert.
public static int parseInt (String var)
{
return Integer.parselnt (var);

}

// Wandelt den Stringanteil von der Position pos
// bis zum Stringende in einen int-Wert.
public static int parseInt (String var, int pos)
{

var = var.substring (pos);

return Integer.parselnt (var);

}

// Wandelt den Stringanteil von der Position von bis
// zur Position bis in einen int-Wert.
public static int parseInt (String var, int von, int bis)
{
var = var.substring (von, bis);
return Integer.parselInt (var);

296 Kapitel 9

// Datei: TestParser.java

public class TestParser

{

public static void main (String[] args)

{
String[] daten =

{"Rainer Brang", "Hauptstr. 17", "73732 Esslingen", "25"};
System.out.println ("Alter: " + Parser.parselnt (daten [3]));
System.out.println ("Hausnummer: " +

Parser.parseInt (daten [1], 10));
System.out.println ("Postleitzahl: " +

Parser.parselnt (daten [2], 0, 5));

Die Ausgabe des Programms ist:

Alter: 25
Hausnummer: 17
il Postleitzahl: 73732

9.5 Parameterliste variabler Léange

Methoden konnten in Java bis zu JDK 5.0 nur eine feste Anzahl von Parametern
haben. Sollten bisher in Java unterschiedlich viele Parameter an eine Methode Uber-
geben werden, so gab es zwei verschiedene Wege:

o flr jede Parametervariante schrieb man eine tGberladene Methode

® oder man verpackte die zu Ubergebenden Werte in einem Array oder Container.
Eine Referenz auf das Array bzw. den Container wurde als aktueller Parameter an
die Methode Ubergeben, die dadurch Zugriff auf die einzelnen Werte erhielt.

Seit JDK 5.0 ist dies nicht mehr notwendig, da Methoden eine Parameterliste mit
variabler Lange — varargs genannt — besitzen kénnen. In Anlehnung an die Ellipse in
der Programmiersprache C, d. h. die drei Punkte . .. am Ende der Parameterliste,
fihrt auch Java eine variable Parameterliste ein.

In Java gibt es jedoch eine wesentliche Einschrankung gegentber C:

die Zahl der Parameter einer variablen Parameterliste kann zwar be- N
liebig sein, jedoch muss jeder dieser Parameter denselben Typ be- — -
sitzen. Um eine Parameterliste variabler Lange zu deklarieren, werden - >~
in Java drei Punkte ... an den Datentyp des entsprechenden Para- =
meters angefligt. -

Eine Parameterliste kann sich in zwei Teile aufteilen: in einen Teil fester Lange, d. h.
mit einer festen Anzahl von Parametern, und einen Teil variabler Lange. Dabei ist zu
beachten, dass der variable Anteil sich nur auf einen spezifizierten Typ beschréankt
und stets nach den explizit definierten Parametern der Parameterliste stehen muss:

public void myTestMethod (fester Anteil, variabler Anteil);

Blécke und Methoden 297
Dabei gilt:
fester Anteil z.B.:int a, String b
variabler Anteil z.B.:int... ¢
NP
Die variable Parameterliste muss immer am Ende der Parameterliste — -
stehen. _ ~
=
Das folgende Beispiel veranschaulicht die Benutzung:
// Datei: TestVarargs.java
public class TestVarargs
{
public static void main (String[] args)
{
varPar (1, 2, 3, "Dies", "ist", "ein", "Test!");
}
public static void varPar (int a, int b, int ¢, String... str)
{
System.out.printf ("Erster Parameter: %d\n", a);
System.out.printf ("Zweiter Parameter: %d\n", b);
System.out.printf ("Dritter Parameter: %d\n", c);
for (String element : str)
{
System.out.println ("Variabler Anteil: " + element);

}

Die Ausgabe des Programms ist:

Erster Parameter: 1
Zweiter Parameter: 2

Dritter Parameter: 3
Variabler Anteil: Dies

Variabler Anteil: ist
Variabler Anteil: ein
Variabler Anteil: Test!

Jetzt ein Beispiel mit einer variablen Liste von Objekten:

// Datei: VarargsTest.java

public class VarargsTest

{
public static void main (String[] args)
{

// Ein Beispiel mit 3 Parametern

printAllObjects ("Jetzt folgen 2 Objekte",
new Integer (10), new Double (2.0));

298 Kapitel 9

// Ein Beispiel mit 4 Parametern
printAllObjects ("Jetzt folgen 3 Objekte",
new Integer (10),
new Integer (11),
new Double (3.0));

}

// Definition einer Methode mit einem festen Parameter und
// einer beliebigen Anzahl von Parametern vom Typ Object.
// Ein Leerzeichen nach dem Typ (hier Object) ist optional
public static void printAllObjects (String text,
Object... parameters)
{
// Text ausgeben
System.out.println (text);
// Parameter ausgeben - dabei wird automatisch die
// toString()-Methode der Parameter aufgerufen.
for (Object element : parameters)
{
System.out.println (element);

}

Die Ausgabe des Programmes ist:

Jetzt folgen 2 Objekte

10

2.0

Jetzt folgen 3 Objekte

10

11

3.0

NPV

Variable Parameterlisten werden innerhalb der Methode als Arrays — -
des spezifizierten Typs behandelt. - ~

Wie die beiden Beispiele zeigen, bietet der Aufruf einer Methode mit varargs gegen-
Uber einer Methode mit einem Array als Parameter den Vorteil, dass die Ubergabe-
werte direkt im Methodenaufruf angegeben werden kénnen und nicht zuvor ein Array
angelegt werden muss.

9.6 Parameteriibergabe beim Programmaufruf

In Java ist es mdglich, Ube_.rgabeparameter an ein Programm zu Ubergeben. Diese
Méglichkeit wird durch den Ubergabeparameter sString[] args bereitgestellt:

public static void main (String[] args)

Blécke und Methoden 299

Die Array-Variable args ist eine Referenz auf ein Array von Referenzen, die auf die
in der Kommandozeile Gbergebenen String-Objekte zeigen. Die Zahl der lbergebe-
nen Parameter kann dem Wert des Datenfeldes args . length entnommen werden.

C-Programmierer mussen berlcksichtigen, dass sich _an der ersten _
Position des String-Arrays args bereits der erste Ubergabepara- ¢ Vorsicht!>
meter befindet. \Y/

Im folgenden Programm wird getestet, ob ein auf der Kommandozeile als Parameter
mitgegebener String der Zeichenkette "Java" entspricht. Da die Inhalte der Strings
mit der Methode equals () verglichen werden, ist der Vergleich true, wenn als
Ubergabe die Zeichenkette "Java" tibergeben wird.

// Datei: StringTest.java

public class StringTest
{
public static void main (String[] args)
{
String a = "Java";
String b = args [0];
if (a.equals (b))
{
System.out.println ("Der String war Java");
}
else
{
System.out.println ("Der String war nicht Java");

}

Aufruf des Programms:

java StringTest Java

" Die Ausgabe des Programms ist:

Der String war Java

Im nachsten Beispiel werden Zahlen als Strings Uibergeben. Sie werden mit Hilfe der
Klassenmethode parseInt () der Wrapper-Klasse Integer in einen int-Wert
gewandelt. Die Integer-Zahlen werden dann addiert und das Ergebnis ausgegeben:

// Datei: AddInteger.java

public class AddInteger
{
public static void main (String[] args)

{

300 Kapitel 9

if (args.length != 2)

{
System.out.println ("FEHLER: Falsche Parameteranzahl");
System.out.println ("Bitte zweil Parameter eingeben");
System.out.println ("AddInteger <intl> <int2>");

}

else

{
int il = Integer.parselnt (args [0]);
int i2 = Integer.parselnt (args [1]);
System.out.println (args [0]+" + "+args [1]+" = "+(il1+1i2));

Aufruf des Programms:

java AddInteger 5 4

Die Ausgabe des Programms ist:

9.7 Iteration und Rekursion

Ein Algorithmus heiBt iterativ, wenn bestimmte Abschnitte des Algorithmus innerhalb
einer einzigen Ausfiihrung des Algorithmus mehrfach durchlaufen werden. Er heif3t
rekursiv®’, wenn er Abschnitte enthalt, die sich selbst direkt oder indirekt aufrufen.

Iteration und Rekursion sind Prinzipien, die oft als Alternativen fir die Programm-
konstruktion erscheinen. Theoretisch sind lteration und Rekursion &quivalent, weil
man jede lteration in eine Rekursion umformen kann und umgekehrt. In der Praxis
gibt es allerdings oftmals den Fall, dass die iterative oder rekursive Lésung auf der
Hand liegt, dass man aber auf die dazu alternative rekursive bzw. iterative Lésung
nicht so leicht kommt.

Programmtechnisch |auft eine lteration auf eine Schleife, eine direkte Rekursion auf
den Aufruf einer Methode durch sich selbst hinaus. Es gibt aber auch eine indirekte
Rekursion. Eine indirekte Rekursion liegt beispielsweise vor, wenn zwei Methoden
sich wechselseitig aufrufen.

Das Prinzip der lteration und der Rekursion soll an dem folgenden Beispiel der
Berechnung der Fakultatsfunktion veranschaulicht werden.

Iterative Berechnung der Fakultatsfunktion

Bei der iterativen Berechnung der Fakultatsfunktion geht man aus von der Definition
der Fakultat

0l=1
nl=1*2*..."n firn>0

8 |ateinisch recurrere = zurticklaufen

Blécke und Methoden 301

und beginnt bei den kleinen Zahlen. Der Wert von 0! ist 1, der Wert von 1!ist 0! * 1,
der Wert von 2!ist 1! * 2, der Wert von 3!ist 2! * 3, usw.

Nimmt man eine Schleifenvariable i, die von 1 bis n durchgezahlt wird, so muss
innerhalb der Schleife lediglich der Wert der Fakultét vom vorhergehenden Schleifen-
durchlauf mit dem aktuellen Wert der Schleifenvariablen multipliziert werden.

Das folgende Programm zeigt die iterative Berechnung der Fakultatsfunktion:

// Datei: IterativFaku.java

public class IterativFaku
{
public static long berechneFakultaet (int n)
{
long faku = 1;
for (int 1 = 1; 1 <= n; 1i++)
faku = faku * 1i;
return faku;

}

public static void main (String[] args)
{
long faku = berechneFakultaet (5);
System.out.println ("5! = " + faku);

Die Ausgabe des Programms ist:

5! =120

Rekursive Berechnung der Fakultatsfunktion

Bei der rekursiven Berechnung der Fakultatsfunktion geht man ebenfalls aus von der
Definition der Fakultat, beginnt aber nicht bei den kleinen Zahlen, sondern bei den
groBen Zahlen und |auft dann zu den kleinen Zahlen zurlick.

nl=n*(n-1)! firn>0
0l=1

Im Gegensatz zur Iteration schaut man jetzt auf die Funktion f(n) und versucht, diese
Funktion durch sich selbst — aber mit anderen Aufrufparametern — darzustellen. Die
mathematische Analyse ist hier ziemlich leicht, denn man sieht sofort, dass

f(n)=n*f(n-1)
ist. Damit hat man das Rekursionsprinzip bereits gefunden. Dies ist jedoch nur die

eine Seite der Medaille, denn die Rekursion darf nicht ewig gehen! Das Abbruch-
kriterium wurde bereits oben erwahnt. Es heiBt:

0l=1

302 Kapitel 9

Durch n!l = n * (n-1)! Iasst sich also die Funktion f(n) auf sich selbst zurlckfihren,
d. h. f(n) = n * f(n-1). f(n-1) ergibt sich wiederum durch f(n-1) = (n-1) * f(n-2). Nach
diesem Algorithmus geht es jetzt solange weiter, bis das Abbruchkriterium erreicht
ist. Das Abbruchkriterium ist bei 0! erreicht, da 0! nicht auf (-1)! zurlickgefihrt werden
kann, sondern per Definition gleich 1 ist.

Dieser Algorithmus l&sst sich leicht programmieren. Die Methode berechnefa-
kultaet () enthélt zwei Zweige:

® Der eine Zweig wird angesprungen, wenn die Abbruchbedingung nicht erfiillt
ist. Hier ruft die Methode sich selbst wieder auf. Hierbei ist zu beachten, dass die
Anweisung, welche die Methode aufruft, gar nicht abgearbeitet werden kann,
solange die aufgerufene Methode kein Ergebnis zurlckliefert.

® Der andere Teil wird angesprungen, wenn die Abbruchbedingung erfillt ist. In
diesem Fall liefert die Methode zum ersten Mal einen Riickgabewert.

Rekursive Berechnung der Fakultatsfunktion als Programm

// Datei: RekursivFaku.java

public class RekursivFaku

{

public static long berechneFakultaet (int n)

{

System.out.println ("Aufruf mit: " + n);
if (n >= 1) // Abbruchbedingung noch nicht erreicht
return n * berechneFakultaet (n - 1);

else // Abbruchbedingung erfillt, d. h. n ist gleich 0.
return 1;

}

public static void main (String[] args)

{

int n = 5;
long z = berechneFakultaet (n);
System.out.println ("5! =" + z);

Die Ausgabe des Programms ist:

Aufruf mit: 5
Aufruf mit:

Aufruf mit:
Aufruf mit:
Aufruf mit:

O DN W

Aufruf mit:
5! =120

Die folgende Skizze in Bild 9-4 veranschaulicht die Berechnung der Fakultat fir n =
3. Das Bild 9-5 zeigt den Aufbau des Stacks durch den rekursiven Aufruf der
Methode berechneFakultaet (), bis das Abbruchkriterium erreicht ist. Das Ab-
bruchkriterium liegt dann vor, wenn berechneFakultaet () mitn = 0 aufgerufen

Blocke und Methoden

303

wird. Danach beginnt durch die Beendigung aller wartenden berechneFakul-
taet ()-Methoden der Abbau des Stacks. Der Abbau des Stacks wird in Bild 9-6

gezeigt.

Rekursion 1

Rekursion 2

Rekursion 3

Rekursion 4

3 * 2 wird zuriickgegeben

1 * 1 wird zurlickgegeben 2 *1 wird zurlickgegeben

1 wird zuriickgegeben

public static void main (String[] args)
{
—»long faku = berechneFakultaet (3);

Aufruf: berechne—
Fakultaet () mit

System.out.println ("3! = " + faku);
}

Parameter 3

v

static long berechneFakultaet (int n)

if (no>= 1)

n hat den Wert 3

return n * berechneFakultaet

(n-1);

} A
return 1;

}

wahr

Aufruf: berechne-
Fakultaet () mit
Parameter 2

v

static long berechneFakultaet (int n)

n hat den Wert 2

return n * berechneFakultaet (n-1);

} A
return 1;

}

wahr

Aufruf: berechne—
Fakultaet () mit
Parameter 1

v

static long berechneFakultaet (int n)

n hat den Wert 1

return n * berechneFakultaet
} A
—return 1;

}

(n-1);

wahr

Aufruf: berechne-
Fakultaet () mit
Parameter 0

v

static long berechneFakultaet (int n)

n hat den Wert 0

return n * berechneFakultaet

}

(n=1);

——return 1;

}

falsch

Bild 9-4 Verfolgung der rekursiven Aufrufe flr berechneFakultaet (3)

In den folgenden zwei Bildern ist fur die Fortgeschrittenen der Auf- und Abbau des
Stacks fir den Aufruf berechneFakultaet (3) zu sehen. Aus Platzgriinden
wurde dort der Methodenaufruf berechneFakultaet () mit faku () abgekurzt.

304

Kapitel 9

main ()

Stack

Variablen = 3

Variable z

A 4

Aufruf faku (3) vonmain ()

Stack

Variablen = 3

Variable z

Rucksprungadresse in
main () und weitere
Verwaltungsinformationen...

Parametern = 3

A4

Aufruf faku (2) von faku (3)

Stack

Variablen = 3

Variable z

Ricksprungadresse in
main () und

Parametern = 3

Ricksprungadresse in
faku(3) und......

Aufbau des Stacks fir faku (3):

Bei jedem Aufruf von faku () werden die
Ricksprungadresse und weitere Verwal-
tungsinformationen auf einem Stack abgelegt,
der durch die virtuelle Maschine verwaltet
wird. Auch die Gbergebenen Parameter (hier
nur einer) werden auf diesem Stack abgelegt.
Dabei wachst der Stack mit der Rekursions-
tiefe der Funktion.

Der letzte Aufruf von faku () mit dem Para-
meter n = 0 bewirkt keine weitere Rekur-
sion, da ja die Abbruchbedingung erfillt ist.

Parametern = 2

A 4

Aufruf faku (1) von faku (2)

Stack

Variablen = 3

Variable z

Rucksprungadresse in
main () und

Parametern = 3

Ricksprungadresse in
faku(3) und......

Parametern = 2

Riicksprungadresse in
faku(2) und......

Parametern = 1

Aufruf faku (0) von faku (1)
Stack
Variablen = 3

Variable z
Ricksprungadresse in
main () und
Parametern = 3
Ricksprungadresse in
faku(3) und
Parametern = 2
Ricksprungadresse in
faku(2) und
Parametern = 1
Ricksprungadresse in
faku (1) und
Parametern = 0

Bild 9-5 Aufbau des Stacks fiir faku (3)

Der Abbau des Stacks geschieht in umgekehrter Reihenfolge. Dies wird im folgenden

Bild 9-6 gezeigt.

Blocke und Methoden

305

faku (0) beendet sich mit
return 1

Stack

Variablen = 3

Variable z

Ricksprungadresse in
main () und

Parametern = 3

Ruicksprungadresse in
faku(3) und

Parametern = 2

Ricksprungadresse in
faku (2) und

Parameter n =

P\aramgté(n\=

Abbau des Stacks flir faku (3):

Beim Beenden der aufgerufenen Funktion wer-
den auf dem Stack die lokalen Variablen
(Ubergebene Parameter) freigegeben und die
Rucksprungadresse und sonstigen Verwal-
tungsinformationen abgeholt. Der Rickgabe-
wert wird in diesem Beispiel Uber ein Register
an die aufrufenden Funktionen zurlickgege-
ben. Der Ruckgabewert kann auf verschiede-
ne Weise an die aufrufende Funktion zurlick-
gegeben werden, beispielsweise auch Uber
den Stack. Dies ist vom Compiler abhangig.

¢ Ubergabe des Riickgabewertes

Uber Register

faku (1) beendet sich mit
return 1

Stack

Variablen = 3

Variable z

Ricksprungadresse in
main () und.....

Parametern = 3

Ricksprungadresse in
faku(3) und

Parameter n =

am\eté(n\=

1

faku (3) beendet sich mit
return 6

Stack

¢ Ubergabe des Riickgabewertes

iber Register| | | Variable n = 3

faku (2) beendet sich mit
return 2

Stack

Variablen = 3

Variable z

Rucksprungadresse in
main () und

Parameter n =

E“x\’\%ﬁi‘ﬂ

P arameter,

Variable z

a ess
ma n (N\unc\wel
Itu sin rm ionsn..

Pa m ern:

‘Ubergabe des Riickgabewertes Uber Register

main ()

Stack
Variablen = 3
Variable z = 6

Bild 9-6 Abbau des Stacks fiir faku (3)

306

Kapitel 9

9.8 Ubungen

Aufgabe 9.1: Blécke

9.1.1

Sichtbarkeit von Variablen

Analysieren Sie das folgende Programm. Was erwarten Sie als Ausgabe?

// Datei: SichtbarAufg.java

public class SichtbarAufg
{

private int wert = 7;

public int zugriff ()
{
int wert = 77;
return wert;

}

public static void main (String [] args)

{
SichtbarAufg sich = new SichtbarAufg();
System.out.println (sich.zugriff());

Giltigkeit von Variablen

Analysieren Sie das folgende Programm. Was erwarten Sie als Ausgabe?

// Datei: GueltigkeitAufg. java

public class GueltigkeitAufg
{

private int wert = 7;

public int zugriff ()
{
int tmp = wert;
int wert = 77;
return tmp;

}

public static void main (String [] args)

{
GueltigkeitAufg guelt = new GueltigkeitAufg();
System.out.println (guelt.zugriff());

Sichtbarkeit und Verdecken von Instanzvariablen

Ausgangspunkt ist das Programm aus Aufgabe 9.1.1. Wie muss die zu-
griff ()-Methode verandert werden, damit sie nicht den Wert der lokalen

Blocke und Methoden

307

Variablen, sondern der Instanzvariablen zurlickgibt? Die lokale Variable soll
nicht umbenannt oder entfernt werden! Erganzen Sie das Programm.

Aufgabe 9.2: Polymorphie von Operationen

9.2.1

Berechnung von Flacheninhalten

Die Flacheninhalte von Quadraten und Kreisen werden unterschiedlich be-
rechnet. Ergénzen Sie das folgende Programmfragment um die polymorphe
Operation "berechne Flacheninhalt", sodass der jeweils korrekte Flachen-

inhalt ermittelt wird. Fehlende Stellen sind durch markiert.

// Datei: PolymorpheOperation.java

public class PolymorpheOperation
{
public static void main (String [] args)

{
Quadrat quad = new Quadrat (5.0);
Kreis kreis = new Kreis (3.0);

//Flaecheninhalt des Quadrats

System.out.println ("Flaecheninhalt des Quadrats:

2)g

//Flaecheninhalt des Kreises
System.out.println ("Flaecheninhalt des Kreises:
2

}

class Quadrat

{

private double seitenlaenge;

public Quadrat (double seitenlaenge)
{

this.seitenlaenge = seitenlaenge;

}
}

class Kreis

{
private double pi;
private double radius;

public Kreis(double radius)
{

pi = 3.14;

this.radius = radius;

n

308

Kapitel 9

9.2.2

FigurgréBe skalieren

Ausgangspunkt ist das Programm aus Aufgabe 9.2.1. Erweitern Sie das Pro-
gramm um die polymorphe Operation "skaliere Figur". Der Operation wird ein
Skalierungsfaktor Ubergeben, mit dem die GréBe des Kreises bzw. des
Quadrats skaliert wird.

Aufgabe 9.3: Uberladen von Methoden

9.3.1

9.3.2

Uberladene Methode zur Summenberechnung

Das folgende Programmfragment stellt einen minimalistischen Taschenrech-
ner dar. Uberladen Sie die Methode zur Summenberechnung, damit auch
Kommazahlen addiert werden kénnen. Fehlende Stellen sind durch
markiert.

// Datei: UeberladeneMethoden. java

public class UeberladeneMethoden
{
public static void main (String [] args)
{
int intSumme = 0;
int a = 1;
int b = 2;
double doubleSumme = 0.0;
double ¢ = 1.5;
double d = 0.25;

Taschenrechner tr = new Taschenrechner();

intSumme = tr.addiere (a, b);

System.out.println (a + " + " + b + " "ot
intSumme) ;

doubleSumme = P
System.out.println (c + " + " + d + " "o+
doubleSumme) ;

}

class Taschenrechner

{
public int addiere (int a, int b)
{

return a + b;

}

}
Methoden zur Produktberechnung

Ausgangspunkt ist das Programm aus Aufgabe 9.3.1. Ergédnzen Sie den
Taschenrechner um eine Methode zum Multiplizieren zweier ganzer Zahlen.
Uberladen Sie die Methode, sodass auch Kommazahlen miteinander multi-
pliziert werden kénnen.

Blocke und Methoden 309

Aufgabe 9.4: Variable Lange einer Parameterliste

9.4.1

9.4.2

Variable Anzahl von Summanden

Erstellen Sie eine Klasse mit einer Methode, die eine variable Parameterliste
vom Typ int und einen Parameter vom Typ String hat. Die Methode soll
zuerst das string-Objekt auf der Kommandozeile ausgeben. AnschlieBend
werden die Parameter der variablen Parameterliste addiert, und das Ergeb-
nis wird ebenfalls auf der Kommandozeile ausgegeben.

Schreiben Sie auch eine entsprechende main () -Methode, um lhre Methode
zu testen.

Ausgabe von Strings

Das folgende Programm enthalt eine Methode printObjects(), der
mittels einer variablen Parameterliste beliebig viele Objekte lbergeben wer-
den koénnen. AnschlieBend gibt diese Methode eine String-Reprasentation
der Ubergebenen Objekte auf der Standardausgabe bzw. Standardfehleraus-
gabe aus. Dabei hat sich ein Fehler eingeschlichen. Finden und korrigieren
sie den Fehler.

// Datei: VariableParameterlisteTest2.java

public class VariableParameterlisteTest2
{
private void printObjects (Object... objects,
boolean useStdErr)
{
if (useStdErr == true)
{
for (Object o : objects)
{
System.err.println (o.toString());
}
}
else
{
for (Object o : objects)
{
System.out.println (o.toString());
}

}

public static void main (String[] args)
{
VariableParameterlisteTest2 vpt =
new VariableParameterlisteTest2();
vpt.printObjects (new Integer (1), new Double (3.5),
"Hello", "World!", false);

310

Kapitel 9

Aufgabe 9.5: Parameteriibergabe beim Programmaufruf

9.5.1

9.5.2

Text parametergesteuert ausgeben

Entwickeln Sie ein einfaches Java-Programm, das beim Programmaufruf
einen Parameter vom Typ String entgegennimmt, der eine ganze Zahl
darstellt. Durch diese Zahl wird festgelegt, wie oft die Zeile "Hallo, Welt!" auf
dem Bildschirm ausgegeben wird. Der Ubergebene String kann, wie im
Beispiel AddInteger in Kapitel 9.6 gezeigt, mit Hilfe der Methode parse-
Int () der Wrapper-Klasse Integer in einen int-Wert gewandelt werden.

Ein beispielhafter Programmaufruf kdnnte folgendermaBen aussehen:

java MassenGruss 4
Hallo, Welt!
Hallo, Welt!
Hallo, Welt!
Hallo, Welt!

Einfacher Taschenrechner mit Parameteriibergabe

Entwickeln Sie einen einfachen Rechner, der die vier Grundrechenarten (+, -,
*, /) beherrscht. Dieser Rechner soll durch Parameter beim Programmaufruf
gesteuert werden. Hierzu werden dem Programm beim Aufruf zwei Zahlen
als Strings sowie ein Schlusselwort fur die durchzufiihrende Operation iber-
geben. Diese Zahlen kénnen, wie im Beispiel AddInteger in Kapitel 9.6 ge-
zeigt, mit Hilfe der Methode parseInt () der Wrapper-Klasse Integer in
einen int-Wert gewandelt werden.

Die Reihenfolge der Parameter ist folgendermaBen definiert:

[Zahll] [Operation] [Zahl2]

Verwenden Sie die folgenden Schlisselworte fir die Rechenoperationen:

add Addition: Zahl1 + Zahl2

sub Subtraktion: Zahl1 — Zahl2

mul Multiplikation: Zahl1 * Zahl2

div Division: Zahl1 / Zahl2

Ein Aufruf des Programms kdnnte beispielsweise so aussehen:

java Rechner 13 add 7

und wirde zu folgendem Ergebnis fiihren:

13 add 7 ist 20

Blocke und Methoden 311

Aufgabe 9.6: Iteration und Rekursion
9.6.1 Analyse eines rekursiven Algorithmus

Analysieren Sie das folgende Programm. Was wird hier berechnet? Ist Ihnen
ein alternativer (nicht rekursiver) Lédsungsweg bekannt?

// Datei: Rekursion.java

public class Rekursion

{

public int rekursAufruf (int n)
{
if (n > 1)
return n + rekursAufruf (n - 1);
return 1;

}

public static void main (String [] args)

{
Rekursion rek = new Rekursion();
System.out.println (rek.rekursAufruf (50));

9.6.2 Analyse eines iterativen Algorithmus

Welche mathematische Formel berechnet das Programm? Wie lautet das
Ergebnis?

// Datei: Iteration.java

public class Iteration

{

public int iterativAufruf (int n)

{

int wert

I
[
~.

for (int 1 = 2; 1 <= n; i++)
{

wert *= 1i;
}

return wert;

}

public static void main (String [] args)

{
Iteration it = new Iteration();
System.out.println (it.iterativAufruf (4));

312 Kapitel 9

9.6.3 Berechnung der Potenz a"

a) Berechnen Sie mit Hilfe einer Rekursion die Potenz a". Die Variablen a
und n sollen sich auf Werte gréBer 0 beschréanken und von der Tastatur
eingelesen werden. Vervollstdndigen Sie hierzu im folgenden Programm
diemit..... gekennzeichneten Stellen.

// Datei: PotenzRekursiv.java

public class PotenzRekursiwv
{
public static berechnePotenz (.)

{
}

public static void main (String [] args)
{
java.util.Scanner scanner =
new java.util.Scanner (System.in);
try
{
System.out.println
("Gib einen Wert >0 fiir a ein: ");
int a = scanner.nextInt();

System.out.println
("Gib einen Wert >0 flir n ein: ");
int n = scanner.nextInt();

int ergebnis = berechnePotenz (a, n);
System.out.println ("Das Ergebnis ist: " +
ergebnis) ;

}

catch (Exception ex)

{
System.out.println (ex.toString());

}

b) Erweitern Sie die Methode berechnePotenz (), sodass sie auch mit den
Werten a = 0und n = 0 zurechtkommt. Negative Werte werden weiter-
hin nicht betrachtet. Beachten Sie, dass eine Potenz fiir den Exponenten
0 immer 1 liefert. Ausnahme: Falls a den Wert 0 hat, ist das Ergebnis im-
mer 0.

c¢) Schreiben Sie eine neue Klasse PotenzIterativ. Diese Klasse imple-
mentiert die Lésung aus Aufgabe 9.6.3 b) mit Hilfe einer lteration. Verwen-
den Sie dazu eine for-Schleife.

Kapitel 10

Klassen und Objekte

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

@ @
@®_

Information Hiding

Klassenvariable und Klassenmethoden
Die this-Referenz

Initialisierung von Datenfeldern
Instantiierung von Klassen

Freigabe von Speicher

Die Klasse Object

Ubungen

10 Klassen und Objekte

In Java kann man nur objektorientiert programmieren. Die Klassenbdume der Verer-
bungshierarchien, die Zerlegungshierarchien fir aggregierte Klassen und der Aufbau
der einzelnen Klassen aus Datenfeldern und Methoden stellen das Skelett eines
Programms dar. Das Fleisch auf den Knochen und die Muskeln, die das Skelett zum
Leben und in Bewegung bringen, sind die Methoden, welche die Dynamik, d. h. die
Verarbeitung von Daten, beschreiben.

Alle Klassen in Java haben die Klasse java.lang.Object als Urvater. Klassen
sind vom Programmschreiber selbst entworfene und implementierte Datentypen oder
von der Java-Plattform bereitgestellte Bibliotheksklassen. Die Klassen enthalten die
Daten und die auf diesen Daten mdglichen Operationen in Form von Methoden.

|

. . o , , N
Wenn eine Klasse nicht explizit von einer anderen Klasse abgeleitet _
wird, so ist die Klasse java.lang.Object automatisch ihre Vater- P -

klasse.

{ny

Die Methoden reprasentieren die Schnittstellen eines Objektes bzw. einer Klasse
nach auBen. Objekte sind Variablen, die nach dem Bauplan der Klasse gebaut sind.
Klassenbezogene Datenfelder stellen benannte Speicherstellen in einer Klasse, die
Klassenvariablen, dar. Objektbezogene Datenfelder werden in Form von Instanz-
variablen in jedem Objekt angelegt.

10.1 Information Hiding

Ein Ziel der objektorientierten Programmierung ist es, die Reprédsentation der Daten
und die Implementierung der Methoden zu verbergen. Das bedeutet, dass das Prin-
zip des Information Hidings angewandt werden soll. Es soll kein Unbefugter die
Daten verandern kénnen. Nur die Methoden eines Objektes sollen auf die Daten Zu-
griff haben. Dies bedeutet, dass das folgende Beispiel zwar syntaktisch korrekt ist,
jedoch diesen Zielvorstellungen widerspricht.

// Datei: Person.java

public class Person

{

public String name; // Der Zugriffsmodifikator public erlaubt
public String vorname; // einen Zugriff auf die Daten und ermdg-
public int alter; // licht damit eine unzuldssige Manipula-

// tion von "auBen"!
public void print()
{

System.out.println ("Name : " + name);
System.out.println ("Vorname : " + vorname);
System.out.println ("Alter " + alter);

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_10,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Klassen und Objekte 315

// Datei: TestPerson.java

public class TestPerson
{
public static void main (String[] args)

{

Person p = new Person();

// Die Daten der Klasse Person sind nicht geschiitzt, es kann
// auf sie problemlos aus einer anderen Klasse heraus zuge-
// griffen werden!

p.name = "Miller";
p.vorname = "Fritz";
p.alter = 35;
p.print();

Die Ausgabe des Programms ist:

Name: Miller
Vorname: Fritz
II Alter: 35
. . . . |
Aus Griinden des Software Engineerings sollte es keinen direkten / o
Zugriff auf die Daten eines Objektes von anderen Klassen aus —
e ~

geben. Direkter Zugriff bedeutet, dass Uber eine Referenz direkt auf
ein Datenfeld zugegriffen werden kann.

(M

Das Verbergen von Daten erfolgt mit Hilfe des Schliisselworts private:

// Datei: Person.java

public class Person

{

private String name;
private String vorname;
private int alter;

public void print ()
{

System.out.println ("Name : " + name);
System.out.println ("Vorname : " + vorname);
System.out.println ("Alter : " + alter);

}

// Es folgen die anderen Methoden

Damit hat man von der Methode main () der Klasse TestPerson aus keinen
direkten Zugriff mehr auf die Daten eines Objektes der Klasse Person, sondern nur
noch Ober die Methode print () der Klasse Person.

316 Kapitel 10

Dies ist die generelle Vorgehensweise. Man erlaubt klassenfremden Methoden in der
Regel nicht den Zugriff auf die Daten einer Klasse. Dies ist ausschlieBlich Aufgabe
der klasseneigenen Methoden. Damit ist auch bei fehlerhaften Datenbearbeitungen
automatisch die Fehlersuche auf die Methoden, die innerhalb der Klasse liegen, be-
schrankt.

Das hier vorgestellte Schliisselwort private ist ein Zugriftsmodifikator, der den Zu-
griffsschutz regelt. Kapitel 12.7 behandelt auch die Zugriffsmodifikatoren public
und protected und den Fall, dass kein Zugriffsmodifikator angegeben wird.

10.2 Klassenvariable und Klassenmethoden

Klassenvariable und Klassenmethoden wurden bereits in Kapitel 2.1.5 vorgestellt.
Klassenvariable und Klassenmethoden werden in Java mit Hilfe des Schlisselwortes
static deklariert. Die folgenden Unterkapitel zeigen Beispiele, in denen Klassen-
variable bzw. Klassenmethoden Anwendung finden.

10.2.1 Klassenvariable

Klassenvariable, die fur alle Objekte einer Klasse als globale Daten zur Verfiigung
stehen, werden mit Hilfe des Schliisselwortes static deklariert. Das folgende Bei-
spiel behandelt die Schiler einer Schulklasse als Objekte. Die Schilerzahl ist keine
Eigenschaft, die einem individuellen Objekt zugeordnet werden kann. Sie ist eine
Eigenschaft des Verbunds aus allen Schiler-Individuen und wird daher als Eigen-
schaft der gesamten Schulklasse betrachtet und damit als Klassenvariable definiert.

// Datei: Schueler.java

public class Schueler

{
private int nummerDesSchuelers;
public static int klassenStaerke = 0;

public void setzeNummer ()

{

nummerDesSchuelers = ++klassenStaerke;

}

public void abzaehlen()
{
System.out.println ("Ich bin die Nr.: " + nummerDesSchuelers);
}
}

// Datei: SchuelerTest.java

public class SchuelerTest
{
public static void main (String[] args)
{
System.out.println ("Klassenstdrke vor der Einschulung: "
+ Schueler.klassenStaerke) ;

Klassen und Objekte 317

// Erzeugung eines Arrays fir Schiiler
Schueler[] schuelerInKlasse = new Schueler [10];

for (int 1lv = 0; 1lv < schuelerInKlasse.length; lv++)
{
schuelerInKlasse [lv] = new Schueler();
schuelerInKlasse [lv].setzeNummer () ;

}

// Ausgabe der Schiiler
for (Schueler element : schuelerInKlasse)

{

element.abzaehlen();

}

System.out.println ("Klassenstdrke nach der Einschulung: "
+ schuelerInKlasse [0].klassenStaerke);

Hier ein Auszug der Programmausgabe:

Klassenstdrke vor der Einschulung: 0
Ich bin die Nr.: 1

Ich bin die Nr.: 10
Klassenstdrke nach der Einschulung: 10

Innerhalb der eigenen Klasse kann der Zugriff auch direkt GUber den Namen der
Klassenvariablen erfolgen, hier also liber klassenStaerke.

10.2.2 Klassenmethoden

Im Folgenden soll das Programm aus Kapitel 10.2.1 erweitert werden. Es soll die
Klassenmethode holeSchuelerAnzahl () hinzukommen, welche die aktuelle

318 Kapitel 10

Klassenstarke — also den Wert der Klassenvariablen klassenStaerke — zurlick-

gibt. Die Klassenvariable k1assenStaerke wird als private deklariert.
// Datei: Schueler?2.java

public class Schueler?2

{

private int nummerDesSchuelers;
private static int klassenStaerke = 0;

public void setzeNummer ()
{
klassenStaerke++;
nummerDesSchuelers = klassenStaerke;

}

public void abzaehlen()

{

System.out.println ("Ich bin die Nr.: " + nummerDesSchuelers);

}

public static int holeSchuelerAnzahl ()
{

return klassenStaerke;

}
}

// Datei: Schueler2Test.java

public class Schueler2Test
{

public static void main (String[] args)

{

// Zugriff auf Klassenmethode, ohne dass ein Objekt existiert

System.out.println ("Klassenstdrke vor der Einschulung: "
+ Schueler2.holeSchuelerAnzahl()) ;

Schueler2[] schuelerInKlasse = new Schueler2 [10];

for (int 1lv = 0; 1lv < schuelerInKlasse.length; lv++)
{
schuelerInKlasse [lv] = new Schueler2();
schuelerInKlasse [lv].setzeNummer () ;

}

for (Schueler2 element : schuelerInKlasse)
{

element.abzaehlen();

}

System.out.println("Klassenstdrke nach der Einschulung: "

+ schuelerInKlasse [0].holeSchuelerAnzahl());

Klassen und Objekte 319

Hier ein Auszug der Programmausgabe:

Klassenstdrke vor der Einschulung: 0
Ich bin die Nr.: 1

Ich bin die Nr.: 2
Ich bin die Nr.: 10

Klassenstarke nach der Einschulung: 10

Sie sehen an diesem Beispiel, dass eine Klassenmethode aufgerufen werden kann:
® als Komponente der Klasse, wie im Falle

Schueler2.holeSchuelerAnzahl () ;

® oder durch Zugriff Gber eine Referenz auf ein Objekt, wie in folgendem Beispiel:

SchuelerInKlasse [0].holeSchuelerAnzahl();

/
In Java ist es méglich, eine Klassenmethode liber die Klasse selbst —
oder liber eine Referenz auf ein Objekt anzusprechen. Instanz- -

methoden sind nur liber eine Referenz auf ein Objekt aufrufbar.

Es zeugt jedoch fiir einen guten Programmierstil, wenn Klassenvariab-
le und Klassenmethoden nur lber den Klassennamen wie beispiels- « |

weise _ —
Klassenname.klassenvariable - A

angesprochen werden.

10.2.3 Ubergabe von Objekten an Klassenmethoden

Bild 10-1 zeigt die UML-Notation firr eine Klasse Dampfer. Jedes Schiff einer Flotte
von Ausflugsdampfern wie z. B. der Dampfer "Michelangelo” oder "Leonardo da
Vinci" ist eine Instanz dieser Klasse.

Dampfer

dampferNummer
anzahlSitzplaetze
anzahlDampfer

getAnzahlSitzplaetze()
setAnzahlSitzplaetze()
getAnzahlDampfer()

setAnzahlSitzplaetze()

Bild 10-1 Klasse Dampfer

320 Kapitel 10

Bitte beachten Sie, dass Klassenvariablen und Klassenmethoden in einer UML-
Klasse unterstrichen dargestellt werden. Jeder Dampfer erhalt eine laufende Num-
mer, das Datenfeld dampferNummer. Bei jeder Inbetriebnahme eines neuen Damp-
fers wird die Anzahl der Dampfer, gefihrt in der Klassenvariable anzahlDampfer,
um eins erhoht. Jeder Dampfer hat eine individuelle Sitzplatzkapazitdt anzahlsSitz-
plaetze. Die Datenfelder dampferNummer und anzahlSitzplaetze sind In-
stanzvariablen, da sie fiir jedes Objekt der Klasse Dampfer — also fir jeden Dampfer
— angelegt werden. SchlieBlich hat jeder Dampfer eine eigene Nummer und auch
eine bestimmte Anzahl Sitzplatze. Die Anzahl der Dampfer einer Flotte gehort jedoch
nicht zu einem individuellen Dampfer, sondern ist eine Eigenschaft der gesamten
Flotte. Daher ist das Datenfeld anzahlDampfer eine Klassenvariable.

Die Instanzmethode getAnzahlSitzplaetze () gibt den Wert der Instanzvari-
ablen anzahlSitzplaetze eines bestimmten Dampfers, d. h. einer bestimmten In-
stanz, zurlick. Mit Hilfe der Instanzmethode setAnzahlSitzplaetze () kann die
Sitzplatzanzahl fiir jeden Dampfer — also fir jedes Objekt der Klasse Dampfer —
individuell gesetzt werden. Mit dem Aufruf

michelangelo.setAnzahlSitzplaetze (100);

wird der Wert der Instanzvariablen anzahlSitzplaetze flr das Dampfer-Objekt
michelangelo auf 100 gesetzt.

Mit Hilfe der Uberladenen Klassenmethode setAnzahlSitzplaetze () wird im
folgenden Beispiel ebenfalls die Anzahl der Sitzplatze eines Dampfers festgelegt. Da
diese Klassenmethode aber nicht das Objekt kennt, auf dessen Methoden und
Variablen sie arbeiten soll, muss ihr eine Referenz auf das entsprechende Objekt
Ubergeben werden. Sie kann wie folgt aufgerufen werden:

Dampfer.setAnzahlSitzplaetze (michelangelo, 60);
Weiterhin stellt die Klasse Dampfer die Klassenmethode getAnzahlDampfer ()

bereit. Diese liefert den aktuellen Wert der Klassenvariablen anzahlDampfer zu-
rick.

Instanzmethoden haben stets Zugriff auf Instanzvariablen und auf . |
Klassenvariablen. Eine Instanzmethode kennt ihre Instanzvariablen, _
da diese zum gleichen Objekt gehdren. Sie kennt auch ihre Klassen-
variablen, da Klassenvariable globale Variable fiir alle Objekte einer J
Klasse darstellen. Z

Eine Klassenmethode kann auch auf Instanzvariablen und In- —
stanzmethoden arbeiten, wenn ihr explizit eine Referenz auf das -
entsprechende Objekt (ibergeben wird. =

Klassen und Objekte 321

Hier nun das beschriebene Beispielprogramm:

// Datei: Dampfer.java

public class Dampfer

{
private int dampferNummer = 0;
private int anzahlSitzplaetze = 0;
private static int anzahlDampfer = 0;

public void init ()

{
anzahlDampfer++; // Zugriff auf Klassenvariable
dampferNummer = anzahlDampfer;
System.out.print ("Dampfer Nr. " + dampferNummer) ;
System.out.print (" angelegt, Dampfer insgesamt: ");
// Zugriff auf Klassenvariable
System.out.println (anzahlDampfer) ;

}

public static int getAnzahlDampfer ()

{
// Klassenmethode hat Zugriff auf Klassenvariable
return anzahlDampfer;

}

// Der Klassenmethode wird ein Objekt der eigenen Klasse
// Ubergeben
public static void setAnzahlSitzplaetze (Dampfer dampfer,
int sitzplaetze)
{
dampfer.setAnzahlSitzplaetze (sitzplaetze);
}

public void setAnzahlSitzplaetze (int sitzplaetze)
{

anzahlSitzplaetze = sitzplaetze;
System.out.println ("Sitzpldtze von Dampfer Nr. "
+ dampferNummer + ": " + anzahlSitzplaetze);

}

public int getAnzahlSitzplaetze()
{
return anzahlSitzplaetze;
}
}

// Datei: DampferTest.java

public class DampferTest
{
public static void main (String[] args)
{
// Zugriff auf Klassenmethode, ohne dass ein Objekt existiert.
System.out.println ("Dampfer insgesamt: "
+ Dampfer.getAnzahlDampfer());

322 Kapitel 10

// Zwei Dampfer anlegen

Dampfer michelangelo = new Dampfer();
michelangelo.init () ;

Dampfer leonardoDaVinci = new Dampfer();
leonardoDaVinci.init () ;

// Sitzplétze festlegen
michelangelo.setAnzahlSitzplaetze (100);
leonardoDaVinci.setAnzahlSitzplaetze (150);

// Leonardo Da Vinci wurde vergroBert
Dampfer.setAnzahlSitzplaetze (leonardoDaVinci, 170);
// Michelangelo wurde verkleinert
Dampfer.setAnzahlSitzplaetze (michelangelo, 60);

// Zugriff auf Klassenmethode liber den Klassennamen.
System.out.println ("Dampfer insgesamt: "
+ Dampfer.getAnzahlDampfer());

Hier die Ausgabe des Programms:

Dampfer insgesamt: 0
Dampfer Nr. 1 angelegt, Dampfer insgesamt: 1
Dampfer Nr. 2 angelegt, Dampfer insgesamt: 2
Sitzpldtze von Dampfer Nr. 1: 100
Sitzpldtze von Dampfer Nr. 2: 150

Sitzpldtze von Dampfer Nr. 2: 170

Sitzplatze von Dampfer Nr. 1: 60

Dampfer insgesamt: 2

Instanzmethoden kénnen zwar Klassenvariablen lesen. Das Schrei-
ben von Klassenvariablen sollte jedoch nur in Klassenmethoden, Kon-
struktoren oder so genannten statischen Initialisierungsblécken ge- -~
schehen.

i

Aus Grlnden des Software Engineering sollen Klassenmethoden nicht . |,
auf Instanzvariablen zugreifen, es sei denn, es handelt sich um allge- _
meine Hilfsmethoden. Beispiele fir solche Hilfsmethoden sind Klas-
senmethoden zum Vertauschen von Objekten oder zum Umwandeln
von Objekten von Wrapper-Klassen in Werte einfacher Datentypen.

e ~

(|

10.3 Die this-Referenz

Jedes Objekt hat seine individuellen Instanzvariablen und in logischer Sicht diesel-
ben Methoden. Diese Methoden sind jedoch flr alle Objekte einer Klasse stets die-
selben. Daher ist es aus Griinden des Speicherverbrauchs effizienter, diese Metho-
den an zentraler Stelle im Speicher abzulegen. Als zentrale Stelle bietet sich natiir-
lich die Klasse selbst an. Dieser Sachverhalt soll an der vereinfachten Klasse per-
sonl im Folgenden diskutiert werden.

Klassen und Objekte

323

// Datei: Personl.java

public class Personl
{

private int alter;

public void print ()
{

System.out.println ("Alter: " + alter);

}

public void setzeAlter (int alt)
{
alter = alt;
}
}

// Datei: TestPersonl.java

public class TestPersonl

{

public static void main (String[] args)
{
Personl p = new Personl();
p.setzeAlter (10);
p.print();

Die Ausgabe des Programms ist:

Alter: 10

Bei der Ausfiihrung eines Programms liegen die Methoden in der Method-Area der
virtuellen Maschine und die Objekte mit ihren Instanzvariablen auf dem Heap, wie in

Bild 10-2 zu sehen ist.

Method-Area

Programmcode der
Methode print () ~s

Programmcode der 5
Methode setzeAlter () S
1

Heap

1
Programmcode der P
Methode main () o

:Person

~A

Referenz p T

int alter = 10;

Bild 10-2 Instanzmethoden muissen Zugriff auf die Instanzvariablen im Heap haben

324 Kapitel 10

Damit gibt es zwei Probleme: zum einen muss ein Objekt seine Klasse finden und
zum anderen muss eine Methode das Objekt finden, flir welches sie aufgerufen wird.
Das erste Problem wird in Kapitel 11.6 behandelt und auf das zweite Problem soll im
Folgenden eingegangen werden. Die Fragestellung ist also, woher die Methode
print () weiB, wo das Datenfeld des Objektes liegt, wenn sie aufgerufen wird?
Eigentlich brauchte jede Methode, die auf Instanzvariablen arbeitet, auch eine Refe-
renz auf die im Heap befindlichen Daten, die sie bearbeiten soll. Wenn 100 Personen
angelegt werden, muss die print ()-Methode in der Lage sein, auf die Daten der
100 verschiedenen Objekte zuzugreifen. Sie bendtigt also zum Zeitpunkt der Abar-
beitung immer eine Referenz genau auf die Daten desjenigen Objektes, zu dem der
Methodenaufruf aktiviert wurde.

Also wére es sinnvoll, wenn jede Instanzmethode einen zuséatzlichen Ubergabepara-
meter bekommen wiirde, an den beim Methodenaufruf die Referenz auf das im Heap
befindliche Objekt Ubergeben werden kann. Uber diese Referenz kann dann auf die
Daten zugegriffen werden. Genau auf diese Art und Weise wird der Zugriff einer
Instanzmethode auf die entsprechenden Datenfelder zur Laufzeit auch realisiert.
Diese ganze Umsetzung erfolgt jedoch flir den Programmierer unsichtbar. Zur Erlau-
terung wird in folgendem Beispiel so getan, als wiirde der Compiler diesen zusatz-
lichen Ubergabeparameter einfilhren. Beachten Sie, dass dies nur fiktiv ist. Welche
Rolle hierbei der Compiler und welche Rolle die virtuelle Maschine spielt, kann hier
nicht untersucht werden. Das folgende Programmbeispiel dient also nur zu Demon-
strationszwecken und ist natlrlich nicht kompilierbar.

public class Person

{

private int alter;

public void print (Person this)
{

System.out.println ("Name: " + this.name);

}

public void setzeAlter (Person this, int alt)

{
this.alter = alt;

}
}

public class PersonTest

{

public static void main (String[] args)
{
Person p = new Person();
Person.setzeAlter (p, 10);
Person.print (p);

}

Auf alle Datenfelder wird nun mit Hilfe der Gbergebenen Referenz zugegriffen. Diese
fiktive Umsetzung veranschaulicht sehr schdn, dass eine Methode zur Klasse gehért,
denn mit dem Aufruf

Person.setzeAlter (p, 10)

Klassen und Objekte 325

wird gesagt: Rufe die Methode setzeAlter () der Klasse Person auf. Dabei soll
die Methode auf den Daten des Objektes arbeiten, dessen Referenz als erster
Parameter Ubergeben wurde. Es ist kein Zufall, dass im obigen Beispiel dieser
formale Parameter den Namen this tragt. Dieser Name ist bewusst gewahlt, um
nun die this-Referenz einflhren zu kdnnen. Das oben Beschriebene ist fiir den
Programmierer zwar unsichtbar realisiert, aber er hat trotzdem die Mdglichkeit, die
this-Referenz in seinen Programmen in folgenden Féllen zu benutzen:

® Der Programmierer mdchte explizit darauf aufmerksam machen, dass er auf eine
Instanzvariable bzw. auf eine Instanzmethode des eigenen Objektes zugreift.

// Datei: Person2.java

public class Person2

{

private int alter;

public void print()

{
this.printSterne();
System.out.println ("Alter: " + this.alter);
this.printSterne();

}

private void printSterne()

{

System_out‘println ("*******************“) ;

}

public void setzeAlter (int alt)

{
this.alter = alt;

}
}

// Datei: TestPerson2.java

public class TestPerson?2

{

public static void main (String[] args)

{

Person2 p = new Person2();
p.setzeAlter (10);
p.print () ;

Die Ausgabe des Programms ist:

R e I S b i S i i

II Alter: 10

KKk Kk kKA XA Ak A KA A KK K* kKK

326 Kapitel 10

® Ein Datenfeld hat den gleichen Namen wie eine lokale Variable. In diesem Fall
kann mit der this-Referenz auf das verdeckte Datenfeld zugegriffen werden.

// Datei: Person3.java

public class Person3

{
private int alter;
private String vorname;
private String name;

public void print ()
{

System.out.println ("Name: " + name);
System.out.println ("Vorname: " + vorname);
System.out.println ("Alter: " + alter);

}

public void setzeDaten (String name, String vorname, int alter)

{
// Zugriff auf verdeckte Datenfelder.

this.name = name; // Beachten Sie, dass die formalen
this.vorname = vorname; // Parameter lokale Variable dar-
this.alter = alter; // stellen.

}
// Datei: TestPerson3.java

public class TestPerson3
{
public static void main (String[] args)
{
Person3 p = new Person3();
p.setzeDaten ("Brang", "Rainer", 25);
p.print () ;

Die Ausgabe des Programms ist:

Name: Brang
Vorname: Rainer
II Alter: 25

® Eine Referenz auf das aktuelle Objekt soll als Rickgabewert zuriickgegeben
werden. Damit kdnnen Methodenaufrufe flir dasselbe Objekt verkettet werden.

// Datei: Bruch.java

public class Bruch

{
private int zaehler;
private int nenner;

Klassen und Objekte

327

public void print()
{

System.out.println (zaehler + "/" + nenner);

}

public Bruch setzeWerte (int zaehler, int nenner)

{
this.zaehler = zaehler;
this.nenner = nenner;
return this;

}

public Bruch multipliziere (int faktor)

{
setzeWerte (zaehler * faktor, nenner);
return this;

}
// Datei: BruchTest.java

public class BruchTest
{
public static void main (String[] args)
{
Bruch bl = new Bruch();

System.out.print ("Wert des Bruches bl:

bl.setzeWerte (1, 2).print();

Bruch b2 = new Bruch();

System.out.print ("Wert des Bruches Db2:

b2.setzeWerte (1, 3).print();

System.out.print ("Wert des Bruches Dbl:

bl.multipliziere (10) .print();

Die Ausgabe des Programms ist:

Wert des Bruches bl: 1/2
Wert des Bruches b2: 1/3
II Wert des Bruches bl: 10/2

¢ Eine Referenz auf das aktuelle Objekt soll als Ubergabeparameter an eine Metho-
de Ubergeben werden. Im folgenden Beispiel wird das vorangehende Beispiel der

Klasse Bruch modifiziert:

// Datei: Bruch2.java

public class Bruch?2

{
private int zaehler;
private int nenner;

328 Kapitel 10

public void print()
{
System.out.println (zaehler + "/" + nenner);

}

public void setzeWerte (int zaehler, int nenner)
{

this.zaehler = zaehler;

this.nenner = nenner;

}

// Eine Klassenmethode zum Erweitern eines Bruches

public static Bruch2 erweitere (Bruch2 b, int faktor)

{
Bruch2 tmp = new Bruch2();
tmp.setzeWerte (b.zaehler * faktor, b.nenner * faktor);
return tmp;

}

public void addiere (Bruch2 b)
{
// Benutzt zur Berechnung die Klassenmethode erweitere ()
Bruch2 tmpl = erweitere (b, nenner);
Bruch2 tmp2 = erweitere (this, b.nenner);
zaehler = tmpl.zaehler + tmp2.zaehler;
nenner = tmpl.nenner;

}
// Datei: Bruch2Test.java

public class Bruch2Test
{
public static void main (String[] args)
{
Bruch2 bl = new Bruch2();
bl.setzeWerte (1, 2);

System.out.print ("Wert des Bruches bl: ");
bl.print();

Bruch2 b2 = new Bruch2();

b2.setzeWerte (1,3);

System.out.print ("Wert des Bruches b2: ");
b2.print () ;

System.out.print ("bl + b2 = ");

bl.addiere (b2);
bl.print () ;

Die Ausgabe des Programms ist:

Wert des Bruches bl: 1/2
Wert des Bruches b2: 1/3
II bl + b2 = 5/6

Klassen und Objekte 329

Am Schluss soll nochmals darauf hingewiesen werden, dass Klassenmethoden keine
this-Referenz besitzen.

7\
Klassenmethoden kénnen nicht lber die this-Referenz auf Instanz- ®

variablen bzw. Instanzmethoden zugreifen. \V/

10.4 Initialisierung von Datenfeldern

Dieses Kapitel behandelt, wie Datenfelder von Klassen und Objekten initialisiert wer-
den. Nimmt der Programmierer keine Initialisierung vor, so werden die vom Compiler
zur Verfigung gestellten Default-Initialisierungen implizit durchgefiihrt (siehe Kap.
10.4.1). Explizite Initialisierungen des Programmierers kbnnen sein:

® eine manuelle Initialisierung (siehe Kap. 10.4.2),
® cine Initialisierung mit einem Initialisierungsblock (siehe Kap. 10.4.3)

® sowie eine Initialisierung mit einem Konstruktor im Falle von Objekten. Klassen
kénnen jedoch nicht damit initialisiert werden (siehe Kap. 10.4.4).

10.4.1 Default-Initialisierungen von Datenfeldern

In Java werden Klassenvariablen und Instanzvariablen, d. h. klassen- und objektbe-
zogene Datenfelder, automatisch mit Default-Werten (Standard-Werten) initialisiert.
Lokale Variablen werden nicht automatisch initialisiert. Sie missen von Hand initiali-
siert werden, wie bereits in Kapitel 6.4.4 behandelt. Die folgende Tabelle zeigt, mit
welchen Default-Werten Datenfelder bei der automatischen Initialisierung (Default-
Initialisierung) belegt werden. Dabei ist zu beachten, dass Datenfelder, die Referenz-
variablen sind, mit der nul1-Referenz als Default-Wert belegt werden.

Typ Default-Wert
boolean false

char '"\u0000"
byte 0

short 0

int 0

long 0

float 0.0f
double 0.0d
Referenztyp null

Tabelle 10-1 Default-Werte fiir Datenfelder

10.4.2 Manuelle Initialisierung von Datenfeldern

Will man die Datenfelder mit anderen Werten als Default-Werten belegen, so kann
man die Datenfelder manuell wie im folgenden Beispiel initialisieren:

330 Kapitel 10

// Datei: Punkt2.java

public class Punkt2

{
// Manuelle Initialisierung von anzahl kénnte entfallen, da der
// Default-Wert auch 0 ist.

private static int anzahl = 0;
private int x; // Der Default-Wert ist O
private int y = 1; // Manuelle Initialisierung

public void print ()

{
System.out.println ("Die Koordinaten des Punktes sind:");
System.out.println ("x =" + x + ", y =" + y);

}

public static void main (String[] args)

{
System.out.println ("Anzahl der Punkte: " + anzahl);
Punkt2 pl = new Punkt2(); // Anlegen eines Punkt-Objektes
pl.print () ;
anzahl++; // Eine bessere Ldsung wird spdter gezeigt
System.out.println ("Anzahl der Punkte: " + anzahl);

Die Ausgabe des Programms ist:

Anzahl der Punkte: 0
II Die Koordinaten des Punktes sind:

x =0, yv=1
Anzahl der Punkte: 1
Klassenvariable, hier:

private static int anzahl = 0;
werden beim Laden der Klasse initialisiert.

Instanzvariablen, hier:

private int x;
private int yv = 1;

werden beim Anlegen eines Objektes initialisiert. Wird einer Instanzvariablen kein
Wert manuell zugewiesen, d. h. wird sie nicht manuell initialisiert, so erhélt sie als
Default-Wert den entsprechenden "Null"-Wert (false, '\u0000', 0, 0.0, null)
aus Tabelle 10-1.

In Java ist es mdglich, bei einer manuellen Initialisierung nicht nur Konstanten zur
Initialisierung zu verwenden, sondern beliebige Ausdriicke. Das folgende Beispiel
zeigt die Mdglichkeiten zur Initialisierung, die hierdurch entstehen:

Klassen und Objekte 331

public class Init

{
// Eine Klassenmethode zur Initialisierung aufrufen
private static int anzahl = Math.abs (-239);
// Eine Klassenvariable der eigenen Klasse benutzen
private int x = anzahl + 10;
// Ein zuvor initialisierte Instanzvariable verwenden
private int y = x - 100;
// Ein Objekt mit Hilfe des new-Operators erzeugen
private String str = new String ("Guten" + " Morgen");

N
Klassenvariablen werden beim Laden der Klasse initialisiert. P -

NP
Instanzvariablen werden beim Erzeugen eines Objektes initialisiert. P -

(i

Wird also irgendwo in einem Programmstlck entweder auf eine Klassenvariable oder
eine Klassenmethode zugegriffen, so wird die Klasse — sofern sie nicht schon friiher
benutzt wurde — in die virtuelle Maschine geladen und unmittelbar danach werden
die Initialisierungen der Klassenvariablen der Reihe nach durchgefiihrt. Das Gleiche
lauft ab, wenn mit Hilfe des new-Operators eine Instanz einer Klasse erzeugt wird.
Auch dann wird zuerst die Klasse in die virtuelle Maschine geladen, die Initialisie-
rungen der Klassenvariablen werden durchgefiihrt und erst danach kann das Objekt
mit Hilfe des new-Operators erzeugt und die manuellen Initialisierungen fiir die In-
stanzvariablen durchgefihrt werden.

: : |
Initialisierungen erfolgen stets der Reihe nach. Deshalb ist es nicht / B
erlaubt, eine Klassenvariable manuell mit dem Wert einer anderen
Klassenvariablen zu initialisieren, welche erst spéater definiert wird. -

Dasselbe gilt sinngemas fiir Instanzvariable.

(i

Folgendes ist deshalb unzuléssig:

public class Init

{
// Benutzt Klassenvariable zur Initialisierung, die erst weiter
// unten definiert ist. Der Compiler gibt einen Fehler aus.
private static int anzahl = stat;
private static int stat = 999;

// Benutzt Instanzvariable zur Initialisierung, die erst weiter
// unten definiert ist. Der Compiler gibt einen Fehler aus.
private int y = x - 100;

private int x = anzahl + 10;

332 Kapitel 10

Dagegen ist es natlrlich moglich, bei der Initialisierung einer Instanzvariablen eine
Klassenvariable zu benutzen, die erst weiter unten in der Klasse definiert ist. Dies
liegt daran, dass Initialisierungen von Klassenvariablen beim Laden der Klasse erfol-
gen und Instanzvariable erst nach der Erzeugung eines Objektes initialisiert werden.
Das Folgende ist also korrekt:

public class Init

{

private int x = anzahl + 10;
private static int anzahl = Math.abs (999);

10.4.3 Initialisierung mit einem Initialisierungsblock

Eine weitere Mdglichkeit zur Initialisierung von Datenfeldern ist die Initialisierung mit
Hilfe eines Initialisierungsblocks. Ein Block, der mit dem Schlisselwort static
eingeleitet wird, ist ein statischer Initialisierungsblock. Ein solcher Block wird im
Rahmen der Initialisierung von Klassenvariablen, d. h. beim Laden der Klasse
genau einmal ausgefihrt. Dies wird in folgendem Beispiel demonstriert:

// Datei: StaticBlockTest.java

class StaticBlock
{
// Z&hlt die erzeugten Objekte von der Klasse.
public static int anzahl = 0;
// Anzahl der Aufrufe des statischen Initialisierungsblocks.
public static int anzahlAufrufeStaticBlock = 0;

static

{
System.out.println ("* Betreten des statischen Blocks *");
anzahlAufrufeStaticBlock++;

}

public class StaticBlockTest
{
public static void main (String[] args)
{
StaticBlock objektl = new StaticBlock();
StaticBlock.anzahl++;
System.out.println ("Anzahl erzeugter Objekte:
+ StaticBlock.anzahl);
System.out.println ("Aufrufe stat. Initialisierungsblock: "
+ StaticBlock.anzahlAufrufeStaticBlock);

"

StaticBlock objekt2 = new StaticBlock();
StaticBlock.anzahl++;
System.out.println ("Anzahl erzeugter Objekte: "
+ StaticBlock.anzahl);
System.out.println ("Aufrufe stat. Initialisierungsblock: "
+ StaticBlock.anzahlAufrufeStaticBlock) ;

Klassen und Objekte 333

Die Ausgabe des Programms ist:

* Betreten des statischen Blocks *
|| Anzahl erzeugter Objekte: 1

Aufrufe stat. Initialisierungsblock: 1
Anzahl erzeugter Objekte: 2
Aufrufe stat. Initialisierungsblock: 1

Das Anschreiben des Klassennamens StaticBlock in der zweiten Zeile der
main ()-Methode signalisiert der Laufzeitumgebung, dass der Code dieser Klasse
nun bendtigt wird und in die virtuelle Maschine geladen werden soll. Dabei werden
die Klassenvariablen anzahl und anzahlAufrufeStaticBlock von der virtuellen
Maschine jeweils mit ihrem Default-Wert 0 initialisiert. Nachdem diese Initialisierung
stattgefunden hat, wird der statische Initialisierungsblock abgearbeitet und die Anwei-
sungen darin ausgefihrt. Dort wird der Wert der Klassenvariablen anzahlAufrufe-
StaticBlock auf 1 gesetzt. Nach der Abarbeitung des Blocks ist die Initialisierung
der Klasse abgeschlossen und es kann das erste Objekt objekt1 erzeugt werden.
Danach wird die Klassenvariable anzahl um 1 erhéht. Bei der Erzeugung des zwei-
ten Objektes objekt2 ist der Code der Klasse StaticBlock schon in der virtuellen
Maschine vorhanden. Es findet also kein Laden und auch keine Initialisierung der
Klassenvariablen mehr statt. Der statische Initialisierungsblock wird also nicht mehr
durchlaufen und es kann sofort das Objekt erzeugt werden. Die Klassenvariable
anzahlAufrufeStaticBlock hat somit immer noch den Wert 1 und wird nicht
mehr verandert. Die Klassenvariable anzahl hingegen wird erneut um 1 erhéht und
hat dann den Wert 2. Das Besondere an einem statischen Initialisierungsblock ist,
dass in ihm wie in jedem anderen Block beliebige Anweisungen stehen kénnen.

|

\ /
Ein statischer Initialisierungsblock kann beliebige Anweisungen ent- —
halten. Er wird im Rahmen der Initialisierung von Klassenvariablen ge- P

™~
nau einmal ausgefuhrt.

{ny

Auch fur die Initialisierung von Instanzvariablen gibt es einen Initialisierungs-
block. Dieser ist allerdings nicht statisch, wie in folgendem Beispiel zu sehen ist:

// Datei: Punkt3.java

public class Punkt3

{
public static int anzahl = 0;
private int x;
private int y;

{

System.out .println ("Wert von x: " + x);
System.out.println ("Wert von y: " + y);
anzahl++;

y =1;

334 Kapitel 10

public void print ()
{
System.out.println ("Die Koordinaten des Punktes sind:");
System.out.println ("x = " + x + ", y =" + y);
}
}

// Datei: TestPunkt3.java

public class TestPunkt3
{

public static void main (String[] args)

{
System.out.println ("Anzahl der Punkte: " + Punkt3.anzahl);
Punkt3 pl = new Punkt3(); // Anlegen eines Punkt-Objektes
pl.print();
System.out.println ("Anzahl der Punkte: " + Punkt3.anzahl);

Die Ausgabe des Programms ist:

Anzahl der Punkte: 0

Wert von x: 0
Wert von y: 0
Die Koordinaten des Punktes sind:

x =0, yv=1
Anzahl der Punkte: 1

Der nicht statische Initialisierungsblock wird einfach durch eine geschweifte 6ffnende
Klammer eingeleitet und durch eine geschweifte schlieBende Klammer beendet. In
ihm kénnen wie im statischen Initialisierungsblock beliebige Anweisungen stehen.
Ein nicht statischer Initialisierungsblock wird im Zuge der Initialisierung von Instanz-
variablen ausgefihrt. Im obigen Beispiel ist zu erkennen, dass die Default-Initialisie-
rungen der Instanzvariablen x und y schon durchgefihrt sind, wenn mit der Abarbei-
tung des Initialisierungsblocks begonnen wird.

Der nicht statische Initialisierungsblock wird jedes Mal dann aus- — -
gefuihrt, wenn ein Objekt dieser Klasse angelegt wurde. - ™~

Damit ist der Initialisierungsblock dafiir geeignet, die Klassenvariable anzahl, wel-
che die Zahl der erzeugten Objekte der Klasse Punkt als Wert enthalt, zu erhdhen.

\ /

Zuerst werden die Default-Initialisierungen durchgefiihrt. Manuelle Ini-
tialisierungen und Initialisierungen mit einem Initialisierungsblock wer-
den der Reihe nach abgearbeitet und tberschreiben die entsprechen- -~
den Default-Initialisierungen.

~

Klassen und Objekte 335

Anstatt des nicht statischen Initialisierungsblocks kann auch ein Konstruktor verwen-
det werden. Fir die Initialisierung der Objekte anonymer Klassen (siehe Kap. 15.3)
wird jedoch der nicht statische Initialisierungsblock benétigt, da anonyme Klassen
keinen Konstruktor besitzen.

10.4.4 Konstruktoren zur Initialisierung

Konstruktoren sind Initialisierungsroutinen, die automatisch beim Erzeugen eines
Objektes ausgefiihrt werden. Das bedeutet, dass die Initialisierung eines Objektes
sofort nach dem Anlegen des Objektes durch Aufruf des Konstruktors erfolgt. Hierzu
ist es lediglich erforderlich, dass der Name der Initialisierungsroutine gleich dem
Namen der Klasse ist. Dies wird in dem folgenden Beispiel demonstriert:

// Datei: Punkt4.java
public class Punkt4d
{
public static int anzahl = 0; // Anzahl der Punkte.

private int x;

private int y = 1;

public Punkt4 () // Dies ist ein Konstruktor.

{
System.out.println ("Anfang des Konstruktors");
print();
System.out.println ("Klassenvariable anzahl " +

"noch unverandert");

System.out.println ("anzahl hat den Wert " + anzahl);

// Initialisieren von Instanzvariablen

X = 2;
y = 3;
print () ;

// Hochzdhlen der Klassenvariable anzahl.
anzahl++;

System.out.println ("\nKlassenvariable anzahl " +
"inkrementiert");

System.out.println ("anzahl hat den Wert " + anzahl);

System.out.println ("Ende des Konstruktors");

}

public void print ()
{

System.out.println ("\nDie Koordinaten des Punktes sind:");

System.out.println ("x =" + x + ", y =" + y);

// Datei: TestPunkt4.java

public class TestPunkt4
{

336 Kapitel 10

public static void main (String[] args)
{
System.out.println ("Anzahl der Punkte: " + Punkt4.anzahl);
Punkt4 pl = new Punkt4(); // Anlegen eines Punkt-Objektes
// und Aufruf des Konstruktors

Die Ausgabe des Programms ist:

Anzahl der Punkte: 0

Anfang des Konstruktors
Die Koordinaten des Punktes sind:
x =0, yv=1
Klassenvariable anzahl noch unverdndert
anzahl hat den Wert O

Die Koordinaten des Punktes sind:

X =2, vy =3

Klassenvariable anzahl inkrementiert
anzahl hat den Wert 1
Ende des Konstruktors

Mit

Punkt4 pl = new Punktéd(); // Anlegen eines Punkt-Objektes
// und Aufruf des Konstruktors

wird die Referenzvariable p1 angelegt, ein Objekt der Klasse Punkt4 ohne Namen
auf dem Heap durch den new-Operator geschaffen und die Referenz auf das namen-
lose Objekt — die der new-Operator zurlickgibt — an die Referenzvariable p1 zuge-
wiesen. Im Anschluss an das Anlegen des Objektes auf dem Heap wird von der
virtuellen Maschine automatisch der Konstruktor aufgerufen. Das Anlegen eines Ob-
jektes und der Konstruktoraufruf sind untrennbar miteinander verknipft.

Beachten Sie, dass in obigem Beispiel im Konstruktor zum einen die Initialisierung
des Punktes erfolgt und zum anderen auch die Anzahl der angelegten Punkte
durch anzahl++ hochgezahit wird. Bei jedem Aufruf des Konstruktors wird die
Klassenvariable anzahl automatisch inkrementiert.

Da ein Konstruktor automatisch nach der Allokierung des Speicher- |
platzes fur ein Objekt aufgerufen wird, wird \ /

® in der Regel die Initialisierung im Konstruktor durchgefthrt /\

e und die Anzahl der erzeugten Objekte am besten auch im Konstruk-
tor hochgezahlt.

Klassen und Objekte 337

Konstruktoren werden zu Beginn der Lebensdauer eines Objekies automatisch
aufgerufen. Im Einzelnen gilt:

e Konstruktoren werden unmittelbar nach der durchgefiihrten Reservierung des
Speicherplatzes auf dem Heap durch den new-Operator aufgerufen.

e Konstruktoren von Basisklassen werden vor den Konstruktoren ihrer Nachkom-
men aufgerufen (siehe Kap. 11.3.2).

10.4.4.1 Beispiel zur Initialisierungsreihenfolge

Das folgende Beispiel zeigt, wie die Instanzvariablen eines Objektes zunachst mit
manuell angegebenen Anfangswerten belegt werden. Mit Hilfe des Konstruktors
kdénnen diese anschlieBend Uberschrieben werden:

// Datei: Person5.java

public class Personb

{

private String vorname = "Rainer";
private String name = "Brang";
private int alter = 25;

// Dies ist ein selbst geschriebener Default-Konstruktor
public Person5 ()
{

System.out.print ("Felder beim Eintritt in den ");
System.out.println ("Konstruktor:");

print();

vorname = "Franz";

name = "Miller";

alter = 35;
}

public void print ()

{
System.out.println ("Vorname: " + vorname) ;
System.out.println ("Name: " + name);
System.out.println ("Alter: " + alter);

338 Kapitel 10

// Datei: TestPerson5.java

public class TestPersonb

{
public static void main (String[] args)

{

Person5 pl = new Personb5();
System.out.println ("Felder nach dem Konstruktoraufruf: ");
pl.print();

Die Ausgabe des Programms ist:

Felder beim Eintritt in den Konstruktor:
Vorname: Rainer

Name: Brang

Alter: 25

Felder nach dem Konstruktoraufruf:
Vorname: Franz

Name: Miller

Alter: 35

Die Default-Werte von Datenfeldern werden durch eine manuelle Ini- . |,
tialisierung oder einen Initialisierungsblock Uberschrieben. Initialisie- _
rungen, die im Konstruktor durchgefiihrt werden, Uberschreiben so-
wohl Default-Werte als auch die Werte einer manuellen Initialisierung
und die Werte der Initialisierungen eines Initialisierungsblocks.

i

10.4.4.2 Konstruktoren mit Parametern

Wie Methoden kénnen auch Konstruktoren mit formalen Parametern versehen wer-
den. Auch der Rumpf des Konstruktors ist wie bei einer normalen Methode aufge-
baut. Bei der Erzeugung eines Objektes werden die aktuellen Parameter Gbergeben.
Die folgende Klasse Bruch3 hat einen Konstruktor mit zwei Parametern:

public class Bruch3

{
private int zaehlerFeld;
private int nennerFeld;

public Bruch3 (int zaehler, int nenner)

{
zaehlerFeld = zaehler;
nennerFeld = nenner;

}

public void print ()
{

}

Klassen und Objekte 339

Beim Anlegen eines Objektes mit dem new-Operator missen die aktuellen Para-
meter fUr den nachfolgenden Konstruktoraufruf Gbergeben werden. So bewirkt die
Codezeile

Bruch3 refBruch = new Bruch3 (2, 4);

das Anlegen eines Objektes der Klasse Bruch3 auf dem Heap, gefolgt vom Aufruf
des Konstruktors mit 2 Parametern.

10.4.4.3 Voreingestellter Default-Konstruktor

Der voreingestellte Default-Konstruktor wird vom Compiler zur Verfligung gestellt.
Er ist fur jede Klasse automatisch definiert, vorausgesetzt, es wird kein Konstruktor
selbst definiert. Ein voreingestellter Default-Konstruktor einer Klasse hat keine Para-
meter. Er ist ein parameterloser Konstruktor.

Bevor weitere Erlauterungen folgen, sollen die Begriffe, die fir Konstruktoren in den
folgenden Kapiteln verwendet werden, hier nochmals zusammengefasst und gegen-
einander abgegrenzt werden:

e Ein Default-Konstruktor ist ein Konstruktor ohne Parameter, der dem Benutzer in
der Regel®® keine frei vorgebbare individuelle Initialisierung von Datenfeldwerten
ermoglicht, da keine Parameter Ubergeben werden kénnen.

® Der voreingestellte Default-Konstruktor ist der vom Compiler zur Verfligung ge-
stellte Default-Konstruktor ohne Parameter.

e Der selbst geschriebene Default-Konstruktor ist ein Konstruktor ohne Para-
meter, der jedoch selbst geschrieben wurde.

e Konstruktoren mit Parametern erlauben eine frei vorgebbare individuelle Initiali-
sierung von Objekten.

Wird also Uberhaupt kein Konstruktor selbst geschrieben, so wird automatisch nach
dem Anlegen eines jeden Objekies der voreingestellte Default-Konstruktor auf-
gerufen. So war zum Beispiel im Programm Bruch. java in Kapitel 10.3 gar kein
selbst geschriebener Konstruktor vorhanden. Mit

b = new Bruch();
wurde der voreingestellte Default-Konstruktor Bruch () des Compilers aufgerufen.

Konstruktoren kdnnen genauso wie normale Methoden Uberladen werden. Es kdn-
nen beliebig viele Konstruktoren selbst geschrieben werden, die sich in Typ und
Anzahl der Ubergabeparameter unterscheiden. Es ist jedoch folgendes zu beachten:
Sobald nur ein einziger selbst geschriebener Konstruktor existiert — gleichgultig ob
mit oder ohne Parameter —, ist der vom Compiler zur Verfligung gestellte voreinge-
stellte Default-Konstruktor nicht mehr sichtbar. Deshalb kann von einer Klasse, die

Eine frei vorgebbare individuelle Initialisierung kann hier lediglich dadurch erreicht werden, dass im
Konstruktur der Benutzer aufgefordert wird, von der Tastatur aus individuelle Werte einzugeben.

340 Kapitel 10

nur Konstruktoren mit Parametern zur Verfigung stellt, kein Objekt mehr mit der An-
weisung

Klassenname refK = new Klassenname () ;

erzeugt werden. Der Compiler gibt in diesem Fall eine Fehlermeldung aus.

Sobald nur ein einziger selbst geschriebener Konstruktor existiert, ist /A\
der vom Compiler zur Verfugung gestellte voreingestellte Default-Kon- < Vorsicht!
struktor nicht mehr vorhanden. \V/

10.4.5 Aufruf eines Konstruktors im Konstruktor

Ein Konstruktor einer Klasse kann in seiner ersten Anweisung einen anderen
Konstruktor derselben Klasse aufrufen. So kann beispielsweise ein selbst ge-
schriebener Default-Konstruktor einer Klasse Person4 einen Konstruktor mit Para-
metern aufrufen und dabei die Default-Werte — bzw. die durch manuelle Initiali-
sierung und Initialisierungen in einem nicht statischen Initialisierungsblock erzeugten
Werte — der Datenfelder tGberschreiben. Mit Hilfe von

this (parameterliste)

kann ein solcher Aufruf erfolgen. Dies wird in folgendem Beispiel gezeigt:

// Datei: Person4.java

public class Person4

{
private String vorname;
private String name;

public Persond4 (String v, String n)

{

System.out.println ("Im Konstruktor mit Parametern!");
System.out.println (" Namne : "+ n);
System.out.println (" Vorname: " + v);

vorname = Vv;

name = nj;

}

public Person4()

{
this ("Vorname unbekannt", "Nachname unbekannt");
System.out.println ("Im parameterlosen Konstruktor!");

}

public void print()

{
System.out.println ("Ausgabe der print ()-Methode");
System.out.println (" Name : " + name);
System.out.println (" Vorname: " + vorname) ;

Klassen und Objekte 341

// Datei: TestPerson4.java

public class TestPersoné

{
public static void main (String[] args)
{

Person4 p = new Person4();
p.print();

Die Ausgabe des Programms ist:

Im Konstruktor mit Parametern!
Name: Nachname unbekannt

Vorname: Vorname unbekannt
Im parameterlosen Konstruktor!
Ausgabe der print ()-Methode

Name: Nachname unbekannt
Vorname: Vorname unbekannt

Bei der Ausgabe des Programms ist zu beachten, dass im parameterlosen Konstruk-
tor als allererstes der Konstruktor mit den Parametern aufgerufen werden muss.
Deshalb kann die Ausgabe "Im parameterlosen Konstruktor!" erst nach der
Abarbeitung des Konstruktors mit Parametern erfolgen. Genauso kann ein Konstruk-
tor mit Parametern mit this () als erste Anweisung den entsprechenden parameter-
losen Konstruktor aufrufen.

Ly : |
Mit Hilfe von this (parameterliste) kann aus einem Konstruktor ' /
/

ein anderer Konstruktor der gleichen Klasse aufgerufen werden. Diese -
Anweisung muss allerdings die erste Anweisung im Rumpf des Kon-
struktors sein.

~

iy

10.4.6 Arbeitsteilung zwischen new-Operator und Konstruktor bei
einer Aggregation

Das folgende Beispiel soll dazu dienen, die Arbeitsweise des new-Operators und des
Konstruktors im Falle einer Aggregation zu diskutieren.

Beim Erzeugen eines Objektes der Klasse BspKlasse:

BspKlasse pl = new BspKlasse();

wird durch new BspKlasse der new-Operator aufgerufen®. Der new-Operator legt
geman dem Klassennamen BspKlasse ein Objekt dieser Klasse auf dem Heap an,
wobei die entsprechenden Instanzvariablen angelegt und initialisiert werden. An-
schlieBend wird dann durch BspKlasse () der Default-Konstruktor der Klasse
BspKlasse aufgerufen.

8 Siehe Kap. 10.5.1.

342 Kapitel 10

Im Falle einer Aggregation® enthalt das aggregierende Objekt ("GroB"-Objekt) Refe-
renzen auf die aggregierten Objekte ("Klein"-Objekte). Im folgenden Beispiel soll dis-
kutiert werden, wie die aggregierten Objekte erzeugt werden. Bereits von vornherein
muss klar sein, dass die "Klein"-Objekte nicht in einem Schritt zusammen mit dem
"Gross"-Objekt erzeugt werden kdnnen, da die aggregierende Klasse ja nur Refe-
renzen auf die aggregierten Objekte enthalt. Dies bedeutet, dass der new-Operator
fir die aggregierende Klasse nur die Referenzen auf die aggregierten Objekte in der
Form von Datenfeldern anlegen kann, mehr aber nicht!

Als Beispiel fir diese Diskussion soll ein Programm geschrieben werden, welches es
erlaubt, die gréBte Entfernung zwischen beliebigen Punkten in einer Ebene zu be-
rechnen. Der Einfachheit halber soll sich das Test-Programm der Klasse Punkt-
ArrayTest auf 3 beliebige Punkte beschrédnken. Die Koordinaten dieser Punkte
sollen im Dialog eingegeben werden kdnnen. Das Programm soll aus der Testklasse
PunktArrayTest, aus der Klasse PunktArray und aus der schon bekannten
Klasse Punkt bestehen. Die Klasse PunktArray soll eine Referenzvariable auf ein
Array aus Referenzen auf Punkte enthalten. Diese Referenzen zeigen wiederum auf
die Punkt-Objekte (siehe Bild 10-3):

:Punkt
Array aus Referenzen
:PunktArray auf Punk t-Objekte
ref [0} :Punkt
. ’\\\\\’/’ //R_///’
L ref[1]
\ ref[2]
_ :Punkt
Referenz auf das Array
aus Referenzen

Bild 10-3 Datenstruktur eines Objektes der Klasse PunktArray

Wie viele Punkte ein Array-Objekt der Klasse PunktArray enthalt, muss flexibel
sein und muss im Rahmen der Initialisierung festgelegt werden kénnen. Die Initiali-
sierung ist Sache des Konstruktors PunktArray (). Er muss also einen Ubergabe-
parameter besitzen, der die Anzahl der zu erzeugenden Punkte aufnimmt:

PunktArray (int anzahl)

Die Anzahl der zu erzeugenden Punkte wird dem Konstruktor dann als aktueller
Parameter Ubergeben. Die Klasse PunktArrayTest soll ein Objekt der Klasse
PunktArray erzeugen. Dem Konstruktor der Klasse PunktArray wird als aktueller
Parameter 3 mitgegeben. Dies bedeutet, dass das erzeugte Objekt der Klasse
PunktArray 3 Punkte enthalten soll.

// Datei: PunktArrayTest.java

public class PunktArrayTest
{

% Siehe Kap. 2.3 und 4.6.

Klassen und Objekte 343

public static void main (String args|[])

{
PunktArray ref = new PunktArray (3);
System.out.println ("Maximale Entfernung: " + ref.maximum());

}

Die Klasse PunktArray soll in ihrem Konstruktor die geforderte Anzahl von Punkten
erzeugen und soll ferner eine Methode maximum () fir die Berechnung der gréBten
Entfernung bereitstellen. Diese Methode soll die Methode entfernung () verwen-
den, die den Abstand zwischen 2 Punkten berechnet.

// Datei: PunktArray.java

public class PunktArray

{
private Punkt5[] ref;

PunktArray (int anzahl)

{
ref new Punkt5 [anzahl]; // Schritt 1

for (int 1lv = 0; 1lv < ref.length; 1lv = 1lv + 1)
ref [1lv] = new Punkt5(); // Schritt 2
}

double entfernung (Punkt5 gl, Punkt5 g2)
{
// Der Quellcode wird spdter diskutiert
}
public double maximum()

{
// Der Quellcode wird spdter diskutiert

Array aus Referenzen
‘PunktArra / auf Punkt-Objekte/\/
ref[0]
ref ///"\\\\~’///'
hd ref[1] ,/”_‘_’///,
\ ref[2]
_\/' :Punkt

}

:Punkt

:Punkt

\\ Referenz auf das Array
aus Referenzen
_ A /
—~

Der new-Operator legt das Der Konstruktor-Aufruf PunktArray (3) erzeugtin
Objekt der Klasse Punkt - Schritt 1 das Array aus Referenzen auf 3 Punkte und
Array mit dem Datenfeld rer Weist die Referenz auf das erzeugte Array-Objekt dem Da-
als Referenz auf das Array tenfeld ref zu. In Schritt 2 erzeugt der Konstruktor die 3
aus Referenzen auf Punkte dazugehdrigen Punkte und weist deren Referenzen den 3

durch new PunktArray an. Referenzvariablen ref [0],ref [1] undref [3] zu.

Bild 10-4 Arbeitsteilung bei der Objekterzeugung

344

Kapitel 10

Mit dem new-Operator werden fiir ein Objekt einer aggregierenden
Klasse nur die Referenzen auf die aggregierten Objekte angelegt.
Im Konstruktor werden dann die aggregierten Objekte erzeugt und
die Referenzen auf die erzeugten aggregierten Objekte den Referen-

zen des aggregierenden Objektes zugewiesen.

\'/

(N

Hier der Vollstandigkeit halber der Quellcode der Methoden entfernung() und

maximum () :
double entfernung (Punktb gl, Punkt)
{
return Math.sqgrt ((gl.getX() - g2.
(gl.getX() - g2.
(gl.getY () - g2.
(gql.getY() - q2.

// Satz des Pythagor

}

* +

Die Methode sqgrt () der Bibliotheksklasse Math liefert die Quadratwurzel eines
Ausdrucks. Die Methode maximum () bestimmt den gréBten Abstand:

public double maximum()

{

double max = 0;
for (int i = 0; i < ref.length; i++)
{
for (int §j = 0; J < 1i; J++)
{
double entfernung = entfernung (ref [i], ref
if (entfernung >= max)
max = entfernung;
}
}
return max;
}
Hier zum Abschluss die Klasse Punkt5:
// Datei: Punkt5.java
import java.util.Scanner;
public class Punkt5
{
private double x;
private double y;
public Punkt5() // Ignorieren Sie den Konstruktor.

[31)7

// Benutzen Sie ihn einfach unbesehen

{

Scanner scanner = new Scanner (System.in);

Klassen und Objekte 345

String eingabeX;

String eingabeY;

System.out.println ("Gib den x-Wert ein: ");
eingabeX = scanner.next();
System.out.println ("Gib den y-Wert ein: ");
eingabeY = scanner.next();

try

{
X Double.valueOf (eingabeX);
y = Double.valueOf (eingabeY) ;

}

catch (NumberFormatException e)

{
System.out.println (e.toString());
System.exit (1);

}

public double getX()
{

return x;

}

public void setX (double u)

public double getY ()
{

return y;

}

public void setY (double v)
{
y = vy

}

Nach Aufruf der Klasse PunktArrayTest wurde folgender
Dialog gefuhrt:

Gib den x-Wert ein:
éib den y-Wert ein:
éib den x-Wert ein:
éib den y-Wert ein:
éib den x-Wert ein:
éib den y-Wert ein:
iaximale Entfernung: 2.8284271247461903

346 Kapitel 10

10.5 Instantiierung von Klassen

Objekte werden nach dem Bauplan einer Klasse erzeugt.

Das Erzeugen eines Objektes einer Klasse wird auch als Instanti- -
ierung oder Instantiieren einer Klasse bezeichnet. Damit soll zum — @
Ausdruck gebracht werden, dass eine Instanz dieser Klasse geschaf- -~ ~

fen wird.

Zwei Begriffe, deren Bedeutung oft verwechselt wird, sind Instanti-
ierung und Initialisierung:

® Bei der Instantiierung wird ein neues Objekt einer Klasse auf dem |
Heap angelegt. Die Instantierung wird mit dem new-Operator

durchgeftihrt. ‘/:
e Bei der Initialisierung werden die Datenfelder des erzeugten (instan- =/

tiilerten) Objektes mit Werten belegt. Die Initialisierung kann mit De-
fault-Werten, mit Hilfe einer manuellen Initialisierung, mit einem
nicht statischen Initialisierungsblock oder mit Hilfe des Konstruktors
erfolgen.

Wird ein Objekt mit Hilfe des new-Operators geschaffen, so wird Speicher flr dieses
Objekt bereitgestellt. Durch Aufruf des Konstruktors wird das Objekt initialisiert.

10.5.1 Ablauf bei der Instantiierung

Anhand der folgenden Anweisung, in der p1 ein Datenfeld einer Klasse sein soll und
keine lokale Variable, wird betrachtet, welche Schritte in welcher Reihenfolge bei der
Instantiierung

Person pl = new Person();
ablaufen:

® |n Schritt 1 wird die Referenzvariable p1 vom Typ Person angelegt und mit
null initialisiert.

® |n Schritt 2 wird durch new Person der new-Operator aufgerufen und die Klasse
Person instantiiert, mit anderen Worten, es wird ein Objekt der Klasse Person
auf dem Heap erzeugt.

e SchlieBlich erfolgt in Schritt 3 die Initialisierung des Objektes. Es werden De-
fault-Initialisierungen der Instanzvariablen durchgeftihrt (je nach Typ mit 0, 0.0f,
0.0d, "\u0000"', false bzw. null) und dann eventuell angegebene manuelle
Initialisierungen und Initialisierungen durch einen nicht statischen Initialisierungs-
block. AnschlieBend wird der Konstruktor aufgerufen.

® |n Schritt 4 gibt der new-Operator eine Referenz auf das neu im Heap erzeugte
Objekt zurlick, welche der Referenzvariablen p1 zugewiesen wird.

Klassen und Objekte 347

Beachten Sie, dass in der Tat der Konstruktor den gleichen Namen wie die Klasse
tragen muss. Zum einen sagt in Schritt 2 der Klassenname Person dem new-Opera-
tor, dass ein Objekt der Klasse Person geschaffen werden soll. Weiterhin wird der
new-Operator nach der Erzeugung des Objektes in Schritt 3 veranlasst, den Kon-
struktor Person () aufzurufen.

10.5.2 Verhindern der Instantiierung einer Klasse

Deklariert man alle selbst geschriebenen Konstruktoren als private, so ist es nicht
maoglich, in einer anderen Klasse Objekte dieser Klasse mit dem new-Operator zu
erzeugen. Als private deklarierte Konstruktoren werden eingesetzt, um sicherzu-
stellen, dass nur genau ein Objekt einer Klasse erzeugt werden kann. Die Erzeugung
des einzigen Objektes erfolgt Uber eine speziell zur Verfligung gestellte Klassenme-
thode. Das folgende Programm zeigt eine Implementierung des Singleton-Ent-
wurfsmusters und stellt sicher, dass nur ein Objekt einer Klasse erzeugt wird:

// Datei: Test.java

class Singleton

{

private static Singleton instance;

private Singleton|()

{

System.out.println ("Bin im Konstruktor");

}

public static Singleton getInstance()
{

if (instance == null)

{

instance = new Singleton();

}

return instance;

}

public class Test

{

public static void main (String[] args)

{

// Singleton s = new Singleton(); gibt Fehler
Singleton s2 = Singleton.getInstance(); // new wird

// aufgerufen
Singleton s3 = Singleton.getInstance(); // new wird nicht

// mehr aufgerufen

Die Ausgabe des Programms ist:

Bin im Konstruktor

348 Kapitel 10

10.6 Freigabe von Speicher

In der Programmiersprache Java hat der Programmierer nicht die Méglichkeit — aber
auch nicht die Pflicht — Speicherplatz auf dem Heap, der nicht langer bendtigt wird,
selbst freizugeben. Der Garbage Collector der virtuellen Maschine hat alleine die
Verantwortung, Speicherplatz auf dem Heap, der nicht l&nger bendtigt wird, aufzu-
splren und freizugeben. Der Programmierer kann die Freigabe eines Objektes nur
dadurch beeinflussen, indem er alle Referenzen auf dieses Objekt auf null setzt.
Denn wenn ein Objekt von niemanden mehr referenziert wird, kann es der Garbage
Collector freigeben. Wann dies erfolgt, ist jedoch Sache der virtuellen Maschine.

In Java wird nicht garantiert, dass wahrend der Laufzeit eines Programmes ein
Objekt zerstort wird. Der Garbage Collector wird nur tatig, wenn er spirt, dass es eng
im Heap wird. Wenn zum Anlegen eines neuen Objektes der vorhandene Platz im
Heap nicht ausreicht®, muss die virtuelle Maschine versuchen, durch eine Spei-
cherbereinigung des Garbage Collectors Platz zu gewinnen. Schlagt dieser Versuch
fehl, so wird eine Exception vom Typ OutOfMemoryError ausgeldst.

\ /
Bei einer Speicherbereinigung werden die nicht referenzierten Objekte —
aus dem Heap entfernt. Mit anderen Worten, ihr Platz wird zum Uber-

schreiben freigegeben.

~

|

Lasst man im Beispiel

Person pl = new Person();

durch

pl = null;

die Referenz p1 nicht langer auf das mit new geschaffene Objekt, sondern auf nul1l
zeigen, so wird damit vom Programmierer explizit das Objekt im Heap zur Speicher-

bereinigung freigegeben — vorausgesetzt, es existiert keine weitere Referenz auf
dieses Objekt.

Wann die virtuelle Maschine einen Lauf des Garbage Collectors durchflhrt, ist Sache
der virtuellen Maschine.

Beeinflussen der Heap-GréBe 9/
Beim Start eines Java-Programms mit

java Klassenname

legt die virtuelle Maschine die maximale Heap-GréBe in Abh&ngigkeit vom verwen-
deten Betriebssystem und der verwendeten Prozessor-Architektur fest. Die Aus-
fihrung des Java-Interpreters java kann durch Hinzuflgen verschiedenster Kom-
mandozeilen-Optionen beeinflusst werden. So gibt es unter anderem die beiden

" Der Speicherbereich des Heap st6Bt dann an seine Grenzen, wenn mehr Objekte erzeugt werden,
als der Heap aufnehmen kann.

Klassen und Objekte 349

Optionen —xMm und -XMx, mit deren Hilfe die minimale bzw. maximale GréBe des
Heap der gestarteten virtuellen Maschine individuell festgelegt werden kann. So
startet der Aufruf

java —-XMx100m Klassenname

eine virtuelle Maschine mit einer maximalen Heap-GrdBe von 100 MB. Eine Mdglich-
keit, wie man den Heap komplett belegen kann, wird im folgenden Beispielprogramm
gezeigtgz. Ein Objekt der generischen Klasse®® vector<T> wird verwendet, um
beliebig viele Objekte vom Typ stringBuffer aufzunehmen. Das Fiillen des vec-
tor<T>-Objektes erfolgt innerhalb einer Endlosschleife. Es werden somit so lange
Objekte vom Typ StringBuffer erzeugt und in das vector<T>-Objekt eingefligt,
bis der Heap keine Objekte mehr aufnehmen kann und der Speicher voll ist. Es wird
dann eine Exception vom Typ outOfMemoryError geworfen. Dies bedeutet, dass
die Endlosschleife verlassen wird und das Programm normalerweise abbricht. In dem
Beispiel unten wird die geworfene Exception durch das try/catch-Konstrukt abge-
fangen und behandelt. Innerhalb des catch-Blocks findet die Fehlerbehandlung
statt. Es wird zuerst eine Referenz auf das Objekt vom Typ Runtime besorgt. Durch
Aufruf der Methode freeMemory () flr das Objekt vom Typ Runtime kann dann
der noch freie Heap-Speicher abgefragt werden. Nachdem der freie Speicher auf
dem Heap abgefragt und ausgegeben wurde, wird den Referenzen auf die erzeugten
Objekte vom Typ StringBuffer, die das Vector<T>-Objekt héalt, durch Aufruf der
Methode clear () zum Vector<T>-Objekt die null-Referenz zugewiesen. Damit
werden die StringBuffer-Objekte nicht mehr referenziert und kénnen jetzt durch
den Garbage Collector freigegeben werden. Zwei weitere Abfragen des freien Spei-
chers zeigen allerdings, dass der Garbage Collector nicht wirklich viel Speicher frei-
gibt. Erst nachdem wieder erneut Speicher durch das Erzeugen eines StringBuf—
fer-Objektes angefordert wird, gibt der Garbage Collector den Speicher frei.

// Datei: GarbageCollectorTest.java
import java.util.x*;

public class GarbageCollectorTest

{
// Bitte beachten Sie nicht das throws Exception-Konstrukt
public static void main (String[] args) throws Exception

{

Vector<StringBuffer> v = new Vector<StringBuffer>();

try // try-Block
{
for(;;) // Endlosschleife
{
// Viele String-Buffer-Objekte erzeugen
v.add (new StringBuffer (2000));

2 Es wird hierbei auf die Themen Ausnahmebehandlung (siehe Kap. 13) und Collections (siehe Kap.

18) vorgegriffen. Das Beispielprogramm wird besser verstanden, wenn die beiden genannten
Kapitel zuvor behandelt wurden.

% Generische Klassen werden in Kapitel 17 behandelt.

350

Kapitel 10

catch (Throwable e) // catch-Block fiir die Fehlerbehandlung

{

// Hier wird die Exception vom Typ OutOfMemoryError
// abgefangen. Es kann nun der Fehler behandelt werden.

// Referenz auf die aktuelle Laufzeitumgebung.
Runtime r = Runtime.getRuntime () ;

// Der Aufruf von freeMemory () auf dem Runtime-Objekt frdagt
// von diesem den im Moment des Aufrufs zur Verfiigung
// stehenden freien Speicher des Heap ab.
System.out.println (

"Freier Speicher vor clear(): " + r.freeMemory());

// Das Vector<T>-Objekt wurde mit Referenzen auf Objekte

// vom Typ StringBuffer gefiillt. Das bedeutet, dass die

// erzeugten StringBuffer-Objekte nur vom Vector<T>-Objekt
// referenziert werden. Der Aufruf von clear () auf dem

// Vector<T>-Objekt 1ldscht nun alle im Vector gespeicherten
// Referenzen. Somit werden die erzeugten StringBuffer-

// Objekte nicht mehr referenziert und der Garbage

// Collector kann die Objekte auf dem Heap ldschen.
v.clear();

// Alle zuvor erzeugten Objekte vom Typ StringBuffer
// werden nicht mehr referenziert und sind Datenmiill.
// Sie kdnnen vom Garbage Collector beseitigt werden.
System.out.println (

"Freier Speicher nach clear(): " + r.freeMemory());

// Funf Sekunden warten. Vielleicht hat danach
// die virtuelle Maschine aufgerdumt?

Thread.sleep (5000);

System.out.println (
"Freier Speicher 5s nach clear(): " + r.freeMemory());

System.out.println ("Wieder Speicher belegen!");
v.add (new StringBuffer (2000));

System.out.println ("Freier Speicher: " + r.freeMemory());

Die Ausgabe des Programms ist:

Freier Speicher vor clear(): 3912
Freier Speicher nach clear(): 3912
Freier Speicher 5s nach clear(): 3832

Wieder Speicher belegen!
Freier Speicher: 226531216

In Zusammenhang mit dem Garbage Collector wird auch oft die Methode fina-
lize () erwahnt. Die Methode finalize () istin der Klasse Object definiert. Da
jede Klasse in Java von der Klasse Object abgeleitet ist, besitzt auch jedes Objekt

Klassen und Objekte 351

in Java eine geerbte Methode finalize (). Die Methode finalize () der Klasse
Object hat allerdings einen leeren Methodenrumpf. Das Besondere an der Methode
finalize () ist nun, dass der Garbage Collector die Methode finalize () aufruft,
bevor er ein Objekt aus dem Speicher entfernt. Damit kénnte man durch Uber-
schreiben der Methode finalize () (das Uberschreiben von Methoden wird erst in
Kapitel 11.2.2 behandelt) beispielsweise nicht mehr benétigte Ressourcen flr ein
Objekt freigeben. Da allerdings weder definiert ist, wann der Garbage Collector die
Objekte aus dem Speicher entfernt, noch sichergestellt ist, dass der Garbage Collec-
tor auf jeden Fall eine Speicherbereinigung vor der Beendigung eines Programms
durchfuhrt, ist generell von der Verwendung der Methode finalize () abzuraten.

10.7 Die Klasse Object

Jede Klasse und jeder Array-Typ wird implizit, d. h. ohne eine explizite Angabe des
Programmierers, von der Klasse Object abgeleitet. Damit beinhaltet jede Klasse
und ein jedes Array automatisch alle Methoden der Klasse object. Die Methoden
der Klasse Object lassen sich in zwei Kategorien einteilen:

® in Methoden, die Threads (siehe Kap. 19) unterstitzen

® und in allgemeine Utility-Methoden.

Hier werden nur die Utility-Methoden aufgefihrt:

® public String toString()

Die Methode tostring () ermdglicht die Ausgabe eines Strings, der fir das
Objekt charakteristisch ist. Der Riickgabewert von toString () ist eine Zeichen-
kette, die das entsprechende Objekt charakterisiert.

® public boolean equals (Object obj)

Diese Methode gibt bei einem Aufruf x.equals (y) das Ergebnis true zurlick,
wenn x und y Referenzen auf dasselbe Objekt sind.

® protected Object clone() throws CloneNotSupportedException94

Die Methode clone () erlaubt es, eine Kopie eines Objektes zu erzeugen. Die
Methode clone () wird in Kapitel 14.6 vorgestellt.

® protected void finalize() throws Throwable®

Die Methode finalize () erlaubt "Aufrdumarbeiten" vor der Zerstérung eines
Objektes. Von der Verwendung der Methode finalize () wird allerdings abgera-
ten.

94
95

Auf die Exception-Klasse CloneNotSupportedException soll hier nicht eingegangen werden.
Die Exception-Klasse Throwable soll hier nicht betrachtet werden.

352

Kapitel 10

10.8 Ubungen

Aufgabe 10.1: Information Hiding

10.1.1

Kontovergleich

Es soll eine Klasse Konto entwickelt werden. Ein Konto beinhaltet den Kon-
tostand und wird einer Person zugeordnet. Um eine Person zu beschreiben,
wird die schon bekannte Klasse Person mit den Instanzvariablen name und
vorname verwendet. Die Klasse KontoTest wird zum Testen der Klasse
Konto verwendet. Sie beinhaltet neben der main ()-Methode eine weitere
Klassenmethode mit der Bezeichnung kontovergleich (). Dieser Metho-
de werden zwei Objekte der Klasse Konto Ubergeben. Die Ubergebenen
Konten werden dann auf die Héhe des Kontostands hin verglichen und das
Ergebnis auf dem Bildschirm ausgegeben. Ergédnzen Sie das folgende Pro-
grammfragment. Fehlende Stellen sind durch markiert.

// Datei: KontoTest.java

public class KontoTest
{
public static void kontoVergleich (.)
{
if (. . . .)
{
System.out.println (kl.getName ()
+ " hat mehr Geld auf dem Konto als "
+ k2.getName());
}
else
{
System.out.println (k2.getName ()
+ " hat mehr Geld auf dem Konto als "
+ kl.getName());

}

public static void main (String[] args)

{
Konto kontol = new Konto ("Miiller", "Hans", 500);
Konto konto2 = new Konto ("Krause", "Peter", 1500);
Konto konto3 = new Konto ("B&dhm", "Harald", 330);
kontoVergleich (kontol, konto2);
kontoVergleich (konto2, konto3);
kontoVergleich (kontol, konto3);

// Datei: Konto.java

public class Konto

{
private Person person;
private double kontostand;

Klassen und Objekte 353

public Konto (String name,
String vorname,
float kontostand)

}
10.1.2 Die Klasse Buch

Entwickeln Sie eine Klasse Buch, die ein Buch nach folgenden Attributen
beschreibt: Titel, Autor, Verlag und Anzahl der Seiten. Alle Instanzvariablen
sollen private sein und nur Uber entsprechende get- und set-Methoden zu-
ganglich sein. Schreiben Sie zuséatzlich einen Konstruktor, der es erlaubt, die
Instanzvariablen benutzerdefiniert zu initialisieren.

Schreiben Sie eine Testklasse, die in ihrer main () -Methode mehrere Instan-
zen der Klasse Buch erzeugt und deren Inhalt auf dem Bildschirm ausgibt.

Aufgabe 10.2: Klassenvariable und Klassenmethoden
10.2.1 Klassenvariable fiir die Kfz-Zulassung

a) Es soll eine Klasse fur Kfz-Zulassungen erstellt werden. Schreiben Sie
hierzu eine Klasse KfzzZulassung. Die Informationen einer Kfz-Zulas-
sung bestehen aus den beiden Datenfeldern kennzeichen und fahr-
zeughalter, die jeweils aus einem String bestehen und private sein
sollen. Es soll eine Klassenvariable anzahl vom Typ int geben, welche
die Anzahl der erzeugten Zulassungen zahlt und public ist. Als Metho-
den sollen zur Verfligung stehen:

1. eine Methode print () zur Ausgabe der beiden Datenfelder kenn-
zeichen und fahrzeughalter,

2. ein Konstruktor mit 2 Parametern zur Initialisierung von kennzeichen
und fahrzeughalter,

3. eine Methode main () zum Testen.
Erzeugen Sie in der Methode main () zwei Objekte der Klasse Kfzzu-
lassung mit folgenden Werten:

® "ES-FH 2003" und "Martin Mustermann"
® "ES-FH 2004" und "Markus Miiller"

Die Referenz z1 verweist auf das erste Objekt, die Referenz z2 ver-
weist auf das zweite Objekt. Bei jedem Erzeugen eines Objektes der
Klasse KfzZulassung wird die Klassenvariable anzahl in der Me-
thode main () um 1 hochgezéahlt. Vor als auch nach dem Erzeugen
eines Objektes wird der Wert der Klassenvariable anzahl am Bild-
schirm ausgegeben.

354

Kapitel 10

10.2.2

b) Nehmen Sie lhre Lésung von a) und verlagern Sie die Methode main () in

die Klasse TestKfzZulassung. Die Klasse KfzZulassung soll in die
Klasse KfzzZulassung2 ohne eine Methode main () umgeschrieben
werden. Versuchen Sie in der Methode main () der Klasse TestKfzzu-
lassung, ob Sie Uber die Referenz z1 das Kennzeichen &dndern kénnen
durch

z1l.kennzeichen = "N-EU 1111";

Andern Sie den Zugriffismodifikator des Datenfeldes kennzeichen von
private auf public und versuchen Sie es erneut. Versuchen Sie das-
selbe in der Methode main () der Klasse KfzZulassung aus Teilauf-
gabe a). Gibt es einen Unterschied?

c¢) Verbessern Sie Ihr Programm, indem Sie das Hochzahlen der Anzahl der

Zulassungen im Konstruktor durchfiihren.

Klassenvariable und Klassenmethoden fiir Kinos

Ein Kinobesitzer mdchte seine Kinosale in einem Informationssystem halten
kénnen. Hierzu sind die Klassen Kinosaal und TestKinosaal zu ent-
wickeln. Die Klasse Kinosaal besitzt folgende Eigenschaften:

einen parameterlosen Konstruktor,

die beiden Instanzvariablen saalNummer und
anzahlSitzplaetzeSaal,

die beiden Klassenvariablen anzahlSitzplaetzeKino und
anzahlKinosaele,

eine get- und set-Methode, um die Anzahl der Sitzplatze eines Saals
auszulesen bzw. festzulegen,

die beiden Klassenmethoden getAnzahlSitzplaetzeKino () und
getAnzahlKinosaele ().

Die Klasse TestKinosaal ist eine Wrapper-Klasse fir die Methode
main (). In dieser Methode soll die Klasse Kinosaal getestet werden. Hier-
zu sollen zwei Kinoséle mit 50 bzw. 100 Sitzplatzen angelegt werden. Alle
Variablen sollen vom Typ int und private sein.

a) Schreiben Sie die Klasse Kinosaal. Bei jedem Erzeugen eines Kinosaals

soll der Wert der Variablen anzahlKinosaele um 1 erhéht werden. Je-
der Kinosaal soll beim Erzeugen eine eindeutige Nummer saalNummer
erhalten, die direkt aus der Anzahl der Kinoséle abgeleitet wird. Mit der
Methode

public void setAnzahlSitzplaetzeSaal (int
anzahlSitzplaetzeSaal)

soll fir einen neu erzeugten Kinosaal die anzahlSitzplaetzeSaal ge-
setzt werden. Dabei soll die anzahlSitzplaetzeKino um den Wert
anzahlSitzplaetzeSaal erhdéht werden.

Klassen und Objekte 355

b) Schreiben Sie die Methode setAnzahlSitzplaetzeSaal () aus Teil-
aufgabe a) so um, dass die Anzahl der Sitzplatze eines Kinosaals nach-
traglich geandert werden kann und die Anzahl der Sitzplatze des Kinos
entsprechend angepasst wird.

Aufgabe 10.3: Selbstreferenzierung mit der this-Referenz

10.3.1

Verkettung von Methodenaufrufen

Wie bereits in Kapitel 10.3 erklart wurde, kénnen mit Hilfe der this-Referenz
Methodenaufrufe verkettet werden. Erweitern Sie das folgende Programm-
fragment, sodass die Methode zum Skalieren der Seitenlange eines Wiirfels
sowie die Methoden zum Berechnen der Grundflache, der Oberflache und
des Volumens miteinander verkettet werden kénnen. Fehlende Stellen sind
durch..... markiert.

//MethodenverkettungTest. java

public class MethodenverkettungTest
{
static public void main (String[] args)

{

Wuerfel w = new Wuerfel (5.0f);

w.berechneGrundflaeche ()
.berechneOberflaeche ()
.berechnevVolumen ()
.print();
w.skaliereSeitenlaenge (2.0f)
.berechneGrundflaeche ()
.berechneOberflaeche ()
.berechnevVolumen ()
.print();

}

class Wuerfel

{
private float seitenlaenge;
private float grundflaeche;
private float oberflaeche;
private float volumen;

public Wuerfel (float s)

{
this.seitenlaenge = s;
this.grundflaeche = s * s;
this.oberflaeche = this.grundflaeche * 6;
this.volumen = this.grundflaeche * s;

}

public float getSeitenlaenge ()
{

return this.seitenlaenge;

}

356 Kapitel 10

public float getGrundflaeche ()
{

return this.grundflaeche;

}

public float getOberflaeche ()
{

return this.oberflaeche;

}

public float getVolumen ()
{

return this.volumen;

}

public Wuerfel setSeitenlaenge (float s)

{

this.seitenlaenge = s;

}

public Wuerfel skaliereSeitenlaenge (float faktor)

{

this.seitenlaenge = this.seitenlaenge * faktor;
}

public Wuerfel berechneGrundflaeche /()
{
this.grundflaeche =
this.seitenlaenge * this.seitenlaenge;

}

public Wuerfel berechneOberflaeche ()
{
this.oberflaeche =
this.seitenlaenge * this.seitenlaenge * 6;

}

public Wuerfel berechneVolumen ()
{
this.volumen =
this.seitenlaenge
* this.seitenlaenge
* this.seitenlaenge;

}

public void print ()
{
System.out.println ("Seitenlaenge: "
+ this.seitenlaenge);
System.out.println ("Grundflaeche: "
+ this.grundflaeche);

Klassen und Objekte 357

System.out.println ("Oberflaeche: "

+ this.oberflaeche);
System.out.println ("Volumen: "

+ this.volumen) ;

}
10.3.2 Hello World mit statischen Methoden

Im folgenden "Hello World"-Programm hat sich ein Fehler eingeschlichen.
Finden und korrigieren Sie den Fehler.

//HelloWorld. java

public class HelloWorld
{
public static void main (String[] args)
{
this.print();
}

public static void print()
{
System.out.println ("Hello World!");
}
}

Aufgabe 10.4: Flughafen-Projekt

In Kapitel 2.5 wurde das Flughafen-Projekt vorgestellt. Dieses Projekt soll nun als
eine durchgehende Projektaufgabe in diesem und in den restlichen Kapiteln realisiert
werden. Diese Aufgabe unterscheidet sich hierbei von den Ubungen dahingehend,
dass der durch die Problemlésung entstehende Quellcode einer Projektaufgabe
immer als Basis fir die darauf folgende Projektaufgabe dient. Hierbei wird versucht,
das jeweils neu erworbene Wissen direkt in die Projektaufgaben der einzelnen Ka-
pitel einflieBen zu lassen. Auch soll bei diesen Projektaufgaben lediglich ein roter Fa-
den vorgegeben werden. Die eigentliche Implementierung kann dabei von der Mus-
terldsung erheblich abweichen. Die Musterldsung soll somit nur als eine mdégliche
Beispiellésung dienen. Da die Realisierung des kompletten Flughafensystems den
Rahmen dieses Buches sprengen wirde, wird nur ein ausgesuchter Teil realisiert.
Dieser Teil beschrankt sich auf die Rolle des Lotsen. Es werden dabei folgende Use
Cases betrachtet:

® Zeitplan anfordern
® | andung durchfihren
o Start durchfihren

10.4.1 Erste Schritte mit der Klasse Flugzeug
Das wichtigste Objekt eines Flughafens ist das Flugzeug. Denn ohne Flug-

zeuge wird auch kein Flughafen benétigt. Aus diesem Grund beschaftigt sich
diese Aufgabe damit, eine erste Version der Klasse Flugzeug zu erstellen.

358

Kapitel 10

Diese Klasse soll dabei den Vorgang der Landung und den darauf folgenden
Start eines Flugzeugs auf sehr einfache Weise ermdglichen.

Die Klasse Flugzeug soll folgende Instanzvariablen besitzen (wahlen Sie
jeweils einen Ihrer Meinung nach passenden Typ fir die einzelnen Instanz-
variablen):

fluggesellschaft Name der Fluggesellschaft, welcher das Flugzeug
gehort,

flugnummer kennzeichnet das Flugzeug durch eine eindeutige Flug-
nummer,

flugzeugtyp gibt den Typ des Flugzeugs an,

istzeitLandung die Istzeit, an der das Flugzeug gelandet ist,
istzeitstart die Istzeit, an der das Flugzeug gestartet ist,

landebahn die Bahn, welche dem Flugzeug zur Landung zugeteilt wird,
parkstelle gibt an, wo das Flugzeug nach der Landung parken soll.
Eine Parkstelle kann dabei eine Parkposition, die Werft oder ein separates
Parkfeld sein,

sollzeitLandung die Sollzeit, an der das Flugzeug wahrscheinlich
landet,

sollzeitStart die Sollzeit, an der das Flugzeug wahrscheinlich startet,
startbahn die Bahn, welche vom Flugzeug beim Start verwendet wird,

status gibt den aktuellen Status des Flugzeugs an. Mdgliche Stati sind:
Wartend, Landeanflug, Gelandet, Geparkt, Startvorbereitung und Gestar-
tet.

Des Weiteren soll die Klasse Flugzeug eine Klassenvariable anzahl1Flug-
zeuge besitzen. Diese Klassenvariable soll die Anzahl der erzeugten Flug-
zeuge zahlen.

Die Landung lasst sich vorlaufig in die folgenden vier Phasen einteilen:

Neues Flugzeug melden

Die Klasse soll hierzu einen Konstruktor mit drei Ubergabeparametern be-
sitzen. Diese drei Ubergabeparameter beschreiben den Flugzeugtyp des
Flugzeugs, die Fluggesellschaft, welcher das Flugzeug gehort, sowie die
Sollzeit der Landung. Innerhalb des Konstruktors soll auch eine eindeutige
Flugnummer generiert werden. Der Status des Flugzeugs soll auf "War-
tend" gesetzt werden.

Landebahn vergeben

Hierflr soll eine Methode vergebeLandebahn () zustandig sein. lhr soll
die zu belegende Landebahn Ubergeben werden. AuBerdem soll der Sta-
tus des Flugzeugs auf "Landeanflug" gesetzt werden®.

% Bitte beachten Sie, dass die Projektaufgabe hier von den Kundenanforderungen abweicht. Ein
Abbruch der Landung muss bis zum Aufsetzen des Flugzeugs in der Realitat mdglich sein.

Klassen und Objekte 359

® Parkstelle vergeben

Der Methode vergebeParkstelle () soll die zu belegende Parkstelle
Ubergeben werden. Zusétzlich soll der Status auf "Gelandet" gesetzt wer-
den.

® Erfolgreiche Landung melden

Hierzu soll eine weitere Methode meldeGelandet () implementiert wer-
den. |hr wird die Istzeit der Landung Ubergeben. Des Weiteren soll der
Status des Flugzeugs auf "Geparkt" gesetzt werden.

Far den Start kdnnen derzeit folgende zwei Phasen definiert werden:

e Startbahn vergeben

Die Methode vergebeStartbahn() setzt die zu verwendende Start-
bahn, die erwartete Sollzeit fiir den Start und den Status auf "Startvor-
bereitung".

e Erfolgreichen Start melden

Der Methode meldeGestartet () wird die Istzeit des Starts Uibergeben.
Der Status wird auf "Gestartet" gesetzt.

Als letztes soll der Klasse Flugzeug eine Methode print () hinzugeflgt wer-
den. Diese Methode dient dazu, den aktuellen Zustand eines Flugzeuges auf
dem Bildschirm auszugeben. Eine Darstellung einer méglichen Klasse ist in
Bild 10-5 zu sehen. Ein — in Bild 10-5 bedeutet hierbei private, ein + be-
deutet public.

Flugzeug
- anzahlFlugzeuge : int
- fluggesellschaft : String
- flugnummer : String
- flugzeugtyp : String
- istzeitLandung : String
- istzeitStart : String
- landebahn : int
- parkstelle : String
- sollzeitLandung : String
- sollzeitStart : String
- startbahn : int
- status : String

+ Flugzeug()

+ meldeGelandet()

+ meldeGestartet()

+ print()

+ vergebelLandebahn()
+ vergebeParkstelle()
+ vergebeStartbahn()

Bild 10-5 Klasse Flugzeug

360 Kapitel 10
Schreiben Sie zum Testen der Klasse Flugzeug eine Klasse namens
Client. Ein Programmablauf kdnnte wie folgend aussehen:

Flugzeug MI 101 befindet sich im Status 'wartend'.
Es ist vom Typ Bowling 474 und gehdrt der Fluggesellschaft
Microair.
Flugzeug MI 101 befindet sich im Status 'Landeanflug'.
Es ist vom Typ Bowling 474 und gehdrt der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1
Flugzeug MI 101 befindet sich im Status 'Gelandet'.
Es ist vom Typ Bowling 474 und gehdrt der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1
- Parkposition 7
Flugzeug MI 101 befindet sich im Status 'Geparkt'.
Es ist vom Typ Bowling 474 und gehdrt der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1
- Parkposition 7
Flugzeug MI 101 befindet sich im Status 'Startvorbereitung'.
Es ist vom Typ Bowling 474 und gehdrt der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1
- Parkposition 7
- Startbahn 2
Flugzeug MI 101 befindet sich im Status 'Gestartet'.
Es ist vom Typ Bowling 474 und gehdrt der Fluggesellschaft
Microair.
Es wird verwendet/wurde verwendet:
- Landebahn 1
- Parkposition 7
- Startbahn 2
10.4.2 Benutzereingabe

In Projektaufgabe 10.4.1 wurde ein Flugzeug mit fest vorgegebenen Werten
initialisiert. Teil dieser Projektaufgabe soll es sein, die fir die Landung und
den Start notwendigen Informationen interaktiv vom Benutzer abzufragen.
Andern Sie hierzu die Klasse client ab. Ein méglicher Dialog kénnte wie
folgend aussehen:

Geben Sie den Flugzeug Typ ein: Bowling 474
Geben Sie die Fluggesellschaft ein: Microwing
Geben Sie die Sollzeit der Landung ein: 7:49

Flugzeug MI 101 befindet sich im Status 'wartend'.

Klassen und Objekte 361

Es ist vom Typ Bowling 474 und gehdrt der Fluggesellschaft
Microwing.

Geben Sie die Landebahnnummer ein: 3

Flugzeug MI 101 befindet sich im Status 'Landeanflug'.

Es ist vom Typ Bowling 474 und gehdrt der Fluggesellschaft
Microwing.

Es wird verwendet/wurde verwendet:

- Landebahn 3

Soll das Flugzeug in die Werft verlegt werden? (j/n) n
Soll das Flugzeug auf ein separates Parkfeld verlegt werden?
(3j/n) n

Geben Sie die Parkposition ein: 7

Flugzeug MI 101 befindet sich im Status 'Gelandet'.

Es ist vom Typ Bowling 474 und gehort der Fluggesellschaft
Microwing.

Es wird verwendet/wurde verwendet:

- Landebahn 3

- Parkposition 7

Geben Sie die Istzeit der Landung ein: 7:53

Flugzeug MI 101 befindet sich im Status 'Geparkt'.

Es ist vom Typ Bowling 474 und gehort der Fluggesellschaft
Microwing.

Es wird verwendet/wurde verwendet:

- Landebahn 3

- Parkposition 7

Geben Sie die Startbahn ein: 1
Geben Sie die Sollzeit fiir den Start ein: 9:13

Flugzeug MI 101 befindet sich im Status 'Startvorbereitung'.
Es ist vom Typ Bowling 474 und gehdrt der Fluggesellschaft
Microwing.

Es wird verwendet/wurde verwendet:

- Landebahn 3

- Parkposition 7

- Startbahn 1

Geben Sie die Istzeit des Starts ein: 9:12

Flugzeug MI 101 befindet sich im Status 'Gestartet'.

Es ist vom Typ Bowling 474 und gehort der Fluggesellschaft
Microwing.

Es wird verwendet/wurde verwendet:

- Landebahn 3

- Parkposition 7

- Startbahn 1

Fir die Eingabe von der Tastatur kdnnen Sie folgende Klasse Abfrage ver-
wenden:

362 Kapitel 10

// Datei: Abfrage.java

public class Abfrage
{
public static int abfrageInt (String frage)
{
try

{
int zahl = Integer.parselnt (abfrageString (frage));

if (zahl < 0)
throw new NumberFormatException ("");
return zahl;
}
catch (NumberFormatException e)
{
System.out.println ("Bitte eine giiltige Zahl "
+ "eingeben") ;
return abfrageInt (frage);

}

public static String abfrageString (String frage)

{
try
{
System.out.print (frage + " ");
java.util.Scanner eingabe =
new java.util.Scanner (System.in);
return eingabe.nextLine();

}

catch (Exception e)

{

return "";

}

Kapitel 11

Vererbung und Polymorphie

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

B

ST

D

Das Konzept der Vererbung
Erweitern und Uberschreiben
Besonderheiten bei der Vererbung

Polymorphie und das Liskovsche Substitutionsprinzip

Vertrage

Identifikation der Klasse eines Objektes

Konsistenzhaltung von Quell- und Bytecode

Ubungen

11 Vererbung und Polymorphie

Neben der Aggregation stellt die Vererbung ein wesentliches Sprachmittel der objekt-
orientierten Programmiersprachen dar, um Programmcode wiederverwenden zu
kénnen. Bei der Vererbung wird der Quellcode einer Superklasse in einer abgeleite-
ten Klasse wiederverwendet. Bei der Aggregation werden vorhandene Klassen von
den aggregierenden Klassen benutzt und damit wiederverwendet.

Polymorphie erlaubt die Wiederverwendung nicht nur von Klassen, — -
sondern von ganzen Programmsystemen. - ~

11.1 Das Konzept der Vererbung

Bei der Vererbung erbt eine Sohnklasse alle Eigenschaften (Datenfelder, Metho-
den) ihrer Vaterklasse und fligt ihre eigenen individuellen Eigenschaften hinzu. Die
Eigenschaften der Vaterklasse miissen nicht in der Spezifikation der Sohnklasse wie-
derholt werden. Man sagt, die Sohnklasse wird von der Vaterklasse abgeleitet. Am
einfachsten soll dies anhand des Beispiels eines Studenten erlautert werden. Ein
Student ist bekanntermaBen eine Person, die studiert. Wenn man studieren méchte,
muss man immatrikuliert werden und erhalt eine Matrikelnummer. Kurz, wer eine Ma-
trikelnummer hat, ist eingeschrieben und ist somit ein Student. Also kann man einen
Studenten beschreiben als eine Person, die eine Matrikelnummer hat.

Person

nachname
vorname

setNachname()
setVorname()

print()
% "is-a"-Beziehung

Student
matrikelnummer

setMatrikelnummer()
printMatrikelnummer()

Bild 11-1 Ableitung der Klasse St udent von der Klasse Person

Beachten Sie, dass der Ableitungspfeil von der Subklasse (abgelei- /

tete Klasse, Unterklasse, Sohnklasse) zu der Superklasse (Basis-
klasse, Oberklasse, Vaterklasse) zeigt. Eine Superklasse merkt
nicht, dass sie abgeleitet wird. Sie wird beim Vererben nicht aktiv.

|
\
h\\\\@ -
/)

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8 11,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Vererbung und Polymorphie 365
Gibt es mehrere Hierarchieebenen der Vererbung, so wird mit Super-

klasse oder Basisklasse eine an einer beliebigen héheren Stelle des
Vererbungspfades stehende Klasse, mit Subklasse oder abgeleitete . |

Klasse eine an einer beliebigen tieferen Stelle des Vererbungspfades
liegende Klasse bezeichnet. Mit Vater- und Sohnklasse werden von
uns zwei Klassen, die in zwei direkt Gbereinander liegenden Ebenen
eines Vererbungspfades angeordnet sind, benannt. Die oberste Klas-

se eines Klassenbaumes wird Wurzelklasse oder Rootklasse ge-

nannt.

Ein Student ist eine Person ("is a"-Beziehung). Damit kann man den Studenten
durch eine Vererbungsbeziehung von Person ableiten. Dies bedeutet, dass infolge
der Vererbungsbeziehung jedes Objekt der Klasse Student automatisch alle In-
stanzvariablen besitzt, die auch ein Objekt der Klasse Person hat. Genauso verflgt
ein Objekt der Klasse student auch Uber alle Methoden der Klasse Person. Dass
ein Student eine spezielle Person ist, kommt dadurch zum Ausdruck, dass er zuséatz-
liche Eigenschaften gegeniber einer normalen Person hat, ndmlich die Matrikel-
nummer und die ihr zugeordneten Methoden.

Jedes Objekt der Klasse

Person hat die Daten-
felder und Methoden:

Jedes Objekt der Klasse Student
hat die Datenfelder und Methoden:

nachname
vorname
setNachname()
setVorname()

print()

nachname
vorname
setNachname()
setVorname()

print()

matrikelnummer
setMatrikelnummer() |
printMatrikelnummer()

von der Klasse
| Person ererbte

Datenfelder

und Methoden

eigene
Datenfelder

| _und Methoden
der Klasse
Student

Bild 11-2 Eigenschaften von Objekten der Klasse Person und der Klasse Student

Bild 11-3 zeigt ein Objekt der Klasse Person und ein Objekt der Klasse student:

Mdller:Person

Maier:Student

vorname

nachname = "Muller"
= "Peter"

nachname =
vorname =
matrikelnummer =

"Maier"
"Fritz"
56123

Bild 11-3 Objekt Mii11er der Klasse Person und Objekt Maier der Klasse Student

Dieses Beispiel fir eine Vererbung kann als Java-Programm — wie im Folgenden
gezeigt — realisiert werden. Beachten Sie die fett gedruckten Teile.

366

Kapitel 11

// Datei: Person.java

public class Person

{

}

private String nachname;
private String vorname;

public void setNachname (String nachname)
{
this.nachname = nachname;

}

public void setVorname (String vorname)

{
this.vorname = vorname;

}

public void print()
{

System.out.println ("Nachname: " + nachname);

System.out.println ("Vorname: " + vorname);

// Datei: Student.java

public class Student extends Person

{

// die Klasse Student wird von

// der Klasse Person abgeleitet

private int matrikelnummer;

// Methoden der Klasse Student

public void setMatrikelnummer (int matrikelnummer)

{
this.matrikelnummer = matrikelnummer;

}

public void printMatrikelnummer ()
{

System.out.println ("Matrikelnummer: " + matrikelnummer);

// Datei: Test.java

public class Test

{

public static void main (String[] args)

{
System.out.println ("Student");
Student studiosus = new Student();
studiosus.setNachname ("Maier");
studiosus.setVorname ("Fritz");
studiosus.setMatrikelnummer (56123);
studiosus.print () ;
studiosus.printMatrikelnummer () ;

Vererbung und Polymorphie 367

System.out.println ("Person");
Person pers = new Person();
pers.setNachname ("Miller");
pers.setVorname ("Peter");
pers.print();

Die Ausgabe des Programms ist:

Student

Nachname: Maier
Vorname: Fritz
Matrikelnummer: 56123
Person

Nachname: Miller
Vorname: Peter

Das folgende Bild visualisiert die Methodenaufrufe:

Test
main()
printMatrikelnummer()
setNachname() setVorname()
nachname
vorname
matrikelnummer nachname
setVorname() - vorname
print()
setNachname()
setMatrikelnummer()
Instanz der Klasse Instanz der
Student Klasse Person

Bild 11-4 Visualisierung der Methodenaufrufe der Methode main ()

In der Klassenmethode main () werden die Methoden setNachname (), setVor-
name (), setMatrikelnummer (), print () und printMatrikelnummer () zu
einem Objekt der Klasse student aufgerufen. Danach werden die Methoden set-
Nachname (), setVorname () und print () zu einem Objekt der Klasse Person
aufgerufen.

Das Konzept der Vererbung erlaubt es, dass eine Klasse, die von einer anderen
Klasse abgeleitet wird, automatisch alle Eigenschaften (Datenfelder und Methoden)
dieser anderen Klasse erhalt, ohne diese explizit anschreiben zu missen. Eine abge-
leitete Klasse stellt eine Spezialisierung ihrer Vaterklasse dar. In der abgeleiteten
Klasse sind nur die neuen spezifischen und zuséatzlichen Eigenschaften festzulegen.

368 Kapitel 11

Umgekehrt stellt natirlich eine Vaterklasse eine Generalisierung ihrer abgeleiteten
Klassen dar (siehe Bild 11-5):

Vaterklasse

Spezialisierung Generalisierung

abgeleitete abgeleitete
Klasse1 Klasse2

Bild 11-5 Vererbungshierarchie mit Generalisierung und Spezialisierung

Mit dem Konzept der Vererbung kénnen Wiederholungen im Entwurf vermieden
werden. Gemeinsame Eigenschaften mehrerer Klassen werden in gemeinsame
Oberklassen ausgelagert. Dies fiihrt zu mehr Ubersicht und zu weniger Wieder-
holung. Beim Entwurf werden also Datenfelder und Methoden, die mehreren Klassen
gemeinsam sind, nach oben in der Klassenhierarchie geschoben, da sie dann
automatisch durch Vererbung wieder zu den abgeleiteten Klassen weitergegeben
werden. Bild 11-6 zeigt ein Beispiel fir die Generalisierung und die Spezialisierung
in einer Klassenhierarchie.

Gerat

Gerételdentifier

I

Fax Rechner Telekommunikationsanlage
tibertragen() verarbeiten() tibertragen() I
einUndAusgeben() vermitteln()
speichern()

f

Spezialisierung NetzwerkRechner Generalisierung
lbertragen()
ClientRechner ServerRechner
ausgabenDarstellen() dienstleistungenErbringen()

Bild 11-6 Beispiel fir eine Klassenhierarchie

So ist ein NetzwerkRechner ein Rechner, der mit Hilfe einer Kommunikations-
schnittstelle Daten Gbertragen kann. Ein C1ientRechner wiederum ist ein Rechner-
typ, der von Server-Rechnern Dienstleistungen erbringen lassen kann, um deren
Ergebnisse darzustellen. Das heiBt, ein ClientRechner verflgt gegeniiber einem
NetzwerkRechner Uber die zusatzliche Methode ausgabenDarstellen (). Ein

Vererbung und Polymorphie 369

ServerRechner hat die zusatzliche Methode dienstleistungenErbringen ().
Die abgeleiteten Klassen stellen hier also Erweiterungen ihrer Basisklassen dar.

11.2 Erweitern und Uberschreiben

Neben der Erweiterung einer Vaterklasse in einer Sohnklasse kénnen auch Metho-
den einer Vaterklasse in einer Sohnklasse Uberschrieben werden, um eine Spe-
zialisierung zu erreichen. Das Erweitern und Uberschreiben wird in den folgenden
Kapiteln erlautert.

11.2.1 Erweitern

Wie in Kapitel 11.1 am Beispiel der Klassen Person und Sstudent vorgestellt wurde,
erweitert die Klasse student die Klasse Person. So erhélt die Klasse Student die
zusatzliche Aufrufschnittstelle aus den beiden Methoden setMatrikelnummer ()
und printMatrikelnummer (). Die Methoden der Vaterklasse werden im Rahmen
der Vererbung von der Sohnklasse unveréndert Gbernommen. Dies bedeutet, dass in
der Sohnklasse zur Aufrufschnittstelle der Vaterklasse, die geerbt wird, noch eine
fir die Sohnklasse spezifische Aufrufschnittstelle hinzukommt (siehe Bild 11-7). Ein
Objekt der Klasse sohn besitzt also sowohl die Aufrufschnittstelle der Vaterklasse
als auch die Aufrufschnittstelle der Sohnklasse.

Vater
Aufrufschnittstelle
Vaterklasse
Z% :Sohn
Sohn Aufrufschnittstelle
Vaterklasse
Aufrufschnittstelle Aufrufschnittstelle
Sohnklasse Sohnklasse

Bild 11-7 Zusétzliche Aufrufschnittstelle eines Objektes einer abgeleiteten Klasse

Es werden sowohl Instanzvariablen und Instanzmethoden, als auch Klassenvariablen
und Klassenmethoden vererbt. Eine Sohnklasse erbt also grundséatzlich alles — auch
private Datenfelder und Methoden. Dabei ist aber nicht alles, das geerbt wurde, in
der Sohnklasse automatisch sichtbar und damit zugreifbar. Die Vaterklasse kann die
Sichtbarkeit ihrer Datenfelder und Methoden Uber Zugriffsmodifikatoren steuern. Die
in der Vaterklasse festgelegten Zugriffsmodifikatoren haben auch Konsequenzen bei
der Vererbung (siehe Kap. 12.7).

11.2.2 Uberschreiben

Enthalt eine abgeleitete Klasse eine Methode mit gleicher Signatur und mit gleichem
Rlckgabetyp wie eine Methode aus einer Basisklasse, so sagt man, dass die
Methode der Basisklasse durch die Methode der abgeleiteten Klasse Uberschrieben

370 Kapitel 11

wurde. Dabei miissen die formalen Parameter beider Methoden identisch sein, d. h.
es mussen dieselbe Anzahl, derselbe Typ und dieselbe Reihenfolge der formalen
Parameter vorliegen.

|

.. \ /
Beim Uberschreiben von Methoden missen die Signatur und der _ —
Ruickgabewert der Uberschriebenen Methode identisch mit der Sig- -

natur und dem Rickgabewert der urspriinglichen Methode sein.

(i

Im folgenden Bild wird das Uberschreiben der Methode print () gezeigt:

Person

nachname
vorname

setNachname()
setVorname()

print()

1

Student
matrikelnummer

setMatrikelnummer()
print()

Bild 11-8 Uberschreiben der Methode print ()

Die Methode print () der Klasse Person2 gibt die Datenfelder nachname und
vorname aus. Die Methode print () der Klasse student2 hingegen sorgt dafir,
dass die genannten Datenfelder und zusatzlich noch das Datenfeld matrikel-
nummer ausgegeben wird wie in folgendem Beispiel gezeigt:

// Datei: Person2.java

public class Person2

{
protected String nachname;
protected String vorname;

public Person2 (String vorname, String nachname)
{

this.nachname = nachname;

this.vorname = vorname;

}

public wvoid print ()

{
System.out.println ("Nachname: " + nachname);
System.out.println ("Vorname: " + vorname) ;

Vererbung und Polymorphie 371

// Datei: Student2.java
public class Student2 extends Person2

{

private int matrikelnummer;

public Student2 (String vorname, String nachname,
int matrikelnummer)
{
super (vorname, nachname);
this.matrikelnummer = matrikelnummer;

}

public void print ()
{

System.out.println ("Nachname: " + nachname);
System.out.println ("Vorname: " + vorname) ;
System.out.println ("Matr. Nr: " + matrikelnummer);

}

// Datei: Test2.java
public class Test2
{
public static void main (String[] args)

{

Person2 pl = new Person2 ("Rainer", "Brang");
System.out.println ("\nAusgabe der Person: ");
pl.print();

Student2 sl = new Student2 ("Karl", "Klug", 123456);
System.out.println ("\nAusgabe des Studenten: ");
sl.print();

Die Ausgabe des Programmes ist:

Ausgabe der Person:
Nachname: Brang

Vorname: Rainer
Ausgabe des Studenten:

Nachname: Klug
Vorname: Karl
Matr. Nr: 123456

Beachten Sie, dass der Ausdruck super (vorname, nachname) im Konstruktor
der Klasse student2 den Konstruktor

public Person2 (String vorname, String nachname)

der Vaterklasse Person2 aufruft. In Kapitel 11.3.2 wird auf diesen Sachverhalt aus-
fuhrlich eingegangen. In der main ()-Methode der Klasse Test2 wird zuerst ein
neues Objekt der Klasse Person2 erzeugt und dann dessen print ()-Methode
aufgerufen. Wie nicht anders zu erwarten war, gibt die print ()-Methode den Nach-
namen und Vornamen des Objektes der Klasse Person2 aus. Danach wird ein Ob-
jekt der Klasse student2 erzeugt und wieder die print ()-Methode aufgerufen.

372 Kapitel 11

Betrachtet man die Ausgabe des Programms, so stellt man fest, dass nun die
Uberschreibende, den Bedirfnissen der Klasse Student2 angepasste Methode
print () aufgerufen wird, die zusatzlich noch die Matrikelnummer ausgibt.

Private Methoden einer Basisklasse kdnnen — da sie in einer Sohn- |
klasse gar nicht sichtbar sind — nicht Uberschrieben werden. Es kann /
deshalb in einer Klasse eine Methode geben, welche die gleiche Sig- — -
natur und den gleichen Ruckgabetyp wie eine private Methode einer - ~
Oberklasse hat, ohne dass ein Uberschreiben dabei stattfindet. Es =
handelt sich um eine Neudefinition. -

Grinde fur das Uberschreiben einer Methode kdnnen sein:

¢ Uberschreiben zur Verfeinerung
Dieser Fall wurde soeben besprochen. Die Klasse student?2 verfeinert die Klasse
Person2. Die Methode print () der Klasse Person2 kann die im Rahmen der
Verfeinerung hinzugeflgten zusatzlichen Datenfelder der Klasse Student2 nicht
kennen. Daher muss diese Methode in der Klasse student2 Uberschrieben wer-
den.

o Uberschreiben zur Optimierung
Es kann nutzlich sein, in einer abgeleiteten Klasse interne Datenstrukturen oder
die Implementierung eines Algorithmus zu optimieren. Das AuBenverhalten der
Klasse darf sich dabei jedoch nicht &ndern.

Uberschriebene Methoden kdénnen in der (berschreibenden Methode aufgerufen
werden. Im vorigen Beispiel wurde die Methode print () in der Klasse Student?2
komplett neu geschrieben. Es wurden die Ausgaben von name und vorname wieder
neu programmiert. Dies ist aber unndétig, da man zur Ausgabe von name und vor-
name die von Person?2 ererbte print ()-Methode verwenden kann. Der Zugriff auf
ein Element einer Basisklasse erfolgt mit Hilfe des Schliisselwortes super. Im
folgenden Beispiel wurde die Klasse Student?2 so verandert, dass sie die Methode
print () der Klasse person? fiir die Ausgabe von Name und Vorname verwendet:

// Datei: Student3.java
public class Student3 extends Person2

{

private int matrikelnummer;

public Student3 (String vorname, String nachname,
int matrikelnummer)
{
super (vorname, nachname);
this.matrikelnummer = matrikelnummer;

}

public void print()
{
super.print () ;
System.out.println ("Matr. Nr: " + matrikelnummer);

Vererbung und Polymorphie 373

// Datei: Test3.java

public class Test3
{
public static void main (String args|[])

{

Person2 pl = new Person2 ("Rainer", "Brang");
System.out.println ("\nAusgabe der Person:");
pl.print();

Student3 sl = new Student3 ("Karl", "Klug", 123456);
System.out.println ("\nAusgabe des Studenten:");
sl.print();

Die Ausgabe des Programms ist:

Ausgabe der Person:
Nachname: Brang

Vorname: Rainer
Ausgabe des Studenten:

Nachname: Klug
Vorname: Karl
Matr. Nr: 123456

Uberschriebene Instanzmethoden einer Basisklasse kdnnen mit Hilfe |/
von super nur innerhalb von Instanzmethoden einer abgeleiteten — -
Klasse angesprochen werden, da der Compiler den Aufruf su- -~ ~

per.methode () in ((Vaterklasse) this).methode () umsetzt.

Das modifizierte Beispiel ist also um zwei Codezeilen kleiner geworden und verwen-
det die Methode print () der Klasse Person2 in der Methode print () der Klasse
Student3. Dass der Codeumfang hier reduziert wird, ist relativ belanglos. Wichtiger
ist, dass der Code robuster wird, da Anderungen an der print ()-Methode der
Vaterklasse automatisch auch in der Sohnklasse wirksam werden.

. \
Uberschriebene Instanzmethoden einer Basisklasse kdénnen mit _
super .methode () in der Uberschreibenden Instanzmethode aufge- P

rufen werden.

Wird eine Methode mit Hilfe von super angesprochen, so werden ausgehend von
der aktuellen Klasse alle darlber liegenden Klassen des Vererbungsbaums der
Reihe nach solange durchsucht, bis zum ersten Mal eine Methode methode () ge-
funden wird. Ein Aufruf einer Methode einer GroBvaterklasse ist deshalb mit su-
per .methodenname () nur dann mdoglich, wenn diese Methode in der Vaterklasse
nicht Uberschrieben wurde. Einen Aufruf super . super gibt es nicht.

374 Kapitel 11

werden einfach durch Angabe des Klassennamens mit Klassenna-

. \
Uberschriebene Klassenmethoden einer bekannten Basisklasse /
me .methode () aufgerufen. g

11.3 Besonderheiten bei der Vererbung

In diesem Kapitel werden wichtige Besonderheiten bei der Vererbung vorgestellt. Fir
den problemlosen Einsatz der Vererbung in der Praxis muss man Kenntnisse Uber
die Typkonvertierung von Referenzen besitzen (siehe Kap. 11.3.1), die Initialisierung
mittels Konstruktoren in einer Vererbungshierarchie beherrschen (siehe Kap. 11.3.2),
wissen, dass Datenfelder beim Ableiten verdeckt werden kénnen (siehe Kap. 11.3.3)
und dass man das Ableiten von Klassen bzw. das Uberschreiben von Methoden
gezielt verhindern kann (siehe Kap. 11.3.4). AbschlieBend werden in Kapitel 11.3.5
abstrakte Basisklassen vorgestellt.

11.3.1 Typkonvertierung von Referenzen

In Java ist es nicht unbedingt erforderlich, dass der Typ einer Referenzvariablen
identisch mit dem Typ des Objektes ist, auf das die Referenzvariable zeigt. Genauso
wenig muss bei einer Zuweisung der Typ der an der Zuweisung beteiligten Referen-
zen identisch sein. Dies gilt auch bei der Zuweisung von aktuellen Parametern an
formale Parameter bei einem Methodenaufruf — der Typ eines aktuellen Parameters
muss nicht identisch mit dem Typ des formalen Parameters sein, er muss nur zuwei-
sungskompatibel sein — und bei Rickgabewerten. Es gibt wie bei der Typkonver-
tierung von einfachen Datentypen auch bei Referenztypen eine implizite (automa-
tische) Typkonvertierung und eine explizite Typkonvertierung mit Hilfe des cast-
Operators (siche Kap. 7.7.1).

11.3.1.1 Implizite Typkonvertierung von Referenzen

Eine implizite Typkonvertierung von Referenzen findet immer dann statt, wenn eine
Referenzvariable vom Typ einer Sohnklasse einer Referenzvariablen vom Typ einer
Basisklasse zugewiesen wird. Die folgende Vererbungshierarchie zeigt zwei Klassen
in Vater-Sohn-Beziehung:

Vater

wert1

methode1()

i

Sohn
wert2

methode2()

Bild 11-9 Vater-Sohn-Vererbungshierarchie

Vererbung und Polymorphie 375

Die implizite Typkonvertierung soll anhand des folgenden Codes diskutiert werden:

Sohn refSohn = new Sohn();
Vater refVater = refSohn;

Die Referenz refvater ist vom Referenztyp vater und zeigt auf ein Objekt der
Klasse sohn. Dies ist deshalb zuldssig und mdglich, weil ein Sohnobjekt durch den
Vererbungsmechanismus auf jeden Fall alle Eigenschaften besitzt, die auch ein
Vaterobjekt besitzt. Ein Objekt der Klasse Sohn ist stets vom Typ Sohn und vom Typ
Vater. Allerdings hat die Referenz refvater nur Zugriff auf die Vateranteile des
Sohnobjektes — die Sohnanteile sind fir die Referenz refvater unsichtbar und
damit auch nicht zugreifbar.

Ein Sohnobjekt ist sowohl vom Typ der eigenen Klasse als auch vom — -
Typ jeder zugehérigen Basisklasse. - ~

Bei der Zuweisung refvater = refSohn wird auf die Referenz refSohn implizit
der cast-Operator (Vater) angewandt. Da die cast-Operation flir den Program-
mierer unsichtbar erfolgt, spricht man auch von impliziter Typkonvertierung. Der
Rlckgabewert dieser impliziten cast-Operation ist eine Referenz vom Typ vater auf
das gleiche Objekt, allerdings mit einer eingeschrankten Sichtweise. Nach dieser
cast-Operation zeigen also zwei Referenzen auf das Objekt. Das folgende Bild zeigt
diesen Zusammenhang:

Sicht einer Referenz
vom Typ Sohn

wert1
wert2
methode1()
methode2()
implizites :Sohn
Casten wertd
wert2
wert1 methode1()
methode2()

methode1 i i

Sicht einer Referenz
vom Typ Vater

Bild 11-10 Vom Typ der Referenz abhédngige Sicht auf ein Objekt

. : . w

Die Referenz vom Typ sohn sieht das gesamte Objekt und die —

Referenz vom Typ vater sieht nur die Vateranteile des Sohn- -
Objektes.

i\

376 Kapitel 11

Die unsichtbaren Teile des Sohn-Objektes sind in Bild 11-10 durch einen schwarzen
Balken®” symbolisiert. Die implizite Typkonvertierung in eine Superklasse bezeichnet
man auch als Up-Cast. Fir einen glltigen Up-Cast gilt die folgende Regel:

Bei einer Zuweisung refvater = refSohn wird implizit der cast- /
Operator angewandt, wenn der Typ der Referenz refvater ein Su- —
pertyp der Referenz refSohn ist. Ansonsten resultiert ein Kompilier- -~
fehler.

h\\\\@ —
/)

11.3.1.2 Explizite Typkonvertierung von Referenzen

Eine explizite Typkonvertierung von Referenzen mit Hilfe des cast-Operators muss
immer dann erfolgen, wenn bei einer Zuweisung eine Referenzvariable vom Typ
Vater, die auf ein Objekt der Klasse Sohn zeigt, einer Referenzvariablen vom Typ
Sohn zugewiesen wird. Im folgenden Codestiick ist eine explizite cast-Operation bei
einer Zuweisung zu sehen:

Sohn refSohn = new Sohn();
Vater refVater = refSohn;
Sohn refSohn2 = (Sohn) refVater;

Die Referenz refvater zeigt auf ein Objekt der Klasse Sohn. Auf dieser Referenz
wird nun eine explizite cast-Operation ausgefiihrt. Der Riickgabewert der cast-Ope-
ration ist eine Referenz vom Typ Sohn, die der Referenz refSohn2 zugewiesen
wird. Das folgende Bild zeigt diesen Sachverhalt:

Sicht einer Referenz
vom Typ Vater

wert1
[
methode1
Lotvaer
explizites :Sohn
Casten wertd
ert2
refSohn2 i
methode1()
wert1
wert2 methode2()
methode1()
methode2()

Sicht einer Referenz
vom Typ Sohn

Bild 11-11 Verdeckte Eigenschaften durch Casten der Referenz wieder sichtbar machen

9 Diese Darstellung gilt fir den Fall, dass die Sohnklasse die Vaterklasse erweitert. Der Fall des
Uberschreibens wird erst spater behandelt.

Vererbung und Polymorphie 377

Eine solche explizite Typkonvertierung mit Hilfe des cast-Operators bezeichnet man
auch als Down-Cast. Fir einen gultigen Down-Cast gilt die folgende Regel:

Bei einer Zuweisung refSohn = (Sohn) refVater ist die explizite N
cast-Operation nur dann zuléssig, wenn die Referenz refvater _ —
e auf ein Objekt vom Typ Sohn zeigt - -

e oder auf ein Objekt eines Subtyps der Klasse sohn zeigt.

11.3.1.3 Giiltige Up- und Down-Cast Operationen

Up-Cast bezeichnet einen Cast in einen Typ, der in der Verer- -
bungshierarchie weiter oben liegt und Down-Cast bezeichnet einen —
Cast in einen Typ, der in der Vererbungshierachie weiter unten -~ ~

liegt.

Anhand der folgenden einfachen Vererbungshierarchie sollen nochmals die gultigen
Up- und Down-Cast-Operationen erlautert werden:

;
;

Bild 11-12 Vererbungshierarchie zur Diskussion der zuldssigen cast-Operationen

In Bild 11-13 und in Bild 11-14 ist zu sehen, welche Referenz auf welches Objekt
zeigen darf, und welche impliziten Up-Cast-Operationen bzw. welche expliziten
Down-Cast-Operationen erlaubt sind.

Ein Down-Cast erfordert immer die explizite Angabe des cast-Ope- — -
rators. _ ~

Dies erklart sich dadurch, dass der Compiler nicht wissen kann, auf welches Objekt
eine Referenz in Wirklichkeit zeigt. Eine Referenz der Klasse A kann beispielsweise
auf Objekte der Klasse 2, B oder C zeigen.

378 Kapitel 11

Dagegen ist es bei einem giiltigen Up-Cast nie erforderlich, den — -
cast-Operator anzugeben. - ~

Ein Up-Cast erfolgt bei Bedarf automatisch durch den Compiler.

zulassige refA A
Up-Cast-
Operationen

refA

[y

II!

refB

refA
refB E E ? :C
refC

Bild 11-13 Zuldssige implizite Up-Cast-Operationen

zulé'\ssige refA A
Down-Cast-
Operationen

refA

(B)

A

II!

refB

refA
(© refB E E ? :C
refC

Bild 11-14 Zuldssige explizite Down-Cast-Operationen

Durch den impliziten Up-Cast-Mechanismus ist es auch mdglich, dass einer Metho-
de, die als formalen Parameter eine Referenz einer Basisklasse hat, als aktueller
Parameter eine Referenz vom Typ der Basisklasse oder eine Referenz vom Typ
einer abgeleiteten Klasse Ubergeben werden kann. Bei der Zuweisung des aktuellen
Parameters an den formalen Parameter findet eine implizite Typumwandlung des
aktuellen Parameters in den Typ der Basisklasse statt.

\
Ist der formale Parameter einer Methode eine Referenz der Klasse _
Object, so kann jede beliebige Referenz an diese Methode Uber- P -

geben werden, da bekanntlich jede Klasse von 0bject abgeleitet ist.

{ny

Vererbung und Polymorphie 379

Wird — wie in Kapitel 11.3.1.1 besprochen — mit folgender Anweisung

B refB = new C();

eine Instanz der Klasse C angelegt, so ist das auf dem Heap erzeugte Objekt vom
Typ ¢, aber die Referenz vom Typ B. Bei der Zuweisung findet implizit ein Cast auf
die Klasse B statt.

Auf die Referenz refB kann nun — wie in Kapitel 11.3.1.2 gezeigt — der cast-Ope-
rator (C) wie in folgender Anweisung angewandt werden:

C refC = (C) refB;

Beim Down-Cast wird die Aufrufschnittstelle des Typs, auf den gecas- — -
tet wird, sichtbar. ~ ~

Mit dem cast-Operator kann auch explizit auf die Basisklasse A und die Basisklasse
Object gecastet werden. Allerdings ist dann natirlich nur die entsprechende Aufruf-
schnittstelle sichtbar, die zum Typ der Referenz gehdrt, in den gecastet wird.

Wird versucht, eine Referenz explizit auf einen Typ zu casten, der nicht zulassig ist,
so wird eine Exception vom Typ ClassCastException zur Laufzeit geworfen. Die-
se Exception wird nur bei expliziten Cast-Operationen geworfen, da die Korrektheit
einer impliziten Cast-Operation immer schon zum Kompilierzeitpunkt Uberprift wer-
den kann.

Folgendes Beispiel zeigt glltige und ungiltige Cast-Operationen. Es wird die Verer-
bungshierarchie in Bild 11-15 zugrunde gelegt.

Object

F R

w1

.

Bild 11-15 Klassenhierarchie

380 Kapitel 11

Man beachte, dass die Klasse D weder Subtyp noch Supertyp der Klassen 2, B oder
C ist. Cast-Operationen einer Referenz auf ein Objekt der Klasse 2, B oder C in den
Typ der Klasse D sind also unzuldssig. Umgekehrt gilt natlrlich das Gleiche: Eine
Referenz auf ein Objekt der Klasse D kann nie in den Typ der Klasse 2, B oder C
gecastet werden.

// Datei: Cast.java

class A
{
private int x = 1;

}

class B extends A
{
private int y = 2;

}

class C extends B
{
private int z = 3;

}

class D
{

private float £ = 2.0f;
}

public class Cast
{
public static void main (String[] args)
{
B b =new C(); // Referenz vom Typ B auf ein neues Objekt der
// Klasse C. Impliziter Cast nach B.

A a = b; // Impliziter Cast zu einer Basisklasse.
Object o = b; // Impliziter Cast nach Object.

C c = (C) b; // Expliziter Cast zur urspriinglichen Klasse.
C c2 = (C) o; // Expliziter Cast von Object zur

// urspriinglichen Klasse.
//D d = (D) b; // Fehler, da D nichts mit C zu tun hat.

}

Casten auf Array-Typen

Da Array-Typen Subtypen der Klasse Object sind, kann auch auf Referenzen, die
auf Arrays zeigen, der cast-Operator angewandt werden. Die folgenden Codeaus-
schnitte zeigen das Casten auf Arrays:

String[] arrl = {"Anna", "Katharina"};
Object refl = arrl; // Impliziter Up-Cast
String[] arr2 = (String[]) refl; // Expliziter Down-Cast

Vererbung und Polymorphie 381

%
Beachten Sie, dass wenn eine Referenz ref, auf der eine cast-Ope- ‘\ _
ration (string[]) erfolgt, nicht auf ein Array des Typs string[] -

zeigt, eine ClassCastException zur Laufzeit geworfen wird.

|

Der folgende Codeausschnitt verdeutlicht nochmals, dass Arrays von elementaren
Datentypen genauso Objekte sind wie Arrays aus Referenztypen:

int[] arr3 = {1, 2};
Object ref2 = arr3;
int[] arrd4d = (int[]) ref2;

11.3.2 Konstruktoren bei abgeleiteten Klassen

Mochte man dem Benutzer einer Klasse die Mdglichkeit bieten, zusammen mit der
Objekterzeugung eine Initialisierung vorzunehmen, so stellt man ihm Konstruktoren
zur Verfligung. Dieser Sachverhalt wurde bereits in Kapitel 10.4.4 vorgestellt. Natr-
lich besteht fir Objekte abgeleiteter Klassen genauso wie fiir Objekte der Basis-
klassen der Bedarf zur Initialisierung von Datenfeldern. Um die ererbten Datenfelder
einer Vaterklasse zu initialisieren, wiirde man sich wiinschen, dass man einen Kon-
struktor einer Vaterklasse aus dem Konstruktor einer Sohnklasse aufrufen kann. Da-
mit kénnte man die Konstruktoren der Vaterklasse wiederverwenden. Ein Konstruktor
der Vaterklasse kdnnte dann den von der Vaterklasse geerbten Anteil der Sohn-
klasse initialisieren, der Konstruktor der Sohnklasse miisste dann nur noch die neu
hinzu gekommenen Datenfelder initialisieren.

Person

String name
String vorname

Student

int matrikelnummer

Bild 11-16 Vererbungshierarchie zur Diskussion von Konstruktoraufrufen

Und so ist es auch: Es ist méglich, innerhalb eines Konstruktors einen Konstruktor
der Vaterklasse aufzurufen. Dies wird mit dem Schlisselwort super gemacht. Wie
dieses Schlusselwort eingesetzt wird, kann man sich zum gréBten Teil vom Compiler
abschauen. Der Compiler erganzt nadmlich den folgenden Programmcode:

public class Person

{
private String name;
private String vorname;

382 Kapitel 11

public Person ()
{
name = "Unbekannt";
vorname = "Unbekannt";
}
}

public class Student extends Person

{
private int matrikelnummer

}

ZU:

public class Person extends Object

{
private String name;
private String vorname;

public Person()

{

super () ;
name = "Unbekannt";
vorname = "Unbekannt";

}

public class Student extends Person

{

private int matrikelnummer

public Student () // Voreingestellter Default-Konstruktor wird
{ // vom Compiler eingefiigt.
super () ;

}

\
Der super () -Aufruf muss immer in der ersten Zeile des Konstrukiors _ —
stehen. Lasst man ihn weg, so fugt Java implizit einen Aufruf des -

Default-Konstruktors der Superklasse ein.

Dass die Anweisung super () im selbst geschriebenen Default-Konstruktor der Klas-
se Person in der ersten Codezeile steht, ist kein Zufall, es ist sogar ein Muss! Das
bedeutet, dass der Konstruktor der obersten Klasse im Hierarchiebaum mit der
Initialisierung beginnt und an letzter Stelle die Initialisierungsanweisungen des Kon-
struktors des mit new erzeugten Objektes abgearbeitet werden. Man beachte, dass
mit dem Aufruf super () im selbst geschriebenen Default-Konstruktor der Klasse
Person der voreingestellte Default-Konstruktor der Klasse 0bject aufgerufen wird.

AN /

Der voreingestellte Default-Konstruktor der Klasse Object hat
einen leeren Rumpf, d. h. er tut nichts. Ein voreingestellter Default-
Konstruktor einer anderen Klasse ruft automatisch den parame- -
terlosen Konstruktor der Vaterklasse auf.

~

Vererbung und Polymorphie 383

Ein Konstruktor der Basisklasse wird immer vor den Initialisierungs- — -
anweisungen des Konstruktors der abgeleiteten Klasse ausgefiihrt. - ~

Der Grund daflrr ist, dass die Initialisierungen des Konstruktors der Basisklasse Uber-
nommen werden kénnen, aber auch bei Bedarf — sofern die Datenfelder der Basis-
klasse nicht private sind — im Konstruktor der abgeleiteten Klasse Uberschrieben
werden kénnen.

Der Compiler stellt immer einen Default-Konstruktor fir jede Klasse zur Verfigung,
wie in der obigen Klasse student. Dieser voreingestellte Default-Konstruktor nimmt
keine Initialisierungen vor und wird deshalb oft Uberschrieben, wie in der Klasse
Person zu sehen ist. Wird ein selbst geschriebener Default-Konstruktor fir eine
Klasse zur Verfligung gestellt, so wird vom Compiler automatisch der selbst ge-
schriebene Konstruktor verwendet.

Ein Default-Konstruktor hat keine Parameter. Der Programmierer . |
kann selbst einen Konstruktor ohne Parameter schreiben. Dann —
wird vom Compiler dieser selbst geschriebene Default-Konstruktor
und nicht der vom Compiler zur Verfligung gestellte Default-Konstruk- W

tor aufgerufen. Z2

Die Probleme der Initialisierung der von der Vaterklasse geerbten Datenfelder sind
durch den einfachen Aufruf von super () natlrlich noch nicht geldst, da nur der
Default-Konstruktor damit aufgerufen werden kann. Fiir den Fall, dass Parameter im
Konstruktor der Vaterklasse bendétigt werden, kann man die Parameter mit Hilfe des
Schliisselwortes super an den Konstruktor der Vaterklasse weiterreichen. Bekannt-
lich besteht die Mdglichkeit, fir jede Klasse beliebig viele Konstruktoren zu schrei-
ben. Die einzige Einschrankung hierflr ist: Die Parameterliste zweier Konstruktoren
darf in Typ, Reihenfolge und Anzahl der Parameter nicht identisch sein. Wenn der
Konstruktor der Basisklasse Parameter erwartet, so missen diese vom Konstruktor
der abgeleiteten Klasse bereitgestellt und mit Hilfe des Schliisselwortes super an
den entsprechenden Konstruktor der Basisklasse weitergereicht werden. Dabei gilt:

|

\ /
Ein formaler Parameter des Konstruktors der abgeleiteten Klasse —
kann als aktueller Parameter an den Konstruktor der Basisklasse -

Ubergeben werden.

i

Das folgende Beispiel zeigt die Ubergabe von Parametern an den Konstruktor der
Vaterklasse:

// Datei: Person4.java

public class Personé

{
private String name;
private String vorname;

384 Kapitel 11

public Person4 (String name, String vorname)

{

System.out.println ("Konstruktoraufruf von Person4d");
this.name = name;
this.vorname = vorname;

}

// Datei: Student4.java
public class Student4 extends Persond

{

private int matrikelnummer;

public Student4 (String name, String vorname, int m)

{

super (name, vorname); // Aufruf des Konstruktors der

// Superklasse
System.out.println ("Konstruktoraufruf von Student4d");
matrikelnummer = m;

}

// Datei: Test4.java
public class Test4
{
public static void main (String[] args)
{
Person4 p = new Persond4 ("Miller", "Peter");
Student4 s = new Student4 ("Brang", "Rainer", 666666);

Die Ausgabe des Programms ist:

Konstruktoraufruf von Personi4
Konstruktoraufruf von Person4
II Konstruktoraufruf von Student4

Zum Schluss soll noch eine Kleinigkeit erwédhnt werden, die des Ofteren zu unerwar-
teten Fehlern fihrt. Wird vom Programmierer ein Konstruktor mit Parametern ge-
schrieben, so steht fir diese Klasse kein Konstruktor mit leerer Parameterliste mehr
zur Verfugung. Wird diese Klasse dann als Vaterklasse fir eine andere Klasse ver-
wendet, so setzt der Compiler automatisch in jeden Konstruktor der Sohnklasse — in
dem kein expliziter Aufruf von super () mit Parametern erfolgt — den Aufruf von
super () ein. Dieser Aufruf bezieht sich allerdings auf den Default-Konstruktor der
Basisklasse, der ja gar nicht mehr existiert. Da die vom Compiler eingefligten Aufrufe
von super () flr den Programmierer nicht sichtbar sind, kann die Fehlersuche lang-
wierig sein.

In den Konstruktor einer abgeleiteten Klasse wird automatisch vom |/
Compiler der Aufruf des Default-Konstruktors der Vaterklasse durch —
super () eingeflgt, es sei denn der Programmierer fihrt einen su- ~
per () -Aufruf explizit selbst durch.

~

i

Vererbung und Polymorphie 385

Dies hat die folgende Konsequenz:

Ein Programmierer sollte stets auch einen Default-Konstruktor fiir eine 7\
Klasse schreiben, wenn er einen Konstruktor mit Parametern schreibt, yqrsicht
weil durch das Schreiben des Konstruktors mit Parametern der vor- \ 7
eingestellte Default-Konstruktor nicht mehr zur Verfligung steht. =

Bestimmt erinnern Sie sich an das Lernk&stchen in Kapitel 10.4.5, in dem stand,
dass mit Hilfe von this (.) aus einem Konstruktor ein anderer Kon-
struktor derselben Klasse aufgerufen werden kann, und dass dieser Aufruf in der
ersten Codezeile des Konstruktors stehen muss. Das Gleiche gilt allerdings auch far
den super () -Aufruf. Deshalb gilt:

. ; . \
In einem Konstruktor kann entweder ein anderer Uberladener Kon- —
struktor derselben Klasse aufgerufen werden oder ein Konstruktor der -

Vaterklasse.

11.3.3 Verdecken

Es ist mdglich, dass eine abgeleitete Klasse ein Datenfeld mit demselben Namen
einfhrt. Das entsprechende Datenfeld einer Vaterklasse wird zwar beim Sohn auch
angelegt, ist aber infolge der Namensgleichheit verdeckt, d. h. unter dem Namen
wird immer das entsprechende Datenfeld, das im Sohn neu eingefiihrt wurde, ange-
sprochen.

11.3.3.1 Verdecken von Datenfeldern

\
Vom Verdecken eines Datenfeldes spricht man, wenn in der Sohn- _ —
klasse ein Datenfeld angelegt wird, das den gleichen Namen tragt wie P -

ein von der Vaterklasse geerbtes Datenfeld.

(N

Das folgende Bild zeigt eine solche Vererbungshierarchie:

Vater

int x

T

Sohn

int x

Bild 11-17 Sohnklasse definiert das gleiche Datenfeld wie die Vaterklasse

386 Kapitel 11

Da eine Instanz der Klasse sohn einmal die eigenen Datenfelder besitzt und zum
anderen die Datenfelder der Vaterklasse erbt, kann es also vorkommen, dass das
Sohnobjekt zwei Datenfelder mit dem gleichen Namen besitzt.

Wird von der Klasse Sohn mit

Sohn s = new Sohn();

eine Instanz gebildet, so enthalt die Instanz der Sohnklasse sowohl die Datenfelder
der Vaterklasse, als auch die Datenfelder der Sohnklasse. Ein Objekt der Sohn-
klasse ist in Bild 11-18 zu sehen:

:Sohn
int x } Datenfeld geerbt von der Vaterklasse
verdeckt _
int x }» Datenfeld der Sohnklasse

Bild 11-18 Doppelte Datenfelder in der Instanz der Sohnklasse
Dabei verdeckt aber das gleichnamige Datenfeld der Sohnklasse das von der Vater-

klasse geerbte Datenfeld. Das bedeutet, dass man im Sohn Uber den Namen x stets
auf das Datenfeld der Sohnklasse zugreift.

Das Verdecken von Datenfeldern erfolgt grundsatzlich bei Namens- |/
gleichheit. Deshalb wird ein f1oat-Datenfeld x des Sohnes, das von — o
der Vaterklasse geerbt wurde, auch durch ein int-Datenfeld x der -~ ~
Sohnklasse verdeckt. £

Dies zeigt das folgende Bild:

Vater
float x
:Sohn
float x } Datenfeld geerbt von
verdeckt der Vaterklasse
int x Datenfeld der Sohnklasse
Sohn
int x

Bild 11-19 Verdecken eines geerbten gleichnamigen Datenfeldes eines anderen Typs

11.3.3.2 Verwendung verdeckter Datenfelder

Zugriff auf verdeckte Instanzvariablen der Vaterklasse

Es soll folgendes Beispiel betrachtet werden: Die Klasse vater hat ein Datenfeld
int x. Die Klasse Sohn, die von Vater abgeleitet ist, definiert ebenfalls ein Daten-
feld int x. Beide Datenfelder kbnnen unabhangig voneinander in der Sohnklasse

Vererbung und Polymorphie 387

existieren, und es kann sogar auf beide Datenfelder von der Sohnklasse aus zuge-
griffen werden, sofern das Datenfeld des Vaters nicht den Zugriffsmodifikator pri-
vate hat.

// Datei: VaterSohnTest.java

class Vater
{
int x = 2;

}

class Sohn extends Vater
{

int x = 1;

public Sohn ()
{

System.out.println ("x des Sohnes: " + x);

System.out.println ("x des Sohnes: " + this.x);

System.out.println ("vom Vater geerbtes x: " + super.x);
(

System.out.println ("vom Vater geerbtes x: "+ ((Vater)this).x);

}

public class VaterSohnTest

{
public static void main (String[] args)
{

Sohn s = new Sohn();

}

Die Ausgabe des Programms ist:

x des Sohnes: 1
x des Sohnes: 1
II vom Vater geerbtes x: 2

vom Vater geerbtes x: 2
Fir den Zugriff auf das eigene Datenfeld der Sohnklasse hat das
Sohn-Objekt zwei Mdglichkeiten, die schon bekannt sind:

® einfach Gber den Namen der Variablen: X
® mit Hilfe des this-Referenz: this.x

N
i @ -
a

Dabei wird die erste Variante vom Compiler automatisch in die zweite Variante um-
gesetzt.

Auf das von der Vaterklasse geerbte Element, das von der Sohnklasse durch ein
gleichnamiges Element verdeckt wird, kann nicht mehr einfach Gber den Namen der
Variablen zugegriffen werden.

388 Kapitel 11

Fir den Zugriff auf ein von der Vaterklasse ererbtes und verdecktes
Datenfeld bestehen die beiden folgenden Méglichkeiten: \ /

¢ Uber das Schliisselwort super mit super . x. /\

e Uber einen Cast der this-Referenz in das Vaterobjekt: ((Vater)
this) .x.

Dabei wird die erste Mdglichkeit vom Compiler automatisch in die zweite Mdglichkeit
umgesetzt. Das Schliusselwort super wurde schon in Kapitel 11.3.2 vorgestellt. Dort
wurde es in der Notation super () verwendet, um den Konstruktor der Basisklasse
aufzurufen. An dieser Stelle wird es dazu verwendet, um ein verdecktes Datenfeld
der Vaterklasse aufzurufen. In der zweiten Mdglichkeit wird von der this-Referenz
Gebrauch gemacht.

Wie bekannt, ist die this-Referenz eine Referenz auf das eigene
Objekt und kann genauso wie andere Referenzen auf den Typ der _
Vaterklasse gecastet werden. Fiir eine Referenz, die auf den Vater /\
gecastet wird, sind nur noch die Datenfelder des Vaters sichtbar und =

nicht mehr die des Sohnes.

Zugriff auf verdeckte Instanzvariablen einer "GroBvaterklasse"

Hierzu soll folgendes Beispiel betrachtet werden: Die Klasse Grossvater hat ein
Datenfeld f1oat x. Die Klasse vater, die von Grossvater abgeleitet ist, hat ein
Datenfeld int x und die Klasse sohn, die von vater abgeleitet ist, ein Datenfeld
String x. Es soll hier der Fall betrachtet werden, wie auf verdeckte Datenfelder
zugegriffen werden kann, die im Klassenbaum weiter oben liegen und somit nicht
von der Vaterklasse stammen. Weiterhin wird demonstriert, dass zum Verdecken von
Datenfeldern nur Namensgleichheit jedoch nicht die Typgleichheit erforderlich ist.

// Datei: Sohn2.java

class Grossvater2
{

float x = 2.2F;
}

class Vater2 extends Grossvater?2
{
int x = 2;

}

public class Sohn2 extends Vater2
{
String x = "Ich bin der Sohn";

public Sohn2 ()

{
System.out.println ("x des Sohnes: " + x);
System.out.println ("x des Sohnes: " + this.x);
System.out.println ("ererbtes x vom Vater: " + super.x);

Vererbung und Polymorphie 389

System.out.println ("ererbtes x vom Vater: "

+ ((Vater2) this) .x);
System.out.println ("ererbtes x vom Grossvater: "

+ ((Grossvater2) this) .x);
// Das Folgende funktioniert nicht!
// System.out.println ("ererbtes x vom Grossvater: "
// + super.super.x);

}

public static void main (String[] args)
{

Sohn2 s = new Sohn2();
}

Die Ausgabe des Programms ist:

x des Sohnes: Ich bin der Sohn
x des Sohnes: Ich bin der Sohn
II ererbtes x vom Vater: 2

ererbtes x vom Vater: 2
ererbtes x vom Grossvater: 2.2

Nach wie vor gibt es jeweils 2 Mdglichkeiten, um auf die Datenfelder der eigenen
Klasse und die ererbten Datenfelder der Vaterklasse zuzugreifen.

Es existiert aber in diesem Fall nur eine einzige Mdglichkeit, um auf
die ererbten Datenfelder der "GroBvaterklasse" zuzugreifen. Nur der
Cast der this-Referenz in die Grossvater-Klasse ermdglicht den
Zugriff auf das verdeckte Datenfeld. Eine Aneinanderreihung von su-
per . super gestattet der Compiler nicht!

|

Wird in obigem Programm nur die folgende minimale Ab&nderung gemacht:

class Vater2 extends Grossvater?2

{
int vy = 2;
}

dann erhalt man folgende Ausgabe des Programms:

Die Ausgabe des Programms ist:

x des Sohnes: Ich bin der Sohn
x des Sohnes: Ich bin der Sohn
II ererbtes x vom Vater: 2.2

ererbtes x vom Vater: 2.2
ererbtes x vom Grossvater: 2.2

Es gibt jetzt 3 Mdglichkeiten, auf das ererbte x der Klasse Grossvater zuzugreifen:

® (iber das Schllsselwort super durch super.x
® (iber den Cast der this-Referenz in den Vater: ((Vater2)this) .x
® (iber den Cast der this-Referenz in den Grossvater: ((Grossvater2)this) .x

390 Kapitel 11

Der Zugriff mit super.x auf das Datenfeld x des GroBvaters ist deshalb mdoglich,
weil in der Klasse vater2 kein Datenfeld vorhanden ist, welches das geerbte x-
Datenfeld der Klasse Grossvater2 verdeckt.

Wird ein Datenfeld x mit Hilfe von super gesucht, so wird ausgehend L/
von der aktuellen Klasse die gesamte Klassenhierarchie aufwarts der —

Reihe nach solange durchsucht, bis zum ersten Mal ein Datenfeld x -~ ~
gefunden wird. An dieser Stelle wird die Suche abgebrochen.

(N

Zugriff auf verdeckte Klassenvariablen

Der Zugriff auf verdeckte Klassenvariablen erfolgt Uber den Klassennamen. Da ein
Objekt seine Klasse kennt, kann auf eine verdeckte Klassenvariable genau wie auf
eine verdeckte Instanzvariable zugegriffen werden. Das folgende Beispiel ist iden-
tisch mit dem vorhergehenden, mit dem einen Unterschied, dass alle Datenfelder
static sind.

// Datei: Sohn3.java

class Grossvater3

{
static float x = 2.2F;

}

class Vater3 extends Grossvater3

{
static int x = 2;

}

public class Sohn3 extends Vater3
{

static String x = "Ich bin der Sohn";

Sohn3 ()

{
System.out.println ("x des Sohnes: " + x);
System.out.println ("x des Sohnes: " + this.x);
System.out.println ("x des Sohnes: " + Sohn3.x);
System.out.println ("geerbtes x vom Vater: " + super.x);

System.out.println ("geerbtes x vom Vater: "
+ ((Vater3) this) .x);
System.out.println ("geerbtes x vom Vater: " + Vater3.x);

System.out.println ("geerbtes x vom Grossvater: "
+ ((Grossvater3) this) .x);

System.out.println ("geerbtes x vom Grossvater: "
+ Grossvater3.x);

// Das Folgende funktioniert nicht!
// System.out.println ("geerbtes x vom Grossvater: "
// + super.super.x);

Vererbung und Polymorphie

391

public static void main

{

(String[] args)

Sohn3 s = new Sohn3();

}

x des Sohnes:
x des Sohnes:

x des Sohnes:

geerbtes x vom
geerbtes x vom
geerbtes x vom
geerbtes x vom
geerbtes x vom

Ich bin der
Ich bin der
Ich bin der

Vater: 2
Vater: 2
Vater: 2

Grossvater:
Grossvater:

Die Ausgabe des Programms ist:

Sohn
Sohn
Sohn

NN
NN

Wie aus dem Programm ersichtlich wird, besteht fir Klassenvariablen immer die
Maoglichkeit, dass auf sie Uber den Klassennamen zugegriffen wird. Somit kann auf
das x aus der Klasse Grossvater3 mit Grossvater3.x und auf das x aus der
Klasse vater3 mit Vater3.x und natlrlich auf das x aus der Klasse Sohn3 mit
Sohn3. x zugegriffen werden.

11.3.4 Finale Methoden und finale Klassen

Mit dem Schliisselwort final gekennzeichnete Methoden lassen sich nicht Uber-
schreiben. Wird das aus Kapitel 11.2.2 bekannte Beispiel so modifiziert, dass man
die Methode print () der Klasse Person2 als final deklariert, so lasst sich die
Klasse student2 nicht mehr kompilieren:

public final void print()

{

System.out.println
System.out.println

Die Ausgabe des Compilers ist:

Student2.java:12: print ()
print () in Person2;

public void print()

1 error

werden.

Finale Methoden koénnen in einer Subklasse nicht UGberschrieben * -

("Nachname :" + nachname) ;
("Vorname :" 4+ vorname) ;

in Student2 cannot override
overridden method is final

392 Kapitel 11

Finale Klassen sind Klassen, von denen man keine weiteren Klassen ‘\ —
ableiten kann. Damit kann man nur die Benutzung von Klassen, aber /\
nicht die Ableitung erlauben. =
Hierflr sind konzeptionelle Griinde des Designs denkbar — das Problem ist geldst —,
aber auch Sicherheitsgriinde. Da ein abgeleitetes Objekt Uberall dort stehen kann,
wo ein Vaterobjekt steht, kann auf diese Weise beispielsweise kein Trojanisches
Pferd von einem Hacker eingeschleust werden. Finale Klassen werden mit dem
Schliisselwort final gekennzeichnet.

Datenfelder, die mit dem Schlisselwort £inal gekennzeichnet werden, tragen einen
konstanten Wert. Mit einer finalen Klasse lasst sich auch eine Konstantenklasse
aufbauen. Da Konstantenklassen nur Konstanten enthalten, macht es keinen
Sinn, solche Klassen zu instantiieren. Deshalb wird gerne der Konstruktor auf
private gesetzt. Damit kann dann eine Instantiierung gezielt verhindert werden.
Allerdings mussen dann auch alle Konstanten static sein, damit sie von anderen
Klassen aus als Klassenvariablen angesprochen werden kénnen.

Eine Konstantenklasse kénnte zum Beispiel so aussehen:

// Datei: Konstanten.java

public final class Konstanten

{
private Konstanten() // Von der Klasse koénnen keine
{ // Objekte erzeugt werden.

}

public static final float PI = 3.141f;
public static final int MAX = 255;
}

Der Zugriff auf die Datenfelder erfolgt nun z. B. Uber

System.out.println (Konstanten.PI);

11.3.5 Abstrakte Basisklassen

In einer Klassenhierachie werden Klassen von unten nach oben zunehmend gene-
ralisiert und abstrahiert. Umgekehrt: je weiter man in der Hierarchie nach unten geht,
desto mehr Datenfelder und Methoden werden eingebracht, um die speziellen Eigen-
schaften der abgeleiteten Klassen zum Ausdruck zu bringen. Datenfelder und Metho-
den, welche bei mehreren Klassen gemeinsam vorhanden sind, werden in einer Ba-
sisklasse zusammengefasst.

\ /

Wird in einer Basisklasse nur die Schnittstelle von Methoden festge-
legt und die eigentliche Implementierung einer, mehrerer oder aller
Methoden erst in den abgeleiteten Klassen vorgenommen, so liegt -~
eine abstrakte Basisklasse vor.

~

h\\\\@ -
|

Vererbung und Polymorphie 393

Abstrakte Basisklassen kdénnen nicht instantiiert werden, jedoch kann mit Referen-
zen, die vom Typ einer abstrakten Basisklasse sind, gearbeitet werden. Solche Refe-
renzen kdnnen dann auf Objekte zeigen, deren Klassen von der abstrakten Basis-
klasse abgeleitet sind und alle abstrakten Methoden implementieren.

Klassen, die von einer abstrakten Klasse ableiten, missen nicht unbedingt alle ab-
strakten Methoden implementieren. Implementiert eine abgeleitete Klasse nicht alle
abstrakten Methoden, ist sie wiederum wie die Basisklasse abstrakt und muss des-
halb mit dem Schlisselwort abstract deklariert werden.

Ein kleines Programm soll die abstrakten Klassen verdeutlichen:

// Datei: AbstractTest.java

abstract class X

{
public X()

{
System.out.println ("Konstruktor X");
}

public abstract void testPrint (int x);
}

class Y extends X
{
public Y()
{
System.out.println ("Konstruktor Y");

}

394 Kapitel 11

public void testPrint (int x)
{

System.out.println ("Ubergabeparameter: " + x);
}
}

public class AbstractTest
{

public static void main (String[] args)
{
// X x = new X(); Fehler!!
Yy = new Y(); // OK!
X z = new Y(); // auch OK!
}
}
Die Ausgabe des Programms ist:
Konstruktor X
Konstruktor Y
Konstruktor X
Konstruktor Y

11.4 Polymorphie und das Liskovsche Substitutionsprinzip

Polymorphie ist neben Identitdt und Vererbung ein weiterer wichtiger Aspekt des
objektorientierten Ansatzes. Polymorphie bedeutet Vielgestaltigkeit. Das Wort Poly-
morphie gibt es bei Operationen und Objekten.

\
Polymorphie von Operationen bedeutet, dass eine Operation in ver- _ —
schiedenen Klassen durch eine jeweils eigene Methode, welche den -
Namen der Operation tragt, implementiert wird. =

Gleiche Methodenkdpfe in verschiedenen Klassen stellen kein Problem dar, da jede
Klasse einen eigenen Namensraum bildet. Polymorphie von Operationen wurde
bereits in Kapitel 9.3 behandelt.

Eine Polymorphie von Objekten gibt es nur bei Vererbungshierar-

chien. An die Stelle eines Objektes einer Klasse in einem Programm |
kann problemlos stets auch ein Objekt einer von dieser Klasse abge- /
leiteten Klasse treten, solange nur erweitert wird, also nur Datenfelder — o
oder Methoden hinzugefliigt werden. Findet ein Uberschreiben — also .- ~
die Neudefinition einer Operation in einer abgeleiteten Klasse — statt, =

so muss darauf geachtet werden, dass in der abgeleiteten Klasse die
Vertrage der Methoden der Basisklasse eingehalten werden.

Tritt ein Objekt einer abgeleiteten Klasse an die Stelle eines Objektes einer Basis-
klasse, so wird einfach der spezialisierte Anteil der abgeleiteten Klasse ausgeblen-
det. Dies hat zur Konsequenz, dass ein Objekt einer abgeleiteten Klasse in der Ge-

Vererbung und Polymorphie 395

stalt eines Objektes einer Basisklasse auftritt und sich damit vielgestaltig oder poly-
morph verhalt.

11.4.1 Polymorphes Verhalten bei der Erweiterung

Bei der Erweiterung von Basisklassen in Sohnklassen ist ein polymorphes Verhalten
von Objekten der Sohnklasse problemlos méglich, da ein Objekt einer abgeleiteten
Klasse alle Methoden und Datenfelder einer Basisklasse erbt, wie in Bild 11-20 zu
sehen ist, und sie im Falle der Erweiterung nur um zusétzliche Datenfelder und Me-
thoden ergénzt.

Ein Objekt einer Unterklasse kann auch Methodenaufrufe beantworten, die in der
Basisklasse implementiert sind. Natlrlich kann ein Objekt einer abgeleiteten Klasse
zusatzliche Datenfelder oder Methoden besitzen. Aber an der Stelle im Programm-
code, an der ein Objekt einer Basisklasse stehen kann, kann auch ein Objekt einer
abgeleiteten Klasse die Aufgaben erfillen. Es verhélt sich an dieser Stelle als Objekt
der Basisklasse. Die weiteren Eigenschaften des Objektes der abgeleiteten Klasse
wie zusatzliche Datenfelder oder Methoden werden dann ausgeblendet bzw. sind
Uber die Referenzvariable vom Typ einer Basisklasse nicht sichtbar. Dies bedeutet,
dass ein Objekt einer abgeleiteten Klasse in verschiedenen Gestalten auftreten
kann. Bild 11-20 zeigt, dass sich ein Sohn-Objekt auch als Vater- bzw. als GroBva-
ter-Objekt verhalten kann und dass sich ein Vater-Objekt auch als GroBvater-Objekt
verhalten kann.

GroBvater :GroBvater
wert1 wert1
methode1() methode1()

:Vater
wert1
Vater wert2
wert2 methode1()
methode2() methode?2()
:Sohn
wert1
Sohn wert2
o [wors |
methode3() methode1()
methode?2()

Bild 11-20 Polymorphes Verhalten von Objekten abgeleiteter Klassen

Diese Polymorphie ist der Grund fiir die wunderbare Méglichkeit, dass sich ganze
Klassenbibliotheken problemlos wiederverwenden lassen. Polymorphie von Objek-

396 Kapitel 11

ten erlaubt es, einen wiederverwendbaren Code zu schreiben, der nur Referenzen
auf Objekte einer Basisklasse enthdlt. Da ein Objekt einer abgeleiteten Klasse,
welche eine Basisklasse erweitert, die Aufrufschnittstelle der Basisklasse und diesel-
ben Datenfelder wie die Basisklasse hat, kann ein Objekt einer abgeleiteten Klasse
sich ohne jegliches Problem wie ein Objekt einer Basisklasse verhalten. Eine Zu-
satzaufrufschnittstelle aufgrund weiterer Methoden der abgeleiteten Klasse kommt
nicht zum Tragen, da diese Methoden im Quellprogramm, das nur die Basisklasse
kennt, Gberhaupt nicht angesprochen werden. Die Zusatzaufrufschnittstelle und die
zusatzlichen Datenfelder einer abgeleiteten Klasse bleiben also unsichtbar.

Das folgende Beispielprogramm demonstriert die Wiederverwendung von Quellcode
durch den polymorphen Einsatz von Objekten. Das Programm besteht aus den
Klassen Person5, Student5, Utility und Test5. Die Klasse Student5 erwei-
tert die Klasse Person5. In der Klasse Utility existieren die Klassenmethoden
sortByName (), swap () und print (). Die Methode sortByName () kann ein
Array von Personen nach dem Namen sortieren. Hierbei kommt der aus Kapitel 9.2.7
bekannte Bubblesort-Algorithmus zum Einsatz. Alle drei Methoden besitzen als
formalen Parameter ein Array von Personen. Das Besondere ist nun, dass samtliche
Methoden der Klasse Utility nicht nur flr ein Array von Personen verwendet
werden kénnen, sondern auch fir ein Array von Studenten.

// Datei: Personb5.java

public class Personb5

{
private String nachname;
private String vorname;

public Person5 (String nachname, String vorname)
{

this.nachname = nachname;

this.vorname = vorname;

}

public String getNachname ()
{

return nachname;

}

public void print()
{

System.out.println (nachname + ", " + vorname);
}
}

// Datei: Student5.java

public class Student5 extends Personb

{

private int matrikelnummer;

public Student5 (String nachname, String vorname,
int matrikelnummer)

{

Vererbung und Polymorphie

397

super (nachname, vorname);
this.matrikelnummer = matrikelnummer;

}

// weitere studentenspezifische Methoden

// Datei: Utility.java

public class Utility
{

public static void sortByName (Person5[] ref)

{

int obergrenze = ref.length;

while (obergrenze > 1)
{
for (int i = 1; i < obergrenze; i++)
{
String a ref [i].getNachname();
String b = ref [i - 1].getNachname();
if (a.compareTo (b) < 0)
swap (ref, i, 1 - 1);

}

obergrenze-—;

}

public static void swap (Person5[] ref, int indexl,
{

Person5 tmp = ref [indexl1];

ref [index1] ref [index2];

ref [index2] = tmp;

}

public static void print (Person5[] ref)
{
for (int i = 0; i < ref.length; i++)
{
ref [i].print();

// Datei: Test5.java

public class Testb
{
public static void main (String[] args)
{
// Sortieren von Personen
Person5[] refPersonen = new Person5 [3];
refPersonen [0] = new Person5 ("Miller", "Max");

refPersonen [1l] = new Person5 ("Auer", "Ulrike");

int index2)

refPersonen [2] = new Person5 ("Zink", "Mareike");

Utility.sortByName (refPersonen);

System.out.println ("Sortiertes Array mit Personen:");

Utility.print (refPersonen);

398 Kapitel 11

// Sortieren von Studenten
Student5[] refStudenten = new Student5[3];

refStudenten [0] = new Student5 ("Wunder", "Emanuel", 14567);
refStudenten [1] = new Student5 ("Maier", "Sabrina", 14568);
refStudenten [2] = new Student5 ("Binder", "Katharina",14569);
Utility.sortByName (refStudenten);

System.out.println ("\nSortiertes Array mit Studenten:");

Utility.print (refStudenten);

Die Ausgabe des Programmes ist:

Sortiertes Array mit Personen:
Auer, Ulrike

Miller, Max
Zink, Mareike
Sortiertes Array mit Studenten:

Binder, Katharina
Maier, Sabrina
Wunder, Emanuel

In der Klasse Utility wird nur die Vaterklasse Person5 verwendet. Trotzdem
kann der komplette Programmcode der Klasse Utility auch fir Objekte der Klasse
Studentb5 verwendet werden, da sich ein Student auch wie eine Person verhalten
kann. Die Wiederverwendung kompletter Programmsysteme (im Beispiel die Klasse
Utility) ist deutlich mehr als nur die Wiederverwendung von Klassen im Rahmen der
Vererbung oder die Wiederverwendung von Klassen im Falle der Aggregation. Dass
ganze Klassenbibliotheken infolge der Polymorphie wiederverwendet werden kén-
nen, macht den eigentlichen Erfolg der Objektorientierung aus. Barbara Liskov [23]
hat sich im Jahre 1988 mit der Polymorphie und Wiederverwendung befasst. Sie for-
mulierte

Was gebraucht wird, ist etwas wie das folgende Substitutionsprinzip: |

Wenn es flr jedes Objekt o, vom Typ T ein Objekt o, vom Typ s gibt, _ —
sodass flr alle Programme P, die auf der Basis des Typs S definiert ~
wurden, das Verhalten von P unverandert bleibt, wenn o; fir o, ein- =
gesetzt wird, dann stellt T einen Subtyp von s dar. =

Mit dem Ziel der Wiederverwendung eines Programmcodes P, der fiir eine Basisklas-
se S geschrieben wurde, I&sst sich das Liskov Substitution Principle formulieren zu:

|
Liskov Substitution Principle im Falle der Erweiterung: o
Im Falle der Erweiterung kann ein Objekt einer abgeleiteten Klasse /\
problemlos an die Stelle eines Objektes einer Basisklasse treten. =

Als Beispiel hierfir wurden Objekte der Klasse student betrachtet. Ein Student ist
eine Person. Deshalb kann ein Objekt der Klasse student auch Uberall dort stehen,
wo ein Objekt der Klasse Person verlangt wird. Umgekehrt ist nicht jede Person ein

Vererbung und Polymorphie 399

Student. Daher kann ein Objekt der Klasse Person im Programm nicht Uberall dort
stehen, wo ein Objekt der Klasse student steht. Quellcode, der fir eine Basisklasse
geschrieben wurde, kann im Falle der Erweiterung also von jeder beliebigen abgelei-
teten Klasse benutzt werden.

Die Polymorphie erlaubt es, gegebenenfalls groBe Mengen von gene- |
ralisiertem Code fir Basisklassen zu schreiben, der dann spater von /
Objekten beliebiger abgeleiteter Klassen benutzt werden kann. Dabei — -
ist natlirlich beim Schreiben des Codes fir die Basisklasse Uberhaupt

nicht bekannt, welche Klassen zu spateren Zeitpunkten von der Basis- =
klasse abgeleitet werden. -

11.4.2 Polymorphes Verhalten beim Uberschreiben

Etwas diffiziler wird es, wenn das Uberschreiben von Methoden ins Spiel kommt.
Hier ist das Liskov Substitution Principle nicht mehr selbstverstandlich gegeben. Der
Programmierer muss hierflr selbst etwas tun! Er muss dafiir sorgen, dass die Client-
Programme, wie im vorherigen Beispiel die Klasse Utility, welche mit Referenzen
auf Objekte einer Basisklasse arbeiten, keine Schwierigkeiten bekommen, wenn an
die Stelle eines Objektes einer Basisklasse plotzlich ein Objekt einer abgeleiteten
Klasse tritt.

Liskov Substitution Principle im Falle des Uberschreibens: |

Im Falle des Uberschreibens muss der Programmierer selbst dafiir — -
sorgen, dass ein Objekt einer abgeleiteten Klasse an die Stelle eines ~
Objektes einer Basisklasse treten darf. Er muss hierflir beim Uber- =
schreiben die Einhaltung der Vertrage der Basisklasse gewahrleisten. =

Auf Vertrage wird in Kapitel 11.5 eingegangen. Werden Instanzmethoden in einer
Sohnklasse Uberschrieben, so tritt die (berschreibende Instanzmethode an die Stelle
der tiberschriebenen Methode.

Im Folgenden wird ein etwas umfangreicheres Beispiel vorgestellt, in dem gezeigt
wird, wie eine abgeleitete Klasse den Code, der fir eine Basisklasse geschrieben
wurde, benutzen kann. Es soll eine kleine Bibliothek erstellt werden, die Klassen fir
ein Waren-Management-System enthalt. Je nachdem, welche Waren verwaltet wer-
den missen (Lebensmittel, Drogeriewaren, etc.) kénnen spezialisierte Unterklassen
gebildet werden, die von den bestehenden Klassen in der Bibliothek abgeleitet wer-
den. Als erstes wird die Klasse Ware vorgestellt. Die Klasse wWare hat die Instanz-
variablen nummer (eindeutige Nummer flr einen Warentyp), name (Bezeichnung fir
eine Ware), preis und anzahl (womit die zur Verfligung stehende Menge der Ware
gemeint ist). Zusatzlich ist noch eine Klassenvariable aktuelleNummer vorhanden,
die zum eindeutigen Durchnummerieren der Warentypen benutzt werden soll. Die
Methode print () ist fett hervorgehoben, da diese spéter in der Sohnklasse Milch
Uberschrieben wird.

400

Kapitel 11

// Datei: Ware.java

public class Ware

{
protected int nummer;
protected String name;
protected float preis;
protected int anzahl;

protected static int aktuelleNummer

public Ware (String name, float preis)

{
nummer = aktuelleNummer++;
this.name = name;
this.preis = preis;
anzahl = 0;

}

public int getNummer ()

{

return nummer;

}

public void stueckzahlErhoehen (int anzahl)

{

this.anzahl += anzahl;

}

public int getAnzahl ()
{

return anzahl;

}

public void print ()
{

System.out.print ("ID: " + nummer + "
" + anzahl);

" Anzahl:

Bezeichnung:

" + name +

Die folgende Klasse Warenlager stellt eine Methode aufnehmen () zur Verfligung,
die es erlaubt, neue Waren ins Lager aufzunehmen oder bereits im Lager vorhan-
dene Artikel nachzufiillen. Als Ubergabeparameter erwartet diese Methode eine
Referenz auf ein Objekt vom Typ ware. Die Methode ausgeben () ermdglicht die
Ausgabe des gesamten Lagerinhalts auf dem Bildschirm. Fett hervorgehoben sind

hier einige Programmzeilen, in denen der Typ Ware verwendet wird.

// Datei: Warenlager.java

public class Warenlager

{
protected Ware[] arr;
public Warenlager (int max)
{
arr = new Ware [max];

}

Vererbung und Polymorphie 401

Die Methode aufnehmen() kann neue, noch nicht im Lager enthal-
tene Waren aufnehmen. Zu einer schon im Lager befindlichen Wa-
re wird die Anzahl der vorhandenen Exemplare erhoht. Das Array
wird beginnend vom Index 0 ab geflillt. Die freien Array-Ele-
mente enthalten die null-Referenz. Wird die Ware erfolgreich
aufgenommen, wird der Wert 1, ansonsten -1 zurilickgegeben.

public int aufnehmen (Ware neueWare, int anzahl)

{

}

for (Ware ware : arr) // Prifen, ob Ware schon vorhanden.

{

if ((ware!=null)&& (ware.getNummer ()==neueWare.getNummer ()))

{

ware.stueckzahlErhoehen (anzahl);
return 1;

}

if (arr [arr.length - 1] != null) // Warenlager voll!
return -1;

for (int i = 0; i < arr.length; i++)
{
if (arr [i] == null) // Erstes freies Feld gefunden - die
{ // Ware ist somit noch nicht vorhanden
arr [i] = neueWare;
arr [i].stueckzahlErhoehen (anzahl);
break;
}
}
return 1;

public void ausgeben ()

{

for (Ware ware : arr)

{
if (ware == null) break;
ware.print ();
System.out.println();

Die soeben gezeigten Klassen kdnnten jetzt in einer Bibliothek zur Verfliigung gestellt
werden und durch gezielte Ableitung an einen speziellen Problembereich angepasst
werden. Far einen Milchlieferanten gibt es zum Beispiel eine Klasse Milch und eine
Klasse Joghurt, die von der Klasse ware abgeleitet sind. Fiir einen Lieferanten von
Drogeriewaren sind dagegen ganz andere Klassen von Bedeutung. Exemplarisch
wird hier eine von der Klasse Ware abgeleitete Klasse Mi1ch gezeigt:

// Datei: Milch.java

import java.util.GregorianCalendar;

public class Milch extends Ware

{

402 Kapitel 11

private String typ;

// Die Klasse GregorianCalendar aus dem Paket java.util

// ermdglicht die Speicherung und Bearbeitung von Datumswerten!
private GregorianCalendar verfallsDatum;

private double maxLagerTemperatur;

public Milch (String typ, float preis,
GregorianCalendar verfallsDatum, double maxTemp)
{
super ("Milch", preis);
this.typ = typ;
this.verfallsDatum = verfallsDatum;
this.maxLagerTemperatur = maxTemp;

}

// Uberschreiben der print()-Methode der Klasse Ware
public void print ()
{
super.print () ;
System.out.print (" Typ: " + typ);
}

// weitere spezifische Methoden flir die Klasse Milch!

Objekte der Klasse Milch kénnen an die Methode aufnehmen () der Klasse Wa-
renlager Ubergeben werden. Dies funktioniert aus dem Grund, weil die Klasse
Milch eine Spezialisierung der Klasse Ware darstellt und die Klasse WarenLager
auf Referenzen auf Objekte der Klasse ware arbeitet. Das folgende Testprogramm
zeigt, wie sich Objekte der Klasse Milch als Objekte der Klasse Ware verhalten und
durch diese Eigenschaft den gesamten Code der Klasse Warenlager mitbenutzen
kénnen:

// Datei: Test8.java
import java.util.GregorianCalendar;

public class Test8
{
public static void main (String[] args)
{
final int anzahll = 50;
final int anzahl2 = 200;
final int anzahl3 = 300;
final int anzahl4 = 500;
final int anzahl5 = 1000;

// Erzeugen eines Warenlagers fir 4 verschiedene Warengruppen.
Warenlager lager = new Warenlager (4);

// Die Klasse java.util.GregorienCalendar ermdglicht die

// Speicherung und Bearbeitung von Datumswerten.

// Der erste Parameter gibt das Jahr an, der zweite Parameter
// den Monat und der dritte den Tag.

GregorianCalendar date = new GregorianCalendar (1, 5, 5);

Vererbung und Polymorphie 403
System.out.println ("Mit dem Einlagern wird begonnen");
Milch milch = new Milch ("Fettarme Milch", 0.6f, date, 7.0);

(milch, anzahl4)
("Lager voll");

if (lager.aufnehmen < 0)

System.out.println
else

System.out.println(anzahl4 +" Fettarme Milch eingelagert");
(new Milch ("Frischmilch", 0.8f,

if (lager.aufnehmen date, 6.0)

, anzahlb5) < 0)
System.out.println ("Lager voll");
else
System.out.println (anzahl5 + " Frischmilch eingelagert");
if (lager.aufnehmen (new Milch ("H-Milch", 0.5f, date, 7.5)
, anzahl4) < 0)
System.out.println ("Lager voll");
else
System.out.println (anzahl4 + " H-Milch eingelagert");
if (lager.aufnehmen (milch, anzahl3) < 0)
System.out.println ("Lager voll");
else
System.out.println(anzahl3 +" Fettarme Milch eingelagert");
if (lager.aufnehmen (new Milch ("Dosenmilch", 8.8f, date, 18)
, anzahl2) < 0)
System.out.println ("Lager voll");
else
System.out.println (anzahl2 + " Dosenmilch eingelagert");
if (lager.aufnehmen (new Milch ("Kakao", 9.9f, date, 18)
, anzahll) < 0)
System.out.println ("Lager voll");
else

System.out.println (anzahll + " Kakao eingelagert");

System.out.println ("\nDer Gesamtbestand des Lagers ist");
lager.ausgeben() ;

Die Ausgabe des Programms ist:

Mit dem Einlagern wird begonnen
500 Fettarme Milch eingelagert
1000 Frischmilch eingelagert
500 H-Milch eingelagert

300 Fettarme Milch eingelagert
200 Dosenmilch eingelagert
Lager voll

Der Gesamtbestand des Lagers ist

ID: 0 Bezeichnung: Milch Anzahl: 800 Typ: Fettarme Milch
ID: 1 Bezeichnung: Milch Anzahl: 1000 Typ: Frischmilch
ID: 2 Bezeichnung: Milch Anzahl: 500 Typ: H-Milch

ID: 3 Bezeichnung: Milch Anzahl: 200 Typ: Dosenmilch

404 Kapitel 11

Das Besondere ist nun, dass innerhalb der Methode ausgeben () der Klasse wWa-
renlager ein Array vom Typ Ware durchlaufen und fir jedes Objekt in diesem
Array die print ()-Methode aufgerufen wird. Hierbei wird immer die Uberschriebene
Methode der Klasse Milch aufgerufen, auch wenn die Referenzen, welche auf diese
Objekte zeigen, vom Typ ware sind. Dies hat seine Ursache in der dynamischen
Bindung (siehe Kap. 11.4.3).

Hier noch ein weiteres Beispiel fiir ein polymorphes Verhalten beim Uberschreiben:

Nach dem Liskov Substitution Principle kann eine Referenz auf ein Objekt einer
Superklasse stets auch auf ein Objekt einer Subklasse zeigen, wenn der Pro-
grammierer die Vertrdge der Methoden beim Uberschreiben einhalt. Geht man von
der in Bild 11-21 gezeigten Vererbungshierarchie aus, so kénnen in einem Array aus
Referenzen auf Objekte der Klasse Object auch Referenzen auf Objekte der Klas-
sen X, A, B, C und D gespeichert werden. Weiterhin kénnen in einem Array aus
Referenzen auf Objekte der Klasse A auBer Referenzen auf Objekte der Klasse 2
auch Referenzen auf Objekte der Klasse B, C und D hinterlegt werden.

Object

SN

X A

AN

Bild 11-21 Vererbungshierarchie zur Veranschaulichung des Liskov Substitution Principles

Das folgende Beispiel veranschaulicht dies fur ein Array aus Referenzen auf Objekte
der Klasse Personé6. Da ein Student eine Person ist, kdnnen in diesem Array auch
Referenzen auf Objekte der Klasse student6 gespeichert werden, weil beim Uber-
schreiben der Methode print () keine Vertragsverletzung erfolgt. Die Methode
print () gibt fir das jeweilige Objekt die entsprechenden Daten aus. Handelt es
sich um ein Objekt der Klasse Personé6, wird die print ()-Methode der Klasse
Person6 aufgerufen, handelt es sich um ein Objekt der Klasse student6, wird die
Uberschreibende print () -Methode der Klasse student6 aufgerufen.

Vererbung und Polymorphie

405

// Datei:

Person6. java

public class Person6

{

private String nachname;
private String vorname;

public Person6 (Stri

{

// dies ist die Vaterklasse

// Datenfeld nachname
// Datenfeld vorname

ng nachname, String vorname)

this.nachname = nachname;
this.vorname = vorname;

}

public void print ()

{

System.out.println ("Nachname:
System.out .println ("Vorname:

}

// Datei:

public class Student6 extends Person6

{

Studenté6. java

private int matrikelnummer;

public Student6 (Str
int matrikelnummer)

{

super (nachname,
this.matrikelnummer = matrikelnummer;

}

public void print ()

{

super.print () ;

System.out.println ("Matrikelnummer:

// Datei:

Test6.java

public class Testé6

{

ing nachname,

vorname) ;

public static void main (Stringl[]

{

Person6[] pa = new Person6 [3];
pa [0] = new Person6 ("Brang",
pa [1] = new Studenté6 ("Miller",
pa [2] = new Person6 ("Mayer",
for (Person6 person : pa)

{

person.print () ;

System.out.println ("");

" + nachname) ;
" + vorname);

// dies ist die Sohnklasse

String vorname,

args)

"Rainer");
"Peter", 123456);
"Carl");

" + matrikelnummer) ;

406 Kapitel 11

Vorname : Rainer
Nachname: Miller
Vorname: Peter
Matrikelnummer: 123456

Nachname: Mayer
Vorname: Carl

Die Ausgabe des Programms ist:

Nachname: Brang
Betrachtet man die Ausgabe des Programms naher, so stellt man fest, dass obwohl
der zweite Aufruf der print ()-Methode auf einer Referenzvariablen vom Typ Per-
soné erfolgte, die print ()-Methode der Klasse Studenté aufgerufen wurde. Die-
ses Verhalten ist vielleicht auf den ersten Blick etwas (iberraschend. Mit etwas Uber-
legung erkennt man jedoch den Grund dafiir. Wenn z. B. unterschiedliche Objekte,
die eine gemeinsame Basisklasse haben, von einem Array aus Referenzen aus refe-
renziert werden sollen, so ist von auBen nicht erkennbar, auf welche Objekte die im
Array hinterlegten Referenzen im einzelnen zeigen. Wenn man jedoch Uber die in
dem Array gespeicherten Referenzen eine Methode aufruft, die in den abgeleiteten
Klassen und ihrer Basisklasse verschieden definiert ist, so muss gewahrleistet sein,
dass die fiir die Klasse des vorliegenden Objektes implementierte Methode aufge-
rufen wird, auch wenn man gar nicht wei3, von welchem Typ das Objekt eigentlich
ist.

Damit beim Uberschreiben von Methoden — wie erwartet — die (berschreibende
Methode eines Objektes der abgeleiteten Klasse aufgerufen werden kann, benétigt
man den Mechanismus der dynamischen Bindung.

11.4.3 Statische und dynamische Bindung von Methoden

Unter dem Begriff der Bindung versteht man die Zuordnung eines Methodenrumpfes
zu einem aufgerufenen Methodenkopf. Wird eine Methode Uber ihren Namen aufge-
rufen, so ist der entsprechende Programmcode der Methode — das heiB3t der Metho-
denrumpf — auszufihren.

Methodenkopf

v
[1
Y

Methodenrumpf

Bild 11-22 Zuordnung des Methodenrumpfs zum Methodenkopf

In der Objektorientierung kommen zwei prinzipiell verschiedene Arten des Bindens
von Methoden in Programmen vor. Es gibt die frithe Bindung und die spéate Bin-

Vererbung und Polymorphie 407

dung. Statt friher Bindung ist auch der Begriff statische Bindung Ublich, und
genauso anstelle von spater Bindung der Begriff dynamische Bindung.

Bei der fruhen Bindung kann einem Methodenaufruf schon zum . |
Kompilierzeitpunkt der entsprechende Methodenrumpf zugeordnet

werden. Bei der spaten Bindung wird dagegen einem Methodenauf- ‘/\
ruf erst zur Laufzeit der entsprechende Methodenrumpf zugeord- W

net.

Bindung
statisch == friih == zur Kompilierzeit | dynamisch == spat == zur Laufzeit

Tabelle 11-1 Die beiden Bindungsarten
|

\ /
In Java hat man keinen direkten Einfluss darauf, ob spat oder frih —
gebunden wird. Java verwendet in der Regel die spate Bindung, in -

wenigen spezifizierten Ausnahmefallen jedoch die frihe Bindung.

(i

Wie schon bekannt, kann an jeder Stelle eines Programms, bei der ein Objekt einer
Basisklasse verlangt wird, auch ein Objekt einer Klasse stehen, die von der Basis-
klasse abgeleitet wurde. Wird eine Instanzmethode aufgerufen, so wird stets —
wenn die Methode weder final noch private ist — die Methode des Objektes auf-
gerufen, auf das die Referenz zeigt. Zeigt die Referenz vom Typ einer Basisklasse
auf ein Objekt vom Typ einer Subklasse, so wird im Falle des Uberschreibens die
Uberschreibende Methode aufgerufen.

Ist eine Methode static, handelt es sich um eine Klassenmethode, also eine
Methode, die exakt zu einer Klasse gehért. Da sie direkt zu einer Klasse gehort,
macht das im Beispiel erwahnte Verhalten fur sie keinen Sinn, da es gar keine
Auswahl gibt. Es ist eindeutig, welche Methode aufgerufen werden muss. Wird nun
eine Klassenmethode Uber eine Referenz auf ein Objekt oder Uber den Klassen-
namen aufgerufen, so wird dieser Aufruf vom Compiler direkt an die Klasse, von
deren Typ die Referenz ist bzw. deren Klassennamen angegeben wird, gebunden.
Man sagt auch, sie wird statisch gebunden. Der Compiler weiB3, welche Methode er
aufrufen muss.

Im nachsten Beispiel ist die Methode print () der Klassen vater4 und Sohn4
static. Wie oben schon beschrieben, werden Aufrufe von Klassenmethoden sta-
tisch gebunden. Dies bedeutet, dass in beiden Féllen die Klassenmethode direkt auf-
gerufen wird.

// Datei: Vaterd.java

public class Vater4
{

public static void print ()

{
System.out.println ("static print ()-Methode des Vaters");

}

408 Kapitel 11

// Datei: Sohn4.java

public class Sohn4 extends Vater4

{
public static void print ()

{
System.out.println ("static print()-Methode des Sohns");

}
}

// Datei: Test9.java

public class Test9
{

public static void main (String[] args)

{

Sohn4 s = new Sohn4();
System.out.print ("s.print(): ")
s.print ();

System.out.print ("Sohn4d.print(): ");

Sohn4 .print () ;

Vaterd v = s; // Impliziter Cast auf den Vater

System.out.print ("v.print(): ")
v.print () ;
System.out.print ("Vaterd.print(): ");

Vater4d.print () ;

Die Ausgabe des Programms ist:

s.print () : static print () -Methode des Sohns
Sohn4.print(): static print()-Methode des Sohns
v.print () : static print () -Methode des Vaters
Vaterd.print(): static print()-Methode des Vaters

Typ der Referenz — welche Instanzmethode der Klassenhierarchie

Bei Instanzmethoden bestimmt der Typ des Objekies — und nicht der _ @ —
aufgerufen wird. -

Bei Klassenmethoden bestimmt der Typ der Referenz bzw. der Klas- —
senname, welche Klassenmethode der Klassenhierarchie aufgerufen -
wird.

Ist eine Methode private, handelt es sich um eine Methode, die nur innerhalb der
Klasse sichtbar ist, in der sie definiert wird. Wird von einer Klasse abgeleitet, so wer-
den Methoden, die private sind, zwar an die Sohnklasse weitervererbt, es kann
aber nicht innerhalb des Sohnes darauf zugegriffen werden. Da die Methode auBer-
halb der Klasse, in der sie definiert wurde, zu keiner Zeit sichtbar ist, kann ein Aufruf
der Methode nur innerhalb der Klasse erfolgen, in der sie definiert wurde. Fir den

Vererbung und Polymorphie 409

Compiler ist es also bereits zur Zeit der Ubersetzung des Quellcodes klar, dass er
den Aufruf einer mit private gekennzeichneten Methode statisch zur aktuellen
Klasse binden kann. Methoden, die private sind, werden also auch wie Klassen-
methoden friih gebunden.

Ist eine Methode mit dem Schliisselwort final gekennzeichnet, so kann sie
niemals von einer abgeleiteten Klasse Uberschrieben werden. Wird nun eine Metho-
de, die mit final gekennzeichnet ist, aufgerufen, so kann ein Compiler feststellen,
zu welcher Klasse die Methode tatsachlich gehért. Der Methodenaufruf kann wie
zuvor schon bei private- oder static-Methoden friih gebunden werden.

Bei allen anderen Methoden kann der Compiler — da jede Referenz vom Typ einer
Basisklasse auch auf ein Objekt einer abgeleiteten Klasse zeigen kann — nicht
wissen, in welcher Klasse er eine Methode aufrufen muss. Es ist folglich die Aufgabe
des Interpreters, zur Laufzeit festzustellen, von welchem Typ ein Objekt ist, und
daraufhin die entsprechende Methode aufzurufen. Man sagt auch, dass die Methode
dynamisch oder spéat gebunden wird.

|

\ /

Methoden, die private, static oder final sind, kébnnen vom _ —
Compiler statisch oder friih gebunden werden. Alle anderen Metho- /@ -

den werden dynamisch oder spat gebunden.

i

11.5 Vertrage

Entwurf durch Vertrage (engl. Design by Contract) wurde von Bertrand Meyer,
dem Entwickler der Programmiersprache Eiffel, als Entwurfstechnik eingefuhrt. Diese
Technik wurde im Falle von Eiffel in einer konkreten Programmiersprache umgesetzt,
stellt aber ein allgemeingultiges Prinzip dar, das beim objektorientierten Entwurf un-
abhangig von der jeweiligen objektorientierten Programmiersprache eingesetzt wer-
den kann.

Eine Klasse besteht nicht nur aus Methoden und Datenfeldern — eine Klasse wird
benutzt von anderen Klassen, hier Kunden genannt, und hat damit Beziehungen zu
all ihren Kunden. Das Konzept "Design by Contract” sieht diese Beziehungen als
eine formale Ubereinkunft zwischen den beteiligten Partnern an und definiert prazise,
unter welchen Umstanden ein korrekter Ablauf des Programms erfolgt.

Worum es hier vor allem geht, ist, dass sich beim Aufruf einer Methode der Auf-
rufer und die aufgerufene Methode gegenseitig aufeinander verlassen kénnen.
Die Beziehung zwischen Aufrufer und aufgerufener Methode kann man formal als
einen Vertrag einer Methode bezeichnen, der nicht gebrochen werden darf, da
ansonsten eine Fehlersituation entsteht. Bei einem Vertrag haben in der Regel beide
Seiten Rechte und Pflichten. So wie im Alltag ein Vertrag die Beziehungen zwi-
schen Vertragsparteien (Personen, Organisationen) regelt, beschreibt ein Vorbe-
dingungs-Nachbedingungs-Paar den Vertrag einer Methode mit ihrem Kunden,
dem Aufrufer.

410 Kapitel 11

Solange bei der Ableitung von einer Basisklasse der Vertrag der Basisklasse in einer
Unterklasse nicht gebrochen wird, ist es mdéglich, den fiir die Basisklasse geschrie-
benen Code auch flr die Unterklassen, die eventuell erst spater erfunden werden, zu
verwenden.

Uberschriebene
Methode

Objekt der Basisklasse

Objekt der
abgeleiteten
Klasse

Uberschreibende
Methode

Bild 11-23 Liskov Substitution Principle

Das Client-Objekt bemerkt den "Objekt-Tausch" nicht, solange der Vertrag nicht ge-
brochen wird.

11.5.1 Zusicherungen

Allgemein werden nach Bertrand Meyer Vertrage spezifiziert durch so genannte
Zusicherungen. Eine Zusicherung ist ein Boolescher Ausdruck, der niemals falsch
werden darf.

Betrachtet werde nun ein Programmcode A, welcher den Zustand eines Programms
von einem Zustand P vor der Abarbeitung seiner Anweisungen in den Zustand Q
nach der Ausfihrung seiner Anweisungen Uberflihrt. Ein Zustand eines Programms
ist dabei gegeben durch die aktuellen Werte aller Variablen zu einem bestimmten
Zeitpunkt. Stellt P eine Vorbedingung dar, was bedeutet, dass die aktuellen Daten-
werte einen korrekten Ablauf des Programmcodes A ermdglichen, so ist der Pro-

Vererbung und Polymorphie 411

grammcode A korrekt, wenn der Zustand Q der Spezifikation entspricht. Dieser Um-
stand kann auch formal Gber das Hoare-Kalkdl

{P} A{Q} (Hoare-Tripel)

ausgedruckt werden. Hierbei ist P die Vorbedingung, A die auszufihrende Anwei-
sung bzw. der auszufilhrende Programmcode und Q die so genannte Nachbe-
dingung, d. h. der korrekte Zustand nach der Ausfiihrung von A. Wenn die Vorbe-
dingung P erfillt ist, dann muss A in einen Zustand terminieren, der Q entspricht.
Dann und nur dann ist A korrekt.

Der Vertrag einer Methode umfasst die Vor- und Nachbedingungen — -
einer Methode. - ~

Eine Vorbedingung P (Precondition) stellt die Einschrankungen dar, unter denen
eine Methode korrekt funktioniert. So darf beispielsweise eine Methode push (), die
ein Element auf einem Stack ablegt, nicht aufgerufen werden, wenn der Stack voll
ist, genauso wenig wie eine Methode pop (), die ein Element von einem Stack abho-
len soll, aufgerufen werden darf, wenn kein Element mehr auf dem Stack ist.

Eine Vorbedingung stellt eine Pflicht fir einen Aufrufer dar, sei es, dass der Aufruf
innerhalb der eigenen Klasse erfolgt oder von einem Kunden. Ein korrekt arbeitendes
System fuhrt nie einen Aufruf in einem Zustand durch, der nicht die Vorbedingung
der gerufenen Methode erflllen kann. Eine Vorbedingung bindet also einen Aufrufer.
Die Vorbedingung definiert die Bedingungen, unter denen ein Aufruf zuléssig ist.
Sie stellt eine Pflicht fiir den Aufrufer dar und einen Nutzen fiir den Aufgeru-
fenen. Ist die Vorbedingung verletzt, so ist der Aufgerufene nicht an die Nachbeding-
ung gebunden und kann machen, was er will. Zum Beispiel kann die Verletzung der
Vorbedingung einen Programmabsturz verursachen.

Eine Nachbedingung Q (Postcondition) stellt den korrekten Zustand nach dem
Aufruf einer Methode dar. So kann nach dem Aufruf von push () der Stack nicht leer
sein und die Zahl der Elemente auf dem Stack muss um 1 hdher sein als vor dem
Aufruf der Methode. Umgekehrt kann nach dem Aufruf von pop () der Stack leer
sein, wobei die Zahl der Elemente auf dem Stack um 1 geringer sein muss als vor
dem Aufruf.

Eine Nachbedingung bindet eine Methode einer Klasse. Die Nachbedingung stellt die
Bedingungen dar, die von der Methode eingehalten werden missen. Die Nachbe-
dingung ist eine Pflicht fiir den Aufgerufenen und ein Nutzen fiir den Aufrufer.
Mit der Nachbedingung wird garantiert, dass der Aufrufer nach Ausfihrung der Me-
thode einen Zustand mit korrekten Eigenschaften vorfindet, natlrlich immer unter der
Voraussetzung, dass beim Aufruf der Methode die Vorbedingung erfullt war.

Wichtig ist, dass kein redundanter Code geschrieben wird. Das wére zu fehlertréachtig
und auBerdem nicht performant. Es gilt somit das single source-Prinzip. Die Vorbe-
dingung muss stets vom Aufrufer geprift werden und keinesfalls vom Aufgerufenen.
Umgekehrt muss die Einhaltung der Nachbedingung stets vom Aufgerufenen Uber-
wacht werden. Der Aufrufer darf die Priifung der Nachbedingung nicht durchfihren.

412 Kapitel 11

Wie bei einem guten Vertrag im téglichen Leben haben also Aufrufer
und Aufgerufener Pflichten und Vorteile. Der Aufrufer hat die Pflicht, |
den Aufgerufenen korrekt aufzurufen. Damit hat der Aufgerufene den /

Vorteil, dass er in einer korrekien Umgebung ablauft. - @ -
e ~

Der Aufgerufene wiederum hat die Pflicht, korrekte Werte zuriickzu-
geben. Diese Pflicht des Aufgerufenen ist der Vorteil des Aufrufers, da
er korrekte Werte erhalt.

Invarianten beziehen sich nicht auf eine einzelne Methode. Invarianten beziehen
sich immer auf das gesamte Objekt. Eine Invariante muss also fiir jedes einzelne
Objekt erflllt sein, damit ein System korrekt arbeitet oder in einem korrekten Zustand
ist.

: : : : : |
Da die Invarianten von allen Methoden einer Klasse, die von einem //
Kunden aufgerufen werden kénnen, eingehalten werden missen, um — @
s

die Korrektheit zu gewéhrleisten, spricht man auch von Klassenin-
varianten.

~

==

My

Eine Invariante ist eine Zusicherung beziiglich einer Klasse. Es soll dazu eine Klas-
se Polygon betrachtet werden. Ein Polygon besteht aus mindestens drei Eckpunk-
ten, die mit geraden Linien verbunden sind. Somit besitzt die Klasse Polygon die
Klasseninvariante, dass die Anzahl der aggregierten Punkte — die Punkte kénnen
beispielsweise durch die Klasse Punkt reprasentiert werden — mindestens drei
betragen muss, damit ein Kérper ein Polygon ist. Diese Eigenschaft qilt fir die ge-
samte Klasse und nicht individuell nur fiir eine einzelne Methode. Sie ist damit eine
Klasseneigenschaft im Gegensatz zu Vor- und Nachbedingungen, die einzelne Me-
thoden charakterisieren.

Eine Invariante muss gelten vor Aufruf einer Methode und nach dem Aufruf einer
Methode durch einen Kunden. Eine Invariante kann temporér verletzt werden wéh-
rend der Ausflhrung einer Methode oder beim Aufruf von Service-Methoden, die
nicht auBerhalb der Klasse sichtbar sind — also nicht exportiert werden. Dies stellt
kein Problem dar, da die Invariante dem Kunden erst nach Ausflihrung einer expor-
tierten Methode wieder zur Verflgung steht. Nach Ausflihrung einer exportierten
Methode muss die Klasseninvariante wieder eingehalten sein. So hat zum Beispiel
eine Klasse Quadrat — die Quadrate auf dem Bildschirm zeichnen, verschieben,
drehen und skalieren kann — die Invariante, dass vor und nach dem Aufruf einer der
Methoden zeichne (), verschiebe (), drehe () und skaliere () alle Seiten des
Quadrats gleich lang sind und jeder Winkel ein rechter Winkel ist. Innerhalb der
Methode verschiebe () kann aber temporar erst ein Teil der Eckpunkte verscho-
ben sein, sodass temporar gar kein Quadrat vorliegt.

Eine Klasseninvariante muss vor und nach dem Aufruf einer nach — -
auBen sichtbaren Methode eingehalten sein. - ~

Vererbung und Polymorphie 413

Werden Methoden intern aufgerufen, wird eine Invariante nicht geprift. Wenn Metho-
den von auBen aufgerufen werden, wird in der Regel die Invariante Uberprift, um
sich der Korrektheit zu vergewissern.

Der Vertrag einer Klasse umfasst die Vertrage der Methoden unddie . |
Invarianten. Werden verschiedenen Kunden einer Klasse jedoch ver- —
schiedene Leistungen der Klasse zur Verfligung gestellt, so ordnet /\
man die Vertrage der Methoden in verschiedene Vertrdge der Klasse =

jeweils mit dem entsprechenden Kunden ein.

11.5.2 Einhalten der Vertrage bei der Vererbung

Leitet wie in Bild 11-24 gezeigt eine Klasse B von einer Klasse A ab, so miissen beim
Uberschreiben der Methoden bestimmte Regeln eingehalten werden. Die abgeleitete
Klasse muss auch die Invarianten ihrer Basisklasse beachten. Auch hierflir gelten
Regeln, die in den folgenden zwei Kapiteln vorgestellt werden.

11.5.2.1 Regeln fiir das Einhalten der Methodenvertrage

Beim Uberschreiben von Methoden diirfen die Vertrage nicht gebrochen werden.
Uberschreibende Methoden durfen die Vorbedingung der Uberschriebenen Methode
nur aufweichen und nicht verschérfen, da sonst ein Aufrufer damit nicht fertig werden
wirde.

Uberschreibende Methoden diirfen Nachbedingungen nur verscharfen, da mit
aufgeweichten Nachbedingungen ein Aufrufer nicht leben kdnnte.

Im Folgenden soll die Vererbungshierarchie aus Bild 11-24 betrachtet werden:

A
90

B
a0

Bild 11-24 Uberschreiben der Methode g ()

Die Klasse B sei von der Klasse A abgeleitet und soll die Methode g () aus A Uber-
schreiben. Aufrufer von g () sei eine Methode £ () in einer Klasse C. Die Methode
£ () soll die folgende Aufrufschnittstelle besitzen: £ (A a). Mit anderen Worten: an
£ () kann eine Referenz auf ein Objekt der Klasse A oder eine Referenz auf ein
Objekt der abgeleiteten Klasse B libergeben werden.

414 Kapitel 11

Zur Laufzeit

A oder B

|

void £ (A a)
{

ergebnis = a.g();

}
Bild 11-25 Eine Methode r () akzeptiert Referenzen auf Objekte vom Typ A und Typ B

Der Kunde £ () kann zur Laufzeit nicht wissen, ob ihm eine Referenz auf ein Objekt
der Klasse 2 oder der Klasse B Ubergeben wird. Dem Kunden £ () ist auf jeden Fall
nur die Klasse A bekannt und daran richtet er sich aus! Also kann £ () nur den Ver-
trag der Methode g () aus A beachten. £ () stellt also die Vorbedingungen fiir g ()
aus A sicher und erwartet im Gegenzug, dass g () aus A seine Nachbedingungen
erfallt.

£ () kann diese £ () hat kein
Vorbedingung einhalten. Problem, eine

£ () kann aber keine schwachere
schérfere Vorbedingung Vorbedingung zu
gewahrleisten erfullen

Vorbedingung
g() aus A

Vorbedingung
g() aus B

Bild 11-26 Aufweichen einer Vorbedingung in einer abgeleiteten Klasse

Wie im té&glichen Leben auch, darf ein Vertrag tbererfullt, aber nicht verletzt werden!
Dies hat zur Konsequenz, dass g () aus B die Vorbedingungen nicht verscharfen
kann, denn darauf ware der Kunde £ () Uberhaupt nicht eingerichtet. g () aus B darf
aber die Vorbedingungen aufweichen, wie in Bild 11-26 gezeigt wird. Dies stellt fir
f () kein Problem dar, denn aufgeweichte Vorbedingungen kann £ () sowieso mihe-
los einhalten.

In entsprechender Weise liegt es auf der Hand, dass g () aus B die Nachbeding-
ungen nicht aufweichen darf, denn der Kunde £ () erwartet die Ergebnisse in einem
bestimmten Bereich. Auf einen breiteren Bereich ware der Kunde nicht eingerichtet,
was im Bild 11-27 verdeutlicht wird.

Vererbung und Polymorphie 415

£ () erhalt von £ () verlasst sich
g () eine bessere darauf, dass das
Qualitat als Ergebnis von g ()
erwartet in einem gewissen

Bereich liegt und
korrekt ist

Nachbedingung
g() aus B

Nachbedingung
g() aus A

Bild 11-27 Verschérfen einer Nachbedingung in einer abgeleiteten Klasse

Eine Methode einer abgeleiteten Klasse darf:

® eine Nachbedingung nicht aufweichen, d. h. wenn eine Methode
z. B. einen Rickgabewert vom Typ int hat und garantiert, dass sie N

nur Werte zwischen 1 und 10 liefert, so darf die Uberschreibende —
Methode keine Werte auBerhalb dieses Bereichs liefern.
® eine Vorbedingung nicht verschéarfen, d. h. wenn eine Methode =

z. B. einen formalen Parameter vom Typ int spezifiziert, und einen

glltigen Wertebereich zwischen 1 und 10 hat, so darf die Uber-
schreibende Methode diesen Wertebereich nicht einschranken.

11.5.2.2 Regeln fiir das Einhalten der Giiltigkeit von Klasseninvarianten

Beim Erweitern einer Klasse muss darauf geachtet werden, dass die von ihr ableiten-
den Klassen die Giltigkeit der Klasseninvarianten der Basisklasse nicht verletzen.
Da eine Sohnklasse immer einen Vateranteil enthdlt, muss sichergestellt werden,
dass der Vateranteil nach wie vor korrekt arbeitet. Aus diesem Grund gilt bei der Ver-
erbung die Regel, dass sich die Invarianten einer abgeleiteten Klasse aus der Boole-
schen UND-Verkniipfung der Invarianten der Basisklasse und der in ihr definierten
Invarianten ergeben. Ein Client, der ausschlieBlich mit Referenzen auf Objekte der
Basisklasse arbeitet, kommt nur mit den Invarianten der Vaterklasse klar. Tritt an die
Stelle eines Objektes einer Basisklasse ein Objekt einer abgeleiteten Klasse, so darf
dieses Objekt die Invarianten der Basisklasse nicht verletzen, da der Client nicht
damit zurecht kommen wiirde.

Betrachten wir hierzu wieder das in Kap. 11.5.1 beschriebene Beispiel der Klasse
Polygon, dessen Invariante fir die Anzahl an aggregierten Eckpunkten "mindestens
drei Punkte" lautet. Von der Klasse Polygon leitet nun die Klasse Rechteck ab.
Das Rechteck definiert nun eine Invariante fir die Anzahl der aggregierten Punkte,
welche lautet: "genau vier Punkte". Mit anderen Worten, ein Objekt der Klasse
Rechteck muss genau vier Objekte vom Typ Punkt aggregieren, damit es ein
regelgerechtes Rechteck darstellt. Die Invariante des Vaters aus Client-Sicht ist
dadurch nicht verletzt. Wenn dem Client nun eine Referenz auf ein Objekt der Klasse

416 Kapitel 11

Rechteck zugewiesen wird, so kann er mit diesem Rechteck ohne Probleme ar-
beiten. Denn er weiB, dass die Klasseninvariante von Polygonen "mindestens drei
Punkte" lautet. Ein Rechteck hat genau vier Punkte, also auch mindestens drei. Die
Boolesche UND-Verknupfung

"mindestens drei Punkte" && "genau vier Punkte"

hat den Wahrheitswert TRUE. Somit wurde die Invariante der Basisklasse Polygon
von der abgeleiteten Klasse Rechteck nicht verletzt.

|

\ /
Die Invarianten einer Klasse ergeben sich aus der Booleschen UND- —
Verknlpfung der in ihr definierten Invarianten und der Invarianten, die -

in der Vaterklasse definiert sind.

(i

11.5.3 Klassen als Ubergabetypen und Riickgabetypen

Aufweichen bedeutet im Zahlenraum einen gréBeren Wertebereich, Verscharfen be-
deutet im Zahlenraum einen schmaleren Wertebereich. Verscharfung bedeutet Spe-
zialisierung. Aufweichen bedeutet Generalisierung. Beim Uberschreiben einer Metho-
de darf fir den Typ eines Ubergabeparameters eine Basisklasse gewahlt werden.
Damit hat ein Kunde kein Problem, denn nach dem Liskov Substitution Principle
kann ein Objekt einer abgeleiteten Klasse stets an die Stelle eines Objektes einer
Basisklasse treten. Wiirde die lberschreibende Methode an die Stelle der Klasse
des Ubergabeparameters eine abgeleitete Klasse (Spezialisierung) setzen, so héatten
die Client-Programme Schwierigkeiten, da sie solche Objekte nicht liefern kénnten.

Beim Riickgabewert kann man beim Uberschreiben verscharfen, denn das macht
den Client-Programmen nichts aus. Verscharfen bedeutet Spezialisierung und Spe-
zialisierung bedeutet in der Objektorientierung die Bildung eines Subtyps durch
Ableitung. Wird in der Uberschreibenden Methode ein Subtyp des urspriinglichen
Typs zuriickgegeben, so macht das nichts aus, denn beim Aufrufer tritt dann an die
Stelle eines Objektes der Basisklasse ein Objekt einer abgeleiteten Klasse. Und dies
ist nach dem Liskov Substitution Principle méglich.

Beim Uberschreiben einer Methode diirfen die Ubergabeparameter
nur durch den Typ einer Klasse ersetzt werden, die im Vererbungs- |
baum weiter oben steht. Bei den Ubergabeparametern ist nur eine /

Generalisierung erlaubt. — -
e ~

Der Riickgabewert darf beim Uberschreiben einer Methode nur ver-
scharft werden. Die Uberschreibende Methode darf nur den Typ einer
Klasse zurtickgeben, die im Vererbungsbaum weiter unten steht.

11.5.4 Einhalten von Vertragen bei Riickgabewerten

Das folgende Programm greift das Beispiel des Waren-Management-Systems aus
Kapitel 11.4.2 auf. Die dort vorhandene Klasse wWare wird in Klasse Ware2 umbe-

Vererbung und Polymorphie 417

nannt und um die Methode void stueckzahlVerringern (int anzahl) zum
Auslagern von Waren erweitert. Weiterhin wird eine Klasse verderblicheWare
von Ware?2 abgeleitet. Die in Kapitel 11.4.2 vorhandene Klasse Warenlager wird in
Klasse Warenlager2 umbenannt und ebenfalls um zusatzliche Funktionen erwei-
tert. Weiterhin wird von Warenlager2 eine Klasse VerderblichesWarenlager
abgeleitet. Die Klasse Test10 dient zum Testen des neuen Waren-Management-
Systems.

Es wird nun die Situation betrachtet, dass ein Client-Programm eine Methode
methode () flr ein Objekt einer Klassel aufruft, die in der von Klassel abge-
leiteten Klasse2 Uberschrieben wird. Der Riickgabetyp der Uberschreibenden Me-
thode soll ein Subtyp des Rickgabetyps der Uberschriebenen Methode sein.

:Client ‘Klasse1
I methode() : Basisklasse

Client methode() : Subklasse Klasse2

Bild 11-28 Subtyp als Riickgabetyp beim Uberschreiben

Im folgenden Programm ist die Klasse Test10 die Client-Klasse. Die Klasse Klas-
sel wird reprasentiert durch die Klasse Warenlager2. Die Klasse Klasse2 wird
reprasentiert durch die Klasse verderblichesWarenlager, die von der Klasse
Warenlager?2 abgeleitet wird.

Warenlager2 Ware2
<]
Verderbliches- VerderblicheWare
Warenlager

Bild 11-29 Klassenhierarchie flir die Implementierung

Wie aus Bild 11-29 ersichtlich ist, kann die Klasse VerderblichesWarenlager
wie Warenlager2 verderbliche und nicht verderbliche Waren enthalten, hat aber
spezielle Methoden fiir verderbliche Waren. Uberschrieben wird in der Klasse ver-
derblichesWarenlager die Methode entnehmen (). In der Klasse Warenla-
ger?2 lautet der Methodenkopf:

Ware2 entnehmen (String warenname)

In der Klasse VerderblichesWarenlager lautet der Uberschreibende Methoden-
kopf:

VerderblicheWare entnehmen (String warenname)

418 Kapitel 11

Der Rickgabetyp der tberschreibenden Methode ist also ein Subtyp des Rickgabe-
typs der Uberschriebenen Methode. Hier nun das Programm:

// Datei: Ware2.java

public class Ware2
{
protected int warenId;
protected String name;
protected float preis;
protected int anzahl;
protected static int aktuelleNummer = 0;

Ware2 (String name, float preis)

{

warenld = aktuelleNummer++;

this.name = name;
this.preis = preis;
anzahl = 0;

}

int getWarenId()
{

return warenld;

}

String getName ()
{

return name;

}

void stueckzahlErhoehen (int anzahl)

{

this.anzahl += anzahl;

}

void stueckzahlVerringern (int anzahl)

{

this.anzahl -= anzahl;

}

int getAnzahl ()
{

return anzahl;

}

void setAnzahl (int =zahl)
{

anzahl = zahl;

}

void print ()
{
System.out.println ("ID: " + warenId + " Bezeichnung: "
+ name + " Anzahl: " + anzahl);

Vererbung und Polymorphie 419

Eine verderblicheWare ist eine Wware2 mit einer maximalen Lagertemperatur.
// Datei: VerderblicheWare. java

public class VerderblicheWare extends Ware2

{

private double maxLagerTemperatur;

VerderblicheWare (String name, float preis,
double maxLagerTemperatur)

super (name, preis);
this.maxLagerTemperatur = maxLagerTemperatur;

}

void print ()
{
super.print () ;
System.out.println ("maximale Lagertemperatur " +
maxLagerTemperatur) ;

Die Klasse Wwarenlager2 enthdlt Waren. Natlrlich kénnen dort auch verderbliche
Waren eingelagert werden, da nach dem Liskov Substitution Principle stets ein Ob-
jekt einer abgeleiteten Klasse an die Stelle eines Objektes einer Basisklasse treten
kann. Allerdings ist dort die Erweiterung der Waren zu verderblichen Waren nicht
sichtbar (wegen Cast).

// Datei: Warenlager2.java

public class Warenlager?2

{
protected Ware2[] arr;
protected Warenlager2 ()
{
}

protected Warenlager2 (int max)
{

arr = new Ware2 [max];

// Die Methode aufnehmen () kann neue, noch nicht im Lager enthal-
// tene Waren aufnehmen. Sie kann aber auch zu einer schon im
// Lager vorhandenen Ware die Anzahl der vorhandenen Elemente
// erhdhen. Das Array wird beginnend vom Index 0 ab gefiillt.
// Die freien Array-Elemente enthalten die null-Referenz.
int aufnehmen (Ware2 ref, int anzahl)
{

// Priifen, ob die Ware schon vorhanden ist.

for (int i = 0; i < arr.length; i++)

{

if ((arr [i] !'= null) &&
(ref.getWarenId() == arr [1].getWarenId()))

420

Kapitel 11

}

ref.stueckzahlErhoehen (anzahl);
return 1;

}

if (arr [arr.length - 1] != null)
{
return -1; // Warenlager voll!
}
else
{
for (int i = 0; i < arr.length; i++)
{
if (arr [i] == null) // Erstes freies Feld gefunden,
{ // Ware noch nicht vorhanden.
arr [i] = ref;
arr [i].stueckzahlErhoehen (anzahl);
break;

}
}

return 1;

// Die Methode entnehmen () entnimmt 1 Exemplar einer Ware
Ware2 entnehmen (String warenname)

{

Ware2 tmp = null;
boolean gefunden = false;

for (int i = 0; i < arr.length; i++)
{
if ((arr [i] != null) &&
((arr[i] .getName()) .equals (warenname)))
{
gefunden = true;

if (arr[i].getAnzahl() >= 1)

{
arr[i].stueckzahlVerringern (1);
tmp = arr[i];

}

else

{
System.out.println (
"Ware nicht in ausreichender Anzahl am Lager");

}
}

if (gefunden == false)

{

System.out.println ("Gesuchte Ware " + warenname +
" ist nicht im Lager");

}

return tmp;

Vererbung und Polymorphie 421

void print ()
{
for (int i = 0; 1 < arr.length && arr [i] != null; i++)
{
arr [i].print();

}

// Datei: VerderblichesWarenlager.java

public class VerderblichesWarenlager extends Warenlager?
{
public VerderblichesWarenlager (int max)
{
super (max);

}

// gibt nur verderbliche Waren aus
void verderblicheWarenAusgeben ()
{
VerderblicheWare ref = null;
for (int i = 0; i < arr.length && arr([i] != null; i++)
{
// Der Operator instanceof testet, ob die Referenz-—
// variable, welche in arr [i] gespeichert ist, vom Typ
// VerderblicheWare ist.
if (arr([i] instanceof VerderblicheWare)

ref (VerderblicheWare) arr[i];
else
{
ref = null;
}
if (ref != null)
{
ref.print();
}

}

// Die Methode entnehmen () entnimmt 1 Exemplar einer
// verderblichen Ware. Ist die Ware nicht im Lager oder
// nicht verderblich, wird null zuriickgegeben.
VerderblicheWare entnehmen (String warenname)
{

VerderblicheWare tmp = null;

boolean gefunden = false;

for (int i = 0; i < arr.length; i++)
{
if ((arr [i] != null) &&
((arr[i] .getName()) .equals (warenname)))

gefunden = true;

422

Kapitel 11

}

}

if (arr[i].getAnzahl () >= 1)

{

arr[i].stueckzahlVerringern (1);

// Der Operator instanceof testet, ob die

// Referenzvariable, welche in arr [i] gespeichert
// ist, vom Typ VerderblicheWare ist.

if (arr[i] instanceof VerderblicheWare)

{

tmp = (VerderblicheWare) arr[i];
}
else
{
System.out.println ("Ware " + warenname +

}

else

{

ist nicht verderblich");

System.out.println (
"Ware nicht in ausreichender Anzahl am Lager");

if (gefunden == false)

{

System.out.println ("Gesuchte Ware " + warenname +
" ist nicht im Lager");

}

return

// Datei: Te

tmp;

st10.java

public class TestlO

{

public static void main (String[] args)

{

Warenl

ager2 lager

= new VerderblichesWarenlager (4);

VerderblicheWare vRef =

Ware?2

lager.
lager.
lager.
lager

new VerderblicheWare ("Milch", .99f, 6.0);

wareref = new Ware2 ("Seife", .79f);

aufnehmen (vRef, 500);
aufnehmen (wareref, 300);
aufnehmen (wareref, 300); // Lagerbestand erhd&hen

.print () ;

VerderblichesWarenlager lager2 =

System.
System.

lager2

System.

out.println

(VerderblichesWarenlager) lager;

out.println();

("Aufruf von verderblicheWarenAusgeben()");

.verderblicheWarenAusgeben () ;

out.println

lager.print () ;

("\nAufruf von lager.print()");

Vererbung und Polymorphie 423
System.out.println (
"\nTest der Riickgabewerte von entnehmen():");
Ware2 ware = lager.entnehmen ("Seife");
if (ware != null)
{
System.out.println ("Die folgende Ware wurde entnommen:");
ware.print () ;
}
Ware2 ware2 = lager.entnehmen ("Milch");
if (ware2 != null)
{
System.out.println ("Die folgende Ware wurde entnommen:");
ware2.print ();
}
Ware2 ware3 = lager.entnehmen ("Rasierschaum");
if (ware3 != null)
{
System.out.println ("Die folgende Ware wurde entnommen:");

ware3.print ();

Die Ausgabe des Programms ist:

ID: 0 Bezeichnung: Milch Anzahl: 500

maximale Lagertemperatur 6.0
ID: 1 Bezeichnung: Seife Anzahl: 600

Aufruf von verderblicheWarenAusgeben ()
ID: 0 Bezeichnung: Milch Anzahl: 500
maximale Lagertemperatur 6.0

Aufruf von lager.print()

ID: 0 Bezeichnung: Milch Anzahl: 500
maximale Lagertemperatur 6.0

ID: 1 Bezeichnung: Seife Anzahl: 600

Test der Riickgabewerte von entnehmen():

Ware Seife ist nicht verderblich

Die folgende Ware wurde entnommen:

ID: 0 Bezeichnung: Milch Anzahl: 499
maximale Lagertemperatur 6.0

Gesuchte Ware Rasierschaum ist nicht im Lager

11.6 Identifikation der Klasse eines Objektes

Wie Sie in den letzten Kapiteln feststellen konnten, kann es vorkommen, dass man
den Typ eines Objektes nicht kennt, auch wenn man eine Referenz hat, die auf die-
ses Objekt zeigt. Beispielsweise kann eine Referenz vom Typ Object auf jedes be-
liebige Objekt zeigen. Um den tatsachlichen Typ eines Objektes herausfinden zu
kénnen oder um testen zu kénnen, ob ein Objekt von einem bestimmten Typ ist, gibt

424 Kapitel 11

es Mechanismen, die in den folgenden beiden Kapiteln vorgestellt werden. Im An-
schluss an diese Kapitel werden die erlaubten Operatoren fur Referenztypen vor-
gestellt.

11.6.1 Der instanceof-Operator

Mit dem instanceof-Operator kann getestet werden, ob eine Referenz auf ein
Objekt eines bestimmten Typs zeigt. Dies ist dann wichtig, wenn eine Referenz vom
Typ einer Basisklasse ist. Eine solche Referenz kann ja auf Objekte aller abge-
leiteten Klassen zeigen. Mit Hilfe des instanceof-Operators lasst sich nun nach-
prifen, ob das referenzierte Objekt tatsdchlich vom angenommenen Typ ist. Mit die-
ser Erkenntnis kann dann die Referenz in den entsprechenden Typ gecastet werden.
Das heiB3t, man kann Gberpriifen, ob ein expliziter Cast zulassig ist.

Die Syntax ist:

a instanceof Klassenname

Dieser Ausdruck gibt true zurlick, wenn die Referenz a auf ein Objekt der Klasse
Klassenname — bzw. auf ein Objekt, dessen Klasse von der Klasse Klassen-
name abgeleitet ist — zeigt. Betrachten Sie hierzu die Vererbungshierarchie aus Bild
11-20 mit den Klassen Grossvater, Vater und Sohn. Es zeigen nun Referenzen
vom Typ Object auf Objekte aller drei Klassen:

Object refA = new Grossvater();
Object refB = new Vater();
Object refC = new Sohn();

Dann geben alle drei Ausdriicke

refA instanceof Grossvater
refB instanceof Grossvater
refC instanceof Grossvater

true zurlick, da sowohl ein Objekt vom Typ vater als auch ein Objekt vom Typ
Sohn vom Typ Grossvater ist. Wird die Referenz refB getestet, ob sie auf ein Ob-
jekt vom Typ Object, Grossvater, Vater oder Sohn zeigt, so geben alle Ver-
gleiche

refB instanceof Object
refB instanceof Grossvater
refB instanceof Vater

true zurlck. Dahingegen liefert der Vergleich

refB instanceof Sohn
den Wert false.

Die null-Referenz zeigt auf kein Objekt eines bestimmten Typs, deshalb ist

null instanceof Klassenname

Vererbung und Polymorphie 425

immer false. Hier ein Beispiel fir die Verwendung des instanceof-Operators:

// Test, ob ein Cast zulé&dssig ist.

if (ref instanceof Sohn)

{
Sohn refSohn = (Sohn) ref;

11.6.2 Run Time Type Ildentification

Run Time Type Identification (RTTI) ist die Erkennung des Typs eines Objektes zur
Laufzeit. In Bild 11-8 wurde die Vererbungshierarchie fir eine Person und einen
Studenten gezeigt. Die Klasse Student ist dabei von der Klasse Person abgeleitet.
Beide Klassen definieren eine Methode print ().

Tritt ein Objekt der Klasse student als Person auf, so sind die zu-
satzlichen Datenfelder und Methoden der Klasse Student zwar nicht |
mehr ansprechbar, wird aber die Methode print () zu dem Studen- —
ten aufgerufen, der gerade in Gestalt einer Person auftritt, so wird die /\
liberschreibende print ()-Methode des Studenten und nicht die =/
tiberschriebene Methode der Person aufgerufen. Es wird also zur =
Laufzeit erkannt, dass die Person ja eigentlich ein Student ist.

Wie dies von der virtuellen Maschine erreicht wird, soll im Folgenden aufgezeigt
werden. Als Diskussionsgrundlage sollen nicht die Klassen Person und Student
dienen, sondern eine besonders einfache Klasse, die Klasse Test11. Die Klasse
Test11 soll nur die Instanzmethode toString () besitzen, eine main ()-Methode
sowie das Datenfeld var. Die toString ()-Methode der Klasse Object wird dabei
in der Klasse Test11 Uberschrieben.

// Datei: Testll.java

public class Testll extends Object
{

private int var = 1;

public String toString()
{
return Integer.toString (var);

}

public static void main (String[] args)
{
Object ref = new Testll();
System.out.println (ref);

426 Kapitel 11

Die Ausgabe des Programms ist:
1

Es wird — wie zu erwarten — die tosString ()-Methode der Klasse Test11 aufge-
rufen und nicht die geerbte tostring ()-Methode der Klasse Object. Die virtuelle
Maschine muss also so organisiert sein, dass dieses Verhalten mdglich ist. Bekannt-
lich liegen die Instanzvariablen eines Objektes im Heap und die Klassenvariablen
und der Bytecode fiir die Methoden in der Method-Area. Bis zu diesem Zeitpunkt
wurde zwar schon erwéhnt, dass ein jedes Objekt seine Klasse kennt, aber es wurde
immer verschwiegen, wie dies realisiert ist — und dabei ist es ganz einfach. Die erste
Information, die zu einem Objekt im Heap abgelegt wird, ist ein Zeiger auf die in der
Method-Area liegende Klasse des Objektes. Erst dann folgen die Instanzvariablen.
Bild 11-30 soll diesen Zusammenhang zeigen:

Heap Method-Area
Code und Klassenvariable
der Klasse Object
var = 1 i
Code und Klassenvariable

der Klasse Test11

Bild 11-30 Objekte im Heap zeigen auf die zugehdrige Klasse in der Method-Area

Das obige Bild ist eine vereinfachte Darstellung und soll im Folgenden vervollstandigt
werden. Damit es mdglich wird, jedes Mal die richtige Methode aufzurufen, benétigt
jede Klasse noch zusétzlich eine Methodentabelle. In dieser Tabelle sind die Zeiger
auf die Methodenimplementierungen aller Methoden eines Typs, die dynamisch ge-
bunden werden kdnnen, zusammengestellt. Eine mégliche Realisierung der dynami-
schen Bindung kdnnte so wie in Bild 11-31 aussehen.

Heap Method-Area

Code und Klassen-
variablen der Klasse

var

1

Bild 11-31 Zeiger in der Methodentabelle zeigen auf den Bytecode einer Methode

Methodentabelle der
Klasse Test11

Zeiger auf equals()

Zeiger auf finalize()

Zeiger auf toString()

Zeiger auf getClass()

Object
'equals (Object obj)

Code und Klassen-
variablen der Klasse
Testll

Mtostring ()

Vererbung und Polymorphie 427

Der Zeiger, der im Heap als erste Information vor den Instanzvariablen eines Objek-
tes liegt, zeigt jetzt auf den ersten Eintrag in der Methodentabelle. Dort verweist wie-
derum der erste Eintrag auf den Bytecode der Klasse Test11. Wird eine Methode in
der Klasse Test11 Uberschrieben, so zeigt der Eintrag in der Methodentabelle auf
die Uberschreibende Methode, hier also auf den Bytecode der Methode to-
String () der Klasse Test11. In der Methodentabelle befinden sich nur Zeiger auf
die Methoden, die fir die dynamische Bindung in Frage kommen. Deshalb haben
private, statische oder finale Methoden keinen Eintrag in der Methodentabelle. Wird
nun die Methode tostring() aufgerufen, so kommt man Uber den Verweis im
Heap zur Methodentabelle und von dort zum Bytecode der Methode. Hierbei wird
nun auch klar, dass es gar keine Rolle spielt, ob die Referenz vom Typ einer
Vaterklasse ist — hier Object — oder ob die Referenz den genau gleichen Typ tragt
wie das Objekt, auf das sie zeigt — es wird immer die gleiche Methodentabelle
verwendet, egal von welchem Typ die Referenz ist. Das bedeutet, dass immer die
uberschreibende Methode des Objektes aufgerufen wird. Hierzu soll nochmals
folgendes Beispiel diskutiert werden.

Die Klasse student und die Klasse Person implementieren beide eine print ()-
Methode. Durch die folgenden beiden Aufrufe wird jeweils die print ()-Methode der
Klasse student aufgerufen:

Student refStud = new Student();
ref.print () ;

Person refPers = refStud;
ref.print ();

Dies ist auch nicht weiter verwunderlich, denn das Objekt und die zugehérige Metho-
dentabelle in der Method-Area reprasentiert einen Studenten und keine Person, auch
wenn die Referenz vom Typ Person ist.

Beim Casten verandert sich nur die Sichtweise auf die zur Verfligung |y
stehenden Methodenkdpfe. Das Objekt, auf das eine Referenz zeigt

und die zugehdérige Methodentabelle bleiben beim Casten unveran- ‘/\
dert. Allerdings werden beim Cast auf eine Superklasse die erweitern- =

den Methoden der abgeleiteten Klassen unsichtbar.

11.6.3 Operatoren fiir Referenztypen

Nachdem nun alle Operatoren, die auf Referenzen angewandt werden kdnnen, vor-
gestellt wurden, erfolgt hier nochmals eine Ubersichtliche Zusammenfassung:

® cast-Operator (sieche Kap. 11.3.1).
® instanceof-Operator (siche Kap. 11.6.1).

® Der Punkt-Operator . wird auf eine Referenz angewandt, wenn ein Datenfeld
eines Objektes angesprochen werden soll. GleichermaBen findet der Punkt-
Operator Anwendung, wenn Uber eine Referenz eine Methode eines Objektes
aufgerufen wird.

428 Kapitel 11

e Der Gleichheitsoperator == und der Ungleichheitsoperator ! = kénnen ebenso
wie flr elementare Datentypen auch flr Referenztypen eingesetzt werden. Der
Ausdruck refl == ref2 liefert dabei den Riickgabewert true, wenn refl
und ref2 auf das gleiche Objekt zeigen und false, wenn sie auf verschiedene
Objekte zeigen. Der Ungleichheitsoperator liefert genau die entgegengesetzten
Ergebnisse. Im Falle von Aufz&hlungstypen kénnen Aufzdhlungskonstanten auf
Gleichheit oder Ungleichheit geprift werden (siehe Kap. 6.6).

® Wird der Ausdruck refl + ref2 in einem Programmstiick geschrieben, so ist
dies ein gultiger Ausdruck, sofern mindestens eine der Referenzen auf ein
String-Objekt zeigt. Der Operator + wird dann als Verkettungsoperator fir
String-Objekte (String-Concatenation-Operator) bezeichnet. Der Riickgabe-
wert eines solchen Ausdrucks ist eine Referenz auf ein String-Objekt, das die
Aneinanderreihung der String-Reprasentationen der Objekte enthalt, auf die ref1
und ref2 zeigen. Die Stringreprasentation eines Referenztyps wird erzeugt, in-
dem die tostring()-Methode des entsprechenden Objektes aufgerufen wird.
Diese Methode ist bei jedem Objekt vorhanden, da sie in der Klasse Object
implementiert ist. Jede Klasse hat die Mdglichkeit, diese Methode zu Uberschrei-
ben, um eine fiir die jeweiligen Objekte einer Klasse geeignete String-Repréasen-
tation zur Verfligung zu stellen. Uberschreibt eine Klasse die toString ()-Metho-
de nicht, so wird die tostring ()-Methode der Klasse Object aufgerufen. Der
Rickgabewert dieser Methode ist der Namen der Klasse, von deren Typ das
Objekt ist, gefolgt von dem Zeichen '@' und einer Nummer, welche die Identitat
des Objektes in codierter Form widerspiegelt.

® Beim Bedingungsoperator 2 ? B : C kdnnen die Ausdricke B und C
Referenztypen sein. Der Bedingungsoperator wurde ausfiihrlich in Kapitel 7.6.7
behandelt. Die Bedingung 2 kann auch eine Referenz auf ein Objekt vom Typ
Boolean sein.

® Mit dem Zuweisungsoperator kann einer Referenzvariablen eine typkompatible
Referenz (siehe Kap. 11.3.1) oder die nul1-Referenz zugewiesen werden.

11.7 Konsistenzhaltung von Quell- und Bytecode

Der Ersteller eines Programms muss selbst darauf achten, dass der auszufiihrende
Bytecode nicht alter als der Quellcode seiner Klassen ist. Darauf wird im Folgenden
eingegangen. Es reicht aber Uberhaupt nicht aus, nur an seine eigenen Klassen zu
denken. Wenn man effizient arbeitet, verwendet man des Ofteren Basisklassen als
Ausgangspunkt flr seine eigenen Klassen. Was aber, wenn die Basisklassen nach
dem Kompilieren des Programmsystems geédndert werden? Zu all diesen Problemen
soll im Folgenden Stellung bezogen werden:

® Der einfachste Fall liegt vor, wenn man nur eine einzige Klasse hat. Hier ist der
Programmierer natirlich jedesmal selbst dafiir verantwortlich, dass er seine Klas-
se neu kompiliert, wenn er Anderungen an ihr vorgenommen hat, und die Ausfiih-
rung des neuen Codes wiinscht.

® Nicht wesentlich komplizierter wird es, wenn mehrere Klassen in einer Aggrega-
tionsbeziehung zueinander stehen. Es soll folgendes Beispiel betrachtet werden:

Vererbung und Polymorphie 429

// Datei: A.java

public class A

{
private B DbRef;
/.

}

// Datei: B.java

public class B
{

/]
}

Zu beachten ist, dass im Folgenden davon ausgegangen wird, dass Klassen, die
nichts miteinander zu tun haben, in jeweils unterschiedlichen Dateien liegen. Na-
tarlich kann man die Konsistenzhaltungsprobleme auf unelegante Art und Weise
auch so lésen, dass man alle Klassen in einer einzigen Sourcecode-Datei unter-
bringt. Dies ist aber kein guter Programmierstil!

Innerhalb der Klasse A wird ein privates Datenfeld der Klasse B verwendet. Wird
nun die Klasse B verandert, so reicht es, die Klasse A neu zu kompilieren. Der
Compiler sorgt automatisch dafiir, dass alle anderen Klassen, die innerhalb von
Klasse n — egal auf welche Weise — referenziert werden, neu kompiliert werden,
wenn die Sourcecode-Datei ein neueres Datum als die entsprechende Bytecode-
Datei hat. Dieser Vorgang setzt sich rekursiv fort, bis alle verwendeten Klassen mit
ihren aktualisierten .class Dateien vorliegen. Das klingt soweit wunderbar und
auBerst praktisch, aber dieser ganze Mechanismus gerat auBBer Tritt, sobald ent-
weder mehrere Klassen in einer gemeinsamen . java-Datei zusammengefasst
werden oder wenn der Name der Sourcecode-Datei nicht dem Klassennamen
entspricht. Denn dann hat der Compiler keine Mdglichkeit mehr, aufgrund des
Klassennamens auf die entsprechende Sourcecode-Datei zu schlieBen, da es in
diesen Féllen ja keine Namensgleichheit der Klasse mit der Sourcecode-Datei
mehr gibt. Hierzu wird nochmals das obige Beispiel betrachtet:

// Datei: A.java
public class A

{ private B DbRef;
}

// Datei: MeineKlasseB. java

class B

{

}

Es existieren demnach die beiden Sourcecode-Dateien A. java und MeineKlas—
seB. java sowie die beiden Bytecode-Dateien A.class und B.class. Werden
nun beide Sourcecode-Dateien verandert und nur die Klasse A mit dem Aufruf

430 Kapitel 11

javac A.java kompiliert, so funktioniert die rekursive Kompilierung der Klasse B
nicht, da keine Sourcecode-Datei mit dem Namen B. java existiert.

Man sollte sich am besten nie auf die rekursive Kompilierung ver- — -
lassen und selbst eine Gesamtkompilierung durchfthren. - ~

® |m dritten Fall wird die Konsistenzhaltung von Quell- und Bytecode im Zusammen-
hang mit Vererbungshierarchien betrachtet. Hierzu soll das folgende Bild diskutiert
werden.

Vater

i

Test Sohn

<>_

Bild 11-32 Vererbungshierarchie zur Diskussion der Konsistenzpriifung

Die Klasse Test aggregiert als Datenfeld ein Objekt der Klasse Sohn. Die Klasse
Sohn ist wiederum von der Klasse vater abgeleitet. Der Programmcode sieht
hierzu folgendermafBen aus:

// Datei: Vater.java
public class Vater
{
//
}

// Datei: Sohn.java
public class Sohn extends Vater
{
//
}

// Datei: Test.java
public class Test
{

private Sohn refsS;

public Test ()
{

refS = new Sohn();

//

Vererbung und Polymorphie 431

Wird nun die Klasse vater entweder an den Schnittstellen oder in den Methoden-
rimpfen verandert, erfolgt ebenfalls eine Neukompilierung der Klasse vater,
wenn

javac Test.java

aufgerufen wird, obwohl der Quellcode der Klasse Sohn nicht verdndert wurde.
Der Programmierer kann also stets davon ausgehen, dass immer alle Quellcode-
Dateien neu Ubersetzt werden, an denen Veranderungen vorgenommen wurden,
auch wenn die verdnderten Dateien nicht direkt von der neu zu Ubersetzenden
Klasse abhangen. Das Verhalten des Compilers kann man sich veranschaulichen,
wenn javac mit der Option verbose aufgerufen wird. verbose veranlasst den
Compiler dazu, Informationen Uber seine Tatigkeiten auszugeben. Angenommen,
die Klasse vater wird wie folgt verandert:

// Datei: Vater.java

public class Vater

{
// .
public void f () //Diese Methode wurde hinzugefligt

{

// Mache etwas

}

Dann gibt der Compiler beim Aufruf

javac -verbose Test.java

folgende Informationen aus®:

Die Ausgabe des Programms ist:

[parsing started Test.java]
[parsing completed 31ms]

loading .\Sohn.class]
checking Test]

loading .\Vater.java]

parsing started .\Vater.java]

[

[

[

[

[parsing completed Oms]
[wrote Test.class]
[checking Vater]

[

[

wrote .\Vater.class]
total 234ms]

Es ist zu erkennen, dass der Compiler alle Klassen Uberprift, von welchen die
Klasse Test direkt oder indirekt abhangt, also die Klassen vater und Sohn. Die
Klasse Vater wird neu (ibersetzt, weil sich deren Quellcode seit der letzten Uber-
setzung geandert hat.

% Unwichtige Ausgaben sind durch die drei Punkt . . . ausgelassen worden.

432 Kapitel 11

11.8 Ubungen
Aufgabe 11.1: Konzept der Vererbung
11.1.1 Vererbungshierarchie fir Fahrzeuge

Die Klassen Pkw und Motorrad sollen von der Klasse Fahrzeug abgeleitet
werden. In der Klasse FahrzeugTest sollen die Klassen Pkw und Motor—
rad getestet werden. Das folgende Java-Programm enthélt die Klassen
Fahrzeug, Pkw, Motorrad und FahrzeugTest. Die fehlenden und zu
erganzenden Teile des Programms sind durch gekennzeichnet.
Lesen Sie zuerst die Fragen nach dem Programm, bevor Sie das Programm
vervollstéandigen!

// Datei: Fahrzeug.java
import java.util.*;

class Fahrzeug
{
private float preis;
private String herstellerName;
protected static Scanner eingabe = new Scanner (System.in);

public Fahrzeug()
{
System.out.println();

System.out.print ("Geben Sie den "

+ "Herstellernamen ein: ");
herstellerName = eingabe.next();
System.out.print ("Geben Sie den Preis ein: ");
try
{

preis = eingabe.nextFloat();

}

catch (InputMismatchException e)

{
System.out.println ("Keine gliltige Preisangabe!");
System.exit (1);

}

public void print()
{
System.out.println();
System.out.println ("Herstellername: "
+ herstellerName) ;
System.out.println ("Preis HE
+ preis);

}

// Methode getPreis();

Vererbung und Polymorphie 433

// Datei: Pkw.java

class Pkw extends Fahrzeug

{

}

private String fahrzeugtyp = "Pkw";
private String modellBezeichnung;

public Pkw()

{
.// Aufruf des Konstruktors
// der Basisklasse

System.out.print ("Geben Sie die "
+ "Modellbezeichnung ein: ");
modellBezeichnung = eingabe.next () ;

}

public void print ()
{

// Datei: Motorrad.java

class Motorrad extends Fahrzeug

{

}

private String fahrzeugtyp = "Motorrad";

public void print()
{

// Datei: FahrzeugTest. java

public class FahrzeugTest

{

public static void main (String argsl|[])

{

System.out.println ("Start des Programms");

// Anlegen eines Arrays aus 6 Fahrzeugen

// Die ersten 3 Elemente des Arrays sollen mit Pkws
// gefiillt werden

System.out.println();

System.out.println ("3 Pkws");

// Die drei letzten Elemente mit Motorradern fiillen
System.out.println();
System.out.println ("3 Motorradder");

434

Kapitel 11

11.1.2

// Geben Sie in einer Schleife fiir alle Array-Elemente
// die entsprechenden Datenfelder aus

// Ermittlung des Gesamtwerts aller Fahrzeuge

System.out.println();
System.out.println ("Gesamtwert aller Fahrzeuge: "

+ summe) ;

a) Schreiben Sie die Methode getPreis () der Klasse Fahrzeug.

b) Vervollstandigen Sie den Konstruktor der Klasse Pkw.

c) Uberschreiben Sie in der Klasse Pkw die Methode print () der Klasse
Fahrzeug. Die Methode print () der Klasse pPkw soll alle Datenfelder
eines Objektes der Klasse Pkw unter Zuhilfenahme der Methode print ()
der Basisklasse ausgeben. Ergdnzen Sie die Methode print () der Klas-
se Pkw. Erganzen Sie in analoger Weise die Methode print () der Klas-
Se Motorrad.

d) Ergénzen Sie die fehlenden Teile der Klasse FahrzeugTest.

Vererbungshierarchie fiir Fertigungsguter

Ein produzierender Betrieb verwaltet seine hergestellten Produkte zurzeit mit
folgenden drei Klassen:

public class Membranpumpe

{
private
private
private
private
private
private
private
private

}

String name;

int

tiefe;

float maximalerBetriebsdruck;

int

hoehe;

String membranmaterial;

int
int
int

gewicht;
maximaleFoerdermenge;
breite;

public class Kreiselpumpe

{
private
private
private
private
private

int
int
int
int
int

breite;

hoehe;

gewicht;
anzahlSchaufeln;
maximaleFoerdermenge;

Vererbung und Polymorphie 435

private int maximaleDrehzahl;

private String name;

private int tiefe;

private float maximalerBetriebsdruck;

}

public class Auffangbecken

{
private int tiefe;
private int volumen;
private int breite;
private int gewicht;
private String name;
private int hoehe;

Entwickeln Sie eine passende Vererbungshierarchie, welche die gemeinsam-
en Attribute in Basisklassen zusammenfasst.

Aufgabe 11.2: Konstruktoren bei abgeleiteten Klassen
11.2.1 Reihenfolge von Konstruktoraufrufen

Die folgende Klasse TestKonstruktoren dient zum Testen der Aufrufrei-
henfolge von Konstruktoren bei abgeleiteten Klassen.

// Datei: TestKonstruktoren

public class TestKonstruktoren
{
public static void main (String[] args)
{
System.out.println ("Exemplar von A wird angelegt");
A aRef = new A();

System.out.println();
System.out.println ("Exemplar von B wird angelegt");
B bRef = new B();

System.out.println();

System.out.println ("Exemplar von C wird angelegt");
C cRef = new C();

System.out.println();

Schreiben Sie die 3 Klassen 2, B und C, welche jeweils nur einen Konstruktor
ohne Parameter enthalten. Im Konstruktor der Klasse a soll folgender Text
ausgegeben werden:

System.out.println ("Klasse A - Konstruktor ohne Parameter");
Schreiben Sie entsprechende Konstruktoren flr die Klassen B und c. Beach-

ten Sie, dass B von A und C von B abgeleitet ist. Der Konstruktor der Klasse
C soll den Default-Konstruktor der Basisklasse B durch super () explizit

436 Kapitel 11

aufrufen. Beim Ausflihren der Klasse TestKonstruktoren wird deutlich,
dass es in diesem Fall keinen Unterschied macht, ob der Aufruf super ()
explizit durch den Programmierer eingefugt wird.

A

1

O —>

Bild 11-33 Betrachtete Klassenhierarchie
11.2.2 Vererbungshierarchie fir Fertigungsgiiter, Teil 2

Ausgangspunkt ist das Programm aus Aufgabe 11.1.2. Erweitern Sie alle
Klassen der Vererbungshierarchie mit Konstruktoren, um eine einfache Ini-
tialisierung der Klassen zu ermdéglichen.

Aufgabe 11.3: Abstrakte Basisklasse
11.3.1 Flachen- und Umfangsberechnung

In dieser Ubung sollen die beiden Klassen Kreis und Quadrat implemen-
tiert werden. Hierzu leiten beide Klassen von der abstrakten Basisklasse
GeometrischeFigur ab und werden mit Hilfe der Klasse TestBerech-
nung getestet. Die beiden Klassen haben die Aufgabe, die Flache und den
Umfang eines Kreises bzw. Quadrats zu berechnen.

Umfang Flache
Kreis 271 T-r2
Quadrat 4-a a2

Eine Konstante flir die Zahl 7z ist in der Klasse java.lang.Math definiert.

// Datei: GeometrischeFigur.java

public abstract class GeometrischeFigur

{
protected abstract double berechneFlaeche();
protected abstract double berechneUmfang();

public void print ()
{

System.out.println ("Die Fldche betrdgt: " +
berechneFlaeche());

System.out.println ("Der Umfang betrdgt: " +
berechneUmfang());

System.out.println();

Vererbung und Polymorphie 437

11.3.2

// Datei: TestBerechnung.java

public class TestBerechnung

{

public static void main (String [] args)

{
Kreis kreisRef = new Kreis (5);
Quadrat quadratRef = new Quadrat (10);

kreisRef.print () ;
quadratRef.print ();

}

Hierarchie mehrerer abstrakter Klassen

Ein Getrankehandler verkauft eine Vielzahl unterschiedlicher Getranke. Es
findet eine Unterteilung zwischen alkoholfreien und alkoholhaltigen Getran-
ken statt.

Getraenk
AlkoholfreiesGetraenk AlkoholhaltigesGetraenk

Bild 11-34 Klassenhierarchie der Getrdnke

Die Klasse Getraenk hat die Instanzvariablen hersteller, inhalts-
menge und preis. Die Klasse AlkoholischesGetraenk hat zusatzlich
die Instanzvariable alkoholgehalt.

Implementieren Sie die abstrakten Basisklassen Getraenk, Alkoholi-
schesGetraenk und AlkoholfreiesGetraenk entsprechend der Klas-
senhierarchie aus Bild 11-34. Ergénzend sollen die Klassen Bier, Cola,
Mineralwasser und Wein — die von AlkoholischesGetraenk oder Al-
koholfreiesGetraenk ableiten — mit eigenen Instanzvariablen erstellt
werden. Alle Instanzvariablen sollen in den Konstruktoren der jeweiligen
Klassen gesetzt werden, inklusive der geerbten Variablen aus den abstrakten
Basisklassen. Mit der Klasse GetraenkeTest sollen Objekte der verschie-
denen Getranke instantiiert werden.

Aufgabe 11.4: Polymorphie

11.441

Vererbungshierarchie fiir Fertigungsgiiter, Teil 3

Ausgangspunkt ist das Programm aus Aufgabe 11.2.2. Erweitern Sie alle
Klassen der Vererbungshierarchie um eine Methode print (), um den Inhalt
der Klasse auf dem Bildschirm auszugeben. Schreiben Sie eine Testklasse,
die mehrere Produkte anlegt und deren Inhalt auf dem Bildschirm ausgibt.

438 Kapitel 11

11.4.2 Arzneimittel mit verschiedenen MaBeinheiten

Analysieren Sie das folgende Programm. Was erwarten Sie als Ausgabe?

public class Arzneimittel
{
private String name;
public Arzneimittel (String name)
{
this.name = name;

}

public void print ()
{
System.out.println ("Das Arzneimittel heiBt: " + name);
}
}

public class Tablette extends Arzneimittel
{
private int anzahl; // Anzahl der Tabletten

public Tablette (String name, int anzahl)
{
super (name);
this.anzahl = anzahl;

}

public void print()
{
super.print () ;
System.out.println ("Es enthdlt "+anzahl+" Tabletten.");

}

public class Salbe extends Arzneimittel

{

private int menge; // Menge der Salbe in ml

public Salbe (String name, int menge)
{

super (name);

this.menge = menge;

}

public void print ()
{
super.print () ;
System.out.println ("Es enthdlt " + menge+" ml Salbe.");

}

public int getMenge ()
{
return this.menge;

}

Vererbung und Polymorphie 439

public class Augensalbe extends Salbe
{
public Augensalbe (String name, int menge)
{
super (name, menge);

}

public void print()
{
System.out.println ("Die Augensalbe enthalt "
+ super.getMenge() + " ml.");

}
public class Arzneimittellager {

public static void main (String[] args)
{
Arzneimittel mittel = Arzneimittel ("Schmerzmittel");
Tablette tablette =
new Tablette ("Schmerztablette", 12);
Salbe salbe = new Salbe ("Wundsalbe", 200);
Augensalbe augensalbe =
new Augensalbe ("Augensalbe", 50);

mittel.print();
tablette.print();
salbe.print () ;
augensalbe.print () ;

}
Aufgabe 11.5: Flughafen-Projekt — Einfiihrung von Entity-Klassen

In der vorgehenden Projektaufgabe 10.4 wurden samtliche Informationen in einer
einzigen Klasse gehalten. Die Informationen wurden dabei sehr einfach mit Werten
vom Typ int und vom Typ String gehalten. Dies ist im Falle des Flughafensys-
tems natdrlich nicht ausreichend. So besitzt zum Beispiel eine Fluggesellschaft nicht
nur einen Namen, sondern auch ein Strasse und einen Ort. Deshalb sollen in dieser
Projektaufgabe neue Klassen — so genannte Entity-Klassen — eingefiihrt werden. Ein
GroBteil der Arbeit wurde bereits durch das Finden dieser Klassen in der System-
analyse in Kapitel 2.5.2 erledigt. Ein Teil dieser Entity-Klassen soll jetzt implementiert
werden. Das Klassendiagramm in Bild 11-35 soll erstmal einen Uberblick Uber eine
mdgliche Lésung geben.

Die Klassen Fluggesellschaft und Flugzeugtyp sollten jeweils einen Kon-
struktor besitzen, der es ermdglicht, die einzelnen Strings zu setzen. Die Klasse
Bahn soll jeder erzeugten Instanz eine eindeutige Nummer vergeben. Der Auf-
zahlungstyp status definiert die unterschiedlichen Zustdnde, die ein Flugzeug
annehmen kann.

440

Kapitel 11

Fluggesellschaft

- name : String
- ort : String

Flugzeug

- anzahlFlugzeuge : int
- fluggesellschaft : Fluggesellschaft

- strasse : String

+ Fluggesellschaft()
+ getName()

+ getOrt()

+ getStrasse()

+ getKuerzel()

+ toString()

Bahn

flugnummer : String
- flugzeugtyp : Flugzeugtyp
- istzeitLandung : Calendar
- istzeitStart : Calendar
- landebahn : Bahn
- parkstelle : Parkstelle
- sollzeitLandung : Calendar
- sollzeitStart : Calendar
- startbahn : Bahn
- status : Status

Flugzeugtyp
- bezeichnung : String

+ Flugzeugtyp()
+ toString ()

Status

+ Wartend : Status
+ Landeanflug : Status
+ Gelandet : Status

+ Flugzeug()
+ meldeGelandet()

- anzahlBahnen : int
- nummer : int

+ Bahn()
+ toString()

+ meldeGestartet()

+ print()

+ vergebelLandebahn()
+ vergebeParkstelle()
+ vergebeStartbahn()

Parkposition

- anzahlParkpositionen : int
- nummer: int

+ ParkPosition()
+ toString()

+ Geparkt : Status
+ Startvorbereitung : Status
+ Gestartet : Status

Parkstelle
> <

i

Werft

+ toString()

Bild 11-35 Voorschlag: Klassendiagramm

SeparateParkposition

+ toString()

Die Klasse Parkstelle stellt eine abstrakte Klasse dar, die keine Methoden und
auch keine Instanzvariablen hélt. Sie dient lediglich als gemeinsame Basisklasse fiir
die drei Klassen Parkposition, Werft und SeparateParkposition. Jede In-
stanz der Klasse Parkposition soll eine eindeutige Nummer erhalten.

Far das Halten der Ist- und Sollzeiten soll die Klasse java.util.GregorianCa—
lendar verwendet werden. Diese Klasse wurde bereits in Kapitel 11.4.2 verwendet.
Zum Einlesen einer Uhrzeit von der Tastatur kdnnen Sie die Klasse Abfrage um
folgende Methode erweitern:

public static java.util.Calendar abfrageUhrzeit

{

java.text.SimpleDateFormat formatter;

formatter =
try
{

new java.text.SimpleDateFormat

(String frage)

("HH:mm") ;

}

java.util.Date date;
date = formatter.parse (abfrageString (frage + " (HH:mm):"));
java.util.Calendar calendar =

new java.util.GregorianCalendar () ;
calendar.setTime (date);
return calendar;

catch (java.text.ParseException e)

{

System.out.println ("Bitte eine gliltige Uhrzeit eingeben!");
return abfrageUhrzeit (frage);

Kapitel 12

Pakete

12.1 "Programmierung im GroBen"

12.2 Pakete als Entwurfseinheiten

12.3 Erstellung von Paketen

12.4 Benutzung von Paketen

12.5 Paketnamen

12.6 Gdltigkeitsbereich von Klassennamen
12.7 Zugriffsmodifikatoren

12.8 Ubungen

12 Pakete

12.1 "Programmierung im GroBen"

Eine moderne Programmiersprache soll das Design (den Entwurf) eines Programms
unterstiitzen. Hierzu sind Sprachmittel erforderlich, die es erlauben, ein Programm in
Programmeinheiten zu unterteilen, um das Programm Ubersichtlich zu strukturieren.
Man spricht bei solchen Sprachmitteln auch vom "Programmieren im GroBen".

Programmeinheiten sind grobkérnige Teile eines Programmes, —
die einen Namen tragen. - ~

In der klassischen Programmierung stellen das Hauptprogramm und die dazugeh®éri-
gen Unterprogramme in der Form von Funktionen die einzig mdglichen Programm-
einheiten dar.

Programmeinheiten in Java sind:

e Klassen, |
e Schnittstellen (Interfaces), b //
® Threads N /@\
® und Pakete. =

Programmeinheiten stellen logische Bestandteile eines Programms
im Quellcode dar.

Threads werden eingesetzt, um eine quasiparallele®® Bearbeitung zur Laufzeit zu er-
mdglichen. Beachten Sie, dass Threads mit Hilfe von Klassen definiert werden (siehe
Kap. 19). Programmeinheiten sind — wie schon gesagt — unter einem eigenen Namen
ansprechbar.

|
Die physikalisch greifbaren Bestandteile eines Programms in Form N / -
von Quellcode sind die Dateien. Dateien, die Quellcode enthalten,
e

sind kompilierfahige Einheiten. Sie kénnen an den Compiler Uber-
geben werden.

~

iy

Kompilierfahige Einheiten werden oft auch als Module bezeichnet. Eine Datei kann
in Java Klassen, Schnittstellen und Threads enthalten.

% Quasiparallel bedeutet, dass es fiir den Anwender nur so aussieht, als ob die Threads parallel
laufen wirden. Tats&chlich erhalten die verschiedenen Threads jeweils nur abwechselnd fir eine
gewisse Zeit den Prozessor. Ist die Wechselzeit fur die Threads kurz wie z. B. 100 ms, so merkt
ein interaktiver Anwender nichts von dem Wechsel.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_12,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Pakete 443

Dateit DateiN

——— | e—
]

ThreadM

KlasseN

—

—~—
Paket

Bild 12-1 Bestandteile eines Java-Programms
Im Folgenden werden die Programmeinheiten kurz beschrieben:

® Eine Klasse implementiert einen abstrakten Datentyp und definiert die Methoden,
die fur diesen Datentyp zur Verfligung gestellt werden.

® Eine Schnittstelle ist eine Zusammenstellung von Methodenkdpfen und even-
tuell von Konstanten. Implementiert eine Klasse eine Schnittstelle, so stellt sie
eine konkrete Implementierung der Methoden der Schnittstelle bereit. Eine Schnitt-
stelle spezifiziert eine Aufrufschnittstelle.

e Ein Thread definiert einen Bearbeitungsablauf, der parallel zu anderen Threads
durchgefiihrt werden kann. Mehrere Threads kdnnen quasiparallel auf einem
Prozessor ablaufen.

|

\ /
Ein Paket tragt einen Namen und kann Klassen, Threads, Schnitt- _ —
stellen und Unterpakete als Komponenten enthalten. Ein Paket kann P

~
aus einer oder aus mehreren Dateien bestehen.

iy

Der Zugriff auf die Komponenten des Pakets erfolgt Gber den Pakethamen. Ein Paket
ist auch ein Mittel zur Strukturierung der Sichtbarkeit von Klassen und Schnitt-
stellen. Klassen, Threads und Schnittstellen, die im selben Paket liegen, haben
wechselseitig mehr Zugriffsrechte — wenn keine Zugriffsmodifikatoren angege-
ben sind — als ein auBenstehender Benutzer, der die Komponenten des Pakets
benutzen will. Ein Nutzer eines Pakets kann prinzipiell nur diejenigen Teile eines Pa-
kets nutzen, die der Ersteller des Pakets explizit zur externen Benutzung frei gege-
ben hat. Dies muss er mit Hilfe des Schllisselwortes public zum Ausdruck bringen.
Ein Paket stellt nicht nur eine Strukturierungseinheit fiir die Sichtbarkeit dar, son-
dern auch einen eigenen Namensraum. Dies bedeutet, dass ein und derselbe Name
einer Komponente eines Pakets auch in einem anderen Paket vorkommen darf. Nur
innerhalb desselben Pakets darf der Name nicht ein zweites Mal vorkommen.

444 Kapitel 12

Der Einsatz von Paketen bietet die folgenden Vorteile:

® Pakete bilden eigene Bereiche fir den Zugriffsschutz. Mit Paketen
kann man kapseln (Information Hiding). N

® Jedes Paket bildet einen eigenen Namensraum. Damit kdnnen Na- — -
menskonflikte vermieden werden und identische Namen fur Klas- ~
sen bzw. Schnittstellen in verschiedenen Paketen vergeben wer- =
den. -

® Pakete sind gréBere Einheiten fiir die Strukturierung von objeki-
orientierten Systemen als die Klassen.

Zwei Klassen oder zwei Schnittstellen mit identischen Namen kénnen zwar nicht in
einem gemeinsamen Paket liegen, aber sehr wohl in zwei unterschiedlichen Pake-
ten. Hierzu stelle man sich eine Klasse printer vor. Einmal kann diese Klasse in
einer Auspragung zum Drucken von Grafiken im Paket grafiken vorhanden sein,
ein zweites Mal kann eine andere Klasse Printer zum Ausdrucken von Doku-
menten dem Paket dokumente angehdren.

12.2 Pakete als Entwurfseinheiten

Pakete dienen dazu, die Software eines Projektes in gréBere inhaltlich zusammen-
gehdrige Bereiche, mit anderen Worten, in verschiedene Klassenbibliotheken ein-
zuteilen. Jede Klassenbibliothek tragt einen Namen, den Paketnamen.

AN /
Pakete stellen die grobsten Strukturierungseinheiten der objekt- —
orientierten Technik dar. Pakete werden im Rahmen des Entwurfs der

Software konzipiert.

~

(i

Da Pakete Bibliotheken darstellen und es der Ubersichtlichkeit und Testbarkeit ab-
traglich ist, wenn die Software eines Pakets die Software eines jeden anderen Pa-
kets benutzen darf, versucht man in konkreten Projekten, eine gewisse Ordnung in
die Beziehungen zwischen den Paketen zu bringen. Hierbei werden oft Schichten-
modelle derart aufgestellt, dass die in einem Paket enthaltenen Klassen nur die Klas-
sen von Paketen in tieferen Schichten nutzen kénnen.

| Paket A |

Ve AN

7/ AN
/ AN
2 N

| Paket B || Paket C |

Bild 12-2 Schichtenmodell fiir Pakete. Der Pfeil bedeutet hier "benutzt"

Eine rekursive Benutzung (Paket A nutzt Paket B, Paket B nutzt Paket A) sollte aus
Griinden der Uberschaubarkeit vermieden werden.

Pakete 445

12.3 Erstellung von Paketen

Ein Paket wird definiert, indem alle Dateien des Pakets mit der Deklaration des Pa-
ketnamens versehen werden. Die Deklaration eines Paketnamens erfolgt in Java mit
Hilfe des Schlusselworts package wie in folgendem Beispiel:

// Datei: Artikel.java
package lagerverwaltung; // Deklaration des Paketnamens

public class Artikel // Definition der Komponente Artikel des
{ // Pakets lagerverwaltung

private String name;

private float preis;

public Artikel (String name, float preis)
{
this.name = name;
this.preis = preis;
}
// Es folgen die Methoden der Klasse

}

Dabei dirfen in einer Datei der Deklaration des Paketnamens allerhéchstens Kom-
mentare vorausgehen. Die Klasse Artikel gehért also zum Paket lagerver-
waltung.

7
N

N |
1\\\\\@
a

7
AN

\ |
1\\\\\@
/)

N
h\\\\@—
/ \\\

446 Kapitel 12

// Datei: Lager.java
// Der Dateiname muss nicht dem Namen einer Klasse entsprechen,
// sofern keine Klasse in der Datei public ist.

package lagerverwaltung;

class Kunde

{
private String name;
private String vorname;
private int kundennummer;

public Kunde (String n, String v, int knr)
{

name = nj;
vorname = V;
kundennummer = knr;

}
// Es folgen die Methoden der Klasse

}

class Lieferant

{
private String lieferantenName;
private int lieferantenNummer;

public Lieferant (String name, int nummer)
{
lieferantenName = name;
lieferantenNummer = nummer;

}
// Es folgen die Methoden der Klasse

In diesem Beispiel gehdren die Klassen Kunde und Lieferant zum Paket lager-
verwaltung. Keine der beiden Klassen ist public. Dies bedeutet, dass beide
Klassen nur interne Hilfsklassen im Paket 1agerverwaltung sind und von Klassen
in anderen Paketen nicht genutzt werden kénnen. Sie kdnnen nur von Klassen des
Pakets 1agerverwaltung verwendet werden.

\
Enthalt eine Quellcode-Datei keine public Klasse, so kann der Da- _ —
teiname beliebig sein, vorausgesetzt, der Dateiname ist syntaktisch

zulassig.

(M

Ein Paket selbst kann wiederum Pakete enthalten. Zum Beispiel kénnte es ein Paket
betriebsverwaltung geben, das die Pakete lagerverwaltung, personal-
verwaltung und finanzverwaltung enthalt. Die Deklaration des Paketes 1a-
gerverwaltung, die als erste Codezeile in jeder Datei stehen muss, die zu diesem
Paket gehort, sieht dann folgendermaBen aus:

package betriebsverwaltung.lagerverwaltung;

Auf diese Art und Weise kdnnen beliebig tiefe Pakethierarchien aufgebaut werden.

Pakete 447

12.4 Benutzung von Paketen

Sind die Klassen A und B einem Paket namens paket zugeordnet, so sind diese
Klassen Komponenten des Pakets paket.

Genauso wie die Komponenten von Klassen — die Datenfelder und . |
Methoden — mit Hilfe des Punktoperators angesprochen werden kén- _
nen, kdnnen auch die Komponenten von Paketen, also die Klassen — \
bzw. Schnittstellen oder Unterpakete — mit Hilfe des Punktoperators g =

angesprochen werden.

Soll aus einer Klasse C heraus, die nicht Bestandteil des Pakets paket ist, die Klas-
se A des Pakets paket angesprochen werden, so erfolgt dies mit paket.A. In fol-
gendem Beispiel wird in einer Klasse des Pakets kreiseckpaket die Klasse Eck
aus dem Paket eckpaket und die Klasse Kreis aus dem Paket kreispaket ver-
wendet.

// Datei: Kreiseck.java
package kreiseckpaket;

public class Kreiseck

{
eckpaket .Eck eckRef
kreispaket .Kreis kreisRef

new eckpaket.Eck();
new kreispaket.Kreis();

}

Die import-Vereinbarung

Stellt man alle Klassen zu Paketen zusammen, so findet man es bald lastig, die
Paketnamen gefolgt von Punktoperator und Klassennamen niederzuschreiben. Um
diese unliebsame Schreibarbeit einzusparen, wird die import-Vereinbarung benutzt.
Die import-Vereinbarung ermdglicht es, dass auf eine Klasse oder eine Schnitt-
stelle in einem anderen Paket, die den Zugriffsmodifikator public besitzt, direkt
Uber ihren Namen zugegriffen werden kann, ohne dass diesem Namen die Paket-
struktur getrennt durch einen Punkt vorangestellt werden muss.

Mit public deklarierte Klassen kénnen mittels der import-Verein- — -
barung in anderen Paketen sichtbar gemacht werden. - o~

Die import-Vereinbarung muss hinter der package-Deklaration, — -
aber vor dem Rest des Programms stehen. s ~

Es kdnnen beliebig viele import-Vereinbarungen aufeinanderfolgen. Das oben ge-
zeigte Beispiel der Datei Kreiseck.java wird nun mit Hilfe der import-Verein-
barung realisiert:

448 Kapitel 12

// Datei: Kreiseck.java
package kreiseckpaket;

import kreispaket.¥*;
import eckpaket.*;

public class Kreiseck

{
Eck eckRef new Eck () ;
Kreis kreisRef = new Kreis();

}
Mit
import kreispaket.*;!%

werden alle public-Klassen und public-Schnittstellen des Pakets kreispaket
importiert. Unterpakete, die in diesem Paket enthalten sind, werden nicht impor-
tiert. Soll nur eine Klasse oder nur eine Schnittstelle importiert werden, so wird der
entsprechende Name hinter dem Punkt angegeben, wie z. B.

import kreispaket.Kreis;

Fallen bei Verwendung von mehreren import-Vereinbarungen jedoch zwei Namen
zusammen, so muss stets der voll qualifizierte Name angegeben werden, um eine
Eindeutigkeit herzustellen.

|

\ /
Ein qualifizierter Name bezeichnet den Namen einer Klasse, der die _ —
Klasse durch Angabe der Paketstruktur gefolgt von einem Punkt und

~
dem eigentlichen Klassennamen identifiziert.

iy

Natlrlich muss es auch eine Mdéglichkeit geben, die Klassen von Unterpaketen zu
importieren. Dies ist einfach durch die Anwendung des Punktoperators flir das ent-
sprechende Unterpaket mdglich. Mit

import betriebsverwaltung.lagerverwaltung.*;

werden alle public-Klassen und public-Schnittstellen, die sich im Unterpaket 1a-
gerverwaltung befinden, importiert.

Richtet man eine Unterpaketstruktur ein, so spiegelt sich diese sowohl
in der Paketdeklaration als auch in der import-Vereinbarung wider.
Will eine Client-Klasse beispielsweise eine Klasse oder Schnittstelle _
aus dem Paket mit der Paketdeklaration package betriebs— \
verwaltung.lagerverwaltung verwenden, so muss dafir die g W
import-Vereinbarung import betriebsverwaltung.lagerver— =
waltung als Gegenstick in der Client-Klasse angeschrieben werden.

1% Das Sternchen * stellt eine so genannte Wildcard dar. An die Stelle der Wildcard kann jeder belie-
bige Bezeichner treten.

Pakete 449

Die import-Vereinbarung ist fir den Programmablauf nicht unbedingt noétig, sie
kann dem Programmierer aber viel Schreibarbeit ersparen. Es gibt sogar einen Fall,
bei dem der Compiler die Schreibarbeit fiir die import-Vereinbarung tbernimmt:

Das Paket java.lang aus der Java-AP| wird automatisch in jede — -
Quellcode-Datei importiert. - ~

Static Imports

Seit dem JDK 5.0 gibt es zusétzlich die so genannten Static Imports. Bisher war es
nur moglich, public Klassen oder Schnittstellen aus anderen Paketen zu impor-
tieren. Wurden Klassenmethoden oder -variablen aus anderen Klassen benétigt, so
mussten diese Klassen importiert oder die entsprechenden statischen Elemente Uber
den Klassennamen qualifiziert werden.

\
Die normale import-Vereinbarung erlaubt es, direkt Klassen oder —
Schnittstellen zu verwenden, ohne ihren Namen durch die Angabe des -

Paket-Pfades qualifizieren zu miissen.

Oftmals werden Hilfsmethoden als Klassenmethoden von der Klassenbibliothek zur
Verfligung gestellt. So enthélt beispielsweise die Java-Klasse java.lang.Math
eine ganze Reihe von Klassenmethoden fir die Berechnung mathematischer Funk-
tionen. In der Vergangenheit musste dabei stets der Klassenname mit angegeben
werden, wenn man eine solche Klassenmethode einsetzte. Hierfir ein Beispiel:

class A

{

double wert = 3.;
// Berechnung der Quadratwurzel aus 3.
double quadratWurzelAusWert = Math.sqrt (wert);

}

Dieses Beispiel kann mit Hilfe der static import-Vereinbarung nun so geschrie-
ben werden, dass sqgrt () ohne den qualifizierenden Zugriff im Programm verwendet
werden kann:

import static java.lang.Math.sqgrt;

class A

{

double wert = 3.0;
double gquadratWurzelAusWert = sqrt (wert);

Die erste Variante importiert nur ein einzelnes statisches Element der Klasse Klas-
senname. Die zweite Version importiert dagegen alle Klassenmethoden und Klas-
senvariablen der Klasse Klassenname. AnschlieBend kénnen die statischen Ele-
mente ohne weitere Qualifizierung durch den Klassennamen verwendet werden.

Allerdings sollte man mit dem Gebrauch von Static Imports vorsichtig und sparsam
sein. Werden zu viele statische Elemente importiert, dann lasst sich nach einiger Zeit
nicht mehr nachvollziehen, woher diese Elemente stammen und der Quellcode wird
unleserlich.

12.5 Paketnamen

12.5.1 Paketnamen und Verzeichnisstruktur

Die Paketstruktur in Java wird in die Verzeichnisstruktur des Rechners umgesetzt.
Dabei missen alle class-Dateien, die zu einem Paket gehdren, in einem Ver-
zeichnis liegen, dessen Name identisch mit dem Paketnamen ist.

Im Folgenden wird also davon ausgegangen, dass der Paketnamen mit dem Ver-
zeichnisnamen identisch ist. Da ein Verzeichnisname einen Knoten in einem Pfad
darstellt (siehe Bild 12-3), muss zum Zugriff auf ein Paket der ganze Pfad bekannt
sein. In Java dient dazu der so genannte CLASSPATH. Der CLASSPATH enthalt den
Pfad eines Verzeichnisses wie z. B.:

C:\projekte\projektl\classes (absoluter Pfadname)

Pakete 451

(ORY

@ekte

[projekt1] [projekt2]

[Klasse1| |Klasse2] @bLZ]

Bild 12-3 Verzeichnisstruktur mit Dateien im Dateisystem™’

Es ist auch mdglich, ohne CLASSPATH zu arbeiten, wenn nur Klassen benutzt wer-
den, die sich in einem Paket-Hierarchiebaum unterhalb des aktuellen Verzeichnisses
befinden. Wenn jedoch mit mehreren Pakethierarchien in unterschiedlichen Ver-
zeichnissen gearbeitet wird, die sich eventuell auch noch wechselseitig benutzen, ist
es erforderlich, den CLASSPATH entweder explizit oder mit Hilfe von Parametern
beim Aufruf der Werkzeuge zu setzen (siehe Kap. 3.5.1).

Wird beispielsweise der CLASSPATH auf C:\projekte\projektl\classes ge-
setzt, so wird nach Klassen in den Paketen unterhalb dieses Verzeichnisses gesucht.
Soll folglich aus einem beliebigen Verzeichnis heraus — beispielsweise aus dem
Verzeichnis C:\test — die Klasse Klassel (siehe Bild 12-3) vom Interpreter
gestartet werden (Voraussetzung ist natirlich, dass K1assel eine main ()-Methode
enthalt), so geschieht dies mit dem Aufruf:

java paketl.Klassel

Der Weg, den der Interpreter gehen muss, um zur Klasse zu finden, wird durch zwei
Teile bestimmt:

C:\projekte\projektl\classes\paketl

~——

CLASSPATH Paketnamen

Fehlt einer der Teile, kann der Interpreter bzw. der Compiler die Klasse nicht finden.
Beachten Sie bitte, dass paket1 im Betriebssystem ebenfalls ein Verzeichnis dar-
stellt. Dieses Verzeichnis ist im Kontext der Klasse K1assel mit der Semantik "Pa-
ket" belegt.

Um eine Klasse, die zu einem Paket gehoért, zu kompilieren, ist leider eine andere
Notation als beim Aufruf des Interpreters notwendig. Ist in obigem Beispiel das aktu-

10" Verzeichnisse sind abgerundet, Dateien rechteckig gezeichnet.

452 Kapitel 12

elle Verzeichnis ein anderes Verzeichnis als das Verzeichnis paket1, so wird der
Compiler mit der Angabe von javac paketl\Klassel.java aufgerufen. Dann
wird Uber den CLASSPATH und den Paketnamen paketl auf Klassel. java zuge-
griffen. Nur wenn das aktuelle Verzeichnis paketl selbst ist, kann man die Klasse
Klassel auch mit dem Aufruf javac Klassel.java kompilieren.

Eine Klasse Klassel innerhalb eines Paketes paketl kann kompi-
liert werden durch den Aufruf: Y

javac paketl\Klassel.java — -
e ~

Diese Klasse K1assel kann gestartet werden durch den Aufruf:

java paketl.Klassel

Diese beiden Aufrufmdglichkeiten setzen voraus, dass entweder der CLASSPATH auf
das Verzeichnis C: \projekte\projektl\classes gesetzt ist, oder dass der Auf-
ruf im Verzeichnis C: \projekte\projektl\classes selbst erfolgt.

Des Weiteren ist zu beachten, dass

® die Verzeichnisnamen den Paketnamen entsprechen, _ —

® Paketnamen konventionsgemaB stets vollstdndig kleingeschrieben /@\
werden, auch bei zusammengesetzten Namen, =

® jedes Unterpaket ein Unterverzeichnis darstellt. -

Es gibt noch eine weitere Mdglichkeit, den Compiler javac bzw. den Interpreter
java aufzurufen, ohne die Umgebungsvariable CLASSPATH explizit zu setzen. Und
zwar ist fir beide Programme die Option classpath definiert. Wird beispielsweise
die obige Verzeichnisstruktur C:\projekte\projektl\classes zugrunde gelegt,
in der sich das Paket paket1 mit der Datei Klassel.class befindet, so kann die
Klasse Klassel vom Interpreter aus jedem beliebigen Verzeichnis heraus auch
folgendermaBen gestartet werden:

java —classpath C:\projekte\projektl\classes; paketl.Klassel

Der vollstéandige Paketname ist vom CLASSPATH aus anzugeben. Ein vollstandiger
Paketname setzt sich aus den einzelnen Paketnamen, die den Verzeichnisnamen
entsprechen, zusammen. Fir die Angabe eines vollstdndigen Paketnamens bei ge-
schachtelten Pakethierarchien werden die Unterpakete von den libergeordneten
Paketen durch Punkte getrennt. Der vollstdndige Paketnamen des Paketes subl
ist somit paket1.subl. Der Zugriff auf eine Klasse muss immer Uber den vollstandi-
gen Paketnamen erfolgen. Auf die Klasse Klasse3 kann entsprechend mit pa-
ketl.subl.Klasse3 zugegriffen werden.

Fir die Bezeichner eines Verzeichnisses oder einer Datei gelten dieselben Ein-
schrankungen wie bei Variablennamen.

Pakete 453

Es ist moglich, im cLASSPATH auch mehrere Suchpfade anzugeben.

Die Suchpfade mussen durch ein Semikolon ; voneinander getrennt N
werden. Insbesondere beim Aufruf des Compilers javac oder des In- —
terpreters java mit der Option classpath muss der letzte Suchpfad \
mit einem Semikolon abschlieBen. Bei einer import-Vereinbarung =

sucht der Compiler nach den Paketen in den Verzeichnissen der ver-
schiedenen Alternativen des CLASSPATH.

So wird beispielsweise bei

CLASSPATH=D: \projekte\projektl\classes;C:\weitereKlassen;

nach Klassen sowohl in dem Verzeichnis D:\projekte\projektl\classes, als
auch im Verzeichnis C:\weitereKlassen gesucht. Alle Klassen, die sich im ak-
tuellen Verzeichnis befinden, also in dem Verzeichnis, von dem aus der Compiler
oder Interpreter aufgerufen wird, werden automatisch dem CLASSPATH hinzugeflgt.
Das aktuelle Arbeitsverzeichnis wird durch einen Punkt . symbolisiert. Die Angabe
von .. wirde fUr ein Ubergeordnetes Verzeichnis stehen, ausgehend von der
Position im Verzeichnisbaum, wo der Compiler oder der Interpreter gestartet wird.

Die Klassen der Java Standard Edition sind in speziellen Java-spezifischen Archiv-
dateien enthalten. Diese Dateien besitzen die Endung jar. Die jar-Dateien, welche
die Klassen der Java-Klassenbibliothek der Standard Edition enthalten, sind im Ver-
zeichnis

<JAVA_HOME>\jre\lib

untergebracht, wobei <JavA_HOME> durch das Installationsverzeichnis des JDK er-
setzt werden muss — beispielsweise durch C:\Programme\Java\jdk1.6.0_21"%
In diesem Verzeichnis befinden sich die Dateien rt. jar, jse.jar und jsse.jar.
Diese drei Dateien enthalten alle Klassen und Schnittstellen der Java Standard
Edition. Wird der Compiler aufgerufen, so gehdren diese drei Dateien automatisch
dem Suchpfad an. Das heiBt, die darin enthaltenen Klassen und Schnittstellen kén-
nen in selbst geschriebenen Klassen verwendet werden. Sie missen nur durch

entsprechende import-Vereinbarungen wie z. B.

import java.util.*; // Importiert alle Klassen dieses Pakets
innerhalb der eigenen Klasse bekannt gemacht werden.

Soll eine jar-Datei zum Suchpfad — entweder tber die Umgebungsvariable CLASS-
PATH oder Uber die Option classpath des Compilers javac oder des Interpreters
java — hinzugeflgt werden, so muss ihr ganzer Pfad mit angegeben werden. Sollen
z. B. die jar-Dateien a. jar und b. jar im Verzeichnis C:\test zum CLASSPATH
hinzugefligt werden, so muss

CLASSPATH=C:\test\a.jar;C:\test\b. jar;

192 Fgr Java 7 wird das Installationsverzeichnis entsprechend c: \Programme\Java\jdk1.7.0_xx
heiBen. Wobei xx flr die aktuelle Update-Version steht.

454 Kapitel 12

angeschrieben werden. Es dirfen also keine Wildcards wie C:\test*.jar ver-
wendet werden. Achten Sie bitte darauf, dass auch hierbei die einzelnen jar-Da-
teien durch ein Semikolon getrennt sind und die letzte jar-Datei ebenfalls mit einem
Semikolon abschliet.

12.5.2 Eindeutige Paketnamen

Méchte man seine Pakete nicht nur selbst verwenden, sondern sie einem grdBeren
Benutzerkreis zur Verfligung stellen, so sollte man sich um eindeutige Paketnamen
bemiihen. Um weltweit eindeutige Paketnamen zu erhalten, macht man sich die In-
ternet-Domain-Namen, die eine weltweite Eindeutigkeit garantieren, zu Nutze. Dies
bedeutet aber nicht, dass es mdglich ist, Gber den Internet-Domain-Namen auf
Klassen zuzugreifen, die auf dem entsprechenden Rechner im Internet liegen. Méch-
te man also fUr seine Programme eindeutige Paketnamen haben, so sollte man die
folgende Konvention verwenden: Der Internet-Domain-Name ist in umgekehrter
Reihenfolge vor den Rest des Namens zu stellen. Das heif3t, aus dem Domain-
Namen sun. com wird der Paket-Name com. sun.

12.5.3 Anonyme Pakete

Wird in einer Ubersetzungseinheit — das heiBt einer Quellcode-Datei — kein Paket-
name deklariert, so gehdrt diese Ubersetzungseinheit zu einem anonymen oder
unbenannten Paket. Alle Klassen einer solchen Quellcode-Datei gehéren also zu
einem anonymen Paket. Alle Dateien, die sich innerhalb desselben Verzeichnisses
befinden und die nicht explizit einem Paket zugeordnet wurden, gehdren dann
automatisch zum gleichen anonymen Paket.

Dies ist vor allem bei kleinen Testprogrammen sinnvoll, da man sich dann nicht um
Pakete kimmern muss. Bei gr6Beren Projekten sollte man sich jedoch auf jeden Fall
Uber die Aufteilung der Anwendung in Pakete Gedanken machen.

12.6 Giiltigkeitsbereich von Klassennamen

Das folgende Beispiel demonstriert, dass sich der Giiltigkeitsbereich eines Klas-
sennamens auf das ganze Paket erstreckt. Ein eingeflhrter Klassenname gilt also
automatisch an jeder Stelle in allen Dateien, die zum selben Paket gehdren. Die
Klasse zensur, die am Ende der Dateil. java definiert wird, kann in dieser Datei
bereits vor deren Definition verwendet werden. Ebenso kann sie in der Datei Da-
tei2.java, die zum selben Paket gehdrt, problemlos benutzt werden.

Beachten Sie, dass keine der Klassen als public deklariert wird. Daher kénnen die
Dateinamen frei gewahlt werden. Dateil.java enthalt zwei Klassen, die Klasse
Student und die Klasse Zensur, Datei2. java enthalt die Klasse Schueler. Die
Klassen Student und Schueler enthalten jeweils eine Methode main() zum
Ausdrucken von Zeugnissen.

Pakete

455

// Datei:

Dateil. java

package personen;

class Student

{

public String name;
public String vorname;
public int matrikelnummer;
public Zensur|[] zensuren;
public Student (String name, String vorname,
int matrikelnummer, Zensur[] zensuren)
{
this.name = name;
this.vorname = vorname;
this.matrikelnummer = matrikelnummer;
this.zensuren = zensuren;
}
public void print ()
{
System.out.println ("Name : " + name);
System.out.println ("Vorname : " + vorname);
System.out.println ("Matr. Nr : " + matrikelnummer);
for (int i = 0; 1 < zensuren.length; i++)
{
System.out.println (zensuren [i].fach +

}

" : " 4+ zensuren [i].note);

public static void main (String[] args)

{

Zensur|[] z = new Zensur [2];
z [0] = new Zensur ("Mathe ", 1.2f);
z [1] = new Zensur ("Java ", 1.0f);

Student s = new Student ("Heinz", "Becker", 123456,

s.print ();

class Zensur

{

public String fach;
public float note;

public Zensur (String £, float n)

{
fach
note

£
= njy

z);

456 Kapitel 12
Die Ausgabe des Programms ist:
Name Heinz
Vorname Becker
Matr. Nr 123456
Mathe 1.2
Java 1.0
// Datei: Datei2.java
package personen;
class Schueler
{
public String name;
public String vorname;
public Zensur|[] zensuren;
public Schueler (String name, String vorname, Zensur[] zensuren)

{

this.name = name;
this.vorname = vorname;
this.zensuren = zensuren;

}

public void print ()

{
System.out.println
System.out.println

("Name

for (int 1 = 0;

{
System.out.println

"

}

("Vorname "
i < zensuren.length;

(zensuren

+ name) ;
+ vorname) ;

i++)

[i].fach +
" + zensuren [i].note);

public static void main (String [] args)
{
Zensur[] z = new Zensur [2];
z[0] = new Zensur ("Mathe ", 1.2f);
z[1l] = new Zensur ("Deutsch ", 2.0f);
Schueler s = new Schueler ("Brang", "Rainer", z);

s.print();

f—

Die Ausgabe des Programms ist:

Name Brang
Vorname Rainer
Mathe 1.2
Deutsch 2.0

Pakete 457

|

\ /
Der Gultigkeitsbereich eines Klassennamens erstreckt sich Uber alle _ —
Dateien eines Pakets. Der Compiler geht in Java mehrfach tber den -

Quellcode, bis er alle Klassendeklarationen gefunden hat.

|

12.7 Zugriffsmodifikatoren

Pakete entsprechen Verzeichnissen. Natirlich kbnnen Verzeichnisse — und damit die
Pakete — fUr bestimmte Nutzergruppen durch Mittel des Betriebssystems gesperrt
sein. Im Folgenden wird davon ausgegangen, dass keine Sperrung durch Mittel des
Betriebssystems erfolgt.

Zur Regelung des Zugriffsschutzes in Java gibt es die Zugriftsmodi- — -
fikatoren (Schllsselwdrter) public, protected und private. - ~
|

Beachten Sie, dass default (bzw. friendly) kein Schllisselwort von

\ /
Ohne Zugriffsmodifikator ist der Zugriffsschutz default (friendly). _ —
Java ist.

i

Wéhrend flir Methoden, Datenfelder und Konstruktoren alle Zugriffsmodifikatoren —
und auch das Weglassen eines Zugriffsmodifikators — erlaubt sind, kommen fiir
Klassen'® und Schnittstellen nur public oder default in Frage. In den nachsten
Kapiteln werden alle Falle detailliert diskutiert.

12.7.1 Zugriffsschutz fur Klassen und Schnittstellen

Zum Zugriff auf Klassen und Schnittstellen in einem Paket gibt es fur

den Zugriffsschutz nur die beiden Mdglichkeiten: B _
e default (friendly) /\

® oder public.

Eine Klasse oder Schnittstelle in einem Paket ist fiir Klassen bzw. Schnittstellen aus
anderen Paketen nur sichtbar und kann damit beispielsweise durch import er-
reicht werden — wenn sie mit dem Zugriffsmodifikator pub1ic versehen ist. Ist der
Zugriffsschutz einer Klasse oder Schnittstelle default, so ist sie nur fir Klassen
bzw. Schnittstellen desselben Paketes sichtbar.

Selbst in Unterpaketen ist eine Klasse oder Schnittstelle, die den Zugriffsschutz
default hat, nicht sichtbar. Das folgende Beispiel demonstriert die Sichtbarkeit von
Klassen in Paketen:

198 Anders sieht es bei Elementklassen, die geschachtelte Klassen (siehe Kap. 15) darstellen, aus.

458 Kapitel 12

// Datei: Artikel.java
package lagerverwaltung;

public class Artikel
{

}

// Diese Klasse hat den Zugriffsschutz default
class Lieferant

{

}

// Datei: Materialabrechnung.java

package abrechnung;

import lagerverwaltung.Artikel;
//import lagerverwaltung.Lieferant; // Fehler, da nicht public

public class Materialabrechnung

{

}

12.7.2 Zugriffsschutz fiir Methoden und Datenfelder

Der Zugriffsschutz von Datenfeldern und Methoden wird anhand von Bild 12-4 erlau-
tert. Dabei wird gezeigt werden, dass mit dem Zugriffsmodifikator private ge-
schitzte Datenfelder und Methoden einer Klasse den gréBten Zugriffsschutz besit-
zen, danach folgen default, protected und public. Fir die Diskussion wird ange-
nommen, dass die Klasse A public ist, sodass aus anderen Paketen auf sie zuge-
griffen werden kann.

Pakete 459

Paket x

S
==

Bild 12-4 Anordnung der Klassen in Paketen

Die Klasse A im Paket y soll Datenfelder oder Methoden haben, die als Diskussions-
grundlage zuerst den Zugriffsschutz private haben sollen, dann default, danach
protected und zum Schluss public.

|
Unabhéngig davon, ob Instanzvariable und Instanzmethoden oder / -
Klassenvariable und Klassenmethoden betrachtet werden, der Zu- “@
Ve

griffsschutz bleibt der Gleiche, da der Zugriffsschutz in der Sprache
Java klassenbezogen und nicht objektbezogen implementiert ist.

(i

Deshalb wird im weiteren Verlauf nur noch von Datenfeldern und Methoden gespro-
chen.

Im Folgenden werden die vier verschiedenen Md&glichkeiten flr den Zugriffsschutz
einzeln diskutiert:

Zugriffsmodifikator private

Auf Datenfelder oder Methoden, die mit dem Zugriffsmodifikator private geschitzt
sind, kann innerhalb der Klassendefinition, in der sie definiert sind, zugegriffen
werden. Das bedeutet, dass folgender Zugriff erlaubt ist'**:

public class Punkt
{

private int x;

public void tausche (Punkt p)
{

int help = p.x;

P.X = X;

x = help;

}

Wird die Paketstruktur aus Bild 12-4 zugrunde gelegt, so kann aus keiner der Klas-
sen B, C, D oder E auf die privaten Datenfelder und Methoden der Klasse A zuge-
griffen werden. Beachten Sie, dass in den folgenden Bildern ein gestrichelter Pfeil
mit einem Blitz einen verwehrten Zugriff symbolisiert.

104 Eg gibt auch objektorientierte Programmiersprachen, bei denen der Zugriffsschutz objektbezogen
ist. Dann wilrde das obige Beispiel nicht funktionieren, da dann jedes einzelne Objekt wirklich nur
auf seine eigenen Datenfelder und Methoden mit der this-Referenz zugreifen kann.

460 Kapitel 12

Paket x Pakety
A
D ,——‘é_--'aprivate
5 ,,/ :
e 5 NS B
//"’/ \é~~-
/ v
/ < C
E / S
7
7

Bild 12-5 Zugriff auf private Datenfelder und Methoden

Zugriffsschutz default

Auf Datenfelder und Methoden, die den Zugriffsschutz default haben, kann aus Klas-
sen heraus, die im gleichen Paket liegen, zugegriffen werden. Der Zugriffsschutz
gegenliber den mit private geschitzten Datenfeldern und Methoden wird aufge-
weicht um die Zugriftsmdglichkeit von allen Klassen im gleichen Paket.

Paket x Pakety

A
D _,"'é = default

- ”’
?’;;;;%
7}
’ ,a \\ B
-
C

~
E , <

Bild 12-6 Zugriff auf default Datenfelder und Methoden

Zugriffsmodifikator protected

Auf Datenfelder und Methoden, die den Zugriffsschutz protected haben, besteht
ein erweiterter Zugriff gegentiber Datenfeldern und Methoden mit dem Zugriffsschutz
default. Auf solche Datenfelder und Methoden kann aus allen Klassen im gleichen
Paket zugegriffen werden, und zusétzlich kénnen Subklassen in anderen Paketen
auf die von der Vaterklasse ererbten Datenfelder und Methoden zugreifen. Beding-
ung ist allerdings, dass auf die eigenen ererbten Datenfelder und Methoden
zugegriffen wird und nicht z. B. in der Subklasse E ein neues Objekt der Klasse 2
angelegt wird und dann versucht wird, auf die protected Datenfelder und Metho-
den des neu angelegten Objektes zuzugreifen. Definiert die Klasse A z. B. eine
print ()-Methode mit dem Zugriffsmodifikator protected, so ist der Aufruf der
Methode print () in den folgenden Anweisungen im Quellcode der Klasse E nicht
zulassig:

A refA = new A();
refA.print();

Innerhalb der Klassendefinition von & kann aber auf die von der Vaterklasse A geerb-
te Methode print () zugegriffen werden. So kann an jeder Stelle im Programmcode
der Klasse E, an der es erlaubt ist, eine Methode aufzurufen, die Anweisung
print () ; stehen.

Pakete 461

Paket x Pakety

A
D - "‘é__-' protected

C

~
E / <

Bild 12-7 Zugriff auf protected Datenfelder und Methoden

Zugriffsmodifikator public

Datenfelder und Methoden, die den Zugriffsmodifikator public besitzen, haben kei-
nen Zugriffsschutz mehr. Auf solche Datenfelder und Methoden kann von allen
Klassen aus zugegriffen werden.

Paket x Pakety

A

L -r=" 77T = apubllc
=
-
e 14ﬂ% B

E [~

Bild 12-8 Zugriff auf pub11ic Datenfelder und Methoden

Das folgende Bild stellt den Zugriff auf Datenfelder und Methoden in einem Kreis dar:

Klassen in
anderen Paketen

Sohnklassen in
anderen Paketen auf
geerbte Datenfelder

) und Methoden
eigene Klasse

Klassen im
selben Paket

private public

Datenfeld oder
Methode einer
Klasse

eigene Klasse

eigene Klasse

protected
Sohnklassen in
anderen Paketen auf
geerbte Datenfelder
und Methoden

Klassen im
selben Paket

Klassen im

eigene Klasse selben Paket

Bild 12-9 Zugriff auf die Datenfelder und Methoden einer Klasse bzw. eines Objektes

462

Kapitel 12

Die folgende Tabelle fasst den Zugriffsschutz bei den unterschiedlichen Zugriffsmodi-
fikatoren zusammen. Dabei werden die Zugriffsmoéglichkeiten der Klassen a, B, C, D
und E aus Bild 12-4 auf Datenfelder und Methoden der Klasse 2 betrachtet.

hat Zugriff private default protected public
auf | Datenfelder und | Datenfelder und | Datenfelder und Datenfelder
Methoden Methoden Methoden und Methoden
Klasse A selbst Ja Ja Ja Ja
Klasse B Nein Ja Ja Ja
gleiches Paket
Subklasse C Nein Ja Ja Ja
gleiches Paket
Subklasse E Nein Nein Ja/Nein Ja
anderes Paket
Klasse D Nein Nein Nein Ja
anderes Paket

Tabelle 12-1 Zugriff auf Datenfelder und Methoden der Klasse n'®

Die Subklasse E hat nur Zugriff auf die geerbten Datenfelder und Methoden der
Klasse 2. Wird ein neues Objekt der Klasse 2 in E angelegt, so darf auf die pro-
tected Datenfelder und Methoden dieses Objektes nicht zugriffen werden. Man
kann es auch einfach aus dem Gesichtspunkt betrachten, dass wenn E die Klasse 2
nicht im Sinne einer Vererbungsbeziehung benutzt — und das ist der Fall, wenn ein
neues Objekt von A in E angelegt wird —, dass dann die Klasse E dieselben Zugriffs-
moglichkeiten wie die Klasse D hat.

Bis auf protected ist der Zugriffsschutz gleich, egal ob auf geerbte ™ L/

Datenfelder und Methoden zugegriffen wird, oder ob in der ent- —
sprechenden Klasse ein neues Objekt der Klasse A angelegt wird und -~
auf dessen Datenfelder und Methoden zugegriffen wird.

~

=

12.7.3 Zugriffsschutz fiir Konstruktoren

Stellt eine Klasse keinen Konstruktor mit dem Zugriffsmodifikator public bereit, son-
dern einen Konstruktor ohne Zugriffsmodifikator, so ist der Konstruktor nur von
Klassen innerhalb des eigenen Pakets aufrufbar. So kann im folgenden Beispiel der
Konstruktor student (String n, String v, int nummer) nur von Klassen
im Paket hochschule aufgerufen werden:

// Datei: Student.java

package hochschule;

public class Student

{
private String name;
private String vorname;
private int matrikelnummer;

% Die Klasse 2 hat natlrlich den Zugriffsmodifikator public (public class A{ . . .}),
damit der Zugriff auf die Klasse aus anderen Paketen moglich ist.

Pakete 463

Student (String n, String v, int nummer)

{

name = n;
vorname = V;
matrikelnummer = nummer;

}

Mit anderen Worten, hier ist es nur von Klassen innerhalb des Pakets hochschule
aus mdglich, Instanzen von der Klasse student zu schaffen.

Stellt eine Klasse Konstruktoren mit dem Zugriffsmodifikator protected zur Verfu-
gung, so kdnnen von allen Klassen aus, die im selben Paket liegen, Objekte erzeugt
werden. Abgeleitete Klassen in anderen Paketen kdnnen keine Objekte erzeugen,
kénnen aber den Konstruktor der Vaterklasse mit Hilfe von super () aufrufen.

Werden alle Konstruktoren einer Klasse flr private erklart, so kann von keiner an-
deren Klasse aus ein Objekt dieser Klasse erzeugt werden. Nur innerhalb der Klasse
selbst ist es noch mdglich, Objekte dieser Klasse zu erzeugen. Diese Verhaltens-
weise wurde in Kapitel 10.5.2 dazu benutzt, um sicherzustellen, dass nur eine ein-
zige Instanz einer Klasse erzeugt wird. Werden dagegen die Konstruktoren einer
Klasse public gemacht, so kann von allen beliebigen Klassen aus ein Objekt dieser
Klasse erzeugt werden.

Wird tGiberhaupt kein Konstruktor zur Verfiigung gestellt, so exi-

stiert der vom Compiler zur Verfligung gestellte voreingestellte |/
Default-Konstruktor. Dieser Konstrukior hat den Zugriffsschutz der — -
Klasse. Ist die Klasse public, so ist auch der voreingestellte De- - ~
fault-Konstruktor public. Ist die Klasse default, so ist auch der =
voreingestellte Default-Konstruktor default. -

12.7.4 Zugriffsmodifikatoren beim Uberschreiben von Methoden

Man darf die Zugriftsmodifikatoren einer Uberschriebenen Methode nicht einschran-
ken, sondern nur erweitern. Man darf also zum Beispiel eine protected-Methode
als protected oder public redefinieren, eine public-Methode aber nur als
public.

Zugriffsmodifikatoren in der Zugriffsmodifikatoren in der
Superklasse Subklasse
private Kein Uberschreiben méglich, aber
neue Definition im Sohn.
default default
protected
public
protected protected
public
public public

Tabelle 12-2 Zugriffsmodifikatoren beim Uberschreiben von Methoden

464 Kapitel 12

Der Grund fir dieses Verhalten ist bereits in Kapitel 11.5.2 angesprochen worden.
Wirde man die Zugriffsrechte beim Uberschreiben einer Methode einschranken, so
kénnte nicht an jeder Stelle, an der ein Vater verlangt wird, ein Sohn stehen — der
Vertrag der Klasse wére verletzt, da die Vorbedingung verscharft wurde. Bei Metho-
den, die als private deklariert sind, kann kein Uberschreiben stattfinden, da sie
zwar vererbt werden, aber im Code, der flir den Sohn geschrieben wurde, nicht sicht-
bar sind.

12.8 Ubungen
Aufgabe 12.1: Einfache Paketstruktur

Vervollstandigen Sie die Klasse Person, die in einem Paket pers liegen soll und die
Klasse Student, die im Paket studi liegen soll. Die Klasse student soll von der
Klasse Person abgeleitet sein. Vervollstandigen Sie die Klasse Test, die je ein Ob-
jekt der Klassen pPerson und Student erzeugt und die Datenfelder dieser Objekte
ausgibt. Die Klasse Test liegt im aktuellen Arbeitsverzeichnis. Welche Verzeichnisse
muissen Sie einrichten? Wie lauten die Dateinamen lhrer Programme in den Ver-
zeichnissen?

// Datei: Person.java
import java.util.x*;
public class Person
{

private String name;

private String vorname;

public Person()

{

Scanner eingabe = new Scanner (System.in);
System.out.print ("Geben Sie den Nachnamen ein: ");
name = eingabe.next ();

System.out.print ("Geben Sie den Vornamen ein: ");
vorname = eingabe.next();

}

public void print ()

{
System.out.println ("Nachname: " + name);
System.out.println ("Vorname: " + vorname);

}

// Datei: Student.java

import java.util.*;

public class Student
{

Pakete

465

private String matrikelnummer;

public Student ()
{

super () ;

Scanner eingabe = new Scanner (System.in);
System.out.print ("Geben Sie die Matrikelnummer ein: ");
matrikelnummer = eingabe.next();

System.out.println() ;
}

public void print()
{

System.out.println ("Matrikelnummer: " + matrikelnummer) ;
}

// Datei: Test.java

public class Test
{
public static void main (String args|[])

{

System.out.println ("Start des Programms");
System.out.println();
System.out.println ("Person erzeugen");

System.out.println();
System.out.println ("Student erzeugen");

System.out.println();
System.out.println ("Ausgabe Person");

System.out.println();
System.out.println ("Ausgabe Student");

Aufgabe 12.2: Struktur mit Unterpaketen

Die einfache Paketstruktur aus Aufgabe 12.1 soll wie folgt erweitert werden: Erstellen
Sie im Paket pers das Unterpaket prof. Dieses enthélt die Klasse Professor,
welche von der Klasse Person abgeleitet wird. Ein Objekt der Klasse Professor
erzeugt dabei eine Instanz der Klasse student. Erweitern Sie die Klasse Test, um

Ihre neue Klasse Professor zu testen.
// Datei: Professor.java
package;

import java.util.*;

466 Kapitel 12

import;
import;

public class Professor

{

private String fb;
private Student stud;

public Professor ()

{
super () ;
Scanner eingabe = new Scanner (System.in);
System.out.print ("Geben Sie den Fachbereich ein: ");
fb = eingabe.next ();
System.out.println()
System.out.println ("Professor erstellt Student");
stud = new Student ()

’

}

public void print()
{

// Ausgabe der geerbten Instanzvariablen

System.out.println ("Fachbereich: " + fb);
System.out.println ("Ausgabe des Studenten");

Aufgabe 12.3: Messwerte

Es sollen mehrere Klassen geschrieben werden, um Messwerte zu speichern und
auszugeben. Entwickeln Sie die Klassen Messwert, Messreihe und Tempera-
turMessreihe

Die Klasse Messwert soll folgende Kriterien erflllen:

Eine Klassenvariable anzahlMesswerte vom Typ int soll die Anzahl der Mess-
werte festhalten.

Die Klasse soll die Datenfelder wert vom Typ double, messDatum vom Typ
GregorianCalendar sowie messwertID vom Typ int enthalten.

Die Klasse soll sich im Paket messdaten befinden.

Es dirfen nur Klassen im selben Paket auf die Klasse Messwert zugreifen und
sie verwenden.

Der Konstruktor soll nur fir Klassen im Paket messdaten aufrufbar sein. Der Kon-
struktor soll als Ubergabeparameter messwert vom Typ double und messDatum
vom Typ GregorianCalendar erwarten.

Folgende Methoden sollen implementiert werden:

double getWert ()
GregorianCalendar getMessDatum/()

int getMesswertID()

Pakete 467

Die Klasse Messreihe befindet sich ebenfalls im Paket messdaten, soll aber von
Klassen in anderen Paketen verwendet werden kénnen. Die Klasse erhélt folgende
Datenfelder und Methoden:

® protected Messwert[] messwerte
Die Messwerte werden in diesem Array gespeichert.

® public Messreihe (int messwertAnzahl)
Dem Konstruktor wird die GroBe des Messwert-Arrays lbergeben.

® public void addMesswert (double messwert,
GregorianCalendar datum)
Flgt dem Array ein neues Messwert/Datum-Paar hinzu.

® public double getMesswert (GregorianCalendar datum)
Ermittelt den Messwert, der zum Ubergebenen Datum gehort.

® public void print()
Gibt alle gespeicherten Messwerte auf der Konsole aus.

Die Klasse TemperaturMessreihe wird von der Klasse Messreihe abgeleitet und
befindet sich im Paket temperaturmessung. Sie soll folgende Datenfelder und Me-
thoden erhalten:

® private String temperaturEinheit
Gibt die verwendete Temperaturskala an, z. B. °C.

® public TemperaturMessreihe (int messwertAnzahl,
String temperaturEinheit)
Der Konstruktor soll die Anzahl der zu speichernden Messwerte und die zu ver-
wendende Temperaturskala entgegennehmen.

® public void print()
Die Methode soll die verwendete Temperaturskala (z. B. °C) und alle gespeicher-
ten Messwerte auf der Konsole ausgeben.

® public static double CelsiusToFahrenheit (double celsiusTemp)
Die Methode konvertiert eine Temperaturangabe von Celsius nach Fahrenheit.

Die entwickelten Klassen kénnen mit folgender Testklasse, die sich im Default-Paket
befindet, getestet werden.

// Datei: TestMesswerte.java

import temperaturmessung.TemperaturMessreihe;
import java.util.GregorianCalendar;

public class TestMesswerte
{
public static void main (String[] args)
{
double fahrenheit;
TemperaturMessreihe temperaturMessungen =
new TemperaturMessreihe (5, "°C");

GregorianCalendar datuml = new GregorianCalendar (2000,5,10);
temperaturMessungen.addMesswert (25.3, datuml);

468 Kapitel 12

GregorianCalendar datum2 = new GregorianCalendar (2001,5,10);
temperaturMessungen.addMesswert (23.0, datum2);

GregorianCalendar datum3 = new GregorianCalendar (2002,5,10);
temperaturMessungen.addMesswert (18.4, datum3);

GregorianCalendar datum4 = new GregorianCalendar (2003,5,10);
temperaturMessungen.addMesswert (26.9, datumé);

GregorianCalendar datum5 = new GregorianCalendar (2004,5,10);
temperaturMessungen.addMesswert (28.0, datumb);

fahrenheit = TemperaturMessreihe.CelsiusToFahrenheit (25.0);
System.out.println("25.0 °C entsprechen " +

fahrenheit + "° F.");
System.out.println();
temperaturMessungen.print () ;

}
Aufgabe 12.4: MaBeinheiten umrechnen

Entwickeln Sie die drei Klassen Umrechner, Laenge und Temperatur zum Um-
rechnen von MaBeinheiten.

Die Klassen Laenge und Temperatur befinden sich im Unterpaket konstanten
des Pakets umrechnung und beinhalten die fir die Umrechnung notwendigen Kon-
stanten.

Die Klasse Laenge enthalt folgende Datenfelder:

® public static final float faktorMeilenNachKm
Diese Klassenkonstante enthalt den Faktor 1,60934 fir die Umrechnung von
Meilen in Kilometer.

® public static final float faktorKmNachMeilen
Diese Klassenkonstante enthalt den Faktor 1/1,60934 fiir die Umrechnung von
Kilometern in Meilen.

Die Klasse Temperatur enthélt folgende Datenfelder:

® public static final float faktorFahrenheitNachCelsius
Diese Klassenkonstante enthélt den Faktor 5/9, der fir die Umrechnung von °F in
°C bendtigt wird.

® public static final float summandFahrenheitNachCelsius

Diese Klassenkonstante enthalt den Summanden 32, der fiir die Umrechnung von
°F in °C bendtigt wird.

® public static final float faktorCelsiusNachFahrenheit
Diese Klassenkonstante enthélt den Faktor 9/5, der fur die Umrechnung von °C in
°F bendtigt wird.

® public static final float summandCelsiusNachFahrenheit
Diese Klassenkonstante enthalt den Summanden 32, der fiir die Umrechnung von
°C in °F bendtigt wird.

Pakete 469

Die Klasse Umrechner befindet sich im Unterpaket tools des Pakets umrechnung
und enthalt folgende Klassenmethoden:

public static float kmNachMeilen (float km)

Die Methode rechnet Ldngenangaben von Kilometern in Meilen um. Die Umrech-
nungsformel lautet: Meilen = km * (1/1,60934)

public static float meilenNachKm (float meile)

Die Methode rechnet Langenangaben von Meilen in Kilometer um. Die Umrech-
nungsformel lautet: km = Meilen * 1,60934

public static float celsiusNachFahrenheit (float celsius)

Die Methode rechnet Temperaturangaben von Celsius in Fahrenheit um. Die Um-
rechnungsformel lautet: °F = (°C * 9/5) + 32

public static float fahrenheitNachCelsius (float fahrenheit)
Die Methode rechnet Temperaturangaben von Fahrenheit in Celsius um. Die Um-
rechnungsformel lautet: °C = (°F — 32) * (5/9)

Die entwickelten Klassen kdnnen mit folgender Testklasse, die sich im Default-Paket

befindet, getestet werden.
// TestEinheitenUmrechner. java
import umrechnung.tools.Umrechner;

public class TestEinheitenUmrechner

{

public static void main (String [] args)
{

float km = 100f;

float kmInMeilen;

float meilen = 250.35f;

float meilenInKm;

float celsius = 0f;

float celsiusInFahrenheit;

float fahrenheit = 85f;

float fahrenheitInCelsius;

kmInMeilen = Umrechner.kmNachMeilen (km);
meilenInKm = Umrechner.meilenNachKm (meilen);
celsiusInFahrenheit =

Umrechner.celsiusNachFahrenheit (celsius);
fahrenheitInCelsius =

Umrechner.fahrenheitNachCelsius (fahrenheit);

System.out.println (km + " km entsprechen " +
kmInMeilen + " Meilen");
System.out.println (meilen + " Meilen entsprechen " +
meilenInKm + " km");
System.out.println (celsius + " °C entsprechen " +
celsiusInFahrenheit + " °F");
System.out.println (fahrenheit + " °F entsprechen " +

fahrenheitInCelsius + " °C");

470 Kapitel 12

Aufgabe 12.5: Flughafen-Projekt — Integration von Paketen

Das Programm von Projektaufgabe 11.5 beinhaltet inzwischen 11 Klassen. Um die
Ubersichtlichkeit zu verbessern, sollen die Klassen nun in eine sinnvolle Paket-
struktur eingeordnet werden. Ein Vorschlag hierfir wére:

Paket: flughafen

Paket: flugzeug

Flugzeug.java
FlugzeugTyp.java
Status.java

Paket: parkstelle

Parkposition.java
Parkstelle.java
SeperateParkposition.java
Werft.java

Bahn.java
Fluggesellschaft.java

Paket: hilfsklassen

Abfrage.java

Client.java

Bild 12-10 Vorschlag fir Paketstruktur

Neben der Erstellung einer Paketstruktur soll eine Auswahl von Bahnen und Park-
positionen ermdglicht werden. Der bisherige Programmablauf hat einem Flugzeug
eine beliebige Parkposition und eine beliebige Bahn zugewiesen. Dabei besitzt der
Flughafen 4 Start-/Landebahnen und 10 Parkpositionen. Dem Lotsen soll nun ermég-
licht werden, die Parkposition und auch Start-/Landebahn auszuwahlen. Hierzu soll-
ten zwei Arrays parkpositionen und bahnen mit den entsprechenden GrdBen
angelegt und mit Instanzen der Klasse Parkposition bzw. Instanzen der Klasse
Bahn geflllt werden. Fligen Sie folgende Methode der Hilisklasse Abfrage hinzu.
Diese Methode wird lhnen bei der Eingabe eines Wertebereiches hilfreich sein:

public static int abfragelInt (String frage, int min, int max)
{
int zahl = abfragelInt (frage);
if (zahl < min || zahl > max)
{
System.out.println ("Bitte eine Zahl im Bereich von " + min +
" und " + max + " eingeben.");
zahl = abfragelInt (frage, min, max);
}

return zahl;

Kapitel 13

Ausnahmebehandlung

S
e
== ——a=======
SSSSSSSs e S
SSsSSSSSSSNNSSsas

13.1 Das Konzept des Exception Handling

13.2 Implementierung von Exception-Handlern in Java
13.3 Ausnahmen vereinbaren und auswerfen

13.4 Die Exception-Hierarchie

13.5 Ausnahmen behandeln

13.6 Vorteile des Exception-Konzeptes

13.7 Assertions

13.8 Ubungen

13 Ausnahmebehandlung

Vor dem Einstieg in das Exception Handling von Java soll in Kapitel 13.1 das Kon-
zept des Exception Handlings unabhangig von einer Programmiersprache vorgestellt
werden.

13.1 Das Konzept des Exception Handling

Wéhrend der normalen Abarbeitung einer Methode kann zur Laufzeit ein abnormales
Ereignis auftreten, das die normale Ausfiihrung der Methode unterbricht. Ein solches
abnormales Ereignis ist eine Exception (Ausnahme). Eine Exception kann bei-
spielsweise ein arithmetischer Uberlauf, ein Mangel an Speicherplatz, eine Ver-
letzung der Array-Grenzen, etc. darstellen. Eine Exception stellt damit ein Laufzeit-
Ereignis dar, das zum Versagen einer Methode und damit zu einem Laufzeit-Fehler
des Programms fuhren kann. In vielen Fallen fihrt das Auslésen einer Exception
tatsachlich zum Versagen einer Methode und stellt dann auch einen Fehler dar. Es
gibt aber auch die Mdglichkeit, einen Exception-Handler zu schreiben, in welchem
auf Exceptions, die man vorausgesehen hat, so reagiert wird, dass sich das Pro-
gramm von der Exception "erholt" und fehlerfrei weiterarbeitet.

Der Aufruf einer Methode versagt, wenn eine Exception wéhrend . |
der Abarbeitung der Methode auftritt und sich die Methode nicht _
von der Exception erholt. Das Versagen einer Methode bedeutet /\
fir den Aufrufer der Methode ein abnormales Ereignis, d. h. ebenfalls W
eine Exception. 2

Tatsachlich stellt in der Praxis das Versagen einer gerufenen Methode eine der
Hauptquellen fiir Exceptions dar.

Formal betrachtet tritt in einer Methode eine Exception auf, wenn trotz — -
erflllter Vorbedingung die Nachbedingung der Methode verletzt wird. - ~

Ein defensiver Programmierstil gebietet es, auf Ausnahmen vorbereitet zu sein und
zu verhindern, dass sie fehlerhafte Ergebnisse oder Ausfélle nach sich ziehen. Das
erstellte Programm soll stabil sein. Daraus folgt, dass man Programmcode zur Er-
kennung und Behandlung von Exceptions vorsehen muss. Eine haufige Quelle fur
Exceptions sind beispielsweise Ein- und Ausgabeoperationen.

Eine der traditionellen Methoden zur Behandlung von Fehlern ist die Riickgabe
eines Fehlercodes durch Funktionen, entweder als direkter Rickgabewert oder
Uber eine globale Variable. Oftmals wird auch beides gemacht wie z. B. bei UNIX-
Systemaufrufen. Der direkte Riickgabewert (-1 bei UNIX) zeigt an, dass etwas schief
gelaufen ist, und eine globale Variable (UNIX: errno) enthédlt den genauen Fehler-
code. Eine globale Variable ist dann notwendig, wenn der Rickgabewert einer Funk-
tion keine Licken aufweist, die man zur Fehlersignalisierung nutzen kann. Dies gilt

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_13,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Ausnahmebehandlung

473

z. B. fur viele mathematische Funktionen. Der zurlickgelieferte Fehlercode muss
nach jedem Aufruf geprift werden. Diese MaBnahmen sind sehr aufwéndig und
resultieren nicht selten in Code, der nicht mehr sonderlich leicht zu lesen ist.

Ziel des Exception Handling ist es, normalen und fehlerbehandeln-
den Code Ubersichtlich zu trennen und Ausnahmesituationen sicher

zu behandeln.

Klassisches Programm

Java Programm

*:/:

Verarbeitungsblock

if (error)
TRUE

FALSE

Error Handling

Verarbeitungs-
block

TRUE

if (error)

FALSE

Error
Handling

Verarb.-
block

Verarbeitung

Exception Handling

(i

Bild 13-1 Klassische Fehlerbehandlung und Exception Handling in Java

Ein weiteres Ziel des Exception Handling ist, bei gewissen Ausnahmen eine Ausein-
andersetzung des Programms mit dem Fehler zu erzwingen. Es darf nicht sein, dass
man in Folgeprobleme hineinlduft, weil man eine Ausnahme nicht behandelt hat.

Das Konzept, zwischen so genannten Checked Exceptions und Un-
checked Exceptions zu unterscheiden, hat das Ziel, dass vom Com-
piler geprift wird, ob der Programmierer alle zu berlcksichtigenden
Ausnahmen (Checked Exceptions) tatsachlich behandelt hat. Ist dies
nicht der Fall, so wird das Programm vom Compiler nicht Ubersetzt
und der Programmierer muss nachbessern, indem er die Checked
Exception auch einer Fehlerbehandlung unterzieht. Es wird also schon
zur Ubersetzungszeit und nicht erst zur Laufzeit durch den Compiler
Uberprift, ob das Programm flir eine Checked Exception die verlangte

Fehlerbehandlung durchfihrt.

Auch im Zusammenhang mit Bibliotheken, die ja eine immer gréBere Rolle in der
Programmierung spielen, lassen sich Ausnahmen elegant einsetzen: Der Ersteller
einer Bibliothek wei3 sehr genau, wie er Ausnahmen entdecken kann. Er kann
jedoch schwerlich eine optimale Lésung fir die Behandlung dieser Ausnahmen in
allen Anwendungen, die auf der Bibliothek aufsetzen, implementieren. Der Anwen-
dungsprogrammierer steht vor dem umgekehrten Problem. Er weiB zwar, wie er
mit den Ausnahmen umzugehen hat, aber da er die Implementierung der Biblio-
thek in der Regel nicht kennt und nach dem Prinzip des Information Hiding auch gar

474

Kapitel 13

nicht kennen soll, kann er sie — wenn Uberhaupt — nur unter Mihen entdecken. Auch
hier bietet das Konzept des Exception Handling eine leistungsféhige Lésung. Es ist
moglich, Exceptions zu "werfen". So kann ein Bibliotheksprogramm Exceptions dem
Anwendungsprogramm, das die Bibliothek benutzt, "zuwerfen" und dieses kann dann

gezielt reagieren.

Exceptions ermdglichen einer Bibliothek, Ausnahmezustande in ein-
facher Weise an das aufrufende Programm zu melden und gegebe-

nenfalls Daten Uber die naheren Begleitumstande zu liefern.

Eine Exception kann man als ein durch eine Datenstruktur repra-
sentiertes Ereignis auffassen. Tritt der Ausnahmezustand ein, so

wird er mit Hilfe der Datenstruktur der Exception gemeldet.

Dabei gilt jedoch, dass Exceptions nur synchron als Resultat von Anweisungen im
Programm auftreten. Sie sind also nicht mit Interrupts oder anderen asynchronen

Ereignissen zu verwechseln!

13.2 Implementierung von Exception-Handlern in Java

Das Exception Handling wird in Java durch eine try-Anweisung
realisiert. Eine try-Anweisung muss einen try-Block und kann ein
oder mehrere catch-Konstrukie und ein finally-Konstrukt enthal-
ten. Ist mindestens ein catch-Konstrukt da, so kann das finally-
Konstrukt entfallen. Ist kein catch-Konstrukt vorhanden, so ist das

finally-Konstrukt erforderlich.

Mit Hilfe von try wird ein Block aus beliebigen Anweisungen des normalen Pro-
gramms gekennzeichnet, deren Ausfliihrung "versucht" werden soll (try-Block),
wobei aber Exceptions auftreten kénnen, die eine normale Ausfihrung verhindern.
Eventuell auftretende Exceptions kénnen danach mit Hilfe von catch "gefangen",

d. h. behandelt werden.

Eine try-Anweisung hat die folgende Struktur:

try

{ //
e //

} //

catch (Exceptiontypl namel)

{ //
e e //

} //

try-Block. Das ist der
normale Code, in dem
Fehler auftreten kdnnen

catch-Block 1.
Fangt Fehler der
Klasse Exceptiontypl ab

try-
Konstrukt

catch-
Konstrukt

Ausnahmebehandlung 475

catch (Exceptiontyp2 name2)

{ // catch-Block 2.
Coe e // Féngt Fehler der
} // Klasse Exceptiontyp2 ab

// weitere catch-Konstrukte
// als Exception-Handler

finally // finally-Konstrukt ist

{ // optional. Wird in jedem finally-
// Fall durchlaufen, egal ob Konstrukt

} // ein Fehler aufgetreten ist u

// oder nicht.

Wird wahrend der Ausfuhrung eines Programms im try-Block ein Ausnahmezustand
erkannt, kann mit Hilfe von throw eine Exception "geworfen”, also eine Ausnahme
ausgeldst werden.

Das Auslésen einer Ausnahme bricht die Anweisungsfolge ab, die gerade ausgefiihrt
wurde. Die Kontrolle wird an das Laufzeitsystem der virtuellen Maschine Ubergeben
und das Laufzeitsystem sucht einen Handler fir die Ausnahme in der Umgebung des
try-Blocks. Im einfachsten Fall steht der Exception-Handler direkt in Form eines
catch-Konstruktes hinter dem try-Block.

Falls ein Handler gefunden wird, werden die Anweisungen des Hand-
lers als nachstes ausgefiihrt und das Programm nach den Handlern
fortgesetzt.

\ ’ /
I\\\\\@ —
/ \\\

Es wird also nicht an die Stelle des Auslésens zurlickgekehrt. Falls Gberhaupt kein
Handler da ist, wird das Programm von der virtuellen Maschine abgebrochen.

Ein Exception-Handler hat das Ziel, eine Exception zu "entscharfen", d. h. eine Me-
thode vom Ausnahmezustand in den Normalzustand zu Uberfiihren:

try
try

®

ohne .
E t
Exception Handler H);i?jiljelron

Bild 13-2 Entschérfen einer Exception durch einen Exception Handler

476 Kapitel 13

try-Block

©

catch-Konstrukt

Bild 13-3 Auffangen einer im t ry-Block geworfenen Exception in einem cat ch-Konstrukt

Das finally-Konstrukt ist — wie schon gesagt — optional. Anweisungen in diesem
Block werden auf jeden Fall ausgefiihrt, egal ob eine Exception geworfen wurde oder
nicht. Der Block kann also dazu verwendet werden, Aktionen auszufihren, die immer
beim Verlassen des aktuellen try-Blockes erledigt werden mussen, ungeachtet
dessen, ob eine Ausnahme aufgetreten ist oder nicht. So kdnnen z. B. Dateien
geschlossen oder Ressourcen freigegeben werden.

Ausnahmebehandlung 477

try-Block

throw—l Exception

\©

catch-Konstrukt

|

finally-Konstrukt

Bild 13-4 Ablauf einer Fehlerbehandlung unter Einschluss eines finally-Konstruktes

Bild 13-5 zeigt, wie eine nicht abgefangene Exception an den Aufrufer — bis hin zur
virtuellen Maschine — propagiert wird:

virtuelle
Maschine

N

‘ Riickgabe einer Exception

A

main() ‘
Riickgabe einer Exception
Aufruf
m1() Riickgabe einer Exception
Aufruf m2() Exception wird geworfen

Bild 13-5 Propagieren einer nicht abgefangenen Exception

478 Kapitel 13

Die aufgerufene Methode kann die in ihr aufgetretene Exception an den Aufrufer
weiterleiten, wenn sie diese nicht erfolgreich behandeln kann. Sie kann aber auch im
Rahmen der Behandlung der aufgetretenen Exception eine andere Exception erzeu-
gen und diese an den Aufrufer weiterleiten'®.

ihren Aufrufer weiter, so muss die Exception in der Schnittstellen- —
beschreibung der Methode durch das Schliisselwort throws ange- -~

Fangt eine Methode Exceptions nicht selbst ab, sondern leitet sie an @
geben werden. Ansonsten resultiert ein Kompilierfehler. E

13.3 Ausnahmen vereinbaren und auswerfen

Bei der Ausnahmebehandlung kann der objektorientierte Ansatz konsequent einge-
setzt werden. Eine Ausnahme wird in Java wie in C++ durch ein Objekt reprasentiert.
Tritt eine Ausnahme ein, so wird das entsprechende Objekt erzeugt.

In Java haben alle Exceptions eine gemeinsame Basisklasse. Dies ist — -
die Klasse Throwable aus dem Paket java.lang. - ~

Ausnahmen kdénnen mit Hilfe der Anweisung throw an beliebiger Stelle in einem
try-Block ausgeldst oder "ausgeworfen" werden. Die throw-Anweisung akzeptiert
jede Referenz, die auf ein Objekt vom Typ Throwable zeigt. Damit kénnen natdrlich

alle Objekte eines Subtyps von Throwable mit throw geworfen werden'?’.

Eine Ausnahme-Klasse unterscheidet sich nicht von einer "normalen" |/
Klasse, auBer dass sie von Throwable abgeleitet ist. Die besondere —
Bedeutung erhalt sie durch die Verwendung in throw-Anweisungen ~
und in catch-Konstrukten.

o~

o)

Haben Ausnahmen ganz bestimmte spezifische Eigenschaften, die im Klassenbaum
der Exceptions noch nicht vertreten sind, so wird man eine spezielle Klasse verein-
baren. Da Exceptions nichts anderes als Klassen'® sind, leitet man sich fiir seine
Bedirfnisse einfach eine Klasse von der Klasse Exception oder einer ihrer Sub-
klassen ab. Dadurch kénnen die Exceptions unterschieden und modifizierte Fehler-
meldungen angegeben werden. Bei Bedarf kann man auch Datenfelder und Metho-
den hinzufigen.

Das folgende Beispiel zeigt, wie man eine selbst definierte Exception generieren,
auswerfen und wieder fangen kann.

1% Siehe Kap. 13.5.3.

9 Ein Anwendungsprogrammierer wirft in der Regel ein Objekt vom Typ Exception oder eines
Subtyps von Exception.

1% Siehe Kap. 13.4.

Ausnahmebehandlung 479

// Datei: MyClass.java

class MyException extends Exception
{
public MyException()
{
// Aufruf des Konstruktors der Klasse Exception.
// Ihm wird ein String mit dem Fehlertext ibergeben und
// in einem von Throwable geerbten Datenfeld gespeichert.
super ("Fehler ist aufgetreten!");

}

public class MyClass
{
public static void main (String[] args)
{
// Dieser try-Block ist untypisch, da in ihm nur eine
// Exception zu Demonstrationszwecken geworfen wird.
try
{
MyException ex = new MyException();
throw ex;
// Anweisungen unterhalb einer throw-Anweisung in einem
// try-Block werden nie abgearbeitet.
}
catch (MyException e)
{
System.out.println (e.getMessage());
}

Die Ausgabe des Programms ist:

Fehler ist aufgetreten!

In konkreten Programmen muss eine Fehlermeldung natlrlich aussagekraftig sein.
Eine Fehlermeldung muss immer die Stelle, an welcher der Fehler aufgetreten ist,
und die Fehlerursache enthalten. Jede Exception ist von einem bestimmten Typ.

Zur Erstellung einer eigenen Exception wird im Beispiel die Klasse MyException
von der Klasse Exception abgeleitet. Im parameterlosen Konstruktor der Klasse
MyException wird mit super () der Konstruktor der Klasse Exception aufgeru-
fen. An den Konstruktor von Exception wird ein String Gbergeben, der den Fehler-
text enthalt. Der Fehlertext beschreibt die Exception genauer und kann aus einer Ex-
ception mit der Methode getMessage (), die in der Klasse Throwable definiert ist,
ausgelesen werden. Dieser Fehlertext kann dann im Fehlerfall ausgegeben werden.

Im try-Block in der main ()-Methode der Klasse MyClass wird durch new ein
neues Exception-Objekt erzeugt. Dieses wird anschlieBend mit throw geworfen. Mit
der throw-Anweisung wird der try-Block verlassen. Eine darauf folgende Codezeile

480 Kapitel 13

wird nie erreicht. Die an die virtuelle Maschine Ubergebene Exception wird dann im
catch-Konstrukt der main ()-Methode gefangen und die Ubergebene Nachricht —
also der Fehlertext — ausgegeben. Der Aufruf des catch-Konstruktes ist dabei
durchaus mit dem Aufruf einer Methode zu vergleichen.

Aufgerufen wird ein catch-Konstrukt nicht vom Programm, sondern /
von der Java Virtuellen Maschine. Ein Exception-Objekt wird an die —
virtuelle Maschine Ubergeben. Diese Ubernimmt die Kontrolle und -~
sucht das passende catch-Konstrukt und Ubergibt ihm die Exception.

1\\\\\@ -
/)

13.4 Die Exception-Hierarchie

Wie bereits erwahnt, haben alle Exceptions eine gemeinsame Basisklasse, die Klas-
se Throwable. Diese selbst ist von der Klasse Object abgeleitet. Das folgende
Bild zeigt die Exception-Hierarchie:

Throwable

1

[]
Error Exception

% [[% I

RuntimeException lllegalAccessException ClassNotFoundException

i

NullPointerException IndexOutOfBoundsException

1
\ \

ArrayindexOutOfBoundsException StringIndexOutOfBoundsException

Bild 13-6 Ausschnitt der Klassenhierachie von Throwable

Throwable ist die Basisklasse der beiden Klassenhierachien java.lang.Error
und java.lang.Exception. Spricht man von einer Exception, sind oft beide Hie-
rarchien gemeint.

Die Klasse Error

Ausnahmen der Klasse Error sollten zur Laufzeit eines Java-Programms eigentlich
gar nicht auftreten. Ein Programm sollte in der Regel nicht versuchen, einen solchen
Fehler abzufangen. Denn wenn eine solche Ausnahme auftritt, ist ein schwerwie-
gender Fehler in der virtuellen Maschine aufgetreten, der eigentlich gar nicht auftre-
ten sollte und in der Regel auch nicht wahrend der Laufzeit des Programms behan-
delbar ist, wie z. B. ein Fehler beim dynamischen Binden. Hier soll die virtuelle Ma-
schine das Programm abbrechen. Es kann allerdings auch Falle geben, wo es Sinn
macht, selbst den Fehler zu behandeln. Hat beispielsweise ein Server-Rechner Pro-
bleme mit dem verfligbaren Speicher und generiert einen OutOfMemoryError, SO

Ausnahmebehandlung 481

kann man in einem Exception-Handler beispielsweise die Clients des Servers davon
verstandigen, oder eventuell selbst geniigend Speicher freigeben, damit die Excep-
tion nicht mehr auftritt.

Die Klasse Exception

Normalerweise l6sen Java-Programme Exceptions aus, die von der Klasse Excep-—
tion abstammen. Es handelt sich um Exceptions, die der Programmierer zur Lauf-
zeit behandeln kann.

Die Klasse Throwable hat ein Datenfeld vom Typ String zur Be-
schreibung des Fehlers. Der Fehlertext kann dem Konstruktor der _
Klasse Exception Ubergeben werden. Der Empfanger einer Excep-
tion, ein catch-Konstrukt, kann sich den Fehlertext mit Hilfe der Me- =
thode getMessage () von Throwable beschaffen. =

13.4.1 Checked und Unchecked Exceptions

Weiter wird auch noch unterschieden, ob eine Exception durch den Programmierer
aufgefangen und bearbeitet werden muss oder nicht.

Programmierer behandelt werden muss, und dies auch vom Compiler

\
Man spricht von "Checked Exceptions", falls eine Exception vom @ —
Uberprift (checked) wird.

(i

Wird eine auftretende Exception nicht behandelt, so fihrt dies zum Programmab-
bruch.

Man spricht von "Unchecked Exceptions" falls eine Exception vom -
Programmierer weder abgefangen, noch in der throws-Klausel der —
Schnittstelle der Methode angegeben werden muss. Auf Unchecked -~
Exceptions wird ein Programm vom Compiler nicht liberprift. E

Alle Exceptions bis auf diejenigen der Unterbdume RuntimeException und Error
sind "Checked Exceptions", d. h. zu bertcksichtigende Ausnahmen.

Unchecked Exceptions Checked Exceptions
RuntimeException alle anderen
Error

Tabelle 13-1 Checked und Unchecked Exceptions

482 Kapitel 13

Checked Exceptions miissen vom Programmierer entweder in einem
Exception Handler einer Methode behandelt werden oder aber in der —
throws-Klausel der Methode, welche die Exception wirft, angegeben /\
werden, um anzuzeigen, dass sie die entsprechende Exception nach =

auBen weitergibt.

Die Klasse RuntimeException

Ausnahmen der Klasse RuntimeException oder eines Subtyps treten zur Laufzeit
in der virtuellen Maschine auf. Dies sind aber keine "harten" Fehler der virtuellen
Maschine, sondern Fehler im Programm wie z. B. die Anwendung des Punkt-Opera-
tors auf eine null-Referenz. Dies kann passieren, wenn bei einem Methodenaufruf
a.f (), die Referenz a noch kein Objekt referenziert, sondern eine null-Referenz
darstellt. Eine NullPointerException kann im Prinzip bei jedem Zugriff auf ein
Datenfeld oder eine Methode eines Objektes auftreten. Es ware Uberhaupt nicht
praktikabel, solche Fehler in der Anwendung zu behandeln, da es einfach zu viele
Stellen im Programm gibt, wo ein solcher Fehler auftreten kann. Daher wurde bei der
Definition von Java entschieden, dass Ausnahmen der Klasse RuntimeException
von der virtuellen Maschine behandelt werden missen. Der Programmierer hat die
Mdglichkeit, wenn er will, solche Ausnahmen zu behandeln. Der Compiler interessiert
sich aber nicht dafirr, ob es der Programmierer tut, da Exceptions der Klasse Run-
timeException — wie schon gesagt — Unchecked Exceptions sind.

13.4.2 Beispiele fur Exceptions

Im Folgenden einige Exceptions, die von der Klasse Error abgeleitet sind:

Exception Erklérung

AbstractMethodError Versuch, eine abstrakte Methode aufzurufen

InstantiationError Versuchtes Anlegen einer Instanz einer
abstrakten Klasse oder einer Schnittstelle

OutOfMemoryError Es konnte kein Speicher allokiert werden

StackOverflowError Der Stack ist Gbergelaufen

Tabelle 13-2 Beispiele fiir Exceptions vom Typ Error

Einige Exceptions, die von der Klasse Exception abgeleitet sind:

Exception Erklérung
ClassNotFoundException Eine Klasse wurde weder im aktuellen
Verzeichnis noch in dem Verzeichnis,
welches in der Umgebungsvariable
CLASSPATH angegeben ist, gefunden

CloneNotSupportedException Ein Objekt sollte kopiert werden, welches
das Cloning aber nicht unterstitzt
IllegalAccessException Ein Objekt hat eine Methode aufgerufen, auf

die es keinen Zugriff hat

Tabelle 13-3 Beispiele flir Exceptions vom Typ Exception

Ausnahmebehandlung 483

Einige Exceptions, die von der Klasse Runt imeException abgeleitet sind:

Exception Erklérung

ArithmeticException Ein Integerwert wurde durch Null dividiert

ArrayIndexOutOfBoundsException Auf ein Feld mit ungultigem Index wurde
zugegriffen

ClassCastException Cast wegen fehlender Typvertraglichkeit
nicht méglich

NullPointerException Versuchter Zugriff auf ein Datenfeld oder
eine Methode Uber die nul1-Referenz

Tabelle 13-4 Beispiele fiir Exceptions vom Typ Runt imeException

Werden zusatzliche Pakete benutzt, so kdnnen weitere Exceptions hinzukommen. Im
Paket java.io werden z. B. Objekte vom Typ IOException benutzt, um Fehler
bei der Ein- und Ausgabe anzuzeigen.

13.5 Ausnahmen behandeln

Ein try-Block kennzeichnet eine Anweisungsfolge, innerhalb derer Exceptions aus-
gelést werden kénnen. Vorgénge, die Exceptions auslésen kénnen und behandelt
werden sollen, missen grundsatzlich in einem try-Block stehen.

Der try-Block bedeutet: LA

Es wird versucht, den Code in den geschweiften Klammern auszu- @:
fihren. Wenn Exceptions geworfen werden, hat sich der Programmie- >

rer im Falle von Checked Exceptions um die Behandlung zu kiimmern.

Eine Exception kann in einem catch-Konstrukt, das dem try-Block

folgt, behandelt oder an die aufrufende Methode zur Behandlung wei- /\
tergereicht werden. =

Unmittelbar hinter dem try-Block kénnen ein oder mehrere Exception-Handler in
Form von catch-Konstrukten folgen. Ein catch-Konstrukt besteht aus dem
Schlisselwort catch, gefolgt von einen formalen Parameter und dem Typ der zu
behandelnden Exception in runden Klammern und einem anschlieBenden Codeblock
zur Realisierung der Ausnahmebehandlung (z. B. Fehlermeldung ausgeben und flr
den Fehlerfall vorgesehene Default-Werte setzen, die ein Weiterarbeiten ermég-
lichen, oder einen Programmabbruch einleiten z. B. durch Aufruf der Methode Sys-
tem.exit (1)'%).

Existieren mehrere Handler, dann missen diese unmittelbar aufeinander folgen.
Normaler Code zwischen den Handlern ist nicht erlaubt! Existiert kein Exception-
Handler in der Methode, kann die weitergereichte Exception in der aufrufenden
Methode oder deren Aufrufer usw. gefangen werden.

1% Die Klasse System ist im Anhang C beschrieben.

484

Kapitel 13

Hat der Programmierer jedoch keinen Exception-Handler fiir eine
weitergereichte Checked Exception geschrieben, dann meldet sich
der Compiler mit einer Fehlermeldung. Damit erzwingt der Compiler,
dass eine Checked Exception vom Programmierer behandelt wird.

Wird eine weitergereichte Unchecked Exception vom Programmie-
rer nicht abgefangen, meldet sich das Laufzeitsystem mit einer

Fehlermeldung und bricht das Programm ab.

Die Syntax des Exception Handling erinnert zum einen an die switch-Anweisung,
zum anderen an Methodenaufrufe. Beide Vergleiche haben ihre Berechtigung:

® Der Code innerhalb des try-Blocks liefert dhnlich zu einem switch die Be-
dingung, geman derer einer der Handler (oder auch keiner) angesprungen wird.

® |m Unterschied zu switch sind jedoch keine break-Anweisungen zwischen den
Handlern nétig, und wenn im try-Block keine Exception auftritt, werden alle dem
try-Block folgenden Handler Gbersprungen!

® Die Schnittstelle eines Handlers sieht aus wie die Schnittstelle einer einpara-
metrigen Methode.

13.5.1 Beispiel fiir das Fangen einer Exception

Am folgenden Beispiel wird das Fangen einer Exception der Klasse ArrayIndex—
OutOfBoundsException, einer Subklasse der Klasse RuntimeException, de-
monstriert. Eine Exception vom Typ ArrayIndexOutOfBoundsException wird
geworfen, wenn die Bereichsgrenzen eines Arrays Uberschritten werden. Eine Ex-
ception der Klasse RuntimeException oder eines Subtyps gehdrt zu den Un-
checked Exceptions und muss nicht — aber kann — vom Programmierer abge-
fangen werden.

// Datei: Test.java

public class Test

{

public static void main (String[] args)

{

int[] intarr = new int [4];
for (int 1v = 0; 1v < 8; 1lv++)
{
try
{
intarr [1lv] = 1lv;
System.out.println (intarr [1v]);

Ausnahmebehandlung 485

catch (ArrayIndexOutOfBoundsException e)
{

System.out.println ("Array-Index " + 1lv +
" ist zu gross!");

Die Ausgabe des Programms ist:

N = O

w

ist zu gross!
ist zu gross!
ist zu gross!
ist zu gross!

~J O U1 W

Array-Index

Array-Index

Array-Index

Array-Index
Dabei ist zu beachten, dass das Programm nach jeder Exception ganz normal mit
der Abarbeitung der for-Schleife fortfahrt.

13.5.2 Reihenfolge der Handler

Die Suche nach dem passenden Handler erfolgt von oben nach unten, d. h. die
Reihenfolge der Handler ist relevant. Der Handler fiir eine Exception, die im Klas-
senbaum der Exceptions am weitesten oben steht, muss an letzter Stelle stehen.
Dies ist darauf zurlickzuflihren, dass Uberall da, wo ein Objekt einer Basisklasse
erwartet wird, stets auch ein Objekt einer Unterklasse verwendet werden kann.

\
Ein Handler fir Exceptions einer Klasse A passt infolge des Polymor- _
phie-Konzeptes der Objektorientierung auch auf Exceptions aller von P -

A abgeleiteten Klassen.

i

Wiirde ein Handler mit einem Parameter der Basisklasse also ganz vorne in der Liste
der Handler stehen, so wirde er jede Exception des entsprechenden Unterbaums
abfangen und die fir die Unterklassen spezialisierten Handler wiirden Uberhaupt nie
aufgerufen werden. Also ist eine umgekehrte Anordnung der Handler erforderlich.

Zuerst missen die Handler fiir die spezialisiertesten Klassen der L/ o
Exception-Hierarchie aufgelistet werden und dann in der Reihen- —
folge der zunehmenden Generalisierung die entsprechenden all- -~
gemeinen Handler.

|

Hat man also eine Klassenhierarchie flir Exceptions definiert, dann muss sich diese
Hierarchie in den Handlern widerspiegeln — allerdings in umgekehrter Reihenfolge.

486 Kapitel 13

|
\ /
Figt man am Ende der Folge der Handler noch einen Handler fiir die _ —
Basisklasse ein, ist man auch in Zukunft sicher, dass alle Exceptions

~
behandelt werden, auch wenn jemand neue Exceptions ableitet.

|

Die richtige Anordnung der Handler wird vom Compiler Uberprift. Der Compiler prift,
ob alle Handler erreichbar sind. Im folgenden Beispielprogramm wird ein Kompi-
lierungsfehler durch ein nicht erreichbares catch-Konstrukt demonstriert:

// Datei: Catchtest.java

class MyException extends Exception
{
public MyException/()
{
super ("Fehler ist aufgetreten!");
}
}

public class Catchtest
{
public void testMethode ()
{
try
{
throw new MyException();
}
catch (Exception e)
{
System.out .println (e.getMessage());
}
catch (MyException e)
{
System.out.println (e.getMessage());
}
}

public static void main (String[] args)
{
Catchtest x = new Catchtest();
X.testMethode () ;

Die Ausgabe des Programms ist:

Catchtest.java:25: catch not reached.

catch (MyException e)

II 1 error

Ausnahmebehandlung 487

13.5.3 Ausnahmen weiterreichen

Eine Exception gilt als erledigt, sobald ein Handler zu ihrer Bearbeitung gefunden
und aufgerufen wurde.

Stellt sich innerhalb des Handlers (z. B. anhand der in der Exception
Ubergebenen Informationen oder weil KorrekturmaBnahmen fehlschla- N |/
gen) heraus, dass dieser Handler die Exception nicht behandeln kann, — -
so kann dieselbe Exception erneut im catch-Block mit throw aus- - ~
geworfen werden. Der Handler kann aber gegebenenfalls auch an- =
dere Exceptions auswerfen. -

Im Folgenden ein Ausschnitt aus einem Programm, der das erneute Auswerfen einer
Exception zeigt:

try

{
AException aEx = new AException ("schwerer Fehler");
throw akEx;

}

catch (AException e)
{
String message = e.getMessage();
if (message.equals ("schwerer Fehler"))
throw e;

13.5.4 Schichtenstruktur fiir das Exception Handling

Jede Gruppe von Handlern ist nur fir die Behandlung von Exceptions aus ihrem zu-
geordneten try-Block verantwortlich.

. \
Alle innerhalb von Handlern ausgeworfenen Exceptions werden nach _
auBen an die nachste umschlieBende try-Anweisung weitergereicht. P -

Die try-Anweisungen kdnnen also geschachtelt werden.

i

Dieser Mechanismus gestattet die Implementierung von mehreren Schichten zur
Fehlerbehandlung. Ebenfalls nach auBBen weitergereicht werden Exceptions, fir die
kein Handler existiert. Das folgende Beispiel zeigt geschachtelte try-Anweisungen:

// Datei: Versuch.java

class MyException2 extends Exception

{
public MyException2 ()

{

super ("Fehler ist aufgetreten!");

}

488 Kapitel 13

public class Versuch
{
public static void main (String[] args)
{
try
{
try
{
throw new Exception();
}
catch (MyException2 e)
{
System.out.println ("MyException2 gefangen");
}
}
catch (Exception e2)
{
System.out.println ("Exception gefangen");

}

Die Ausgabe des Programms ist:

Exception gefangen

Das folgende Bild zeigt die Anordnung der try-Anweisungen aus dem Beispielpro-
gramm der Klasse Versuch:

try-Block 1
try-Block 11

> try-Anweisungen

catch-Konstrukt 11 V

catch-Konstrukt 1

Bild 13-7 Geschachtelte t ry-Anweisungen

13.5.5 Ausnahmen ankindigen — die throws-Klausel

In Java wird zwingend verlangt, bestimmte Exceptions, die eine Methode auslésen
kann, in die Deklaration der Methode mit Hilfe der throws-Klausel aufzunehmen.
Dabei missen Checked Exceptions unbedingt angegeben werden, wahrend das

Ausnahmebehandlung 489

bei Unchecked Exceptions nicht erforderlich ist. Dadurch wird dem Aufrufer signali-
siert, welche Ausnahmen von einer Methode ausgeldst bzw. weitergereicht werden.
Dies spielt auch eine Rolle bei Bibliotheken. Ein Programmierer, der Bibliotheken
nutzt, muss wissen, welche Exceptions die Bibliotheksmethoden werfen kdnnen.
Seine Aufgabe ist es, die geworfenen Exceptions sinnvoll zu behandeln.

\
Eine Methode kann nur die Checked Exceptions auslésen, die sie in _
der throws-Klausel angegeben hat. Unchecked Exceptions hingegen

kann sie immer werfen.

(i

Soll also die Exception erst auBerhalb einer Methode verarbeitet werden, muss die
Methodendeklaration wie folgt erweitert sein:

[Zugriffsmodifikatoren] Rickgabewert Methodenname
([Parameter]) throws Exceptionnamel [,Exceptionname2,]

Beachten Sie, dass throws Exceptionnamel [,Exceptionname2,]
die so genannte throws-Klausel darstellt. Die Methode gibt also eine oder mehrere
Exceptions nach auBen weiter.

|
\ /
Durch die throws-Klausel informiert eine Methode den Aufrufer (und _ —
den Compiler) tiber eine mogliche abnormale Ruckkehr aus der Me- -
thode. W

Diese zusatzliche Information bei der Deklaration dient nicht der Unterscheidung von
Methoden im Sinne einer Uberladung!

Die Exception kann also in der aufrufenden Methode, eventuell erst in der main ()-
Methode oder Uberhaupt nicht vom Anwendungsprogramm gefangen werden. Die
Methode pruefebDatum() im nachsten Beispiel behandelt die Exception Parse-
Exception nicht selbst und besitzt deshalb eine throws-Klausel. Die Exception
wird in der aufrufenden Methode — hier in der main () -Methode — behandelt.

// Datei: DatumEingabe. java

import java.util.Datej;
import java.text.*;

public class DatumEingabe
{
public Date pruefeDatum (String datum) throws ParseException
{
// Eine auf die Rechnerlokation abgestimmte Instanz der Klasse
// DateFormat wird erzeugt.
DateFormat df = DateFormat.getDateInstance();

// strenge Datumspriifung einschalten
df .setLenient (false);

490 Kapitel 13

// Datum iberpriifen und in ein Date-Objekt wandeln.

// Die Methode parse() wirft eine ParseException, wenn in
// datum kein gliltiges Datum steht.

Date d = df.parse (datum);

return d;

}

public static void main (String[] args)
{
DatumEingabe v = new DatumEingabe () ;
String[] testdaten = {"10.10.2006", "10.13.2006"};

Date datum = null;
for (int i = 0; 1 < testdaten.length; i++)
{
try
{
datum = v.pruefeDatum (testdaten [i]);
System.out.println ("Eingegebenes Datum ist ok:\n"
+ datum) ;
}
catch (ParseException e)
{
System.out.println ("Eingegebenes Datum ist nicht ok:\n"
+ testdaten [1i]);

Die Ausgabe des Programms ist:

Eingegebenes Datum ist ok:
Tue Oct 10 00:00:00 CEST 2006
II Eingegebenes Datum ist nicht ok:

10.13.2006

Fur das Uberschreiben von Methoden gibt es folgende Einschrankung: Wird eine
Methode einer Basisklasse, die keine Exceptions mit throws weiterreicht, bei einer
Ableitung Uberschrieben, so kann die Uberschreibende Methode auch keine Excep-
tions weiterreichen. Die Fehlerbehandlung muss dann in der Uberschreibenden Me-
thode selbst erfolgen. VerstdBe gegen diese Vorschrift verursachen eine ganze
Reihe von Fehlern beim Kompilieren.

13.6 Vorteile des Exception-Konzeptes
Vorteile des Exception Handling sind:

® FEine saubere Trennung des Codes in "normalen" Code und in Fehlerbehand-
lungscode.

® Der Compiler prift, ob "Checked Exceptions" vom Programmierer abgefangen
werden. Damit werden Nachlassigkeiten beim Programmieren bereits zur Kom-
pilierzeit und nicht erst zur Laufzeit entdeckt.

Ausnahmebehandlung 491

® Das Propagieren einer Exception erlaubt, diese auch in einem umfassenden
Block oder einer aufrufenden Methode zu behandeln.

® Da Exception-Klassen in einem Klassenbaum angeordnet sind, kénnen — je nach
Bedarf — spezialisierte Handler oder generalisierte Handler geschrieben wer-
den.

13.7 Assertions

Mit Exceptions kénnen auftretende Fehler wahrend des Programmablaufs abge-
fangen und gegebenenfalls behandelt werden. Mit Assertions''® besteht hingegen
die Moglichkeit, zur Laufzeit eines Programms Bedingungen zu Uberprifen. So kann
beispielsweise geprift werden, ob ein berechneter Wert innerhalb eines bestimmten
Wertebereichs liegt, ob eine Variable nur bestimmte Werte annimmt oder ob ein
bestimmter Zweig im Kontrollfluss nie durchlaufen wird. Daftir werden im Folgenden
noch Programmbeispiele angegeben. Mit diesem Konzept kénnen somit beim De-
buggen die Ursachen von aufgetretenen Exceptions untersucht und beseitigt werden.

13.7.1 Notation von Assertions

Assertions werden umgesetzt, indem zur Laufzeit des Programms Boolesche Aus-
driicke ausgewertet werden. Die Syntax in Java fiir Assertions kennt zwei Auspra-
gungen:

assert Ausdruckl; /* erste Variante */
oder
assert Ausdruckl : Ausdruck2; /* zweite Variante */

In der ersten Variante der assert-Anweisung wird der Boolesche Ausdruck Aus-
druckl ausgewertet. Ergibt Ausdruckl den Wert true, d. h. die zu Uberprifende
Eigenschaft ist richtig, so wird die nédchste Anweisung nach der Assertion ausgefihrt.
Ergibt der Boolesche Ausdruck den Wert false, dann wirft die assert-Anweisung
einen AssertionError. Die Klasse AssertionError ist von der Klasse Error
abgeleitet. Da Objekte der Klasse Error oder einer ihrer Subklassen — wie zuvor er-
wahnt — nicht vom Programmierer behandelt werden, wird die Ausfihrung des Pro-
gramms abgebrochen. Bei der zweiten Variante der assert-Anweisung wird eben-
falls der Boolesche Ausdruck Ausdruck1 ausgewertet. Ergibt die Auswertung true,
so wird die Ausflhrung wiederum nach der Assertion fortgesetzt. Ist Ausdruckl
allerdings false, dann wird Ausdruck?2 ausgewertet. Der Rlckgabewert von Aus-—
druck2 wird dem Konstruktor des AssertionError-Objektes lbergeben, um die
fehlgeschlagene Assertion genauer zu beschreiben und den Entwickler bei der Feh-
lersuche zu unterstutzen.

Assertions kdnnen beim Programmstart sowohl aktiviert (enabled) als auch deakti-
viert (disabled) werden. Eine Aktivierung der Assertions erlaubt die Auswertung der
oben genannten Ausdriicke, wahrend eine Deaktivierung zu einem verbesserten

10 Engl. fiir Aussage, Behauptung.

492 Kapitel 13

Laufzeitverhalten flhrt. Standardm&Big sind Assertions beim Programmstart deakti-
viert und mussen explizit eingeschaltet werden.

13.7.2 Anwendungsbeispiele

Es gibt verschiedene Situationen, in denen Assertions verwendet werden koénnen,
beispielsweise zur Uberprufung von:

® |nvarianten von Klassen,

e Kontrollflissen,

® \or- und Nachbedingungen von Methoden

Beispiel 1: Uberpriifung auf das Einhalten definierter diskreter Werte

Wird vorausgesetzt, dass eine Variable nur einige bestimmte Werte annehmen kann,
so kann dies mit einer Assertion Uberprtft werden:

int zahl;
switch (zahl)
{

case 1: . .
break;
case 2: Coe ..
break;
case 3: Coe
break;
default: assert false;

Es wird erwartet, dass die Variable zah1 keinen anderen Wert als 1, 2 oder 3 an-
nimmt. Sollte dies wider Erwarten dennoch geschehen, so wird die Assertion im De-
fault-Zweig fehlschlagen und eine Exception vom Typ AssertionError auslésen.
Auf diese Weise wird erkannt, dass die erwartete Eigenschaft nicht erfillt wird und
dass der Quellcode Uberarbeitet werden muss.

Beispiel 2: Uberpriifung des Kontrollflusses

Ebenso lasst sich lberpriifen, ob eine Stelle im Kontrollfluss erreicht wird, die nie zur
Ausfihrung kommen sollte.

void tuNichtGut ()
{

for (int 1 = 0; 1 <= 9; 1i++)
{
if (i == 10)
return;

}

assert false;

Ausnahmebehandlung 493

In diesem Beispiel 16st die Assertion einen Fehler aus, wenn die Abbruchbedingung
in der if-Abfrage nicht erfiillt und die return-Anweisung nicht ausgefihrt wird.

Beispiel 3: Aktivierung und Deaktivierung von Assertions

Mit Assertions lassen sich auch die Vor- und Nachbedingungen von Methoden und
Klasseninvarianten prifen (siehe Kap. 11.5). Will man bei einem System im operatio-
nellen Einsatz Vor- und Nachbedingungen verwenden, so missen Exceptions
eingesetzt werden. Dies hat zwei Griinde:

® Assertions sind deaktivierbar.

® Assertions kdnnen nur Exceptions vom Typ AssertionError werfen. Diese sind
fir eine Fehleranalyse in Systemen im operationellen Einsatz nicht aussagekraftig
genug.

Assertions kénnen aktiviert oder deaktiviert werden. Hierflr gibt es die Kommando-
zeilenschalter —ea und -da der virtuellen Maschine. StandardméBig sind Assertions
deaktiviert. Diese Kommandozeilenschalter kénnen mit verschiedenen Parametern
aufgerufen werden:

® ohne Parameter
Es werden die Assertions aller Klassen auBer den Systemklassen deaktiviert bzw.
aktiviert.

® Pakethame...
Die drei Punkte sind Teil der Syntax und missen mit angegeben werden. Im
angegebenen Paket und allen darin enthaltenen Unterpaketen werden die
Assertions aktiviert bzw. deaktiviert.

Die drei Punkte sind Teil der Syntax und miissen angegeben werden. Assertions,
die im anonymen Paket (aktuelles Arbeitsverzeichnis) enthalten sind, werden
aktiviert bzw. deaktiviert.

e Klassenname
Nur in der spezifizierten Klasse werden die Assertions aktiviert bzw. deaktiviert.

Sollen beispielsweise im Paket javabuch.uebungen die Assertions aktiviert wer-
den, so lautet die Kommandozeile:

java —ea : javabuch.uebungen... MyAssertionTest

Sollen allerdings alle Assertions im Paket javabuch.uebungen aktiviert werden mit
Ausnahme der Assertions in der Klasse Test, so lautet der Kommandozeilenaufruf:

java —ea : javabuch.uebungen...
—-da : javabuch.uebungen.Test
MyAssertionTest

Assertions sind vorrangig ein Mittel zum Testen der eigenen Software. Um das Lauf-
zeitverhalten zu verbessern, sollte ein Programm nach der Testphase mit deaktivier-
ten Assertions ausgefihrt werden.

494 Kapitel 13

Beispiel 4: Plausibilitatsprifungen

Werden in einer Methode Berechnungen durchgefiihrt, so ist es unter Umstanden
sinnvoll, das Ergebnis auf bestimmte Anforderungen zu testen: das Ergebnis muss
beispielsweise positiv sein, ein berechneter Stundenwert muss gréBer oder gleich 0
und kleiner oder gleich 23 sein, etc. Solche Uberprifungen kénnen entweder direkt in
der assert-Anweisung mit Hilfe eines Ausdrucks erfolgen, oder in einer Methode,
die einen geeigneten Riickgabewert besitzt und von der Assertion aufgerufen wird:

// Datei: AssertionTest.java

public class AssertionTest
{
public static void main (String[] args)
{
int ergebnis = berechne(); // Der Rickgabewert von berechne ()
// soll {iberpriift werden.
System.out.println("Das Ergebnis muss groBer gleich 0 und " +
"kleiner als 24 sein.");

try

{
assert testeErgebnis (ergebnis): ergebnis;
System.out.println ("Das Ergebnis lautet: " + ergebnis);

}

catch (AssertionError ae)

{
System.err.println("Es ist ein AssertionError aufgetreten:"

+ "Ergebnis = " + ae.getMessage());

System.exit (1);

}

private static int berechne ()
{
//beliebige Berechnung
return -1;

}

private static boolean testeErgebnis (int erq)
{
//Das Ergebnis muss grdBer gleich 0
//und kleiner gleich 23 sein
if ((erg >= 0) && (erg <= 23))
return true;
return false;

Die Ausgabe des Programms ist:

Das Ergebnis muss grdBer gleich 0 und kleiner
als 24 sein.
Es ist ein AssertionError aufgetreten:

II Ergebnis = -1

Ausnahmebehandlung 495

Beachten Sie bitte, dass das Programm fir die obige Ausgabe folgendermaBen auf-
gerufen wurde:

java —ea AssertionTest

Im vorangegangenen Beispiel wird im Fehlerfall das Ergebnis an den Konstruktor
des AssertionError-Objektes Ubergeben. Dadurch erfahrt der Entwickler nicht
nur, dass die Berechnung fehlschlug, sondern auch, welches Ergebnis den Fehler
verursacht hat. Tritt eine Exception vom Typ AssertionError auf, so kann sie mit
Hilfe eines try-catch-Konstrukts gefangen werden. Wie zuvor schon erwahnt, tritt
eine Exception vom Typ Error — und damit auch vom Typ AssertionError — nur
in schweren Ausnahmesituationen auf, von denen sich ein Programm normalerweise
nicht erholt. Da die Ursache des Fehlers im Exception-Handler nicht behoben wer-
den kann, liegt ein schwerer Fehler vor und das Programm wird im catch-Konstrukt
durch system.exit (1) abgebrochen. Man kann auf das Abfangen der Exception
und das Anfordern des Programmabbruchs verzichten, da das Programm abge-
brochen wird, wenn die virtuelle Maschine keinen Exception-Handler fiir die aufge-
tretene Ausnahme finden kann. Der Einsatz eines Exception-Handlers hat den Vor-
teil, dass man im Exception-Handler noch Fehlerhinweise ausgeben kann.

13.7.3 Unterschied zwischen Exceptions und Assertions

Ist eine Zusicherung z. B. eine Vorbedingung (siehe Kap. 11.5.1) verletzt, so soll das
Programm abbrechen, da es falsche Werte berechnet. In Java werden Assertions mit
dem Schliisselwort assert spezifiziert und auf Exceptions abgebildet. Diese dirfen
aber nur zu Zwecken der Fehlerausgabe verwendet werden. AnschlieBend muss das
Programm beendet werden, da es schlichtweg inkorrekt ist. Generell werden Zu-
sicherungen, d. h. Vorbedingungen und Nachbedingungen von Methoden und Inva-
rianten von Klassen, mit Assertions umgesetzt und nicht mit Exceptions.

Assertions kann man ein- und ausschalten. Im Gegensatz zu Exceptions, die erwar-
tete Fehlersituationen darstellen und typisiert sind (z. B. OutOfMemoryException),
mit denen der Programmierer im Falle von Java entweder nicht fertig werden kann
(Unchecked Exceptions) oder fertig werden kann (Checked Exceptions), handelt es
sich bei Assertions um Fehler, deren Ursache unbekannt ist und die nur durch das
Verletzen von Bedingungen erkannt werden kdénnen. Ist beispielsweise eine Plausibi-
litat verletzt, so erkennt man mit Assertions nur das Symptom, nicht aber die Ur-
sache. Natirlich kann man beim Debuggen dann weitere Assertions einbauen, um
einen erkannten Fehler rickwarts im Programm weiter zu verfolgen. Assertions wer-
den wéahrend der Testphase eingeschaltet und werden beim Kunden ausgeschaltet,
da sie Performance verbrauchen. Erst im Falle eines Fehlers werden sie zu Debug-
ging-Zwecken beim Kunden eingeschaltet, um beispielsweise zu untersuchen, wel-
che Vor- oder Nachbedingung oder Invariante verletzt wird. Das folgende Beispiel
zeigt die Anwendung von Assertions:

// Datei: AssertionTest2.java

class AssertionTest2

{

public static void main (String [] args)

{

496 Kapitel 13

int y = 11;
assert (y > 0 && y < 10)
"Falscher Ubergabeparameter von berechne()";
System.out.println (berechne (vy));
}

// Die Vorbedingung von berechne() ist: 0 < x < 10
static int berechne (int x)
{
return X*xX*x*x;
}
}

Mit dem Schalter —ea wird dem Interpreter das Einschalten der Assertions mitgeteilt.
Der Aufruf java -ea AssertionTest2 erzeugt folgende Ausgabe:

Die Ausgabe des Programms ist:

Exception in thread "main" java.lang.AssertionError:
Falscher Ubergabeparameter von berechne ()
II at AssertionTest.main(AssertionTest2.java:7)

13.8 Ubungen
Aufgabe 13.1: Division durch Null

Entwickeln Sie eine Klasse Teilen. Initialisieren Sie in der main ()-Methode die
zwei Variablen zaehler und nenner vom Typ int. Der Variablen zaehler wird
eine beliebige ganze Zahl und der Variablen nenner die Zahl 0 zugewiesen. Danach
soll das Ergebnis der Berechnung zaehler/nenner in der Konsole ausgegeben
werden. Fangen Sie die bei der Berechnung entstehende Ausnahme Arithmetic-—
Exception in einem try-catch-Block ab. Analysieren Sie die Ausnahme, indem
Sie sich Informationen Uber die Exception mit Hilfe der Methode printStack-
Trace () in der Konsole ausgeben lassen.

Aufgabe 13.2: Exceptions

Erstellen Sie eine Klasse Bankkonto. Eine Kontoflhrung soll durch Einzahlungen
und Auszahlungen simuliert werden. Die Klasse Bankkonto besitzt die Methoden:

® public void einzahlen (double betrag)
® public void auszahlen (double betrag)
® public double getKontostand()

Die Methoden einzahlen () und auszahlen () werfen eine Exception vom Typ
TransaktionsException beim Auftreten eines Transaktionsfehlers. Leiten Sie
hierzu die Klasse TransaktionsException von der Klasse Exception ab. Ein
Transaktionsfehler wird durch einen negativen Ein- und Auszahlungsbetrag oder ein
nicht ausreichend groBes Guthaben fiir einen Auszahlungsbetrag verursacht. Die
Methode getKontostand () liefert den aktuellen Kontostand, der durch ein privates

Ausnahmebehandlung

497

Datenfeld vom Typ double realisiert wird. Die Klasse Bankkonto soll mit folgender
Klasse getestet werden:

// Datei: TestBankkonto.java

public class TestBankkonto

{

public static void main (String[] args)

{

Bankkonto konto = new Bankkonto();
double betrag;

System.out.println ("Kontostand: " + konto.getKontostand());

try

{
betrag = 123.45;
System.out.println();

System.out.println ("Einzahlung: " + betrag);
konto.einzahlen (betrag);
System.out.println ("Kontostand: " +

konto.getKontostand());
}

catch (TransaktionsException ex)

{
System.out.println (ex.getMessage());

}

try
{
//Negative Einzahlung

betrag = -12.45;

System.out.println();

System.out.println ("Einzahlung: " + betrag);
konto.einzahlen (betrag);

System.out.println ("Kontostand: " +

konto.getKontostand()) ;
}

catch (TransaktionsException ex)

{
System.out.println (ex.getMessage());

}

try

{
//Negative Auszahlung
betrag = -12.45;
System.out.println();

System.out.println ("Auszahlung: " + betraqg);

konto.auszahlen (betrag);
System.out.println ("Kontostand: " +
konto.getKontostand()) ;
}
catch (TransaktionsException ex)
{
System.out.println (ex.getMessage());

}

498

Kapitel 13

try

betrag = 12;
System.out.println();

System.out.println ("Auszahlung: "
konto.auszahlen (betrag);
System.out.println ("Kontostand: "

+ betraqg);

+

konto.getKontostand());

}

catch (TransaktionsException ex)
{
System.out.println (ex.getMessage());
}
try
{
//Konto Uberziehen
betrag = 130;
System.out.println();
System.out.println ("Auszahlung: " + betrag);
konto.auszahlen (betrag);
System.out.println ("Kontostand: " +

konto.getKontostand());

}

catch

{

(TransaktionsException ex)

System.out.println
}

}

Aufgabe 13.3: Exceptions

(ex.getMessage ());

Es soll ein Login-Szenario entwickelt werden. Die Klasse Login besitzt folgende

Instanzvariablen und Methoden:

® private boolean angemeldet;

public void anmelden (String benutzer,

°
® public void abmelden ()

public void bearbeiten()

String passwort)

Die Methode anmelden () setzt bei erfolgreicher Anmeldung die Instanzvariable
angemeldet auf true und wirft bei fehlschlagender Authentisierung ein Objekt der
Klasse zZugriffUngueltigException, die von der Klasse Exception abgeleitet
wird. Ebenfalls soll, wenn ein nicht angemeldeter Benutzer auf die Methode bear-
beiten () zugreifen mdchte, eine Ausnahme vom Typ KeineBerechtigungEx-
ception geworfen werden. Die Methode abmelden () setzt die Instanzvariable an-
gemeldet auf false. Die Methode bearbeiten() gibt eine Meldung auf der
Konsole aus, um einen Arbeitsvorgang zu simulieren. Entwickeln Sie die Klassen
Login, ZugriffUngueltigException, KeineBerechtigungException. Die
entwickelten Klassen sollen mit folgender Testklasse getestet werden:

Ausnahmebehandlung

499

// Datei: Testlogin.java

import java.util.Scanner;

public class TestLogin

{

public static void main (String[] args)

{

Login login = new Login();

Scanner input = new Scanner (System.in);
String benutzer = "";
String passwort = "";

System.out.print ("Bitte geben Sie den " +
"Benutzernamen ein:");
benutzer = input.next();

System.out.println ("Bitte geben Sie das Passwort ein:");

passwort = input.next();

try

{
System.out.println ("Sie werden angemeldet ...");
login.anmelden (benutzer, passwort);
System.out.println ("Anmeldung erfolgreich!");

}

catch (ZugriffUngueltigException ex)

{
System.out.println (ex.getMessage());

}

try

{
System.out.println ("Methode bearbeiten() " +

"wird aufgerufen ...");

login.bearbeiten();

}

catch (KeineBerechtigungException ex)

{
System.out.println (ex.getMessage());

}

System.out.println ("Sie werden abgemeldet ...");
login.abmelden () ;

try

{
System.out.println ("Methode bearbeiten() " +

"wird aufgerufen ...");

login.bearbeiten();

}

catch (KeineBerechtigungException ex)

{
System.out.println (ex.getMessage());

500 Kapitel 13

Aufgabe 13.4: Exception-Handling durch Assertion ersetzen

Aufbauend auf der Ubungsaufgabe 13.1 entfernen Sie das Exception-Handling und
ersetzen Sie es durch eine Assertion. Es soll eine Unchecked Exception verhindert
werden, indem der Wert des Nenners auf 0 geprift wird. Geben sie eine Meldung auf
der Konsole aus, sobald der Nenner 0 ist.

Vergleichen Sie die Ausgabe des Programms aus dieser Aufgabe mit der Ausgabe
des Programms aus Aufgabe 13.1.

Aufgabe 13.5: Aufgabe zu Assertions

Erweitern sie das letzte Beispielprogramm AssertionTest2 aus Kapitel 13.7.3 um
einen Exception-Handler. Im Exception-Handler soll ausgegeben werden, mit wel-
chem falschen aktuellen Parameter die Methode berechne () aufgerufen wurde.
Vergessen Sie aber nicht, mit System.exit (1) das Programm zu verlassen!

// Datei: AssertionTest.java

class AssertionTest
{
public static void main (String [] args)

{
int yv = 11;

assert (y > 0 && y < 10)
"Falscher Ubergabeparameter von berechne()";
System.out.println (berechne (y));
}

// Die Vorbedingung von berechne() ist: 0 < x < 10
static int berechne (int x)
{
return x*x*x*x;
}
}

Aufgabe 13.6: Flughafen-Projekt — Integration von Exceptions

Bevor Exceptions in das Flughafen-Projekt integriert werden, soll zuerst noch eine
kleine Weiterentwicklung gemacht werden: Bisher konnte eine Parkstelle und eine
Start-/Landebahn nicht als frei/belegt gekennzeichnet werden. Dies soll nun geandert
werden. Fiigen Sie die folgenden beiden abstrakten Methoden der Klasse pPark-
stelle hinzu:

public abstract void belegen (Flugzeug flugzeuqg);
public abstract void freigeben (Flugzeug flugzeuqg);

Diese Methoden sollen dann in den abgeleiteten Klassen implementiert werden. Da
weder eine Werft noch ein separates Parkfeld als belegt zu kennzeichnen ist, sollen
die Methodenriimpfe der beiden Klassen SeparatesParkfeld und Werft ohne
Funktion — d. h. mit einem leeren Methodenrumpf — implementiert werden. Die
Klasse Parkposition hingegen soll die Referenz auf das Flugzeug beim Aufruf

Ausnahmebehandlung 501

von belegen () intern speichern und bei freigeben () wieder auf null setzen.
Die gleiche Funktionalitét soll in der Klasse Bahn implementiert werden. Andern Sie
dabei die Methoden fiir die Phasen "Landebahn vergeben", "Parkstelle vergeben"
und "Startbahn vergeben" so ab, dass die Bahn beziehungsweise Parkstelle durch
das Flugzeug belegt wird.

Die bisherigen Phasen fir die Landung und den Start sollen um drei Phasen er-
weitert werden. Der Status eines Flugzeugs soll sich dadurch nicht &ndern. Die drei
Phasen sind:

® | andebahn freigeben
® Parkstelle freigeben
e Startbahn freigeben

Schreiben Sie die dafir notwendigen Methoden und passen Sie zusétzlich die Klas-
se Client so an, dass diese Methoden wahrend des Lande- bzw. Startvorgangs
aufgerufen werden.

Bislang kann eine Landebahn von zwei verschiedenen Flugzeugen gleichzeitig be-
legt werden. Ein Beispiel hierzu ware:

Bahn bahn = new Bahn();
bahn.belegen (flugzeugl);
bahn.belegen (flugzeug?2);

Dieser und weitere Fehler sollen nun abgefangen werden. Es sollen dabei folgende
zwei Exception-Klassen geschrieben werden:

® BelegungsException

Die Exception BelegungsException soll in den Methoden belegen () der
Klassen Bahn und Parkposition geworfen werden, wenn diese bereits von
einem anderen Flugzeug belegt sind. Beachten Sie dabei, dass die Klasse Park-
position die abstrakie Klasse Parkstelle erweitert, womit diese Klasse auch
angepasst werden muss. Des Weiteren soll diese Exception beim Aufrufen der
Methoden fir die Phasen "Landebahn vergeben", "Parkstelle vergeben" und
"Startbahn vergeben" geworfen werden, falls dem Flugzeug bereits eine Lande-
/Startbahn bzw. Parkstelle zugewiesen wurde.

® FreigabeException
Die Exception FreigabeException soll in den Methoden freigeben () der
Klassen Bahn und Parkposition geworfen werden, wenn die Parkposition von
einem anderen Flugzeug belegt ist. Diese Exception soll auch beim Aufrufen der
Methoden fir die Phasen "Landebahn freigeben", "Parkstelle freigeben" und
"Startbahn freigeben" geworfen werden, falls dem Flugzeug noch keine Start-
/Landebahn bzw. Parkstelle zugewiesen wurde.

Andern Sie auch den Client so ab, dass die eventuell geworfenen Exceptions ge-
fangen und verarbeitet werden. Die Verarbeitung kdnnte hierbei als ein erneuter
Versuch oder auch ein Programmabbruch implementiert sein.

Kapitel 14

Schnittstellen

141
14.2
14.3
14.4
14.5
14.6
14.7

Trennung von Spezifikation und Implementierung
Ein weiterfihrendes Beispiel

Aufbau einer Schnittstelle

Verwenden von Schnittstellen

Vergleich Schnittstelle und abstrakte Basisklasse
Die Schnittstelle Cloneable

Ubungen

14 Schnittstellen
Eine Klasse enthalt Methoden und Datenfelder. Methoden bestehen aus Methoden-

kdpfen und Methodenriimpfen. Methodenképfe''" stellen die Schnittstellen eines
Objektes zu seiner AuBenwelt dar.

Methodenkopf

Methodenrumpf

Bild 14-1 Methodenképfe als Schnittstellen verbergen Methodenriimpfe und Datenfelder

In einer guten Implementierung sind die Daten im Inneren des Objektes verborgen.
Nach auBen sind nur die Schnittstellen — also die Methodenképfe — sichtbar.

Entwirft man komplexe Systeme, so ist ein erster Schritt, diese Systeme in einfa-
chere Teile, die Teilsysteme bzw. Subsysteme zu zerlegen. Die |dentifikation eines
Subsystems ist dabei eine schwierige Aufgabe. Als QualitditsmaB fir die Glte des
Entwurfs werden hierbei das Coupling, d. h. die Starke der Wechselwirkungen zwi-
schen den Subsystemen, und die Cohesion (oder Coherence), d. h. die Starke der
Abhangigkeiten innerhalb eines Subsystems betrachtet. Ein Entwurf gilt dann als gut,
wenn innerhalb eines Subsystems eine Strong Coherence und zwischen den Sub-
systemen ein Loosely Coupling besteht.

Genulgt der Entwurf diesen Anforderungen, so missen als nachstes die Wechsel-
wirkungen zwischen den Subsystemen "festgezurrt”, in anderen Worten in Form von
Schnittstellen definiert werden. Die Implementierung der Subsysteme interessiert
beim Entwickeln nicht und wird verborgen (Information Hiding), d. h. die Schnitt-
stellen stellen eine Abstraktion der Subsysteme dar. Sind die Schnittstellen stabil,
so kénnen sich nun verschiedene Arbeitsgruppen parallel mit dem Entwurf der je-
weiligen Subsysteme befassen. Diese Arbeitsgruppen kénnen vollkommen unab-
hangig voneinander arbeiten, solange sie die Schnittstellen nicht antasten.

"' Hierbei wird vorausgesetzt, dass die Methoden nicht den Zugriffsmodifikator private tragen.

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_14,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Schnittstellen 505

14.1 Trennung von Spezifikation und Implementierung

Eine gute Programmiersprache sollte das Programmieren im GroBen — sprich den
Entwurf — unterstiitzen. Java bietet mit dem Sprachmittel interface die Mdglich-
keit, den Entwurf zu erleichtern und die Schnittstellen einer Klasse in der Sprache
Java zu formulieren. Die Implementierung stellt dann eine Verfeinerung des Ent-
wurfs dar. Bei stabilen Schnittstellen einer Klasse kann dann deren Implementierung
geandert werden, ohne dass ein Kunden-Programm, das diese Klasse benutzt, ver-
andert werden muss.

Damit die Sache greifbar wird, sofort ein Beispiel:

// Datei: Punkt.java

interface PunktSchnittstellen

{
public int getX(); // Eine Methode, um den x-Wert abzuholen
public void setX (int 1i);// Eine Methode, um den x-Wert zu setzen

}

public class Punkt implements PunktSchnittstellen
{

private int x; //%x-Koordinate vom Typ int

public int getX() // Alle Methoden der Schnittstelle

{ // Punktschnittstellen miissen in der
return x; // Klasse implementiert werden, wenn die

} // Klasse instantiierbar sein soll.

public void setX (int i)
{

X = 1i;
}
public static void main (String[] args)
{
Punkt p = new Punkt(); // Hiermit wird ein Punkt erzeugt
p.setX (3);
System.out.println ("Die Koordinate des Punktes p ist: ");

System.out.println (p.getX());

Die Ausgabe des Programms ist:

Die Koordinate des Punktes p ist:

] ’

Visualisiert werden kann die Verwendung der Schnittstelle PunktSchnittstellen
durch die folgende grafische Notation nach UML:

506 Kapitel 14

<<interface>>
PunktSchnittstellen

—

Punkt

Bild 14-2 Implementierung der Schnittstelle PunktSchnittstellen

Hierbei symbolisiert der gestrichelte Pfeil von der Klasse punkt zur Klasse Punkt—
Schnittstellen, dass die Klasse Punkt die Schnittstelle PunktSchnitt-—
stellen implementiert. Der gestrichelte Pfeil bedeutet eine Verfeinerung. Mit
anderen Worten, die Schnittstelle PunktSchnittstellen enthélt nur die Spezi-
fikation der Methodenképfe, die Verfeinerung der Methoden — sprich die Implemen-
tierung der Riimpfe — erfolgt in der Klasse Punkt.

Punktschnittstellen

O——— puw

Bild 14-3 "Lollipop"-Notation

An Stelle der Notation mit einem Rechteckrahmen kann eine implementierte Schnitt-
stelle auch als "Lollipop" — ein Kreis mit Linie — notiert werden (siehe Bild 14-3). Der
"Lollipop" dient nur zur Darstellung der Nahtstellen und kann nur verwendet werden,
wenn die Schnittstellendefinition an anderer Stelle bereits ersichtlich ist. Diese
Darstellung hat jedoch den Vorteil, dass sie sehr kompakt ist.

\ /
Eine Schnittstelle (ein Interface) ist ein Sprachmittel fir den Ent- _ —
wurf. Eine Klasse beinhaltet dagegen — sofern sie nicht abstrakt ist — @

den Entwurf und die Implementierung, d. h. die Methodenrimpfe.

~

(i

Es ist auch moglich, dass eine Klasse mehrere Schnittstellen implementiert. Damit
hat man die Mdglichkeit, Schnittstellen aufzuteilen und auch "Bibliotheks-Schnitt-
stellen" zu identifizieren, die in mehreren Klassen — ggf. mit verschiedenen Metho-
denriimpfen — implementiert werden kénnen. Alle Schnittstellen, die von einer Klasse
implementiert werden, bilden zusammen die Aufrufschnittstelle der Klasse.

14.2 Ein weiterfiuhrendes Beispiel

Es soll folgendes Szenario betrachtet werden: Eine Person ist immer an wichtigen
Ereignissen interessiert. Deshalb implementiert sie eine Schnittstelle Nachrich-
tenEmpfaenger. Nachrichten wiederum kdénnen von verschiedenen Quellen er-
zeugt werden, z. B. kdnnten Objekte wie Radio, Fernseher, Zeitung usw. Informatio-

Schnittstellen 507

nen erzeugen und sie an alle interessierten Benutzer senden. Die Féhigkeit, Nach-
richten zu versenden, lasst sich somit auch in eine Schnittstelle Nachrichten-
Quelle abstrahieren. Alle Klassen, deren Objekte die Fahigkeit erhalten sollen,
Nachrichten zu versenden, implementieren also die Schnittstelle Nachrichten-—
Quelle. Jede Person kann sich nun nach Interesse bei den verschiedenen Nach-
richtenquellen anmelden. Erzeugt eine Nachrichtenquelle eine Nachricht, so werden
alle angemeldeten Interessenten benachrichtigt.

Aus dieser Beschreibung ergeben sich folgende Schnittstellen:

// Datei: Nachrichten.java

interface NachrichtenQuelle

{

public boolean anmelden (NachrichtenEmpfaenger empf) ;
public void sendeNachricht (String nachricht);
}

interface NachrichtenEmpfaenger

{

public void empfangeNachricht (String nachricht);

}

Eine Klasse Radio, zeitung oder Fernseher kénnte z. B. die Schnittstelle Nach-
richtenQuelle implementieren.

<<interface>>
NachrichtenQuelle

anmelden()
sendeNachricht()
//ﬂ 4 V\\
s | N
Z l AN
Radio | Fernseher Zeitung

Bild 14-4 Klassen, welche die Schnittstelle NachrichtenQuelle implementieren

Genauso wie man, um Post zu empfangen, dem Sender seine Adresse mitteilen
muss, missen auch Objekte, die Nachrichten empfangen wollen, ihre Adresse dem
Sender bekannt geben. Dies geschieht in der Methode anmelden (). Diese Metho-
de hat die Aufgabe, die Adresse (programmtechnisch die Referenz) eines Objektes,
welches das Interface NachrichtenEmpfaenger implementiert, entgegenzuneh-
men, damit bei einer auftretenden Nachricht der Interessent informiert werden kann.
Der Code fiir eine Nachrichtenquelle Zeitung kénnte folgendermaBen aussehen:

// Datei: Zeitung.java

public class Zeitung implements NachrichtenQuelle
{

private String name;

private NachrichtenEmpfaenger|[] arr;

private int anzahlEmpfaenger = 0;

508 Kapitel 14

public Zeitung (String name, int maxAnzahlEmpfaenger)
{
this.name = name;
arr = new NachrichtenEmpfaenger [maxAnzahlEmpfaenger];

}

public boolean anmelden (NachrichtenEmpfaenger empf)
{
if (anzahlEmpfaenger < arr.length)
{
arr [anzahlEmpfaenger++] = empf;
return true;
}

return false;

}
public void sendeNachricht (String nachricht)
{
// Alle angemeldeten Nachrichtenempfénger
// werden benachrichtigt
for (int i = 0; i < anzahlEmpfaenger; i++)
{
arr [i].empfangeNachricht (nachricht);
}
}

Wie in Bild 14-5 gezeigt, soll die Klasse Person die Schnittstelle Nachrichten-
Empfaenger implementieren:

<<interface>>
NachrichtenEmpfaenger

empfangeNachricht()

Person

Bild 14-5 Klasse Person implementiert Schnittstelle NachrichtenEmpfaenger

Hier die Klasse Person:

// Datei: Person.java

public class Person implements NachrichtenEmpfaenger
{

private String name;

private String vorname;

Schnittstellen 509

public Person (String name, String vorname)

{
this.name = name;
this.vorname = vorname;

}

public void empfangeNachricht (String nachricht)
{

System.out.println ("an " + name + " " + vorname
+ " " + nachricht);

Zum Testen der Klassen Person und zeitung wird folgendes Programm benutzt:

// Datei: Test.java

public class Test

{

public static void main (String[] args)

{

Person pl = new Person ("Fischer", "Fritz");

Person p2 = new Person ("Maier", "Hans");

Person p3 = new Person ("Kunter", "Max");

Zeitung z1 = new Zeitung ("-Frankfurter Allgemeine-", 10);

z1l.anmelden (pl);
z1l.anmelden (p2);
Zeitung z2 = new Zeitung ("-SUdkurier-", 10);
z2 .anmelden (pl);
z2.anmelden (p3);

System.out.println ("Frankfurter Allgemeine Schlagzeile:");
z1l.sendeNachricht ("Neues Haushaltsloch von 30 Mrd. EURO");
System.out.println();

System.out.println ("Slidkurier Schlagzeile:");
z2.sendeNachricht ("Bayern Miinchen Deutscher Meister");

Die Ausgabe des Programms ist:

Frankfurter Allgemeine Schlagzeile:
“ an Fischer Fritz: Neues Haushaltsloch von 30 Mrd. EURO

an Maier Hans: Neues Haushaltsloch von 30 Mrd. EURO

Stidkurier Schlagzeile:
an Fischer Fritz: Bayern Miinchen Deutscher Meister
an Kunter Max: Bayern Minchen Deutscher Meister

Mit dem Aufruf z1.sendeNachricht ("Neues Haushaltsloch von 30 Mrd.
Euro") werden zwei Personen benachrichtigt. Das sind genau die Personen, die
sich mit z1.anmelden (pl) und mit z1.anmelden (p2) als Nachrichtenemp-
fanger angemeldet haben. Das folgende Bild veranschaulicht den Benachrichti-
gungsablauf.

510 Kapitel 14

||[||:> 21:Zeitung

sendeNachricht () p1:Person
Array me Typ = /_\/ .
Nachrichten- - //ﬂ:> empfangeNachricht()

Empfaenger
sendeNachricht() |||]|:§
p2:Person

\
\\‘|I|]|Z> empfangeNachricht()

Bild 14-6 Nachrichtenquelle zeitung benachrichtigt die registrierten Nachrichtenempfédnger

Zusétzlich ist zu beachten, dass in der Deklaration der Methode anmelden () als
formaler Ubergabeparameter ein Schnittstellentyp angegeben wird. Als aktueller
Ubergabeparameter wird allerdings eine Referenz auf ein Objekt der Klasse per—
son Ubergeben. Dies funktioniert, da die Klasse Person die Schnittstelle Nach-
richtenEmpfaenger implementiert und bei der Parameteriibergabe ein Up-Cast
in den Schnittstellentyp erfolgt.

Wird als formaler Ubergabeparameter ein Schnittstellentyp ange- N
geben, so kann eine Referenz auf ein Objekt, dessen Klasse diese —
Schnittstelle implementiert, als aktueller Parameter Ubergeben /\
werden. Referenzen auf Objekte eines anderen Typs werden vom =

Compiler abgelehnt.

14.3 Aufbau einer Schnittstelle

Eine Schnittstellendefinition besteht ahnlich wie eine Klassendefinition aus zwei
Teilen:

® der Schnittstellendeklaration

® und dem Schnittstellenkérper mit Konstantendefinitionen und Methodendeklaratio-
nen.

Das folgende Beispiel demonstriert die Definition einer Schnittstelle:

public interface NachrichtenQuelle2 } Schnittstellendeklaration
{
public static final int SPORT = 0;)
public static final int POLITIK = 1;
public static final int KULTUR = 2
public static final int ANZEIGEN = 3; Schnittstellen-
public static final int GESAMT = 4; > kdrper

public boolean anmelden
(NachrichtenEmpfaenger empf, int typ);
public void sendeNachricht (String nachricht);

} J

Schnittstellen 511

Die Schnittstellendeklaration

Die Schnittstellendeklaration setzt sich aus drei Elementen zusammen:

"2 Wird public nicht angegeben,

® cinem optionalen Zugriffsmodifikator public
so wird der Zugriffsschutz default verwendet,

® dem Schliisselwort interface und dem Schnittstellennamen,

® optional dem Schllsselwort extends und durch Kommata getrennte Schnitt-

stellen, von denen abgeleitet wird.

public optional

interface Schnittstellenname zwingend erforderlich

extends S1, S2, . . . , Sn optional ableiten von anderen
Schnittstellen S1 bis Sn

Tabelle 14-1 Elemente einer Schnittstellendeklaration

Der Zugriffsmodifikator public sorgt dafir, dass die Schnittstelle nicht nur im eige-
nen Paket, sondern in allen Paketen sichtbar ist.

gemacht werden. Schnittstellen, die nicht mit public deklariert sind, -~

Mit public deklarierte Schnittstellen kénnen — genauso wie Klas- |/
sen — mittels der import-Vereinbarung in anderen Paketen sichtbar — @ -
sind default und damit nur im eigenen Paket sichtbar. E

Ist eine Schnittstelle mit public deklariert, so darf in derselben Quellcode-Datei kei-
ne weitere Klasse oder Schnittstelle stehen, die auch public ist. Hier gelten die
gleichen Konventionen wie bei Klassen.

Schnittstellen kdnnen mit extends von anderen Schnittstellen ab-

geleitet werden. Mit anderen Worten, es ist moglich, eigene Schnitt- B /\
stellenhierarchien aufzubauen. =/

Klassen kénnen dagegen mit extends nicht von Schnittstellen ab- —
geleitet werden. Sie kdnnen jedoch beliebig viele Schnittstellen mit -
implements implementieren. =

Der Schnittstellenkorper

Der Schnittstellenkérper enthalt:

e Konstantendefinitionen
® und Methodendeklarationen.

12 Bei der Programmierung mit geschachtelten Klassen (siehe Kap. 15) sind auch die Zugriffsmodi-
fikatoren private und protected flr Schnittstellen méglich.

512 Kapitel 14

Alle in der Schnittstelle aufgeflihrten Methoden sind automatisch public und
abstract. Somit enthalt eine Schnittstelle auch keine Methodenimplementierung,
da abstrakte Methoden keinen Methodenrumpf besitzen kdnnen.

Bei der Methodendeklaration ist die explizite Angabe von public und |/
abstract optional. Fehlen diese Schliisselwérter, so werden sie —
automatisch vom Compiler eingefligt. Methoden in Schnittstellen be- -~
sitzen — da sie abstract sind — keinen Methodenrumpf.

~

o)

Versucht man, den Zugriffsmodifikator einer Schnittstellenmethode z. B. auf pri-
vate zu setzen, bringt der Compiler eine Fehlermeldung. Es macht ebenso keinen
Sinn, eine Schnittstellenmethode als £inal zu deklarieren, da als final deklarierte
Methoden bekanntlich nicht mehr Gberschrieben und damit auch nicht implementiert
werden kdnnen. Dies wird ebenfalls vom Compiler Gberprift.

Zur Anschauung einige korrekte und falsche Methodendeklarationen:

public interface NachrichtenQuelle3

{
// Explizit public abstract
public abstract boolean anmelden (NachrichtenEmpfaenger empf);

// Explizit public, implizit abstract
public void sendeNachricht (String nachricht);

// Auch mdéglich: Implizit public abstract
// void sendeNachricht (String nachricht);

// Nicht mdglich
// private sendeNachricht (String nachricht);

}

Konstanten in Schnittstellen werden in der Regel als Ubergabeparameter fiir eine
Schnittstellenmethode verwendet. Im oben angefihrten Beispiel der Schnittstelle
NachrichtenQuelle?2 sind die Konstanten SPORT, POLITIK, KULTUR, ANZEIGEN
und GESAMT definiert und werden als Ubergabeparameter fiir die Methode anmel-
den () verwendet. Damit kann ein NachrichtenEmpfaenger beim Anmelden an-
geben, welchen Nachrichtentyp er empfangen méchte.

Bezlglich der Angabe der Modifikatoren public, static und £inal bei den Kon-
stantendefinitionen besteht vollkommene Freiheit. Es kénnen alle angegeben wer-
den, es kénnen aber auch alle weggelassen werden. Die nicht angegebenen Modifi-
katoren werden dann durch den Compiler hinzugefligt. Wird jedoch versucht, explizit
den Zugriffsmodifikator private oder protected zu setzen, so bringt der Compiler
eine Fehlermeldung. Ob nun die Angabe public static £inal gemacht wird
oder nicht, alle Konstanten einer Schnittstelle missen initialisiert werden. Das folgen-
de Beispiel zeigt verschiedene zulassige und nicht zulassige Varianten von Zugriffs-
modifikatoren bei der Konstantendefinition:

Schnittstellen 513

public interface NachrichtenQuelle4
{
public static final int SPORT = 0;
int POLITIK = 1; // ist public static final
public int KULTUR = 2;
public int ANZEIGEN = 3;
public int GESAMT = 4;
public int ZUFALL = (int) (Math.random() * 5);
// private int REGIONALES = 5; Fehler, da kein Zugriff mdglich
// int SONSTIGES; Fehler, da Konstante initialisiert werden muss

public boolean anmelden (NachrichtenEmpfaenger empf, int typ);
public void sendeNachricht (String nachricht);

Jede Konstantendefinition in einer Schnittstelle muss einen Initiali- — -
sierungsausdruck besitzen. - ~

Der Initialisierungsausdruck muss dabei nicht konstant sein, sondern kann — wie
im obigen Beispiel zu sehen ist — sogar einen Funktionsaufruf wie z. B. Math.ran-
dom () enthalten.

14.4 Verwenden von Schnittstellen

Bei der Verwendung von Schnittstellen gibt es einige Besonderheiten zu beachten,
welche in diesem Kapitel betrachtet werden sollen.

14.4.1 Implementieren einer Schnittstelle

Eine Schnittstelle kann durch Angabe des Schlisselwortes implements und des
Schnittstellennamens von einer Klasse implementiert werden. Durch

class B extends A implements Il, I2

deklariert eine Klasse B, dass sie ein Subtyp der Klasse A ist und zusatzlich die
Schnittstellen 11 und 12 implementiert.

Eine Klasse gibt mit dem Schlisselwort implements an, welche — -
Schnittstellen sie implementiert. - ~

Implementiert eine Klasse eine Schnittstelle, so muss sie alle
Methoden der Schnittstelle implementieren, wenn sie instantiiert

werden soll — d. h. wenn von ihr Objekte geschaffen werden sollen. —/\
Ansonsten muss die Klasse als abstrakt deklariert werden und ist =

nicht instantiierbar.

514 Kapitel 14

Implementiert die Klasse zeitung aus Kapitel 14.2 nur die abstrakte Methode
anmelden () aus der Schnittstelle NachrichtenQuelle und die Methode sende-
Nachricht () nicht, so ist die Klasse Zeitung mit dem Schlisselwort abstract
zu kennzeichnen. Abstrakte Klassen kdnnen nicht instantiiert werden.

Eine Klasse, die eine Schnittstelle implementiert, erbt die in der Schnittstelle enthal-
tenen Konstanten und abstrakten Methoden. Es kann durch Schnittstellen keine
Funktionalitat geerbt werden, da Schnittstellen keine Methodenimplementierung
beinhalten.

Ein Programmierer hat bei der Implementierung einer Schnittstellen- V/orsicht'
methode darauf zu achten, dass er den Vertrag der Methode erfiillt. %

w

14.4.2 Schnittstellen als Datentyp

Einer Referenz vom Typ einer Schnittstelle kann als Wert eine Referenz auf ein
Objekt zugewiesen werden, dessen Klasse die Schnittstelle implementiert. Hierzu
soll das Beispiel aus Kapitel 14.2 nochmals betrachtet werden. Die Klasse Person
implementiert die Schnittstelle NachrichtenEmpfaenger. Es kann also beim Anle-
gen von Objekten der Klasse Per son anstatt

Person pl = new Person ("Fischer", "Fritz");
NachrichtenEmpfaenger pl = new Person ("Fischer", "Fritz");

geschrieben werden.

Eine Schnittstelle ist ein Referenztyp. Von ihm kénnen Referenz- . |
variablen gebildet werden, die auf Objekte zeigen, deren Klassen _
die Schnittstelle implementieren. Es ist damit auch mdglich, Arrays /\
von Schnittstellentypen anzulegen und diese Arrays mit Referenzen =

auf Objekte zu fillen, deren Klassen die Schnittstelle implementieren.

Das folgende Beispiel zeigt erneut die Testklasse aus Kapitel 14.2 mit der gleichen
Funktionalitét wie dort, hier jedoch in der Auspragung, dass Arrays von Schnittstellen
verwendet werden.

// Datei: Test2.java

public class Test2
{

public static void main (String[] args)

{

NachrichtenEmpfaenger[] senke = new NachrichtenEmpfaenger [3];

senke [0] = new Person ("Fischer", "Fritz");
senke [1l] = new Person ("Maier", "Hans");
senke [2] = new Person ("Kunter", "Max");

Schnittstellen 515

NachrichtenQuelle[] quelle = new NachrichtenQuelle[2];
quelle [0] = new Zeitung ("-Frankfurter Allgemeine-", 10);

quelle [0].anmelden (senke [0]);
quelle [0].anmelden (senke [11]);
quelle [1] = new Zeitung ("-Stdkurier-", 10);
quelle [1].anmelden (senke [0]);
quelle [1].anmelden (senke [2]);

System.out.println ("Frankfurter Allgemeine Schlagzeile:");
quelle [0].sendeNachricht ("Neues Haushaltsloch " +

"von 30 Mrd. EURO");
System.out.println();
System.out.println ("SUdkurier Schlagzeile:");
quelle [1].sendeNachricht ("Bayern Miinchen Deutscher Meister");

Die Ausgabe des Programms ist:

Frankfurter Allgemeine Schlagzeile:
an Fischer Fritz: Neues Haushaltsloch von 30 Mrd. EURO
“ an Maier Hans: Neues Haushaltsloch von 30 Mrd. EURO

Stidkurier Schlagzeile:

an Fischer Fritz: Bayern Minchen Deutscher Meister
an Kunter Max: Bayern Miinchen Deutscher Meister

Man beachte, dass mit der Programmzeile

NachrichtenEmpfaenger[] senke = new NachrichtenEmpfaenger [3];
ein Array von Referenzen vom Typ einer Schnittstelle angelegt wird (siehe Bild 14-7),
wobei diese Referenzen auf Instanzen zeigen kdnnen, deren Klassen die Schnitt-

stelle NachrichtenEmpfaenger implementieren.

null null null

| senke[0] | senke[1] | senke[2] |

senke

Bild 14-7 Array von Referenzen des Schnittstellentyps NachrichtenEmpfaenger

Da die Klasse pPerson die Schnittstelle NachrichtenEmpfaenger implementiert,
kénnen Referenzen auf Instanzen der Klasse Person den Komponenten des
Schnittstellen-Arrays senke als Elemente zugewiesen werden. Nach den folgenden
Anweisungen ist das Array gefullt:

senke [0] = new Person ("Fischer", "Fritz");
senke [1] = new Person ("Maier", "Hans");
senke [2] = new Person ("Kunter", "Max");

516 Kapitel 14

:Person :Person :Person

\

| senke[0] | senke[1] | senke[2] |

senke

Bild 14-8 Referenzen im Array zeigen auf konkrete Objekte

EN

14.4.3 Typsicherheit von Schnittstellen

Bisher wurde es immer als groBer Vorteil angesehen, dass einer Methode, die als
formalen Ubergabeparameter eine Referenz vom Typ Object hat, ein Objekt einer
beliebigen Klasse Ubergeben werden kann. Dies funktioniert deshalb, weil die ge-
meinsame Basisklasse aller Klassen in Java die Klasse Object ist. Genau diese
Vorgehensweise kann unter Umstanden zu Laufzeitfehlern fihren. Betrachtet werden
soll hierzu die bekannte Methode anmelden () aus der Schnittstelle Nachrichten-
Quelle. Diese Methode hat einen Ubergabeparameter des Schnittstellentyps Nach-
richtenEmpfaenger:

interface NachrichtenQuelle

{

public boolean anmelden (NachrichtenEmpfaenger empf) ;
public void sendeNachricht (String nachricht);

}

An dieser Stelle kénnte man auch einen Ubergabeparameter vom Typ Object ver-
wenden, wie es im folgenden Beispiel gemacht wurde:

interface NachrichtenQuelle

{
public boolean anmelden (Object empf);

public void sendeNachricht (String nachricht);

Die Implementierung der Methode anmelden () kdnnte dann wie folgt aussehen:

public boolean anmelden (Object empf)
{
if (anzahlEmpfaenger < arr.length)
{
// Jetzt muss beim Zuweisen der ilbergebenen Referenz an das
// Array arr vom Typ NachrichtenEmpfaenger ein expliziter Cast
// durchgefiihrt werden.
arr [anzahlEmpfaenger ++] = (NachrichtenEmpfaenger) empf;
return true;

}

return false;

Schnittstellen 517

Von der Funktionalitdt her betrachtet, ist es egal, welche Variante verwendet wird —
beide funktionieren gleich gut. Aber man sollte auch daran denken, dass man der jet-
zigen Methode anmelden () nicht mehr ansieht, dass es fiir den Ubergabeparame-
ter zwingend erforderlich ist, die Schnittstelle NachrichtenEmpfaenger zu im-
plementieren. Wird eine Referenz auf ein anderes beliebiges Objekt Ubergeben,
dessen Klasse diese Schnittstelle nicht implementiert, so kann dies erst zur Laufzeit
festgestellt werden, wenn die Typumwandlung von Object nach Nachrichten-—
Empfaenger fehlschlagt und eine ClassCastExcpetion geworfen wird. Dies ist
sehr nachteilig, da der Compiler keine Mdglichkeit hat, diesen Fehler aufzudecken.
Wird dagegen der Schnittstellentyp als Ubergabeparameter angegeben, so kénnen
nur Referenzen auf Objekte Ubergeben werden, deren Klassen auch tatsachlich
diese Schnittstelle implementieren. Werden andere Parameter Ubergeben, so meldet
schon der Compiler einen Fehler.

Deshalb gilt stets: Wenn bei einem Referenztyp als Ubergabeparameter nicht jede
beliebige Referenz Ubergeben werden kann, so ist davon abzusehen, den Re-
ferenztyp Object als Ubergabeparameter zu verwenden.

Schnittstellen bieten ein elegantes Mittel zur Prifung, ob der Anwen-

der den richtigen Typ (ibergeben hat. Deshalb sollte bei Ubergabepa- — <v> o
rametern stets geprift werden, ob durch Einsatz eines Schnittstellen-

typs eine héhere Typsicherheit erreicht werden kann.

14.4.4 Implementieren von mehreren Schnittstellen

Eine Klasse kann nicht nur eine, sondern beliebig viele Schnittstellen implemen-
tieren. Syntaktisch gibt die Klasse dies mit dem Schllisselwort implements an, ge-
folgt von einer Liste von giltigen Schnittstellennamen, die durch Kommata getrennt
sind. Im folgenden Beispiel ist eine Klasse vermittler aufgefuhrt, die sowohl die
Schnittstelle NachrichtenQuelle als auch die Schnittstelle Nachrichten-
Empfaenger implementiert. Bild 14-9 zeigt dies grafisch.

<<interface>> <<interface>>
NachrichtenQuelle NachrichtenEmpfaenger

anmelden() empfangeNachricht()
sendeNachricht()
VR Y,
N //
N e
Vermittler

Bild 14-9 Die Klasse vermittler implementiert zwei Schnittstellen

518 Kapitel 14

// Datei: Vermittler.java

public class Vermittler implements NachrichtenEmpfaenger,
NachrichtenQuelle
{

private NachrichtenEmpfaenger|[] arr;
private int anzahlEmpfaenger = 0;

public Vermittler (int maxAnzahlEmpfaenger)
{

arr = new NachrichtenEmpfaenger [maxAnzahlEmpfaenger];

}

public boolean anmelden (NachrichtenEmpfaenger empf)

{

if (anzahlEmpfaenger < arr.length)

{
arr [anzahlEmpfaenger++] = empf;
return true;

}

return false;

}

public void sendeNachricht (String nachricht)
{
// Alle angemeldeten Nachrichtenempfénger
// werden benachrichtigt
for (int i = 0; 1 < anzahlEmpfaenger; i++)
{

arr [i].empfangeNachricht (nachricht);
}
}

public void empfangeNachricht (String nachricht)
{

sendeNachricht (nachricht);

}

Ein Objekt der Klasse Vermittler kann sich nun bei einem Objekt der Klasse
Zeitung als NachrichtenEmpfaenger Uber dessen Methode anmelden /()
registrieren lassen. Objekte der Klasse Person kdnnen sich wiederum bei einem
Objekt der Klasse vermittler — mit Hilfe der Instanzmethode anmelden () der
Klasse vermittler — registrieren und erhalten somit automatisch alle Nachrichten
von allen Zeitungen. Damit muss sich eine Person nicht mehr bei allen Zeitungen
einzeln anmelden, sondern gibt die Adresse nur einmal dem Vermittler bekannt, der
alle Nachrichten von jeder Zeitung weiterleitet. Sicherlich ist dies nicht eine allzu
realistische Variante, denn da nun alle Personen alle Zeitungsnachrichten erhalten,
werden diese bald merken, dass sie zwar hervorragend informiert werden, aber dass
Zeitungen eben auch Geld kosten. Es ist hierzu folgende Variante denkbar: Das
Objekt der Klasse vermittler bietet eine Anmeldeschnittstelle, die es ermdglicht,
den Typ der zeitung, die man abonnieren méchte, mit anzugeben. Damit hat jede
Person die Méglichkeit, sich Uber das Objekt der Klasse vermittler gezielt bei
einer oder mehreren Zeitungen anzumelden. In dem vorliegenden Beispiel wird aber

Schnittstellen 519

aus Aufwandsgriinden nur die vereinfachte Variante betrachtet, in der eine Person,
die sich Uber das Objekt vom Typ Vermittler anmeldet, alle Nachrichten aller Zei-
tungen erhalt. Die folgende Testklasse veranschaulicht diese Variante:

// Datei: VermittlerTest.java

public class VermittlerTest
{
public static void main (String[] args)
{
NachrichtenQuelle z1 =
new Zeitung ("-Frankfurter Allgemeine-", 3);
NachrichtenQuelle z2 = new Zeitung ("-Stdkurier-", 3);
Vermittler mittler = new Vermittler (3);

// Vermittler tritt in Gestalt des Nachrichtenempfdngers auf
zl.anmelden (mittler);

z2.anmelden (mittler);

// Vermittler tritt in der Gestalt der NachrichtenQuelle auf

mittler.anmelden (new Person ("Fischer", "Fritz"));
mittler.anmelden (new Person ("Maier", "Hans"));
mittler.anmelden (new Person ("Kunter", "Max"));

System.out.println ("Frankfurter Allgemeine Schlagzeile:");
z1.sendeNachricht ("Neues Haushaltsloch von 30 Mrd. EURO");
System.out.println ();

System.out.println ("Slidkurier Schlagzeile:");
z2.sendeNachricht ("Bayern Miinchen Deutscher Meister");

Die Ausgabe des Programms ist:

Frankfurter Allgemeine Schlagzeile:
|| an Fischer Fritz: Neues Haushaltsloch von 30 Mrd. EURO

an Maier Hans: Neues Haushaltsloch von 30 Mrd. EURO
an Kunter Max: Neues Haushaltsloch von 30 Mrd. EURO

Stidkurier Schlagzeile:

an Fischer Fritz: Bayern Minchen Deutscher Meister
an Maier Hans: Bayern Miinchen Deutscher Meister

an Kunter Max: Bayern Minchen Deutscher Meister

Falls es noch nicht aufgefallen ist, unsere Objekte haben das Reden untereinan-
der gelernt. Einer Zeitung wird eine neue Nachricht zum Versenden gegeben, und
diese schickt die Nachricht weiter an die angemeldeten Vermittler. Dabei weiB3 die
Zeitung nichts davon, wie ein Vermittler mit der Nachricht weiter umgeht. Ein Ver-
mittler benachrichtigt daraufhin alle ihm bekannten Nachrichtenempfanger. Uberlasst
man den Personen das Anmelden selbst, indem man z. B. im Konstruktor der Klasse
Person die Anmeldung an einen Ubergebenen Vermittler vornimmt, so reden unsere
Objekte in beiden Richtungen miteinander, wie im Bild 14-10 zu sehen ist:

520 Kapitel 14

Nachrichtenquelle Nachrichtenquelle Nachrichtensenke
und
Nachrichtensenke :Person
z1:Zeitung
anmelden()
sendeNachricht() ‘//,
. . f Nachricht
mittler:Vermittler empfangeNachricht()
anmelden()
anmelden())
sendeNachricht() \4\ :Person
z2:Zeitung / empfang}‘
anmelden() Nachricht()
anmelden()
empfangeNachricht()
:Person

Bild 14-10 Nachrichtenempfédnger und Nachrichtenquellen reden miteinander
Ein Objekt der Klasse vermittler tritt in zwei Gestalten auf:

® als NachrichtenEmpfaenger
® und als NachrichtenQuelle.

Durch die Implementierung einer Schnittstelle erhélt ein Objekt die Mdglichkeit, sich
zusatzlich wie ein spezieller Schnittstellentyp zu verhalten. Es wird also ein zusatz-
liches Verhalten bzw. eine zusétzliche Aufrufschnittstelle implementiert. Jedes
Objekt, dessen Klasse eine Schnittstelle implementiert, kann sich auch wie ein Typ
der implementierten Schnittstelle verhalten.

Mit dem Schllisselwort implements kénnen mehrere Schnittstellen

in einer Klasse implementiert werden. Dabei werden die Namen der |

zu implementierenden Schnittstellen durch Kommata getrennt hinter ™ /
implements aufgefihrt. Damit erhalten Objekte einer Klasse, die *’
mehrere Schnittstellen implementiert, die Fahigkeit, in der Gestalt von -~ ™~
mehreren Typen aufzutreten. Die Instanz kann als Referenztyp der =

Klasse oder als Referenztyp jeder implementierten Schnittstelle
auftreten.

Folgende Probleme kdnnen beim gleichzeitigen Implementieren von mehreren
Schnittstellen auftreten:

Die zu implementierenden Schnittstellen:

® beinhalten Methoden mit gleicher Signatur und gleichem Rickgabewert, in ande-
ren Worten, mit demselben Methodenkopf.

® peinhalten Konstanten mit demselben Namen.

Schnittstellen 521

e enthalten Methoden, die sich nur darin unterscheiden, dass sie unterschiedliche
Exceptions werfen.

® beinhalten Methoden, die bis auf den Riickgabewert gleich sind.

Die soeben genannten Problemfélle werden im Folgenden diskutiert:

® Zwei zu implementierende Schnittstellen haben die exakt gleiche Methode

In diesem Fall wird die Methode nur ein einziges Mal in der Klasse implementiert.
Sie kann nicht fir jede Schnittstelle getrennt implementiert werden. Auch die
Vertrage der beiden Methoden missen tbereinstimmen.

® Zwei zu implementierende Schnittstellen haben Konstanten mit exakt dem-
selben Namen

Das folgende Beispiel zeigt einen solchen Fall. Die Konstante VAR1 ist sowohl in
der Schnittstelle schnitt1 als auch in der Schnittstelle Schnitt2 und zusatzlich
noch in der Klasse KonstantenTest vorhanden:

// Datei: KonstantenTest.java

interface Schnittl

{

public static final int VARl = 1;
public static final int VAR2 = 2;
}
interface Schnitt2
{
public static final int VARl = 3;
public static final int VAR3 = 4;

}

public class KonstantenTest implements Schnittl, Schnitt2
{
private static final int VARl = 9;
public static void main (String[]

{

args)

System.out.println (VAR1); // VARI der Klasse KonstantenTest

System.out.println (

System.out.println (VAR3);

System.out.println (
(

System.out.println

Die Ausgabe des Programms ist:

W = N O

522 Kapitel 14

Auf die doppelt vorhandenen Schnittstellenkonstanten kann nur tber die Angabe
des Schnittstellennamens, z. B. Schnittl.VAR1, zugegriffen werden.

Existieren Konstanten mit demselben Namen in verschiedenen L/ /
Schnittstellen oder sind sie von Datenfeldern der Klasse verdeckt, —

so missen diese Konstanten Uber den qualifizierten Namen mit -~ -
Angabe des Schnittstellennamens angesprochen werden.

|

e Zwei zu implementierende Schnittstellen haben zwei Methoden, die bis auf
die Exceptions in der throws-Klausel identisch sind

Im folgenden Beispiel werden zwei Client-Programme Clientl und Client?2
gezeigt, wobei Client1 mit Referenzen auf Objekte vom Typ Eins und Client?2
mit Referenzen auf Objekte vom Typ zwei arbeitet. In den Schnittstellen Eins
und zwei soll jeweils eine Methode deklariert sein, die sich nur durch den Typ der
Exception in der throws-Klausel unterscheiden. Das Client-Programm Clientl
erwartet Ausnahmen vom Typ Exception und das Client-Programm Client?2
erwartet Ausnahmen vom Typ MyException. Solange die beiden Schnittstellen
in getrennten Klassen implementiert werden, gibt es kein Problem.

Client1 Client2
| I
v v
Deklariert eine — . B L —Deklariert eine
Methode, die eine ™ <<|nte'rface>> <<|nterfaf:e>> ‘ Methode, die eine
Ausnahme vom Eins Zwei Ausnahme vom Typ
Typ Exception MyException wirft
wirft 4 4
| |
ServerA ServerB

Bild 14-11 Client-Programme Client 1 und Client2, die Schnittstellen benutzen

Sollen beide Schnittstellen in einer gemeinsamen Klasse implementiert werden
(siehe Bild 14-12), so ist dies nur dann mdglich, wenn die beiden Ausnahmen
zueinander in einer Vererbungshierarchie stehen (siehe Bild 14-13) und wenn die
implementierte Methode nur Ausnahmen vom Typ der Klasse wirft, die in der
Vererbungshierarchie weiter unten steht.

Client1 Client2
v Y
<<interface>> <<interface>>
Eins Zwei
Server

Bild 14-12 Implementieren der Schnittstellen Eins und Zwei in der Klasse Server

Schnittstellen 523

Das Client-Programm Client1 erwartet Ausnahmen vom Typ Exception und
das Client-Programm Client2 erwartet Ausnahmen vom Typ MyException.
Bekommt das Client-Programm cClientl eine Ausnahme vom Typ MyEx-—
ception, so ist dies auch in Ordnung, da ein Sohnobjekt immer an die Stelle des
Vaters treten kann. Bekommt aber das Client-Programm Client2, das ja Aus-
nahmen vom Typ MyException erwartet, nur eine Ausnahme vom Typ Ex-
ception, so kommt es zu einer Fehlersituation, da der C1ient2 mehr erwartet.

Exception

1

MyException

Bild 14-13 Vererbungshierarchie der Ausnahmen Exception und MyException

Wirft damit die Klasse Server eine Ausnahme vom Typ MyException, SO sind
beide Client-Programme Client1 und Client2 zufrieden.

Enthalten zwei Schnittstellen Methoden, die sich nur durch den Typ

der Exception in der throws-Klausel unterscheiden, so kénnen die- |
se Schnittstellen nur dann von einer Klasse gemeinsam implemen- —
tiert werden, wenn die beiden Ausnahmen zueinander in einer Ver- @\
erbungshierarchie stehen und von der implementierten Methode =

nur die Exception geworfen wird, die in der Vererbungshierarchie =
weiter unten steht.

Hier nun das Programm:

// Datei: MyException.java
class MyException extends Exception
{
MyException ()
{
super ("MyException-Fehler!!");
}
}

Hier die beiden Schnittstellen:

// Datei: Eins.java
public interface Eins
{
public void methode () throws Exception;

}

// Datei: Zwei.java
public interface Zwei
{
public void methode () throws MyException;
}

524 Kapitel 14

Hier die Klasse Server:

// Datei: Server.java

public class Server implements Eins, Zwei

{
// Wirft die Methode methode () eine Exception vom Typ
// MyException, so sind Client-Programme, welche die
// Schnittstelle Eins verwenden, als auch Client-Programme,
// welche die Schnittstelle Zwel verwenden, zufrieden.
public void methode () throws MyException
{

throw new MyException();

Im Folgenden werden die beiden Client-Programme Clientl und Client2 vor-
gestellt:

// Datei: Clientl.java

class Clientl
{
public static void main (String[] args)
{
// Clientl arbeitet mit einer Referenzvariablen vom Typ
// Eins. Aus deren Sicht ist die Methode bekannt,
// die Ausnahmen vom Typ Exception wirft.
Eins x = new Server();

try
{
x.methode () ;

}
// Clientl ist auch mit Exceptions vom Typ MyException

// zufrieden.
catch (Exception e)

{
System.out.println (e.getMessage());

}
// Datei: Client2.java

class Client2
{
public static void main (String[] args)
{
// Client2 arbeitet mit einer Referenzvariablen vom Typ
// Zwei. Aus deren Sicht wirft die Methode methode() eine
// Exception vom Typ MyException.
Zwei x = new Server();

Schnittstellen 525

try
{

x.methode () ;
}
// Client2 arbeitet sowieso mit Exceptions vom Typ
// MyException. Hier gibt es also auch keine Probleme.
catch (MyException e)

{
System.out.println (e.getMessage());

}

Die Ausgabe des Programms Clientl ist:
MyException-Fehler!!
Die Ausgabe des Programms Client?2 ist:

MyException-Fehler!!

e Zwei zu implementierende Schnittstellen besitzen Methoden, die sich nur in
ihrem Riickgabewert unterscheiden

In diesem Fall kénnen die Schnittstellen nicht gemeinsam implementiert werden,
da die Methoden anhand des Rickgabewertes nicht unterschieden werden kén-
nen (siehe Kap. 9.2.3).

interface ReturnObject

{

}

public Object gebeWert();

interface ReturnlInteger

{

}

public Integer gebeWert ();

class

{

Implementierung implements ReturnObject//, Returnlnteger

Beide Methoden in der gleichen Klasse zu implementieren
funktioniert nicht, da sich die Methoden nur anhand ihres
Riickgabetyps unterscheiden und somit dem Compiler keine
Moglichkeit zur Differenzierung ermdglichen. Denn in Java
ist es nicht erforderlich, den Riickgabewert eines Methoden-
aufrufs abzuholen.

public Object gebeWert ()

{

}

//
//
//
//

return new Object();

public Integer gebeWert ()
{

return new Integer();

}

526 Kapitel 14

14.4.5 Vererbung von Schnittstellen

Einfachvererbung bei Schnittstellen

Schnittstellen besitzen — genauso wie Klassen — die Méglichkeit, mit dem Schllssel-
wort extends eine schon vorhandene Schnittstelle zu erweitern.

// Datei: Einfach.java

interface NachrichtenQuelle
{
public int SPORT =
public int POLITIK =
public int KULTUR =
public int ANZEIGEN =
public int GESAMT

’
’
r

r

s w N O

’

public boolean anmelden (NachrichtenEmpfaenger empf, int typ);
public void sendeNachricht (String nachricht);

}

interface Vermittler extends NachrichtenQuelle

{
public void empfangeNachricht (String nachricht);

}

Die Schnittstelle vermittler erweitert die Schnittstelle NachrichtenQuelle um
die Methode empfangeNachricht (). Wie bei der Vererbung von Klassen besitzt
die Schnittstelle vermittler neben den eigenen Elementen auch die von der
Schnittstelle NachrichtenQuelle ererbten Elemente.

Mehrfachvererbung bei Schnittstellen

Im Gegensatz zur Einfachvererbung von Klassen ist in Java bei Schnittstellen eine
Mehrfachvererbung erlaubt. Damit kann ein Schnittstelle nicht nur eine einzige
Schnittstelle erweitern, sondern mehrere gleichzeitig.

Schnittstellen lassen im Gegensatz zu Klassen Mehrfachvererbung —

iy

// Datei: Mehrfach.java
interface NachrichtenQuelle
{
public int SPORT =
public int POLITIK =
public int KULTUR =
public int ANZEIGEN
public int GESAMT

~

I
.o~

s wWw N O
~

~.

~.

public boolean anmelden (NachrichtenEmpfaenger empf, int typ);
public void sendeNachricht (String nachricht);

Schnittstellen 527

interface NachrichtenEmpfaenger

{
public void empfangeNachricht (String nachricht);

}

interface Vermittler extends NachrichtenQuelle,NachrichtenEmpfaenger

{
}

Dennoch ist die Mehrfachvererbung bei Schnittstellen von nicht allzu groBer Bedeu-
tung — viel wichtiger ist die Méglichkeit, mehrere Schnittstellen gemeinsam in

einer Klasse implementieren zu kénnen. Damit kénnen Instanzen dieser Klassen
sich zusétzlich wie Typen aller implementierten Schnittstellen verhalten. Dies wurde
bereits in Kapitel 14.4.4 gezeigt.

14.5 Vergleich Schnittstelle und abstrakte Basisklasse
Abstrakte Basisklassen und Schnittstellen sind einander &hnlich. Beide sind ein Mittel

zur Abstraktion. Im Folgenden sollen die Ubereinstimmungen und Gegensétze auf-
gezeigt werden.

\
Abstrakte Basisklassen konnen Variablen, Konstanten, implemen- —
tierte und abstrakte Methoden enthalten. Schnittstellen konnen nur -

Konstanten und abstrakte Methoden enthalten.

iy

Fir Klassen stellt Java nur den Mechanismus der Einfachvererbung bereit. Es ist
nicht méglich, von mehreren Klassen zu erben:

Basisklasse1 Basisklasse2

Nicht méglich

MeineKlasse

Bild 14-14 Bei Klassen ist keine Mehrfachvererbung erlaubt

Eine Klasse kann aber mehrere Schnittstellen implementieren, wie Bild 14-15 zeigt:

<<interface>> <<interface>>
Schnittstelle1 Schnittstelle2
AV <7
o~ d mdéglich
MeineKlasse

Bild 14-15 Eine Klasse kann mehrere Schnittstellen implementieren

528 Kapitel 14

Eine Klasse kann auch eine vorhandene abstrakte Basisklasse erweitern bzw. deren
leere Methodenrimpfe ausprogrammieren und gleichzeitig eine oder mehrere
Schnittstellen implementieren, wie folgendes Bild zeigt:

Abstrakte interf interface
Basisklasse | | Sl icler | - | Sohnitistellon
v\ N Y

| méglich __-~
l PP
MeineKlasse

Bild 14-16 Ableiten von einer Klasse und gleichzeitig mehreren Schnittstellen implementieren

Mit dem Mechanismus der Schnittstelle ist es damit mdglich, mehrere Schnittstellen,
die nur abstrakte Methoden und Konstanten enthalten, zu implementieren. Aber es
ist keine Vererbung, sondern eine Verfeinerung im Sinne einer schrittweisen Verfei-
nerung, in deren Rahmen erst die Schnittstelle festgelegt wird und im zweiten Schritt
dann die Implementierung.

Sowohl eine Unterklassenbildung aus einer abstrakten Basisklasse . |
im Rahmen der Vererbung als auch eine Verfeinerung einer Schnitt- —
stelle stellt die Bildung eines Untertypen dar. Ein Objekt einer Klas- P -
se — die eine Schnittstelle implementiert — ist vom Typ seiner Klasse Y

und vom Typ der Schnittstelle.

Zwischen Klassen und Schnittstellen gibt es aber einen wichtigen Unterschied: Arbei-
tet man mit Klassen und dem Prinzip der Vererbung, so muss man die zu vererbende
Information in die Wurzel des Klassenbaums bringen, wenn sie Uber alle Zweige
nach unten vererbt werden soll. Die erbende Klasse und die abstrakte Klasse mis-
sen also verwandt sein.

Abstrakte
Basisklasse

Spezialisierung / \ Generalisierung

MeineKlasse1 MeineKlasse2

Bild 14-17 Vererbungsbaum mit einer abstrakten Basisklasse als Wurzel

Eine Schnittstelle kann von jeder beliebigen Klasse implementiert wer- | //
den, ohne dass die Schnittstelle in den Klassenbaum eingeordnet wer- —
den muss. Die zu implementierende Schnittstelle erfordert keine Ver- -~
wandtschaft. Sie kann implementiert werden, wo sie gebraucht wird.

iy

Schnittstellen 529

<<interface>> MeineKlasseA
Schnittstelle

= /vv\

MeineKlasseA1 MeineKlasse A2 <<interface>>
Schnittstelle

ﬂk V\ <7

MeineKlasseA11 MeineKlasseA21

Bild 14-18 Gemischte Hierarchie mit Klassen und Schnittstellen

Eine implementierte Schnittstelle in einer Vaterklasse wird an abgeleitete Sohn-
klassen weitervererbt. Somit kann sich ein Objekt der Sohnklasse wie ein Objekt der
Vaterklasse verhalten und zusatzlich wie ein Objekt aller in der darlberliegenden
Hierarchie implementierten Schnittstellen. Mit Hilfe der Vererbungshierarchie in Bild
14-19 soll der Typbegriff von Objekten erlautert werden.

<<interface>> <<interface>>
Schnittstelle1 Schnittstelle2
<<interface>> Klasse1

Schnittstelle3

R /ﬂ

Klasse2

i

Klasse3

Bild 14-19 Klassenhierarchie zur Diskussion des Typbegriffs

Ein Objekt einer Klasse kann in der Gestalt unterschiedlicher Typen auftreten. In der
Tabelle 14-2 ist aufgelistet, von welchem Typ ein Objekt der Klasse Klassel,
Klasse2 und der Klasse3 ist.

530 Kapitel 14

Objekt der Klasse ist vom Typ

Klasse3 Klasse3, Klasse2,Klassel, Schnittstelle3,
Schnittstelle2, Schnittstellel

Klasse?2 Klasse?2, Klassel, Schnittstelle3, Schnittstelle?2,
Schnittstellel

Klassel Klassel

Tabelle 14-2 Ein Objekt einer Klasse kann in Gestalt mehrerer Typen auftreten

14.6 Die Schnittstelle Cloneable

Klonen bedeutet nichts anderes, als eine exakte Kopie von etwas schon Existentem
zu erstellen. Wenn ein Objekt geklont wird, erwartet man, dass man eine Referenz
auf ein neues Objekt bekommt, dessen Datenfelder exakt die gleichen Werte haben,
wie die des Objektes, das als Klonvorlage benutzt wurde.

Im Folgenden soll der Unterschied zwischen den beiden Féllen:

e zwei Referenzen zeigen auf das gleiche Objekt,
e die zweite Referenz zeigt auf ein geklontes Objekt des ersten Objektes

erlautert werden. Betrachtet werden soll hierzu das folgende Programm:

// Datei: KopieTest.java

class Kopie

{

public int x;

public Kopie (int x)
{
this.x = x;

}

public void print ()
{
System.out.println ("x = " + x);
}
}

public class KopieTest
{
public static void main (String[] args)
{
Kopie refl = new Kopie (1);
Kopie ref2 = refl;

System.out.print ("Wert iber refl: ");
refl.print();
System.out.print ("Wert iber ref2: ");

ref2.print();

refl.x = 5;

System.out.print ("Wert iber refl: ");
refl.print();

Schnittstellen 531

System.out.print ("Wert iber ref2: ");
ref2.print();

Die Ausgabe des Programms ist:

Wert Uber refl:
II Wert lber ref2:

Wert lber refl:
Wert lber ref2:

XXX X
[T}

1
1
5
5

Das Ergebnis dirfte nicht verwundern. Da die Referenz ref2 genau auf das gleiche
Objekt zeigt wie die Referenz ref1, wird eine Datendnderung, egal ob sie Uber die
Referenz ref1 oder ref2 erfolgt, immer am gleichen Objekt vorgenommen. Im
folgenden Bild 14-20 ist dies grafisch zu sehen:

ref1

:Kopie

ref2

¥

Bild 14-20 Zwei Referenzen, die auf das gleiche Objekt zeigen

Wenn ein Objekt geklont bzw. kopiert wird, erhalt man zwei Objekte, deren Werte
unabhéngig voneinander verandert werden kénnen. Bild 14-21 zeigt diese Situation:

x=1
x=1

Bild 14-21 Zwei Referenzen, die auf zwei verschiedene Objekte mit gleichem Inhalt zeigen

Das folgende Programm, das gleich unterhalb des Programmcodes erldutert wird,
erzeugt eine exakte Kopie:

// Datei: CloneTest.java

class Kopie2 implements Cloneable

{

public int x;

public Kopie2 (int x)
{
this.x = x;
}
public void print()
{

System.out.println ("x = " + x);

}

532 Kapitel 14

// Uberschreiben der clone()-Methode der Klasse Object

public Object clone() throws CloneNotSupportedException

{
// Mit super.clone() wird die liberschriebene clone()-Methode
// der Klasse Object aufgerufen
return super.clone();

}

public class CloneTest
{
public static void main (String[] args)
throws CloneNotSupportedException
{
Kopie2 refl = new Kopie2 (1);
Kopie2 ref2 (Kopie2) refl.clone();
System.out.print ("Wert iber refl: ");
refl.print();
System.out.print ("Wert iiber ref2: ");
ref2.print () ;
refl.x = 5;
System.out.print ("Wert iiber refl: ");
refl.print();
System.out.print ("Wert liber ref2: ");
ref2.print();

Die Ausgabe des Programms ist:

Wert Uber refl:
II Wert lber ref2:

I
[N

Wert lber refl:
Wert lber ref2:

XXX X

Das Ergebnis ist im Gegensatz zu dem vorherigen bemerkenswert. Die einzigen An-
derungen, die in dem Programm vorgenommen wurden, sind fett hervorgehoben. Die
Klasse Kopie2 implementiert die Schnittstelle Cloneable des Pakets java.lang
und Uberschreibt die Methode clone () der Klasse Object. Man kénnte zunachst
vermuten, dass die Deklaration der clone ()-Methode in der Schnittstelle Clone-
able enthalten ist. Dies ist aber nicht der Fall — die Schnittstelle Cloneable hat
einen leeren Schnittstellenrumpf:

package java.lang;

public interface Cloneable
{
}

Was gewinnt aber eine Klasse hinzu, wenn sie eine solche Schnittstelle implemen-
tiert? Die Klasse gibt damit an, dass ihre Objekte kopierbar sein sollen! Ein Uber-
schreiben der clone ()-Methode ist hierbei aus Griinden der Polymorphie zwingend
erforderlich, auch wenn dies nicht vom Compiler Uberpriift werden kann, da in der
Schnittstelle Cloneable die Methode clone () nicht enthalten ist. Das Kompilieren

Schnittstellen 533

der Klasse Kopie2 wéare auch méglich, wenn die clone ()-Methode der Klasse
Obiject nicht Gberschrieben wird.

Da die clone ()-Methode der Klasse Object den Zugriffsmodifikator protected
hat, kann diese nur in abgeleiteten Klassen oder in Klassen, die sich im gleichen Pa-
ket befinden, aufgerufen werden. Die Klasse Kopie?2 ist implizit von Object abge-
leitet und daher kann die von der Klasse Object geerbte clone ()-Methode in ihr
selbst aufgerufen werden. Wirde in der Klasse Kopie2 die clone ()-Methode der
Klasse Object nicht Uberschrieben, so wirde der Aufruf refl.clone() in der
main ()-Methode der Klasse CloneTest beim Kompilieren folgenden Fehler erzeu-
gen:

CloneTest.java:23: clone() has protected access in java.lang.Object
Kopie2 ref2 = (Kopie2) refl.clone();

Liefert der Ausdruck

ref instanceof Cloneable

true zurlick, so muss es auch mdglich sein, ref.clone () aufzurufen. Dies ist
aber nur dann méglich, wenn die clone ()-Methode in der Klasse des Objektes, auf
das ref zeigt, mit dem Zugriffsmodifikator pub1ic Uberschrieben wird.

Dadurch, dass explizit bei einer Klasse angegeben werden muss, . |
dass diese kopierbar ist, kann verhindert werden, dass Objekte von

Klassen kopiert werden kénnen, fir die das gar nicht vorgesehen war, */\
und fur die die Kopierfunktionalitdt deshalb auch nicht richtig imple- Y

mentiert worden ist.

Schnittstellen, die gar keine Methoden enthalten, werden auch Marker-Interfaces
genannt.

|
Das Marker-Entwurfsmuster besteht aus einer leeren Schnittstelle, die / o
dazu benutzt wird, Klassen zu markieren. Eine Klasse, die ein Marker- —
Interface implementiert, gibt bekannt, dass sie von einem bestimmten -~ -
Typ ist.

|

Damit werden Klassen in zwei Mengen aufgeteilt: in diejenigen, welche die Schnitt-
stelle implementieren, und in diejenigen, welche die Schnittstelle nicht implementie-
ren. Mit Hilfe des instanceof-Operators kann geprift werden, zu welcher der
beiden Mengen ein Objekt gehoért. Wichtige Beispiele fiir Marker-Interfaces sind:
java.lang.Cloneable, java.rmi.Remote Und java.io.Serializable.

Die Methode clone () der Klasse Object sieht folgendermaBen aus:

protected Object clone() throws CloneNotSupportedException
{

. //Die Implementierung soll hier nicht betrachtet werden

}

534 Kapitel 14

Die Aufgabe der Methode clone () der Klasse Object besteht darin, eine Eins-zu-
Eins-Kopie des Objektes zu erstellen, fir das sie aufgerufen wird. Mit anderen
Worten:

Die Methode clone () erzeugt ein neues Objekt und belegt die Da-
tenfelder mit den exakt gleichen Werten wie das Objekt, fir das die —
Methode aufgerufen wird. Es wird eine Referenz vom Typ Object auf /\
das neue Objekt zurlickgegeben. Diese muss nur noch in den rich- =/

tigen Typ gecastet werden.

Alle Objekte besitzen also schon eine Kopierfahigkeit. lhre Klassen miissen jedoch
das Interface Cloneable implementieren, damit die Methode clone () der Klasse
Object verwendet werden kann.

Ob ein Objekt kopierbar ist oder nicht, kann folgendermaBen Uberpriift
werden: N

if (ref instanceof Cloneable) - -
{ e

// Kopie méglich
}

Im vorliegenden Beispiel war es ausreichend, in der Methode clone () der Klasse
Kopie2 einfach die Methode clone() der Klasse Object aufzurufen. Die
clone ()-Methode der Klasse Object erzeugt eine Eins-zu-Eins-Kopie von allen
Datenfeldwerten. Sobald die Datenfelder des Objektes nicht mehr nur aus primitiven
Datentypen bestehen, muss deshalb in der clone ()-Methode mehr erfolgen als nur
der Aufruf der clone () -Methode der Basisklasse Object. Denn wenn ein Datenfeld
eine Referenz ist, so wird von der clone ()-Methode der Klasse Object nur die
Referenz kopiert und kein neues Objekt angelegt. Es handelt sich um eine so
genannte "flache” Kopie. Das folgende Bild zeigt diese Problematik:

Kopie Kreiseck-Objekt

:Kreiseck :Kreiseck

Kreis
e S s NN L —
1 P Cm—

:Eck

Bild 14-22 "flache" Kopie

Wird von einem Kreiseck-Objekt eine Kopie erzeugt, so werden die Werte der
Referenzvarialben refkreis und refEck einfach kopiert. Das hei3t es werden
keine neuen Objekte vom Typ Kreis und Eck erzeugt.

Schnittstellen 535

Bei der "tiefen" Kopie hingegen entstehen neue Objekte vom Typ Kreis und Eck,
auf welche dann die Referenzvariablen refKreis und refEck des neuen Objektes
vom Typ Kreiseck zeigen. Die Instanzvariablen der neuen Objekte vom Typ Kreis
und vom Typ Eck werden mit den Werten der kopierten Objekte initialisiert. Bild
14-23 zeigt den Sachverhalt bei einer "tiefen" Kopie.

Kopie Kreiseck-Objekt Kopie von

—\ Kreis-Objekt

:Kreiseck :Kreiséck

Kreis :Kreis

~_" ~_"
= =

L

Kopie von
Eck-Objekt

Bild 14-23 "tiefe" Kopie

Das unten stehende Beispiel demonstriert die Realisierung einer "tiefen" Kopie. Die
Klasse MyClass enthalt eine Referenz auf die Klasse Mini (siehe auch Bild 14-24
und Bild 14-25). Beim Anlegen eines Objektes vom Typ MyClass wird auch die Klas-
se Mini instantiiert. Beim Kopieren Uber die Uberschriebene Methode clone () wird
auch das Objekt der Klasse Mini mit kopiert.

Die Datenfelder der Objekte, auf welche die Referenzen orig und kopie zeigen,
kénnen daher véllig unabhéngig voneinander veréndert werden.

// Datei: Clone2.java

class Mini implements Cloneable

{

public int x 1;
public int y = 1;

public Object clone() throws CloneNotSupportedException
{
return super.clone();
}
}

class MyClass implements Cloneable
{

public int var = 1;

public Mini ref = new Mini();

public Object clone() throws CloneNotSupportedException

{
MyClass tmp = (MyClass) super.clone(); // Flache Kopie
tmp.ref = (Mini) ref.clone(); // Kopieren des Objektes, auf
return tmp; // das die Referenz zeigt

536

Kapitel 14

public class Clone2

{

public static void main (String[] args)

{

MyClass orig

MyClass kopie = (MyClass) orig.clone(); //
kopie.var = 2; // Datenfeld der Kopie &ndern
kopie.ref.x = 2; // Datenfeld der Kopie &ndern
System.out.println ("Original:");
System.out.println ("var = " + orig.var);
System.out.println ("Mini.x = " + orig.ref.x +

" Mini.y = " + orig.ref.y);
System.out.println();
System.out.println ("Kopie:");
System.out.println ("var = " + kopie.var);
System.out.println ("Mini.x = " + kopie.ref.x +

" Mini.y = " + kopie.ref.y);

= new MyClass();

Die Ausgabe des Programms ist:

Origin
var =
Mini.x

Kopie:
var =
Mini.x

al:

1

=1 Mini.y =1
2

=2 Mini.y =1

throws

CloneNotSupportedException

Kopie erstellen

Die folgenden Bilder zeigen nochmals den Vorgang des Klonens fiir das obige Pro-
gramm. Das erste Bild zeigt den Zustand der Objekte nach der Programmzeile

MyClass tmp

= (MyClass)

in der clone () -Methode der Klasse MyClass:

tmp

Bild 14-24 Objektzustand nach dem Aufruf super.clone ()

var = 1

:MyClass

var = 1

Nach der Ausfiihrung der folgenden Codezeile

tmp.ref = (Mini)

ref.clone();

super.clone () ;

ref N

< X

]
—_

Schnittstellen 537

in der clone ()-Methode sehen die Verhaltnisse folgendermafBen aus:

NiyCiass i
var = 1 /_\/ X =1
y=1

ref

tmp :MyClass :Mini

var = 1

< X
I
—_

ref

Bild 14-25 Objektzustédnde nach Aufruf der c1one () -Methode der Klasse Mini

14.7 Ubungen

Aufgabe 14.1: Testschnittstelle fiir die Klasse Person

Implementieren Sie in der Klasse Person das Interface Testschnittstelle:
// Datei: Testschnittstelle.java

public interface Testschnittstelle

{

public void print();
}

Die Methode print () soll die Werte aller Datenfelder eines Objektes ausgeben.
// Datei: Person.java

import java.util.Scanner;

public class Person

{ private String name;

private String vorname;

public Person()

{

Scanner eingabe = new Scanner (System.in);

try

{
System.out.print ("\nGeben Sie den Nachnamen ein: ");
name = eingabe.nextLine();
System.out.print ("\nGeben Sie den Vornamen ein: ");

vorname = eingabe.nextLine();

538 Kapitel 14

catch (Exception e)

{
System.out.println ("Eingabefehler");
System.exit (1);

Verwenden Sie zum Testen die Klasse TestPerson:

// Datei: TestPerson.java

public class TestPerson
{
public static void main (String [] args)
{
Person refPerson = new Person();
refPerson.print () ;

Aufgabe 14.2: Implementieren von mehreren Schnittstellen

Die Klasse Laserdrucker soll die Schnittstelle Drucker, die Klasse Faxgeraet
die Schnittstelle Fax und die Klasse Kombigeraet soll die beiden Schnittstellen Fax
und Drucker implementieren. Die Schnittstellen Fax und Drucker sind gegeben
durch:

// Datei: Fax.java

public interface Fax

{
String faxsimulation = ;
public void senden (String sendeRef);

}
// Datei: Drucker.java

public interface Drucker
{
String drucksimulation = .
public void drucken (String druckRef)

<<interface>> <<interface>>
Drucker Fax

Laserdrucker Kombigeraet Faxgeraet

Bild 14-26 Klassendiagramm mit Schnittstellen Drucker und Fax

Schnittstellen

539

Schreiben Sie die Klassen Laserdrucker, Faxgeraet und Kombigeraet SO,

dass die Klasse TestGeraete

// Datei: TestGeraete.java

public class TestGeraete

{

public static void main (String[] args)

{

Laserdrucker 11 = new Laserdrucker();
Laserdrucker 12 = new Laserdrucker();
Faxgeraet fl = new Faxgeraet();
Faxgeraet f2 = new Faxgeraet();
Kombigeraet k1l = new Kombigeraet ();
Kombigeraet k2 = new Kombigeraet ();

fl.senden ("Dies ist ein Test");
f2.senden ("Dies ist ein Test");
11.drucken ("Dies ist ein Test");
12.drucken ("Dies ist ein Test");
kl.senden ("Dies ist ein Test");
k2.senden ("Dies ist ein Test");
k1l.drucken ("Dies ist ein Test");
k2.drucken ("Dies ist ein Test");

die folgende Ausgabe erzeugt:

Absender ist: Faxl

Das Senden wird simuliert
Dies ist ein Test

Absender ist: Fax2

Das Senden wird simuliert
Dies ist ein Test

Drucker Laserl meldet sich

Das Drucken wird simuliert
Dies ist ein Test

Drucker Laser2 meldet sich

Das Drucken wird simuliert
Dies ist ein Test

Absender ist: Kombigeratl

Das Senden wird simuliert
Dies ist ein Test

Absender ist: Kombigerdat2

540 Kapitel 14

Das Senden wird simuliert
Dies ist ein Test

Kombigerdt Kombigerdtl meldet sich

Das Drucken wird simuliert
Dies ist ein Test

Kombigerdt Kombigerdt2 meldet sich

Das Drucken wird simuliert
Dies ist ein Test

Aufgabe 14.3: Vererbung und Schnittstellen

Der folgende Java-Code ist zu analysieren. AnschlieBend sind die folgenden beiden
Aufgaben zu lésen.

// Datei: Adressierbar.java

public interface Adressierbar

{
public void setEmpfaenger (String[] adresse);
public String[] getEmpfaenger ();

}

// Datei: Versendbar.java
public interface Versendbar extends Adressierbar
{
public void setAbsender (String[] absender);
public String[] getAbsender();
public int getGewicht () ;
}

// Datei: Postamt.java
public class Postamt

{
}

// Datei: Sendung.java
public class Sendung

{
}
// Datei: Start.java

public class Start
{
public static void main (String[] args)
{
int gewicht = 80;
String[] an = {"Thomas Vollmer",
"Flandernstrasse 101", "73730 Esslingen"};
{"Bernhard Hirschmann",
"Holderlinweg 161", "73728 Esslingen"};

String[] von

Schnittstellen 541

Sendung brief = new Sendung (an, von, gewicht);
Postamt post = new Postamt();
post.versende (brief);

}

a) Implementieren Sie die versende ()-Methode der Klasse Postamt. Es soll ein
Ubergabeparameter vom Typ Versendbar entgegengenommen werden. AuBer-
dem soll folgende Bildschirmausgabe erfolgen:

Sendung wurde entgegengenommen und wird jetzt versandt.
Absender: Bernhard Hirschmann HOlderlinweg 161 73728 Esslingen
Empfanger: Thomas Vollmer Flandernstrasse 101 73730 Esslingen

b) Schreiben Sie eine glltige Implementierung der Klasse Sendung, welche die
Schnittstelle versendbar implementiert, sodass ein Objekt der Klasse Sendung
von der Methode versenden () der Klasse Postamt verarbeitet werden kann.

Aufgabe 14.4: Schnittstelle Musikinstrument

Schreiben Sie die Schnittstelle Musikinstrument mit der Methode spielelIn-
strument (). Implementieren Sie diese Schnittstelle in den beiden Klassen Trom-
mel und Trompete. Das Musikinstrument soll hierbei beim Spielen eine entspre-
chende Ausgabe auf dem Bildschirm machen. So soll z. B. eine Trommel am Bild-
schirm "Trommel, Trommel" ausgeben. Zum Testen der Klassen soll die Methode
main () in der Klasse Musikantenstadl mehrere Musikinstrumente erzeugen und
abspielen.

Aufgabe 14.5: Bildschirmschoner

Die unten abgedruckte Klasse BildschirmschonerTest simuliert einen einfachen
Bildschirmschoner, indem sie mehrere Objekte geometrischer Figuren erzeugt und
deren Gr6Be und Position verandert. In diesem Beispiel verwendet die Klasse Bild-
schirmschonerTest die zwei Klassen Kreis und Quadrat. Damit auch andere
geometrische Figuren in den Bildschirmschoner integriert werden kdnnen, werden
zwei Schnittstellen verwendet, die von den verschiedenen Klassen zu implementie-
ren sind.

Die Schnittstelle Position enthalt die Methode

verschiebe (float x, float vy),

um die Position einer Figur zu &ndern. Sie verandert die Position eines Kérpers da-
durch, dass sie die Ubergebenen Parameter zu den aktuellen Koordinaten hinzu-
addiert.

Die Schnittstelle Groesse enthélt die Methode

aendereGroesse (float faktor),

um die GroBe einer Figur andern zu kénnen. Die Methode aendereGroesse () soll
eine Exception bei negativem Parameter werfen. Sie kann die GréBe verandern, in

542 Kapitel 14

dem sie den Radius des Kreises mit einem Faktor multipliziert, der als Parameter
Ubergeben wird.

Die Klasse Kreis implementiert beide Schnittstellen. Zusétzlich enthalt die Klasse
Kreis ein Datenfeld radius vom Typ float sowie zwei float-Datenfelder, um
den Mittelpunkt des Kreises zu definieren (alternativ kénnen Sie fiir den Mittelpunkt
auch die Klasse Punkt aus friiheren Ubungen verwenden). Die Klasse Quadrat im-
plementiert nur die Schnittstelle Position. AuBerdem enthalt die Klasse Quadrat
ein Datenfeld seitenlaenge vom Typ float und zwei f1loat-Datenfelder, um die
linke obere Ecke des Quadrats zu bestimmen. Auch hier kénnen Sie alternativ die
Klasse Punkt wieder verwenden. Bei jeder Anderung der GréBe oder der Position
einer geometrischen Figur soll ein entsprechender Text auf der Konsole ausgegeben
werden. Eine grafische Ausgabe der geometrischen Figuren ist in dieser Aufgabe
nicht beabsichtigt.

Verwenden Sie bitte folgende Testklasse:
// Datei: BildschirmschonerTest. java
import java.util.Random;

public class BildschirmschonerTest

{

public static void main (String [] args)
{

Random random = new Random() ;

for (int i = 0; i <= 10; i++)

{
Object koerper;

if (random.nextBoolean())

{

koerper = new Kreis (2.0f);
}
else
{
koerper = new Quadrat (3.0f);

}

if (koerper instanceof Position)
{
Position position = (Position) koerper;
position.verschiebe (random.nextFloat(),
random.nextFloat ());

}

if (koerper instanceof Groesse)

{

Groesse groesse = (Groesse) koerper;

try
{

groesse.aendereGroesse (random.nextFloat()-0.5f);

}

Schnittstellen 543

catch (Exception e)

{

e.printStackTrace();

}

}
Aufgabe 14.6: Schnittstelle Cloneable

Die Ubungsaufgabe 14.2 soll erweitert werden, damit Faxgeraet, Kombigeraet
und Laserdrucker geklont werden kdnnen. Dazu missen die Klassen die Schnitt-
stelle Cloneable implementieren und um die Methode clone () erweitert werden.
Innerhalb der clone ()-Methode muss die Instanzvariable geraeteId neu gesetzt
werden und die Anzahl der Gerate muss erhéht werden.

Die Geradte Kombigeraet und Laserdrucker sollen um das Datenfeld anzahl-
Druckpapier des Typs int erweitert werden. Die Anzahl der Druckpapiere sollte
beim Konstruktoraufruf mitgegeben werden. Bei jedem Druck muss anzahlDruck-—
papier um eine Seite dekrementiert werden. Beim Druck muss nicht gepriift wer-
den, ob noch Papier vorhanden ist.

Prifen Sie anhand folgender Testklasse die Funktion Ihrer Anpassungen:

// Datei: TestGeraete.java

public class TestGeraete

{
public static void main (String[] args)
throws CloneNotSupportedException
{

Laserdrucker 11 = new Laserdrucker (120);
Laserdrucker 12 = 1ll.clone();

11.drucken ("Dies ist ein Test");
11.drucken ("Dies ist ein Test");

// Das geklonte Objekt besitzt vor dem folgenden

// Druckvorgang weiterhin 120 Druckpapiere und ist somit
// keine Referenz auf den ersten Laserdrucker.
12.drucken ("Dies ist ein Test");

}
Aufgabe 14.7: Flughafen-Projekt — Simulator und Schnittstellen

Innerhalb dieser Projektaufgabe soll die bisherige Anwendung um einen Flugzeug-
simulator erweitert werden. Dieser hat die Aufgabe, den Landeanflug und den Start-
vorgang eines Flugzeugs zu simulieren, indem er den Statuswechsel des Flugzeugs
anfordert.

544 Kapitel 14

Der Status eines Flugzeugs soll nun nicht mehr in den Methoden flr die einzelnen
Lande-/Startphasen gesetzt werden, sondern zentral Uber eine neue Methode. Diese
Methode hat den folgenden Methodenkopf:

void aktualisiereStatus() throws StatusUngueltigException

Die Methode ermittelt als Erstes bei jedem Aufruf den nachsten Status, Uberprift
dann, ob dieser gesetzt werden kann, und setzt — wenn mdglich — den neuen Status.
Ist der neue Status nicht méglich, soll eine Exception vom Typ StatusUngueltig-
Exception geworfen werden. So muss z. B. verhindert werden, dass das Flugzeug
den Landeanflug einleitet, bevor diesem eine Landebahn zugewiesen wurde.

Schreiben Sie als nachstes die Klasse FlugzeugSimulator. Bei dieser Klasse soll
das zu simulierende Flugzeug Uber eine Methode angemeldet werden. Zusatzlich
erhalt die Klasse FlugzeugSimulator eine Methode aktualisiereStatus(),
welche bei jedem Aufruf die gleichnamige Methode aktualisiereStatus () des
zu simulierenden Flugzeugs aufruft. Beachten Sie dabei, dass der Flugzeugsimulator
derzeit nur ein einziges Flugzeug simulieren soll. Schreiben Sie auch die Klasse
StatusUngueltigException und testen Sie lhre Anderungen, indem Sie die
Klasse Client anpassen.

Der Flugzeugsimulator soll nun zusétzlich bei Statusdnderung des simulierten Flug-
zeuges angemeldete Interessenten Uber die Statusdnderung benachrichtigen. Ein
solches Konzept wurde schon in Kapitel 14.2 vorgestellt und soll nun in ahnlicher
Form implementiert werden. Ein Interessent — also Nachrichtenempfanger — muss
folgendes Interface implementieren:

public interface FlugzeugListener

{
public void meldeStatusAenderung (Flugzeug flugzeug);
}

Um Benachrichtigungen zu empfangen, muss sich der Nachrichtenempfanger bei
dem Flugzeugsimulator anmelden. Das Anmelden geschieht Uber die folgende Me-
thode:

public void setFlugzeugListener (FlugzeugListener flugzeugListener)

{

this.flugzeugListener = flugzeuglListener;

}

Schreiben Sie eine Klasse, welche die Schnittstelle FlugzeugListener implemen-
tiert und bei jeder Statusanderung die Methode print () der Klasse Flugzeug auf-
ruft. Melden Sie ein Objekt dieser Klasse beim Flugzeugsimulator an und testen Sie
Ihre Anwendung.

Kapitel 15

Geschachtelte Klassen

15.1
15.2
15.3
15.4
15.5
15.6

Elementklassen

Lokale Klassen

Anonyme Klassen

Statisch geschachtelte Klassen und Schnittstellen

Realisierung von geschachtelten Klassen
Ubungen

15 Geschachtelte Klassen

Geschachtelte Klassen werden in Java dazu eingesetzt, um Typen, die fir die Imple-
mentierung einer Klasse benétigt werden, zu verbergen.

|
Mit geschachtelten Klassen kdnnen Typen gebildet werden, die nur fir /
e

die Implementierung innerhalb einer Klasse benétigt werden. In den
Aufrufschnittstellen nach auBen sind diese Typen nicht sichtbar und
kénnen damit bei Bedarf problemlos geandert werden.

~

i

Fiar geschachtelte Klassen sind auch die Begriffe innere Klasse, eingebettete
Klasse, nested class bekannt.

Es gibt verschiedene Arten von geschachtelten Klassen:

¢ die Elementklasse (gekapselt als ein Element in einer auBeren . |

Klasse), _ —
e die lokale Klasse (gekapselt in einem Block), P ~

e die lokale Klasse (gekapselt in einem Block) ohne Namen als so
genannte anonyme Klasse

e und die statisch geschachtelte Klasse.

Bild 15-1 zeigt, wie man sich die unterschiedlichen Arten von geschachtelten Klassen
bildlich vorstellen kann. Links ist ein Objekt einer Elementklasse zu sehen, das
innerhalb eines Objektes der umschlieBenden Klasse lebt. In der Mitte ist ein Objekt
einer lokalen bzw. anonymen Klasse zu sehen, das innerhalb einer Instanzmetho-
de eines Objektes der umschlieBenden Klasse lebt. Das Objekt der dargestellten
anonymen bzw. lokalen Klasse lebt damit nur wéhrend der Abarbeitung der Instanz-
methode. Rechts im Bild ist ein Objekt einer lokalen bzw. anonymen Klasse zu se-
hen, das wahrend der Ausfiihrung einer Klassenmethode lebt.

___/ Outer

private static int i;

static void methodel ()

{

@

}
e static void methode2 ()

[\
Objekt einer Elementklasse lebt Objekt einer lokalen bzw. anony- Obijekt einer lokalen bzw. anony-
in einem umschlieBenden Objekt. men Klasse lebt in einer Instanz- men Klasse lebt in einer Klassen-
methode des umschlieBenden methode der umschlieBenden
Objektes. Klasse.

Bild 15-1 Innere Objekte "leben" in duBeren Objekten

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_15,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Geschachtelte Klassen 547

Eine statisch geschachtelte Klasse''® wird ebenfalls innerhalb einer umschlieBen-
den Klasse definiert, wie Bild 15-2 zeigt. Statisch geschachtelte Klassen werden
jedoch vom Compiler in zwei nebeneinander stehende Klassen umgesetzt. Diese
Klassen sind voneinander unabhéangig bis auf den gemeinsamen Namensraum.

Definition

class Outer

{ Outer

static class Inner
{
. Outer.Inner

}

}

Bild 15-2 Umsetzung einer statisch geschachtelten Klasse durch den Compiler.

Elementklassen, lokale Klassen, anonyme Klassen und statisch geschachtelte Klas-
sen sind grundlegend verschieden. Fur alle gemeinsam gilt jedoch:

Eine geschachtelte Klasse wird innerhalb einer umschlieBenden — -
Klasse definiert. ~ ~

In den folgenden Unterkapiteln werden die unterschiedlichen Arten von geschachtel-
ten Klassen ausfuhrlich vorgestellt.

15.1 Elementklassen

Eine Elementklasse ist — wie der Name schon sagt — ein Element einer Klasse. Da-
mit ist der Zugriffsschutz gleich wie bei den schon bekannten Elementen einer Klas-
se, den Datenfeldern und Methoden. Genauso wie man auf Instanzmethoden und
Instanzvariablen nur Gber die Referenz auf ein Objekt zugreifen kann, kann man
auch auf Objekte von Elementklassen nicht direkt zugreifen. Objekte von Element-
klassen werden immer Uber das umschlieBende Objekt angesprochen.

Als Zugriffsschutz fir eine Elementklasse existieren dieselben Még-
lichkeiten wie flir Methoden und Datenfelder:

® private, N | Vi
® protected, — -
® public /\
® und default. E

Bei duBeren Klassen gibt es jedoch nur den Zugriffsschutz public
und default.

"3 Java kennt nicht nur statisch geschachtelte Klassen, sondern auch statisch geschachtelte
Schnittstellen (siehe Kap. 15.4).

548 Kapitel 15

auBere Klasse

Datenfelder

Methoden

Bild 15-3 Geschachtelte Klasse als Element einer duBeren Klasse

=

Die Médglichkeit einer Instantiierung einer Elementklasse ist also an die Existenz
eines Objektes der umschlieBenden Klasse gebunden. Daraus folgt, dass nur tber
ein Objekt einer umschlieBenden Klasse ein Objekt einer Elementklasse erzeugt
werden kann.

Innere und auBere Klasse sind also vollkommen gleichberechtigt und genieBen keine
speziellen Privilegien bezlglich des gegenseitigen Zugriffs.

Ok

Bild 15-4 Wechselseitiger Zugriff zwischen Objekten der inneren und duBeren Klasse

Geschachtelte Klassen 549

Hier ein Beispiel fir die Syntax einer Elementklasse:

public class AeussereKlasse

{

class ElementKlasse

}

Welcher Zugriffsmodifikator fir eine Elementklasse verwendet wird, hdngt davon ab,
ob sie nur innerhalb der &uBeren Klasse sichtbar sein soll (private), innerhalb
eines Paketes (default bzw. protected), innerhalb einer Sohnklasse eines anderen
Paketes (protected) oder ob sie auch fir Klassen anderer Pakete sichtbar sein soll
(public). Wird eine Schnittstelle als Element einer Klasse definiert, so kénnen
entsprechend wie bei Elementklassen die Zugriffsmodifikatoren private, default,
protected und public verwendet werden.

Die Sichtbarkeit andert allerdings nichts an der Tatsache, dass ein Objekt einer
inneren Klasse nur mit Hilfe eines Objektes einer duBeren Klasse erzeugt werden
kann. Ist die Elementklasse und die duBere Klasse z. B. public, so kann von jeder
beliebigen Stelle eines Programms ein Objekt einer Elementklasse mit der folgenden
Anweisung erzeugt werden:

AuessereKlasse ref = new AuessereKlasse();
AuessereKlasse.ElementKlasse elem = ref.new ElementKlasse();

Die Notation erscheint zuerst ein bisschen seltsam — was sie wohl auch ist — doch
mit zunehmendem Verstandnis gewdhnt man sich schnell daran. Dass die Element-
klasse nur UGber den Namensraum der umschlieBenden Klasse — also mit der Punkt-
notation AuessereKlasse.ElementKlasse — angesprochen werden kann, klingt
logisch. Dagegen tut man sich wesentlich schwerer damit, dass mit ref .new Ele-
mentKlasse () ein Objekt der Elementklasse erzeugt wird.

Der Compiler macht daraus jedoch Folgendes, was wiederum verstéandlicher wirkt:

new AuessereKlasse.ElementKlasse (ref);

Wie aus der soeben gezeigten internen Darstellung des Compilers ersichtlich ist,
muss jede Elementklasse automatisch einen Konstruktor besitzen, der fiir den Pro-
grammierer unsichtbar als ersten Parameter die Referenz ref auf ein Objekt der um-
schlieBenden Klasse entgegennimmt. Diese Referenz wird in einem fir den Pro-
grammierer ebenfalls unsichtbaren, privaten Datenfeld des erzeugten Objektes der
Elementklasse abgespeichert. Diese Referenz gewéhrleistet damit den Zugriff auf
die Datenfelder und Methoden des umschlieBenden Objektes vom Objekt der
Elementklasse aus.

550 Kapitel 15

Heap

Objekt der
&uBeren Klasse p|

Datenfelder

Objekt der
inneren Klasse

versteckte
Referenz

Datenfelder

Bild 15-5 Zugriff eines Objektes einer inneren Klasse auf sein zugehdriges duBeres Objekt

Im folgenden Beispiel wird die Klasse Viewer1 dazu benutzt, um Bilder anzuzeigen.
Da nur bestimmte Formate unterstitzt werden, benutzt die Klasse viewerl eine
Elementklasse Typen, um abzuprifen, welche Bildformate erlaubt sind. Dabei wird
im Konstruktor des Viewers mit Hilfe eines Objektes der Klasse Typen abgeprift, ob
das Bild angezeigt werden kann. Es ist sinnvoll, die Klasse Typen als eine innere
Klasse zu entwerfen, da sie als eigene Klasse auBerhalb der Klasse viewerl kei-
nen Sinn macht.

// Datei: Viewerl.java

public class Viewerl // dussere Klasse
{

private String typ;

private String dateiname;

// Konstruktor der &duBeren Klasse
public Viewerl (String dateiname, String typ)
{
Typen refTyp = new Typen(); // Objekt der inneren
// Klasse erzeugen
this.typ = typ;
this.dateiname = dateiname;

if (refTyp.testTyp (typ)) // Methode fiir Objekt der
{ // Elementklasse
System.out.println ("Bild " + dateiname
+ " kann angezeigt werden!");
show () ; // Bild anzeigen
}
else

System.out.println ("Es werden nur die Formate: "
+ refTyp + " unterstitzt.");

Geschachtelte Klassen 551

public void show () // Methode der &uBeren
{ // Klasse
//Bild am Bildschirm anzeigen

}

private class Typen // innere Klasse
{

private String typl = "gif";

private String typ2 = "jpg";

private String typ3 = "bmp";

public boolean testTyp (String typ)
{
if (typl.equals (typ) ||
Il typ3.equals (typ))
return true;
return false;

typ2.equals (typ)

}

public String toString()

{
return typl + " " + typ2 + " " + typ3;
}

}
// Datei: TestViewer.java

public class TestViewer
{
public static void main (String[] args)
{
Viewerl bildl = new Viewerl ("C:\\verz\\Bild.jpg", "jpg");
Viewerl bild2 new Viewerl ("C:\\verz\\Bild.cpg", "cpg");

Die Ausgabe des Programmes TestViewer. java ist:

Bild C:\verz\Bild.jpg kann angezeigt werden!
Es werden nur die Formate: gif jpg bmp unterstiitzt.

Zu beachten ist bei dem obigen Programm, dass

® in der Elementklasse die Methode tostring(), die von der Klasse Object
ererbt ist, Uberschrieben wird. Die Methode tostring () wird automatisch aufge-
rufen, wenn die Stringreprasentation fir ein Objekt angefordert wird.

e die Codezeile Typen refTyp = new Typen() eine Kurzschreibweise fir die
Codezeile Viewerl.Typen refTyp = this.new Typen () ' ist. Die Kurz-
schreibweise ist selbstverstandlich aber nur innerhalb der duBeren Klasse erlaubt,
weil nur dort der Elementname Typen bekannt ist. Im Konstruktor der auBeren
Klasse wird also ein Objekt der Elementklasse erzeugt.

" Hierbei ist this eine Referenz auf das umschlieBende Objekt der Elementklasse.

552 Kapitel 15

® der Compiler bei der Kompilierung der Klasse viewer1 zwei .class-Dateien ge-
neriert, nAmlich die Dateien Viewerl.class und Viewer1STypen.class.

Einschrankungen fiir Elementklassen

® Elementklassen diirfen keine Klassenvariablen, Klassenmethoden oder statische
Klassen beinhalten. Klassenvariablen und Klassenmethoden sind nur bei einer
statischen geschachtelten Klasse erlaubt.

® Elementklassen dirfen nicht den gleichen Namen wie eine umschlieBende Klasse
besitzen.

15.2 Lokale Klassen

Innerhalb eines jeden Blockes (siehe Kap. 9.1.1) kénnen Deklarationsanweisungen
zwischen normalen Anweisungen stehen. Eine Deklarationsanweisung kann eine
Definition einer Variablen, aber auch die Definition eines neuen Datentyps — sprich
einer neuen Klasse — darstellen.

Lokale Klassen''® werden im Rahmen einer Deklarationsanweisung definiert. Ihr Giil-
tigkeitsbereich und ihre Sichtbarkeit erstreckt sich auf den umfassenden Block (ty-
pischerweise eine Methode). Im weiteren Verlauf werden lokale Klassen innerhalb
von Instanzmethoden und lokale Klassen innerhalb von Klassenmethoden
unterschieden.

/ Methodenkopf
// {
AuBere Klasse / cee
/ |-
/ Deklarations- Lokale Klasse
anweisun
Datenfelder / g
\
! tee \ Datenfelder
3 \
| Methode 1 | Anweisung \
\ oo N Methoden
\
| Methode2 ||\ \
. \ Deklarations-
. \ anweisung
° \\ e o0
\
| Methode n | \\ Anweisung
\
\ }
\

Bild 15-6 Eine lokale Klasse ist nur in ihrem umfassenden Block sichtbar.

Far lokale Klassen in Instanzmethoden gilt:

Da jede Instanzmethode auf die Datenfelder und Methoden ihres Objektes zugreifen
kann, besteht auch fir jedes Objekt einer lokalen Klasse — das sich innerhalb

15 | okale Schnittstellen gibt es nicht.

Geschachtelte Klassen 553

einer Instanzmethode befindet — die Mdglichkeit, auf die Instanzvariablen und In-
stanzmethoden ihres umschlieBenden Objektes zuzugreifen. Da jede Instanzmetho-
de auch auf die Klassenvariablen und Klassenmethoden der zugehdrigen Klasse zu-
greifen kann, hat jedes Objekt einer lokalen Klasse — das sich innerhalb einer In-
stanzmethode befindet — auch die Mdéglichkeit, auf die Klassenvariablen und Klas-
senmethoden der umschlieBenden Klasse zuzugreifen.

Fir lokale Klassen in Klassenmethoden gilt:

Da jede Klassenmethode auf die Klassenvariablen und Klassenmethoden der eige-
nen Klasse zugreifen kann, besteht auch fir jedes Objekt einer lokalen Klasse —
das sich innerhalb einer Klassenmethode befindet — die Mdoglichkeit, auf die
Klassenvariablen und Klassenmethoden der umschlieBenden Klasse zuzugreifen.

|

AN /
Lokale Klassen kénnen innerhalb eines Blockes definiert werden. Es —
gibt lokale Klassen somit in Instanzmethoden und in Klassenmetho-
den. Lokale Klassen sind nur in dem umschlieBenden Block sichtbar.

~

iy

Outer

private static int i;
static void methodel ()
| @

}

static void methode2 ()

(=)
[\

Objekt einer lokalen Klasse lebt in einer In- Objekt einer lokalen Klasse lebt in einer Klas-
stanzmethode des umschlieBenden Objektes. senmethode der umschlieBenden Klasse.

Bild 15-7 Lokale Klassen "leben" in Instanzmethoden und Klassenmethoden

Das folgende Beispiel zeigt eine lokale Klasse Inner, die in ihrem Konstruktor auf
ein Datenfeld der umschlieBenden Klasse zugreift.

// Datei: Outer.java

public class Outer

{

private int x;

public void methode ()
{
class Inner
{
Inner ()
{
// Zugriff auf Datenfeld der umschliessenden Klasse
System.out.println ("Wert des Datenfeldes x: " + x);

554 Kapitel 15

// Erzeugung eines Objektes der lokalen Klasse
new Inner();

}

public static void main (String[] args)
{
Outer ref = new Outer();
ref.methode () ;

Die Ausgabe des Programmes ist:

Wert des Datenfeldes x: 0

Man beachte, dass fiir lokale Klassen kein Zugriffsmodifikator verge- B
ben werden kann. Dies wiirde auch keinen Sinn machen, da die Klas- —
se sowieso nur innerhalb des Blockes glltig ist, in dem sie definiert ~

wurde.

Ein Objekt einer lokalen Klasse kann aber nicht nur auf alle Datenfelder und Metho-
den des umschlieBenden Objektes zugreifen, sondern auch auf alle als final de-
Klarierten lokalen Variablen und Ubergabeparameter der Methode, in der sich das
Objekt befindet. Fir alle mit final deklarierten lokalen Variablen, die von der loka-
len Klasse benutzt werden, erstellt der Compiler flr die lokale Klasse eine lokale Ko-
pie in Form einer privaten Instanzvariablen.

Lokale Klassen kénnen — unabhéngig davon, ob sie nun innerhalb . |
einer Instanzmethode oder einer Klassenmethode definiert werden — —
auf alle lokalen finalen Variablen innerhalb der umschlieBenden Me- /'@\
thode zugreifen. Einzige Voraussetzung ist, dass die lokale finale Va- =

riable vor der lokalen Klasse definiert wird.

Das folgende Beispielprogramm zeigt, wie ein Objekt einer lokalen Klasse auf lokale
Variable der umschlieBenden Methode zugreift.

// Datei: Outerl.java

public class Outerl
{
public void methode (final int y)
{
final int x = 1;
class Inner
{
Inner ()
{
// Zugriff auf lokale finale Variable x
System.out.println ("Wert der lokalen finalen"
+ " Variablen x: " + x);

Geschachtelte Klassen 555

// Zugriff auf einen finalen Ubergabeparameter
System.out.println ("Wert des Ubergabeparameters y: "
+Y);
}
}
// Erzeugung eines Objektes der lokalen Klasse
new Inner();

}

public static void main (String[] args)

{
Outerl ref = new Outerl();
ref.methode (7);

Die Ausgabe des Programmes ist:

Wert der lokalen finalen Variablen x: 1
Wert des Ubergabeparameters y: 7

Da der Compiler eine Kopie fir jede benutzte lokale Variable anlegt, ist es zwingend
erforderlich, dass diese Variablen £inal sind. Denn die Kopien der benutzten Vari-
ablen werden beim Konstruktoraufruf angelegt und mit den entsprechenden Werten
initialisiert. Da aber gewahrleistet sein muss, dass die Kopie sowie die originale
lokale Variable immer die gleichen Werte tragen, missen sie folglich £inal sein, um
zu verhindern, dass die Werte verandert werden kénnen.

Lokale Klassen trifft man oft bei der Oberflaichenprogrammierung an,
wo diese entweder eine Adapterklasse ableiten oder eine Schnitt-
stelle implementieren.

AN J /
h\\\\@
a

Diese Adapterklassen und Schnittstellen, von denen die lokalen Klassen ableiten,
bzw. die diese implementieren, sind Klassen bzw. Schnittstellen aus der Java-API.
Diese Klassen und Schnittstellen werden zur Ereignisbehandlung von Oberflachen-
komponenten verwendet.

|
Da fiir jede Oberflachenkomponente in der Regel eine eigenstandige / B
Ereignisbehandlung erfolgen muss — diese Behandlung aber nur fir —
die einzelne Komponente verwendet werden kann — ist es sinnvoll, ~

diese Ereignisbehandlung in einer lokalen Klasse zu kapseln.

~

|

Einschrankungen fiir lokale Klassen

® | okale Klassen dirfen wie die Elementklassen keine als static deklarierten Da-
tenfelder, Methoden oder Klassen definieren.

® |okale Klassen durfen nicht den gleichen Namen wie die umschlieBende Klasse
haben.

556 Kapitel 15

® Die lokale Klasse darf in der Klassendeklaration keinen der Modifikatoren pri-—
vate, protected, public oder static verwenden. All diese Modifikatoren sind
gebrauchlich fir Elemente einer Klasse — eine lokale Klasse ist aber kein Element
einer Klasse.

15.3 Anonyme Klassen

Anonyme Klassen sind lokale Klassen chne Namen, von denen sofort bei der Klas-
sendefinition ein Objekt erzeugt wird. Da die Klasse keinen Namen tragt, kann man
nur ein einziges Exemplar der Klasse erzeugen. Anonyme Klassen kénnen genauso
wie lokale Klassen innerhalb von Instanzmethoden und Klassenmethoden leben.

und instantiiert. Da eine anonyme Klasse keinen Namen hat, kénnen

Anonyme Klassen werden innerhalb eines Ausdrucks definiert _ @ —
auch keine Konstruktoren geschrieben werden. =

Um Objekte anonymer Klassen initialisieren zu kénnen, wurde in Java 1.1 der nicht
statische Initialisierungsblock eingefiihrt (siehe Kap. 10.4.3).

klassen abgeleitet oder implementieren eine Schnittstelle zur Ereignis-

Anonyme Klassen werden genau wie lokale Klassen oft von Adapter- @ —
behandlung. =

Das folgende Beispiel zeigt das schon bekannte Anwendungsbeispiel eines Viewers,
der Bilder anzeigen soll. Hierbei wird eine anonyme Klasse definiert, die eine Schnitt-
stelle implementiert.

// Datei: Viewer2.java

interface ITypen
{

public boolean testTyp();
}

public class Viewer2

{
private String bildTyp;
private String dateiname;

// Lokale Variablen einer umschlieBenden Methode k&nnen nur dann
// in anonymen oder lokalen Klassen verwendet werden, wenn diese
// final sind.
public Viewer2 (String dateiname, final String typ)
{

bildTyp = typ;

this.dateiname = dateiname;

// Erzeugung und Definition der anonymen Klasse, welche die
// Schnittstelle ITypen implementiert. Dabei wird das

Geschachtelte Klassen 557

// Schlisselwort implements nicht verwendet. Die Erlduterung
// folgt nach dem Beispiel.

ITypen refTyp = new ITypen/|()

{

private String typl = "gif";
private String typ2 = "jpg";
private String typ3 = "bmp";
public boolean testTyp()
{
if (typl.equals (typ) || typ2.equals (typ) ||
typ3.equals (typ))
{
return true;
}
return false;
}
public String toString()
{
return typl + " " + typ2 + " " + typ3;

}

}; // Ende der anonymen Klasse

// Zugriff auf die Methode der anonymen Klasse
if (refTyp.testTyp())
System.out.println ("Bild " + dateiname +
" kann angezeigt werden!");
else
System.out.println ("Es werden nur die Formate: "
+ refTyp + " unterstiitzt.");

}

public void show()
{

//Bild am Bildschirm anzeigen

}

Objekte anonymer Klassen werden durch eine spezielle Variante des new-Opera-
tors erzeugt. Dabei hat die folgende Deklarationsanweisung eine Bedeutung, die
nicht ganz einfach ersichtlich ist.

ITypen refTyp = new ITypen()
{
//Datenfelder und Methoden der anonymen Klasse

}i

Zum Verstandnis soll vergleichsweise eine Ersatzdarstellung fur diese Deklarations-
anweisung betrachtet werden:

class Viewer2$l implements ITypen

{
//Datenfelder und Methoden der Klasse

}
ITypen refTyp = new Viewer2$1();

558 Kapitel 15

Von der Bedeutung her ist die Ersatzdarstellung gleichwertig mit der obigen Deklara-
tionsanweisung. Der Name der anonymen Klasse vViewer2$1 kann allerdings vom
Programmierer nicht verwendet werden. Der Compiler erzeugt fur die anonyme
Klasse in der Klasse vViewer2 eine Datei mit dem Namen vViewer2$1.class. FUr
jede weitere anonyme Klasse innerhalb der Klasse viewer2 wirde der Compiler
einfach die . class-Dateien weiter durchnummerieren.

Doch nun zurlck zu der eigentlichen Bedeutung der Deklarationsanweisung.

Mit dem Ausdruck new ITypen () und den nachfolgenden geschweif-

ten Klammern wird ausgesagt, dass die in den geschweiften Klam- |
mern definierte anonyme Klasse die Schnittstelle ITypen implemen- — -
tiert. Gleichzeitig wird mit dieser Anweisung ein Objekt dieser anony- -~ ~
men Klasse angelegt und die zurlickgegebene Referenz auf die =
Schnittstelle ITypen gecastet. -

Eine anonyme Klasse kann auch von einer anderen Klasse ableiten. Dies wird in
dem folgenden Codestlck gezeigt:

Object ref = new Object ()

{
public String toString()
{

return super.toString() .toUpperCase() ;
}
bi

Zum Verstandnis soll auch hier die entsprechende Ersatzdarstellung betrachtet
werden. Es soll angenommen werden, dass diese anonyme Klasse in der Klasse
Viewer?2 unterhalb der anonymen Klasse vom Typ ITypen definiert wird. In diesem
Fall wirde der Compiler eine Klasse mit dem Namen vViewer2$2 generieren:

class Viewer2$2 extends Object
{
// Uberschreiben der toString()-Methode der Klasse Object
public String toString()
{
return super.toString() .toUpperCase();
}

}
Object ref = new Viewer2$2();

Anonyme Klassen implementieren entweder eine Schnittstelle oder B
leiten von einer Klasse ab und Uberschreiben deren Methoden. Es —
kénnen nur die Methoden der implementierten Schnittstelle bzw. der -~ -~

Vaterklasse aufgerufen werden.

Da immer nur die Methoden der Schnittstelle bzw. die Methoden der Basisklasse
einer anonymen Klasse angesprochen werden kénnen, macht es keinen Sinn, zu-
satzliche Methoden, die public sind, in der anonymen Klasse zu definieren. Diese
zusatzlichen Methoden kdnnten von auBBen gar nicht angesprochen werden.

Geschachtelte Klassen 559

Das individuelle Uberschreiben von Methoden fiir eine Aufzdhlungskonstante bei
Aufzahlungstypen wird ebenfalls mit Hilfe einer anonymen Klasse realisiert. Dies soll
an folgendem Beispiel gezeigt werden:

// Datei: AmpelTest.java
enum Ampel
{
ROT,
GELB,
GRUEN
{ ..
// Uberschreiben der toString()-Methode der Klasse Object
// fiur die Aufzdhlungskonstante GRUEN.
public String toString()
{
return super.toString() .toLowerCase();
}
}i
}

public class AmpelTest
{
public static void main (String[] args)
{
Ampel ampl = Ampel.ROT;
Ampel amp2 = Ampel.GELB;
Ampel amp3 = Ampel.GRUEN;

System.out.println (ampl);
System.out.println (amp2);
System.out.println (amp3);

Die Ausgabe des Programmes ist:

ROT
GELB

II gruen

Fir die Aufzahlungskonstante GRUEN wird die toString ()-Methode Uberschrieben.
Beim Aufruf der tostring ()-Methode fir die Aufzahlungskonstante GRUEN werden
damit Kleinbuchstaben anstatt GroBbuchstaben ausgegeben. Da der Compiler fir
jede Aufzahlungskonstante ein Objekt des Aufzdhlungstyps anlegt, wird im obigen
Programmcode mit

GRUEN
{
public String toString()
{
return super.toString() .toLowerCase();
}
}i

560 Kapitel 15

eine anonyme Klasse angelegt, die von der Klasse Ampel ableitet und die Methode
toString () Uberschreibt. Der Compiler generiert auch eine entsprechende Datei
Ampel$l.class. Die Ersatzdarstellung fir die Deklarationsanweisung sieht damit
folgendermafen aus:

class Ampel$l extends Ampel
{

public String toString()

{

return super.toString().toLowerCase();

}
}
public static final Ampel GRUEN = new Ampel$l();

Initialisierung des von der Basisklasse ererbten Anteils in einem Sohnobjekt

Da eine anonyme Klasse keinen Konstruktor besitzt, kann auch nicht mit Hilfe des
Schlisselwortes super ein Konstruktor mit Parametern in der Basisklasse aufge-
rufen werden. Doch auch hierfir gibt es eine Lésung, die in folgendem Beispiel vor-
gestellt werden soll:

// Datei: Outer2.java
class Basisklasse

{

private int x;

public Basisklasse (int x)
{
System.out.println ("Wert der Variablen x: " + x);
}
}

public class Outer?2
{
public Outer2 (int x)
{
// Es wird ein Objekt der anonymen Klasse, die von Basisklasse
// abgeleitet ist, angelegt. Nach der Erzeugung erfolgt ein
// Cast auf die Basisklasse. x ist der Parameter fiir den Kon-
// struktor der Basisklasse.
Basisklasse refB = new Basisklasse (x)
{
// Uberschriebene Methoden
}i
}
public static void main (String[] args)
{
Outer2 out = new Outer2 (10);
}

Die Ausgabe des Programmes ist:

Wert der Variablen x: 10

Geschachtelte Klassen 561

Die Parameter fiir die Basisklasse werden einfach in die runden Klammern geschrie-
ben. Diese Parameter werden dann an den entsprechenden Konstruktor der Basis-
klasse weitergegeben.

Einschrankungen fiir anonyme Klassen

® Anonyme Klassen diirfen keine als static deklarierten Datenfelder, Methoden
oder Klassen definieren.

® Anonyme Klassen kénnen keinen Konstruktor haben, da sie auch keinen Namen
tragen.

® \on anonymen Klassen kann nur eine einzige Instanz erzeugt werden. Deshalb
sollte man lokale Klassen oder Elementklassen den anonymen Klassen dort vor-
ziehen, wo man mehrere Instanzen einer inneren Klasse ben6tigt.

15.4 Statisch geschachtelte Klassen und Schnittstellen

Statisch geschachtelte Klassen und statisch geschachtelte Schnittstellen wer-
den auch als so genannte statische Top-Level-Klassen bzw. statische Top-Level-
Schnittstellen bezeichnet. Auch wenn eine statisch geschachtelte Klasse bis auf
das Schlisselwort static identisch definiert wird wie eine Elementklasse, so ist
doch gerade dies der entscheidende Unterschied. Bei Elementklassen kennt ein ein-
geschlossenes Objekt sein umgebendes Objekt und umgekehrt. Bei statischen Top-
Level-Klassen gibt es diesen Bezug nicht.

Bei statischen Top-Level-Elementen braucht man kein Objekt einer — -
auBeren Klasse, um ein Objekt einer inneren Klasse zu erzeugen. s ~

Eine geschachtelte Top-Level-Klasse oder eine geschachtelte Top-Level-Schnitt-
stelle wird definiert als ein Element einer anderen Top-Level-Klasse oder einer ande-
ren Top-Level-Schnittstelle, welches den Modifikator static aufweist.

Das SchllUsselwort static hat zur Konsequenz, dass diese Klasse N
bzw. diese Schnittstelle sich vollkommen gleich wie jede andere nor- _ _
male Top-Level-Klasse bzw. jede andere Top-Level-Schnittstelle ver- /\
halt, mit dem Unterschied, dass die geschachtelte Klasse (ber den =
Namen der umschlieBenden Klasse angesprochen wird. =

So wird eine geschachtelte Top-Level-Klasse z. B. Uber AeussereKlasse.Inne-
reKlasse aufgerufen. Damit bieten geschachtelte Top-Level-Klassen die Besonder-
heit, dass man zusammengehérige Klassen im Namensraum der umfassenden Klas-
se gruppieren kann und durch den gemeinsamen Namensraum die Zusammenge-
hoérigkeit demonstriert wird. Das folgende Beispiel zeigt geschachtelte Top-Level-
Klassen und deren Instantiierung:

// Datei: TopLSchichtl.java

public class TopLSchichtl
{

562

Kapitel 15

/7

Datenfelder

public TopLSchichtl ()

{

}

System.out.println ("TopLSchichtl-Konstruktor");

public static class TopLSchicht2

{

}

// Datenfelder
public TopLSchicht2()
{
System.out.println ("TopLSchicht2-Konstruktor");
}

public static class TopLSchicht3
{
// Datenfelder
TopLSchicht3 ()
{
System.out.println ("TopLSchicht3-Konstruktor");
}

// Datei: TestTopLevel.java

public class TestTopLevel

{

public static void main (String[] args)

{

TopLSchichtl refSchichtl = new TopLSchichtl();

TopLSchichtl.TopLSchicht2 refSchicht2
= new TopLSchichtl.TopLSchicht2();

TopLSchichtl.TopLSchicht2.TopLSchicht3 refSchicht3
= new TopLSchichtl.TopLSchicht2.TopLSchicht3();

Die Ausgabe des Programmes ist:

TopLSchichtl-Konstruktor
TopLSchicht2-Konstruktor

TopLSchicht3-Konstruktor

Bei geschachtelten Top-Level-Klassen ist das Schliisselwort static immer explizit
anzugeben. Bei geschachtelten Schnittstellen oder Klassen, die in Schnittstellen ge-
schachtelt werden, kann man das Schlisselwort static aber auch weglassen, da in
Schnittstellen geschachtelte Klassen oder Schnittstellen implizit als static betrach-
tet werden. Ebenso sind geschachtelte Schnittstellen innerhalb von Klassen implizit
static. Folgendes Beispiel zeigt das Verschachteln von Klassen und Schnittstellen:

Geschachtelte Klassen

563

class AeussereKlasse

{

static class InnereKlasse

{

}

interface InnereSchnittstelle

{

}
}

interface AeussereSchnittstelle

{

interface InnereSchnittstelle
{

}
class InnereKlasse

{

}
}

Normalerweise kann innerhalb einer Schnittstelle keine Methodenimplementierung
erfolgen. Jedoch kann eine statische geschachtelte Klasse ein Teil einer Schnittstelle
sein. Die Regelungen von Schnittstellen werden nicht verletzt, da eine statisch ge-
schachtelte Klasse in einer Schnittstelle selbst eine Top-Level-Klasse darstellt und
nur Uber den Namensraum mit der Schnittstelle gekoppelt ist. Zu beachten ist, dass
geschachtelte Top-Level-Klassen bzw. Schnittstellen nur innerhalb von Top-Level-
Klassen bzw. -Schnittstellen und nicht in einer sonstigen geschachtelten Klasse (Ele-

mentklasse, lokale Klasse, anonyme Klasse) geschachtelt werden kénnen.

class A

{

static class B
{

}

interface A

{

interface B
{

}
}

class A

{

interface B
{

}
}

interface A

{

class B
{

}
}

Bild 15-8 Geschachtelte Top-Level-Klassen und Top-Level-Schnittstellen

564 Kapitel 15

15.5 Realisierung von geschachtelten Klassen

Um das Verstandnis flr geschachtelte Klassen abzurunden, ist es hilfreich, sich an-
zusehen, wie der Compiler geschachtelte Klassen umsetzt. Ein Werkzeug namens
javap wird mit dem JDK mitgeliefert. Mit Hilfe von javap ist es méglich, eine
.class-Datei zu disassemblieren, das heiBt aus Bytecode den Coderahmen des
urspringlichen Quellcodes herzustellen. Damit hat man die Mdglichkeit zu sehen,
wie der Java-Compiler geschachtelte Klassen umsetzt. Der Coderahmen umfasst die
Definition der Klassen mit Datenfeldern und Methodenkdpfen. Dabei kénnen die
zuséatzlichen Datenfelder und Methoden, die vom Compiler zur Realisierung einer
geschachtelten Klasse hinzufligt werden, sichtbar gemacht werden.

Elementklassen mit Zugriff auf die Datenfelder der umschlieBenden Klasse

Es soll betrachtet werden, wie es einer Elementklasse ermdglicht wird, auf die Daten-
felder eines auBeren Objektes zuzugreifen:

// Datei: Outer3.java
public class Outer3
{

private int x = 1;

public class Inner
{
public Inner ()
{
x = x + 10; // Zugriff auf Datenfeld der duBeren Klasse

}

Wird die Bytecode-Datei Outer3.class disassembliert, so erhdlt man folgende
Ausgabe''®:

// RAusgabe des Disassemblierers bei Eingabe javap -private Outer3
public class Outer3 extends java.lang.Object
{

private int x;

public Outer3(); //Default-Konstruktor

// zusatzliche Methode, um Datenfeld x zu schreiben
static int access$002 (Outer3, int);'’
// zusatzliche Methode, um Datenfeld x zu lesen
static int access$000 (Outer3);

}

// Ausgabe des Disassemblierers bei Eingabe

// javap -private Outer3S$Inner

public class Outer3$Inner extends java.lang.Object

{
// Datenfeld, um auf das umschliessende Objekt zuzugreifen
final Outer3 this$0;

"% Die Kommentare wurden von Hand hinzugefiigt.
"7 Beachten Sie, dass nur der Typ und nicht der Name des formalen Parameters angegeben wird.

Geschachtelte Klassen 565

// Konstruktor, dem im ersten Parameter eine Referenz auf das
// umschliessende Objekt {ibergeben wird
public Outer3$Inner (Outer3);

}

Die access ()-Methode zum Lesen des Datenfeldes x wird nur dann angelegt, wenn
innerhalb der Elementklasse lesend auf das Datenfeld x zugegriffen wird. Die
access () -Methode zum Schreiben des Datenfeldes x wird nur dann angelegt, wenn
innerhalb der Elementklasse schreibend auf das Datenfeld x zugegriffen wird. Dabei
hat jedes Datenfeld, das von einer Elementklasse benutzt wird, seine eigenen
access ()-Methoden. Die private Referenz thiss$0 in der Elementklasse und der
Typ des formalen Parameters outer3 im Konstruktor werden immer vom Compiler
erganzt, unabhangig davon, ob nun auf Datenfelder der umschlieBenden Klasse zu-
gegriffen wird oder nicht. Damit wird sichergestellt, dass ein Objekt der Element-
klasse nur dann erzeugt werden kann, wenn auch tats&chlich ein umschlieBendes
Objekt existiert. Denn ein Objekt der Elementklasse Outer3.Inner kann nur mit
Hilfe eines Konstruktors initialisiert werden, dem eine Referenz auf ein Objekt der
umschlieBenden Klasse Ubergeben wird.

Lokale Klasse mit Zugriff auf Datenfelder

Eine lokale Klasse kann nur innerhalb eines Blockes instantiiert werden. Ihre Sicht-
barkeit beschrankt sich damit auf den umschlieBenden Block. Die lokale Klasse hat
wie eine Elementklasse Zugriff auf die Datenfelder der umschlieBenden Klasse. Da
eine lokale Klasse kein Element einer Klasse mehr ist, kann fiir sie auch kein Zu-
griffsmodifikator mehr vergeben werden. Im Folgenden wird eine lokale Klasse inner-
halb eines Konstruktors diskutiert.

// Datei: Outer4.java

public class Outer4
{

private int x;

public Outer4()
{

class Inner

{

public Inner ()

{
// Zugriff auf Datenfeld der &uBeren Klasse
x = 10;

}

Zu beachten ist, dass der .class-Dateiname der lokalen Klasse Inner Outer4-
$1Inner ist. Da innerhalb verschiedener Methoden einer Klasse lokale Klassen mit
gleichem Namen definiert werden kénnen, ist eine Durchnummerierung fir lokale
Klassen erforderlich. Hat beispielsweise eine Klasse outer die Methoden metho-
del () und methode2 (), so kann in jeder dieser Methoden eine lokale Klasse mit
dem Namen Inner definiert werden. Der Compiler wirde daraus dann die .class-

566 Kapitel 15

Dateien Outer$lInner und Outer$2Inner erzeugen. Das folgende Codestlick
wird vom Disassemblierer javap generiert, wenn auf der Kommandozeile javap -
private Outer4$1lInner eingegeben wird:

class Outer4$lInner extends java.lang.Object

{
final Outer4 this$0;
Outer4$lInner (Outerd);

Das Ergebnis der Eingabe von javap -private Outer4 ist:

class Outer4 extends java.lang.Object

{
private int x;
public Outer4d();
static int access$002 (Outer4, int);

Da in der lokalen Klasse nur schreibend auf das Datenfeld x der umschlieBenden
Klasse zugegriffen wird, existiert nur die access ()-Methode zum Schreiben des
Datenfeldes x. Das folgende Beispiel zeigt die Zusammenhange, wenn eine lokale
Klasse innerhalb einer Klassenmethode liegt:

// Datei: Outer5.java

class Outerb5

{

private static int x;

public static void methode ()
{

class Inner

{

Inner ()

{
// Zugriff auf Datenfeld der &uBeren Klasse

x = 10;

}
// Eingabe von: javap -private Outer5$lInner

class Outer5$lInner extends java.lang.Object

{
Outer5$1Inner () ;

}
// Eingabe von: javap -private Outer5

public class Outer5 extends java.lang.Object
{

private static int x;

Outer5();

Geschachtelte Klassen 567

public static void methode();
static int access$002 (int);

Die Referenzen auf ein umschlieBendes Objekt fallen sowohl bei den access()-
Methoden, als auch beim Konstruktor weg. Dies ist auch logisch, da der Aufruf einer
Klassenmethode ja nicht an die Existenz eines Objektes gekettet ist.

Lokale Klasse mit Zugriff auf lokale Variablen

Auf lokale Variablen eines umschlieBenden Blockes kann eine lokale Klasse zugrei-
fen, sofern diese final sind. Der Compiler legt fir jede finale lokale Variable, die in
einer lokalen Klasse verwendet wird und deren Wert zum Kompilierzeitpunkt nicht
bekannt ist, ein privates Datenfeld in der lokalen Klasse an. Das Datenfeld wird beim
Konstruktoraufruf mit dem Wert der entsprechenden lokalen Variablen initialisiert.
Der Wert wird somit kopiert. Flr eine lokale finale Variable, deren Wert zum Kompi-
lierzeitpunkt bekannt ist, wird einfach der Name der Variablen in der lokalen Klasse
durch deren Wert ersetzt.

// Datei: Outer6.java

public class Outeré6

{

private int x;

public Outer6 ()

{

Math.abs (-10);
11;

final int y
final int w
class Inner

{

Inner ()

{
int lokal = w;

}

public void print ()
{
System.out.println (y);

}

}
// Eingabe von: javap -private Outer6$lInner

class Outer6$lInner extends java.lang.Object

{
// Kopie der benutzten lokalen Variablen speichern, da zum
// Kompilierzeitpunkt der Wert noch nicht bekannt ist.
final int val$y;

final Outer6 this$0;

568 Kapitel 15

// Ubergabe der lokalen Variablen im Konstruktor und Initiali-
// sierung von val$yY
Outer6$lInner (Outer6, int);

public void print();

Der Code der Klasse outer6 bleibt unverandert, da auf keine Datenfelder zuge-
griffen wird.

Anonyme Klassen

Anonyme Klassen behandelt der Compiler identisch wie lokale Klassen. Fir den
Programmierer ergibt sich lediglich der Unterschied, dass er keinen Konstruktor fir
eine anonyme Klasse anlegen kann. Der Compiler jedoch erzeugt einen Konstruktor,
um eine eventuell benétigte Referenz auf die umschlieBende Klasse bzw. die bend-
tigten lokalen Variablen entgegenzunehmen.

// Datei: Outer7.java

public class Outer?7

{

private int x;

public Outer7()

{
final int y = 10;

Object obj = new Object ()

{
// Uberschreiben der toString()-Methode der Klasse Object

public String toString()

{
return Integer.toString (x) + Integer.toString (y);

}
}i

}

// Eingabe von: javap -private Outer7$1

final class Outer7$1 extends java.lang.Object

{ // Referenz auf umschliessendes Objekt aufnehmen

final Outer7 this$0;

// Konstruktor mit einer Referenz auf die umschlieBende Klasse
Outer7$1 (Outer?);

public java.lang.String toString();

Geschachtelte Klassen 569

15.6 Ubungen
Aufgabe 15.1: Lokale Klasse
Implementieren Sie eine Klasse Emai 1, die folgende Aufgaben erflllt:

® Die Klasse soll die Instanzvariablen betreff, text, empfaenger und absen—
der vom Typ String enthalten.

¢ Der Konstruktor soll folgende Ubergabeparameter besitzen:
— String empfaenger
— String absender
— String betreff
— String text

Der Konstruktor soll die Attribute mit den entsprechenden Ubergabeparametern
initialisieren.

® Schreiben Sie eine Methode senden(), die bei glltigen Mail-Adressen den
Empfanger, den Sender, den Betreff und den Text auf dem Bildschirm ausgibt. Ist
entweder die Mail-Adresse des Absenders oder die Mail-Adresse des Empfangers
ungultig, so soll eine entsprechende Meldung auf dem Bildschirm ausgegeben
werden. Um eine Mail-Adresse auf Glltigkeit zu Uberprifen, verwendet die Metho-
de senden () die Methode isvalid () der lokalen Klasse InternetMailAdd-
ress.

Die Klasse InternetMailAddress soll als lokale Klasse in der Methode sen-
den () der Klasse Email realisiert werden. Die lokale Klasse besitzt folgende Me-
thode:

private boolean isValid (String address);

Diese Methode Uberpriift, ob eine Ubergebene Mail-Adresse giiltig ist oder nicht.
Glltige Adressen:

® besitzen genau ein @-Zeichen, das den Namen des Empfangers vom Server
trennt (empfaengername@servername)

erlauben folgende Zeichen fir Empféangername und Server: a-z, A-Z, 0-9, _, .
erfordern mindestens ein Zeichen fiir Empfangername bzw. Server

beginnen mit einem Zeichen, das nicht @ oder * ist

erlauben das Weglassen von @servername, falls das letzte Zeichen ein ™' ist

Trifft die letzte Regel zu, so wird von der Methode isvalid () als Servername far
die Mail-Adresse "it-designers.de" eingetragen. Beispiele:

® Hans.Muster@gmz.de gultig
® Hans.Muster* gultig (wird zu Hans.Muster@it-designers.de)
°* @gmz.de ungliltig

® Hans.Mustergmz.de ungiltig

570 Kapitel 15

Zum Uberpriifen der Giiltigkeit einer Email-Adresse kdnnen Sie reguldre Ausdriicke
in Kombination mit der Methode matches () der Klasse string verwenden. Kon-
sultieren Sie hierzu die Java Dokumentation. Testen Sie lhre Klasse Email mit fol-
gendem Programm:

// Datei: TestEmail.java

public class TestEmail
{
public static void main (String[] args)
{
Email el = new Email ("Klaus.Gross*","Lotte.Klein@gmz.de",
"Hallo","Hallo Welt");
el.senden();
Email e2 = new Email ("Klaus.Gross*","Lotte.Kleingmz.de",
"Hallo","Hallo Welt");
e2.senden();

Hier ein Auszug der Programmausgabe:

Mail von: Lotte.Klein@gmz.de

An: Klaus.Gross@it-designers.de
Betreff: Hallo

Text:
Hallo Welt

Die Email konnte nicht verschickt werden!
Die Email-Adresse des Absenders ist ungliltig.

Aufgabe 15.2: Anonyme Klasse

Es wird ein Betankungsvorgang simuliert. Dazu werden die Klassen Tank, Tank-
saeule und die Schnittstelle FuellstandSensor benétigt. Die Schnittstelle
FuellstandSensor soll in einer anonymen Klasse implementiert werden.

Die Klasse Tank besitzt folgende Methoden und Instanzvariablen:

public Tank (int volumen)

public void anmeldenFuellstandSensor
(FuellstandSensor fuellstandSensor)

public int fuellen()
private int maxVolumen

private int tankinhalt

private FuellstandSensor fuellstandSensor
Die Klasse Tanksaeule enthalt folgende Methoden und Instanzvariablen:

® public Tanksaeule()

® public void tankstutzenEntnehmen (Tank tank)

Geschachtelte Klassen 571

® public void startTanken ()
® private Tank tank

® private boolean stopFuellen

Die Schnittstelle FuellstandSensor soll folgende Methode enthalten:

public void meldeFuellstand (int fuellstand, int maxVolumen)

Der Tankvorgang wird mit dem Entnehmen des Tankstutzens aus der Tanksaule mit
der Methode tankstutzenEntnehmen () eingeleitet. AnschlieBend beginnt durch
Aufruf der Methode startTanken () das Beflllen. In startTanken () muss zuerst
ein FuellstandSensor mit Hilfe einer anonymen Klasse erzeugt und der Methode
anmeldenFuellstandSensor () Ubergeben werden. Nach Aufruf der Methode
anmeldenFuellstandSensor () kann der eigentliche Fullvorgang beginnen.
Durch Aufruf der Methode fuellen() wird der Tank jedes Mal um einen Liter
gefillt. Durch wiederholten Aufruf der Methode fuellen () wird der Tank aufgefillt,
bis das Maximalvolumen des Tanks erreicht ist. Nach jedem Auffiillen des Tanks um
einen weiteren Liter wird die Methode meldeFuellstand () der anonymen Klasse
— welche die Schnittstelle FuellstandSensor implementiert — aufgerufen. Inner-
halb dieser Methode wird Uberpruft, ob der Tank vollstandig gefillt wurde. Ist dies der
Fall, so wird der Tankvorgang beendet. Zuséatzlich gibt die Methode meldeFuell-
stand () den aktuellen Fullstand auf der Konsole aus.

Testen Sie die entwickelten Klassen mit folgender Klasse:

// Datei: TestTanken.java

public class TestTanken

{
public static void main (String[] args)
{
Tanksaeule tanksaeule = new Tanksaeule();
Tank tank = new Tank (50);
tanksaeule.tankstutzenEntnehmen (tank);
tanksaeule.startTanken () ;

}
Aufgabe 15.3: Elementklasse

Es soll eine Liste zur Archivierung einer CD-Sammlung entwickelt werden. Hierzu
wird die Klasse cdListe entwickelt. Diese Klasse besitzt folgende Methoden:

® public CdListe (String archivTitel, int maxAnzahl)

® public void cdHinzufuegen (String cdTitel, String kuenstler,
int jahr)

® public void listeAnzeigen()
CDs sollen zum Archiv nur hinzugefiigt werden kénnen. Des Weiteren besteht die

Mdoglichkeit, die gesamte Liste der im Archiv aufgenommenen CDs auf der Konsole
auszugeben.

572 Kapitel 15

Die Klasse cdListe enthalt noch eine innere Klasse cd. Diese innere Klasse cd ist
als Elementklasse zu realisieren und besitzt die Methoden:

® Cd (String cdTitel, String kuenstler, int jahr)
® public String toString()

Entwickeln Sie die Klasse cdListe. Beim Hinzufligen einer CD soll ein neues Ob-
jekt der inneren Klasse cd erzeugt und zu der Liste hinzugefligt werden. Die Aus-
gabe der CD-Liste erfolgt unsortiert auf der Konsole durch den Aufruf der Methode
listeAnzeigen().

Die Klasse cdListe kénnte mit folgender Klasse getestet werden:

// Datei: TestCdListe.java

public class TestCdListe
{
public static void main (String[] args)
{
CdListe liste = new CdListe ("Klassik", 3);
liste.listeAnzeigen();

liste.cdHinzufuegen ("Zauberflote", "Mozart", 2003);
liste.cdHinzufuegen ("Nussknacker", "Tschaikowsky", 2001);
liste.listeAnzeigen();

liste.cdHinzufuegen ("Fiir Elise", "Beethoven", 1990);

(
liste.listeAnzeigen() ;

}
Aufgabe 15.4: Statische innere Klasse

Schreiben Sie eine Schnittstelle 0Obst, welche die Methoden getObstname () und
getAnzahl () deklariert. Weiter soll die Schnittstelle noch eine statische geschach-
telte Klasse Obstmengenausgabe enthalten, welche die statische Methode
print (Obst obst) implementiert. Die Methode print (Obst obst) soll die
Art des Obstes und die Anzahl der entsprechenden Friichte auf der Konsole aus-
geben. Implementieren Sie zusétzlich die Klassen Apfel und Birne, welche jeweils
die Schnittstelle 0bst implementieren. Im Konstruktor soll die Anzahl der Birnen oder
Apfel mit Gbergeben werden. Testen Sie ihre Klassen mit folgender Testklasse:

// Datei: TestObst.java

public class TestObst
{
public static void main (String[] args)
{
Obst obstl = new Apfel (9);
Obst.Obstmengenausgabe.print (obstl);
Obst obst2 = new Birne (7);
Obst.Obstmengenausgabe.print (obst2);

Geschachtelte Klassen 573

Aufgabe 15.5: Flughafen-Projekt — Aufrdumen

Ziel dieser Aufgabe ist, eine neue Klasse Flughafen einzuflhren. Diese Klasse
Flughafen soll das Erzeugen und Verwalten aller fir den Flughafen notwendigen
Objekte Gbernehmen. Es folgt die grafische Reprasentation dieser Klasse:

Flughafen

- bahnen : Bahn[]

- parkpositionen : Parkposition[]
- simulator : FlugzeugSimulator
+ Flughafen()

+ aktualisiereStatus()

+ erstelleFluggesellschaft()

+ erstelleFlugzeug()

+ erstelleFlugzeugtyp()

+ getAnzahlBahnen()

+ getAnzahlParkpositionen()

+ getBahn()

+ getParkposition()

+ getSeparateParkposition()

+ getWerft()

+ setFlugzeuglListener()

Bild 15-9 Grafische Représentation der Klasse Flughafen

Die Klasse F1ughafen besitzt die folgenden Datenfelder und Methoden:

ein Array fir die Start- und Landebahnen (Bahn [1), ein Array fir die Parkpositio-
nen (Parkposition[]) und eine Referenz auf das Objekt vom Typ FlugSi-
mulator.

einen Konstruktor, um die drei Referenzen bahnen, parkpositionen und
simulator zu initialisieren.

die Methode aktualisiereStatus(), welche den Aufruf an den Flugzeug-
simulator durchreicht.

die Methoden erstelleFluggesellschaft (), erstelleFlugzeug() und
erstelleFlugzeugtyp () zur Erstellung der entsprechenden Objekte.

die zwei Methoden getAnzahlBahnen () und getAnzahlParkpositionen (),
welche die jeweilige Anzahl zurlickgeben.

die Methoden getBahn (), getParkposition(), getSeparateParkposi-
tion() und getWerft (), um eine Referenz auf das angeforderte Objekt zu er-
halten. Dabei muss den Methoden getBahn () und getParkposition() ein
Index Ubergeben werden, da es mehrere Bahnen und Parkpositionen gibt.

die Methode setFlugzeugListener (), um eine Klasse, die eine Schnittstelle
FlugzeugListener implementiert, beim Flugzeugsimulator anzumelden.

Andern sie die Klasse Client so ab, dass diese mit der neuen Klasse Flughafen
arbeitet. Bitte beachten Sie, dass diese Projektaufgabe keine geschachtelten Klas-
sen enthalt.

Kapitel 16

Ein-/Ausgabe und Streams

16.1 FUr ganz Eilige ein erstes Beispiel

16.2 Klassifizierung von Streams

16.3 Das Stream-Konzept

16.4 Bytestream-Klassen

16.5 Characterstream-Klassen

16.6 Standardeingabe und Standardausgabe
16.7 Ein- und Ausgabe von Objekten

16.8 Ubungen

16 Ein-/Ausgabe und Streams

Programme laufen fast immer nach dem Schema "Eingabe/Verarbeitung/Ausgabe”
ab. Schon daran ist die Wichtigkeit der Ein- und Ausgabe in Programmen zu erken-
nen. Ein gutes Ein- und Ausgabe-System ist flr die Akzeptanz einer Programmier-
sprache von groBer Bedeutung. Gute Ein- und Ausgabe-Systeme sind jedoch nicht
einfach zu entwerfen, denn es gibt nicht nur sehr viele Datenquellen (Tastatur, Da-
teien, Netzverbindungen), von denen Eingaben gelesen werden und Datensenken
(Bildschirm, Dateien, Netzverbindungen), in welche die Ausgaben geschrieben wer-
den, sondern mit diesen Datenquellen und Datensenken sollen Informationen auch in
verschiedenen Einheiten wie z. B. Byte, Zeichen oder Zeilen ausgetauscht werden.

In Java wird das so genannte Stream-Konzept verwendet, um die komplizierten
Einzelheiten der Kommunikation zu verbergen. Ein Stream ist eine geordnete
Folge von Bytes, ein so genannter Bytestrom. Solche Bytestrdme sind meist von
unbekannter Lange, d. h. die Anzahl der Bytes, die ein Bytestrom transportieren
wird, ist im Voraus nicht ermittelbar. Fir die Umsetzung des Stream-Konzeptes gibt
es in Java die so genannten Stream-Klassen aus dem Paket java.io, welche die
Funktionen fur die Ein- und Ausgabe implementieren.

16.1 Fur ganz Eilige ein erstes Beispiel

Bevor auf die Einzelheiten des machtigen Stream-Konzeptes eingegangen wird, soll
hier erst einmal ein Beispiel vorgestellt werden, das zeigt, wie Sie Daten in eine Datei
schreiben und wie Sie Daten aus einer Datei auch wieder einlesen kdnnen. In Kapitel
4.8 haben Sie bereits gelernt, wie man von der Tastatur Daten mit Hilfe der Klasse
Scanner einlesen kann und wie man mit der Methode System.out.printf ()
Daten formatiert auf dem Bildschirm ausgeben kann. Beide Mechanismen werden
auch in folgendem Beispiel benétigt. Es soll ein Adressbuch entwickelt werden, in
welchem die Anschrift und die Handy-Nummer von Personen abgelegt werden kann.
Fir das Beispiel werden die Klassen Person, Addressbuch und Test benétigt. Als
erstes wird die Klasse Person vorgestellt:

// Datei: Person.java

import java.util.x*;
import java.io.*;

public class Person

{
private String name, vorname, str, ort, handy;
private int hausNr, plz;

public Person (Scanner in)
{
vorname = in.next ();
name = in.next();
str = in.next () ;
hausNr = in.nextInt ();
plz = in.nextInt () ;

C. Heinisch et al., Java als erste Programmiersprache, DOI 10.1007/978-3-8348-9854-8_16,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Ein-/Ausgabe und Streams 577

ort = in.next();
handy = in.next();

}

public Person (InputStream in)
{

this (new Scanner (in));

}

public void ausgeben (PrintStream out)

{
out.printf ("%-10s %-10s\n%-12s %-3d\n%-5s %-10s\n%-14s\n",
vorname, name, str, hausNr, plz, ort, handy);

}

Die Klasse Person hat zwei Konstruktoren. Der eine Konstruktor hat einen formalen
Parameter vom Typ Scanner und der andere einen formalen Parameter vom Typ
InputStream. Ein Objekt vom Typ Scanner kann auf eine beliebige Datenquelle
zeigen und von dort Zeichen einlesen. Eine Datenquelle — die Sie bereits gut kennen
— ist die Tastatur. Genauso gut kann eine Datenquelle aber auch eine Datei auf einer
Festplatte sein.

Von der Tastatur werden Zeichen eingelesen, indem fiir die Klassenvariable Sys-
tem.in eine read ()-Methode aufgerufen wird. Die Klassenvariable System. in ist
vom Typ InputStream. Von einer Datei werden Zeichen mit Hilfe eines Objektes
vom Typ FileInputStream eingelesen. Die Klasse FileInputStream ist hierbei
von der Klasse InputStream abgeleitet. Sowohl beim Einlesen von Zeichen von
der Tastatur als auch beim Einlesen von Zeichen aus einer Datei kommt also ein
Objekt vom Typ InputStream zum Einsatz. Dies bedeutet, dass die beiden Kon-
struktoren in der Klasse Person sowohl von der Tastatur Zeichen einlesen kénnen,
als auch aus einer Datei.

Um Daten auf dem Bildschirm auszugeben, verwenden Sie das Datenfeld out der
Klasse system. Das Datenfeld out ist vom Typ PrintStream — also auch vom Typ
einer Stream-Klasse. Mit Hilfe der Methode ausgeben () der Klasse Person soll es
aber nun méglich sein, sowohl auf den Bildschirm die Daten auszugeben, als auch
die Daten in eine Datei zu schreiben. Das kann nur funktionieren, wenn eine
Referenz vom Typ PrintStream, die als aktueller Parameter der Methode aus-
geben () Ubergeben wird, das eine Mal auf ein Objekt zeigt, das die Daten auf dem
Bildschirm ausgeben kann und das andere Mal auf ein Objekt zeigt, das die Daten in
eine Datei schreibt.

Als n&chstes soll die Klasse Adressbuch betrachtet werden. Die Daten des Adress-
buches — ein Objekt vom Typ der Collection-Klasse ArrayList (siehe Kap. 18) —
werden in einer Datei abgelegt. Von dieser Datei kénnen die bereits im Adressbuch
gefuhrten Personen eingelesen werden (Methode einlesen()), es kénnen neue
Personen in das Adressbuch aufgenommen werden (Methode addAdresse ()), das
Adressbuch kann gespeichert werden (Methode speichern()) und das Adress-
buch kann ausgegeben werden (Methode ausgeben ()).

578 Kapitel 16

// Datei: Adressbuch.java
import java.util.x*;
import java.io.*;

public class Adressbuch

{

private String dateiname = null;
private ArrayList<Person> arr = new ArrayList<Person>();

public Adressbuch (String dateiname) throws IOException
{
this.dateiname = dateiname;
try
{
FileInputStream fis = new FileInputStream (dateiname);
einlesen (fis);
fis.close();
}
catch (FileNotFoundException e)
{

System.out.println (dateiname + " wird angelegt!");

}

private void einlesen (InputStream in)
{
Scanner scan = new Scanner (in);
// Solange noch weitere Elemente in der Datei sind,
// werden Adressdaten von Personen eingelesen.
while (scan.hasNext ())
arr.add (new Person (scan));

}

// Methode, um dem Adressbuch einen Eintrag hinzuzufigen.
public void addAdresse (Person pers)
{

arr.add (pers);

}

// Methode, um das Addressbuch zu speichern.
public void speichern() throws IOException
{
FileOutputStream out = new FileOutputStream (dateiname);
PrintStream print = new PrintStream (out);
ausgeben (print);
print.close();
out.close();
}

// Adressbuch auf den Bildschirm oder in eine Datei schreiben.
public void ausgeben (PrintStream out)
{
Iterator<Person> e = arr.iterator();
while (e.hasNext())
e.next () .ausgeben (out);

Ein-/Ausgabe und Streams 579

Dem Konstruktor des Adressbuches wird der Dateiname Ubergeben. Ist die Datei
vorhanden, werden in einem ersten Schritt mit Hilfe eines Objektes der Klasse
FileInputStream— die ja von InputStream abgeleitet ist — alle Adressdaten aus
der Datei mit Hilfe der Methode einlesen () eingelesen und in einem Objekt vom
Typ ArrayList<Person> mit Hilfe der Methode add () abgelegt. Der Methode
addElement () wird eine Referenz auf ein neu angelegtes Objekt vom Typ Person
Ubergeben, in das bei der Abarbeitung des Konstruktors die Daten eingelesen wer-
den. Die Methode speichern () ruft die Methode ausgeben () auf, die dann die
gesamten Adressdaten mit Hilfe der Gibergebenen Referenz auf ein Objekt vom Typ
PrintStream in eine Datei schreibt. Wird die Methode ausgeben () mit dem aktu-
ellen Parameter system.out aufgerufen, so werden die Daten anstatt in eine Datei
auf den Bildschirm geschrieben.

Warum das alles so polymorph funktionieren kann, werden Sie im Detail in den fol-
genden Kapiteln lernen. Zum Abschluss dieses Kapitels kdnnen Sie noch die folgen-
de Testklasse studieren und eventuell mit diesem Beispiel ein wenig experimen-
tieren.

// Datei: Test.java
import java.io.*;

public class Test

{

public static void main (String[] args) throws IOException

{
Adressbuch buch = new Adressbuch (args[0]);

System.out.println("Bitte in folgendem Format eingeben:");
System.out.println ("Vorname Nachname Str. Nr. PLZ Ort Handy");

// Neue Eintrdge in das Adressbuch aufnehmen
buch.addAdresse (new Person (System.in));
buch.addAdresse (new Person (System.in));

// Adressbuch auf dem Bildschirm ausgeben
System.out.println ("***x**** Adressbucheintrdge **x**kxxm),
buch.ausgeben (System.out);

buch.speichern();

}

Beim ersten Aufruf des Programms ist noch kein Adressbuch vorhanden. Sie kénnen
aber gleich ihre ersten Adressdaten eingeben. Der Aufruf erfolgte mit:

java Test Adressbuch.txt
Wenn Sie das Programm ein weiteres Mal aufrufen, existiert die Datei Adress-

buch.txt bereits und die dort abgelegten Adressen werden ausgelesen und neue
kdénnen hinzugefugt werden.

580 Kapitel 16

Der folgende Dialog wurde geflhrt:

Adressbuch.txt wird angelegt!
Bitte in folgendem Format eingeben:

Vorname Nachname Str. Nr. PLZ Ort Handy
Anna Klein Mozartstr. 17 72878 Leonberg 0172/7878878

Chris Valentin Enzweg 17 89898 Mainz 0173/6564343
*xHxxxkkxxk Adressbucheintrdage **x*kxdx

Anna Klein

Mozartstr. 17

72878 Leonberg

0172/7878878

Chris Valentin

Enzweg 17

89898 Mainz

0173/6564343

16.2 Klassifizierung von Streams

Die Stream-Klassen, die Java zur Verflgung stellt, befinden sich fast alle im Paket
java.io — einem der gréBten Pakete der Java-APl. Um sich einen Uberblick zu
verschaffen, ist es hilfreich, zuallererst eine Klassifizierung der Stream-Klassen
durchzufliihren. Stream-Klassen kdnnen auf mehrere Arten klassifiziert werden:

e anhand der Klassenhierarchie des Pakets java.io. Dadurch erhalt man eine
Aufteilung in Byte- und Characterstream-Klassen.

® nach funktionalen Kriterien. Hierdurch erfolgt eine Aufteilung in Klassen, die

— in Datensenken schreiben, die Sinkstream-Klassen.

— aus Datenquellen lesen, die Springstream-Klassen.

— eine Sink- bzw. Springstream-Klasse benutzen und deren Funktionalitat er-
weitern. Dies sind die Processingstream-Klassen.

|
Ein Bytestrom, der aus einer Datenquelle kommt, wird als Eingabe- / o
strom bzw. Inputstream bezeichnet. Ein Bytestrom, der in eine Da- —
tensenke hineingeht, wird als Ausgabestrom bzw. Outputstream be- -~ -
zeichnet.

i

16.2.1 Datensenken und -quellen

In Java kénnen Datenquellen und Datensenken Dateien, Pipes''®, byte-Arrays,

char-Arrays, Strings und Netzverbindungen'® sein. Dabei stellen byte-Arrays,
char-Arrays, Strings und Pipes interne Datenquellen bzw. interne Datensenken
dar, d. h. sie befinden sich innerhalb eines Java-Programms. Dateien und Netzver-

"8 Eine Pipe ist in Java ein Mechanismus zur Interprozesskommunikation zwischen Threads (siehe
Kap. 19). Die eine Seite der Pipe wird als Datensenke verwendet — auf dieser Seite kann ein
Programm Bytes in die Pipe hineinschreiben. Die andere Seite der Pipe wird als Datenquelle
verwendet — auf dieser Seite kann ein Programm Bytes aus der Pipe lesen.

e Netzverbindungen sind in Kap. 24 (Sockets) und in Kap. 25 (RMI) beschrieben.

Ein-/Ausgabe und Streams 581

bindungen sind externe Datenquellen bzw. externe Datensenken, d.h. sie
befinden sich auBerhalb eines Java-Programms (siehe Bild 16-1).

Klassen, die einen Bytestrom von einer Datenquelle einlesen kénnen, bezeichnet
man als Eingabestrom-Klassen. Klassen, die einen Bytestrom in eine Datensenke
schreiben kénnen, bezeichnet man als Ausgabestrom-Klassen. Mit der Notation
:Ausgabestrom-Klasse wird ein Objekt der Klasse Ausgabestrom-Klasse dargestellt.
Dabei ist die Klasse Ausgabestrom-Klasse keine existierende Klasse in Java — sie
steht stellvertretend flr die spater vorgestellten Ausgabestrom-Klassen von Java.

Datensenken Datenquellen

P e '

1 1 Ll
E :Ausgabe i ' :Eingabe | i
1| strom- 1 ' strom- | |
1| Klasse Bytestrom ' , Bytestrom Klasse | !
! ' | 1
| . T
! 01101001 ! Datei Datei T 01101001 E
| |
! E auBerhalb des Java-Programms i E
E :Ausgabe innerhalb des Java-Programms ‘Eingabe E
1| strom- strom- | !
1| Klasse 01101001 > Pipe 01101001 Klasse |
5 i
! 1
! 1
! '
Ll
1 | :Ausgabe “byte[] ‘bytel[] :Eingabe E
'l strom- strom- |
Ll
1| Kasse 01101001 01101001 Klasse |
I |
! 1
: !
! 1
1
1| :Ausgabe :char|] :charf] :Eingabe E
'] strom- strom- | |
1| Klasse 01101001 01101001 Klasse | |
! |
! '
! 1
! 1
5 |
'| :Ausgabe :String :String :Eingabe E
strom- strom-
| Klasse Klasse i
i 01101001 01101001 '
: |
! 1
! 1
T T T !
Ausgabestrom Eingabestrom

Bild 16-1 Datensenken und Datenquellen

Im Bild sind links Instanzen von Ausgabestrom-Klassen zu sehen, die geordnete
Bytefolgen in interne und externe Datensenken schreiben. Objekte von Ausgabe-
strom-Klassen werden von anderen Objekten des Java-Programms benutzt, um
Daten in Datensenken zu schreiben. Rechts sind die entsprechenden Objekte der
Eingabestrom-Klassen zu sehen, die geordnete Bytefolgen aus internen und exter-
nen Datenquellen lesen. Objekte von Eingabestrom-Klassen werden von anderen
Objekten des Java-Programms benutzt, um Eingaben aus einer Datenquelle zu le-
sen.

582 Kapitel 16

16.2.2 Byte- und Characterstreams

Alle Stream-Klassen des Pakets java.io sind von einer der vier abstrakten Basis-
klassen InputStream, OutputStream, Reader oder Writer abgeleitet.

|

AN /

Klassen, die von InputStream oder OutputStream abgeleitet sind, _ —

nennt man Bytestream-Klassen — sie sind hauptsachlich fur die Ver- -

arbeitung einzelner Bytes verantwortlich. =
LV

Klassen, die von Reader oder Writer abgeleitet sind, nennt man
Characterstream-Klassen. Diese sind fir die korrekte Verarbeitung
von Zeichen verantwortlich.

Innerhalb der Byte- und Characterstream-Klassen gibt es die so genannten Input-
stream-Klassen, die Daten lesen, und die so genannten Outputstream-Klassen,
die Daten schreiben. Somit ergibt sich folgende Klassifizierung:

InputStream
{abstract}

OutputStream
{abstract}

Reader
{abstract}

Writer
{abstract}

ZIN TN TN TR

Byte- Byte- Character- Character-
Inputstream- Outputstream- Inputstream- Outputstream-
Klassen Klassen Klassen Klassen
Y V

Bytestream-Klassen Characterstream-Klassen

Bild 16-2 Klassifizierung der Stream-Klassen

Bytes und Characters in Java

Objekte von Bytestream-Klassen schreiben und lesen Bytes, also Werte vom Typ
byte. Objekte von Characterstream-Klassen schreiben und lesen Characters,
also Zeichen vom Typ char. Bei den meisten Programmiersprachen wird ein Zei-
chen vom Typ char durch ein Byte dargestellt. In Java werden jedoch Zeichen des
Typs char in der UTF-16 Codierung des Unicodes (siehe Kap. 5.2) gespeichert. Fir
jedes Zeichen vom Typ char werden also zwei Bytes bendtigt. Hierdurch kénnen in
Java auch Schriftzeichen von Sprachen wie Chinesisch, Arabisch oder Hebraisch
reprasentiert werden.

Java unterstitzt seit der Version 1.1 mit den Characterstream-Klassen die Verwen-
dung von Unicode-Zeichen bei der Ein- und Ausgabe. Die bereits von Anfang an
vorhandenen Bytestream-Klassen werden durch die Characterstream-Klassen
erweitert, jedoch auf keinen Fall ersetzt. Bytestream-Klassen werden benétigt, um

Ein-/Ausgabe und Streams 583

auf Dateien auf Speichermedien zuzugreifen, da das Lesen und Schreiben auf Spei-
chermedien byteweise erfolgt.

Objekte der Bytestream-Klassen kénnen selbst auch Daten vom Typ char und
String — also Zeichen — verarbeiten, jedoch geht dabei das jeweils héherwertige
Byte eines jeden Zeichens verloren. Deshalb muss darauf geachtet werden, dass fir
die korrekte Ein- und Ausgabe von Zeichen, die fir ihre Darstellung mehr als 1 Byte
bendtigen, Characterstream-Klassen eingesetzt werden.

16.2.3 Sink-, Spring- und Processingstreams
Durch die Klassifizierung nach funktionalen Kriterien kann die Aufteilung der Byte-
stream- und Characterstream-Klassen noch verfeinert werden. Bytestream-Klassen

und Characterstream-Klassen besitzen jeweils spezielle Klassen, die sich in die
Kategorien Sink-, Spring- und Processingstream einteilen lassen.

Klassifizierung von Stream-Klassen:

® Ein Objekt einer Sinkstream-Klasse kann Daten in eine Datensen-

ke schreiben. «
® Ein Objekt einer Springstream-Klasse kann Daten direkt aus einer — @ -
Datenquelle lesen. _ ~
® Ein Objekt einer Processingstream-Klasse benutzt intern ein Ob- 2

jekt einer Sinkstream- oder Springstream-Klasse und erweitert de-
ren Funktionalitat, zum Beispiel um int-Werte lesen oder gepuf-
fert schreiben zu kénnen.

In den folgenden Kapiteln werden nun alle Stream-Klassen des Paketes java.io
vorgestellt und den inzwischen bekannten Kategorien Sinkstream, Springstream
und Processingstream zugeordnet. In Kapitel 16.4 werden die Bytestream-Klassen
behandelt und danach die Characterstream-Klassen in Kapitel 16.5. Bevor jedoch im
Detail auf die einzelnen Klassen eingegangen wird, erfolgt eine allgemeine Ein-
fihrung in das Stream-Konzept.

16.3 Das Stream-Konzept

Objekte von Sink- und Springstream-Klassen werden dazu verwendet, um Bytes
oder Zeichen direkt in Datensenken zu schreiben oder direkt aus Datenquellen zu
lesen. Ist eine erweiterte Funktionalitat erwiinscht, kommen Processingstreams zum
Einsatz. Es sind prinzipiell zwei Mdglichkeiten denkbar, wie die Processingstream-
Klassen die Funktionalitat von Sink- und Springstream-Klassen erweitern und den
Quellcode dieser Klassen wieder verwenden kénnen:

® durch Vererbung
® oder durch Aggregation.

584 Kapitel 16

In Java hat man sich fir die Aggregation entschieden und zwar enthalt jede Pro-
cessingstream-Klasse fiir eine

Byte-Inputstream-Klasse ein privates Datenfeld vom Typ InputStream,
Byte-Outputstream-Klasse ein privates Datenfeld vom Typ OutputStream,
Character-Inputstream-Klasse ein privates Datenfeld vom Typ Reader,
Character-Outputstream-Klasse ein privates Datenfeld vom Typ Writer.

Jede Processingstream-Klasse ist von einer der Klassen InputStream, Output—
Stream, Reader oder Writer abgeleitet und aggregiert gleichzeitig ein Objekt der
entsprechenden Klasse. Bild 16-3 zeigt dies stellvertretend an einer Processing-
stream-Klasse flr Byte-Outputstreams.

OutputStream
{abstract}

T

Processing-

L stream-Klasse

Bild 16-3 Beziehungen einer Processingstream-Klasse

Ein Objekt einer Processingstream-Klasse, die von OutputStream abgeleitet ist,
aggregiert ein Objekt der Klasse outputStream. Dies bedeutet, dass eine Pro-
cessingstream-Klasse eine Referenzvariable vom Typ OutputStream als Instanz-
variable hat. Eine Referenz vom Typ OutputStream kann auf ein Objekt zeigen,
dessen Klasse von der abstrakten Klasse outputStream abgeleitet ist. Die weitere
Betrachtung soll der Einfachheit halber nur am Beispiel der Byte-Outputstream-
Klassen erfolgen. Bild 16-4 zeigt einen Ausschnitt aus der Vererbungshierarchie fiir
die Byte-Outputstream-Klassen. Die grau hinterlegten Klassen sind Sinkstream-Klas-
sen und die anderen von OutputStream abgeleiteten Klassen sind Processing-
stream-Klassen.

OutputStream
{abstract}

ByteArray File Filter Object Piped
Output Output Output Output Output
Stream Stream Stream Stream Stream

Buffered Data Print
Output Output Stream
Stream Stream

Bild 16-4 Ausschnitt aus der Klassenhierarchie der Byte-Outputstream-Klassen

Ein-/Ausgabe und Streams 585

Alle Processingstream-Klassen, die von OutputStream abgeleitet \ |/
sind, besitzen eine Instanzvariable vom Typ OutputStream. Diese —
Referenz kann auf jedes Objekt zeigen, dessen Klasse von Output- -
Stream abgeleitet ist.

~

=

Die Klasse OoutputStream definiert nur Methoden, mit denen man Bytes in eine
Datensenke schreiben kann. Die Sinkstream-Klassen implementieren diese Me-
thoden fir die verschiedenen Datensenken. Méchte man eine erweiterte Funktio-
nalitdt haben und méchte beispielsweise Werte elementarer Datentypen schreiben,
so bendtigt man eine der Processingstream-Klassen. Die Processingstream-Klasse
DataOutputStream ermdglicht zum Beispiel das Schreiben von Werten elemen-
tarer Datentypen. Die drei Sinkstream-Klassen ByteArrayOutputStream, File-
OutputStream und PipedOutputStream kénnen von einem Objekt der Pro-
cessingstream-Klasse DataOutputStream aggregiert werden, da alle diese Klas-
sen von der Klasse outputStream abgeleitet sind. Dies ist deshalb méglich, weil
ein Objekt einer Sohnklasse sich immer so verhalten kann wie ein Objekt seiner
Vaterklasse.

Jede Processingstream-Klasse stellt einen Konstruktor mit einem |/
Ubergabeparameter vom Typ OutputStream zur Verfligung. Der —
aktuelle Parameter wird dann der privaten Instanzvariablen vom Typ -~
OutputStream zugewiesen.

~

=

Es ist also mdglich, jede beliebige Referenz, die auf ein Objekt zeigt, dessen Klasse
von OutputStream abgeleitet ist, als Konstruktorparameter einer Processing-
stream-Klasse zu Ubergeben. Damit ist die Vorgehensweise fir eine Ausgabe mit
erweiterter Funktionalitat klar:

AN /

Zuerst wird ein Objekt einer Sinkstream-Klasse erzeugt. Dann wird ein
Objekt einer Processingstream-Klasse erzeugt und im Konstruktor-
aufruf wird die Referenz auf das erzeugte Sinkstream-Objekt Uber- -~
geben.

I\\\\\@ -
/)

Dabei steht Processingstream stellvertretend fir eine konkrete Processingstream-
Klasse, z. B. DataOutputStream, und Sinkstream steht stellvertretend fiir eine kon-
krete Sinkstream-Klasse wie z. B. FileOutputStream.

Hier der Quellcode fiir die Erzeugung eines Processingstream-Objektes, das ein
Sinkstream-Objekt aggregiert:

OutputStream sink = new Sinkstream-Klasse();
Processingstream-Klasse pro;
pro = new Processingstream-Klasse (sink);

Grafisch lasst sich dies folgendermafen darstellen:

586 Kapitel 16

:Processing- :Sinkstream-
stream-Klasse Klasse

|:|, 01101001 Datensenke

Bild 16-5 Objekt einer Processingstream-Klasse benutzt ein Objekt einer Sinkstream-Klasse

Im Programm selbst werden nun die komfortablen Methoden der Processing-
stream-Klasse aufgerufen. Diese leiten bei Bedarf die Aufrufe an das aggre-
gierte Sinkstream-Objekt weiter.

Ein Vorteil dieses Konzepts ist, dass nur eine Processingstream-Klasse pro zusatz-
licher Funktionalitdt geschrieben werden muss und diese Funktionalitédt zu allen
Sinkstream-Klassen individuell hinzugeflgt werden kann.

Eine Konstruktion, die es erlaubt, dass mehrere Klassen, die eine ge- . |
meinsame Basisklasse besitzen, um eine zusatzliche Funktionalitat — _
hier die Funktionalitét einer Processingstream-Klasse — individuell er- /
weitert werden kénnen, ist unter dem Namen Dekorierer als Ent-
wurfsmuster bekannt.

(i

Hatte man, anstatt das Dekorierer-Entwurfsmuster einzusetzen, das mit einer Aggre-
gationsbeziehung zur Basisklasse arbeitet, die zuséatzliche Funktionalitat Gber eine
Vererbungsbeziehung realisiert, so musste flr jede unterschiedliche Sinkstream-
Klasse eine extra Processingstream-Klasse geschrieben werden. Die Processing-
stream-Klasse DataOutputStream misste dann zum Beispiel in drei Varianten
vorliegen — fir jede Sinkstream-Klasse genau eine spezifische Unterklasse. Durch
die Anwendung des Dekorierer-Entwurfsmusters bei den Processingstream-Klassen
bleibt die Vererbungshierarchie des Pakets java.io also Uberschaubar.

Mit diesem Wissen ist nun auch das Beispiel aus Kapitel 16.1 verstandlich. In der
Methode speichern () der Klasse Adressbuch wird zuerst ein Objekt der Klasse
FileOutputStream — ein Sinkstream-Objekt — erzeugt und dann wird ein Objekt
der Klasse PrintStream — ein Processingstream-Objekt — erzeugt. Beim Konstruk-
toraufruf flir das Processingstream-Objekt wird eine Referenz auf das Sinkstream-
Objekt Ubergeben. Das heiBt, das Objekt vom Typ PrintStream bietet die komfor-
tablen Methoden — wie beispielsweise die Methode printf () —und das Objekt vom
Typ FileOutputStream bietet Methoden an, um einzelne Bytes in eine Datei zu
schreiben. Das Objekt vom Typ PrintStream verwendet damit das Delegations-
prinzip, um Bytes unter Verwendung eines Objektes vom Typ FileOutputStream
in eine Datei zu schreiben.

16.4 Bytestream-Klassen

Bytestream-Klassen arbeiten, wie schon erwéhnt, nur mit einzelnen Bytes.

Ein-/Ausgabe und Streams 587

Da externe Datensenken und Datenquellen byteweise arbeiten, sind |
grundsatzlich Bytestreams nétig, um in eine externe Datensenke zu ™ /
schreiben oder um aus einer externen Datenquelle zu lesen. Deshalb — -
gibt es bei den Characterstream-Klassen, wie Sie spater noch se- - ~
hen werden, auch keine Sink- und Springstream-Klassen, die auf =
einer Datei als externe Datensenke bzw. Datenquelle arbeiten. -

Geht es um Daten, die mit nur einem Byte reprasentiert werden kénnen, so ist eine
Stream-Klasse, die Bytes verarbeiten kann, ausreichend. Geht es jedoch um Daten,
die durch mehrere Bytes dargestellt werden miissen (short, int, long, float,
double und char), so benétigt man spezielle Processingstream-Klassen, um
diese Daten korrekt in eine Folge von Bytes zu wandeln, die dann von einem Byte-
stream-Objekt verarbeitet werden kénnen. Umgekehrt missen solche Daten, wenn
sie aus einem Bytestream gelesen werden, von einem Processingstream-Objekt
verarbeitet werden, um die einzelnen Bytes wieder korrekt zusammenzufligen.

16.4.1 Outputstream-Klassen

In Bild 16-4 wurde ein Ausschnitt der Byte-Outputstream-Klassenhierarchie gezeigt.
Da es sich hier um Outputstream-Klassen handelt — also um Klassen, die Daten in
eine Datensenke schreiben — sind in Bild 16-4 keine Springstream-Klassen zu finden.
Die grau hinterlegten Klassen sind die Sinkstream-Klassen und die restlichen von
OutputStream abgeleiteten Klassen sind Processingstream-Klassen.

16.4.1.1 Die Basisklasse OutputStream

Die Methoden der Klasse outputStream ermdglichen das Schreiben von Bytes in
eine Datensenke. Die abstrakte Klasse outputStream deklariert die Methoden:

® sbstract void write (int b)
® void write (bytel[] Db)

® void write (byte[] b, int off, int len)

(
® vyoid flush{()
)

® vyoid close(

Nicht verwirren lassen darf man sich durch die Tatsache, dass die write () -Metho-
de zum Schreiben eines Bytes jedoch einen Ubergabeparameter vom Typ int ver-
langt. Dieser write ()-Methode wird ein int-Wert im Wertebereich 0 bis 255 Uber-
geben. Die anderen beiden write ()-Methoden ermdglichen das Schreiben von
byte-Arrays und Teilen von byte-Arrays in eine Datensenke. Es fallt auf, dass eine
der drei write ()-Methoden abstrakt ist. Alle Subklassen von outputStream Uber-
schreiben diese abstrakte write ()-Methode. Die Klasse FileOutputStream
liberschreibt diese Methode beispielsweise mit einer nativen'?’ Methode, die ein Byte
in eine Datei schreiben kann. Die anderen beiden write ()-Methoden sind schon in
der Klasse OutputStream implementiert und rufen die abstrakte write ()-Methode

20 Eine native Methode ist eine Methode, die in einer anderen Sprache als Java implementiert ist.

588 Kapitel 16

in einer Schleife auf, um mehrere Bytes hintereinander auszugeben. Diese wri-
te ()-Methoden verlassen sich auf die Unterklassen, die garantieren, dass sie die
abstrakte write ()-Methode implementieren, wenn sie nicht auch abstrakt sein
wollen.

In der Klasse outputStream selbst befindet sich also keine wirkliche ™ /
Ausgabefunktionalitat. Diese muss von Subklassen wie z. B. File- —
OutputStream durch Implementieren der write ()-Methode zur -~
Ausgabe eines Bytes bereitgestellt werden.

I\\\\\@ —
/)

Puffert eine Outputstream-Klasse — wie beispielsweise die Processingstream-Klasse
BufferedOutputStream — die zu schreibenden Bytes, so kann die Methode
flush () daflr verwendet werden, alle sich im Puffer befindenden Bytes wirklich in
die Datensenke zu schreiben. Die Methode close () "' schlieBt den Ausgabestrom.
Nach dem SchlieBen sollte ein Ausgabestrom nicht mehr verwendet werden.

16.4.1.2 Sinkstream-Klassen
Es existieren die folgenden Sinkstream-Klassen'? f(ir Bytestreams:

® ByteArrayOutputStream

Mit einem Objekt der ByteArrayOutputStream-Klasse kann man Bytes in ein
byte-Array schreiben. Diese Klasse stellt zwei Konstruktoren zur Verfligung,
einen ohne Parameter und einen, der einen int-Wert fir die anzulegende GréBe
des byte-Arrays entgegennimmt.

® FileOutputStream

Die Bytestream-Klasse FileOutputStream arbeitet direkt auf einer externen
Datensenke. Sie bietet mehrere Konstruktoren an, unter anderem einen, dem als
Parameter der Name der Datei Ubergeben wird, in die geschrieben werden soll.

® PipedOutputStream

Ein Objekt einer Pipedoutputstream-Klasse schreibt Bytes in eine Pipe. Eine
Pipe wiederum wird in Java durch ein byte-Array realisiert.

16.4.1.3 Processingstream-Klassen

Alle Processingstream-Klassen fir Byte-Outputstreams aggregieren L/
ein Objekt vom Typ outputStream. Deshalb verlangen alle Kon- — -
struktoren der Processingstream-Klassen als ersten Parameter eine -~ o~

Referenz auf ein Objekt vom Typ OutputStream.

21 1n Java gibt es keine Methode open (), um einen Strom zu dffnen. Ein Strom ist nach der Erzeu-
gung mit dem new-Operator automatisch gedffnet.

122 Sinkstream-Klassen gibt es logischer Weise nur fiir Outputstreams und nicht fiir Inputstreams.
Sinkstream bezieht sich immer auf eine Klasse, die etwas in eine Datensenke schreibt.

Ein-/Ausgabe und Streams 589

Die Processingstream-Klasse FilterOutputStream ist eine Klasse, die nur die
Methoden der abstrakien Klasse OutputStream implementiert. Man kann zwar
Exemplare der Klasse FilterOutputStream erzeugen, jedoch stellen diese noch
keine erweiterte Funktionalitat im Vergleich zu Objekten der Sinkstream-Klassen zur
Verfugung. Alle Aufrufe, die an ein Objekt einer FilterOutputStream-Klasse ge-
hen, werden direkt an das aggregierte Objekt vom Typ OutputStream weitergeleitet
(delegiert). Die Processingstream-Klassen BufferedOutputStream, DataOut-—
putStream und PrintStream leiten von der Klasse FilterOutputStream ab.

Im Folgenden werden einige Processingstream-Klassen vorgestellt und erlautert:

® BufferedOutputStream

Die Klasse BufferedOutputStream hat als Instanzvariable eine Referenz auf
ein byte-Array einer bestimmten GroBe. Wird eine write ()-Methode fir ein
Objekt der Klasse BufferedOutputStream aufgerufen, so wird dieser Aufruf
nicht sofort an das aggregierte Objekt vom Typ OutputStream weitergeleitet,
sondern die zu schreibenden Bytes werden zuerst in das byte-Array geschrieben.
Erst wenn das byte-Array voll ist, wird der Schreibbefehl an das aggregierte
Objekt vom Typ OutputStream weitergeleitet. Durch diese Pufferung ist ein
wesentlich effizienteres Schreiben z. B. in eine Datei zu erreichen, da nicht jedes
einzelne Byte getrennt geschrieben wird, sondern ein ganzes Array — d. h. ein
Puffer — auf einmal.

® DataOutputStream

\
Ein Objekt der Klasse DataOutputStream kann alle primitiven _ —
Java-Datentypen schreiben, auch diejenigen, die durch zwei oder -

mehr Bytes reprasentiert werden.

(m

Dabei missen einige Dinge beachtet werden — z. B. die Reihenfolge, in der die
Bytes geschrieben werden. Java schreibt Daten grundséatzlich im "big-endian”
Format, d. h. das héherwertige Byte wird zuerst geschrieben.

Die Klasse DataOutputStream kann auch String-Objekte schrei- — -

Allerdings kann das String-Objekt nur in reinem Unicode mit der Methode write-
Chars (String data) geschrieben werden. Benutzt man die Methode write-
Bytes (String data), kann einiges schief gehen. Enthalt der String Unicode-
Zeichen, die zu ihrer Darstellung das héherwertige Byte mitbenutzen, so geht die
Information, die im hdherwertigen Byte steht, einfach verloren. Es wird grund-
satzlich einfach nur das niederwertige Byte eines jeden Zeichens geschrieben. Bei
der Rekonstruktion erh< man den ursprunglichen String also nicht mehr zuruck.

590 Kapitel 16

® PrintStream

Die Klasse PrintStream bietet Methoden zum Schreiben aller N
elementaren Datentypen. Dabei wandeln die Schreibomethoden _
alle Datentypen in deren Stringreprasentation und leiten diese an @\
das aggregierte Objekt vom Typ OutputStream weiter. Diese =
Klasse wird zur einfachen Textausgabe benutzt. =

Die Standardausgabe benutzt diese Klasse, um die Ausgaben auf dem Bildschirm
zu tatigen. Mit System.out.println() wird die Methode println() eines
Objektes vom Typ Print Stream aufgerufen, auf das die Referenz out zeigt.

® ObjectOutputStream

Die Klasse ObjectOutputStream ist eine Processingstream-Klasse zum Schrei-
ben von Objekten in einen Ausgabestrom (siehe Kap. 16.7).

Das folgende Beispiel zeigt die Verwendung der Processingstream-Klassen Buffe-
redOutputStream und PrintStream. Die PuffergroBe des Objektes der Klasse
BufferedOutputStream wird auf 100 Bytes gesetzt. Das Objekt der Klasse
PrintStream benutzt das Objekt der Klasse Buf feredOutputStream und dieses
wiederum benutzt die Standardausgabe, um auf den Bildschirm zu schreiben. Die
zweite for-Schleife dient lediglich dazu, den Programmablauf zu verlangsamen, da-
mit am Bildschirm beobachtet werden kann, dass immer mehrere Datenséatze auf-
grund der Pufferung gleichzeitig ausgegeben werden.

Hier das Beispielprogramm:
// Datei: Messdaten. java
import java.io.*;

public class Messdaten
{
public static void main (String[] args) throws IOException
{
BufferedOutputStream out =
new BufferedOutputStream (System.out, 100);

PrintStream print = new PrintStream (out);
for (int 1 = 0; 1 < 10; i++4)
{
print.println ("Messwert Nr. " + i
+ " hat den Wert: " + getMesswert());

for (int j = 0; 3 < 500000000; F++)

}

// Dafiir sorgen, dass der Puffer geleert wird und damit alles
// ausgegeben wird.
print.flush(); // den Rest noch ausgeben

Ein-/Ausgabe und Streams

591

public static double getMesswert ()

{

return Math.random()

}

Messwert
Messwert

Messwert
Messwert
Messwert
Messwert
Messwert

Messwert
Messwert
Messwert

Nr.
Nr.
Nr.
Nr.
Nr.
Nr.
Nr.
Nr.
Nr.
Nr.

OO IO U WNE O

* 1000;

hat
hat
hat
hat
hat
hat
hat
hat
hat
hat

16.4.2 Inputstream-Klassen

den
den
den
den
den
den
den
den
den
den

Der folgende Dialog wurde gefihrt:

Wert:
Wert:
Wert:
Wert:
Wert:
Wert:
Wert:
Wert:
Wert:
Wert:

998.8001676001394
620.4308663504445
254.09528643582325
565.4049915738923
599.1219468716811
223.6336443179907
50.13028255727614
700.8958107530149
259.4003857856323
387.79674635543824

Die Byte-Inputstream-Klassen bilden das Gegenstiick zu den Byte-Outputstream-
Klassen. Einen Ausschnitt aus der Klassenhierarchie der Byte-Inputstream-Klassen

ist in Bild 16-6 zu sehen.

InputStream
{abstract}

ByteArray File Filter Object Piped Sequence
Input Input Input Input Input Input
Stream Stream Stream Stream Stream Stream
Buffered Data Pushback
Input Input Input
Stream Stream Stream

Bild 16-6 Ausschnitt aus der Klassenhierachie der Byte-Inputstream-Klassen

Bei den Inputstream-Klassen sind keine Sinkstream-Klassen zu finden, da mit Input-
stream-Klassen aus Datenquellen gelesen wird — es sind also nur Springstream-

Klassen vorhanden.

16.4.2.1 Die Basisklasse InputStream

Die abstrakte Klasse InputStream gibt die Aufrufschnittstelle fiir alle Byte-Input-
stream-Klassen vor. Es werden die folgenden Methoden deklariert:

592 Kapitel 16

abstract int read()

int read (byte[] Db)

int read (byte[] b, int off, int len)
void close()

long skip (long n)

int available ()

void mark (int readlimit)

void reset ()

boolean markSupported()

Die drei read ()-Methoden werden zum Lesen von einzelnen Bytes, byte-Arrays
und Teilen von byte-Arrays aus einer Datenquelle verwendet.

Die read () -Methode, die ein einzelnes Byte einliest, ist abstrakt und L/
muss von Subklassen implementiert werden. Die anderen beiden — @ -
read ()-Methoden verwenden die abstrakie read ()-Methode, um ~ ™~

mehrere Bytes in ein byte-Array einzulesen.

Die Methode close () schlieBt den Eingabestrom und die Methode skip () Uber-
liest die angegebene Anzahl von Bytes. Mit der Methode available () kann geprift
werden, wie viele Bytes zum Einlesen im Eingabestrom bereitstehen. Die drei Metho-
den mark (), markSupported () und reset () stellen eine Art Lesezeichen-Funk-
tionalitat bereit. Unterstiitzt ein Eingabestrom die Lesezeichen-Funktionalitat, so gibt
die Methode markSupported() den Wert true zurlick. In diesem Fall kann mit
mark () eine beliebige Stelle im Eingabestrom markiert werden, um dann spater mit
reset () an diese Stelle zuriickspringen zu kdnnen.

16.4.2.2 Springstream-Klassen
Es existieren die folgenden Springstream-Klassen fiir Bytestreams:

® ByteArrayInputStream

Mit einem Objekt der Klasse ByteArrayInputStream kann man Bytes aus
einem byte-Array lesen. Im Konstruktor lbergibt man die Datenquelle, von der
gelesen werden soll, ndmlich ein Objekt vom Typ byte-Array.

® FileInputStream

Die einzige Bytestream-Klasse im Paket java.io, die direkt auf einer externen
Datenquelle arbeitet, ist die Klasse FileInputStream. Sie bietet mehrere Kon-
struktoren an, unter anderem einen, dem als Parameter direkt der Name der Datei
Ubergeben wird, aus der gelesen werden soll.

Ein-/Ausgabe und Streams 593

® PipedInputStream

Ein Objekt einer PipedInputStream-Klasse kann nur im Zusammenhang mit
einem Objekt der Klasse PipedOutputStream eingesetzt werden. Ein Piped-
InputStream-Objekt liest aus der Datenquelle, die das Objekt vom Typ Piped-—
OutputStream als Datensenke verwendet. Dabei dient als Datenquelle bzw. als
Datensenke ein byte-Array.

16.4.2.3 Processingstream-Klassen

Objekt vom Typ InputStream. Der erste Parameter eines Konstruk-

. : \
Alle Processingstream-Klassen fir Byte-Inputstreams aggregieren ein _
tors dieser Klassen ist deshalb vom Typ InputStream.

(N

Die Processingstream-Klasse FilterInputStream ist eine Klasse, die nur die Me-
thoden der abstrakten Klasse InputStream implementiert. Es gilt fiir diese Klasse
das Gleiche wie fir die entsprechende Klasse FilterOutputStream bei den Out-
putstreams. Bild 16-7 zeigt ein Objekt einer Processingstream-Klasse, das ein Objekt
einer Springstream-Klasse benutzt. Das Objekt der Springstream-Klasse ist damit
das aggregierte Objekt. An dieses Objekt leitet das Objekt der Processingstream-
Klasse die Aufrufe weiter.

:Processing- :Springstream-
stream-Klasse Klasse

B 01101001 Datenquelle

Bild 16-7 Objekt einer Processingstream-Klasse benutzt ein Objekt einer
Springstream-Klasse

Die Processingstream-Klassen fir Inputstreams sind zum groBen Teil &quivalent zu
den Processingstream-Klassen fiir Outputstreams. Diese wurden bereits detailliert
vorgestellt. Daher wird hier nur das Wichtigste zusammengefasst:

® Die Klasse BufferedInputStream ermdglicht — mit einer &quivalenten Technik
wie die Klasse BufferedOutputStream — das gepufferte und damit effizientere
Lesen aus einem Eingabestrom.

® Ein Objekt der Klasse DataInputStream kann alle primitiven Java-Datentypen
aus einem Eingabestrom lesen.

® Die Klasse PushbackInputStream stellt Methoden zur Verfligung, mit denen es
maoglich ist, Bytes in den Eingabestrom zurlickzustellen.

® Die Klasse SequenceInputStream dient zum Verketten von mehreren Eingabe-
strdmen. Damit kénnen mehrere Eingabestrdéme hintereinander gehangt werden
und es kann gelesen werden, als wenn nur ein einziger Eingabestrom vorhanden
ware.

594

Kapitel 16

® Die

Klasse ObjectInputStream ist eine Processingstream-Klasse, die es er-
moglicht, Objekte aus einem Eingabestrom zu lesen. Darauf wird in Kapitel 16.7

genauer eingegangen.

16.4.3 Bytes in Datei schreiben und aus Datei lesen

Im Folgenden soll ein einfaches Beispiel zur Ein- und Ausgabe von einzelnen Bytes
betrachtet werden. Zuerst werden mit Hilfe eines Objektes der Klasse FileOutput-
Stream 10 Bytes in die Datei Bytes.txt geschrieben. Danach werden diese 10
Bytes mit Hilfe eines Objektes der Klasse FileInputStream wieder eingelesen

und zur Kontrolle ausgegeben.

// Datei: EinUndAusgabeVonEinzelnenBytes. java

import java.io.*;

public class EinUndAusgabeVonEinzelnenBytes

{

public static void main (String[] args) throws IOException

{

FileOutputStream fos =
new FileOutputStream ("Bytes.txt");

for (int 1 = 0; 1 < 10; i++)
{
fos.write (i);

}

fos.close(); // SchlieRen des Streams

FileInputStream fis =
new FileInputStream ("Bytes.txt");

for (int 1 = 0; i < 10; i++)

{
System.out.print (fis.read());
System.out.print (" ");

}

fis.close(); // SchlieBen des Streams

Die Ausgabe des Programms ist:
0123456789

Um die Verwendung der Processingstream-Klassen zu verdeutlichen, soll im folgen-
den Beispiel die Klasse Buf feredOutputStream verwendet werden. Diese Klasse
erweitert ein Objekt der Klasse FileOutputStream um die Fahigkeit, Daten zu

puffern, bevor diese in die Datei geschrieben werden.

Ein-/Ausgabe und Streams 595

// Datei: GepufferteEinUndAusgabeVonEinzelnenBytes.java
import java.io.*;

public class GepufferteEinUndAusgabeVonEinzelnenBytes
{
public static void main (String[] args) throws IOException
{
FileOutputStream fos = new FileOutputStream ("Bytes.txt");
BufferedOutputStream bos = new BufferedOutputStream (fos, 5);
for (int 1 = 0; 1 < 10; i++)
{
bos.write (1i);

}

dateiInhaltLesen() ;

bos.flush();

bos.close();

dateiInhaltLesen();
}

private static void dateilInhaltLesen() throws IOException

{
FileInputStream fis = new FileInputStream ("Bytes.txt");
System.out.println() ;

int b;
for (int 1 = 0; i < 10; i++)
{ b = fis.read();
if (b == -1)
break;

System.out.print (b);
System.out.print (" ");
}

fis.close();

Die Ausgabe des Programms ist:

01234
01

23456789

In diesem Beispiel werden zuerst 10 Bytes in einen gepufferten Stream geschrieben.
Die PuffergroBe wurde beim Aufruf des Konstruktors auf 5 Bytes festgelegt. D. h. der
Inhalt des Puffers wird in die Datei geschrieben, sobald dieser voll ist und ein weite-
res Byte in den Puffer geschrieben werden soll. Nach dem Schreiben der 10 Bytes
wird der Inhalt der Datei ausgegeben, ohne dass der Puffer des Objektes der Klasse
Buf feredOutputStream explizit geleert wurde. Es ist zu erwarten, dass zu diesem
Zeitpunkt nur die Bytes 0 bis 4 aus der Datei gelesen werden kdnnen, da sich die

596 Kapitel 16

restlichen 5 Bytes noch im Ausgabepuffer befinden und noch gar nicht in der Datei
angekommen sind. Die Ausgabe des Programms bestétigt dies. Nach dem Leeren
des Puffers und dem SchlieBen des Streams kdnnen alle 10 Bytes aus der Datei
gelesen werden.

16.4.4 Byte-Arrays in Dateien schreiben und aus Dateien lesen

Das Schreiben in Dateien und Lesen von byte-Arrays aus Dateien funktioniert im
Prinzip genau gleich wie das Schreiben und Lesen einzelner Bytes. Das folgende
Beispiel veranschaulicht dies:

// Datei: EinUndAusgabeVonByteArrays.java
import java.io.*;

public class EinUndAusgabeVonByteArrays
{
public static void main (String[] args) throws IOException
{
byte[] b = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
bytel[] c new byte [10];

FileOutputStream fos = new FileOutputStream ("Bytes.txt");
fos.write (b);
fos.close();

FileInputStream fis = new FileInputStream ("Bytes.txt");
fis.read (c);
fis.close();

for (int 1 = 0; i < 10; i++)
{
System.out.print (c [i]);
System.out.print (" ");

Die Ausgabe des Programms ist:
0123456789

Da die Ein- und Ausgabe von byte-Arrays grundséatzlich schneller ist als die Aus-
gabe von einzelnen Bytes, ist es zu empfehlen, wann immer mdglich byte-Arrays
anstatt einzelner Bytes zu lesen oder zu schreiben.

16.4.5 Datei-Ein-und -Ausgabe elementarer Datentypen

Bei der Ein- und Ausgabe elementarer Datentypen wie z. B. short, int, float und
double gibt es einiges zu beachten. Da die Ein- und Ausgabe bei Dateien auf der
untersten Ebene nur mit einzelnen Bytes arbeitet, muss bei der Ein- und Ausgabe

Ein-/Ausgabe und Streams 597

von Datentypen, die aus mehreren Bytes bestehen, die Reihenfolge der Bytes
beachtet werden.

Dieser Sachverhalt soll an folgendem Beispiel veranschaulicht werden: Es soll eine
einfache Folge von Bytes, z. B. ein byte-Array mit den vier Bytes 54, 42, F7 und 1C
in eine Datei geschrieben werden. Dabei gibt es in Bezug auf die Byte-Reihenfolge
nichts weiter zu beachten. Da die Bytes in diesem Fall nicht Teile von Datentypen
sind, die aus mehreren Bytes bestehen, sind sie voneinander unabhangig. Das heiBt,
es kann einfach Byte fUr Byte in die Datei geschrieben werden. Also erst 54, dann
42, dann F7 und zuletzt 1cC.

Wird nun ein int-Wert in die Datei geschrieben, muss man sich auf eine bestimmte
Byte-Reihenfolge einigen. Der int-Wert 447 362 175 besteht beispielsweise aus
den vier Bytes 12, A7, 34 und 7F. Wird dieser int-Wert nun in eine Datei geschrie-
ben, so kann dies auf zwei grundsatzlich unterschiedliche Arten geschehen:

® Eine Mdglichkeit ist, das hdherwertigste Byte — also 1A — zuerst zu schreiben,
dann die Bytes 22, 34 und 7F. Diese Reihenfolge wird "Big-Endian" genannt. Java
verwendet ausschlieBlich diese Byte-Reihenfolge zur Speicherung von Daten im
Hauptspeicher sowie beim Schreiben von Daten in einen Stream.

® Die zweite Mdglichkeit ist, das niederwertigste Byte — hier 7F — zuerst zu schrei-
ben und dann die Bytes 34, aa und 1A. Diese Reihenfolge wird "Little-Endian”
genannt. Werden Daten z. B. von einem C-Programm auf einem Rechner mit
Intel-Prozessor in eine Datei geschrieben, so geschieht dies in der "Little-Endian"-
Byte-Reihenfolge.

Adresse A+3 _ 1A 7F
Adresse A+2 : AA 34
Adresse A+1 : 34 AA
Adresse A : 7F 1A

" Little-Endian Big-Endian
Bild 16-8 Byte-Reihenfolge fiir Little-Endian und Big-Endian

In Java wird immer die "Big-Endian"-Byte-Reihenfolge verwendet. - /\

Die beiden Klassen DataOutputStream und DataInputStream werden zur Ein-
und Ausgabe elementarer Datentypen benutzt. Sie kénnen auch zur Ein- und Aus-
gabe von Zeichen verwendet werden. Dies ist jedoch nicht zu empfehlen, da diese
Klassen Unicode-Zeichen nicht korrekt verarbeiten. Das folgende Beispiel zeigt, wie
elementare Datentypen in eine Datei geschrieben werden kénnen und aus dieser
auch wieder ausgelesen werden kdnnen:

598 Kapitel 16
// Datei: EinUndAusgabeVonDatenPrimitiverTypen. java
import java.io.*;
public class EinUndAusgabeVonDatenPrimitiverTypen
{
public static void main (String[] args) throws IOException

{

FileOutputStream fos = new FileOutputStream ("Daten.txt");
DataOutputStream dos = new DataOutputStream (fos);
dos.writeInt (1);

dos.writeDouble (1.1);

dos.writeInt (2);

dos.close();

FileInputStream fis = new FileInputStream ("Daten.txt");
DatalInputStream dis = new DatalnputStream (£fis);

System.out.println (dis.readInt());
System.out.println (dis.readDouble());
System.out.println (dis.readInt());
dis.close();

Die Ausgabe des Programms ist:

N
=

Die im Beispiel generierte Textdatei Daten.txt enthdlt die geschriebene Infor-

mation

als Bytes. Der int-Wert wird zum Beispiel mit 4 Bytes codiert in die Datei

geschrieben. Hierbei spielt es keine Rolle, dass der Wert 1 auch in einem Byte
codiert werden kdnnte. Das folgende Bild zeigt die beteiligten Stream-Klassen aus
dem Beispielprogramm:

Ausgabestrom
dos:Data- fos:FileOutput 3
OutputStream Stream
[e
Daten.txt
dis:Data fis:Filelnput
InputStream Stream
[Lor01001]
N~ —
Eingabestrom

Bild 16-9 Schreiben und Lesen elementarer Datentypen mit Hilfe der Processing-
stream-Klassen DataInputStream und DataOutputStream

Ein-/Ausgabe und Streams 599

16.5 Characterstream-Klassen

Characterstream-Klassen arbeiten mit Zeichen statt nur mit einzelnen Bytes. Da auf
externe Datensenken und Datenquellen — wie oben erwahnt — nur byteweise gear-
beitet werden kann, sind grundséatzlich Bytestreams nétig, um mit externen Da-
tensenken und Datenquellen zu kommunizieren. Aus diesem Grund gibt es auch
keine Characterstream-Klassen, die direkt mit externen Datensenken/-quellen arbei-
ten. Sollen Zeichen in eine externe Datensenke — z. B. eine Datei — geschrieben
oder umgekehrt aus dieser gelesen werden, so missen so genannte Bridge-Klas-
sen verwendet werden.

Bridge-Klassen kénnen Bytes in Zeichen wandeln und umgekehrt. ‘/\

Auf die genaue Funktionsweise und die damit zusammenhangende Problematik wird
in Kapitel 16.5.3 genauer eingegangen.

Interne Datensenken und -quellen befinden sich komplett innerhalb eines Java-
Programms und stellen letztendlich char-Arrays dar. Da innerhalb eines Java-Pro-
gramms alles im Unicode-Format verarbeitet wird, muss keine Umsetzung von
Bytes in Zeichen und umgekehrt stattfinden. Die Characterstream-Klassen bieten im
Wesentlichen die gleiche Funktionalitat wie die Bytestream-Klassen. Der Unterschied
ist, dass Characterstream-Klassen Zeichen, die aus zwei Bytes bestehen, korrekt
verarbeiten kénnen.

16.5.1 Writer-Klassen

Bild 16-4 zeigt einen Ausschnitt der Klassenhierarchie der Character-Outputstream-
Klassen. Die hier dargestellten Processingstream-Klassen und Sinkstream-Klassen
sind von der abstrakten Klasse writer abgeleitet. Die grau hinterlegten Klassen
sind die Sinkstream-Klassen und die Klassen BufferedWriter, FilterWriter
und PrintWriter sind die Processingstream-Klassen. Die Klasse Output-
StreamWriter ist eine so genannte Bridge-Klasse (siehe Kap. 16.5.3) und die
Klasse FilewWriter eine so genannte Bequemlichkeitsklasse (siehe Kap. 16.5.4).

Writer
{abstract}

f

Buffered CharArray Filter Output Piped Print String
Writer Writer Writer Stream Writer Writer Writer
{abstract} Writer

File
Writer

Bild 16-10 Ausschnitt aus der Klassenhierarchie der Character-Outputstream-Klassen

600 Kapitel 16

16.5.1.1 Die Basisklasse Writer

Die abstrakte Klasse writer deklariert folgende Methoden:

® yoid write (int c)

® yoid write (char[] c)

® abstract void write (char[] ¢, int off, int len)
® yoid write (String s)

® void write (String s, int off, int len)

® abstract void flush()

® sbstract void close()

Wie bei den Bytestreams gibt es auch hier drei grundlegende Ausgabemethoden.
Eine Methode fir die Ausgabe eines einzelnen Zeichens und zwei weitere fir die
Ausgabe eines Zeichen-Arrays. Ein Unterschied ist aber, dass die Methode zur Aus-
gabe von Zeichen-Arrays abstrakt ist und nicht diejenige fir die Ausgabe einzelner
Zeichen, wie es bei den Bytestreams der Fall war. Das Schreiben eines Zeichen-
Arrays muss folglich von den Subklassen von wWriter implementiert werden. Die
Ausgabe eines einzelnen Zeichens ist dagegen in der Klasse Writer implementiert.
Alle nicht abstrakten write ()-Methoden der Klasse Writer benutzen wiederum
gerade die von den Subklassen zu implementierende abstrakte write ()-Methode
fir char-Arrays, um Zeichen zu schreiben. Die Methode write (int c) arbeitet
intern beispielsweise folgendermaBen:

public void write (int c) throws IOException

{

// .
// writeBuffer ist ein char[]-Array
writeBuffer [0] = (char) c;

// Ab der Position 0 im char[]-Array 1 Element schreiben
write (writeBuffer, 0, 1);

}

Weiterhin werden noch zwei Schreibmethoden zum Schreiben von String-Objekten
zur Verfligung gestellt. Die abstrakte Methode f1ush () wird bei puffernden Streams
zum Schreiben der im Puffer befindlichen Daten in die Datensenke verwendet und
die abstrakte Methode close () schlieBt einen Ausgabestrom. Die Methoden
flush() und close() sind abstrakt und missen von den Sinkstream-Klassen
implementiert werden.

16.5.1.2 Sinkstream-Klassen

Als Sinkstream-Klassen fir Characterstreams existieren die Klassen CharArray-
Writer, PipedWriter und StringWriter. Dabei benutzt ein Objekt der Klasse
CharArrayWriter ein char-Array als Datensenke und ein Objekt der Klasse
StringWriter ein String-Objekt als Datensenke. Ein Objekt der Klasse Piped-
Writer funktioniert gleich wie ein Objekt der &dquivalenten Klasse PipedOutput-—
Stream bei den Bytestreams mit dem Unterschied, dass als Datensenke kein byte-
Array, sondern ein char-Array verwendet wird.

Ein-/Ausgabe und Streams 601

16.5.1.3 Processingstream-Klassen

gieren ein Objekt vom Typ Writer. Deshalb verlangen alle Konstruk- —
toren der Processingstream-Klassen als ersten Parameter eine Refe- -~

Alle Processingstream-Klassen fiir Character-Outputstreams aggre-
renz auf ein Objekt vom Typ Writer. £

Im Bild 16-10 fallt auf, dass die Klasse FilterWriter abstrakt ist und im Gegen-
satz zu ihrem Aquivalent FilterOutputStream keine Subklassen hat. Eine solche
"Umorganisation" der Stream-Klassen ist bei den Characterstreams im Vergleich zu
den Bytestreams leider vorzufinden und tragt nicht gerade zur Ubersichtlichkeit des
Pakets java.io bei.

Die Klasse FilterWriter kann dazu benutzt werden, Filter-Klassen durch Ablei-
tung selbst zu schreiben. Die Processingstream-Klasse Bufferediiriter ist eine
Subklasse von Writer. BufferedWriter und PrintWriter funktionieren analog
zu den Bytestream-Klassen Buf feredOutputStream und PrintStream.

16.5.2 Reader-Klassen

Bild 16-11 zeigt einen Ausschnitt der Klassenhierarchie der Character-Inputstream-
Klassen. Die gemeinsame Basisklasse ist die abstrakte Klasse Reader. Die grau
hinterlegten Klassen sind die Springstream-Klassen und die Klassen Buffered-
Reader, LineNumberReader, FilterReader und PushbackReader sind Pro-
cessingstream-Klassen. Die Klasse InputStreamReader ist eine Bridge-Klasse
(siehe Kap. 16.5.3) und die Klasse FileReader ist eine Bequemlichkeits-Klasse
(siehe Kap. 16.5.4).

Reader
{abstract}

Buffered CharArray Filter Input Piped String
Reader Reader Reader Stream Reader Reader
{abstract} Reader
Line Pushback File
Number Reader Reader
Reader

Bild 16-11 Ausschnitt aus der Klassenhierarchie der Character-Inputstream-Klassen

16.5.2.1 Die Basisklasse Reader
Die abstrakte Klasse Reader deklariert folgende Methoden:

® int read()

® int read (char[] c)

602 Kapitel 16

abstract int read (char[] c¢, int off, int len)
boolean ready ()

long skip (long n)

boolean markSupported()

void mark (int readAheadLimit)

void reset ()

abstract void close()

Es existieren drei read () -Methoden zum Lesen eines Zeichens und zum Lesen von
char-Arrays. Dabei ist auch wieder die Methode zum Lesen eines Zeichenarrays
abstrakt und muss von den Subklassen der Klasse Reader (siehe Bild 16-11)
implementiert werden.

Die Methode ready () kann mit der Methode available () der Klasse Input-
Stream verglichen werden. Allerdings lasst sich mit ready () nur ermitteln, ob
Zeichen zum Lesen bereitstehen, aber nicht wie viele. Die Methoden skip (), mark-
Supported (), mark (), reset () und close () haben dieselbe Bedeutung wie bei
der Klasse InputStream.

16.5.2.2 Springstream-Klassen

Als Springstream-Klasse bei den Character-Inputstreams ist die Klasse Char-
ArrayReader zum Lesen von Zeichen aus einem char-Array, die Klasse Piped-
Reader zum Lesen von Zeichen aus einer Pipe und die Klasse stringReader zum
Lesen von Zeichen aus einem String-Objekt zu nennen.

16.5.2.3 Processingstream-Klassen

Als Processingstream-Klasse bei den Character-Inputstreams ist die Klasse
BufferedReader zum gepufferten Lesen von Zeichen, die Klasse FilterReader
(abstrakte Klasse) zur Spezialisierung von Filter-Klassen, die Klasse LineNumber-
Reader zum zeilenweisen Lesen von Zeichen und die Klasse PushbackReader
zum Zurickstellen von Zeichen in den Eingabestrom zu nennen. Weitere Pro-
cessingstream-Klassen sind in der Java-API zu finden.

16.5.3 Bridge-Klassen

Eine Bridge-Klasse wandelt Zeichen in Bytes und umgekehrt. Bridge-Klassen
verbinden damit die Characterstream-Klassen mit den Bytestream-Klassen. Die
Umwandlung erfolgt unter Beriicksichtigung eines Character Encodings. Die Bridge-
Klassen outputStreamWriter und InputStreamReader sind direkte Subklas-
sen von Writer bzw. Reader. Diese Bridge-Klassen werden beim Einlesen von
Zeichen aus einer externen Datenquelle bzw. bei der Ausgabe von Zeichen in eine
externe Datensenke bendtigt.

Sollen Zeichen in eine externe Datensenke, z. B. eine Datei, geschrieben werden, so
missen diese zuerst in Bytes umgewandelt werden, sodass ein Objekt einer Byte-

Ein-/Ausgabe und Streams 603

stream-Klasse diese in eine externe Datensenke schreiben kann. Ebenso kénnen
nur einzelne Bytes aus externen Datenquellen gelesen werden. Stellen diese einen
Zeichenstrom dar, missen die einzelnen Bytes wieder in Zeichen umgewandelt wer-
den. Diese Umwandlung geschieht unter der Berlicksichtigung eines Character En-
codings. Beispiele fiir Character-Encodings sind: ASCII, Latin-1, Big-5, UTF-8 oder
UTF-16 des Unicodes.

Wird ein Exemplar der Klasse OutputStreamiriter bzw. InputStreamReader
erzeugt, so kann man im Konstruktor ein Character Encoding angeben. Wird der
parameterlose Konstruktor verwendet, so wird das Default Encoding'® der aktuellen
Plattform verwendet.

16.5.4 Bequemlichkeits-Klassen

Die Klasse Filelriter ist keine wirkliche Sinkstream-Klasse, sondern eine Klasse,
die nur so tut, als ob sie eine ware. Ein Objekt der Klasse FileWriter aggregiert
einfach ein Objekt der Klasse FileOutputStream, wie in Bild 16-12 zu sehen ist.
Die Klasse FileOutputStrean ist dabei die eigentliche Sinkstream-Klasse.

:File- :FileOutput
Writer Stream —

Bild 16-12 Ein Objekt der Klasse FileWriter benutzt ein Objekt der Klasse
FileOutputStream, um in eine Datei zu schreiben

Die Klasse FilewWriter wird deshalb Bequemlichkeitsklasse genannt, weil sie es
dem Benutzer erméglicht, Zeichen zu schreiben, die dann mit Hilfe der Klasse File-
OutputStream in einen Bytestrom Uberflhrt werden. Hierzu musste man eigentlich
eine Bridge-Klasse verwenden, die Zeichen in Bytes wandelt. Die Bridge-Klasse
wiederum muisste den Bytestrom an ein Objekt der Klasse FileOutputStream
weiterleiten, um die Bytes in eine Datei zu schreiben. Der Programmierer spart sich
durch die Verwendung der Klasse FileWriter die Benutzung einer Bridge-Klasse,
verliert aber an Flexibilitdt, da immer ein Default-Encoding verwendet wird, um die
Zeichen zu schreiben.

16.5.5 Ein- und Ausgabe von Zeichenketten

Die folgenden Zeilen erzeugen ein Objekt vom Typ OutputStreamiriter, welches
die ihm Ubergebene Zeichenkette mit dem Default Encoding in die Datei Text . txt
schreibt:

FileOutputStream fos = new FileOutputStream ("Text.txt");
OutputStreamWriter osw = new OutputStreamWriter (fos);
osw.write ("Sehr geehrter Herr Mustermann");

28 Das Default-Encoding lasst sich mit dem Aufruf System.getProperty ("file.encoding™)
ermitteln.

604 Kapitel 16

Soll dagegen ein anderes Character Encoding benutzt werden, so muss dieses im
Konstruktor der Klasse OutputStreamWriter angegeben werden:

OutputStreamWriter osw
= new OutputStreamWriter (fos, "MacThai");
osw.write ("Sehr geehrter Herr Mustermann");

In diesem Fall wird die Zeichenkette "Sehr geehrter Herr Mustermann" per
"MacThai" Encoding in die Datei geschrieben. Mit "MacThai" werden thailandische
Texte auf einem Apple Computer dargestellt.

Ein outputStreamWriter erwartet als ersten Konstruktorparameter einen Para-
meter vom Typ OutputStream. Es kann also eine Referenz auf ein Objekt Uberge-
ben werden, deren Klasse von outputStream abgeleitet ist. Ein Objekt der Bridge-
Klasse OutputStreamWriter aggregiert ein Objekt vom Typ OutputStream, wie
z. B. ein Objekt vom Typ FileOutputStream:

:OutputStream :FileOutput

Writer Stream
J 01101001

Bild 16-13 Ein Objekt der Bridge-Klasse Output St reamiriter aggregiert
ein Objekt der Klasse FileOutputStream

Zur Ausgabe der Zeichenkette im Unicode-Format in der "Little-Endian"-Byte-Reihen-
folge kdnnen folgende Anweisungen verwendet werden:

FileOutputStream fos = new FileOutputStream ("Text.txt");
OutputStreamWriter osw

= new OutputStreamWriter (fos, "UnicodeLittle");
osw.write ("Sehr geehrter Herr Mustermann");

Das folgende Beispielprogramm schreibt die Zeichenkette "Gelb" mit unterschied-
lichen Encodings in Dateien. In die Datei TextUnicodeBig.txt wird in der "Big-
Endian"-Byte-Reihenfolge geschrieben und in die Datei TextUnicodelLittle.txt
wird in der "Little-Endian"-Byte-Reihenfolge geschrieben. AnschlieBend wird der In-
halt der beiden Dateien byteweise ausgelesen und ausgegeben, um die unterschied-
lichen Encodings sichtbar zu machen.

// Datei: AusgabeVonZeichenketten.java
import java.io.*;

public class AusgabeVonZeichenketten
{
public static void main (String[] args) throws IOException
{
String s = "Gelb";
FileOutputStream fos;
OutputStreamWriter osw;

Ein-/Ausgabe und Streams 605

fos = new FileOutputStream ("TextUnicodeBig.txt");
osw = new OutputStreamWriter (fos, "UnicodeBig");
osw.write (s);

osw.close();

fos = new FileOutputStream ("TextUnicodeLittle.txt");
osw = new OutputStreamWriter (fos, "UnicodeLittle");
osw.write (s);

osw.close();

dateiInhaltLesen ("TextUnicodeBig.txt");
dateiInhaltLesen ("TextUnicodeLittle.txt");
}

private static void dateiInhaltLesen (String d)
throws IOException
{
FileInputStream fis = new FileInputStream (d);
System.out.println() ;
int b = 0;

while (true)
{
b = fis.read();

if (b == -1)
break;
System.out.print (b);
System.out.print (" ");
}

fis.close();

Die Ausgabe des Programms ist:

254 255 0 71 0 101 O 108 0 98
255 254 71 0 101 0 108 0 98 O

Um beim Einlesen von Unicode-Zeichen zwischen den beiden Byte-Reihenfolgen
"Little-Endian" und "Big-Endian" unterscheiden zu kénnen, werden die Bytes FE
(254) und FF (255) als erste zwei Bytes in eine Datei geschrieben. Wird beim Ein-
lesen zuerst das Byte FE (254) und dann FF (255) gelesen, so werden die nach-
folgenden Bytes entsprechend der "Big-Endian"-Byte-Reihenfolge interpretiert — wird
erst FF (255) und dann FE (254) gelesen, so werden die nachfolgenden Zeichen ent-
sprechend der "Little-Endian"-Byte-Reihenfolge interpretiert. Die Ausgabe des Pro-
gramms zeigt in der ersten Zeile die Zeichenkette "Gelb", codiert im "Big-Endian"
Unicode-Format. Die zweite Zeile reprasentiert die Zeichenkette "Gelb" im "Little-
Endian" Unicode-Format. Die Zeichenkette "Gelb" entspricht den vier ASCII-Werten
71,101, 108 und 98.

606 Kapitel 16

16.6 Standardeingabe und Standardausgabe

Die Standardeingabe bzw. die Standardausgabe verwenden beide einen Bytestream,
um Daten auf dem Bildschirm auszugeben bzw. um Daten von der Tastatur ein-
zulesen. Die Standardausgabe verwendet ein Objekt vom Typ PrintStream und
die Standardeingabe verwendet ein Objekt vom Typ InputStream. Uber die Refe-
renz out kdnnen alle Methoden, welche die Klasse PrintStream zur Verflgung
stellt, aufgerufen werden — genauso kénnen (ber die Referenz in alle Methoden,
welche die Klasse InputStream zur Verfigung stellt, aufgerufen werden. Die
Referenzen out und in sind dabei Klassenvariablen der Klasse System (siehe
Anhang C).

Die Klasse Printstream implementiert insbesondere Methoden zur N
Textausgabe. Hierzu benutzt sie Uiberladene Varianten der Methoden
print () und println(). So gibt es die Methoden print () und
println() z. B. mit einem Ubergabeparameter vom Typ int, long,
float, double, String oder sogar Object.

e o~

I
I\\\\\@
|

Dabei werden alle Daten in deren Stringreprésentation ausgegeben. Das heif3t, wenn
ein int-Wert 2 ausgegeben wird, werden nicht die vier Bytes 00 00 00 02 ausge-
geben, sondern das Zeichen '2'.

Wird der Methode print () bzw. println() eine Referenz als Uber- |/
gabeparameter Ubergeben, so wird der String ausgegeben, den die —
tosString ()-Methode des referenzierten Objektes zurilickgibt oder ~
der String "nul1", wenn die Referenz die nul1-Referenz ist.

~

o)

Die Methoden der Klasse InputStream, die mit der Referenz in der Klasse Sys-
tem zum Einlesen von der Tastatur benutzt werden kdnnen, sind ausfihrlich in
Kapitel 16.4.2.1 erlautert.

16.6.1 Formatierte Ausgabe

In Kapitel 4.8 wurde bereits die Methode printf () der Klasse system vorgestellt.
Die Methode printf () ermdglicht eine formatierte Ausgabe auf dem Bildschirm.
Diese Art der formatierten Ausgabe wird auch durch die Methode format () der
Klasse java.lang.Formatter und durch die Methode format () der Klasse
String bereitgestellt.

Die im Formatstring angegebenen Formatelemente von printf () folgen einem all-
gemeinen Aufbau. Elemente in eckigen Klammern [] sind dabei optional:

%[Parameterindex$][Steuerzeichen][Feldbreite][. GenauigkeitjlUmwandlungszeichen

Im einfachsten Fall ist einem auszugebenden Parameter genau ein Formatelement
zugeordnet, wobei die Reihenfolge der Formatelemente identisch zur Reihenfolge
der Parameter in der Parameterliste ist. Mit Hilfe des Parameterindex kann die Aus-

Ein-/Ausgabe und Streams 607

gabereihenfolge der Parameter von der Reihenfolge der Parameter in der Parame-
terliste abweichen, wie in den folgenden Beispielen gezeigt wird:

// Ausgabe entsprechend der Reihenfolge der Parameter.
System.out.printf ("%d %d %n", 3, 4);

// Erst wird der zweite Parameter ausgegeben, dann der erste.
System.out.printf ("%28d %1$d %n", 3, 4);

// Es wird zweimal der zweite Parameter ausgegeben. Der erste Para-
// meter wird nicht ausgegeben.
System.out.printf ("%$28d %2$d %n", 3, 4);

Die Ausgabe dieses Programmausschnitts ist:

DO W
SOV INTAN

Steuerzeichen (auch flags genannt) sind zusétzliche Formatangaben, mit denen die
formatierte Ausgabe erweitert werden kann. Beispielsweise kann mit '-' die Aus-
richtung der Ausgabe linksbindig erfolgen oder bei der Formatierung von Zahlen mit
dem Steuerzeichen '+ stets das Vorzeichen mit ausgegeben werden.

Durch die Angabe der Feldbreite kann die minimale Anzahl auszugebender Zeichen
festgelegt werden. Wird fir den Wert des Parameters weniger Platz benétigt, so
werden Leerzeichen vorangestellt. Das Feld fir die Genauigkeit legt in der Regel die
Breite der Ausgabe, d. h. die maximale Anzahl an Zeichen fiir die Ausgabe des Para-
meters, fest. Wird fir den Wert des Parameters mehr Platz benétigt, so werden in
der Ausgabe die Zeichen abgeschnitten, welche die maximale Anzahl Ubersteigen.
Bei Gleitkommazahlen bezieht sich die Genauigkeit auf die Anzahl der Stellen hinter
dem Komma. Die Umwandlungszeichen bestimmen das eigentliche Format der
Ausgabe und sind vom Typ des Parameters abhangig. Es werden Parameter aller
numerischen Typen wie int, byte, long, Integer, Double, Float, USW. unter-
stitzt, sowie verschiedene Bibliotheksklassen wie Calendar und Date. Zudem gibt
es Umwandlungszeichen, die generell auf Datentypen angewendet werden kdnnen.
Dies sind z. B. 's' oder 's' welche die Methode toString () des angegebenen
Parameters benutzen.

Bei Formatelementen fiir die Ausgabe von Datum und Zeit entfallt die Option Genau-
igkeit, allerdings benétigen sie fur alle Umwandlungszeichen das Préfix 't' (klein
geschrieben) oder 'T' (groB geschrieben). Das groB geschriebene T bewirkt dabei
die Ausgabe in GroBbuchstaben. Hier ein Beispiel fiir das Umwandlungszeichen bei
der Datumsformatierung:

// Ein Calendar-Objekt mit dem Datum 31.12.2009 anlegen
Calendar calendar = new GregorianCalendar (2009, 11, 31);

// Den Monat in normaler Schreibweise ausgeben
System.out.printf ("%tB %n", calendar);

// Den Monat in GroBbuchstaben ausgeben
System.out.printf ("$TB %n", calendar);

608 Kapitel 16

Die Ausgabe dieses Programmausschnitts ist:

Dezember
DEZEMBER

Die nachfolgende Tabelle enthalt die wichtigsten Umwandlungszeichen:

Umwand- |Typ des Parameters Ausgabe

lungs-

zeichen

c,C Zeichen Ein einzelnes Zeichen (auch aus einer Zahl)
s, S Generell Darstellung als Zeichenkette

d Ganzzahl Dezimale Darstellung

o Ganzzahl Oktale Darstellung (zur Basis 8)

%, X Ganzzahl Hexadezimale Darstellung (zur Basis 16)

£ Gleitkommazahl Dezimale Darstellung

e, E Gleitkommazahl Darstellung als Exponentialzahl

£, T Datum/Zeit Prafix fir alle Datum- und Zeitausgaben

H Zeit Stunden der 24 Stunden Uhr: 00 - 24

I Zeit Stunden der 12 Stunden Uhr: 01 - 12

M Zeit Minuten: 00 - 59

S Zeit Sekunden: 00 - 59

B Datum Monatsname "Januar", "Februar", etc.

b Datum Monatsname abgekdrzt zu "Jan", "Feb", etc.
Y Datum Jahreszahl im vierstelligem Format wie z. B. "2005"
n - Zeilenumbruch

Tabelle 16-1 Die wichtigsten Umwandlungszeichen fir print £ () und format ()

Die Umwandlungszeichen, die auch in GroBbuchstaben angeben werden kdénnen,
bewirken, dass die jeweilige Ausgabe in GroBbuchstaben umgewandelt wird. Fir
eine ausflhrliche Aufstellung aller unterstiitzten Formatelemente wird auf die Doku-
mentation der Java-API fir die Klasse java.util.Formatter verwiesen.

16.6.2 Die Methode format()

Mit Hilfe der Methode format () der Klasse string kann eine formatierte Ausgabe
in eine Stringvariable erfolgen. Die Formatelemente von format () stimmen mit den-
jenigen von printf () Oberein und sind auszugsweise in Tabelle 16-1 dargestellt.

Im Folgenden wird gezeigt, wie mit der Methode format () eine Stringvariable
konstruiert wird:

// Das aktuelle Datum wird mit der Klasse Calendar bestimmt
Calendar calendar = Calendar.getlInstance();

// Mit dem Parameterindex 1$ wird auf denselben Parameter

// mehrfach zugegriffen. Hier wird der aktuelle Tag, der Monat
// und das Jahr aus dem Objekt calendar hintereinander in

// einen String geschrieben.

String s = String.format ("%1$td %1$tB %1$tY", calendar);

Ein-/Ausgabe und Streams 609

Das folgende Programm zeigt die Anwendung von format () und printf ():

// Datei: FormatTest.java
import java.util.Calendar;

public class FormatTest

{

// Klassenmethode zur formatierten Ausgabe von Datum und Zeit
public static void main (String[] args)
{

// Das aktuelle Datum wird mit Hilfe der Klasse Calendar

// bestimmt.
Calendar calendar = Calendar.getInstance();

// Mit dem Parameterindex 1$ wird auf denselben Parameter

// mehrfach zugegriffen.

String datum = String.format ("%1td %1$tB %$1$tY", calendar);
String zeit = String.format ("Uhrzeit: 1tH:%1tM", calendar);

// Die Reihenfolge der Parameter kann durch die

// Parameterindices verédndert werden. Hier wird an erster

// Stelle das Datum ausgegeben.

System.out.printf ("Heute ist der %2$s %n%1S$s", zeit, datum);

Die Ausgabe des Programms ist:

Heute ist der 26 Januar 2005
Uhrzeit: 10:49

16.7 Ein- und Ausgabe von Objekten

In Java kann man nicht nur Werte elementarer Datentypen in eine Datensenke
schreiben und aus einer Datenquelle lesen, sondern ganze Objekte. Werden die
Werte der Datenfelder eines Objektes in einen Bytestrom Uberfiihrt, der sich
wieder rekonstruieren lasst, so spricht man von Objektserialisierung. Dieser Me-
chanismus wird im folgenden Kapitel erlautert.

16.7.1 Objektserialisierung

Mittels der Objektserialisierung kénnen Objekte genauso wie elementare Datentypen
in einen Bytestrom geschrieben werden. Ebenso ist es mdglich, aus einem Byte-
strom, der aus einer Datenquelle kommt, die Datenfelder eines Objektes wieder ein-
zulesen.

610 Kapitel 16

Fur die Uberfilhrung der Datenfelder eines Objektes in einen Byte- N
strom ist die Klasse ObjectOutputStream zustandig. Fir die Re-

konstruktion der Datenfelder eines Objektes beim Lesen aus einem ‘/\
Bytestrom, der aus einer Datenquelle kommt, ist die Klasse Object— -

InputStream zustandig.

— :Person
...]H[e]i [nlz] JFIr [i | —— name = "Heinz"
vorname = "Fritz"

alter =10

Objekt flieBt als Bytestrom
in die Datensenke

Bild 16-14 Serialisierung eines Objektes

Die Klasse ObjectOutputStream stellt Schreibmethoden fir alle elementaren Da-
tentypen zur Verfligung. Beispielsweise die Methode writeDouble (), die einen
double-Wert in den Ausgabestrom schreibt, oder die Methode writelInt (), die
einen int-Wert in den Ausgabestrom schreibt. AuBer den Schreibmethoden fir die
elementaren Datentypen existiert auch eine Methode writeObject (), die eine
Referenz auf ein Objekt als Parameter Gbergeben bekommt und die Datenfelder
dieses Objektes in den Ausgabestrom schreibt:

public writeObject (Object data) throws IOException

Entsprechend existieren in der Klasse ObjectInputStream Lesemethoden fir
elementare Datentypen und die Methode readObject (), um die Datenfelder eines
Objektes aus einem Bytestrom auszulesen:

public final Object readObject () throws OptionalDataException,
ClassNotFoundException,
IOException

Wird die Methode writeObject () aufgerufen, so wird das Objekt, auf das die
Ubergebene Referenz zeigt, daraufhin Uberprift, ob dessen Klasse die Schnittstelle
Serializable implementiert. Die Schnittstelle serializable kennzeichnet ein
Objekt als serialisierbar. Implementiert die Klasse des zu serialisierenden Objektes
die Schnittstelle Sserializable nicht, so wird eine Exception vom Typ NotSe-
rializableException geworfen.

\
Die Schnittstelle serializable dient als Kennzeichnung, dass _ —
ein Objekt einer Klasse serialisierbar ist. Die Schnittstelle selbst de- g

klariert keine Methoden.

iy

Das folgende Beispiel zeigt, wie die Datenfelder eines Objektes in eine Datei ge-
schrieben und wieder eingelesen werden.

Ein-/Ausgabe und Streams 611

// Datei: Serial.java
import java.io.*;

class Person implements Serializable
{

private String name;

private String vorname;

private int alter;

public Person (String name, String vorname, int alter)

{

this.name = name;
this.vorname = vorname;
this.alter = alter;

}

public void print()
{

System.out.println ("Name: " + name);
System.out.println ("Vorname: " + vorname);
System.out.println ("Alter: " + alter);

}

public class Serial
{
public static void main (String[] args) throws Exception
{
// Datei text.txt zum Schreiben 6ffnen.
ObjectOutputStream out =
new ObjectOutputStream (new FileOutputStream ("text.txt"));
Person persl = new Person ("Weiss", "Renate", 12);
Person pers2 = new Person ("Maier", "Anja", 13);

// Ein paar primitive Datentypen in die Datei schreiben.
out.writeInt (1);

out.writeDouble (1.2);

// Objekte persl und pers2 in die Datei schreiben.
out.writeObject (persl);

out.writeObject (pers2);

out.close();

// Datei text.txt zum Lesen &ffnen.
ObjectInputStream in =
new ObjectInputStream (new FileInputStream ("text.txt"));

// Datentypen wieder einlesen und ausgeben.
System.out.println (in.readInt());

System.out.println (in.readDouble());

// Die Methode readObject () gibt eine Referenz vom Typ Object
// zurick. Es muss ein expliziter Cast erfolgen, damit die

// Methode print() der Klasse Person aufgerufen werden kann.
((Person) in.readObject()) .print();

((Person) in.readObject()) .print();

in.close();

612 Kapitel 16

1.2

Name: Weiss
Vorname: Renate
Alter: 12

Name: Maier
Vorname: Anja
Alter: 13

Die Ausgabe des Programms ist:

1
Das Ganze funktioniert problemlos — und dazu muss recht wenig Aufwand betrieben
werden. Es darf lediglich nicht vergessen werden, dass die Klasse der zu seriali-
sierenden Objekte die Schnittstelle Serializable implementieren muss. Wobei
dies, da serializable keine Methoden deklariert, nur in der Klassendeklaration
mit implements Serializable angegeben werden muss. Wird die Angabe im-
plements Serializable im Beispiel bei der Klasse Person weggelassen, so
wird beim Ausfihren des Programms folgende Meldung ausgegeben:

java.io.NotSerializableException: Person
Bei der Serialisierung eines Objektes laufen folgende Schritte ab:

e Uberpriifen, ob das zu serialisierende Objekt die Schnittstelle Serializable
implementiert. Ist das nicht der Fall, wird eine Exception vom Typ NotSe-
rializableException geworfen.

e Ein eindeutiger Identifikator der Klasse wird codiert in den Bytestrom geschrieben.

® Die Instanzvariablen werden der Reihe nach durch die entsprechende Methode
der Klasse ObjectOutputStream in den Ausgabestrom geschrieben. Ist ein Da-
tenfeld wiederum eine Referenz, so setzt sich dieser Mechanismus rekursiv beim
ersten Schritt fort.

Bei der Rekonstruktion eines Objektes aus einem Eingabestrom werden folgende
Schritte durchlaufen:

® Rekonstruktion der Klasse des Objektes.

® | aden der Klasse, wenn diese noch nicht in der virtuellen Maschine vorhanden ist.
Kann die Klasse vom Klassenlader nicht gefunden werden, wird eine Exception
vom Typ ClassNotFoundException geworfen. Flr das zu rekonstruierende
Objekt wird Speicher angelegt und die Instanzvariablen werden mit den Default-
Werten belegt.

® Es werden alle Instanzvariablen der Reihe nach mit der entsprechenden Methode
der Klasse ObjectInputStream eingelesen. Ist ein Datenfeld wiederum eine
Referenz, so setzt sich der Vorgang rekursiv beim ersten Schritt fort.

Ein-/Ausgabe und Streams 613

16.7.2 Strom-eindeutige Bezeichner

Zu jeder Klasse, deren Objekte (de-)serialisiert werden sollen, berechnet die JVM
einen eindeutigen Identifikator, die so genannte serialversionUID. An Hand die-
ser ID erkennt die JVM, ob sie flir das serialisierte Objekt die passende Klasse
geladen hat. Dazu vergleicht sie die ID aus dem Eingabestrom mit der ID der gela-
denen Klasse. Schlagt der Vergleich fehl, wird eine InvalidClassException ge-
worfen.

Hat man in einem verteilten System eine Klasse, welche serializable implemen-
tiert, erst einmal verbreitet, ist man fir immer an die urspriingliche Implementierung
der Klasse gebunden. Jede Anderung und Erweiterung fiihrt dazu, dass sich die
serialVersionUID andert. Wird also die interne Implementierung einer Klasse
geandert, kann man mit dieser Klasse keine Objekte mehr einlesen, die mit der
Vorgangerversion dieser Kla